1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/slab.c 4 * Written by Mark Hemment, 1996/97. 5 * (markhe@nextd.demon.co.uk) 6 * 7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 8 * 9 * Major cleanup, different bufctl logic, per-cpu arrays 10 * (c) 2000 Manfred Spraul 11 * 12 * Cleanup, make the head arrays unconditional, preparation for NUMA 13 * (c) 2002 Manfred Spraul 14 * 15 * An implementation of the Slab Allocator as described in outline in; 16 * UNIX Internals: The New Frontiers by Uresh Vahalia 17 * Pub: Prentice Hall ISBN 0-13-101908-2 18 * or with a little more detail in; 19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 20 * Jeff Bonwick (Sun Microsystems). 21 * Presented at: USENIX Summer 1994 Technical Conference 22 * 23 * The memory is organized in caches, one cache for each object type. 24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 25 * Each cache consists out of many slabs (they are small (usually one 26 * page long) and always contiguous), and each slab contains multiple 27 * initialized objects. 28 * 29 * This means, that your constructor is used only for newly allocated 30 * slabs and you must pass objects with the same initializations to 31 * kmem_cache_free. 32 * 33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 34 * normal). If you need a special memory type, then must create a new 35 * cache for that memory type. 36 * 37 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 38 * full slabs with 0 free objects 39 * partial slabs 40 * empty slabs with no allocated objects 41 * 42 * If partial slabs exist, then new allocations come from these slabs, 43 * otherwise from empty slabs or new slabs are allocated. 44 * 45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 47 * 48 * Each cache has a short per-cpu head array, most allocs 49 * and frees go into that array, and if that array overflows, then 1/2 50 * of the entries in the array are given back into the global cache. 51 * The head array is strictly LIFO and should improve the cache hit rates. 52 * On SMP, it additionally reduces the spinlock operations. 53 * 54 * The c_cpuarray may not be read with enabled local interrupts - 55 * it's changed with a smp_call_function(). 56 * 57 * SMP synchronization: 58 * constructors and destructors are called without any locking. 59 * Several members in struct kmem_cache and struct slab never change, they 60 * are accessed without any locking. 61 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 62 * and local interrupts are disabled so slab code is preempt-safe. 63 * The non-constant members are protected with a per-cache irq spinlock. 64 * 65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 66 * in 2000 - many ideas in the current implementation are derived from 67 * his patch. 68 * 69 * Further notes from the original documentation: 70 * 71 * 11 April '97. Started multi-threading - markhe 72 * The global cache-chain is protected by the mutex 'slab_mutex'. 73 * The sem is only needed when accessing/extending the cache-chain, which 74 * can never happen inside an interrupt (kmem_cache_create(), 75 * kmem_cache_shrink() and kmem_cache_reap()). 76 * 77 * At present, each engine can be growing a cache. This should be blocked. 78 * 79 * 15 March 2005. NUMA slab allocator. 80 * Shai Fultheim <shai@scalex86.org>. 81 * Shobhit Dayal <shobhit@calsoftinc.com> 82 * Alok N Kataria <alokk@calsoftinc.com> 83 * Christoph Lameter <christoph@lameter.com> 84 * 85 * Modified the slab allocator to be node aware on NUMA systems. 86 * Each node has its own list of partial, free and full slabs. 87 * All object allocations for a node occur from node specific slab lists. 88 */ 89 90 #include <linux/slab.h> 91 #include <linux/mm.h> 92 #include <linux/poison.h> 93 #include <linux/swap.h> 94 #include <linux/cache.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compiler.h> 98 #include <linux/cpuset.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/notifier.h> 102 #include <linux/kallsyms.h> 103 #include <linux/kfence.h> 104 #include <linux/cpu.h> 105 #include <linux/sysctl.h> 106 #include <linux/module.h> 107 #include <linux/rcupdate.h> 108 #include <linux/string.h> 109 #include <linux/uaccess.h> 110 #include <linux/nodemask.h> 111 #include <linux/kmemleak.h> 112 #include <linux/mempolicy.h> 113 #include <linux/mutex.h> 114 #include <linux/fault-inject.h> 115 #include <linux/rtmutex.h> 116 #include <linux/reciprocal_div.h> 117 #include <linux/debugobjects.h> 118 #include <linux/memory.h> 119 #include <linux/prefetch.h> 120 #include <linux/sched/task_stack.h> 121 122 #include <net/sock.h> 123 124 #include <asm/cacheflush.h> 125 #include <asm/tlbflush.h> 126 #include <asm/page.h> 127 128 #include <trace/events/kmem.h> 129 130 #include "internal.h" 131 132 #include "slab.h" 133 134 /* 135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 136 * 0 for faster, smaller code (especially in the critical paths). 137 * 138 * STATS - 1 to collect stats for /proc/slabinfo. 139 * 0 for faster, smaller code (especially in the critical paths). 140 * 141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 142 */ 143 144 #ifdef CONFIG_DEBUG_SLAB 145 #define DEBUG 1 146 #define STATS 1 147 #define FORCED_DEBUG 1 148 #else 149 #define DEBUG 0 150 #define STATS 0 151 #define FORCED_DEBUG 0 152 #endif 153 154 /* Shouldn't this be in a header file somewhere? */ 155 #define BYTES_PER_WORD sizeof(void *) 156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 157 158 #ifndef ARCH_KMALLOC_FLAGS 159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 160 #endif 161 162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 164 165 #if FREELIST_BYTE_INDEX 166 typedef unsigned char freelist_idx_t; 167 #else 168 typedef unsigned short freelist_idx_t; 169 #endif 170 171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 172 173 /* 174 * struct array_cache 175 * 176 * Purpose: 177 * - LIFO ordering, to hand out cache-warm objects from _alloc 178 * - reduce the number of linked list operations 179 * - reduce spinlock operations 180 * 181 * The limit is stored in the per-cpu structure to reduce the data cache 182 * footprint. 183 * 184 */ 185 struct array_cache { 186 unsigned int avail; 187 unsigned int limit; 188 unsigned int batchcount; 189 unsigned int touched; 190 void *entry[]; /* 191 * Must have this definition in here for the proper 192 * alignment of array_cache. Also simplifies accessing 193 * the entries. 194 */ 195 }; 196 197 struct alien_cache { 198 spinlock_t lock; 199 struct array_cache ac; 200 }; 201 202 /* 203 * Need this for bootstrapping a per node allocator. 204 */ 205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 207 #define CACHE_CACHE 0 208 #define SIZE_NODE (MAX_NUMNODES) 209 210 static int drain_freelist(struct kmem_cache *cache, 211 struct kmem_cache_node *n, int tofree); 212 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 213 int node, struct list_head *list); 214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 216 static void cache_reap(struct work_struct *unused); 217 218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 219 void **list); 220 static inline void fixup_slab_list(struct kmem_cache *cachep, 221 struct kmem_cache_node *n, struct slab *slab, 222 void **list); 223 224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 225 226 static void kmem_cache_node_init(struct kmem_cache_node *parent) 227 { 228 INIT_LIST_HEAD(&parent->slabs_full); 229 INIT_LIST_HEAD(&parent->slabs_partial); 230 INIT_LIST_HEAD(&parent->slabs_free); 231 parent->total_slabs = 0; 232 parent->free_slabs = 0; 233 parent->shared = NULL; 234 parent->alien = NULL; 235 parent->colour_next = 0; 236 raw_spin_lock_init(&parent->list_lock); 237 parent->free_objects = 0; 238 parent->free_touched = 0; 239 } 240 241 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 242 do { \ 243 INIT_LIST_HEAD(listp); \ 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 245 } while (0) 246 247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 248 do { \ 249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 252 } while (0) 253 254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) 255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) 256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) 257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 258 259 #define BATCHREFILL_LIMIT 16 260 /* 261 * Optimization question: fewer reaps means less probability for unnecessary 262 * cpucache drain/refill cycles. 263 * 264 * OTOH the cpuarrays can contain lots of objects, 265 * which could lock up otherwise freeable slabs. 266 */ 267 #define REAPTIMEOUT_AC (2*HZ) 268 #define REAPTIMEOUT_NODE (4*HZ) 269 270 #if STATS 271 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 274 #define STATS_INC_GROWN(x) ((x)->grown++) 275 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) 276 #define STATS_SET_HIGH(x) \ 277 do { \ 278 if ((x)->num_active > (x)->high_mark) \ 279 (x)->high_mark = (x)->num_active; \ 280 } while (0) 281 #define STATS_INC_ERR(x) ((x)->errors++) 282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 285 #define STATS_SET_FREEABLE(x, i) \ 286 do { \ 287 if ((x)->max_freeable < i) \ 288 (x)->max_freeable = i; \ 289 } while (0) 290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 294 #else 295 #define STATS_INC_ACTIVE(x) do { } while (0) 296 #define STATS_DEC_ACTIVE(x) do { } while (0) 297 #define STATS_INC_ALLOCED(x) do { } while (0) 298 #define STATS_INC_GROWN(x) do { } while (0) 299 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) 300 #define STATS_SET_HIGH(x) do { } while (0) 301 #define STATS_INC_ERR(x) do { } while (0) 302 #define STATS_INC_NODEALLOCS(x) do { } while (0) 303 #define STATS_INC_NODEFREES(x) do { } while (0) 304 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 305 #define STATS_SET_FREEABLE(x, i) do { } while (0) 306 #define STATS_INC_ALLOCHIT(x) do { } while (0) 307 #define STATS_INC_ALLOCMISS(x) do { } while (0) 308 #define STATS_INC_FREEHIT(x) do { } while (0) 309 #define STATS_INC_FREEMISS(x) do { } while (0) 310 #endif 311 312 #if DEBUG 313 314 /* 315 * memory layout of objects: 316 * 0 : objp 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 318 * the end of an object is aligned with the end of the real 319 * allocation. Catches writes behind the end of the allocation. 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 321 * redzone word. 322 * cachep->obj_offset: The real object. 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 324 * cachep->size - 1* BYTES_PER_WORD: last caller address 325 * [BYTES_PER_WORD long] 326 */ 327 static int obj_offset(struct kmem_cache *cachep) 328 { 329 return cachep->obj_offset; 330 } 331 332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 333 { 334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 335 return (unsigned long long *) (objp + obj_offset(cachep) - 336 sizeof(unsigned long long)); 337 } 338 339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 340 { 341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 342 if (cachep->flags & SLAB_STORE_USER) 343 return (unsigned long long *)(objp + cachep->size - 344 sizeof(unsigned long long) - 345 REDZONE_ALIGN); 346 return (unsigned long long *) (objp + cachep->size - 347 sizeof(unsigned long long)); 348 } 349 350 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 351 { 352 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 353 return (void **)(objp + cachep->size - BYTES_PER_WORD); 354 } 355 356 #else 357 358 #define obj_offset(x) 0 359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 362 363 #endif 364 365 /* 366 * Do not go above this order unless 0 objects fit into the slab or 367 * overridden on the command line. 368 */ 369 #define SLAB_MAX_ORDER_HI 1 370 #define SLAB_MAX_ORDER_LO 0 371 static int slab_max_order = SLAB_MAX_ORDER_LO; 372 static bool slab_max_order_set __initdata; 373 374 static inline void *index_to_obj(struct kmem_cache *cache, 375 const struct slab *slab, unsigned int idx) 376 { 377 return slab->s_mem + cache->size * idx; 378 } 379 380 #define BOOT_CPUCACHE_ENTRIES 1 381 /* internal cache of cache description objs */ 382 static struct kmem_cache kmem_cache_boot = { 383 .batchcount = 1, 384 .limit = BOOT_CPUCACHE_ENTRIES, 385 .shared = 1, 386 .size = sizeof(struct kmem_cache), 387 .name = "kmem_cache", 388 }; 389 390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 391 392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 393 { 394 return this_cpu_ptr(cachep->cpu_cache); 395 } 396 397 /* 398 * Calculate the number of objects and left-over bytes for a given buffer size. 399 */ 400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, 401 slab_flags_t flags, size_t *left_over) 402 { 403 unsigned int num; 404 size_t slab_size = PAGE_SIZE << gfporder; 405 406 /* 407 * The slab management structure can be either off the slab or 408 * on it. For the latter case, the memory allocated for a 409 * slab is used for: 410 * 411 * - @buffer_size bytes for each object 412 * - One freelist_idx_t for each object 413 * 414 * We don't need to consider alignment of freelist because 415 * freelist will be at the end of slab page. The objects will be 416 * at the correct alignment. 417 * 418 * If the slab management structure is off the slab, then the 419 * alignment will already be calculated into the size. Because 420 * the slabs are all pages aligned, the objects will be at the 421 * correct alignment when allocated. 422 */ 423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { 424 num = slab_size / buffer_size; 425 *left_over = slab_size % buffer_size; 426 } else { 427 num = slab_size / (buffer_size + sizeof(freelist_idx_t)); 428 *left_over = slab_size % 429 (buffer_size + sizeof(freelist_idx_t)); 430 } 431 432 return num; 433 } 434 435 #if DEBUG 436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 437 438 static void __slab_error(const char *function, struct kmem_cache *cachep, 439 char *msg) 440 { 441 pr_err("slab error in %s(): cache `%s': %s\n", 442 function, cachep->name, msg); 443 dump_stack(); 444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 445 } 446 #endif 447 448 /* 449 * By default on NUMA we use alien caches to stage the freeing of 450 * objects allocated from other nodes. This causes massive memory 451 * inefficiencies when using fake NUMA setup to split memory into a 452 * large number of small nodes, so it can be disabled on the command 453 * line 454 */ 455 456 static int use_alien_caches __read_mostly = 1; 457 static int __init noaliencache_setup(char *s) 458 { 459 use_alien_caches = 0; 460 return 1; 461 } 462 __setup("noaliencache", noaliencache_setup); 463 464 static int __init slab_max_order_setup(char *str) 465 { 466 get_option(&str, &slab_max_order); 467 slab_max_order = slab_max_order < 0 ? 0 : 468 min(slab_max_order, MAX_ORDER); 469 slab_max_order_set = true; 470 471 return 1; 472 } 473 __setup("slab_max_order=", slab_max_order_setup); 474 475 #ifdef CONFIG_NUMA 476 /* 477 * Special reaping functions for NUMA systems called from cache_reap(). 478 * These take care of doing round robin flushing of alien caches (containing 479 * objects freed on different nodes from which they were allocated) and the 480 * flushing of remote pcps by calling drain_node_pages. 481 */ 482 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 483 484 static void init_reap_node(int cpu) 485 { 486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), 487 node_online_map); 488 } 489 490 static void next_reap_node(void) 491 { 492 int node = __this_cpu_read(slab_reap_node); 493 494 node = next_node_in(node, node_online_map); 495 __this_cpu_write(slab_reap_node, node); 496 } 497 498 #else 499 #define init_reap_node(cpu) do { } while (0) 500 #define next_reap_node(void) do { } while (0) 501 #endif 502 503 /* 504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 505 * via the workqueue/eventd. 506 * Add the CPU number into the expiration time to minimize the possibility of 507 * the CPUs getting into lockstep and contending for the global cache chain 508 * lock. 509 */ 510 static void start_cpu_timer(int cpu) 511 { 512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 513 514 if (reap_work->work.func == NULL) { 515 init_reap_node(cpu); 516 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 517 schedule_delayed_work_on(cpu, reap_work, 518 __round_jiffies_relative(HZ, cpu)); 519 } 520 } 521 522 static void init_arraycache(struct array_cache *ac, int limit, int batch) 523 { 524 if (ac) { 525 ac->avail = 0; 526 ac->limit = limit; 527 ac->batchcount = batch; 528 ac->touched = 0; 529 } 530 } 531 532 static struct array_cache *alloc_arraycache(int node, int entries, 533 int batchcount, gfp_t gfp) 534 { 535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 536 struct array_cache *ac = NULL; 537 538 ac = kmalloc_node(memsize, gfp, node); 539 /* 540 * The array_cache structures contain pointers to free object. 541 * However, when such objects are allocated or transferred to another 542 * cache the pointers are not cleared and they could be counted as 543 * valid references during a kmemleak scan. Therefore, kmemleak must 544 * not scan such objects. 545 */ 546 kmemleak_no_scan(ac); 547 init_arraycache(ac, entries, batchcount); 548 return ac; 549 } 550 551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, 552 struct slab *slab, void *objp) 553 { 554 struct kmem_cache_node *n; 555 int slab_node; 556 LIST_HEAD(list); 557 558 slab_node = slab_nid(slab); 559 n = get_node(cachep, slab_node); 560 561 raw_spin_lock(&n->list_lock); 562 free_block(cachep, &objp, 1, slab_node, &list); 563 raw_spin_unlock(&n->list_lock); 564 565 slabs_destroy(cachep, &list); 566 } 567 568 /* 569 * Transfer objects in one arraycache to another. 570 * Locking must be handled by the caller. 571 * 572 * Return the number of entries transferred. 573 */ 574 static int transfer_objects(struct array_cache *to, 575 struct array_cache *from, unsigned int max) 576 { 577 /* Figure out how many entries to transfer */ 578 int nr = min3(from->avail, max, to->limit - to->avail); 579 580 if (!nr) 581 return 0; 582 583 memcpy(to->entry + to->avail, from->entry + from->avail - nr, 584 sizeof(void *) *nr); 585 586 from->avail -= nr; 587 to->avail += nr; 588 return nr; 589 } 590 591 /* &alien->lock must be held by alien callers. */ 592 static __always_inline void __free_one(struct array_cache *ac, void *objp) 593 { 594 /* Avoid trivial double-free. */ 595 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 596 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) 597 return; 598 ac->entry[ac->avail++] = objp; 599 } 600 601 #ifndef CONFIG_NUMA 602 603 #define drain_alien_cache(cachep, alien) do { } while (0) 604 #define reap_alien(cachep, n) do { } while (0) 605 606 static inline struct alien_cache **alloc_alien_cache(int node, 607 int limit, gfp_t gfp) 608 { 609 return NULL; 610 } 611 612 static inline void free_alien_cache(struct alien_cache **ac_ptr) 613 { 614 } 615 616 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 617 { 618 return 0; 619 } 620 621 static inline gfp_t gfp_exact_node(gfp_t flags) 622 { 623 return flags & ~__GFP_NOFAIL; 624 } 625 626 #else /* CONFIG_NUMA */ 627 628 static struct alien_cache *__alloc_alien_cache(int node, int entries, 629 int batch, gfp_t gfp) 630 { 631 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 632 struct alien_cache *alc = NULL; 633 634 alc = kmalloc_node(memsize, gfp, node); 635 if (alc) { 636 kmemleak_no_scan(alc); 637 init_arraycache(&alc->ac, entries, batch); 638 spin_lock_init(&alc->lock); 639 } 640 return alc; 641 } 642 643 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 644 { 645 struct alien_cache **alc_ptr; 646 int i; 647 648 if (limit > 1) 649 limit = 12; 650 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); 651 if (!alc_ptr) 652 return NULL; 653 654 for_each_node(i) { 655 if (i == node || !node_online(i)) 656 continue; 657 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 658 if (!alc_ptr[i]) { 659 for (i--; i >= 0; i--) 660 kfree(alc_ptr[i]); 661 kfree(alc_ptr); 662 return NULL; 663 } 664 } 665 return alc_ptr; 666 } 667 668 static void free_alien_cache(struct alien_cache **alc_ptr) 669 { 670 int i; 671 672 if (!alc_ptr) 673 return; 674 for_each_node(i) 675 kfree(alc_ptr[i]); 676 kfree(alc_ptr); 677 } 678 679 static void __drain_alien_cache(struct kmem_cache *cachep, 680 struct array_cache *ac, int node, 681 struct list_head *list) 682 { 683 struct kmem_cache_node *n = get_node(cachep, node); 684 685 if (ac->avail) { 686 raw_spin_lock(&n->list_lock); 687 /* 688 * Stuff objects into the remote nodes shared array first. 689 * That way we could avoid the overhead of putting the objects 690 * into the free lists and getting them back later. 691 */ 692 if (n->shared) 693 transfer_objects(n->shared, ac, ac->limit); 694 695 free_block(cachep, ac->entry, ac->avail, node, list); 696 ac->avail = 0; 697 raw_spin_unlock(&n->list_lock); 698 } 699 } 700 701 /* 702 * Called from cache_reap() to regularly drain alien caches round robin. 703 */ 704 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 705 { 706 int node = __this_cpu_read(slab_reap_node); 707 708 if (n->alien) { 709 struct alien_cache *alc = n->alien[node]; 710 struct array_cache *ac; 711 712 if (alc) { 713 ac = &alc->ac; 714 if (ac->avail && spin_trylock_irq(&alc->lock)) { 715 LIST_HEAD(list); 716 717 __drain_alien_cache(cachep, ac, node, &list); 718 spin_unlock_irq(&alc->lock); 719 slabs_destroy(cachep, &list); 720 } 721 } 722 } 723 } 724 725 static void drain_alien_cache(struct kmem_cache *cachep, 726 struct alien_cache **alien) 727 { 728 int i = 0; 729 struct alien_cache *alc; 730 struct array_cache *ac; 731 unsigned long flags; 732 733 for_each_online_node(i) { 734 alc = alien[i]; 735 if (alc) { 736 LIST_HEAD(list); 737 738 ac = &alc->ac; 739 spin_lock_irqsave(&alc->lock, flags); 740 __drain_alien_cache(cachep, ac, i, &list); 741 spin_unlock_irqrestore(&alc->lock, flags); 742 slabs_destroy(cachep, &list); 743 } 744 } 745 } 746 747 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 748 int node, int slab_node) 749 { 750 struct kmem_cache_node *n; 751 struct alien_cache *alien = NULL; 752 struct array_cache *ac; 753 LIST_HEAD(list); 754 755 n = get_node(cachep, node); 756 STATS_INC_NODEFREES(cachep); 757 if (n->alien && n->alien[slab_node]) { 758 alien = n->alien[slab_node]; 759 ac = &alien->ac; 760 spin_lock(&alien->lock); 761 if (unlikely(ac->avail == ac->limit)) { 762 STATS_INC_ACOVERFLOW(cachep); 763 __drain_alien_cache(cachep, ac, slab_node, &list); 764 } 765 __free_one(ac, objp); 766 spin_unlock(&alien->lock); 767 slabs_destroy(cachep, &list); 768 } else { 769 n = get_node(cachep, slab_node); 770 raw_spin_lock(&n->list_lock); 771 free_block(cachep, &objp, 1, slab_node, &list); 772 raw_spin_unlock(&n->list_lock); 773 slabs_destroy(cachep, &list); 774 } 775 return 1; 776 } 777 778 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 779 { 780 int slab_node = slab_nid(virt_to_slab(objp)); 781 int node = numa_mem_id(); 782 /* 783 * Make sure we are not freeing an object from another node to the array 784 * cache on this cpu. 785 */ 786 if (likely(node == slab_node)) 787 return 0; 788 789 return __cache_free_alien(cachep, objp, node, slab_node); 790 } 791 792 /* 793 * Construct gfp mask to allocate from a specific node but do not reclaim or 794 * warn about failures. 795 */ 796 static inline gfp_t gfp_exact_node(gfp_t flags) 797 { 798 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 799 } 800 #endif 801 802 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) 803 { 804 struct kmem_cache_node *n; 805 806 /* 807 * Set up the kmem_cache_node for cpu before we can 808 * begin anything. Make sure some other cpu on this 809 * node has not already allocated this 810 */ 811 n = get_node(cachep, node); 812 if (n) { 813 raw_spin_lock_irq(&n->list_lock); 814 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + 815 cachep->num; 816 raw_spin_unlock_irq(&n->list_lock); 817 818 return 0; 819 } 820 821 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 822 if (!n) 823 return -ENOMEM; 824 825 kmem_cache_node_init(n); 826 n->next_reap = jiffies + REAPTIMEOUT_NODE + 827 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 828 829 n->free_limit = 830 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; 831 832 /* 833 * The kmem_cache_nodes don't come and go as CPUs 834 * come and go. slab_mutex provides sufficient 835 * protection here. 836 */ 837 cachep->node[node] = n; 838 839 return 0; 840 } 841 842 #if defined(CONFIG_NUMA) || defined(CONFIG_SMP) 843 /* 844 * Allocates and initializes node for a node on each slab cache, used for 845 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 846 * will be allocated off-node since memory is not yet online for the new node. 847 * When hotplugging memory or a cpu, existing nodes are not replaced if 848 * already in use. 849 * 850 * Must hold slab_mutex. 851 */ 852 static int init_cache_node_node(int node) 853 { 854 int ret; 855 struct kmem_cache *cachep; 856 857 list_for_each_entry(cachep, &slab_caches, list) { 858 ret = init_cache_node(cachep, node, GFP_KERNEL); 859 if (ret) 860 return ret; 861 } 862 863 return 0; 864 } 865 #endif 866 867 static int setup_kmem_cache_node(struct kmem_cache *cachep, 868 int node, gfp_t gfp, bool force_change) 869 { 870 int ret = -ENOMEM; 871 struct kmem_cache_node *n; 872 struct array_cache *old_shared = NULL; 873 struct array_cache *new_shared = NULL; 874 struct alien_cache **new_alien = NULL; 875 LIST_HEAD(list); 876 877 if (use_alien_caches) { 878 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 879 if (!new_alien) 880 goto fail; 881 } 882 883 if (cachep->shared) { 884 new_shared = alloc_arraycache(node, 885 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); 886 if (!new_shared) 887 goto fail; 888 } 889 890 ret = init_cache_node(cachep, node, gfp); 891 if (ret) 892 goto fail; 893 894 n = get_node(cachep, node); 895 raw_spin_lock_irq(&n->list_lock); 896 if (n->shared && force_change) { 897 free_block(cachep, n->shared->entry, 898 n->shared->avail, node, &list); 899 n->shared->avail = 0; 900 } 901 902 if (!n->shared || force_change) { 903 old_shared = n->shared; 904 n->shared = new_shared; 905 new_shared = NULL; 906 } 907 908 if (!n->alien) { 909 n->alien = new_alien; 910 new_alien = NULL; 911 } 912 913 raw_spin_unlock_irq(&n->list_lock); 914 slabs_destroy(cachep, &list); 915 916 /* 917 * To protect lockless access to n->shared during irq disabled context. 918 * If n->shared isn't NULL in irq disabled context, accessing to it is 919 * guaranteed to be valid until irq is re-enabled, because it will be 920 * freed after synchronize_rcu(). 921 */ 922 if (old_shared && force_change) 923 synchronize_rcu(); 924 925 fail: 926 kfree(old_shared); 927 kfree(new_shared); 928 free_alien_cache(new_alien); 929 930 return ret; 931 } 932 933 #ifdef CONFIG_SMP 934 935 static void cpuup_canceled(long cpu) 936 { 937 struct kmem_cache *cachep; 938 struct kmem_cache_node *n = NULL; 939 int node = cpu_to_mem(cpu); 940 const struct cpumask *mask = cpumask_of_node(node); 941 942 list_for_each_entry(cachep, &slab_caches, list) { 943 struct array_cache *nc; 944 struct array_cache *shared; 945 struct alien_cache **alien; 946 LIST_HEAD(list); 947 948 n = get_node(cachep, node); 949 if (!n) 950 continue; 951 952 raw_spin_lock_irq(&n->list_lock); 953 954 /* Free limit for this kmem_cache_node */ 955 n->free_limit -= cachep->batchcount; 956 957 /* cpu is dead; no one can alloc from it. */ 958 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 959 free_block(cachep, nc->entry, nc->avail, node, &list); 960 nc->avail = 0; 961 962 if (!cpumask_empty(mask)) { 963 raw_spin_unlock_irq(&n->list_lock); 964 goto free_slab; 965 } 966 967 shared = n->shared; 968 if (shared) { 969 free_block(cachep, shared->entry, 970 shared->avail, node, &list); 971 n->shared = NULL; 972 } 973 974 alien = n->alien; 975 n->alien = NULL; 976 977 raw_spin_unlock_irq(&n->list_lock); 978 979 kfree(shared); 980 if (alien) { 981 drain_alien_cache(cachep, alien); 982 free_alien_cache(alien); 983 } 984 985 free_slab: 986 slabs_destroy(cachep, &list); 987 } 988 /* 989 * In the previous loop, all the objects were freed to 990 * the respective cache's slabs, now we can go ahead and 991 * shrink each nodelist to its limit. 992 */ 993 list_for_each_entry(cachep, &slab_caches, list) { 994 n = get_node(cachep, node); 995 if (!n) 996 continue; 997 drain_freelist(cachep, n, INT_MAX); 998 } 999 } 1000 1001 static int cpuup_prepare(long cpu) 1002 { 1003 struct kmem_cache *cachep; 1004 int node = cpu_to_mem(cpu); 1005 int err; 1006 1007 /* 1008 * We need to do this right in the beginning since 1009 * alloc_arraycache's are going to use this list. 1010 * kmalloc_node allows us to add the slab to the right 1011 * kmem_cache_node and not this cpu's kmem_cache_node 1012 */ 1013 err = init_cache_node_node(node); 1014 if (err < 0) 1015 goto bad; 1016 1017 /* 1018 * Now we can go ahead with allocating the shared arrays and 1019 * array caches 1020 */ 1021 list_for_each_entry(cachep, &slab_caches, list) { 1022 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); 1023 if (err) 1024 goto bad; 1025 } 1026 1027 return 0; 1028 bad: 1029 cpuup_canceled(cpu); 1030 return -ENOMEM; 1031 } 1032 1033 int slab_prepare_cpu(unsigned int cpu) 1034 { 1035 int err; 1036 1037 mutex_lock(&slab_mutex); 1038 err = cpuup_prepare(cpu); 1039 mutex_unlock(&slab_mutex); 1040 return err; 1041 } 1042 1043 /* 1044 * This is called for a failed online attempt and for a successful 1045 * offline. 1046 * 1047 * Even if all the cpus of a node are down, we don't free the 1048 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and 1049 * a kmalloc allocation from another cpu for memory from the node of 1050 * the cpu going down. The kmem_cache_node structure is usually allocated from 1051 * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). 1052 */ 1053 int slab_dead_cpu(unsigned int cpu) 1054 { 1055 mutex_lock(&slab_mutex); 1056 cpuup_canceled(cpu); 1057 mutex_unlock(&slab_mutex); 1058 return 0; 1059 } 1060 #endif 1061 1062 static int slab_online_cpu(unsigned int cpu) 1063 { 1064 start_cpu_timer(cpu); 1065 return 0; 1066 } 1067 1068 static int slab_offline_cpu(unsigned int cpu) 1069 { 1070 /* 1071 * Shutdown cache reaper. Note that the slab_mutex is held so 1072 * that if cache_reap() is invoked it cannot do anything 1073 * expensive but will only modify reap_work and reschedule the 1074 * timer. 1075 */ 1076 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1077 /* Now the cache_reaper is guaranteed to be not running. */ 1078 per_cpu(slab_reap_work, cpu).work.func = NULL; 1079 return 0; 1080 } 1081 1082 #if defined(CONFIG_NUMA) 1083 /* 1084 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1085 * Returns -EBUSY if all objects cannot be drained so that the node is not 1086 * removed. 1087 * 1088 * Must hold slab_mutex. 1089 */ 1090 static int __meminit drain_cache_node_node(int node) 1091 { 1092 struct kmem_cache *cachep; 1093 int ret = 0; 1094 1095 list_for_each_entry(cachep, &slab_caches, list) { 1096 struct kmem_cache_node *n; 1097 1098 n = get_node(cachep, node); 1099 if (!n) 1100 continue; 1101 1102 drain_freelist(cachep, n, INT_MAX); 1103 1104 if (!list_empty(&n->slabs_full) || 1105 !list_empty(&n->slabs_partial)) { 1106 ret = -EBUSY; 1107 break; 1108 } 1109 } 1110 return ret; 1111 } 1112 1113 static int __meminit slab_memory_callback(struct notifier_block *self, 1114 unsigned long action, void *arg) 1115 { 1116 struct memory_notify *mnb = arg; 1117 int ret = 0; 1118 int nid; 1119 1120 nid = mnb->status_change_nid; 1121 if (nid < 0) 1122 goto out; 1123 1124 switch (action) { 1125 case MEM_GOING_ONLINE: 1126 mutex_lock(&slab_mutex); 1127 ret = init_cache_node_node(nid); 1128 mutex_unlock(&slab_mutex); 1129 break; 1130 case MEM_GOING_OFFLINE: 1131 mutex_lock(&slab_mutex); 1132 ret = drain_cache_node_node(nid); 1133 mutex_unlock(&slab_mutex); 1134 break; 1135 case MEM_ONLINE: 1136 case MEM_OFFLINE: 1137 case MEM_CANCEL_ONLINE: 1138 case MEM_CANCEL_OFFLINE: 1139 break; 1140 } 1141 out: 1142 return notifier_from_errno(ret); 1143 } 1144 #endif /* CONFIG_NUMA */ 1145 1146 /* 1147 * swap the static kmem_cache_node with kmalloced memory 1148 */ 1149 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1150 int nodeid) 1151 { 1152 struct kmem_cache_node *ptr; 1153 1154 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1155 BUG_ON(!ptr); 1156 1157 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1158 /* 1159 * Do not assume that spinlocks can be initialized via memcpy: 1160 */ 1161 raw_spin_lock_init(&ptr->list_lock); 1162 1163 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1164 cachep->node[nodeid] = ptr; 1165 } 1166 1167 /* 1168 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1169 * size of kmem_cache_node. 1170 */ 1171 static void __init set_up_node(struct kmem_cache *cachep, int index) 1172 { 1173 int node; 1174 1175 for_each_online_node(node) { 1176 cachep->node[node] = &init_kmem_cache_node[index + node]; 1177 cachep->node[node]->next_reap = jiffies + 1178 REAPTIMEOUT_NODE + 1179 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1180 } 1181 } 1182 1183 /* 1184 * Initialisation. Called after the page allocator have been initialised and 1185 * before smp_init(). 1186 */ 1187 void __init kmem_cache_init(void) 1188 { 1189 int i; 1190 1191 kmem_cache = &kmem_cache_boot; 1192 1193 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) 1194 use_alien_caches = 0; 1195 1196 for (i = 0; i < NUM_INIT_LISTS; i++) 1197 kmem_cache_node_init(&init_kmem_cache_node[i]); 1198 1199 /* 1200 * Fragmentation resistance on low memory - only use bigger 1201 * page orders on machines with more than 32MB of memory if 1202 * not overridden on the command line. 1203 */ 1204 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) 1205 slab_max_order = SLAB_MAX_ORDER_HI; 1206 1207 /* Bootstrap is tricky, because several objects are allocated 1208 * from caches that do not exist yet: 1209 * 1) initialize the kmem_cache cache: it contains the struct 1210 * kmem_cache structures of all caches, except kmem_cache itself: 1211 * kmem_cache is statically allocated. 1212 * Initially an __init data area is used for the head array and the 1213 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1214 * array at the end of the bootstrap. 1215 * 2) Create the first kmalloc cache. 1216 * The struct kmem_cache for the new cache is allocated normally. 1217 * An __init data area is used for the head array. 1218 * 3) Create the remaining kmalloc caches, with minimally sized 1219 * head arrays. 1220 * 4) Replace the __init data head arrays for kmem_cache and the first 1221 * kmalloc cache with kmalloc allocated arrays. 1222 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1223 * the other cache's with kmalloc allocated memory. 1224 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1225 */ 1226 1227 /* 1) create the kmem_cache */ 1228 1229 /* 1230 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1231 */ 1232 create_boot_cache(kmem_cache, "kmem_cache", 1233 offsetof(struct kmem_cache, node) + 1234 nr_node_ids * sizeof(struct kmem_cache_node *), 1235 SLAB_HWCACHE_ALIGN, 0, 0); 1236 list_add(&kmem_cache->list, &slab_caches); 1237 slab_state = PARTIAL; 1238 1239 /* 1240 * Initialize the caches that provide memory for the kmem_cache_node 1241 * structures first. Without this, further allocations will bug. 1242 */ 1243 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( 1244 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL], 1245 kmalloc_info[INDEX_NODE].size, 1246 ARCH_KMALLOC_FLAGS, 0, 1247 kmalloc_info[INDEX_NODE].size); 1248 slab_state = PARTIAL_NODE; 1249 setup_kmalloc_cache_index_table(); 1250 1251 /* 5) Replace the bootstrap kmem_cache_node */ 1252 { 1253 int nid; 1254 1255 for_each_online_node(nid) { 1256 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1257 1258 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], 1259 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1260 } 1261 } 1262 1263 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1264 } 1265 1266 void __init kmem_cache_init_late(void) 1267 { 1268 struct kmem_cache *cachep; 1269 1270 /* 6) resize the head arrays to their final sizes */ 1271 mutex_lock(&slab_mutex); 1272 list_for_each_entry(cachep, &slab_caches, list) 1273 if (enable_cpucache(cachep, GFP_NOWAIT)) 1274 BUG(); 1275 mutex_unlock(&slab_mutex); 1276 1277 /* Done! */ 1278 slab_state = FULL; 1279 1280 #ifdef CONFIG_NUMA 1281 /* 1282 * Register a memory hotplug callback that initializes and frees 1283 * node. 1284 */ 1285 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1286 #endif 1287 1288 /* 1289 * The reap timers are started later, with a module init call: That part 1290 * of the kernel is not yet operational. 1291 */ 1292 } 1293 1294 static int __init cpucache_init(void) 1295 { 1296 int ret; 1297 1298 /* 1299 * Register the timers that return unneeded pages to the page allocator 1300 */ 1301 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", 1302 slab_online_cpu, slab_offline_cpu); 1303 WARN_ON(ret < 0); 1304 1305 return 0; 1306 } 1307 __initcall(cpucache_init); 1308 1309 static noinline void 1310 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1311 { 1312 #if DEBUG 1313 struct kmem_cache_node *n; 1314 unsigned long flags; 1315 int node; 1316 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1317 DEFAULT_RATELIMIT_BURST); 1318 1319 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1320 return; 1321 1322 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 1323 nodeid, gfpflags, &gfpflags); 1324 pr_warn(" cache: %s, object size: %d, order: %d\n", 1325 cachep->name, cachep->size, cachep->gfporder); 1326 1327 for_each_kmem_cache_node(cachep, node, n) { 1328 unsigned long total_slabs, free_slabs, free_objs; 1329 1330 raw_spin_lock_irqsave(&n->list_lock, flags); 1331 total_slabs = n->total_slabs; 1332 free_slabs = n->free_slabs; 1333 free_objs = n->free_objects; 1334 raw_spin_unlock_irqrestore(&n->list_lock, flags); 1335 1336 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", 1337 node, total_slabs - free_slabs, total_slabs, 1338 (total_slabs * cachep->num) - free_objs, 1339 total_slabs * cachep->num); 1340 } 1341 #endif 1342 } 1343 1344 /* 1345 * Interface to system's page allocator. No need to hold the 1346 * kmem_cache_node ->list_lock. 1347 * 1348 * If we requested dmaable memory, we will get it. Even if we 1349 * did not request dmaable memory, we might get it, but that 1350 * would be relatively rare and ignorable. 1351 */ 1352 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1353 int nodeid) 1354 { 1355 struct folio *folio; 1356 struct slab *slab; 1357 1358 flags |= cachep->allocflags; 1359 1360 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder); 1361 if (!folio) { 1362 slab_out_of_memory(cachep, flags, nodeid); 1363 return NULL; 1364 } 1365 1366 slab = folio_slab(folio); 1367 1368 account_slab(slab, cachep->gfporder, cachep, flags); 1369 __folio_set_slab(folio); 1370 /* Make the flag visible before any changes to folio->mapping */ 1371 smp_wmb(); 1372 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1373 if (sk_memalloc_socks() && folio_is_pfmemalloc(folio)) 1374 slab_set_pfmemalloc(slab); 1375 1376 return slab; 1377 } 1378 1379 /* 1380 * Interface to system's page release. 1381 */ 1382 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab) 1383 { 1384 int order = cachep->gfporder; 1385 struct folio *folio = slab_folio(slab); 1386 1387 BUG_ON(!folio_test_slab(folio)); 1388 __slab_clear_pfmemalloc(slab); 1389 page_mapcount_reset(&folio->page); 1390 folio->mapping = NULL; 1391 /* Make the mapping reset visible before clearing the flag */ 1392 smp_wmb(); 1393 __folio_clear_slab(folio); 1394 1395 mm_account_reclaimed_pages(1 << order); 1396 unaccount_slab(slab, order, cachep); 1397 __free_pages(&folio->page, order); 1398 } 1399 1400 static void kmem_rcu_free(struct rcu_head *head) 1401 { 1402 struct kmem_cache *cachep; 1403 struct slab *slab; 1404 1405 slab = container_of(head, struct slab, rcu_head); 1406 cachep = slab->slab_cache; 1407 1408 kmem_freepages(cachep, slab); 1409 } 1410 1411 #if DEBUG 1412 static inline bool is_debug_pagealloc_cache(struct kmem_cache *cachep) 1413 { 1414 return debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && 1415 ((cachep->size % PAGE_SIZE) == 0); 1416 } 1417 1418 #ifdef CONFIG_DEBUG_PAGEALLOC 1419 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) 1420 { 1421 if (!is_debug_pagealloc_cache(cachep)) 1422 return; 1423 1424 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); 1425 } 1426 1427 #else 1428 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, 1429 int map) {} 1430 1431 #endif 1432 1433 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1434 { 1435 int size = cachep->object_size; 1436 addr = &((char *)addr)[obj_offset(cachep)]; 1437 1438 memset(addr, val, size); 1439 *(unsigned char *)(addr + size - 1) = POISON_END; 1440 } 1441 1442 static void dump_line(char *data, int offset, int limit) 1443 { 1444 int i; 1445 unsigned char error = 0; 1446 int bad_count = 0; 1447 1448 pr_err("%03x: ", offset); 1449 for (i = 0; i < limit; i++) { 1450 if (data[offset + i] != POISON_FREE) { 1451 error = data[offset + i]; 1452 bad_count++; 1453 } 1454 } 1455 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1456 &data[offset], limit, 1); 1457 1458 if (bad_count == 1) { 1459 error ^= POISON_FREE; 1460 if (!(error & (error - 1))) { 1461 pr_err("Single bit error detected. Probably bad RAM.\n"); 1462 #ifdef CONFIG_X86 1463 pr_err("Run memtest86+ or a similar memory test tool.\n"); 1464 #else 1465 pr_err("Run a memory test tool.\n"); 1466 #endif 1467 } 1468 } 1469 } 1470 #endif 1471 1472 #if DEBUG 1473 1474 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1475 { 1476 int i, size; 1477 char *realobj; 1478 1479 if (cachep->flags & SLAB_RED_ZONE) { 1480 pr_err("Redzone: 0x%llx/0x%llx\n", 1481 *dbg_redzone1(cachep, objp), 1482 *dbg_redzone2(cachep, objp)); 1483 } 1484 1485 if (cachep->flags & SLAB_STORE_USER) 1486 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); 1487 realobj = (char *)objp + obj_offset(cachep); 1488 size = cachep->object_size; 1489 for (i = 0; i < size && lines; i += 16, lines--) { 1490 int limit; 1491 limit = 16; 1492 if (i + limit > size) 1493 limit = size - i; 1494 dump_line(realobj, i, limit); 1495 } 1496 } 1497 1498 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1499 { 1500 char *realobj; 1501 int size, i; 1502 int lines = 0; 1503 1504 if (is_debug_pagealloc_cache(cachep)) 1505 return; 1506 1507 realobj = (char *)objp + obj_offset(cachep); 1508 size = cachep->object_size; 1509 1510 for (i = 0; i < size; i++) { 1511 char exp = POISON_FREE; 1512 if (i == size - 1) 1513 exp = POISON_END; 1514 if (realobj[i] != exp) { 1515 int limit; 1516 /* Mismatch ! */ 1517 /* Print header */ 1518 if (lines == 0) { 1519 pr_err("Slab corruption (%s): %s start=%px, len=%d\n", 1520 print_tainted(), cachep->name, 1521 realobj, size); 1522 print_objinfo(cachep, objp, 0); 1523 } 1524 /* Hexdump the affected line */ 1525 i = (i / 16) * 16; 1526 limit = 16; 1527 if (i + limit > size) 1528 limit = size - i; 1529 dump_line(realobj, i, limit); 1530 i += 16; 1531 lines++; 1532 /* Limit to 5 lines */ 1533 if (lines > 5) 1534 break; 1535 } 1536 } 1537 if (lines != 0) { 1538 /* Print some data about the neighboring objects, if they 1539 * exist: 1540 */ 1541 struct slab *slab = virt_to_slab(objp); 1542 unsigned int objnr; 1543 1544 objnr = obj_to_index(cachep, slab, objp); 1545 if (objnr) { 1546 objp = index_to_obj(cachep, slab, objnr - 1); 1547 realobj = (char *)objp + obj_offset(cachep); 1548 pr_err("Prev obj: start=%px, len=%d\n", realobj, size); 1549 print_objinfo(cachep, objp, 2); 1550 } 1551 if (objnr + 1 < cachep->num) { 1552 objp = index_to_obj(cachep, slab, objnr + 1); 1553 realobj = (char *)objp + obj_offset(cachep); 1554 pr_err("Next obj: start=%px, len=%d\n", realobj, size); 1555 print_objinfo(cachep, objp, 2); 1556 } 1557 } 1558 } 1559 #endif 1560 1561 #if DEBUG 1562 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1563 struct slab *slab) 1564 { 1565 int i; 1566 1567 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { 1568 poison_obj(cachep, slab->freelist - obj_offset(cachep), 1569 POISON_FREE); 1570 } 1571 1572 for (i = 0; i < cachep->num; i++) { 1573 void *objp = index_to_obj(cachep, slab, i); 1574 1575 if (cachep->flags & SLAB_POISON) { 1576 check_poison_obj(cachep, objp); 1577 slab_kernel_map(cachep, objp, 1); 1578 } 1579 if (cachep->flags & SLAB_RED_ZONE) { 1580 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1581 slab_error(cachep, "start of a freed object was overwritten"); 1582 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1583 slab_error(cachep, "end of a freed object was overwritten"); 1584 } 1585 } 1586 } 1587 #else 1588 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1589 struct slab *slab) 1590 { 1591 } 1592 #endif 1593 1594 /** 1595 * slab_destroy - destroy and release all objects in a slab 1596 * @cachep: cache pointer being destroyed 1597 * @slab: slab being destroyed 1598 * 1599 * Destroy all the objs in a slab, and release the mem back to the system. 1600 * Before calling the slab must have been unlinked from the cache. The 1601 * kmem_cache_node ->list_lock is not held/needed. 1602 */ 1603 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab) 1604 { 1605 void *freelist; 1606 1607 freelist = slab->freelist; 1608 slab_destroy_debugcheck(cachep, slab); 1609 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 1610 call_rcu(&slab->rcu_head, kmem_rcu_free); 1611 else 1612 kmem_freepages(cachep, slab); 1613 1614 /* 1615 * From now on, we don't use freelist 1616 * although actual page can be freed in rcu context 1617 */ 1618 if (OFF_SLAB(cachep)) 1619 kfree(freelist); 1620 } 1621 1622 /* 1623 * Update the size of the caches before calling slabs_destroy as it may 1624 * recursively call kfree. 1625 */ 1626 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1627 { 1628 struct slab *slab, *n; 1629 1630 list_for_each_entry_safe(slab, n, list, slab_list) { 1631 list_del(&slab->slab_list); 1632 slab_destroy(cachep, slab); 1633 } 1634 } 1635 1636 /** 1637 * calculate_slab_order - calculate size (page order) of slabs 1638 * @cachep: pointer to the cache that is being created 1639 * @size: size of objects to be created in this cache. 1640 * @flags: slab allocation flags 1641 * 1642 * Also calculates the number of objects per slab. 1643 * 1644 * This could be made much more intelligent. For now, try to avoid using 1645 * high order pages for slabs. When the gfp() functions are more friendly 1646 * towards high-order requests, this should be changed. 1647 * 1648 * Return: number of left-over bytes in a slab 1649 */ 1650 static size_t calculate_slab_order(struct kmem_cache *cachep, 1651 size_t size, slab_flags_t flags) 1652 { 1653 size_t left_over = 0; 1654 int gfporder; 1655 1656 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1657 unsigned int num; 1658 size_t remainder; 1659 1660 num = cache_estimate(gfporder, size, flags, &remainder); 1661 if (!num) 1662 continue; 1663 1664 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1665 if (num > SLAB_OBJ_MAX_NUM) 1666 break; 1667 1668 if (flags & CFLGS_OFF_SLAB) { 1669 struct kmem_cache *freelist_cache; 1670 size_t freelist_size; 1671 size_t freelist_cache_size; 1672 1673 freelist_size = num * sizeof(freelist_idx_t); 1674 if (freelist_size > KMALLOC_MAX_CACHE_SIZE) { 1675 freelist_cache_size = PAGE_SIZE << get_order(freelist_size); 1676 } else { 1677 freelist_cache = kmalloc_slab(freelist_size, 0u); 1678 if (!freelist_cache) 1679 continue; 1680 freelist_cache_size = freelist_cache->size; 1681 1682 /* 1683 * Needed to avoid possible looping condition 1684 * in cache_grow_begin() 1685 */ 1686 if (OFF_SLAB(freelist_cache)) 1687 continue; 1688 } 1689 1690 /* check if off slab has enough benefit */ 1691 if (freelist_cache_size > cachep->size / 2) 1692 continue; 1693 } 1694 1695 /* Found something acceptable - save it away */ 1696 cachep->num = num; 1697 cachep->gfporder = gfporder; 1698 left_over = remainder; 1699 1700 /* 1701 * A VFS-reclaimable slab tends to have most allocations 1702 * as GFP_NOFS and we really don't want to have to be allocating 1703 * higher-order pages when we are unable to shrink dcache. 1704 */ 1705 if (flags & SLAB_RECLAIM_ACCOUNT) 1706 break; 1707 1708 /* 1709 * Large number of objects is good, but very large slabs are 1710 * currently bad for the gfp()s. 1711 */ 1712 if (gfporder >= slab_max_order) 1713 break; 1714 1715 /* 1716 * Acceptable internal fragmentation? 1717 */ 1718 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1719 break; 1720 } 1721 return left_over; 1722 } 1723 1724 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1725 struct kmem_cache *cachep, int entries, int batchcount) 1726 { 1727 int cpu; 1728 size_t size; 1729 struct array_cache __percpu *cpu_cache; 1730 1731 size = sizeof(void *) * entries + sizeof(struct array_cache); 1732 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1733 1734 if (!cpu_cache) 1735 return NULL; 1736 1737 for_each_possible_cpu(cpu) { 1738 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 1739 entries, batchcount); 1740 } 1741 1742 return cpu_cache; 1743 } 1744 1745 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 1746 { 1747 if (slab_state >= FULL) 1748 return enable_cpucache(cachep, gfp); 1749 1750 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 1751 if (!cachep->cpu_cache) 1752 return 1; 1753 1754 if (slab_state == DOWN) { 1755 /* Creation of first cache (kmem_cache). */ 1756 set_up_node(kmem_cache, CACHE_CACHE); 1757 } else if (slab_state == PARTIAL) { 1758 /* For kmem_cache_node */ 1759 set_up_node(cachep, SIZE_NODE); 1760 } else { 1761 int node; 1762 1763 for_each_online_node(node) { 1764 cachep->node[node] = kmalloc_node( 1765 sizeof(struct kmem_cache_node), gfp, node); 1766 BUG_ON(!cachep->node[node]); 1767 kmem_cache_node_init(cachep->node[node]); 1768 } 1769 } 1770 1771 cachep->node[numa_mem_id()]->next_reap = 1772 jiffies + REAPTIMEOUT_NODE + 1773 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1774 1775 cpu_cache_get(cachep)->avail = 0; 1776 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 1777 cpu_cache_get(cachep)->batchcount = 1; 1778 cpu_cache_get(cachep)->touched = 0; 1779 cachep->batchcount = 1; 1780 cachep->limit = BOOT_CPUCACHE_ENTRIES; 1781 return 0; 1782 } 1783 1784 slab_flags_t kmem_cache_flags(unsigned int object_size, 1785 slab_flags_t flags, const char *name) 1786 { 1787 return flags; 1788 } 1789 1790 struct kmem_cache * 1791 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 1792 slab_flags_t flags, void (*ctor)(void *)) 1793 { 1794 struct kmem_cache *cachep; 1795 1796 cachep = find_mergeable(size, align, flags, name, ctor); 1797 if (cachep) { 1798 cachep->refcount++; 1799 1800 /* 1801 * Adjust the object sizes so that we clear 1802 * the complete object on kzalloc. 1803 */ 1804 cachep->object_size = max_t(int, cachep->object_size, size); 1805 } 1806 return cachep; 1807 } 1808 1809 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, 1810 size_t size, slab_flags_t flags) 1811 { 1812 size_t left; 1813 1814 cachep->num = 0; 1815 1816 /* 1817 * If slab auto-initialization on free is enabled, store the freelist 1818 * off-slab, so that its contents don't end up in one of the allocated 1819 * objects. 1820 */ 1821 if (unlikely(slab_want_init_on_free(cachep))) 1822 return false; 1823 1824 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) 1825 return false; 1826 1827 left = calculate_slab_order(cachep, size, 1828 flags | CFLGS_OBJFREELIST_SLAB); 1829 if (!cachep->num) 1830 return false; 1831 1832 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) 1833 return false; 1834 1835 cachep->colour = left / cachep->colour_off; 1836 1837 return true; 1838 } 1839 1840 static bool set_off_slab_cache(struct kmem_cache *cachep, 1841 size_t size, slab_flags_t flags) 1842 { 1843 size_t left; 1844 1845 cachep->num = 0; 1846 1847 /* 1848 * Always use on-slab management when SLAB_NOLEAKTRACE 1849 * to avoid recursive calls into kmemleak. 1850 */ 1851 if (flags & SLAB_NOLEAKTRACE) 1852 return false; 1853 1854 /* 1855 * Size is large, assume best to place the slab management obj 1856 * off-slab (should allow better packing of objs). 1857 */ 1858 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); 1859 if (!cachep->num) 1860 return false; 1861 1862 /* 1863 * If the slab has been placed off-slab, and we have enough space then 1864 * move it on-slab. This is at the expense of any extra colouring. 1865 */ 1866 if (left >= cachep->num * sizeof(freelist_idx_t)) 1867 return false; 1868 1869 cachep->colour = left / cachep->colour_off; 1870 1871 return true; 1872 } 1873 1874 static bool set_on_slab_cache(struct kmem_cache *cachep, 1875 size_t size, slab_flags_t flags) 1876 { 1877 size_t left; 1878 1879 cachep->num = 0; 1880 1881 left = calculate_slab_order(cachep, size, flags); 1882 if (!cachep->num) 1883 return false; 1884 1885 cachep->colour = left / cachep->colour_off; 1886 1887 return true; 1888 } 1889 1890 /** 1891 * __kmem_cache_create - Create a cache. 1892 * @cachep: cache management descriptor 1893 * @flags: SLAB flags 1894 * 1895 * Returns a ptr to the cache on success, NULL on failure. 1896 * Cannot be called within an int, but can be interrupted. 1897 * The @ctor is run when new pages are allocated by the cache. 1898 * 1899 * The flags are 1900 * 1901 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1902 * to catch references to uninitialised memory. 1903 * 1904 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1905 * for buffer overruns. 1906 * 1907 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1908 * cacheline. This can be beneficial if you're counting cycles as closely 1909 * as davem. 1910 * 1911 * Return: a pointer to the created cache or %NULL in case of error 1912 */ 1913 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) 1914 { 1915 size_t ralign = BYTES_PER_WORD; 1916 gfp_t gfp; 1917 int err; 1918 unsigned int size = cachep->size; 1919 1920 #if DEBUG 1921 #if FORCED_DEBUG 1922 /* 1923 * Enable redzoning and last user accounting, except for caches with 1924 * large objects, if the increased size would increase the object size 1925 * above the next power of two: caches with object sizes just above a 1926 * power of two have a significant amount of internal fragmentation. 1927 */ 1928 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 1929 2 * sizeof(unsigned long long))) 1930 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1931 if (!(flags & SLAB_TYPESAFE_BY_RCU)) 1932 flags |= SLAB_POISON; 1933 #endif 1934 #endif 1935 1936 /* 1937 * Check that size is in terms of words. This is needed to avoid 1938 * unaligned accesses for some archs when redzoning is used, and makes 1939 * sure any on-slab bufctl's are also correctly aligned. 1940 */ 1941 size = ALIGN(size, BYTES_PER_WORD); 1942 1943 if (flags & SLAB_RED_ZONE) { 1944 ralign = REDZONE_ALIGN; 1945 /* If redzoning, ensure that the second redzone is suitably 1946 * aligned, by adjusting the object size accordingly. */ 1947 size = ALIGN(size, REDZONE_ALIGN); 1948 } 1949 1950 /* 3) caller mandated alignment */ 1951 if (ralign < cachep->align) { 1952 ralign = cachep->align; 1953 } 1954 /* disable debug if necessary */ 1955 if (ralign > __alignof__(unsigned long long)) 1956 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 1957 /* 1958 * 4) Store it. 1959 */ 1960 cachep->align = ralign; 1961 cachep->colour_off = cache_line_size(); 1962 /* Offset must be a multiple of the alignment. */ 1963 if (cachep->colour_off < cachep->align) 1964 cachep->colour_off = cachep->align; 1965 1966 if (slab_is_available()) 1967 gfp = GFP_KERNEL; 1968 else 1969 gfp = GFP_NOWAIT; 1970 1971 #if DEBUG 1972 1973 /* 1974 * Both debugging options require word-alignment which is calculated 1975 * into align above. 1976 */ 1977 if (flags & SLAB_RED_ZONE) { 1978 /* add space for red zone words */ 1979 cachep->obj_offset += sizeof(unsigned long long); 1980 size += 2 * sizeof(unsigned long long); 1981 } 1982 if (flags & SLAB_STORE_USER) { 1983 /* user store requires one word storage behind the end of 1984 * the real object. But if the second red zone needs to be 1985 * aligned to 64 bits, we must allow that much space. 1986 */ 1987 if (flags & SLAB_RED_ZONE) 1988 size += REDZONE_ALIGN; 1989 else 1990 size += BYTES_PER_WORD; 1991 } 1992 #endif 1993 1994 kasan_cache_create(cachep, &size, &flags); 1995 1996 size = ALIGN(size, cachep->align); 1997 /* 1998 * We should restrict the number of objects in a slab to implement 1999 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2000 */ 2001 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2002 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2003 2004 #if DEBUG 2005 /* 2006 * To activate debug pagealloc, off-slab management is necessary 2007 * requirement. In early phase of initialization, small sized slab 2008 * doesn't get initialized so it would not be possible. So, we need 2009 * to check size >= 256. It guarantees that all necessary small 2010 * sized slab is initialized in current slab initialization sequence. 2011 */ 2012 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && 2013 size >= 256 && cachep->object_size > cache_line_size()) { 2014 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { 2015 size_t tmp_size = ALIGN(size, PAGE_SIZE); 2016 2017 if (set_off_slab_cache(cachep, tmp_size, flags)) { 2018 flags |= CFLGS_OFF_SLAB; 2019 cachep->obj_offset += tmp_size - size; 2020 size = tmp_size; 2021 goto done; 2022 } 2023 } 2024 } 2025 #endif 2026 2027 if (set_objfreelist_slab_cache(cachep, size, flags)) { 2028 flags |= CFLGS_OBJFREELIST_SLAB; 2029 goto done; 2030 } 2031 2032 if (set_off_slab_cache(cachep, size, flags)) { 2033 flags |= CFLGS_OFF_SLAB; 2034 goto done; 2035 } 2036 2037 if (set_on_slab_cache(cachep, size, flags)) 2038 goto done; 2039 2040 return -E2BIG; 2041 2042 done: 2043 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); 2044 cachep->flags = flags; 2045 cachep->allocflags = __GFP_COMP; 2046 if (flags & SLAB_CACHE_DMA) 2047 cachep->allocflags |= GFP_DMA; 2048 if (flags & SLAB_CACHE_DMA32) 2049 cachep->allocflags |= GFP_DMA32; 2050 if (flags & SLAB_RECLAIM_ACCOUNT) 2051 cachep->allocflags |= __GFP_RECLAIMABLE; 2052 cachep->size = size; 2053 cachep->reciprocal_buffer_size = reciprocal_value(size); 2054 2055 #if DEBUG 2056 /* 2057 * If we're going to use the generic kernel_map_pages() 2058 * poisoning, then it's going to smash the contents of 2059 * the redzone and userword anyhow, so switch them off. 2060 */ 2061 if (IS_ENABLED(CONFIG_PAGE_POISONING) && 2062 (cachep->flags & SLAB_POISON) && 2063 is_debug_pagealloc_cache(cachep)) 2064 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2065 #endif 2066 2067 err = setup_cpu_cache(cachep, gfp); 2068 if (err) { 2069 __kmem_cache_release(cachep); 2070 return err; 2071 } 2072 2073 return 0; 2074 } 2075 2076 #if DEBUG 2077 static void check_irq_off(void) 2078 { 2079 BUG_ON(!irqs_disabled()); 2080 } 2081 2082 static void check_irq_on(void) 2083 { 2084 BUG_ON(irqs_disabled()); 2085 } 2086 2087 static void check_mutex_acquired(void) 2088 { 2089 BUG_ON(!mutex_is_locked(&slab_mutex)); 2090 } 2091 2092 static void check_spinlock_acquired(struct kmem_cache *cachep) 2093 { 2094 #ifdef CONFIG_SMP 2095 check_irq_off(); 2096 assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2097 #endif 2098 } 2099 2100 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2101 { 2102 #ifdef CONFIG_SMP 2103 check_irq_off(); 2104 assert_raw_spin_locked(&get_node(cachep, node)->list_lock); 2105 #endif 2106 } 2107 2108 #else 2109 #define check_irq_off() do { } while(0) 2110 #define check_irq_on() do { } while(0) 2111 #define check_mutex_acquired() do { } while(0) 2112 #define check_spinlock_acquired(x) do { } while(0) 2113 #define check_spinlock_acquired_node(x, y) do { } while(0) 2114 #endif 2115 2116 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 2117 int node, bool free_all, struct list_head *list) 2118 { 2119 int tofree; 2120 2121 if (!ac || !ac->avail) 2122 return; 2123 2124 tofree = free_all ? ac->avail : (ac->limit + 4) / 5; 2125 if (tofree > ac->avail) 2126 tofree = (ac->avail + 1) / 2; 2127 2128 free_block(cachep, ac->entry, tofree, node, list); 2129 ac->avail -= tofree; 2130 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); 2131 } 2132 2133 static void do_drain(void *arg) 2134 { 2135 struct kmem_cache *cachep = arg; 2136 struct array_cache *ac; 2137 int node = numa_mem_id(); 2138 struct kmem_cache_node *n; 2139 LIST_HEAD(list); 2140 2141 check_irq_off(); 2142 ac = cpu_cache_get(cachep); 2143 n = get_node(cachep, node); 2144 raw_spin_lock(&n->list_lock); 2145 free_block(cachep, ac->entry, ac->avail, node, &list); 2146 raw_spin_unlock(&n->list_lock); 2147 ac->avail = 0; 2148 slabs_destroy(cachep, &list); 2149 } 2150 2151 static void drain_cpu_caches(struct kmem_cache *cachep) 2152 { 2153 struct kmem_cache_node *n; 2154 int node; 2155 LIST_HEAD(list); 2156 2157 on_each_cpu(do_drain, cachep, 1); 2158 check_irq_on(); 2159 for_each_kmem_cache_node(cachep, node, n) 2160 if (n->alien) 2161 drain_alien_cache(cachep, n->alien); 2162 2163 for_each_kmem_cache_node(cachep, node, n) { 2164 raw_spin_lock_irq(&n->list_lock); 2165 drain_array_locked(cachep, n->shared, node, true, &list); 2166 raw_spin_unlock_irq(&n->list_lock); 2167 2168 slabs_destroy(cachep, &list); 2169 } 2170 } 2171 2172 /* 2173 * Remove slabs from the list of free slabs. 2174 * Specify the number of slabs to drain in tofree. 2175 * 2176 * Returns the actual number of slabs released. 2177 */ 2178 static int drain_freelist(struct kmem_cache *cache, 2179 struct kmem_cache_node *n, int tofree) 2180 { 2181 struct list_head *p; 2182 int nr_freed; 2183 struct slab *slab; 2184 2185 nr_freed = 0; 2186 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2187 2188 raw_spin_lock_irq(&n->list_lock); 2189 p = n->slabs_free.prev; 2190 if (p == &n->slabs_free) { 2191 raw_spin_unlock_irq(&n->list_lock); 2192 goto out; 2193 } 2194 2195 slab = list_entry(p, struct slab, slab_list); 2196 list_del(&slab->slab_list); 2197 n->free_slabs--; 2198 n->total_slabs--; 2199 /* 2200 * Safe to drop the lock. The slab is no longer linked 2201 * to the cache. 2202 */ 2203 n->free_objects -= cache->num; 2204 raw_spin_unlock_irq(&n->list_lock); 2205 slab_destroy(cache, slab); 2206 nr_freed++; 2207 2208 cond_resched(); 2209 } 2210 out: 2211 return nr_freed; 2212 } 2213 2214 bool __kmem_cache_empty(struct kmem_cache *s) 2215 { 2216 int node; 2217 struct kmem_cache_node *n; 2218 2219 for_each_kmem_cache_node(s, node, n) 2220 if (!list_empty(&n->slabs_full) || 2221 !list_empty(&n->slabs_partial)) 2222 return false; 2223 return true; 2224 } 2225 2226 int __kmem_cache_shrink(struct kmem_cache *cachep) 2227 { 2228 int ret = 0; 2229 int node; 2230 struct kmem_cache_node *n; 2231 2232 drain_cpu_caches(cachep); 2233 2234 check_irq_on(); 2235 for_each_kmem_cache_node(cachep, node, n) { 2236 drain_freelist(cachep, n, INT_MAX); 2237 2238 ret += !list_empty(&n->slabs_full) || 2239 !list_empty(&n->slabs_partial); 2240 } 2241 return (ret ? 1 : 0); 2242 } 2243 2244 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2245 { 2246 return __kmem_cache_shrink(cachep); 2247 } 2248 2249 void __kmem_cache_release(struct kmem_cache *cachep) 2250 { 2251 int i; 2252 struct kmem_cache_node *n; 2253 2254 cache_random_seq_destroy(cachep); 2255 2256 free_percpu(cachep->cpu_cache); 2257 2258 /* NUMA: free the node structures */ 2259 for_each_kmem_cache_node(cachep, i, n) { 2260 kfree(n->shared); 2261 free_alien_cache(n->alien); 2262 kfree(n); 2263 cachep->node[i] = NULL; 2264 } 2265 } 2266 2267 /* 2268 * Get the memory for a slab management obj. 2269 * 2270 * For a slab cache when the slab descriptor is off-slab, the 2271 * slab descriptor can't come from the same cache which is being created, 2272 * Because if it is the case, that means we defer the creation of 2273 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2274 * And we eventually call down to __kmem_cache_create(), which 2275 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. 2276 * This is a "chicken-and-egg" problem. 2277 * 2278 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2279 * which are all initialized during kmem_cache_init(). 2280 */ 2281 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2282 struct slab *slab, int colour_off, 2283 gfp_t local_flags, int nodeid) 2284 { 2285 void *freelist; 2286 void *addr = slab_address(slab); 2287 2288 slab->s_mem = addr + colour_off; 2289 slab->active = 0; 2290 2291 if (OBJFREELIST_SLAB(cachep)) 2292 freelist = NULL; 2293 else if (OFF_SLAB(cachep)) { 2294 /* Slab management obj is off-slab. */ 2295 freelist = kmalloc_node(cachep->freelist_size, 2296 local_flags, nodeid); 2297 } else { 2298 /* We will use last bytes at the slab for freelist */ 2299 freelist = addr + (PAGE_SIZE << cachep->gfporder) - 2300 cachep->freelist_size; 2301 } 2302 2303 return freelist; 2304 } 2305 2306 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx) 2307 { 2308 return ((freelist_idx_t *) slab->freelist)[idx]; 2309 } 2310 2311 static inline void set_free_obj(struct slab *slab, 2312 unsigned int idx, freelist_idx_t val) 2313 { 2314 ((freelist_idx_t *)(slab->freelist))[idx] = val; 2315 } 2316 2317 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab) 2318 { 2319 #if DEBUG 2320 int i; 2321 2322 for (i = 0; i < cachep->num; i++) { 2323 void *objp = index_to_obj(cachep, slab, i); 2324 2325 if (cachep->flags & SLAB_STORE_USER) 2326 *dbg_userword(cachep, objp) = NULL; 2327 2328 if (cachep->flags & SLAB_RED_ZONE) { 2329 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2330 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2331 } 2332 /* 2333 * Constructors are not allowed to allocate memory from the same 2334 * cache which they are a constructor for. Otherwise, deadlock. 2335 * They must also be threaded. 2336 */ 2337 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { 2338 kasan_unpoison_object_data(cachep, 2339 objp + obj_offset(cachep)); 2340 cachep->ctor(objp + obj_offset(cachep)); 2341 kasan_poison_object_data( 2342 cachep, objp + obj_offset(cachep)); 2343 } 2344 2345 if (cachep->flags & SLAB_RED_ZONE) { 2346 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2347 slab_error(cachep, "constructor overwrote the end of an object"); 2348 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2349 slab_error(cachep, "constructor overwrote the start of an object"); 2350 } 2351 /* need to poison the objs? */ 2352 if (cachep->flags & SLAB_POISON) { 2353 poison_obj(cachep, objp, POISON_FREE); 2354 slab_kernel_map(cachep, objp, 0); 2355 } 2356 } 2357 #endif 2358 } 2359 2360 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2361 /* Hold information during a freelist initialization */ 2362 union freelist_init_state { 2363 struct { 2364 unsigned int pos; 2365 unsigned int *list; 2366 unsigned int count; 2367 }; 2368 struct rnd_state rnd_state; 2369 }; 2370 2371 /* 2372 * Initialize the state based on the randomization method available. 2373 * return true if the pre-computed list is available, false otherwise. 2374 */ 2375 static bool freelist_state_initialize(union freelist_init_state *state, 2376 struct kmem_cache *cachep, 2377 unsigned int count) 2378 { 2379 bool ret; 2380 unsigned int rand; 2381 2382 /* Use best entropy available to define a random shift */ 2383 rand = get_random_u32(); 2384 2385 /* Use a random state if the pre-computed list is not available */ 2386 if (!cachep->random_seq) { 2387 prandom_seed_state(&state->rnd_state, rand); 2388 ret = false; 2389 } else { 2390 state->list = cachep->random_seq; 2391 state->count = count; 2392 state->pos = rand % count; 2393 ret = true; 2394 } 2395 return ret; 2396 } 2397 2398 /* Get the next entry on the list and randomize it using a random shift */ 2399 static freelist_idx_t next_random_slot(union freelist_init_state *state) 2400 { 2401 if (state->pos >= state->count) 2402 state->pos = 0; 2403 return state->list[state->pos++]; 2404 } 2405 2406 /* Swap two freelist entries */ 2407 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b) 2408 { 2409 swap(((freelist_idx_t *) slab->freelist)[a], 2410 ((freelist_idx_t *) slab->freelist)[b]); 2411 } 2412 2413 /* 2414 * Shuffle the freelist initialization state based on pre-computed lists. 2415 * return true if the list was successfully shuffled, false otherwise. 2416 */ 2417 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab) 2418 { 2419 unsigned int objfreelist = 0, i, rand, count = cachep->num; 2420 union freelist_init_state state; 2421 bool precomputed; 2422 2423 if (count < 2) 2424 return false; 2425 2426 precomputed = freelist_state_initialize(&state, cachep, count); 2427 2428 /* Take a random entry as the objfreelist */ 2429 if (OBJFREELIST_SLAB(cachep)) { 2430 if (!precomputed) 2431 objfreelist = count - 1; 2432 else 2433 objfreelist = next_random_slot(&state); 2434 slab->freelist = index_to_obj(cachep, slab, objfreelist) + 2435 obj_offset(cachep); 2436 count--; 2437 } 2438 2439 /* 2440 * On early boot, generate the list dynamically. 2441 * Later use a pre-computed list for speed. 2442 */ 2443 if (!precomputed) { 2444 for (i = 0; i < count; i++) 2445 set_free_obj(slab, i, i); 2446 2447 /* Fisher-Yates shuffle */ 2448 for (i = count - 1; i > 0; i--) { 2449 rand = prandom_u32_state(&state.rnd_state); 2450 rand %= (i + 1); 2451 swap_free_obj(slab, i, rand); 2452 } 2453 } else { 2454 for (i = 0; i < count; i++) 2455 set_free_obj(slab, i, next_random_slot(&state)); 2456 } 2457 2458 if (OBJFREELIST_SLAB(cachep)) 2459 set_free_obj(slab, cachep->num - 1, objfreelist); 2460 2461 return true; 2462 } 2463 #else 2464 static inline bool shuffle_freelist(struct kmem_cache *cachep, 2465 struct slab *slab) 2466 { 2467 return false; 2468 } 2469 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2470 2471 static void cache_init_objs(struct kmem_cache *cachep, 2472 struct slab *slab) 2473 { 2474 int i; 2475 void *objp; 2476 bool shuffled; 2477 2478 cache_init_objs_debug(cachep, slab); 2479 2480 /* Try to randomize the freelist if enabled */ 2481 shuffled = shuffle_freelist(cachep, slab); 2482 2483 if (!shuffled && OBJFREELIST_SLAB(cachep)) { 2484 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) + 2485 obj_offset(cachep); 2486 } 2487 2488 for (i = 0; i < cachep->num; i++) { 2489 objp = index_to_obj(cachep, slab, i); 2490 objp = kasan_init_slab_obj(cachep, objp); 2491 2492 /* constructor could break poison info */ 2493 if (DEBUG == 0 && cachep->ctor) { 2494 kasan_unpoison_object_data(cachep, objp); 2495 cachep->ctor(objp); 2496 kasan_poison_object_data(cachep, objp); 2497 } 2498 2499 if (!shuffled) 2500 set_free_obj(slab, i, i); 2501 } 2502 } 2503 2504 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab) 2505 { 2506 void *objp; 2507 2508 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active)); 2509 slab->active++; 2510 2511 return objp; 2512 } 2513 2514 static void slab_put_obj(struct kmem_cache *cachep, 2515 struct slab *slab, void *objp) 2516 { 2517 unsigned int objnr = obj_to_index(cachep, slab, objp); 2518 #if DEBUG 2519 unsigned int i; 2520 2521 /* Verify double free bug */ 2522 for (i = slab->active; i < cachep->num; i++) { 2523 if (get_free_obj(slab, i) == objnr) { 2524 pr_err("slab: double free detected in cache '%s', objp %px\n", 2525 cachep->name, objp); 2526 BUG(); 2527 } 2528 } 2529 #endif 2530 slab->active--; 2531 if (!slab->freelist) 2532 slab->freelist = objp + obj_offset(cachep); 2533 2534 set_free_obj(slab, slab->active, objnr); 2535 } 2536 2537 /* 2538 * Grow (by 1) the number of slabs within a cache. This is called by 2539 * kmem_cache_alloc() when there are no active objs left in a cache. 2540 */ 2541 static struct slab *cache_grow_begin(struct kmem_cache *cachep, 2542 gfp_t flags, int nodeid) 2543 { 2544 void *freelist; 2545 size_t offset; 2546 gfp_t local_flags; 2547 int slab_node; 2548 struct kmem_cache_node *n; 2549 struct slab *slab; 2550 2551 /* 2552 * Be lazy and only check for valid flags here, keeping it out of the 2553 * critical path in kmem_cache_alloc(). 2554 */ 2555 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2556 flags = kmalloc_fix_flags(flags); 2557 2558 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2559 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2560 2561 check_irq_off(); 2562 if (gfpflags_allow_blocking(local_flags)) 2563 local_irq_enable(); 2564 2565 /* 2566 * Get mem for the objs. Attempt to allocate a physical page from 2567 * 'nodeid'. 2568 */ 2569 slab = kmem_getpages(cachep, local_flags, nodeid); 2570 if (!slab) 2571 goto failed; 2572 2573 slab_node = slab_nid(slab); 2574 n = get_node(cachep, slab_node); 2575 2576 /* Get colour for the slab, and cal the next value. */ 2577 n->colour_next++; 2578 if (n->colour_next >= cachep->colour) 2579 n->colour_next = 0; 2580 2581 offset = n->colour_next; 2582 if (offset >= cachep->colour) 2583 offset = 0; 2584 2585 offset *= cachep->colour_off; 2586 2587 /* 2588 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so 2589 * page_address() in the latter returns a non-tagged pointer, 2590 * as it should be for slab pages. 2591 */ 2592 kasan_poison_slab(slab); 2593 2594 /* Get slab management. */ 2595 freelist = alloc_slabmgmt(cachep, slab, offset, 2596 local_flags & ~GFP_CONSTRAINT_MASK, slab_node); 2597 if (OFF_SLAB(cachep) && !freelist) 2598 goto opps1; 2599 2600 slab->slab_cache = cachep; 2601 slab->freelist = freelist; 2602 2603 cache_init_objs(cachep, slab); 2604 2605 if (gfpflags_allow_blocking(local_flags)) 2606 local_irq_disable(); 2607 2608 return slab; 2609 2610 opps1: 2611 kmem_freepages(cachep, slab); 2612 failed: 2613 if (gfpflags_allow_blocking(local_flags)) 2614 local_irq_disable(); 2615 return NULL; 2616 } 2617 2618 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab) 2619 { 2620 struct kmem_cache_node *n; 2621 void *list = NULL; 2622 2623 check_irq_off(); 2624 2625 if (!slab) 2626 return; 2627 2628 INIT_LIST_HEAD(&slab->slab_list); 2629 n = get_node(cachep, slab_nid(slab)); 2630 2631 raw_spin_lock(&n->list_lock); 2632 n->total_slabs++; 2633 if (!slab->active) { 2634 list_add_tail(&slab->slab_list, &n->slabs_free); 2635 n->free_slabs++; 2636 } else 2637 fixup_slab_list(cachep, n, slab, &list); 2638 2639 STATS_INC_GROWN(cachep); 2640 n->free_objects += cachep->num - slab->active; 2641 raw_spin_unlock(&n->list_lock); 2642 2643 fixup_objfreelist_debug(cachep, &list); 2644 } 2645 2646 #if DEBUG 2647 2648 /* 2649 * Perform extra freeing checks: 2650 * - detect bad pointers. 2651 * - POISON/RED_ZONE checking 2652 */ 2653 static void kfree_debugcheck(const void *objp) 2654 { 2655 if (!virt_addr_valid(objp)) { 2656 pr_err("kfree_debugcheck: out of range ptr %lxh\n", 2657 (unsigned long)objp); 2658 BUG(); 2659 } 2660 } 2661 2662 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2663 { 2664 unsigned long long redzone1, redzone2; 2665 2666 redzone1 = *dbg_redzone1(cache, obj); 2667 redzone2 = *dbg_redzone2(cache, obj); 2668 2669 /* 2670 * Redzone is ok. 2671 */ 2672 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2673 return; 2674 2675 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2676 slab_error(cache, "double free detected"); 2677 else 2678 slab_error(cache, "memory outside object was overwritten"); 2679 2680 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2681 obj, redzone1, redzone2); 2682 } 2683 2684 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2685 unsigned long caller) 2686 { 2687 unsigned int objnr; 2688 struct slab *slab; 2689 2690 BUG_ON(virt_to_cache(objp) != cachep); 2691 2692 objp -= obj_offset(cachep); 2693 kfree_debugcheck(objp); 2694 slab = virt_to_slab(objp); 2695 2696 if (cachep->flags & SLAB_RED_ZONE) { 2697 verify_redzone_free(cachep, objp); 2698 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2699 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2700 } 2701 if (cachep->flags & SLAB_STORE_USER) 2702 *dbg_userword(cachep, objp) = (void *)caller; 2703 2704 objnr = obj_to_index(cachep, slab, objp); 2705 2706 BUG_ON(objnr >= cachep->num); 2707 BUG_ON(objp != index_to_obj(cachep, slab, objnr)); 2708 2709 if (cachep->flags & SLAB_POISON) { 2710 poison_obj(cachep, objp, POISON_FREE); 2711 slab_kernel_map(cachep, objp, 0); 2712 } 2713 return objp; 2714 } 2715 2716 #else 2717 #define kfree_debugcheck(x) do { } while(0) 2718 #define cache_free_debugcheck(x, objp, z) (objp) 2719 #endif 2720 2721 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, 2722 void **list) 2723 { 2724 #if DEBUG 2725 void *next = *list; 2726 void *objp; 2727 2728 while (next) { 2729 objp = next - obj_offset(cachep); 2730 next = *(void **)next; 2731 poison_obj(cachep, objp, POISON_FREE); 2732 } 2733 #endif 2734 } 2735 2736 static inline void fixup_slab_list(struct kmem_cache *cachep, 2737 struct kmem_cache_node *n, struct slab *slab, 2738 void **list) 2739 { 2740 /* move slabp to correct slabp list: */ 2741 list_del(&slab->slab_list); 2742 if (slab->active == cachep->num) { 2743 list_add(&slab->slab_list, &n->slabs_full); 2744 if (OBJFREELIST_SLAB(cachep)) { 2745 #if DEBUG 2746 /* Poisoning will be done without holding the lock */ 2747 if (cachep->flags & SLAB_POISON) { 2748 void **objp = slab->freelist; 2749 2750 *objp = *list; 2751 *list = objp; 2752 } 2753 #endif 2754 slab->freelist = NULL; 2755 } 2756 } else 2757 list_add(&slab->slab_list, &n->slabs_partial); 2758 } 2759 2760 /* Try to find non-pfmemalloc slab if needed */ 2761 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n, 2762 struct slab *slab, bool pfmemalloc) 2763 { 2764 if (!slab) 2765 return NULL; 2766 2767 if (pfmemalloc) 2768 return slab; 2769 2770 if (!slab_test_pfmemalloc(slab)) 2771 return slab; 2772 2773 /* No need to keep pfmemalloc slab if we have enough free objects */ 2774 if (n->free_objects > n->free_limit) { 2775 slab_clear_pfmemalloc(slab); 2776 return slab; 2777 } 2778 2779 /* Move pfmemalloc slab to the end of list to speed up next search */ 2780 list_del(&slab->slab_list); 2781 if (!slab->active) { 2782 list_add_tail(&slab->slab_list, &n->slabs_free); 2783 n->free_slabs++; 2784 } else 2785 list_add_tail(&slab->slab_list, &n->slabs_partial); 2786 2787 list_for_each_entry(slab, &n->slabs_partial, slab_list) { 2788 if (!slab_test_pfmemalloc(slab)) 2789 return slab; 2790 } 2791 2792 n->free_touched = 1; 2793 list_for_each_entry(slab, &n->slabs_free, slab_list) { 2794 if (!slab_test_pfmemalloc(slab)) { 2795 n->free_slabs--; 2796 return slab; 2797 } 2798 } 2799 2800 return NULL; 2801 } 2802 2803 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) 2804 { 2805 struct slab *slab; 2806 2807 assert_raw_spin_locked(&n->list_lock); 2808 slab = list_first_entry_or_null(&n->slabs_partial, struct slab, 2809 slab_list); 2810 if (!slab) { 2811 n->free_touched = 1; 2812 slab = list_first_entry_or_null(&n->slabs_free, struct slab, 2813 slab_list); 2814 if (slab) 2815 n->free_slabs--; 2816 } 2817 2818 if (sk_memalloc_socks()) 2819 slab = get_valid_first_slab(n, slab, pfmemalloc); 2820 2821 return slab; 2822 } 2823 2824 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, 2825 struct kmem_cache_node *n, gfp_t flags) 2826 { 2827 struct slab *slab; 2828 void *obj; 2829 void *list = NULL; 2830 2831 if (!gfp_pfmemalloc_allowed(flags)) 2832 return NULL; 2833 2834 raw_spin_lock(&n->list_lock); 2835 slab = get_first_slab(n, true); 2836 if (!slab) { 2837 raw_spin_unlock(&n->list_lock); 2838 return NULL; 2839 } 2840 2841 obj = slab_get_obj(cachep, slab); 2842 n->free_objects--; 2843 2844 fixup_slab_list(cachep, n, slab, &list); 2845 2846 raw_spin_unlock(&n->list_lock); 2847 fixup_objfreelist_debug(cachep, &list); 2848 2849 return obj; 2850 } 2851 2852 /* 2853 * Slab list should be fixed up by fixup_slab_list() for existing slab 2854 * or cache_grow_end() for new slab 2855 */ 2856 static __always_inline int alloc_block(struct kmem_cache *cachep, 2857 struct array_cache *ac, struct slab *slab, int batchcount) 2858 { 2859 /* 2860 * There must be at least one object available for 2861 * allocation. 2862 */ 2863 BUG_ON(slab->active >= cachep->num); 2864 2865 while (slab->active < cachep->num && batchcount--) { 2866 STATS_INC_ALLOCED(cachep); 2867 STATS_INC_ACTIVE(cachep); 2868 STATS_SET_HIGH(cachep); 2869 2870 ac->entry[ac->avail++] = slab_get_obj(cachep, slab); 2871 } 2872 2873 return batchcount; 2874 } 2875 2876 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) 2877 { 2878 int batchcount; 2879 struct kmem_cache_node *n; 2880 struct array_cache *ac, *shared; 2881 int node; 2882 void *list = NULL; 2883 struct slab *slab; 2884 2885 check_irq_off(); 2886 node = numa_mem_id(); 2887 2888 ac = cpu_cache_get(cachep); 2889 batchcount = ac->batchcount; 2890 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2891 /* 2892 * If there was little recent activity on this cache, then 2893 * perform only a partial refill. Otherwise we could generate 2894 * refill bouncing. 2895 */ 2896 batchcount = BATCHREFILL_LIMIT; 2897 } 2898 n = get_node(cachep, node); 2899 2900 BUG_ON(ac->avail > 0 || !n); 2901 shared = READ_ONCE(n->shared); 2902 if (!n->free_objects && (!shared || !shared->avail)) 2903 goto direct_grow; 2904 2905 raw_spin_lock(&n->list_lock); 2906 shared = READ_ONCE(n->shared); 2907 2908 /* See if we can refill from the shared array */ 2909 if (shared && transfer_objects(ac, shared, batchcount)) { 2910 shared->touched = 1; 2911 goto alloc_done; 2912 } 2913 2914 while (batchcount > 0) { 2915 /* Get slab alloc is to come from. */ 2916 slab = get_first_slab(n, false); 2917 if (!slab) 2918 goto must_grow; 2919 2920 check_spinlock_acquired(cachep); 2921 2922 batchcount = alloc_block(cachep, ac, slab, batchcount); 2923 fixup_slab_list(cachep, n, slab, &list); 2924 } 2925 2926 must_grow: 2927 n->free_objects -= ac->avail; 2928 alloc_done: 2929 raw_spin_unlock(&n->list_lock); 2930 fixup_objfreelist_debug(cachep, &list); 2931 2932 direct_grow: 2933 if (unlikely(!ac->avail)) { 2934 /* Check if we can use obj in pfmemalloc slab */ 2935 if (sk_memalloc_socks()) { 2936 void *obj = cache_alloc_pfmemalloc(cachep, n, flags); 2937 2938 if (obj) 2939 return obj; 2940 } 2941 2942 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node); 2943 2944 /* 2945 * cache_grow_begin() can reenable interrupts, 2946 * then ac could change. 2947 */ 2948 ac = cpu_cache_get(cachep); 2949 if (!ac->avail && slab) 2950 alloc_block(cachep, ac, slab, batchcount); 2951 cache_grow_end(cachep, slab); 2952 2953 if (!ac->avail) 2954 return NULL; 2955 } 2956 ac->touched = 1; 2957 2958 return ac->entry[--ac->avail]; 2959 } 2960 2961 #if DEBUG 2962 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2963 gfp_t flags, void *objp, unsigned long caller) 2964 { 2965 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); 2966 if (!objp || is_kfence_address(objp)) 2967 return objp; 2968 if (cachep->flags & SLAB_POISON) { 2969 check_poison_obj(cachep, objp); 2970 slab_kernel_map(cachep, objp, 1); 2971 poison_obj(cachep, objp, POISON_INUSE); 2972 } 2973 if (cachep->flags & SLAB_STORE_USER) 2974 *dbg_userword(cachep, objp) = (void *)caller; 2975 2976 if (cachep->flags & SLAB_RED_ZONE) { 2977 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2978 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2979 slab_error(cachep, "double free, or memory outside object was overwritten"); 2980 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", 2981 objp, *dbg_redzone1(cachep, objp), 2982 *dbg_redzone2(cachep, objp)); 2983 } 2984 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2985 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2986 } 2987 2988 objp += obj_offset(cachep); 2989 if (cachep->ctor && cachep->flags & SLAB_POISON) 2990 cachep->ctor(objp); 2991 if ((unsigned long)objp & (arch_slab_minalign() - 1)) { 2992 pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp, 2993 arch_slab_minalign()); 2994 } 2995 return objp; 2996 } 2997 #else 2998 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) 2999 #endif 3000 3001 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3002 { 3003 void *objp; 3004 struct array_cache *ac; 3005 3006 check_irq_off(); 3007 3008 ac = cpu_cache_get(cachep); 3009 if (likely(ac->avail)) { 3010 ac->touched = 1; 3011 objp = ac->entry[--ac->avail]; 3012 3013 STATS_INC_ALLOCHIT(cachep); 3014 goto out; 3015 } 3016 3017 STATS_INC_ALLOCMISS(cachep); 3018 objp = cache_alloc_refill(cachep, flags); 3019 /* 3020 * the 'ac' may be updated by cache_alloc_refill(), 3021 * and kmemleak_erase() requires its correct value. 3022 */ 3023 ac = cpu_cache_get(cachep); 3024 3025 out: 3026 /* 3027 * To avoid a false negative, if an object that is in one of the 3028 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 3029 * treat the array pointers as a reference to the object. 3030 */ 3031 if (objp) 3032 kmemleak_erase(&ac->entry[ac->avail]); 3033 return objp; 3034 } 3035 3036 #ifdef CONFIG_NUMA 3037 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 3038 3039 /* 3040 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 3041 * 3042 * If we are in_interrupt, then process context, including cpusets and 3043 * mempolicy, may not apply and should not be used for allocation policy. 3044 */ 3045 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 3046 { 3047 int nid_alloc, nid_here; 3048 3049 if (in_interrupt() || (flags & __GFP_THISNODE)) 3050 return NULL; 3051 nid_alloc = nid_here = numa_mem_id(); 3052 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 3053 nid_alloc = cpuset_slab_spread_node(); 3054 else if (current->mempolicy) 3055 nid_alloc = mempolicy_slab_node(); 3056 if (nid_alloc != nid_here) 3057 return ____cache_alloc_node(cachep, flags, nid_alloc); 3058 return NULL; 3059 } 3060 3061 /* 3062 * Fallback function if there was no memory available and no objects on a 3063 * certain node and fall back is permitted. First we scan all the 3064 * available node for available objects. If that fails then we 3065 * perform an allocation without specifying a node. This allows the page 3066 * allocator to do its reclaim / fallback magic. We then insert the 3067 * slab into the proper nodelist and then allocate from it. 3068 */ 3069 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 3070 { 3071 struct zonelist *zonelist; 3072 struct zoneref *z; 3073 struct zone *zone; 3074 enum zone_type highest_zoneidx = gfp_zone(flags); 3075 void *obj = NULL; 3076 struct slab *slab; 3077 int nid; 3078 unsigned int cpuset_mems_cookie; 3079 3080 if (flags & __GFP_THISNODE) 3081 return NULL; 3082 3083 retry_cpuset: 3084 cpuset_mems_cookie = read_mems_allowed_begin(); 3085 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3086 3087 retry: 3088 /* 3089 * Look through allowed nodes for objects available 3090 * from existing per node queues. 3091 */ 3092 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3093 nid = zone_to_nid(zone); 3094 3095 if (cpuset_zone_allowed(zone, flags) && 3096 get_node(cache, nid) && 3097 get_node(cache, nid)->free_objects) { 3098 obj = ____cache_alloc_node(cache, 3099 gfp_exact_node(flags), nid); 3100 if (obj) 3101 break; 3102 } 3103 } 3104 3105 if (!obj) { 3106 /* 3107 * This allocation will be performed within the constraints 3108 * of the current cpuset / memory policy requirements. 3109 * We may trigger various forms of reclaim on the allowed 3110 * set and go into memory reserves if necessary. 3111 */ 3112 slab = cache_grow_begin(cache, flags, numa_mem_id()); 3113 cache_grow_end(cache, slab); 3114 if (slab) { 3115 nid = slab_nid(slab); 3116 obj = ____cache_alloc_node(cache, 3117 gfp_exact_node(flags), nid); 3118 3119 /* 3120 * Another processor may allocate the objects in 3121 * the slab since we are not holding any locks. 3122 */ 3123 if (!obj) 3124 goto retry; 3125 } 3126 } 3127 3128 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3129 goto retry_cpuset; 3130 return obj; 3131 } 3132 3133 /* 3134 * An interface to enable slab creation on nodeid 3135 */ 3136 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3137 int nodeid) 3138 { 3139 struct slab *slab; 3140 struct kmem_cache_node *n; 3141 void *obj = NULL; 3142 void *list = NULL; 3143 3144 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3145 n = get_node(cachep, nodeid); 3146 BUG_ON(!n); 3147 3148 check_irq_off(); 3149 raw_spin_lock(&n->list_lock); 3150 slab = get_first_slab(n, false); 3151 if (!slab) 3152 goto must_grow; 3153 3154 check_spinlock_acquired_node(cachep, nodeid); 3155 3156 STATS_INC_NODEALLOCS(cachep); 3157 STATS_INC_ACTIVE(cachep); 3158 STATS_SET_HIGH(cachep); 3159 3160 BUG_ON(slab->active == cachep->num); 3161 3162 obj = slab_get_obj(cachep, slab); 3163 n->free_objects--; 3164 3165 fixup_slab_list(cachep, n, slab, &list); 3166 3167 raw_spin_unlock(&n->list_lock); 3168 fixup_objfreelist_debug(cachep, &list); 3169 return obj; 3170 3171 must_grow: 3172 raw_spin_unlock(&n->list_lock); 3173 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); 3174 if (slab) { 3175 /* This slab isn't counted yet so don't update free_objects */ 3176 obj = slab_get_obj(cachep, slab); 3177 } 3178 cache_grow_end(cachep, slab); 3179 3180 return obj ? obj : fallback_alloc(cachep, flags); 3181 } 3182 3183 static __always_inline void * 3184 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3185 { 3186 void *objp = NULL; 3187 int slab_node = numa_mem_id(); 3188 3189 if (nodeid == NUMA_NO_NODE) { 3190 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3191 objp = alternate_node_alloc(cachep, flags); 3192 if (objp) 3193 goto out; 3194 } 3195 /* 3196 * Use the locally cached objects if possible. 3197 * However ____cache_alloc does not allow fallback 3198 * to other nodes. It may fail while we still have 3199 * objects on other nodes available. 3200 */ 3201 objp = ____cache_alloc(cachep, flags); 3202 nodeid = slab_node; 3203 } else if (nodeid == slab_node) { 3204 objp = ____cache_alloc(cachep, flags); 3205 } else if (!get_node(cachep, nodeid)) { 3206 /* Node not bootstrapped yet */ 3207 objp = fallback_alloc(cachep, flags); 3208 goto out; 3209 } 3210 3211 /* 3212 * We may just have run out of memory on the local node. 3213 * ____cache_alloc_node() knows how to locate memory on other nodes 3214 */ 3215 if (!objp) 3216 objp = ____cache_alloc_node(cachep, flags, nodeid); 3217 out: 3218 return objp; 3219 } 3220 #else 3221 3222 static __always_inline void * 3223 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused) 3224 { 3225 return ____cache_alloc(cachep, flags); 3226 } 3227 3228 #endif /* CONFIG_NUMA */ 3229 3230 static __always_inline void * 3231 slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3232 int nodeid, size_t orig_size, unsigned long caller) 3233 { 3234 unsigned long save_flags; 3235 void *objp; 3236 struct obj_cgroup *objcg = NULL; 3237 bool init = false; 3238 3239 flags &= gfp_allowed_mask; 3240 cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags); 3241 if (unlikely(!cachep)) 3242 return NULL; 3243 3244 objp = kfence_alloc(cachep, orig_size, flags); 3245 if (unlikely(objp)) 3246 goto out; 3247 3248 local_irq_save(save_flags); 3249 objp = __do_cache_alloc(cachep, flags, nodeid); 3250 local_irq_restore(save_flags); 3251 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3252 prefetchw(objp); 3253 init = slab_want_init_on_alloc(flags, cachep); 3254 3255 out: 3256 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init, 3257 cachep->object_size); 3258 return objp; 3259 } 3260 3261 static __always_inline void * 3262 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, 3263 size_t orig_size, unsigned long caller) 3264 { 3265 return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size, 3266 caller); 3267 } 3268 3269 /* 3270 * Caller needs to acquire correct kmem_cache_node's list_lock 3271 * @list: List of detached free slabs should be freed by caller 3272 */ 3273 static void free_block(struct kmem_cache *cachep, void **objpp, 3274 int nr_objects, int node, struct list_head *list) 3275 { 3276 int i; 3277 struct kmem_cache_node *n = get_node(cachep, node); 3278 struct slab *slab; 3279 3280 n->free_objects += nr_objects; 3281 3282 for (i = 0; i < nr_objects; i++) { 3283 void *objp; 3284 struct slab *slab; 3285 3286 objp = objpp[i]; 3287 3288 slab = virt_to_slab(objp); 3289 list_del(&slab->slab_list); 3290 check_spinlock_acquired_node(cachep, node); 3291 slab_put_obj(cachep, slab, objp); 3292 STATS_DEC_ACTIVE(cachep); 3293 3294 /* fixup slab chains */ 3295 if (slab->active == 0) { 3296 list_add(&slab->slab_list, &n->slabs_free); 3297 n->free_slabs++; 3298 } else { 3299 /* Unconditionally move a slab to the end of the 3300 * partial list on free - maximum time for the 3301 * other objects to be freed, too. 3302 */ 3303 list_add_tail(&slab->slab_list, &n->slabs_partial); 3304 } 3305 } 3306 3307 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { 3308 n->free_objects -= cachep->num; 3309 3310 slab = list_last_entry(&n->slabs_free, struct slab, slab_list); 3311 list_move(&slab->slab_list, list); 3312 n->free_slabs--; 3313 n->total_slabs--; 3314 } 3315 } 3316 3317 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3318 { 3319 int batchcount; 3320 struct kmem_cache_node *n; 3321 int node = numa_mem_id(); 3322 LIST_HEAD(list); 3323 3324 batchcount = ac->batchcount; 3325 3326 check_irq_off(); 3327 n = get_node(cachep, node); 3328 raw_spin_lock(&n->list_lock); 3329 if (n->shared) { 3330 struct array_cache *shared_array = n->shared; 3331 int max = shared_array->limit - shared_array->avail; 3332 if (max) { 3333 if (batchcount > max) 3334 batchcount = max; 3335 memcpy(&(shared_array->entry[shared_array->avail]), 3336 ac->entry, sizeof(void *) * batchcount); 3337 shared_array->avail += batchcount; 3338 goto free_done; 3339 } 3340 } 3341 3342 free_block(cachep, ac->entry, batchcount, node, &list); 3343 free_done: 3344 #if STATS 3345 { 3346 int i = 0; 3347 struct slab *slab; 3348 3349 list_for_each_entry(slab, &n->slabs_free, slab_list) { 3350 BUG_ON(slab->active); 3351 3352 i++; 3353 } 3354 STATS_SET_FREEABLE(cachep, i); 3355 } 3356 #endif 3357 raw_spin_unlock(&n->list_lock); 3358 ac->avail -= batchcount; 3359 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3360 slabs_destroy(cachep, &list); 3361 } 3362 3363 /* 3364 * Release an obj back to its cache. If the obj has a constructed state, it must 3365 * be in this state _before_ it is released. Called with disabled ints. 3366 */ 3367 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, 3368 unsigned long caller) 3369 { 3370 bool init; 3371 3372 memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1); 3373 3374 if (is_kfence_address(objp)) { 3375 kmemleak_free_recursive(objp, cachep->flags); 3376 __kfence_free(objp); 3377 return; 3378 } 3379 3380 /* 3381 * As memory initialization might be integrated into KASAN, 3382 * kasan_slab_free and initialization memset must be 3383 * kept together to avoid discrepancies in behavior. 3384 */ 3385 init = slab_want_init_on_free(cachep); 3386 if (init && !kasan_has_integrated_init()) 3387 memset(objp, 0, cachep->object_size); 3388 /* KASAN might put objp into memory quarantine, delaying its reuse. */ 3389 if (kasan_slab_free(cachep, objp, init)) 3390 return; 3391 3392 /* Use KCSAN to help debug racy use-after-free. */ 3393 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) 3394 __kcsan_check_access(objp, cachep->object_size, 3395 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 3396 3397 ___cache_free(cachep, objp, caller); 3398 } 3399 3400 void ___cache_free(struct kmem_cache *cachep, void *objp, 3401 unsigned long caller) 3402 { 3403 struct array_cache *ac = cpu_cache_get(cachep); 3404 3405 check_irq_off(); 3406 kmemleak_free_recursive(objp, cachep->flags); 3407 objp = cache_free_debugcheck(cachep, objp, caller); 3408 3409 /* 3410 * Skip calling cache_free_alien() when the platform is not numa. 3411 * This will avoid cache misses that happen while accessing slabp (which 3412 * is per page memory reference) to get nodeid. Instead use a global 3413 * variable to skip the call, which is mostly likely to be present in 3414 * the cache. 3415 */ 3416 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3417 return; 3418 3419 if (ac->avail < ac->limit) { 3420 STATS_INC_FREEHIT(cachep); 3421 } else { 3422 STATS_INC_FREEMISS(cachep); 3423 cache_flusharray(cachep, ac); 3424 } 3425 3426 if (sk_memalloc_socks()) { 3427 struct slab *slab = virt_to_slab(objp); 3428 3429 if (unlikely(slab_test_pfmemalloc(slab))) { 3430 cache_free_pfmemalloc(cachep, slab, objp); 3431 return; 3432 } 3433 } 3434 3435 __free_one(ac, objp); 3436 } 3437 3438 static __always_inline 3439 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3440 gfp_t flags) 3441 { 3442 void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_); 3443 3444 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE); 3445 3446 return ret; 3447 } 3448 3449 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3450 { 3451 return __kmem_cache_alloc_lru(cachep, NULL, flags); 3452 } 3453 EXPORT_SYMBOL(kmem_cache_alloc); 3454 3455 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, 3456 gfp_t flags) 3457 { 3458 return __kmem_cache_alloc_lru(cachep, lru, flags); 3459 } 3460 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3461 3462 static __always_inline void 3463 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, 3464 size_t size, void **p, unsigned long caller) 3465 { 3466 size_t i; 3467 3468 for (i = 0; i < size; i++) 3469 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); 3470 } 3471 3472 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3473 void **p) 3474 { 3475 struct obj_cgroup *objcg = NULL; 3476 unsigned long irqflags; 3477 size_t i; 3478 3479 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3480 if (!s) 3481 return 0; 3482 3483 local_irq_save(irqflags); 3484 for (i = 0; i < size; i++) { 3485 void *objp = kfence_alloc(s, s->object_size, flags) ?: 3486 __do_cache_alloc(s, flags, NUMA_NO_NODE); 3487 3488 if (unlikely(!objp)) 3489 goto error; 3490 p[i] = objp; 3491 } 3492 local_irq_restore(irqflags); 3493 3494 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); 3495 3496 /* 3497 * memcg and kmem_cache debug support and memory initialization. 3498 * Done outside of the IRQ disabled section. 3499 */ 3500 slab_post_alloc_hook(s, objcg, flags, size, p, 3501 slab_want_init_on_alloc(flags, s), s->object_size); 3502 /* FIXME: Trace call missing. Christoph would like a bulk variant */ 3503 return size; 3504 error: 3505 local_irq_restore(irqflags); 3506 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); 3507 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 3508 kmem_cache_free_bulk(s, i, p); 3509 return 0; 3510 } 3511 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3512 3513 /** 3514 * kmem_cache_alloc_node - Allocate an object on the specified node 3515 * @cachep: The cache to allocate from. 3516 * @flags: See kmalloc(). 3517 * @nodeid: node number of the target node. 3518 * 3519 * Identical to kmem_cache_alloc but it will allocate memory on the given 3520 * node, which can improve the performance for cpu bound structures. 3521 * 3522 * Fallback to other node is possible if __GFP_THISNODE is not set. 3523 * 3524 * Return: pointer to the new object or %NULL in case of error 3525 */ 3526 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3527 { 3528 void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_); 3529 3530 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid); 3531 3532 return ret; 3533 } 3534 EXPORT_SYMBOL(kmem_cache_alloc_node); 3535 3536 void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3537 int nodeid, size_t orig_size, 3538 unsigned long caller) 3539 { 3540 return slab_alloc_node(cachep, NULL, flags, nodeid, 3541 orig_size, caller); 3542 } 3543 3544 #ifdef CONFIG_PRINTK 3545 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 3546 { 3547 struct kmem_cache *cachep; 3548 unsigned int objnr; 3549 void *objp; 3550 3551 kpp->kp_ptr = object; 3552 kpp->kp_slab = slab; 3553 cachep = slab->slab_cache; 3554 kpp->kp_slab_cache = cachep; 3555 objp = object - obj_offset(cachep); 3556 kpp->kp_data_offset = obj_offset(cachep); 3557 slab = virt_to_slab(objp); 3558 objnr = obj_to_index(cachep, slab, objp); 3559 objp = index_to_obj(cachep, slab, objnr); 3560 kpp->kp_objp = objp; 3561 if (DEBUG && cachep->flags & SLAB_STORE_USER) 3562 kpp->kp_ret = *dbg_userword(cachep, objp); 3563 } 3564 #endif 3565 3566 static __always_inline 3567 void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp, 3568 unsigned long caller) 3569 { 3570 unsigned long flags; 3571 3572 local_irq_save(flags); 3573 debug_check_no_locks_freed(objp, cachep->object_size); 3574 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3575 debug_check_no_obj_freed(objp, cachep->object_size); 3576 __cache_free(cachep, objp, caller); 3577 local_irq_restore(flags); 3578 } 3579 3580 void __kmem_cache_free(struct kmem_cache *cachep, void *objp, 3581 unsigned long caller) 3582 { 3583 __do_kmem_cache_free(cachep, objp, caller); 3584 } 3585 3586 /** 3587 * kmem_cache_free - Deallocate an object 3588 * @cachep: The cache the allocation was from. 3589 * @objp: The previously allocated object. 3590 * 3591 * Free an object which was previously allocated from this 3592 * cache. 3593 */ 3594 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3595 { 3596 cachep = cache_from_obj(cachep, objp); 3597 if (!cachep) 3598 return; 3599 3600 trace_kmem_cache_free(_RET_IP_, objp, cachep); 3601 __do_kmem_cache_free(cachep, objp, _RET_IP_); 3602 } 3603 EXPORT_SYMBOL(kmem_cache_free); 3604 3605 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 3606 { 3607 unsigned long flags; 3608 3609 local_irq_save(flags); 3610 for (int i = 0; i < size; i++) { 3611 void *objp = p[i]; 3612 struct kmem_cache *s; 3613 3614 if (!orig_s) { 3615 struct folio *folio = virt_to_folio(objp); 3616 3617 /* called via kfree_bulk */ 3618 if (!folio_test_slab(folio)) { 3619 local_irq_restore(flags); 3620 free_large_kmalloc(folio, objp); 3621 local_irq_save(flags); 3622 continue; 3623 } 3624 s = folio_slab(folio)->slab_cache; 3625 } else { 3626 s = cache_from_obj(orig_s, objp); 3627 } 3628 3629 if (!s) 3630 continue; 3631 3632 debug_check_no_locks_freed(objp, s->object_size); 3633 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 3634 debug_check_no_obj_freed(objp, s->object_size); 3635 3636 __cache_free(s, objp, _RET_IP_); 3637 } 3638 local_irq_restore(flags); 3639 3640 /* FIXME: add tracing */ 3641 } 3642 EXPORT_SYMBOL(kmem_cache_free_bulk); 3643 3644 /* 3645 * This initializes kmem_cache_node or resizes various caches for all nodes. 3646 */ 3647 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) 3648 { 3649 int ret; 3650 int node; 3651 struct kmem_cache_node *n; 3652 3653 for_each_online_node(node) { 3654 ret = setup_kmem_cache_node(cachep, node, gfp, true); 3655 if (ret) 3656 goto fail; 3657 3658 } 3659 3660 return 0; 3661 3662 fail: 3663 if (!cachep->list.next) { 3664 /* Cache is not active yet. Roll back what we did */ 3665 node--; 3666 while (node >= 0) { 3667 n = get_node(cachep, node); 3668 if (n) { 3669 kfree(n->shared); 3670 free_alien_cache(n->alien); 3671 kfree(n); 3672 cachep->node[node] = NULL; 3673 } 3674 node--; 3675 } 3676 } 3677 return -ENOMEM; 3678 } 3679 3680 /* Always called with the slab_mutex held */ 3681 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3682 int batchcount, int shared, gfp_t gfp) 3683 { 3684 struct array_cache __percpu *cpu_cache, *prev; 3685 int cpu; 3686 3687 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3688 if (!cpu_cache) 3689 return -ENOMEM; 3690 3691 prev = cachep->cpu_cache; 3692 cachep->cpu_cache = cpu_cache; 3693 /* 3694 * Without a previous cpu_cache there's no need to synchronize remote 3695 * cpus, so skip the IPIs. 3696 */ 3697 if (prev) 3698 kick_all_cpus_sync(); 3699 3700 check_irq_on(); 3701 cachep->batchcount = batchcount; 3702 cachep->limit = limit; 3703 cachep->shared = shared; 3704 3705 if (!prev) 3706 goto setup_node; 3707 3708 for_each_online_cpu(cpu) { 3709 LIST_HEAD(list); 3710 int node; 3711 struct kmem_cache_node *n; 3712 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3713 3714 node = cpu_to_mem(cpu); 3715 n = get_node(cachep, node); 3716 raw_spin_lock_irq(&n->list_lock); 3717 free_block(cachep, ac->entry, ac->avail, node, &list); 3718 raw_spin_unlock_irq(&n->list_lock); 3719 slabs_destroy(cachep, &list); 3720 } 3721 free_percpu(prev); 3722 3723 setup_node: 3724 return setup_kmem_cache_nodes(cachep, gfp); 3725 } 3726 3727 /* Called with slab_mutex held always */ 3728 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3729 { 3730 int err; 3731 int limit = 0; 3732 int shared = 0; 3733 int batchcount = 0; 3734 3735 err = cache_random_seq_create(cachep, cachep->num, gfp); 3736 if (err) 3737 goto end; 3738 3739 /* 3740 * The head array serves three purposes: 3741 * - create a LIFO ordering, i.e. return objects that are cache-warm 3742 * - reduce the number of spinlock operations. 3743 * - reduce the number of linked list operations on the slab and 3744 * bufctl chains: array operations are cheaper. 3745 * The numbers are guessed, we should auto-tune as described by 3746 * Bonwick. 3747 */ 3748 if (cachep->size > 131072) 3749 limit = 1; 3750 else if (cachep->size > PAGE_SIZE) 3751 limit = 8; 3752 else if (cachep->size > 1024) 3753 limit = 24; 3754 else if (cachep->size > 256) 3755 limit = 54; 3756 else 3757 limit = 120; 3758 3759 /* 3760 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3761 * allocation behaviour: Most allocs on one cpu, most free operations 3762 * on another cpu. For these cases, an efficient object passing between 3763 * cpus is necessary. This is provided by a shared array. The array 3764 * replaces Bonwick's magazine layer. 3765 * On uniprocessor, it's functionally equivalent (but less efficient) 3766 * to a larger limit. Thus disabled by default. 3767 */ 3768 shared = 0; 3769 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3770 shared = 8; 3771 3772 #if DEBUG 3773 /* 3774 * With debugging enabled, large batchcount lead to excessively long 3775 * periods with disabled local interrupts. Limit the batchcount 3776 */ 3777 if (limit > 32) 3778 limit = 32; 3779 #endif 3780 batchcount = (limit + 1) / 2; 3781 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3782 end: 3783 if (err) 3784 pr_err("enable_cpucache failed for %s, error %d\n", 3785 cachep->name, -err); 3786 return err; 3787 } 3788 3789 /* 3790 * Drain an array if it contains any elements taking the node lock only if 3791 * necessary. Note that the node listlock also protects the array_cache 3792 * if drain_array() is used on the shared array. 3793 */ 3794 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3795 struct array_cache *ac, int node) 3796 { 3797 LIST_HEAD(list); 3798 3799 /* ac from n->shared can be freed if we don't hold the slab_mutex. */ 3800 check_mutex_acquired(); 3801 3802 if (!ac || !ac->avail) 3803 return; 3804 3805 if (ac->touched) { 3806 ac->touched = 0; 3807 return; 3808 } 3809 3810 raw_spin_lock_irq(&n->list_lock); 3811 drain_array_locked(cachep, ac, node, false, &list); 3812 raw_spin_unlock_irq(&n->list_lock); 3813 3814 slabs_destroy(cachep, &list); 3815 } 3816 3817 /** 3818 * cache_reap - Reclaim memory from caches. 3819 * @w: work descriptor 3820 * 3821 * Called from workqueue/eventd every few seconds. 3822 * Purpose: 3823 * - clear the per-cpu caches for this CPU. 3824 * - return freeable pages to the main free memory pool. 3825 * 3826 * If we cannot acquire the cache chain mutex then just give up - we'll try 3827 * again on the next iteration. 3828 */ 3829 static void cache_reap(struct work_struct *w) 3830 { 3831 struct kmem_cache *searchp; 3832 struct kmem_cache_node *n; 3833 int node = numa_mem_id(); 3834 struct delayed_work *work = to_delayed_work(w); 3835 3836 if (!mutex_trylock(&slab_mutex)) 3837 /* Give up. Setup the next iteration. */ 3838 goto out; 3839 3840 list_for_each_entry(searchp, &slab_caches, list) { 3841 check_irq_on(); 3842 3843 /* 3844 * We only take the node lock if absolutely necessary and we 3845 * have established with reasonable certainty that 3846 * we can do some work if the lock was obtained. 3847 */ 3848 n = get_node(searchp, node); 3849 3850 reap_alien(searchp, n); 3851 3852 drain_array(searchp, n, cpu_cache_get(searchp), node); 3853 3854 /* 3855 * These are racy checks but it does not matter 3856 * if we skip one check or scan twice. 3857 */ 3858 if (time_after(n->next_reap, jiffies)) 3859 goto next; 3860 3861 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3862 3863 drain_array(searchp, n, n->shared, node); 3864 3865 if (n->free_touched) 3866 n->free_touched = 0; 3867 else { 3868 int freed; 3869 3870 freed = drain_freelist(searchp, n, (n->free_limit + 3871 5 * searchp->num - 1) / (5 * searchp->num)); 3872 STATS_ADD_REAPED(searchp, freed); 3873 } 3874 next: 3875 cond_resched(); 3876 } 3877 check_irq_on(); 3878 mutex_unlock(&slab_mutex); 3879 next_reap_node(); 3880 out: 3881 /* Set up the next iteration */ 3882 schedule_delayed_work_on(smp_processor_id(), work, 3883 round_jiffies_relative(REAPTIMEOUT_AC)); 3884 } 3885 3886 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 3887 { 3888 unsigned long active_objs, num_objs, active_slabs; 3889 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; 3890 unsigned long free_slabs = 0; 3891 int node; 3892 struct kmem_cache_node *n; 3893 3894 for_each_kmem_cache_node(cachep, node, n) { 3895 check_irq_on(); 3896 raw_spin_lock_irq(&n->list_lock); 3897 3898 total_slabs += n->total_slabs; 3899 free_slabs += n->free_slabs; 3900 free_objs += n->free_objects; 3901 3902 if (n->shared) 3903 shared_avail += n->shared->avail; 3904 3905 raw_spin_unlock_irq(&n->list_lock); 3906 } 3907 num_objs = total_slabs * cachep->num; 3908 active_slabs = total_slabs - free_slabs; 3909 active_objs = num_objs - free_objs; 3910 3911 sinfo->active_objs = active_objs; 3912 sinfo->num_objs = num_objs; 3913 sinfo->active_slabs = active_slabs; 3914 sinfo->num_slabs = total_slabs; 3915 sinfo->shared_avail = shared_avail; 3916 sinfo->limit = cachep->limit; 3917 sinfo->batchcount = cachep->batchcount; 3918 sinfo->shared = cachep->shared; 3919 sinfo->objects_per_slab = cachep->num; 3920 sinfo->cache_order = cachep->gfporder; 3921 } 3922 3923 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 3924 { 3925 #if STATS 3926 { /* node stats */ 3927 unsigned long high = cachep->high_mark; 3928 unsigned long allocs = cachep->num_allocations; 3929 unsigned long grown = cachep->grown; 3930 unsigned long reaped = cachep->reaped; 3931 unsigned long errors = cachep->errors; 3932 unsigned long max_freeable = cachep->max_freeable; 3933 unsigned long node_allocs = cachep->node_allocs; 3934 unsigned long node_frees = cachep->node_frees; 3935 unsigned long overflows = cachep->node_overflow; 3936 3937 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", 3938 allocs, high, grown, 3939 reaped, errors, max_freeable, node_allocs, 3940 node_frees, overflows); 3941 } 3942 /* cpu stats */ 3943 { 3944 unsigned long allochit = atomic_read(&cachep->allochit); 3945 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 3946 unsigned long freehit = atomic_read(&cachep->freehit); 3947 unsigned long freemiss = atomic_read(&cachep->freemiss); 3948 3949 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 3950 allochit, allocmiss, freehit, freemiss); 3951 } 3952 #endif 3953 } 3954 3955 #define MAX_SLABINFO_WRITE 128 3956 /** 3957 * slabinfo_write - Tuning for the slab allocator 3958 * @file: unused 3959 * @buffer: user buffer 3960 * @count: data length 3961 * @ppos: unused 3962 * 3963 * Return: %0 on success, negative error code otherwise. 3964 */ 3965 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 3966 size_t count, loff_t *ppos) 3967 { 3968 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 3969 int limit, batchcount, shared, res; 3970 struct kmem_cache *cachep; 3971 3972 if (count > MAX_SLABINFO_WRITE) 3973 return -EINVAL; 3974 if (copy_from_user(&kbuf, buffer, count)) 3975 return -EFAULT; 3976 kbuf[MAX_SLABINFO_WRITE] = '\0'; 3977 3978 tmp = strchr(kbuf, ' '); 3979 if (!tmp) 3980 return -EINVAL; 3981 *tmp = '\0'; 3982 tmp++; 3983 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 3984 return -EINVAL; 3985 3986 /* Find the cache in the chain of caches. */ 3987 mutex_lock(&slab_mutex); 3988 res = -EINVAL; 3989 list_for_each_entry(cachep, &slab_caches, list) { 3990 if (!strcmp(cachep->name, kbuf)) { 3991 if (limit < 1 || batchcount < 1 || 3992 batchcount > limit || shared < 0) { 3993 res = 0; 3994 } else { 3995 res = do_tune_cpucache(cachep, limit, 3996 batchcount, shared, 3997 GFP_KERNEL); 3998 } 3999 break; 4000 } 4001 } 4002 mutex_unlock(&slab_mutex); 4003 if (res >= 0) 4004 res = count; 4005 return res; 4006 } 4007 4008 #ifdef CONFIG_HARDENED_USERCOPY 4009 /* 4010 * Rejects incorrectly sized objects and objects that are to be copied 4011 * to/from userspace but do not fall entirely within the containing slab 4012 * cache's usercopy region. 4013 * 4014 * Returns NULL if check passes, otherwise const char * to name of cache 4015 * to indicate an error. 4016 */ 4017 void __check_heap_object(const void *ptr, unsigned long n, 4018 const struct slab *slab, bool to_user) 4019 { 4020 struct kmem_cache *cachep; 4021 unsigned int objnr; 4022 unsigned long offset; 4023 4024 ptr = kasan_reset_tag(ptr); 4025 4026 /* Find and validate object. */ 4027 cachep = slab->slab_cache; 4028 objnr = obj_to_index(cachep, slab, (void *)ptr); 4029 BUG_ON(objnr >= cachep->num); 4030 4031 /* Find offset within object. */ 4032 if (is_kfence_address(ptr)) 4033 offset = ptr - kfence_object_start(ptr); 4034 else 4035 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep); 4036 4037 /* Allow address range falling entirely within usercopy region. */ 4038 if (offset >= cachep->useroffset && 4039 offset - cachep->useroffset <= cachep->usersize && 4040 n <= cachep->useroffset - offset + cachep->usersize) 4041 return; 4042 4043 usercopy_abort("SLAB object", cachep->name, to_user, offset, n); 4044 } 4045 #endif /* CONFIG_HARDENED_USERCOPY */ 4046