1 /* 2 * linux/mm/slab.c 3 * Written by Mark Hemment, 1996/97. 4 * (markhe@nextd.demon.co.uk) 5 * 6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli 7 * 8 * Major cleanup, different bufctl logic, per-cpu arrays 9 * (c) 2000 Manfred Spraul 10 * 11 * Cleanup, make the head arrays unconditional, preparation for NUMA 12 * (c) 2002 Manfred Spraul 13 * 14 * An implementation of the Slab Allocator as described in outline in; 15 * UNIX Internals: The New Frontiers by Uresh Vahalia 16 * Pub: Prentice Hall ISBN 0-13-101908-2 17 * or with a little more detail in; 18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator 19 * Jeff Bonwick (Sun Microsystems). 20 * Presented at: USENIX Summer 1994 Technical Conference 21 * 22 * The memory is organized in caches, one cache for each object type. 23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) 24 * Each cache consists out of many slabs (they are small (usually one 25 * page long) and always contiguous), and each slab contains multiple 26 * initialized objects. 27 * 28 * This means, that your constructor is used only for newly allocated 29 * slabs and you must pass objects with the same initializations to 30 * kmem_cache_free. 31 * 32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, 33 * normal). If you need a special memory type, then must create a new 34 * cache for that memory type. 35 * 36 * In order to reduce fragmentation, the slabs are sorted in 3 groups: 37 * full slabs with 0 free objects 38 * partial slabs 39 * empty slabs with no allocated objects 40 * 41 * If partial slabs exist, then new allocations come from these slabs, 42 * otherwise from empty slabs or new slabs are allocated. 43 * 44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache 45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs. 46 * 47 * Each cache has a short per-cpu head array, most allocs 48 * and frees go into that array, and if that array overflows, then 1/2 49 * of the entries in the array are given back into the global cache. 50 * The head array is strictly LIFO and should improve the cache hit rates. 51 * On SMP, it additionally reduces the spinlock operations. 52 * 53 * The c_cpuarray may not be read with enabled local interrupts - 54 * it's changed with a smp_call_function(). 55 * 56 * SMP synchronization: 57 * constructors and destructors are called without any locking. 58 * Several members in struct kmem_cache and struct slab never change, they 59 * are accessed without any locking. 60 * The per-cpu arrays are never accessed from the wrong cpu, no locking, 61 * and local interrupts are disabled so slab code is preempt-safe. 62 * The non-constant members are protected with a per-cache irq spinlock. 63 * 64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch 65 * in 2000 - many ideas in the current implementation are derived from 66 * his patch. 67 * 68 * Further notes from the original documentation: 69 * 70 * 11 April '97. Started multi-threading - markhe 71 * The global cache-chain is protected by the mutex 'slab_mutex'. 72 * The sem is only needed when accessing/extending the cache-chain, which 73 * can never happen inside an interrupt (kmem_cache_create(), 74 * kmem_cache_shrink() and kmem_cache_reap()). 75 * 76 * At present, each engine can be growing a cache. This should be blocked. 77 * 78 * 15 March 2005. NUMA slab allocator. 79 * Shai Fultheim <shai@scalex86.org>. 80 * Shobhit Dayal <shobhit@calsoftinc.com> 81 * Alok N Kataria <alokk@calsoftinc.com> 82 * Christoph Lameter <christoph@lameter.com> 83 * 84 * Modified the slab allocator to be node aware on NUMA systems. 85 * Each node has its own list of partial, free and full slabs. 86 * All object allocations for a node occur from node specific slab lists. 87 */ 88 89 #include <linux/slab.h> 90 #include <linux/mm.h> 91 #include <linux/poison.h> 92 #include <linux/swap.h> 93 #include <linux/cache.h> 94 #include <linux/interrupt.h> 95 #include <linux/init.h> 96 #include <linux/compiler.h> 97 #include <linux/cpuset.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/notifier.h> 101 #include <linux/kallsyms.h> 102 #include <linux/cpu.h> 103 #include <linux/sysctl.h> 104 #include <linux/module.h> 105 #include <linux/rcupdate.h> 106 #include <linux/string.h> 107 #include <linux/uaccess.h> 108 #include <linux/nodemask.h> 109 #include <linux/kmemleak.h> 110 #include <linux/mempolicy.h> 111 #include <linux/mutex.h> 112 #include <linux/fault-inject.h> 113 #include <linux/rtmutex.h> 114 #include <linux/reciprocal_div.h> 115 #include <linux/debugobjects.h> 116 #include <linux/kmemcheck.h> 117 #include <linux/memory.h> 118 #include <linux/prefetch.h> 119 120 #include <net/sock.h> 121 122 #include <asm/cacheflush.h> 123 #include <asm/tlbflush.h> 124 #include <asm/page.h> 125 126 #include <trace/events/kmem.h> 127 128 #include "internal.h" 129 130 #include "slab.h" 131 132 /* 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. 134 * 0 for faster, smaller code (especially in the critical paths). 135 * 136 * STATS - 1 to collect stats for /proc/slabinfo. 137 * 0 for faster, smaller code (especially in the critical paths). 138 * 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) 140 */ 141 142 #ifdef CONFIG_DEBUG_SLAB 143 #define DEBUG 1 144 #define STATS 1 145 #define FORCED_DEBUG 1 146 #else 147 #define DEBUG 0 148 #define STATS 0 149 #define FORCED_DEBUG 0 150 #endif 151 152 /* Shouldn't this be in a header file somewhere? */ 153 #define BYTES_PER_WORD sizeof(void *) 154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) 155 156 #ifndef ARCH_KMALLOC_FLAGS 157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN 158 #endif 159 160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ 161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) 162 163 #if FREELIST_BYTE_INDEX 164 typedef unsigned char freelist_idx_t; 165 #else 166 typedef unsigned short freelist_idx_t; 167 #endif 168 169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) 170 171 /* 172 * true if a page was allocated from pfmemalloc reserves for network-based 173 * swap 174 */ 175 static bool pfmemalloc_active __read_mostly; 176 177 /* 178 * struct array_cache 179 * 180 * Purpose: 181 * - LIFO ordering, to hand out cache-warm objects from _alloc 182 * - reduce the number of linked list operations 183 * - reduce spinlock operations 184 * 185 * The limit is stored in the per-cpu structure to reduce the data cache 186 * footprint. 187 * 188 */ 189 struct array_cache { 190 unsigned int avail; 191 unsigned int limit; 192 unsigned int batchcount; 193 unsigned int touched; 194 void *entry[]; /* 195 * Must have this definition in here for the proper 196 * alignment of array_cache. Also simplifies accessing 197 * the entries. 198 * 199 * Entries should not be directly dereferenced as 200 * entries belonging to slabs marked pfmemalloc will 201 * have the lower bits set SLAB_OBJ_PFMEMALLOC 202 */ 203 }; 204 205 struct alien_cache { 206 spinlock_t lock; 207 struct array_cache ac; 208 }; 209 210 #define SLAB_OBJ_PFMEMALLOC 1 211 static inline bool is_obj_pfmemalloc(void *objp) 212 { 213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; 214 } 215 216 static inline void set_obj_pfmemalloc(void **objp) 217 { 218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); 219 return; 220 } 221 222 static inline void clear_obj_pfmemalloc(void **objp) 223 { 224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); 225 } 226 227 /* 228 * bootstrap: The caches do not work without cpuarrays anymore, but the 229 * cpuarrays are allocated from the generic caches... 230 */ 231 #define BOOT_CPUCACHE_ENTRIES 1 232 struct arraycache_init { 233 struct array_cache cache; 234 void *entries[BOOT_CPUCACHE_ENTRIES]; 235 }; 236 237 /* 238 * Need this for bootstrapping a per node allocator. 239 */ 240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES) 241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; 242 #define CACHE_CACHE 0 243 #define SIZE_NODE (MAX_NUMNODES) 244 245 static int drain_freelist(struct kmem_cache *cache, 246 struct kmem_cache_node *n, int tofree); 247 static void free_block(struct kmem_cache *cachep, void **objpp, int len, 248 int node, struct list_head *list); 249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); 250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); 251 static void cache_reap(struct work_struct *unused); 252 253 static int slab_early_init = 1; 254 255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) 256 257 static void kmem_cache_node_init(struct kmem_cache_node *parent) 258 { 259 INIT_LIST_HEAD(&parent->slabs_full); 260 INIT_LIST_HEAD(&parent->slabs_partial); 261 INIT_LIST_HEAD(&parent->slabs_free); 262 parent->shared = NULL; 263 parent->alien = NULL; 264 parent->colour_next = 0; 265 spin_lock_init(&parent->list_lock); 266 parent->free_objects = 0; 267 parent->free_touched = 0; 268 } 269 270 #define MAKE_LIST(cachep, listp, slab, nodeid) \ 271 do { \ 272 INIT_LIST_HEAD(listp); \ 273 list_splice(&get_node(cachep, nodeid)->slab, listp); \ 274 } while (0) 275 276 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 277 do { \ 278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 281 } while (0) 282 283 #define CFLGS_OFF_SLAB (0x80000000UL) 284 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 285 286 #define BATCHREFILL_LIMIT 16 287 /* 288 * Optimization question: fewer reaps means less probability for unnessary 289 * cpucache drain/refill cycles. 290 * 291 * OTOH the cpuarrays can contain lots of objects, 292 * which could lock up otherwise freeable slabs. 293 */ 294 #define REAPTIMEOUT_AC (2*HZ) 295 #define REAPTIMEOUT_NODE (4*HZ) 296 297 #if STATS 298 #define STATS_INC_ACTIVE(x) ((x)->num_active++) 299 #define STATS_DEC_ACTIVE(x) ((x)->num_active--) 300 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 301 #define STATS_INC_GROWN(x) ((x)->grown++) 302 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) 303 #define STATS_SET_HIGH(x) \ 304 do { \ 305 if ((x)->num_active > (x)->high_mark) \ 306 (x)->high_mark = (x)->num_active; \ 307 } while (0) 308 #define STATS_INC_ERR(x) ((x)->errors++) 309 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 310 #define STATS_INC_NODEFREES(x) ((x)->node_frees++) 311 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) 312 #define STATS_SET_FREEABLE(x, i) \ 313 do { \ 314 if ((x)->max_freeable < i) \ 315 (x)->max_freeable = i; \ 316 } while (0) 317 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 318 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 319 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 320 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) 321 #else 322 #define STATS_INC_ACTIVE(x) do { } while (0) 323 #define STATS_DEC_ACTIVE(x) do { } while (0) 324 #define STATS_INC_ALLOCED(x) do { } while (0) 325 #define STATS_INC_GROWN(x) do { } while (0) 326 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) 327 #define STATS_SET_HIGH(x) do { } while (0) 328 #define STATS_INC_ERR(x) do { } while (0) 329 #define STATS_INC_NODEALLOCS(x) do { } while (0) 330 #define STATS_INC_NODEFREES(x) do { } while (0) 331 #define STATS_INC_ACOVERFLOW(x) do { } while (0) 332 #define STATS_SET_FREEABLE(x, i) do { } while (0) 333 #define STATS_INC_ALLOCHIT(x) do { } while (0) 334 #define STATS_INC_ALLOCMISS(x) do { } while (0) 335 #define STATS_INC_FREEHIT(x) do { } while (0) 336 #define STATS_INC_FREEMISS(x) do { } while (0) 337 #endif 338 339 #if DEBUG 340 341 /* 342 * memory layout of objects: 343 * 0 : objp 344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 345 * the end of an object is aligned with the end of the real 346 * allocation. Catches writes behind the end of the allocation. 347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: 348 * redzone word. 349 * cachep->obj_offset: The real object. 350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 351 * cachep->size - 1* BYTES_PER_WORD: last caller address 352 * [BYTES_PER_WORD long] 353 */ 354 static int obj_offset(struct kmem_cache *cachep) 355 { 356 return cachep->obj_offset; 357 } 358 359 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) 360 { 361 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 362 return (unsigned long long*) (objp + obj_offset(cachep) - 363 sizeof(unsigned long long)); 364 } 365 366 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) 367 { 368 BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); 369 if (cachep->flags & SLAB_STORE_USER) 370 return (unsigned long long *)(objp + cachep->size - 371 sizeof(unsigned long long) - 372 REDZONE_ALIGN); 373 return (unsigned long long *) (objp + cachep->size - 374 sizeof(unsigned long long)); 375 } 376 377 static void **dbg_userword(struct kmem_cache *cachep, void *objp) 378 { 379 BUG_ON(!(cachep->flags & SLAB_STORE_USER)); 380 return (void **)(objp + cachep->size - BYTES_PER_WORD); 381 } 382 383 #else 384 385 #define obj_offset(x) 0 386 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 387 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) 388 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) 389 390 #endif 391 392 #define OBJECT_FREE (0) 393 #define OBJECT_ACTIVE (1) 394 395 #ifdef CONFIG_DEBUG_SLAB_LEAK 396 397 static void set_obj_status(struct page *page, int idx, int val) 398 { 399 int freelist_size; 400 char *status; 401 struct kmem_cache *cachep = page->slab_cache; 402 403 freelist_size = cachep->num * sizeof(freelist_idx_t); 404 status = (char *)page->freelist + freelist_size; 405 status[idx] = val; 406 } 407 408 static inline unsigned int get_obj_status(struct page *page, int idx) 409 { 410 int freelist_size; 411 char *status; 412 struct kmem_cache *cachep = page->slab_cache; 413 414 freelist_size = cachep->num * sizeof(freelist_idx_t); 415 status = (char *)page->freelist + freelist_size; 416 417 return status[idx]; 418 } 419 420 #else 421 static inline void set_obj_status(struct page *page, int idx, int val) {} 422 423 #endif 424 425 /* 426 * Do not go above this order unless 0 objects fit into the slab or 427 * overridden on the command line. 428 */ 429 #define SLAB_MAX_ORDER_HI 1 430 #define SLAB_MAX_ORDER_LO 0 431 static int slab_max_order = SLAB_MAX_ORDER_LO; 432 static bool slab_max_order_set __initdata; 433 434 static inline struct kmem_cache *virt_to_cache(const void *obj) 435 { 436 struct page *page = virt_to_head_page(obj); 437 return page->slab_cache; 438 } 439 440 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, 441 unsigned int idx) 442 { 443 return page->s_mem + cache->size * idx; 444 } 445 446 /* 447 * We want to avoid an expensive divide : (offset / cache->size) 448 * Using the fact that size is a constant for a particular cache, 449 * we can replace (offset / cache->size) by 450 * reciprocal_divide(offset, cache->reciprocal_buffer_size) 451 */ 452 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 453 const struct page *page, void *obj) 454 { 455 u32 offset = (obj - page->s_mem); 456 return reciprocal_divide(offset, cache->reciprocal_buffer_size); 457 } 458 459 /* internal cache of cache description objs */ 460 static struct kmem_cache kmem_cache_boot = { 461 .batchcount = 1, 462 .limit = BOOT_CPUCACHE_ENTRIES, 463 .shared = 1, 464 .size = sizeof(struct kmem_cache), 465 .name = "kmem_cache", 466 }; 467 468 #define BAD_ALIEN_MAGIC 0x01020304ul 469 470 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); 471 472 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) 473 { 474 return this_cpu_ptr(cachep->cpu_cache); 475 } 476 477 static size_t calculate_freelist_size(int nr_objs, size_t align) 478 { 479 size_t freelist_size; 480 481 freelist_size = nr_objs * sizeof(freelist_idx_t); 482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) 483 freelist_size += nr_objs * sizeof(char); 484 485 if (align) 486 freelist_size = ALIGN(freelist_size, align); 487 488 return freelist_size; 489 } 490 491 static int calculate_nr_objs(size_t slab_size, size_t buffer_size, 492 size_t idx_size, size_t align) 493 { 494 int nr_objs; 495 size_t remained_size; 496 size_t freelist_size; 497 int extra_space = 0; 498 499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) 500 extra_space = sizeof(char); 501 /* 502 * Ignore padding for the initial guess. The padding 503 * is at most @align-1 bytes, and @buffer_size is at 504 * least @align. In the worst case, this result will 505 * be one greater than the number of objects that fit 506 * into the memory allocation when taking the padding 507 * into account. 508 */ 509 nr_objs = slab_size / (buffer_size + idx_size + extra_space); 510 511 /* 512 * This calculated number will be either the right 513 * amount, or one greater than what we want. 514 */ 515 remained_size = slab_size - nr_objs * buffer_size; 516 freelist_size = calculate_freelist_size(nr_objs, align); 517 if (remained_size < freelist_size) 518 nr_objs--; 519 520 return nr_objs; 521 } 522 523 /* 524 * Calculate the number of objects and left-over bytes for a given buffer size. 525 */ 526 static void cache_estimate(unsigned long gfporder, size_t buffer_size, 527 size_t align, int flags, size_t *left_over, 528 unsigned int *num) 529 { 530 int nr_objs; 531 size_t mgmt_size; 532 size_t slab_size = PAGE_SIZE << gfporder; 533 534 /* 535 * The slab management structure can be either off the slab or 536 * on it. For the latter case, the memory allocated for a 537 * slab is used for: 538 * 539 * - One unsigned int for each object 540 * - Padding to respect alignment of @align 541 * - @buffer_size bytes for each object 542 * 543 * If the slab management structure is off the slab, then the 544 * alignment will already be calculated into the size. Because 545 * the slabs are all pages aligned, the objects will be at the 546 * correct alignment when allocated. 547 */ 548 if (flags & CFLGS_OFF_SLAB) { 549 mgmt_size = 0; 550 nr_objs = slab_size / buffer_size; 551 552 } else { 553 nr_objs = calculate_nr_objs(slab_size, buffer_size, 554 sizeof(freelist_idx_t), align); 555 mgmt_size = calculate_freelist_size(nr_objs, align); 556 } 557 *num = nr_objs; 558 *left_over = slab_size - nr_objs*buffer_size - mgmt_size; 559 } 560 561 #if DEBUG 562 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) 563 564 static void __slab_error(const char *function, struct kmem_cache *cachep, 565 char *msg) 566 { 567 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 568 function, cachep->name, msg); 569 dump_stack(); 570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 571 } 572 #endif 573 574 /* 575 * By default on NUMA we use alien caches to stage the freeing of 576 * objects allocated from other nodes. This causes massive memory 577 * inefficiencies when using fake NUMA setup to split memory into a 578 * large number of small nodes, so it can be disabled on the command 579 * line 580 */ 581 582 static int use_alien_caches __read_mostly = 1; 583 static int __init noaliencache_setup(char *s) 584 { 585 use_alien_caches = 0; 586 return 1; 587 } 588 __setup("noaliencache", noaliencache_setup); 589 590 static int __init slab_max_order_setup(char *str) 591 { 592 get_option(&str, &slab_max_order); 593 slab_max_order = slab_max_order < 0 ? 0 : 594 min(slab_max_order, MAX_ORDER - 1); 595 slab_max_order_set = true; 596 597 return 1; 598 } 599 __setup("slab_max_order=", slab_max_order_setup); 600 601 #ifdef CONFIG_NUMA 602 /* 603 * Special reaping functions for NUMA systems called from cache_reap(). 604 * These take care of doing round robin flushing of alien caches (containing 605 * objects freed on different nodes from which they were allocated) and the 606 * flushing of remote pcps by calling drain_node_pages. 607 */ 608 static DEFINE_PER_CPU(unsigned long, slab_reap_node); 609 610 static void init_reap_node(int cpu) 611 { 612 int node; 613 614 node = next_node(cpu_to_mem(cpu), node_online_map); 615 if (node == MAX_NUMNODES) 616 node = first_node(node_online_map); 617 618 per_cpu(slab_reap_node, cpu) = node; 619 } 620 621 static void next_reap_node(void) 622 { 623 int node = __this_cpu_read(slab_reap_node); 624 625 node = next_node(node, node_online_map); 626 if (unlikely(node >= MAX_NUMNODES)) 627 node = first_node(node_online_map); 628 __this_cpu_write(slab_reap_node, node); 629 } 630 631 #else 632 #define init_reap_node(cpu) do { } while (0) 633 #define next_reap_node(void) do { } while (0) 634 #endif 635 636 /* 637 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz 638 * via the workqueue/eventd. 639 * Add the CPU number into the expiration time to minimize the possibility of 640 * the CPUs getting into lockstep and contending for the global cache chain 641 * lock. 642 */ 643 static void start_cpu_timer(int cpu) 644 { 645 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); 646 647 /* 648 * When this gets called from do_initcalls via cpucache_init(), 649 * init_workqueues() has already run, so keventd will be setup 650 * at that time. 651 */ 652 if (keventd_up() && reap_work->work.func == NULL) { 653 init_reap_node(cpu); 654 INIT_DEFERRABLE_WORK(reap_work, cache_reap); 655 schedule_delayed_work_on(cpu, reap_work, 656 __round_jiffies_relative(HZ, cpu)); 657 } 658 } 659 660 static void init_arraycache(struct array_cache *ac, int limit, int batch) 661 { 662 /* 663 * The array_cache structures contain pointers to free object. 664 * However, when such objects are allocated or transferred to another 665 * cache the pointers are not cleared and they could be counted as 666 * valid references during a kmemleak scan. Therefore, kmemleak must 667 * not scan such objects. 668 */ 669 kmemleak_no_scan(ac); 670 if (ac) { 671 ac->avail = 0; 672 ac->limit = limit; 673 ac->batchcount = batch; 674 ac->touched = 0; 675 } 676 } 677 678 static struct array_cache *alloc_arraycache(int node, int entries, 679 int batchcount, gfp_t gfp) 680 { 681 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); 682 struct array_cache *ac = NULL; 683 684 ac = kmalloc_node(memsize, gfp, node); 685 init_arraycache(ac, entries, batchcount); 686 return ac; 687 } 688 689 static inline bool is_slab_pfmemalloc(struct page *page) 690 { 691 return PageSlabPfmemalloc(page); 692 } 693 694 /* Clears pfmemalloc_active if no slabs have pfmalloc set */ 695 static void recheck_pfmemalloc_active(struct kmem_cache *cachep, 696 struct array_cache *ac) 697 { 698 struct kmem_cache_node *n = get_node(cachep, numa_mem_id()); 699 struct page *page; 700 unsigned long flags; 701 702 if (!pfmemalloc_active) 703 return; 704 705 spin_lock_irqsave(&n->list_lock, flags); 706 list_for_each_entry(page, &n->slabs_full, lru) 707 if (is_slab_pfmemalloc(page)) 708 goto out; 709 710 list_for_each_entry(page, &n->slabs_partial, lru) 711 if (is_slab_pfmemalloc(page)) 712 goto out; 713 714 list_for_each_entry(page, &n->slabs_free, lru) 715 if (is_slab_pfmemalloc(page)) 716 goto out; 717 718 pfmemalloc_active = false; 719 out: 720 spin_unlock_irqrestore(&n->list_lock, flags); 721 } 722 723 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, 724 gfp_t flags, bool force_refill) 725 { 726 int i; 727 void *objp = ac->entry[--ac->avail]; 728 729 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ 730 if (unlikely(is_obj_pfmemalloc(objp))) { 731 struct kmem_cache_node *n; 732 733 if (gfp_pfmemalloc_allowed(flags)) { 734 clear_obj_pfmemalloc(&objp); 735 return objp; 736 } 737 738 /* The caller cannot use PFMEMALLOC objects, find another one */ 739 for (i = 0; i < ac->avail; i++) { 740 /* If a !PFMEMALLOC object is found, swap them */ 741 if (!is_obj_pfmemalloc(ac->entry[i])) { 742 objp = ac->entry[i]; 743 ac->entry[i] = ac->entry[ac->avail]; 744 ac->entry[ac->avail] = objp; 745 return objp; 746 } 747 } 748 749 /* 750 * If there are empty slabs on the slabs_free list and we are 751 * being forced to refill the cache, mark this one !pfmemalloc. 752 */ 753 n = get_node(cachep, numa_mem_id()); 754 if (!list_empty(&n->slabs_free) && force_refill) { 755 struct page *page = virt_to_head_page(objp); 756 ClearPageSlabPfmemalloc(page); 757 clear_obj_pfmemalloc(&objp); 758 recheck_pfmemalloc_active(cachep, ac); 759 return objp; 760 } 761 762 /* No !PFMEMALLOC objects available */ 763 ac->avail++; 764 objp = NULL; 765 } 766 767 return objp; 768 } 769 770 static inline void *ac_get_obj(struct kmem_cache *cachep, 771 struct array_cache *ac, gfp_t flags, bool force_refill) 772 { 773 void *objp; 774 775 if (unlikely(sk_memalloc_socks())) 776 objp = __ac_get_obj(cachep, ac, flags, force_refill); 777 else 778 objp = ac->entry[--ac->avail]; 779 780 return objp; 781 } 782 783 static noinline void *__ac_put_obj(struct kmem_cache *cachep, 784 struct array_cache *ac, void *objp) 785 { 786 if (unlikely(pfmemalloc_active)) { 787 /* Some pfmemalloc slabs exist, check if this is one */ 788 struct page *page = virt_to_head_page(objp); 789 if (PageSlabPfmemalloc(page)) 790 set_obj_pfmemalloc(&objp); 791 } 792 793 return objp; 794 } 795 796 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, 797 void *objp) 798 { 799 if (unlikely(sk_memalloc_socks())) 800 objp = __ac_put_obj(cachep, ac, objp); 801 802 ac->entry[ac->avail++] = objp; 803 } 804 805 /* 806 * Transfer objects in one arraycache to another. 807 * Locking must be handled by the caller. 808 * 809 * Return the number of entries transferred. 810 */ 811 static int transfer_objects(struct array_cache *to, 812 struct array_cache *from, unsigned int max) 813 { 814 /* Figure out how many entries to transfer */ 815 int nr = min3(from->avail, max, to->limit - to->avail); 816 817 if (!nr) 818 return 0; 819 820 memcpy(to->entry + to->avail, from->entry + from->avail -nr, 821 sizeof(void *) *nr); 822 823 from->avail -= nr; 824 to->avail += nr; 825 return nr; 826 } 827 828 #ifndef CONFIG_NUMA 829 830 #define drain_alien_cache(cachep, alien) do { } while (0) 831 #define reap_alien(cachep, n) do { } while (0) 832 833 static inline struct alien_cache **alloc_alien_cache(int node, 834 int limit, gfp_t gfp) 835 { 836 return (struct alien_cache **)BAD_ALIEN_MAGIC; 837 } 838 839 static inline void free_alien_cache(struct alien_cache **ac_ptr) 840 { 841 } 842 843 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 844 { 845 return 0; 846 } 847 848 static inline void *alternate_node_alloc(struct kmem_cache *cachep, 849 gfp_t flags) 850 { 851 return NULL; 852 } 853 854 static inline void *____cache_alloc_node(struct kmem_cache *cachep, 855 gfp_t flags, int nodeid) 856 { 857 return NULL; 858 } 859 860 #else /* CONFIG_NUMA */ 861 862 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); 863 static void *alternate_node_alloc(struct kmem_cache *, gfp_t); 864 865 static struct alien_cache *__alloc_alien_cache(int node, int entries, 866 int batch, gfp_t gfp) 867 { 868 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); 869 struct alien_cache *alc = NULL; 870 871 alc = kmalloc_node(memsize, gfp, node); 872 init_arraycache(&alc->ac, entries, batch); 873 spin_lock_init(&alc->lock); 874 return alc; 875 } 876 877 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) 878 { 879 struct alien_cache **alc_ptr; 880 size_t memsize = sizeof(void *) * nr_node_ids; 881 int i; 882 883 if (limit > 1) 884 limit = 12; 885 alc_ptr = kzalloc_node(memsize, gfp, node); 886 if (!alc_ptr) 887 return NULL; 888 889 for_each_node(i) { 890 if (i == node || !node_online(i)) 891 continue; 892 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); 893 if (!alc_ptr[i]) { 894 for (i--; i >= 0; i--) 895 kfree(alc_ptr[i]); 896 kfree(alc_ptr); 897 return NULL; 898 } 899 } 900 return alc_ptr; 901 } 902 903 static void free_alien_cache(struct alien_cache **alc_ptr) 904 { 905 int i; 906 907 if (!alc_ptr) 908 return; 909 for_each_node(i) 910 kfree(alc_ptr[i]); 911 kfree(alc_ptr); 912 } 913 914 static void __drain_alien_cache(struct kmem_cache *cachep, 915 struct array_cache *ac, int node, 916 struct list_head *list) 917 { 918 struct kmem_cache_node *n = get_node(cachep, node); 919 920 if (ac->avail) { 921 spin_lock(&n->list_lock); 922 /* 923 * Stuff objects into the remote nodes shared array first. 924 * That way we could avoid the overhead of putting the objects 925 * into the free lists and getting them back later. 926 */ 927 if (n->shared) 928 transfer_objects(n->shared, ac, ac->limit); 929 930 free_block(cachep, ac->entry, ac->avail, node, list); 931 ac->avail = 0; 932 spin_unlock(&n->list_lock); 933 } 934 } 935 936 /* 937 * Called from cache_reap() to regularly drain alien caches round robin. 938 */ 939 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) 940 { 941 int node = __this_cpu_read(slab_reap_node); 942 943 if (n->alien) { 944 struct alien_cache *alc = n->alien[node]; 945 struct array_cache *ac; 946 947 if (alc) { 948 ac = &alc->ac; 949 if (ac->avail && spin_trylock_irq(&alc->lock)) { 950 LIST_HEAD(list); 951 952 __drain_alien_cache(cachep, ac, node, &list); 953 spin_unlock_irq(&alc->lock); 954 slabs_destroy(cachep, &list); 955 } 956 } 957 } 958 } 959 960 static void drain_alien_cache(struct kmem_cache *cachep, 961 struct alien_cache **alien) 962 { 963 int i = 0; 964 struct alien_cache *alc; 965 struct array_cache *ac; 966 unsigned long flags; 967 968 for_each_online_node(i) { 969 alc = alien[i]; 970 if (alc) { 971 LIST_HEAD(list); 972 973 ac = &alc->ac; 974 spin_lock_irqsave(&alc->lock, flags); 975 __drain_alien_cache(cachep, ac, i, &list); 976 spin_unlock_irqrestore(&alc->lock, flags); 977 slabs_destroy(cachep, &list); 978 } 979 } 980 } 981 982 static int __cache_free_alien(struct kmem_cache *cachep, void *objp, 983 int node, int page_node) 984 { 985 struct kmem_cache_node *n; 986 struct alien_cache *alien = NULL; 987 struct array_cache *ac; 988 LIST_HEAD(list); 989 990 n = get_node(cachep, node); 991 STATS_INC_NODEFREES(cachep); 992 if (n->alien && n->alien[page_node]) { 993 alien = n->alien[page_node]; 994 ac = &alien->ac; 995 spin_lock(&alien->lock); 996 if (unlikely(ac->avail == ac->limit)) { 997 STATS_INC_ACOVERFLOW(cachep); 998 __drain_alien_cache(cachep, ac, page_node, &list); 999 } 1000 ac_put_obj(cachep, ac, objp); 1001 spin_unlock(&alien->lock); 1002 slabs_destroy(cachep, &list); 1003 } else { 1004 n = get_node(cachep, page_node); 1005 spin_lock(&n->list_lock); 1006 free_block(cachep, &objp, 1, page_node, &list); 1007 spin_unlock(&n->list_lock); 1008 slabs_destroy(cachep, &list); 1009 } 1010 return 1; 1011 } 1012 1013 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) 1014 { 1015 int page_node = page_to_nid(virt_to_page(objp)); 1016 int node = numa_mem_id(); 1017 /* 1018 * Make sure we are not freeing a object from another node to the array 1019 * cache on this cpu. 1020 */ 1021 if (likely(node == page_node)) 1022 return 0; 1023 1024 return __cache_free_alien(cachep, objp, node, page_node); 1025 } 1026 #endif 1027 1028 /* 1029 * Allocates and initializes node for a node on each slab cache, used for 1030 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node 1031 * will be allocated off-node since memory is not yet online for the new node. 1032 * When hotplugging memory or a cpu, existing node are not replaced if 1033 * already in use. 1034 * 1035 * Must hold slab_mutex. 1036 */ 1037 static int init_cache_node_node(int node) 1038 { 1039 struct kmem_cache *cachep; 1040 struct kmem_cache_node *n; 1041 const size_t memsize = sizeof(struct kmem_cache_node); 1042 1043 list_for_each_entry(cachep, &slab_caches, list) { 1044 /* 1045 * Set up the kmem_cache_node for cpu before we can 1046 * begin anything. Make sure some other cpu on this 1047 * node has not already allocated this 1048 */ 1049 n = get_node(cachep, node); 1050 if (!n) { 1051 n = kmalloc_node(memsize, GFP_KERNEL, node); 1052 if (!n) 1053 return -ENOMEM; 1054 kmem_cache_node_init(n); 1055 n->next_reap = jiffies + REAPTIMEOUT_NODE + 1056 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1057 1058 /* 1059 * The kmem_cache_nodes don't come and go as CPUs 1060 * come and go. slab_mutex is sufficient 1061 * protection here. 1062 */ 1063 cachep->node[node] = n; 1064 } 1065 1066 spin_lock_irq(&n->list_lock); 1067 n->free_limit = 1068 (1 + nr_cpus_node(node)) * 1069 cachep->batchcount + cachep->num; 1070 spin_unlock_irq(&n->list_lock); 1071 } 1072 return 0; 1073 } 1074 1075 static inline int slabs_tofree(struct kmem_cache *cachep, 1076 struct kmem_cache_node *n) 1077 { 1078 return (n->free_objects + cachep->num - 1) / cachep->num; 1079 } 1080 1081 static void cpuup_canceled(long cpu) 1082 { 1083 struct kmem_cache *cachep; 1084 struct kmem_cache_node *n = NULL; 1085 int node = cpu_to_mem(cpu); 1086 const struct cpumask *mask = cpumask_of_node(node); 1087 1088 list_for_each_entry(cachep, &slab_caches, list) { 1089 struct array_cache *nc; 1090 struct array_cache *shared; 1091 struct alien_cache **alien; 1092 LIST_HEAD(list); 1093 1094 n = get_node(cachep, node); 1095 if (!n) 1096 continue; 1097 1098 spin_lock_irq(&n->list_lock); 1099 1100 /* Free limit for this kmem_cache_node */ 1101 n->free_limit -= cachep->batchcount; 1102 1103 /* cpu is dead; no one can alloc from it. */ 1104 nc = per_cpu_ptr(cachep->cpu_cache, cpu); 1105 if (nc) { 1106 free_block(cachep, nc->entry, nc->avail, node, &list); 1107 nc->avail = 0; 1108 } 1109 1110 if (!cpumask_empty(mask)) { 1111 spin_unlock_irq(&n->list_lock); 1112 goto free_slab; 1113 } 1114 1115 shared = n->shared; 1116 if (shared) { 1117 free_block(cachep, shared->entry, 1118 shared->avail, node, &list); 1119 n->shared = NULL; 1120 } 1121 1122 alien = n->alien; 1123 n->alien = NULL; 1124 1125 spin_unlock_irq(&n->list_lock); 1126 1127 kfree(shared); 1128 if (alien) { 1129 drain_alien_cache(cachep, alien); 1130 free_alien_cache(alien); 1131 } 1132 1133 free_slab: 1134 slabs_destroy(cachep, &list); 1135 } 1136 /* 1137 * In the previous loop, all the objects were freed to 1138 * the respective cache's slabs, now we can go ahead and 1139 * shrink each nodelist to its limit. 1140 */ 1141 list_for_each_entry(cachep, &slab_caches, list) { 1142 n = get_node(cachep, node); 1143 if (!n) 1144 continue; 1145 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 1146 } 1147 } 1148 1149 static int cpuup_prepare(long cpu) 1150 { 1151 struct kmem_cache *cachep; 1152 struct kmem_cache_node *n = NULL; 1153 int node = cpu_to_mem(cpu); 1154 int err; 1155 1156 /* 1157 * We need to do this right in the beginning since 1158 * alloc_arraycache's are going to use this list. 1159 * kmalloc_node allows us to add the slab to the right 1160 * kmem_cache_node and not this cpu's kmem_cache_node 1161 */ 1162 err = init_cache_node_node(node); 1163 if (err < 0) 1164 goto bad; 1165 1166 /* 1167 * Now we can go ahead with allocating the shared arrays and 1168 * array caches 1169 */ 1170 list_for_each_entry(cachep, &slab_caches, list) { 1171 struct array_cache *shared = NULL; 1172 struct alien_cache **alien = NULL; 1173 1174 if (cachep->shared) { 1175 shared = alloc_arraycache(node, 1176 cachep->shared * cachep->batchcount, 1177 0xbaadf00d, GFP_KERNEL); 1178 if (!shared) 1179 goto bad; 1180 } 1181 if (use_alien_caches) { 1182 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); 1183 if (!alien) { 1184 kfree(shared); 1185 goto bad; 1186 } 1187 } 1188 n = get_node(cachep, node); 1189 BUG_ON(!n); 1190 1191 spin_lock_irq(&n->list_lock); 1192 if (!n->shared) { 1193 /* 1194 * We are serialised from CPU_DEAD or 1195 * CPU_UP_CANCELLED by the cpucontrol lock 1196 */ 1197 n->shared = shared; 1198 shared = NULL; 1199 } 1200 #ifdef CONFIG_NUMA 1201 if (!n->alien) { 1202 n->alien = alien; 1203 alien = NULL; 1204 } 1205 #endif 1206 spin_unlock_irq(&n->list_lock); 1207 kfree(shared); 1208 free_alien_cache(alien); 1209 } 1210 1211 return 0; 1212 bad: 1213 cpuup_canceled(cpu); 1214 return -ENOMEM; 1215 } 1216 1217 static int cpuup_callback(struct notifier_block *nfb, 1218 unsigned long action, void *hcpu) 1219 { 1220 long cpu = (long)hcpu; 1221 int err = 0; 1222 1223 switch (action) { 1224 case CPU_UP_PREPARE: 1225 case CPU_UP_PREPARE_FROZEN: 1226 mutex_lock(&slab_mutex); 1227 err = cpuup_prepare(cpu); 1228 mutex_unlock(&slab_mutex); 1229 break; 1230 case CPU_ONLINE: 1231 case CPU_ONLINE_FROZEN: 1232 start_cpu_timer(cpu); 1233 break; 1234 #ifdef CONFIG_HOTPLUG_CPU 1235 case CPU_DOWN_PREPARE: 1236 case CPU_DOWN_PREPARE_FROZEN: 1237 /* 1238 * Shutdown cache reaper. Note that the slab_mutex is 1239 * held so that if cache_reap() is invoked it cannot do 1240 * anything expensive but will only modify reap_work 1241 * and reschedule the timer. 1242 */ 1243 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); 1244 /* Now the cache_reaper is guaranteed to be not running. */ 1245 per_cpu(slab_reap_work, cpu).work.func = NULL; 1246 break; 1247 case CPU_DOWN_FAILED: 1248 case CPU_DOWN_FAILED_FROZEN: 1249 start_cpu_timer(cpu); 1250 break; 1251 case CPU_DEAD: 1252 case CPU_DEAD_FROZEN: 1253 /* 1254 * Even if all the cpus of a node are down, we don't free the 1255 * kmem_cache_node of any cache. This to avoid a race between 1256 * cpu_down, and a kmalloc allocation from another cpu for 1257 * memory from the node of the cpu going down. The node 1258 * structure is usually allocated from kmem_cache_create() and 1259 * gets destroyed at kmem_cache_destroy(). 1260 */ 1261 /* fall through */ 1262 #endif 1263 case CPU_UP_CANCELED: 1264 case CPU_UP_CANCELED_FROZEN: 1265 mutex_lock(&slab_mutex); 1266 cpuup_canceled(cpu); 1267 mutex_unlock(&slab_mutex); 1268 break; 1269 } 1270 return notifier_from_errno(err); 1271 } 1272 1273 static struct notifier_block cpucache_notifier = { 1274 &cpuup_callback, NULL, 0 1275 }; 1276 1277 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 1278 /* 1279 * Drains freelist for a node on each slab cache, used for memory hot-remove. 1280 * Returns -EBUSY if all objects cannot be drained so that the node is not 1281 * removed. 1282 * 1283 * Must hold slab_mutex. 1284 */ 1285 static int __meminit drain_cache_node_node(int node) 1286 { 1287 struct kmem_cache *cachep; 1288 int ret = 0; 1289 1290 list_for_each_entry(cachep, &slab_caches, list) { 1291 struct kmem_cache_node *n; 1292 1293 n = get_node(cachep, node); 1294 if (!n) 1295 continue; 1296 1297 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 1298 1299 if (!list_empty(&n->slabs_full) || 1300 !list_empty(&n->slabs_partial)) { 1301 ret = -EBUSY; 1302 break; 1303 } 1304 } 1305 return ret; 1306 } 1307 1308 static int __meminit slab_memory_callback(struct notifier_block *self, 1309 unsigned long action, void *arg) 1310 { 1311 struct memory_notify *mnb = arg; 1312 int ret = 0; 1313 int nid; 1314 1315 nid = mnb->status_change_nid; 1316 if (nid < 0) 1317 goto out; 1318 1319 switch (action) { 1320 case MEM_GOING_ONLINE: 1321 mutex_lock(&slab_mutex); 1322 ret = init_cache_node_node(nid); 1323 mutex_unlock(&slab_mutex); 1324 break; 1325 case MEM_GOING_OFFLINE: 1326 mutex_lock(&slab_mutex); 1327 ret = drain_cache_node_node(nid); 1328 mutex_unlock(&slab_mutex); 1329 break; 1330 case MEM_ONLINE: 1331 case MEM_OFFLINE: 1332 case MEM_CANCEL_ONLINE: 1333 case MEM_CANCEL_OFFLINE: 1334 break; 1335 } 1336 out: 1337 return notifier_from_errno(ret); 1338 } 1339 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ 1340 1341 /* 1342 * swap the static kmem_cache_node with kmalloced memory 1343 */ 1344 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, 1345 int nodeid) 1346 { 1347 struct kmem_cache_node *ptr; 1348 1349 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); 1350 BUG_ON(!ptr); 1351 1352 memcpy(ptr, list, sizeof(struct kmem_cache_node)); 1353 /* 1354 * Do not assume that spinlocks can be initialized via memcpy: 1355 */ 1356 spin_lock_init(&ptr->list_lock); 1357 1358 MAKE_ALL_LISTS(cachep, ptr, nodeid); 1359 cachep->node[nodeid] = ptr; 1360 } 1361 1362 /* 1363 * For setting up all the kmem_cache_node for cache whose buffer_size is same as 1364 * size of kmem_cache_node. 1365 */ 1366 static void __init set_up_node(struct kmem_cache *cachep, int index) 1367 { 1368 int node; 1369 1370 for_each_online_node(node) { 1371 cachep->node[node] = &init_kmem_cache_node[index + node]; 1372 cachep->node[node]->next_reap = jiffies + 1373 REAPTIMEOUT_NODE + 1374 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 1375 } 1376 } 1377 1378 /* 1379 * Initialisation. Called after the page allocator have been initialised and 1380 * before smp_init(). 1381 */ 1382 void __init kmem_cache_init(void) 1383 { 1384 int i; 1385 1386 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < 1387 sizeof(struct rcu_head)); 1388 kmem_cache = &kmem_cache_boot; 1389 1390 if (num_possible_nodes() == 1) 1391 use_alien_caches = 0; 1392 1393 for (i = 0; i < NUM_INIT_LISTS; i++) 1394 kmem_cache_node_init(&init_kmem_cache_node[i]); 1395 1396 /* 1397 * Fragmentation resistance on low memory - only use bigger 1398 * page orders on machines with more than 32MB of memory if 1399 * not overridden on the command line. 1400 */ 1401 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) 1402 slab_max_order = SLAB_MAX_ORDER_HI; 1403 1404 /* Bootstrap is tricky, because several objects are allocated 1405 * from caches that do not exist yet: 1406 * 1) initialize the kmem_cache cache: it contains the struct 1407 * kmem_cache structures of all caches, except kmem_cache itself: 1408 * kmem_cache is statically allocated. 1409 * Initially an __init data area is used for the head array and the 1410 * kmem_cache_node structures, it's replaced with a kmalloc allocated 1411 * array at the end of the bootstrap. 1412 * 2) Create the first kmalloc cache. 1413 * The struct kmem_cache for the new cache is allocated normally. 1414 * An __init data area is used for the head array. 1415 * 3) Create the remaining kmalloc caches, with minimally sized 1416 * head arrays. 1417 * 4) Replace the __init data head arrays for kmem_cache and the first 1418 * kmalloc cache with kmalloc allocated arrays. 1419 * 5) Replace the __init data for kmem_cache_node for kmem_cache and 1420 * the other cache's with kmalloc allocated memory. 1421 * 6) Resize the head arrays of the kmalloc caches to their final sizes. 1422 */ 1423 1424 /* 1) create the kmem_cache */ 1425 1426 /* 1427 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids 1428 */ 1429 create_boot_cache(kmem_cache, "kmem_cache", 1430 offsetof(struct kmem_cache, node) + 1431 nr_node_ids * sizeof(struct kmem_cache_node *), 1432 SLAB_HWCACHE_ALIGN); 1433 list_add(&kmem_cache->list, &slab_caches); 1434 slab_state = PARTIAL; 1435 1436 /* 1437 * Initialize the caches that provide memory for the kmem_cache_node 1438 * structures first. Without this, further allocations will bug. 1439 */ 1440 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node", 1441 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); 1442 slab_state = PARTIAL_NODE; 1443 1444 slab_early_init = 0; 1445 1446 /* 5) Replace the bootstrap kmem_cache_node */ 1447 { 1448 int nid; 1449 1450 for_each_online_node(nid) { 1451 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); 1452 1453 init_list(kmalloc_caches[INDEX_NODE], 1454 &init_kmem_cache_node[SIZE_NODE + nid], nid); 1455 } 1456 } 1457 1458 create_kmalloc_caches(ARCH_KMALLOC_FLAGS); 1459 } 1460 1461 void __init kmem_cache_init_late(void) 1462 { 1463 struct kmem_cache *cachep; 1464 1465 slab_state = UP; 1466 1467 /* 6) resize the head arrays to their final sizes */ 1468 mutex_lock(&slab_mutex); 1469 list_for_each_entry(cachep, &slab_caches, list) 1470 if (enable_cpucache(cachep, GFP_NOWAIT)) 1471 BUG(); 1472 mutex_unlock(&slab_mutex); 1473 1474 /* Done! */ 1475 slab_state = FULL; 1476 1477 /* 1478 * Register a cpu startup notifier callback that initializes 1479 * cpu_cache_get for all new cpus 1480 */ 1481 register_cpu_notifier(&cpucache_notifier); 1482 1483 #ifdef CONFIG_NUMA 1484 /* 1485 * Register a memory hotplug callback that initializes and frees 1486 * node. 1487 */ 1488 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 1489 #endif 1490 1491 /* 1492 * The reap timers are started later, with a module init call: That part 1493 * of the kernel is not yet operational. 1494 */ 1495 } 1496 1497 static int __init cpucache_init(void) 1498 { 1499 int cpu; 1500 1501 /* 1502 * Register the timers that return unneeded pages to the page allocator 1503 */ 1504 for_each_online_cpu(cpu) 1505 start_cpu_timer(cpu); 1506 1507 /* Done! */ 1508 slab_state = FULL; 1509 return 0; 1510 } 1511 __initcall(cpucache_init); 1512 1513 static noinline void 1514 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) 1515 { 1516 #if DEBUG 1517 struct kmem_cache_node *n; 1518 struct page *page; 1519 unsigned long flags; 1520 int node; 1521 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 1522 DEFAULT_RATELIMIT_BURST); 1523 1524 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) 1525 return; 1526 1527 printk(KERN_WARNING 1528 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1529 nodeid, gfpflags); 1530 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", 1531 cachep->name, cachep->size, cachep->gfporder); 1532 1533 for_each_kmem_cache_node(cachep, node, n) { 1534 unsigned long active_objs = 0, num_objs = 0, free_objects = 0; 1535 unsigned long active_slabs = 0, num_slabs = 0; 1536 1537 spin_lock_irqsave(&n->list_lock, flags); 1538 list_for_each_entry(page, &n->slabs_full, lru) { 1539 active_objs += cachep->num; 1540 active_slabs++; 1541 } 1542 list_for_each_entry(page, &n->slabs_partial, lru) { 1543 active_objs += page->active; 1544 active_slabs++; 1545 } 1546 list_for_each_entry(page, &n->slabs_free, lru) 1547 num_slabs++; 1548 1549 free_objects += n->free_objects; 1550 spin_unlock_irqrestore(&n->list_lock, flags); 1551 1552 num_slabs += active_slabs; 1553 num_objs = num_slabs * cachep->num; 1554 printk(KERN_WARNING 1555 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", 1556 node, active_slabs, num_slabs, active_objs, num_objs, 1557 free_objects); 1558 } 1559 #endif 1560 } 1561 1562 /* 1563 * Interface to system's page allocator. No need to hold the 1564 * kmem_cache_node ->list_lock. 1565 * 1566 * If we requested dmaable memory, we will get it. Even if we 1567 * did not request dmaable memory, we might get it, but that 1568 * would be relatively rare and ignorable. 1569 */ 1570 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, 1571 int nodeid) 1572 { 1573 struct page *page; 1574 int nr_pages; 1575 1576 flags |= cachep->allocflags; 1577 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1578 flags |= __GFP_RECLAIMABLE; 1579 1580 if (memcg_charge_slab(cachep, flags, cachep->gfporder)) 1581 return NULL; 1582 1583 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); 1584 if (!page) { 1585 memcg_uncharge_slab(cachep, cachep->gfporder); 1586 slab_out_of_memory(cachep, flags, nodeid); 1587 return NULL; 1588 } 1589 1590 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ 1591 if (unlikely(page->pfmemalloc)) 1592 pfmemalloc_active = true; 1593 1594 nr_pages = (1 << cachep->gfporder); 1595 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1596 add_zone_page_state(page_zone(page), 1597 NR_SLAB_RECLAIMABLE, nr_pages); 1598 else 1599 add_zone_page_state(page_zone(page), 1600 NR_SLAB_UNRECLAIMABLE, nr_pages); 1601 __SetPageSlab(page); 1602 if (page->pfmemalloc) 1603 SetPageSlabPfmemalloc(page); 1604 1605 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { 1606 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); 1607 1608 if (cachep->ctor) 1609 kmemcheck_mark_uninitialized_pages(page, nr_pages); 1610 else 1611 kmemcheck_mark_unallocated_pages(page, nr_pages); 1612 } 1613 1614 return page; 1615 } 1616 1617 /* 1618 * Interface to system's page release. 1619 */ 1620 static void kmem_freepages(struct kmem_cache *cachep, struct page *page) 1621 { 1622 const unsigned long nr_freed = (1 << cachep->gfporder); 1623 1624 kmemcheck_free_shadow(page, cachep->gfporder); 1625 1626 if (cachep->flags & SLAB_RECLAIM_ACCOUNT) 1627 sub_zone_page_state(page_zone(page), 1628 NR_SLAB_RECLAIMABLE, nr_freed); 1629 else 1630 sub_zone_page_state(page_zone(page), 1631 NR_SLAB_UNRECLAIMABLE, nr_freed); 1632 1633 BUG_ON(!PageSlab(page)); 1634 __ClearPageSlabPfmemalloc(page); 1635 __ClearPageSlab(page); 1636 page_mapcount_reset(page); 1637 page->mapping = NULL; 1638 1639 if (current->reclaim_state) 1640 current->reclaim_state->reclaimed_slab += nr_freed; 1641 __free_pages(page, cachep->gfporder); 1642 memcg_uncharge_slab(cachep, cachep->gfporder); 1643 } 1644 1645 static void kmem_rcu_free(struct rcu_head *head) 1646 { 1647 struct kmem_cache *cachep; 1648 struct page *page; 1649 1650 page = container_of(head, struct page, rcu_head); 1651 cachep = page->slab_cache; 1652 1653 kmem_freepages(cachep, page); 1654 } 1655 1656 #if DEBUG 1657 1658 #ifdef CONFIG_DEBUG_PAGEALLOC 1659 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, 1660 unsigned long caller) 1661 { 1662 int size = cachep->object_size; 1663 1664 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; 1665 1666 if (size < 5 * sizeof(unsigned long)) 1667 return; 1668 1669 *addr++ = 0x12345678; 1670 *addr++ = caller; 1671 *addr++ = smp_processor_id(); 1672 size -= 3 * sizeof(unsigned long); 1673 { 1674 unsigned long *sptr = &caller; 1675 unsigned long svalue; 1676 1677 while (!kstack_end(sptr)) { 1678 svalue = *sptr++; 1679 if (kernel_text_address(svalue)) { 1680 *addr++ = svalue; 1681 size -= sizeof(unsigned long); 1682 if (size <= sizeof(unsigned long)) 1683 break; 1684 } 1685 } 1686 1687 } 1688 *addr++ = 0x87654321; 1689 } 1690 #endif 1691 1692 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) 1693 { 1694 int size = cachep->object_size; 1695 addr = &((char *)addr)[obj_offset(cachep)]; 1696 1697 memset(addr, val, size); 1698 *(unsigned char *)(addr + size - 1) = POISON_END; 1699 } 1700 1701 static void dump_line(char *data, int offset, int limit) 1702 { 1703 int i; 1704 unsigned char error = 0; 1705 int bad_count = 0; 1706 1707 printk(KERN_ERR "%03x: ", offset); 1708 for (i = 0; i < limit; i++) { 1709 if (data[offset + i] != POISON_FREE) { 1710 error = data[offset + i]; 1711 bad_count++; 1712 } 1713 } 1714 print_hex_dump(KERN_CONT, "", 0, 16, 1, 1715 &data[offset], limit, 1); 1716 1717 if (bad_count == 1) { 1718 error ^= POISON_FREE; 1719 if (!(error & (error - 1))) { 1720 printk(KERN_ERR "Single bit error detected. Probably " 1721 "bad RAM.\n"); 1722 #ifdef CONFIG_X86 1723 printk(KERN_ERR "Run memtest86+ or a similar memory " 1724 "test tool.\n"); 1725 #else 1726 printk(KERN_ERR "Run a memory test tool.\n"); 1727 #endif 1728 } 1729 } 1730 } 1731 #endif 1732 1733 #if DEBUG 1734 1735 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) 1736 { 1737 int i, size; 1738 char *realobj; 1739 1740 if (cachep->flags & SLAB_RED_ZONE) { 1741 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", 1742 *dbg_redzone1(cachep, objp), 1743 *dbg_redzone2(cachep, objp)); 1744 } 1745 1746 if (cachep->flags & SLAB_STORE_USER) { 1747 printk(KERN_ERR "Last user: [<%p>](%pSR)\n", 1748 *dbg_userword(cachep, objp), 1749 *dbg_userword(cachep, objp)); 1750 } 1751 realobj = (char *)objp + obj_offset(cachep); 1752 size = cachep->object_size; 1753 for (i = 0; i < size && lines; i += 16, lines--) { 1754 int limit; 1755 limit = 16; 1756 if (i + limit > size) 1757 limit = size - i; 1758 dump_line(realobj, i, limit); 1759 } 1760 } 1761 1762 static void check_poison_obj(struct kmem_cache *cachep, void *objp) 1763 { 1764 char *realobj; 1765 int size, i; 1766 int lines = 0; 1767 1768 realobj = (char *)objp + obj_offset(cachep); 1769 size = cachep->object_size; 1770 1771 for (i = 0; i < size; i++) { 1772 char exp = POISON_FREE; 1773 if (i == size - 1) 1774 exp = POISON_END; 1775 if (realobj[i] != exp) { 1776 int limit; 1777 /* Mismatch ! */ 1778 /* Print header */ 1779 if (lines == 0) { 1780 printk(KERN_ERR 1781 "Slab corruption (%s): %s start=%p, len=%d\n", 1782 print_tainted(), cachep->name, realobj, size); 1783 print_objinfo(cachep, objp, 0); 1784 } 1785 /* Hexdump the affected line */ 1786 i = (i / 16) * 16; 1787 limit = 16; 1788 if (i + limit > size) 1789 limit = size - i; 1790 dump_line(realobj, i, limit); 1791 i += 16; 1792 lines++; 1793 /* Limit to 5 lines */ 1794 if (lines > 5) 1795 break; 1796 } 1797 } 1798 if (lines != 0) { 1799 /* Print some data about the neighboring objects, if they 1800 * exist: 1801 */ 1802 struct page *page = virt_to_head_page(objp); 1803 unsigned int objnr; 1804 1805 objnr = obj_to_index(cachep, page, objp); 1806 if (objnr) { 1807 objp = index_to_obj(cachep, page, objnr - 1); 1808 realobj = (char *)objp + obj_offset(cachep); 1809 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1810 realobj, size); 1811 print_objinfo(cachep, objp, 2); 1812 } 1813 if (objnr + 1 < cachep->num) { 1814 objp = index_to_obj(cachep, page, objnr + 1); 1815 realobj = (char *)objp + obj_offset(cachep); 1816 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1817 realobj, size); 1818 print_objinfo(cachep, objp, 2); 1819 } 1820 } 1821 } 1822 #endif 1823 1824 #if DEBUG 1825 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1826 struct page *page) 1827 { 1828 int i; 1829 for (i = 0; i < cachep->num; i++) { 1830 void *objp = index_to_obj(cachep, page, i); 1831 1832 if (cachep->flags & SLAB_POISON) { 1833 #ifdef CONFIG_DEBUG_PAGEALLOC 1834 if (cachep->size % PAGE_SIZE == 0 && 1835 OFF_SLAB(cachep)) 1836 kernel_map_pages(virt_to_page(objp), 1837 cachep->size / PAGE_SIZE, 1); 1838 else 1839 check_poison_obj(cachep, objp); 1840 #else 1841 check_poison_obj(cachep, objp); 1842 #endif 1843 } 1844 if (cachep->flags & SLAB_RED_ZONE) { 1845 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 1846 slab_error(cachep, "start of a freed object " 1847 "was overwritten"); 1848 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 1849 slab_error(cachep, "end of a freed object " 1850 "was overwritten"); 1851 } 1852 } 1853 } 1854 #else 1855 static void slab_destroy_debugcheck(struct kmem_cache *cachep, 1856 struct page *page) 1857 { 1858 } 1859 #endif 1860 1861 /** 1862 * slab_destroy - destroy and release all objects in a slab 1863 * @cachep: cache pointer being destroyed 1864 * @page: page pointer being destroyed 1865 * 1866 * Destroy all the objs in a slab page, and release the mem back to the system. 1867 * Before calling the slab page must have been unlinked from the cache. The 1868 * kmem_cache_node ->list_lock is not held/needed. 1869 */ 1870 static void slab_destroy(struct kmem_cache *cachep, struct page *page) 1871 { 1872 void *freelist; 1873 1874 freelist = page->freelist; 1875 slab_destroy_debugcheck(cachep, page); 1876 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { 1877 struct rcu_head *head; 1878 1879 /* 1880 * RCU free overloads the RCU head over the LRU. 1881 * slab_page has been overloeaded over the LRU, 1882 * however it is not used from now on so that 1883 * we can use it safely. 1884 */ 1885 head = (void *)&page->rcu_head; 1886 call_rcu(head, kmem_rcu_free); 1887 1888 } else { 1889 kmem_freepages(cachep, page); 1890 } 1891 1892 /* 1893 * From now on, we don't use freelist 1894 * although actual page can be freed in rcu context 1895 */ 1896 if (OFF_SLAB(cachep)) 1897 kmem_cache_free(cachep->freelist_cache, freelist); 1898 } 1899 1900 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) 1901 { 1902 struct page *page, *n; 1903 1904 list_for_each_entry_safe(page, n, list, lru) { 1905 list_del(&page->lru); 1906 slab_destroy(cachep, page); 1907 } 1908 } 1909 1910 /** 1911 * calculate_slab_order - calculate size (page order) of slabs 1912 * @cachep: pointer to the cache that is being created 1913 * @size: size of objects to be created in this cache. 1914 * @align: required alignment for the objects. 1915 * @flags: slab allocation flags 1916 * 1917 * Also calculates the number of objects per slab. 1918 * 1919 * This could be made much more intelligent. For now, try to avoid using 1920 * high order pages for slabs. When the gfp() functions are more friendly 1921 * towards high-order requests, this should be changed. 1922 */ 1923 static size_t calculate_slab_order(struct kmem_cache *cachep, 1924 size_t size, size_t align, unsigned long flags) 1925 { 1926 unsigned long offslab_limit; 1927 size_t left_over = 0; 1928 int gfporder; 1929 1930 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { 1931 unsigned int num; 1932 size_t remainder; 1933 1934 cache_estimate(gfporder, size, align, flags, &remainder, &num); 1935 if (!num) 1936 continue; 1937 1938 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ 1939 if (num > SLAB_OBJ_MAX_NUM) 1940 break; 1941 1942 if (flags & CFLGS_OFF_SLAB) { 1943 size_t freelist_size_per_obj = sizeof(freelist_idx_t); 1944 /* 1945 * Max number of objs-per-slab for caches which 1946 * use off-slab slabs. Needed to avoid a possible 1947 * looping condition in cache_grow(). 1948 */ 1949 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) 1950 freelist_size_per_obj += sizeof(char); 1951 offslab_limit = size; 1952 offslab_limit /= freelist_size_per_obj; 1953 1954 if (num > offslab_limit) 1955 break; 1956 } 1957 1958 /* Found something acceptable - save it away */ 1959 cachep->num = num; 1960 cachep->gfporder = gfporder; 1961 left_over = remainder; 1962 1963 /* 1964 * A VFS-reclaimable slab tends to have most allocations 1965 * as GFP_NOFS and we really don't want to have to be allocating 1966 * higher-order pages when we are unable to shrink dcache. 1967 */ 1968 if (flags & SLAB_RECLAIM_ACCOUNT) 1969 break; 1970 1971 /* 1972 * Large number of objects is good, but very large slabs are 1973 * currently bad for the gfp()s. 1974 */ 1975 if (gfporder >= slab_max_order) 1976 break; 1977 1978 /* 1979 * Acceptable internal fragmentation? 1980 */ 1981 if (left_over * 8 <= (PAGE_SIZE << gfporder)) 1982 break; 1983 } 1984 return left_over; 1985 } 1986 1987 static struct array_cache __percpu *alloc_kmem_cache_cpus( 1988 struct kmem_cache *cachep, int entries, int batchcount) 1989 { 1990 int cpu; 1991 size_t size; 1992 struct array_cache __percpu *cpu_cache; 1993 1994 size = sizeof(void *) * entries + sizeof(struct array_cache); 1995 cpu_cache = __alloc_percpu(size, sizeof(void *)); 1996 1997 if (!cpu_cache) 1998 return NULL; 1999 2000 for_each_possible_cpu(cpu) { 2001 init_arraycache(per_cpu_ptr(cpu_cache, cpu), 2002 entries, batchcount); 2003 } 2004 2005 return cpu_cache; 2006 } 2007 2008 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) 2009 { 2010 if (slab_state >= FULL) 2011 return enable_cpucache(cachep, gfp); 2012 2013 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); 2014 if (!cachep->cpu_cache) 2015 return 1; 2016 2017 if (slab_state == DOWN) { 2018 /* Creation of first cache (kmem_cache). */ 2019 set_up_node(kmem_cache, CACHE_CACHE); 2020 } else if (slab_state == PARTIAL) { 2021 /* For kmem_cache_node */ 2022 set_up_node(cachep, SIZE_NODE); 2023 } else { 2024 int node; 2025 2026 for_each_online_node(node) { 2027 cachep->node[node] = kmalloc_node( 2028 sizeof(struct kmem_cache_node), gfp, node); 2029 BUG_ON(!cachep->node[node]); 2030 kmem_cache_node_init(cachep->node[node]); 2031 } 2032 } 2033 2034 cachep->node[numa_mem_id()]->next_reap = 2035 jiffies + REAPTIMEOUT_NODE + 2036 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 2037 2038 cpu_cache_get(cachep)->avail = 0; 2039 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; 2040 cpu_cache_get(cachep)->batchcount = 1; 2041 cpu_cache_get(cachep)->touched = 0; 2042 cachep->batchcount = 1; 2043 cachep->limit = BOOT_CPUCACHE_ENTRIES; 2044 return 0; 2045 } 2046 2047 unsigned long kmem_cache_flags(unsigned long object_size, 2048 unsigned long flags, const char *name, 2049 void (*ctor)(void *)) 2050 { 2051 return flags; 2052 } 2053 2054 struct kmem_cache * 2055 __kmem_cache_alias(const char *name, size_t size, size_t align, 2056 unsigned long flags, void (*ctor)(void *)) 2057 { 2058 struct kmem_cache *cachep; 2059 2060 cachep = find_mergeable(size, align, flags, name, ctor); 2061 if (cachep) { 2062 cachep->refcount++; 2063 2064 /* 2065 * Adjust the object sizes so that we clear 2066 * the complete object on kzalloc. 2067 */ 2068 cachep->object_size = max_t(int, cachep->object_size, size); 2069 } 2070 return cachep; 2071 } 2072 2073 /** 2074 * __kmem_cache_create - Create a cache. 2075 * @cachep: cache management descriptor 2076 * @flags: SLAB flags 2077 * 2078 * Returns a ptr to the cache on success, NULL on failure. 2079 * Cannot be called within a int, but can be interrupted. 2080 * The @ctor is run when new pages are allocated by the cache. 2081 * 2082 * The flags are 2083 * 2084 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 2085 * to catch references to uninitialised memory. 2086 * 2087 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 2088 * for buffer overruns. 2089 * 2090 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 2091 * cacheline. This can be beneficial if you're counting cycles as closely 2092 * as davem. 2093 */ 2094 int 2095 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) 2096 { 2097 size_t left_over, freelist_size; 2098 size_t ralign = BYTES_PER_WORD; 2099 gfp_t gfp; 2100 int err; 2101 size_t size = cachep->size; 2102 2103 #if DEBUG 2104 #if FORCED_DEBUG 2105 /* 2106 * Enable redzoning and last user accounting, except for caches with 2107 * large objects, if the increased size would increase the object size 2108 * above the next power of two: caches with object sizes just above a 2109 * power of two have a significant amount of internal fragmentation. 2110 */ 2111 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + 2112 2 * sizeof(unsigned long long))) 2113 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 2114 if (!(flags & SLAB_DESTROY_BY_RCU)) 2115 flags |= SLAB_POISON; 2116 #endif 2117 if (flags & SLAB_DESTROY_BY_RCU) 2118 BUG_ON(flags & SLAB_POISON); 2119 #endif 2120 2121 /* 2122 * Check that size is in terms of words. This is needed to avoid 2123 * unaligned accesses for some archs when redzoning is used, and makes 2124 * sure any on-slab bufctl's are also correctly aligned. 2125 */ 2126 if (size & (BYTES_PER_WORD - 1)) { 2127 size += (BYTES_PER_WORD - 1); 2128 size &= ~(BYTES_PER_WORD - 1); 2129 } 2130 2131 if (flags & SLAB_RED_ZONE) { 2132 ralign = REDZONE_ALIGN; 2133 /* If redzoning, ensure that the second redzone is suitably 2134 * aligned, by adjusting the object size accordingly. */ 2135 size += REDZONE_ALIGN - 1; 2136 size &= ~(REDZONE_ALIGN - 1); 2137 } 2138 2139 /* 3) caller mandated alignment */ 2140 if (ralign < cachep->align) { 2141 ralign = cachep->align; 2142 } 2143 /* disable debug if necessary */ 2144 if (ralign > __alignof__(unsigned long long)) 2145 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2146 /* 2147 * 4) Store it. 2148 */ 2149 cachep->align = ralign; 2150 2151 if (slab_is_available()) 2152 gfp = GFP_KERNEL; 2153 else 2154 gfp = GFP_NOWAIT; 2155 2156 #if DEBUG 2157 2158 /* 2159 * Both debugging options require word-alignment which is calculated 2160 * into align above. 2161 */ 2162 if (flags & SLAB_RED_ZONE) { 2163 /* add space for red zone words */ 2164 cachep->obj_offset += sizeof(unsigned long long); 2165 size += 2 * sizeof(unsigned long long); 2166 } 2167 if (flags & SLAB_STORE_USER) { 2168 /* user store requires one word storage behind the end of 2169 * the real object. But if the second red zone needs to be 2170 * aligned to 64 bits, we must allow that much space. 2171 */ 2172 if (flags & SLAB_RED_ZONE) 2173 size += REDZONE_ALIGN; 2174 else 2175 size += BYTES_PER_WORD; 2176 } 2177 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) 2178 if (size >= kmalloc_size(INDEX_NODE + 1) 2179 && cachep->object_size > cache_line_size() 2180 && ALIGN(size, cachep->align) < PAGE_SIZE) { 2181 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); 2182 size = PAGE_SIZE; 2183 } 2184 #endif 2185 #endif 2186 2187 /* 2188 * Determine if the slab management is 'on' or 'off' slab. 2189 * (bootstrapping cannot cope with offslab caches so don't do 2190 * it too early on. Always use on-slab management when 2191 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) 2192 */ 2193 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init && 2194 !(flags & SLAB_NOLEAKTRACE)) 2195 /* 2196 * Size is large, assume best to place the slab management obj 2197 * off-slab (should allow better packing of objs). 2198 */ 2199 flags |= CFLGS_OFF_SLAB; 2200 2201 size = ALIGN(size, cachep->align); 2202 /* 2203 * We should restrict the number of objects in a slab to implement 2204 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. 2205 */ 2206 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) 2207 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); 2208 2209 left_over = calculate_slab_order(cachep, size, cachep->align, flags); 2210 2211 if (!cachep->num) 2212 return -E2BIG; 2213 2214 freelist_size = calculate_freelist_size(cachep->num, cachep->align); 2215 2216 /* 2217 * If the slab has been placed off-slab, and we have enough space then 2218 * move it on-slab. This is at the expense of any extra colouring. 2219 */ 2220 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) { 2221 flags &= ~CFLGS_OFF_SLAB; 2222 left_over -= freelist_size; 2223 } 2224 2225 if (flags & CFLGS_OFF_SLAB) { 2226 /* really off slab. No need for manual alignment */ 2227 freelist_size = calculate_freelist_size(cachep->num, 0); 2228 2229 #ifdef CONFIG_PAGE_POISONING 2230 /* If we're going to use the generic kernel_map_pages() 2231 * poisoning, then it's going to smash the contents of 2232 * the redzone and userword anyhow, so switch them off. 2233 */ 2234 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) 2235 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2236 #endif 2237 } 2238 2239 cachep->colour_off = cache_line_size(); 2240 /* Offset must be a multiple of the alignment. */ 2241 if (cachep->colour_off < cachep->align) 2242 cachep->colour_off = cachep->align; 2243 cachep->colour = left_over / cachep->colour_off; 2244 cachep->freelist_size = freelist_size; 2245 cachep->flags = flags; 2246 cachep->allocflags = __GFP_COMP; 2247 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) 2248 cachep->allocflags |= GFP_DMA; 2249 cachep->size = size; 2250 cachep->reciprocal_buffer_size = reciprocal_value(size); 2251 2252 if (flags & CFLGS_OFF_SLAB) { 2253 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u); 2254 /* 2255 * This is a possibility for one of the kmalloc_{dma,}_caches. 2256 * But since we go off slab only for object size greater than 2257 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created 2258 * in ascending order,this should not happen at all. 2259 * But leave a BUG_ON for some lucky dude. 2260 */ 2261 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache)); 2262 } 2263 2264 err = setup_cpu_cache(cachep, gfp); 2265 if (err) { 2266 __kmem_cache_shutdown(cachep); 2267 return err; 2268 } 2269 2270 return 0; 2271 } 2272 2273 #if DEBUG 2274 static void check_irq_off(void) 2275 { 2276 BUG_ON(!irqs_disabled()); 2277 } 2278 2279 static void check_irq_on(void) 2280 { 2281 BUG_ON(irqs_disabled()); 2282 } 2283 2284 static void check_spinlock_acquired(struct kmem_cache *cachep) 2285 { 2286 #ifdef CONFIG_SMP 2287 check_irq_off(); 2288 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); 2289 #endif 2290 } 2291 2292 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) 2293 { 2294 #ifdef CONFIG_SMP 2295 check_irq_off(); 2296 assert_spin_locked(&get_node(cachep, node)->list_lock); 2297 #endif 2298 } 2299 2300 #else 2301 #define check_irq_off() do { } while(0) 2302 #define check_irq_on() do { } while(0) 2303 #define check_spinlock_acquired(x) do { } while(0) 2304 #define check_spinlock_acquired_node(x, y) do { } while(0) 2305 #endif 2306 2307 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 2308 struct array_cache *ac, 2309 int force, int node); 2310 2311 static void do_drain(void *arg) 2312 { 2313 struct kmem_cache *cachep = arg; 2314 struct array_cache *ac; 2315 int node = numa_mem_id(); 2316 struct kmem_cache_node *n; 2317 LIST_HEAD(list); 2318 2319 check_irq_off(); 2320 ac = cpu_cache_get(cachep); 2321 n = get_node(cachep, node); 2322 spin_lock(&n->list_lock); 2323 free_block(cachep, ac->entry, ac->avail, node, &list); 2324 spin_unlock(&n->list_lock); 2325 slabs_destroy(cachep, &list); 2326 ac->avail = 0; 2327 } 2328 2329 static void drain_cpu_caches(struct kmem_cache *cachep) 2330 { 2331 struct kmem_cache_node *n; 2332 int node; 2333 2334 on_each_cpu(do_drain, cachep, 1); 2335 check_irq_on(); 2336 for_each_kmem_cache_node(cachep, node, n) 2337 if (n->alien) 2338 drain_alien_cache(cachep, n->alien); 2339 2340 for_each_kmem_cache_node(cachep, node, n) 2341 drain_array(cachep, n, n->shared, 1, node); 2342 } 2343 2344 /* 2345 * Remove slabs from the list of free slabs. 2346 * Specify the number of slabs to drain in tofree. 2347 * 2348 * Returns the actual number of slabs released. 2349 */ 2350 static int drain_freelist(struct kmem_cache *cache, 2351 struct kmem_cache_node *n, int tofree) 2352 { 2353 struct list_head *p; 2354 int nr_freed; 2355 struct page *page; 2356 2357 nr_freed = 0; 2358 while (nr_freed < tofree && !list_empty(&n->slabs_free)) { 2359 2360 spin_lock_irq(&n->list_lock); 2361 p = n->slabs_free.prev; 2362 if (p == &n->slabs_free) { 2363 spin_unlock_irq(&n->list_lock); 2364 goto out; 2365 } 2366 2367 page = list_entry(p, struct page, lru); 2368 #if DEBUG 2369 BUG_ON(page->active); 2370 #endif 2371 list_del(&page->lru); 2372 /* 2373 * Safe to drop the lock. The slab is no longer linked 2374 * to the cache. 2375 */ 2376 n->free_objects -= cache->num; 2377 spin_unlock_irq(&n->list_lock); 2378 slab_destroy(cache, page); 2379 nr_freed++; 2380 } 2381 out: 2382 return nr_freed; 2383 } 2384 2385 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate) 2386 { 2387 int ret = 0; 2388 int node; 2389 struct kmem_cache_node *n; 2390 2391 drain_cpu_caches(cachep); 2392 2393 check_irq_on(); 2394 for_each_kmem_cache_node(cachep, node, n) { 2395 drain_freelist(cachep, n, slabs_tofree(cachep, n)); 2396 2397 ret += !list_empty(&n->slabs_full) || 2398 !list_empty(&n->slabs_partial); 2399 } 2400 return (ret ? 1 : 0); 2401 } 2402 2403 int __kmem_cache_shutdown(struct kmem_cache *cachep) 2404 { 2405 int i; 2406 struct kmem_cache_node *n; 2407 int rc = __kmem_cache_shrink(cachep, false); 2408 2409 if (rc) 2410 return rc; 2411 2412 free_percpu(cachep->cpu_cache); 2413 2414 /* NUMA: free the node structures */ 2415 for_each_kmem_cache_node(cachep, i, n) { 2416 kfree(n->shared); 2417 free_alien_cache(n->alien); 2418 kfree(n); 2419 cachep->node[i] = NULL; 2420 } 2421 return 0; 2422 } 2423 2424 /* 2425 * Get the memory for a slab management obj. 2426 * 2427 * For a slab cache when the slab descriptor is off-slab, the 2428 * slab descriptor can't come from the same cache which is being created, 2429 * Because if it is the case, that means we defer the creation of 2430 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. 2431 * And we eventually call down to __kmem_cache_create(), which 2432 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. 2433 * This is a "chicken-and-egg" problem. 2434 * 2435 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, 2436 * which are all initialized during kmem_cache_init(). 2437 */ 2438 static void *alloc_slabmgmt(struct kmem_cache *cachep, 2439 struct page *page, int colour_off, 2440 gfp_t local_flags, int nodeid) 2441 { 2442 void *freelist; 2443 void *addr = page_address(page); 2444 2445 if (OFF_SLAB(cachep)) { 2446 /* Slab management obj is off-slab. */ 2447 freelist = kmem_cache_alloc_node(cachep->freelist_cache, 2448 local_flags, nodeid); 2449 if (!freelist) 2450 return NULL; 2451 } else { 2452 freelist = addr + colour_off; 2453 colour_off += cachep->freelist_size; 2454 } 2455 page->active = 0; 2456 page->s_mem = addr + colour_off; 2457 return freelist; 2458 } 2459 2460 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) 2461 { 2462 return ((freelist_idx_t *)page->freelist)[idx]; 2463 } 2464 2465 static inline void set_free_obj(struct page *page, 2466 unsigned int idx, freelist_idx_t val) 2467 { 2468 ((freelist_idx_t *)(page->freelist))[idx] = val; 2469 } 2470 2471 static void cache_init_objs(struct kmem_cache *cachep, 2472 struct page *page) 2473 { 2474 int i; 2475 2476 for (i = 0; i < cachep->num; i++) { 2477 void *objp = index_to_obj(cachep, page, i); 2478 #if DEBUG 2479 /* need to poison the objs? */ 2480 if (cachep->flags & SLAB_POISON) 2481 poison_obj(cachep, objp, POISON_FREE); 2482 if (cachep->flags & SLAB_STORE_USER) 2483 *dbg_userword(cachep, objp) = NULL; 2484 2485 if (cachep->flags & SLAB_RED_ZONE) { 2486 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2487 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2488 } 2489 /* 2490 * Constructors are not allowed to allocate memory from the same 2491 * cache which they are a constructor for. Otherwise, deadlock. 2492 * They must also be threaded. 2493 */ 2494 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2495 cachep->ctor(objp + obj_offset(cachep)); 2496 2497 if (cachep->flags & SLAB_RED_ZONE) { 2498 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) 2499 slab_error(cachep, "constructor overwrote the" 2500 " end of an object"); 2501 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) 2502 slab_error(cachep, "constructor overwrote the" 2503 " start of an object"); 2504 } 2505 if ((cachep->size % PAGE_SIZE) == 0 && 2506 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) 2507 kernel_map_pages(virt_to_page(objp), 2508 cachep->size / PAGE_SIZE, 0); 2509 #else 2510 if (cachep->ctor) 2511 cachep->ctor(objp); 2512 #endif 2513 set_obj_status(page, i, OBJECT_FREE); 2514 set_free_obj(page, i, i); 2515 } 2516 } 2517 2518 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2519 { 2520 if (CONFIG_ZONE_DMA_FLAG) { 2521 if (flags & GFP_DMA) 2522 BUG_ON(!(cachep->allocflags & GFP_DMA)); 2523 else 2524 BUG_ON(cachep->allocflags & GFP_DMA); 2525 } 2526 } 2527 2528 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page, 2529 int nodeid) 2530 { 2531 void *objp; 2532 2533 objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); 2534 page->active++; 2535 #if DEBUG 2536 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); 2537 #endif 2538 2539 return objp; 2540 } 2541 2542 static void slab_put_obj(struct kmem_cache *cachep, struct page *page, 2543 void *objp, int nodeid) 2544 { 2545 unsigned int objnr = obj_to_index(cachep, page, objp); 2546 #if DEBUG 2547 unsigned int i; 2548 2549 /* Verify that the slab belongs to the intended node */ 2550 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); 2551 2552 /* Verify double free bug */ 2553 for (i = page->active; i < cachep->num; i++) { 2554 if (get_free_obj(page, i) == objnr) { 2555 printk(KERN_ERR "slab: double free detected in cache " 2556 "'%s', objp %p\n", cachep->name, objp); 2557 BUG(); 2558 } 2559 } 2560 #endif 2561 page->active--; 2562 set_free_obj(page, page->active, objnr); 2563 } 2564 2565 /* 2566 * Map pages beginning at addr to the given cache and slab. This is required 2567 * for the slab allocator to be able to lookup the cache and slab of a 2568 * virtual address for kfree, ksize, and slab debugging. 2569 */ 2570 static void slab_map_pages(struct kmem_cache *cache, struct page *page, 2571 void *freelist) 2572 { 2573 page->slab_cache = cache; 2574 page->freelist = freelist; 2575 } 2576 2577 /* 2578 * Grow (by 1) the number of slabs within a cache. This is called by 2579 * kmem_cache_alloc() when there are no active objs left in a cache. 2580 */ 2581 static int cache_grow(struct kmem_cache *cachep, 2582 gfp_t flags, int nodeid, struct page *page) 2583 { 2584 void *freelist; 2585 size_t offset; 2586 gfp_t local_flags; 2587 struct kmem_cache_node *n; 2588 2589 /* 2590 * Be lazy and only check for valid flags here, keeping it out of the 2591 * critical path in kmem_cache_alloc(). 2592 */ 2593 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 2594 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 2595 BUG(); 2596 } 2597 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 2598 2599 /* Take the node list lock to change the colour_next on this node */ 2600 check_irq_off(); 2601 n = get_node(cachep, nodeid); 2602 spin_lock(&n->list_lock); 2603 2604 /* Get colour for the slab, and cal the next value. */ 2605 offset = n->colour_next; 2606 n->colour_next++; 2607 if (n->colour_next >= cachep->colour) 2608 n->colour_next = 0; 2609 spin_unlock(&n->list_lock); 2610 2611 offset *= cachep->colour_off; 2612 2613 if (local_flags & __GFP_WAIT) 2614 local_irq_enable(); 2615 2616 /* 2617 * The test for missing atomic flag is performed here, rather than 2618 * the more obvious place, simply to reduce the critical path length 2619 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they 2620 * will eventually be caught here (where it matters). 2621 */ 2622 kmem_flagcheck(cachep, flags); 2623 2624 /* 2625 * Get mem for the objs. Attempt to allocate a physical page from 2626 * 'nodeid'. 2627 */ 2628 if (!page) 2629 page = kmem_getpages(cachep, local_flags, nodeid); 2630 if (!page) 2631 goto failed; 2632 2633 /* Get slab management. */ 2634 freelist = alloc_slabmgmt(cachep, page, offset, 2635 local_flags & ~GFP_CONSTRAINT_MASK, nodeid); 2636 if (!freelist) 2637 goto opps1; 2638 2639 slab_map_pages(cachep, page, freelist); 2640 2641 cache_init_objs(cachep, page); 2642 2643 if (local_flags & __GFP_WAIT) 2644 local_irq_disable(); 2645 check_irq_off(); 2646 spin_lock(&n->list_lock); 2647 2648 /* Make slab active. */ 2649 list_add_tail(&page->lru, &(n->slabs_free)); 2650 STATS_INC_GROWN(cachep); 2651 n->free_objects += cachep->num; 2652 spin_unlock(&n->list_lock); 2653 return 1; 2654 opps1: 2655 kmem_freepages(cachep, page); 2656 failed: 2657 if (local_flags & __GFP_WAIT) 2658 local_irq_disable(); 2659 return 0; 2660 } 2661 2662 #if DEBUG 2663 2664 /* 2665 * Perform extra freeing checks: 2666 * - detect bad pointers. 2667 * - POISON/RED_ZONE checking 2668 */ 2669 static void kfree_debugcheck(const void *objp) 2670 { 2671 if (!virt_addr_valid(objp)) { 2672 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", 2673 (unsigned long)objp); 2674 BUG(); 2675 } 2676 } 2677 2678 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) 2679 { 2680 unsigned long long redzone1, redzone2; 2681 2682 redzone1 = *dbg_redzone1(cache, obj); 2683 redzone2 = *dbg_redzone2(cache, obj); 2684 2685 /* 2686 * Redzone is ok. 2687 */ 2688 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) 2689 return; 2690 2691 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) 2692 slab_error(cache, "double free detected"); 2693 else 2694 slab_error(cache, "memory outside object was overwritten"); 2695 2696 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", 2697 obj, redzone1, redzone2); 2698 } 2699 2700 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, 2701 unsigned long caller) 2702 { 2703 unsigned int objnr; 2704 struct page *page; 2705 2706 BUG_ON(virt_to_cache(objp) != cachep); 2707 2708 objp -= obj_offset(cachep); 2709 kfree_debugcheck(objp); 2710 page = virt_to_head_page(objp); 2711 2712 if (cachep->flags & SLAB_RED_ZONE) { 2713 verify_redzone_free(cachep, objp); 2714 *dbg_redzone1(cachep, objp) = RED_INACTIVE; 2715 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2716 } 2717 if (cachep->flags & SLAB_STORE_USER) 2718 *dbg_userword(cachep, objp) = (void *)caller; 2719 2720 objnr = obj_to_index(cachep, page, objp); 2721 2722 BUG_ON(objnr >= cachep->num); 2723 BUG_ON(objp != index_to_obj(cachep, page, objnr)); 2724 2725 set_obj_status(page, objnr, OBJECT_FREE); 2726 if (cachep->flags & SLAB_POISON) { 2727 #ifdef CONFIG_DEBUG_PAGEALLOC 2728 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { 2729 store_stackinfo(cachep, objp, caller); 2730 kernel_map_pages(virt_to_page(objp), 2731 cachep->size / PAGE_SIZE, 0); 2732 } else { 2733 poison_obj(cachep, objp, POISON_FREE); 2734 } 2735 #else 2736 poison_obj(cachep, objp, POISON_FREE); 2737 #endif 2738 } 2739 return objp; 2740 } 2741 2742 #else 2743 #define kfree_debugcheck(x) do { } while(0) 2744 #define cache_free_debugcheck(x,objp,z) (objp) 2745 #endif 2746 2747 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, 2748 bool force_refill) 2749 { 2750 int batchcount; 2751 struct kmem_cache_node *n; 2752 struct array_cache *ac; 2753 int node; 2754 2755 check_irq_off(); 2756 node = numa_mem_id(); 2757 if (unlikely(force_refill)) 2758 goto force_grow; 2759 retry: 2760 ac = cpu_cache_get(cachep); 2761 batchcount = ac->batchcount; 2762 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2763 /* 2764 * If there was little recent activity on this cache, then 2765 * perform only a partial refill. Otherwise we could generate 2766 * refill bouncing. 2767 */ 2768 batchcount = BATCHREFILL_LIMIT; 2769 } 2770 n = get_node(cachep, node); 2771 2772 BUG_ON(ac->avail > 0 || !n); 2773 spin_lock(&n->list_lock); 2774 2775 /* See if we can refill from the shared array */ 2776 if (n->shared && transfer_objects(ac, n->shared, batchcount)) { 2777 n->shared->touched = 1; 2778 goto alloc_done; 2779 } 2780 2781 while (batchcount > 0) { 2782 struct list_head *entry; 2783 struct page *page; 2784 /* Get slab alloc is to come from. */ 2785 entry = n->slabs_partial.next; 2786 if (entry == &n->slabs_partial) { 2787 n->free_touched = 1; 2788 entry = n->slabs_free.next; 2789 if (entry == &n->slabs_free) 2790 goto must_grow; 2791 } 2792 2793 page = list_entry(entry, struct page, lru); 2794 check_spinlock_acquired(cachep); 2795 2796 /* 2797 * The slab was either on partial or free list so 2798 * there must be at least one object available for 2799 * allocation. 2800 */ 2801 BUG_ON(page->active >= cachep->num); 2802 2803 while (page->active < cachep->num && batchcount--) { 2804 STATS_INC_ALLOCED(cachep); 2805 STATS_INC_ACTIVE(cachep); 2806 STATS_SET_HIGH(cachep); 2807 2808 ac_put_obj(cachep, ac, slab_get_obj(cachep, page, 2809 node)); 2810 } 2811 2812 /* move slabp to correct slabp list: */ 2813 list_del(&page->lru); 2814 if (page->active == cachep->num) 2815 list_add(&page->lru, &n->slabs_full); 2816 else 2817 list_add(&page->lru, &n->slabs_partial); 2818 } 2819 2820 must_grow: 2821 n->free_objects -= ac->avail; 2822 alloc_done: 2823 spin_unlock(&n->list_lock); 2824 2825 if (unlikely(!ac->avail)) { 2826 int x; 2827 force_grow: 2828 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); 2829 2830 /* cache_grow can reenable interrupts, then ac could change. */ 2831 ac = cpu_cache_get(cachep); 2832 node = numa_mem_id(); 2833 2834 /* no objects in sight? abort */ 2835 if (!x && (ac->avail == 0 || force_refill)) 2836 return NULL; 2837 2838 if (!ac->avail) /* objects refilled by interrupt? */ 2839 goto retry; 2840 } 2841 ac->touched = 1; 2842 2843 return ac_get_obj(cachep, ac, flags, force_refill); 2844 } 2845 2846 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, 2847 gfp_t flags) 2848 { 2849 might_sleep_if(flags & __GFP_WAIT); 2850 #if DEBUG 2851 kmem_flagcheck(cachep, flags); 2852 #endif 2853 } 2854 2855 #if DEBUG 2856 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, 2857 gfp_t flags, void *objp, unsigned long caller) 2858 { 2859 struct page *page; 2860 2861 if (!objp) 2862 return objp; 2863 if (cachep->flags & SLAB_POISON) { 2864 #ifdef CONFIG_DEBUG_PAGEALLOC 2865 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) 2866 kernel_map_pages(virt_to_page(objp), 2867 cachep->size / PAGE_SIZE, 1); 2868 else 2869 check_poison_obj(cachep, objp); 2870 #else 2871 check_poison_obj(cachep, objp); 2872 #endif 2873 poison_obj(cachep, objp, POISON_INUSE); 2874 } 2875 if (cachep->flags & SLAB_STORE_USER) 2876 *dbg_userword(cachep, objp) = (void *)caller; 2877 2878 if (cachep->flags & SLAB_RED_ZONE) { 2879 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || 2880 *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2881 slab_error(cachep, "double free, or memory outside" 2882 " object was overwritten"); 2883 printk(KERN_ERR 2884 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", 2885 objp, *dbg_redzone1(cachep, objp), 2886 *dbg_redzone2(cachep, objp)); 2887 } 2888 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2889 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2890 } 2891 2892 page = virt_to_head_page(objp); 2893 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE); 2894 objp += obj_offset(cachep); 2895 if (cachep->ctor && cachep->flags & SLAB_POISON) 2896 cachep->ctor(objp); 2897 if (ARCH_SLAB_MINALIGN && 2898 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { 2899 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 2900 objp, (int)ARCH_SLAB_MINALIGN); 2901 } 2902 return objp; 2903 } 2904 #else 2905 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) 2906 #endif 2907 2908 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) 2909 { 2910 if (unlikely(cachep == kmem_cache)) 2911 return false; 2912 2913 return should_failslab(cachep->object_size, flags, cachep->flags); 2914 } 2915 2916 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) 2917 { 2918 void *objp; 2919 struct array_cache *ac; 2920 bool force_refill = false; 2921 2922 check_irq_off(); 2923 2924 ac = cpu_cache_get(cachep); 2925 if (likely(ac->avail)) { 2926 ac->touched = 1; 2927 objp = ac_get_obj(cachep, ac, flags, false); 2928 2929 /* 2930 * Allow for the possibility all avail objects are not allowed 2931 * by the current flags 2932 */ 2933 if (objp) { 2934 STATS_INC_ALLOCHIT(cachep); 2935 goto out; 2936 } 2937 force_refill = true; 2938 } 2939 2940 STATS_INC_ALLOCMISS(cachep); 2941 objp = cache_alloc_refill(cachep, flags, force_refill); 2942 /* 2943 * the 'ac' may be updated by cache_alloc_refill(), 2944 * and kmemleak_erase() requires its correct value. 2945 */ 2946 ac = cpu_cache_get(cachep); 2947 2948 out: 2949 /* 2950 * To avoid a false negative, if an object that is in one of the 2951 * per-CPU caches is leaked, we need to make sure kmemleak doesn't 2952 * treat the array pointers as a reference to the object. 2953 */ 2954 if (objp) 2955 kmemleak_erase(&ac->entry[ac->avail]); 2956 return objp; 2957 } 2958 2959 #ifdef CONFIG_NUMA 2960 /* 2961 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. 2962 * 2963 * If we are in_interrupt, then process context, including cpusets and 2964 * mempolicy, may not apply and should not be used for allocation policy. 2965 */ 2966 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) 2967 { 2968 int nid_alloc, nid_here; 2969 2970 if (in_interrupt() || (flags & __GFP_THISNODE)) 2971 return NULL; 2972 nid_alloc = nid_here = numa_mem_id(); 2973 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) 2974 nid_alloc = cpuset_slab_spread_node(); 2975 else if (current->mempolicy) 2976 nid_alloc = mempolicy_slab_node(); 2977 if (nid_alloc != nid_here) 2978 return ____cache_alloc_node(cachep, flags, nid_alloc); 2979 return NULL; 2980 } 2981 2982 /* 2983 * Fallback function if there was no memory available and no objects on a 2984 * certain node and fall back is permitted. First we scan all the 2985 * available node for available objects. If that fails then we 2986 * perform an allocation without specifying a node. This allows the page 2987 * allocator to do its reclaim / fallback magic. We then insert the 2988 * slab into the proper nodelist and then allocate from it. 2989 */ 2990 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) 2991 { 2992 struct zonelist *zonelist; 2993 gfp_t local_flags; 2994 struct zoneref *z; 2995 struct zone *zone; 2996 enum zone_type high_zoneidx = gfp_zone(flags); 2997 void *obj = NULL; 2998 int nid; 2999 unsigned int cpuset_mems_cookie; 3000 3001 if (flags & __GFP_THISNODE) 3002 return NULL; 3003 3004 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); 3005 3006 retry_cpuset: 3007 cpuset_mems_cookie = read_mems_allowed_begin(); 3008 zonelist = node_zonelist(mempolicy_slab_node(), flags); 3009 3010 retry: 3011 /* 3012 * Look through allowed nodes for objects available 3013 * from existing per node queues. 3014 */ 3015 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 3016 nid = zone_to_nid(zone); 3017 3018 if (cpuset_zone_allowed(zone, flags) && 3019 get_node(cache, nid) && 3020 get_node(cache, nid)->free_objects) { 3021 obj = ____cache_alloc_node(cache, 3022 flags | GFP_THISNODE, nid); 3023 if (obj) 3024 break; 3025 } 3026 } 3027 3028 if (!obj) { 3029 /* 3030 * This allocation will be performed within the constraints 3031 * of the current cpuset / memory policy requirements. 3032 * We may trigger various forms of reclaim on the allowed 3033 * set and go into memory reserves if necessary. 3034 */ 3035 struct page *page; 3036 3037 if (local_flags & __GFP_WAIT) 3038 local_irq_enable(); 3039 kmem_flagcheck(cache, flags); 3040 page = kmem_getpages(cache, local_flags, numa_mem_id()); 3041 if (local_flags & __GFP_WAIT) 3042 local_irq_disable(); 3043 if (page) { 3044 /* 3045 * Insert into the appropriate per node queues 3046 */ 3047 nid = page_to_nid(page); 3048 if (cache_grow(cache, flags, nid, page)) { 3049 obj = ____cache_alloc_node(cache, 3050 flags | GFP_THISNODE, nid); 3051 if (!obj) 3052 /* 3053 * Another processor may allocate the 3054 * objects in the slab since we are 3055 * not holding any locks. 3056 */ 3057 goto retry; 3058 } else { 3059 /* cache_grow already freed obj */ 3060 obj = NULL; 3061 } 3062 } 3063 } 3064 3065 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) 3066 goto retry_cpuset; 3067 return obj; 3068 } 3069 3070 /* 3071 * A interface to enable slab creation on nodeid 3072 */ 3073 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, 3074 int nodeid) 3075 { 3076 struct list_head *entry; 3077 struct page *page; 3078 struct kmem_cache_node *n; 3079 void *obj; 3080 int x; 3081 3082 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); 3083 n = get_node(cachep, nodeid); 3084 BUG_ON(!n); 3085 3086 retry: 3087 check_irq_off(); 3088 spin_lock(&n->list_lock); 3089 entry = n->slabs_partial.next; 3090 if (entry == &n->slabs_partial) { 3091 n->free_touched = 1; 3092 entry = n->slabs_free.next; 3093 if (entry == &n->slabs_free) 3094 goto must_grow; 3095 } 3096 3097 page = list_entry(entry, struct page, lru); 3098 check_spinlock_acquired_node(cachep, nodeid); 3099 3100 STATS_INC_NODEALLOCS(cachep); 3101 STATS_INC_ACTIVE(cachep); 3102 STATS_SET_HIGH(cachep); 3103 3104 BUG_ON(page->active == cachep->num); 3105 3106 obj = slab_get_obj(cachep, page, nodeid); 3107 n->free_objects--; 3108 /* move slabp to correct slabp list: */ 3109 list_del(&page->lru); 3110 3111 if (page->active == cachep->num) 3112 list_add(&page->lru, &n->slabs_full); 3113 else 3114 list_add(&page->lru, &n->slabs_partial); 3115 3116 spin_unlock(&n->list_lock); 3117 goto done; 3118 3119 must_grow: 3120 spin_unlock(&n->list_lock); 3121 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); 3122 if (x) 3123 goto retry; 3124 3125 return fallback_alloc(cachep, flags); 3126 3127 done: 3128 return obj; 3129 } 3130 3131 static __always_inline void * 3132 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, 3133 unsigned long caller) 3134 { 3135 unsigned long save_flags; 3136 void *ptr; 3137 int slab_node = numa_mem_id(); 3138 3139 flags &= gfp_allowed_mask; 3140 3141 lockdep_trace_alloc(flags); 3142 3143 if (slab_should_failslab(cachep, flags)) 3144 return NULL; 3145 3146 cachep = memcg_kmem_get_cache(cachep, flags); 3147 3148 cache_alloc_debugcheck_before(cachep, flags); 3149 local_irq_save(save_flags); 3150 3151 if (nodeid == NUMA_NO_NODE) 3152 nodeid = slab_node; 3153 3154 if (unlikely(!get_node(cachep, nodeid))) { 3155 /* Node not bootstrapped yet */ 3156 ptr = fallback_alloc(cachep, flags); 3157 goto out; 3158 } 3159 3160 if (nodeid == slab_node) { 3161 /* 3162 * Use the locally cached objects if possible. 3163 * However ____cache_alloc does not allow fallback 3164 * to other nodes. It may fail while we still have 3165 * objects on other nodes available. 3166 */ 3167 ptr = ____cache_alloc(cachep, flags); 3168 if (ptr) 3169 goto out; 3170 } 3171 /* ___cache_alloc_node can fall back to other nodes */ 3172 ptr = ____cache_alloc_node(cachep, flags, nodeid); 3173 out: 3174 local_irq_restore(save_flags); 3175 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); 3176 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, 3177 flags); 3178 3179 if (likely(ptr)) { 3180 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); 3181 if (unlikely(flags & __GFP_ZERO)) 3182 memset(ptr, 0, cachep->object_size); 3183 } 3184 3185 memcg_kmem_put_cache(cachep); 3186 return ptr; 3187 } 3188 3189 static __always_inline void * 3190 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) 3191 { 3192 void *objp; 3193 3194 if (current->mempolicy || cpuset_do_slab_mem_spread()) { 3195 objp = alternate_node_alloc(cache, flags); 3196 if (objp) 3197 goto out; 3198 } 3199 objp = ____cache_alloc(cache, flags); 3200 3201 /* 3202 * We may just have run out of memory on the local node. 3203 * ____cache_alloc_node() knows how to locate memory on other nodes 3204 */ 3205 if (!objp) 3206 objp = ____cache_alloc_node(cache, flags, numa_mem_id()); 3207 3208 out: 3209 return objp; 3210 } 3211 #else 3212 3213 static __always_inline void * 3214 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3215 { 3216 return ____cache_alloc(cachep, flags); 3217 } 3218 3219 #endif /* CONFIG_NUMA */ 3220 3221 static __always_inline void * 3222 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) 3223 { 3224 unsigned long save_flags; 3225 void *objp; 3226 3227 flags &= gfp_allowed_mask; 3228 3229 lockdep_trace_alloc(flags); 3230 3231 if (slab_should_failslab(cachep, flags)) 3232 return NULL; 3233 3234 cachep = memcg_kmem_get_cache(cachep, flags); 3235 3236 cache_alloc_debugcheck_before(cachep, flags); 3237 local_irq_save(save_flags); 3238 objp = __do_cache_alloc(cachep, flags); 3239 local_irq_restore(save_flags); 3240 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); 3241 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, 3242 flags); 3243 prefetchw(objp); 3244 3245 if (likely(objp)) { 3246 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); 3247 if (unlikely(flags & __GFP_ZERO)) 3248 memset(objp, 0, cachep->object_size); 3249 } 3250 3251 memcg_kmem_put_cache(cachep); 3252 return objp; 3253 } 3254 3255 /* 3256 * Caller needs to acquire correct kmem_cache_node's list_lock 3257 * @list: List of detached free slabs should be freed by caller 3258 */ 3259 static void free_block(struct kmem_cache *cachep, void **objpp, 3260 int nr_objects, int node, struct list_head *list) 3261 { 3262 int i; 3263 struct kmem_cache_node *n = get_node(cachep, node); 3264 3265 for (i = 0; i < nr_objects; i++) { 3266 void *objp; 3267 struct page *page; 3268 3269 clear_obj_pfmemalloc(&objpp[i]); 3270 objp = objpp[i]; 3271 3272 page = virt_to_head_page(objp); 3273 list_del(&page->lru); 3274 check_spinlock_acquired_node(cachep, node); 3275 slab_put_obj(cachep, page, objp, node); 3276 STATS_DEC_ACTIVE(cachep); 3277 n->free_objects++; 3278 3279 /* fixup slab chains */ 3280 if (page->active == 0) { 3281 if (n->free_objects > n->free_limit) { 3282 n->free_objects -= cachep->num; 3283 list_add_tail(&page->lru, list); 3284 } else { 3285 list_add(&page->lru, &n->slabs_free); 3286 } 3287 } else { 3288 /* Unconditionally move a slab to the end of the 3289 * partial list on free - maximum time for the 3290 * other objects to be freed, too. 3291 */ 3292 list_add_tail(&page->lru, &n->slabs_partial); 3293 } 3294 } 3295 } 3296 3297 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) 3298 { 3299 int batchcount; 3300 struct kmem_cache_node *n; 3301 int node = numa_mem_id(); 3302 LIST_HEAD(list); 3303 3304 batchcount = ac->batchcount; 3305 #if DEBUG 3306 BUG_ON(!batchcount || batchcount > ac->avail); 3307 #endif 3308 check_irq_off(); 3309 n = get_node(cachep, node); 3310 spin_lock(&n->list_lock); 3311 if (n->shared) { 3312 struct array_cache *shared_array = n->shared; 3313 int max = shared_array->limit - shared_array->avail; 3314 if (max) { 3315 if (batchcount > max) 3316 batchcount = max; 3317 memcpy(&(shared_array->entry[shared_array->avail]), 3318 ac->entry, sizeof(void *) * batchcount); 3319 shared_array->avail += batchcount; 3320 goto free_done; 3321 } 3322 } 3323 3324 free_block(cachep, ac->entry, batchcount, node, &list); 3325 free_done: 3326 #if STATS 3327 { 3328 int i = 0; 3329 struct list_head *p; 3330 3331 p = n->slabs_free.next; 3332 while (p != &(n->slabs_free)) { 3333 struct page *page; 3334 3335 page = list_entry(p, struct page, lru); 3336 BUG_ON(page->active); 3337 3338 i++; 3339 p = p->next; 3340 } 3341 STATS_SET_FREEABLE(cachep, i); 3342 } 3343 #endif 3344 spin_unlock(&n->list_lock); 3345 slabs_destroy(cachep, &list); 3346 ac->avail -= batchcount; 3347 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); 3348 } 3349 3350 /* 3351 * Release an obj back to its cache. If the obj has a constructed state, it must 3352 * be in this state _before_ it is released. Called with disabled ints. 3353 */ 3354 static inline void __cache_free(struct kmem_cache *cachep, void *objp, 3355 unsigned long caller) 3356 { 3357 struct array_cache *ac = cpu_cache_get(cachep); 3358 3359 check_irq_off(); 3360 kmemleak_free_recursive(objp, cachep->flags); 3361 objp = cache_free_debugcheck(cachep, objp, caller); 3362 3363 kmemcheck_slab_free(cachep, objp, cachep->object_size); 3364 3365 /* 3366 * Skip calling cache_free_alien() when the platform is not numa. 3367 * This will avoid cache misses that happen while accessing slabp (which 3368 * is per page memory reference) to get nodeid. Instead use a global 3369 * variable to skip the call, which is mostly likely to be present in 3370 * the cache. 3371 */ 3372 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) 3373 return; 3374 3375 if (ac->avail < ac->limit) { 3376 STATS_INC_FREEHIT(cachep); 3377 } else { 3378 STATS_INC_FREEMISS(cachep); 3379 cache_flusharray(cachep, ac); 3380 } 3381 3382 ac_put_obj(cachep, ac, objp); 3383 } 3384 3385 /** 3386 * kmem_cache_alloc - Allocate an object 3387 * @cachep: The cache to allocate from. 3388 * @flags: See kmalloc(). 3389 * 3390 * Allocate an object from this cache. The flags are only relevant 3391 * if the cache has no available objects. 3392 */ 3393 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 3394 { 3395 void *ret = slab_alloc(cachep, flags, _RET_IP_); 3396 3397 trace_kmem_cache_alloc(_RET_IP_, ret, 3398 cachep->object_size, cachep->size, flags); 3399 3400 return ret; 3401 } 3402 EXPORT_SYMBOL(kmem_cache_alloc); 3403 3404 #ifdef CONFIG_TRACING 3405 void * 3406 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) 3407 { 3408 void *ret; 3409 3410 ret = slab_alloc(cachep, flags, _RET_IP_); 3411 3412 trace_kmalloc(_RET_IP_, ret, 3413 size, cachep->size, flags); 3414 return ret; 3415 } 3416 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3417 #endif 3418 3419 #ifdef CONFIG_NUMA 3420 /** 3421 * kmem_cache_alloc_node - Allocate an object on the specified node 3422 * @cachep: The cache to allocate from. 3423 * @flags: See kmalloc(). 3424 * @nodeid: node number of the target node. 3425 * 3426 * Identical to kmem_cache_alloc but it will allocate memory on the given 3427 * node, which can improve the performance for cpu bound structures. 3428 * 3429 * Fallback to other node is possible if __GFP_THISNODE is not set. 3430 */ 3431 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 3432 { 3433 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3434 3435 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3436 cachep->object_size, cachep->size, 3437 flags, nodeid); 3438 3439 return ret; 3440 } 3441 EXPORT_SYMBOL(kmem_cache_alloc_node); 3442 3443 #ifdef CONFIG_TRACING 3444 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, 3445 gfp_t flags, 3446 int nodeid, 3447 size_t size) 3448 { 3449 void *ret; 3450 3451 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); 3452 3453 trace_kmalloc_node(_RET_IP_, ret, 3454 size, cachep->size, 3455 flags, nodeid); 3456 return ret; 3457 } 3458 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3459 #endif 3460 3461 static __always_inline void * 3462 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 3463 { 3464 struct kmem_cache *cachep; 3465 3466 cachep = kmalloc_slab(size, flags); 3467 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3468 return cachep; 3469 return kmem_cache_alloc_node_trace(cachep, flags, node, size); 3470 } 3471 3472 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3473 { 3474 return __do_kmalloc_node(size, flags, node, _RET_IP_); 3475 } 3476 EXPORT_SYMBOL(__kmalloc_node); 3477 3478 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, 3479 int node, unsigned long caller) 3480 { 3481 return __do_kmalloc_node(size, flags, node, caller); 3482 } 3483 EXPORT_SYMBOL(__kmalloc_node_track_caller); 3484 #endif /* CONFIG_NUMA */ 3485 3486 /** 3487 * __do_kmalloc - allocate memory 3488 * @size: how many bytes of memory are required. 3489 * @flags: the type of memory to allocate (see kmalloc). 3490 * @caller: function caller for debug tracking of the caller 3491 */ 3492 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, 3493 unsigned long caller) 3494 { 3495 struct kmem_cache *cachep; 3496 void *ret; 3497 3498 cachep = kmalloc_slab(size, flags); 3499 if (unlikely(ZERO_OR_NULL_PTR(cachep))) 3500 return cachep; 3501 ret = slab_alloc(cachep, flags, caller); 3502 3503 trace_kmalloc(caller, ret, 3504 size, cachep->size, flags); 3505 3506 return ret; 3507 } 3508 3509 void *__kmalloc(size_t size, gfp_t flags) 3510 { 3511 return __do_kmalloc(size, flags, _RET_IP_); 3512 } 3513 EXPORT_SYMBOL(__kmalloc); 3514 3515 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) 3516 { 3517 return __do_kmalloc(size, flags, caller); 3518 } 3519 EXPORT_SYMBOL(__kmalloc_track_caller); 3520 3521 /** 3522 * kmem_cache_free - Deallocate an object 3523 * @cachep: The cache the allocation was from. 3524 * @objp: The previously allocated object. 3525 * 3526 * Free an object which was previously allocated from this 3527 * cache. 3528 */ 3529 void kmem_cache_free(struct kmem_cache *cachep, void *objp) 3530 { 3531 unsigned long flags; 3532 cachep = cache_from_obj(cachep, objp); 3533 if (!cachep) 3534 return; 3535 3536 local_irq_save(flags); 3537 debug_check_no_locks_freed(objp, cachep->object_size); 3538 if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) 3539 debug_check_no_obj_freed(objp, cachep->object_size); 3540 __cache_free(cachep, objp, _RET_IP_); 3541 local_irq_restore(flags); 3542 3543 trace_kmem_cache_free(_RET_IP_, objp); 3544 } 3545 EXPORT_SYMBOL(kmem_cache_free); 3546 3547 /** 3548 * kfree - free previously allocated memory 3549 * @objp: pointer returned by kmalloc. 3550 * 3551 * If @objp is NULL, no operation is performed. 3552 * 3553 * Don't free memory not originally allocated by kmalloc() 3554 * or you will run into trouble. 3555 */ 3556 void kfree(const void *objp) 3557 { 3558 struct kmem_cache *c; 3559 unsigned long flags; 3560 3561 trace_kfree(_RET_IP_, objp); 3562 3563 if (unlikely(ZERO_OR_NULL_PTR(objp))) 3564 return; 3565 local_irq_save(flags); 3566 kfree_debugcheck(objp); 3567 c = virt_to_cache(objp); 3568 debug_check_no_locks_freed(objp, c->object_size); 3569 3570 debug_check_no_obj_freed(objp, c->object_size); 3571 __cache_free(c, (void *)objp, _RET_IP_); 3572 local_irq_restore(flags); 3573 } 3574 EXPORT_SYMBOL(kfree); 3575 3576 /* 3577 * This initializes kmem_cache_node or resizes various caches for all nodes. 3578 */ 3579 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp) 3580 { 3581 int node; 3582 struct kmem_cache_node *n; 3583 struct array_cache *new_shared; 3584 struct alien_cache **new_alien = NULL; 3585 3586 for_each_online_node(node) { 3587 3588 if (use_alien_caches) { 3589 new_alien = alloc_alien_cache(node, cachep->limit, gfp); 3590 if (!new_alien) 3591 goto fail; 3592 } 3593 3594 new_shared = NULL; 3595 if (cachep->shared) { 3596 new_shared = alloc_arraycache(node, 3597 cachep->shared*cachep->batchcount, 3598 0xbaadf00d, gfp); 3599 if (!new_shared) { 3600 free_alien_cache(new_alien); 3601 goto fail; 3602 } 3603 } 3604 3605 n = get_node(cachep, node); 3606 if (n) { 3607 struct array_cache *shared = n->shared; 3608 LIST_HEAD(list); 3609 3610 spin_lock_irq(&n->list_lock); 3611 3612 if (shared) 3613 free_block(cachep, shared->entry, 3614 shared->avail, node, &list); 3615 3616 n->shared = new_shared; 3617 if (!n->alien) { 3618 n->alien = new_alien; 3619 new_alien = NULL; 3620 } 3621 n->free_limit = (1 + nr_cpus_node(node)) * 3622 cachep->batchcount + cachep->num; 3623 spin_unlock_irq(&n->list_lock); 3624 slabs_destroy(cachep, &list); 3625 kfree(shared); 3626 free_alien_cache(new_alien); 3627 continue; 3628 } 3629 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); 3630 if (!n) { 3631 free_alien_cache(new_alien); 3632 kfree(new_shared); 3633 goto fail; 3634 } 3635 3636 kmem_cache_node_init(n); 3637 n->next_reap = jiffies + REAPTIMEOUT_NODE + 3638 ((unsigned long)cachep) % REAPTIMEOUT_NODE; 3639 n->shared = new_shared; 3640 n->alien = new_alien; 3641 n->free_limit = (1 + nr_cpus_node(node)) * 3642 cachep->batchcount + cachep->num; 3643 cachep->node[node] = n; 3644 } 3645 return 0; 3646 3647 fail: 3648 if (!cachep->list.next) { 3649 /* Cache is not active yet. Roll back what we did */ 3650 node--; 3651 while (node >= 0) { 3652 n = get_node(cachep, node); 3653 if (n) { 3654 kfree(n->shared); 3655 free_alien_cache(n->alien); 3656 kfree(n); 3657 cachep->node[node] = NULL; 3658 } 3659 node--; 3660 } 3661 } 3662 return -ENOMEM; 3663 } 3664 3665 /* Always called with the slab_mutex held */ 3666 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, 3667 int batchcount, int shared, gfp_t gfp) 3668 { 3669 struct array_cache __percpu *cpu_cache, *prev; 3670 int cpu; 3671 3672 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); 3673 if (!cpu_cache) 3674 return -ENOMEM; 3675 3676 prev = cachep->cpu_cache; 3677 cachep->cpu_cache = cpu_cache; 3678 kick_all_cpus_sync(); 3679 3680 check_irq_on(); 3681 cachep->batchcount = batchcount; 3682 cachep->limit = limit; 3683 cachep->shared = shared; 3684 3685 if (!prev) 3686 goto alloc_node; 3687 3688 for_each_online_cpu(cpu) { 3689 LIST_HEAD(list); 3690 int node; 3691 struct kmem_cache_node *n; 3692 struct array_cache *ac = per_cpu_ptr(prev, cpu); 3693 3694 node = cpu_to_mem(cpu); 3695 n = get_node(cachep, node); 3696 spin_lock_irq(&n->list_lock); 3697 free_block(cachep, ac->entry, ac->avail, node, &list); 3698 spin_unlock_irq(&n->list_lock); 3699 slabs_destroy(cachep, &list); 3700 } 3701 free_percpu(prev); 3702 3703 alloc_node: 3704 return alloc_kmem_cache_node(cachep, gfp); 3705 } 3706 3707 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, 3708 int batchcount, int shared, gfp_t gfp) 3709 { 3710 int ret; 3711 struct kmem_cache *c; 3712 3713 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3714 3715 if (slab_state < FULL) 3716 return ret; 3717 3718 if ((ret < 0) || !is_root_cache(cachep)) 3719 return ret; 3720 3721 lockdep_assert_held(&slab_mutex); 3722 for_each_memcg_cache(c, cachep) { 3723 /* return value determined by the root cache only */ 3724 __do_tune_cpucache(c, limit, batchcount, shared, gfp); 3725 } 3726 3727 return ret; 3728 } 3729 3730 /* Called with slab_mutex held always */ 3731 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) 3732 { 3733 int err; 3734 int limit = 0; 3735 int shared = 0; 3736 int batchcount = 0; 3737 3738 if (!is_root_cache(cachep)) { 3739 struct kmem_cache *root = memcg_root_cache(cachep); 3740 limit = root->limit; 3741 shared = root->shared; 3742 batchcount = root->batchcount; 3743 } 3744 3745 if (limit && shared && batchcount) 3746 goto skip_setup; 3747 /* 3748 * The head array serves three purposes: 3749 * - create a LIFO ordering, i.e. return objects that are cache-warm 3750 * - reduce the number of spinlock operations. 3751 * - reduce the number of linked list operations on the slab and 3752 * bufctl chains: array operations are cheaper. 3753 * The numbers are guessed, we should auto-tune as described by 3754 * Bonwick. 3755 */ 3756 if (cachep->size > 131072) 3757 limit = 1; 3758 else if (cachep->size > PAGE_SIZE) 3759 limit = 8; 3760 else if (cachep->size > 1024) 3761 limit = 24; 3762 else if (cachep->size > 256) 3763 limit = 54; 3764 else 3765 limit = 120; 3766 3767 /* 3768 * CPU bound tasks (e.g. network routing) can exhibit cpu bound 3769 * allocation behaviour: Most allocs on one cpu, most free operations 3770 * on another cpu. For these cases, an efficient object passing between 3771 * cpus is necessary. This is provided by a shared array. The array 3772 * replaces Bonwick's magazine layer. 3773 * On uniprocessor, it's functionally equivalent (but less efficient) 3774 * to a larger limit. Thus disabled by default. 3775 */ 3776 shared = 0; 3777 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) 3778 shared = 8; 3779 3780 #if DEBUG 3781 /* 3782 * With debugging enabled, large batchcount lead to excessively long 3783 * periods with disabled local interrupts. Limit the batchcount 3784 */ 3785 if (limit > 32) 3786 limit = 32; 3787 #endif 3788 batchcount = (limit + 1) / 2; 3789 skip_setup: 3790 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); 3791 if (err) 3792 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", 3793 cachep->name, -err); 3794 return err; 3795 } 3796 3797 /* 3798 * Drain an array if it contains any elements taking the node lock only if 3799 * necessary. Note that the node listlock also protects the array_cache 3800 * if drain_array() is used on the shared array. 3801 */ 3802 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, 3803 struct array_cache *ac, int force, int node) 3804 { 3805 LIST_HEAD(list); 3806 int tofree; 3807 3808 if (!ac || !ac->avail) 3809 return; 3810 if (ac->touched && !force) { 3811 ac->touched = 0; 3812 } else { 3813 spin_lock_irq(&n->list_lock); 3814 if (ac->avail) { 3815 tofree = force ? ac->avail : (ac->limit + 4) / 5; 3816 if (tofree > ac->avail) 3817 tofree = (ac->avail + 1) / 2; 3818 free_block(cachep, ac->entry, tofree, node, &list); 3819 ac->avail -= tofree; 3820 memmove(ac->entry, &(ac->entry[tofree]), 3821 sizeof(void *) * ac->avail); 3822 } 3823 spin_unlock_irq(&n->list_lock); 3824 slabs_destroy(cachep, &list); 3825 } 3826 } 3827 3828 /** 3829 * cache_reap - Reclaim memory from caches. 3830 * @w: work descriptor 3831 * 3832 * Called from workqueue/eventd every few seconds. 3833 * Purpose: 3834 * - clear the per-cpu caches for this CPU. 3835 * - return freeable pages to the main free memory pool. 3836 * 3837 * If we cannot acquire the cache chain mutex then just give up - we'll try 3838 * again on the next iteration. 3839 */ 3840 static void cache_reap(struct work_struct *w) 3841 { 3842 struct kmem_cache *searchp; 3843 struct kmem_cache_node *n; 3844 int node = numa_mem_id(); 3845 struct delayed_work *work = to_delayed_work(w); 3846 3847 if (!mutex_trylock(&slab_mutex)) 3848 /* Give up. Setup the next iteration. */ 3849 goto out; 3850 3851 list_for_each_entry(searchp, &slab_caches, list) { 3852 check_irq_on(); 3853 3854 /* 3855 * We only take the node lock if absolutely necessary and we 3856 * have established with reasonable certainty that 3857 * we can do some work if the lock was obtained. 3858 */ 3859 n = get_node(searchp, node); 3860 3861 reap_alien(searchp, n); 3862 3863 drain_array(searchp, n, cpu_cache_get(searchp), 0, node); 3864 3865 /* 3866 * These are racy checks but it does not matter 3867 * if we skip one check or scan twice. 3868 */ 3869 if (time_after(n->next_reap, jiffies)) 3870 goto next; 3871 3872 n->next_reap = jiffies + REAPTIMEOUT_NODE; 3873 3874 drain_array(searchp, n, n->shared, 0, node); 3875 3876 if (n->free_touched) 3877 n->free_touched = 0; 3878 else { 3879 int freed; 3880 3881 freed = drain_freelist(searchp, n, (n->free_limit + 3882 5 * searchp->num - 1) / (5 * searchp->num)); 3883 STATS_ADD_REAPED(searchp, freed); 3884 } 3885 next: 3886 cond_resched(); 3887 } 3888 check_irq_on(); 3889 mutex_unlock(&slab_mutex); 3890 next_reap_node(); 3891 out: 3892 /* Set up the next iteration */ 3893 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); 3894 } 3895 3896 #ifdef CONFIG_SLABINFO 3897 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) 3898 { 3899 struct page *page; 3900 unsigned long active_objs; 3901 unsigned long num_objs; 3902 unsigned long active_slabs = 0; 3903 unsigned long num_slabs, free_objects = 0, shared_avail = 0; 3904 const char *name; 3905 char *error = NULL; 3906 int node; 3907 struct kmem_cache_node *n; 3908 3909 active_objs = 0; 3910 num_slabs = 0; 3911 for_each_kmem_cache_node(cachep, node, n) { 3912 3913 check_irq_on(); 3914 spin_lock_irq(&n->list_lock); 3915 3916 list_for_each_entry(page, &n->slabs_full, lru) { 3917 if (page->active != cachep->num && !error) 3918 error = "slabs_full accounting error"; 3919 active_objs += cachep->num; 3920 active_slabs++; 3921 } 3922 list_for_each_entry(page, &n->slabs_partial, lru) { 3923 if (page->active == cachep->num && !error) 3924 error = "slabs_partial accounting error"; 3925 if (!page->active && !error) 3926 error = "slabs_partial accounting error"; 3927 active_objs += page->active; 3928 active_slabs++; 3929 } 3930 list_for_each_entry(page, &n->slabs_free, lru) { 3931 if (page->active && !error) 3932 error = "slabs_free accounting error"; 3933 num_slabs++; 3934 } 3935 free_objects += n->free_objects; 3936 if (n->shared) 3937 shared_avail += n->shared->avail; 3938 3939 spin_unlock_irq(&n->list_lock); 3940 } 3941 num_slabs += active_slabs; 3942 num_objs = num_slabs * cachep->num; 3943 if (num_objs - active_objs != free_objects && !error) 3944 error = "free_objects accounting error"; 3945 3946 name = cachep->name; 3947 if (error) 3948 printk(KERN_ERR "slab: cache %s error: %s\n", name, error); 3949 3950 sinfo->active_objs = active_objs; 3951 sinfo->num_objs = num_objs; 3952 sinfo->active_slabs = active_slabs; 3953 sinfo->num_slabs = num_slabs; 3954 sinfo->shared_avail = shared_avail; 3955 sinfo->limit = cachep->limit; 3956 sinfo->batchcount = cachep->batchcount; 3957 sinfo->shared = cachep->shared; 3958 sinfo->objects_per_slab = cachep->num; 3959 sinfo->cache_order = cachep->gfporder; 3960 } 3961 3962 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) 3963 { 3964 #if STATS 3965 { /* node stats */ 3966 unsigned long high = cachep->high_mark; 3967 unsigned long allocs = cachep->num_allocations; 3968 unsigned long grown = cachep->grown; 3969 unsigned long reaped = cachep->reaped; 3970 unsigned long errors = cachep->errors; 3971 unsigned long max_freeable = cachep->max_freeable; 3972 unsigned long node_allocs = cachep->node_allocs; 3973 unsigned long node_frees = cachep->node_frees; 3974 unsigned long overflows = cachep->node_overflow; 3975 3976 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " 3977 "%4lu %4lu %4lu %4lu %4lu", 3978 allocs, high, grown, 3979 reaped, errors, max_freeable, node_allocs, 3980 node_frees, overflows); 3981 } 3982 /* cpu stats */ 3983 { 3984 unsigned long allochit = atomic_read(&cachep->allochit); 3985 unsigned long allocmiss = atomic_read(&cachep->allocmiss); 3986 unsigned long freehit = atomic_read(&cachep->freehit); 3987 unsigned long freemiss = atomic_read(&cachep->freemiss); 3988 3989 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", 3990 allochit, allocmiss, freehit, freemiss); 3991 } 3992 #endif 3993 } 3994 3995 #define MAX_SLABINFO_WRITE 128 3996 /** 3997 * slabinfo_write - Tuning for the slab allocator 3998 * @file: unused 3999 * @buffer: user buffer 4000 * @count: data length 4001 * @ppos: unused 4002 */ 4003 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4004 size_t count, loff_t *ppos) 4005 { 4006 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; 4007 int limit, batchcount, shared, res; 4008 struct kmem_cache *cachep; 4009 4010 if (count > MAX_SLABINFO_WRITE) 4011 return -EINVAL; 4012 if (copy_from_user(&kbuf, buffer, count)) 4013 return -EFAULT; 4014 kbuf[MAX_SLABINFO_WRITE] = '\0'; 4015 4016 tmp = strchr(kbuf, ' '); 4017 if (!tmp) 4018 return -EINVAL; 4019 *tmp = '\0'; 4020 tmp++; 4021 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) 4022 return -EINVAL; 4023 4024 /* Find the cache in the chain of caches. */ 4025 mutex_lock(&slab_mutex); 4026 res = -EINVAL; 4027 list_for_each_entry(cachep, &slab_caches, list) { 4028 if (!strcmp(cachep->name, kbuf)) { 4029 if (limit < 1 || batchcount < 1 || 4030 batchcount > limit || shared < 0) { 4031 res = 0; 4032 } else { 4033 res = do_tune_cpucache(cachep, limit, 4034 batchcount, shared, 4035 GFP_KERNEL); 4036 } 4037 break; 4038 } 4039 } 4040 mutex_unlock(&slab_mutex); 4041 if (res >= 0) 4042 res = count; 4043 return res; 4044 } 4045 4046 #ifdef CONFIG_DEBUG_SLAB_LEAK 4047 4048 static inline int add_caller(unsigned long *n, unsigned long v) 4049 { 4050 unsigned long *p; 4051 int l; 4052 if (!v) 4053 return 1; 4054 l = n[1]; 4055 p = n + 2; 4056 while (l) { 4057 int i = l/2; 4058 unsigned long *q = p + 2 * i; 4059 if (*q == v) { 4060 q[1]++; 4061 return 1; 4062 } 4063 if (*q > v) { 4064 l = i; 4065 } else { 4066 p = q + 2; 4067 l -= i + 1; 4068 } 4069 } 4070 if (++n[1] == n[0]) 4071 return 0; 4072 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); 4073 p[0] = v; 4074 p[1] = 1; 4075 return 1; 4076 } 4077 4078 static void handle_slab(unsigned long *n, struct kmem_cache *c, 4079 struct page *page) 4080 { 4081 void *p; 4082 int i; 4083 4084 if (n[0] == n[1]) 4085 return; 4086 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { 4087 if (get_obj_status(page, i) != OBJECT_ACTIVE) 4088 continue; 4089 4090 if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) 4091 return; 4092 } 4093 } 4094 4095 static void show_symbol(struct seq_file *m, unsigned long address) 4096 { 4097 #ifdef CONFIG_KALLSYMS 4098 unsigned long offset, size; 4099 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; 4100 4101 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { 4102 seq_printf(m, "%s+%#lx/%#lx", name, offset, size); 4103 if (modname[0]) 4104 seq_printf(m, " [%s]", modname); 4105 return; 4106 } 4107 #endif 4108 seq_printf(m, "%p", (void *)address); 4109 } 4110 4111 static int leaks_show(struct seq_file *m, void *p) 4112 { 4113 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); 4114 struct page *page; 4115 struct kmem_cache_node *n; 4116 const char *name; 4117 unsigned long *x = m->private; 4118 int node; 4119 int i; 4120 4121 if (!(cachep->flags & SLAB_STORE_USER)) 4122 return 0; 4123 if (!(cachep->flags & SLAB_RED_ZONE)) 4124 return 0; 4125 4126 /* OK, we can do it */ 4127 4128 x[1] = 0; 4129 4130 for_each_kmem_cache_node(cachep, node, n) { 4131 4132 check_irq_on(); 4133 spin_lock_irq(&n->list_lock); 4134 4135 list_for_each_entry(page, &n->slabs_full, lru) 4136 handle_slab(x, cachep, page); 4137 list_for_each_entry(page, &n->slabs_partial, lru) 4138 handle_slab(x, cachep, page); 4139 spin_unlock_irq(&n->list_lock); 4140 } 4141 name = cachep->name; 4142 if (x[0] == x[1]) { 4143 /* Increase the buffer size */ 4144 mutex_unlock(&slab_mutex); 4145 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); 4146 if (!m->private) { 4147 /* Too bad, we are really out */ 4148 m->private = x; 4149 mutex_lock(&slab_mutex); 4150 return -ENOMEM; 4151 } 4152 *(unsigned long *)m->private = x[0] * 2; 4153 kfree(x); 4154 mutex_lock(&slab_mutex); 4155 /* Now make sure this entry will be retried */ 4156 m->count = m->size; 4157 return 0; 4158 } 4159 for (i = 0; i < x[1]; i++) { 4160 seq_printf(m, "%s: %lu ", name, x[2*i+3]); 4161 show_symbol(m, x[2*i+2]); 4162 seq_putc(m, '\n'); 4163 } 4164 4165 return 0; 4166 } 4167 4168 static const struct seq_operations slabstats_op = { 4169 .start = slab_start, 4170 .next = slab_next, 4171 .stop = slab_stop, 4172 .show = leaks_show, 4173 }; 4174 4175 static int slabstats_open(struct inode *inode, struct file *file) 4176 { 4177 unsigned long *n; 4178 4179 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); 4180 if (!n) 4181 return -ENOMEM; 4182 4183 *n = PAGE_SIZE / (2 * sizeof(unsigned long)); 4184 4185 return 0; 4186 } 4187 4188 static const struct file_operations proc_slabstats_operations = { 4189 .open = slabstats_open, 4190 .read = seq_read, 4191 .llseek = seq_lseek, 4192 .release = seq_release_private, 4193 }; 4194 #endif 4195 4196 static int __init slab_proc_init(void) 4197 { 4198 #ifdef CONFIG_DEBUG_SLAB_LEAK 4199 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); 4200 #endif 4201 return 0; 4202 } 4203 module_init(slab_proc_init); 4204 #endif 4205 4206 /** 4207 * ksize - get the actual amount of memory allocated for a given object 4208 * @objp: Pointer to the object 4209 * 4210 * kmalloc may internally round up allocations and return more memory 4211 * than requested. ksize() can be used to determine the actual amount of 4212 * memory allocated. The caller may use this additional memory, even though 4213 * a smaller amount of memory was initially specified with the kmalloc call. 4214 * The caller must guarantee that objp points to a valid object previously 4215 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4216 * must not be freed during the duration of the call. 4217 */ 4218 size_t ksize(const void *objp) 4219 { 4220 BUG_ON(!objp); 4221 if (unlikely(objp == ZERO_SIZE_PTR)) 4222 return 0; 4223 4224 return virt_to_cache(objp)->object_size; 4225 } 4226 EXPORT_SYMBOL(ksize); 4227