1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/kfence.h>
104 #include <linux/cpu.h>
105 #include <linux/sysctl.h>
106 #include <linux/module.h>
107 #include <linux/rcupdate.h>
108 #include <linux/string.h>
109 #include <linux/uaccess.h>
110 #include <linux/nodemask.h>
111 #include <linux/kmemleak.h>
112 #include <linux/mempolicy.h>
113 #include <linux/mutex.h>
114 #include <linux/fault-inject.h>
115 #include <linux/rtmutex.h>
116 #include <linux/reciprocal_div.h>
117 #include <linux/debugobjects.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120 #include <linux/sched/task_stack.h>
121
122 #include <net/sock.h>
123
124 #include <asm/cacheflush.h>
125 #include <asm/tlbflush.h>
126 #include <asm/page.h>
127
128 #include <trace/events/kmem.h>
129
130 #include "internal.h"
131
132 #include "slab.h"
133
134 /*
135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * STATS - 1 to collect stats for /proc/slabinfo.
139 * 0 for faster, smaller code (especially in the critical paths).
140 *
141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 */
143
144 #ifdef CONFIG_DEBUG_SLAB
145 #define DEBUG 1
146 #define STATS 1
147 #define FORCED_DEBUG 1
148 #else
149 #define DEBUG 0
150 #define STATS 0
151 #define FORCED_DEBUG 0
152 #endif
153
154 /* Shouldn't this be in a header file somewhere? */
155 #define BYTES_PER_WORD sizeof(void *)
156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157
158 #ifndef ARCH_KMALLOC_FLAGS
159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #endif
161
162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164
165 #if FREELIST_BYTE_INDEX
166 typedef unsigned char freelist_idx_t;
167 #else
168 typedef unsigned short freelist_idx_t;
169 #endif
170
171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172
173 /*
174 * struct array_cache
175 *
176 * Purpose:
177 * - LIFO ordering, to hand out cache-warm objects from _alloc
178 * - reduce the number of linked list operations
179 * - reduce spinlock operations
180 *
181 * The limit is stored in the per-cpu structure to reduce the data cache
182 * footprint.
183 *
184 */
185 struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
190 void *entry[]; /*
191 * Must have this definition in here for the proper
192 * alignment of array_cache. Also simplifies accessing
193 * the entries.
194 */
195 };
196
197 struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
200 };
201
202 /*
203 * Need this for bootstrapping a per node allocator.
204 */
205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207 #define CACHE_CACHE 0
208 #define SIZE_NODE (MAX_NUMNODES)
209
210 static int drain_freelist(struct kmem_cache *cache,
211 struct kmem_cache_node *n, int tofree);
212 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 int node, struct list_head *list);
214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216 static void cache_reap(struct work_struct *unused);
217
218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220 static inline void fixup_slab_list(struct kmem_cache *cachep,
221 struct kmem_cache_node *n, struct slab *slab,
222 void **list);
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
kmem_cache_node_init(struct kmem_cache_node * parent)226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 raw_spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnecessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
obj_offset(struct kmem_cache * cachep)327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
dbg_redzone1(struct kmem_cache * cachep,void * objp)332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long *) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
dbg_redzone2(struct kmem_cache * cachep,void * objp)339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
dbg_userword(struct kmem_cache * cachep,void * objp)350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 /*
366 * Do not go above this order unless 0 objects fit into the slab or
367 * overridden on the command line.
368 */
369 #define SLAB_MAX_ORDER_HI 1
370 #define SLAB_MAX_ORDER_LO 0
371 static int slab_max_order = SLAB_MAX_ORDER_LO;
372 static bool slab_max_order_set __initdata;
373
index_to_obj(struct kmem_cache * cache,const struct slab * slab,unsigned int idx)374 static inline void *index_to_obj(struct kmem_cache *cache,
375 const struct slab *slab, unsigned int idx)
376 {
377 return slab->s_mem + cache->size * idx;
378 }
379
380 #define BOOT_CPUCACHE_ENTRIES 1
381 /* internal cache of cache description objs */
382 static struct kmem_cache kmem_cache_boot = {
383 .batchcount = 1,
384 .limit = BOOT_CPUCACHE_ENTRIES,
385 .shared = 1,
386 .size = sizeof(struct kmem_cache),
387 .name = "kmem_cache",
388 };
389
390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
391
cpu_cache_get(struct kmem_cache * cachep)392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
393 {
394 return this_cpu_ptr(cachep->cpu_cache);
395 }
396
397 /*
398 * Calculate the number of objects and left-over bytes for a given buffer size.
399 */
cache_estimate(unsigned long gfporder,size_t buffer_size,slab_flags_t flags,size_t * left_over)400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
401 slab_flags_t flags, size_t *left_over)
402 {
403 unsigned int num;
404 size_t slab_size = PAGE_SIZE << gfporder;
405
406 /*
407 * The slab management structure can be either off the slab or
408 * on it. For the latter case, the memory allocated for a
409 * slab is used for:
410 *
411 * - @buffer_size bytes for each object
412 * - One freelist_idx_t for each object
413 *
414 * We don't need to consider alignment of freelist because
415 * freelist will be at the end of slab page. The objects will be
416 * at the correct alignment.
417 *
418 * If the slab management structure is off the slab, then the
419 * alignment will already be calculated into the size. Because
420 * the slabs are all pages aligned, the objects will be at the
421 * correct alignment when allocated.
422 */
423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
424 num = slab_size / buffer_size;
425 *left_over = slab_size % buffer_size;
426 } else {
427 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
428 *left_over = slab_size %
429 (buffer_size + sizeof(freelist_idx_t));
430 }
431
432 return num;
433 }
434
435 #if DEBUG
436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
437
__slab_error(const char * function,struct kmem_cache * cachep,char * msg)438 static void __slab_error(const char *function, struct kmem_cache *cachep,
439 char *msg)
440 {
441 pr_err("slab error in %s(): cache `%s': %s\n",
442 function, cachep->name, msg);
443 dump_stack();
444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
445 }
446 #endif
447
448 /*
449 * By default on NUMA we use alien caches to stage the freeing of
450 * objects allocated from other nodes. This causes massive memory
451 * inefficiencies when using fake NUMA setup to split memory into a
452 * large number of small nodes, so it can be disabled on the command
453 * line
454 */
455
456 static int use_alien_caches __read_mostly = 1;
noaliencache_setup(char * s)457 static int __init noaliencache_setup(char *s)
458 {
459 use_alien_caches = 0;
460 return 1;
461 }
462 __setup("noaliencache", noaliencache_setup);
463
slab_max_order_setup(char * str)464 static int __init slab_max_order_setup(char *str)
465 {
466 get_option(&str, &slab_max_order);
467 slab_max_order = slab_max_order < 0 ? 0 :
468 min(slab_max_order, MAX_ORDER);
469 slab_max_order_set = true;
470
471 return 1;
472 }
473 __setup("slab_max_order=", slab_max_order_setup);
474
475 #ifdef CONFIG_NUMA
476 /*
477 * Special reaping functions for NUMA systems called from cache_reap().
478 * These take care of doing round robin flushing of alien caches (containing
479 * objects freed on different nodes from which they were allocated) and the
480 * flushing of remote pcps by calling drain_node_pages.
481 */
482 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
483
init_reap_node(int cpu)484 static void init_reap_node(int cpu)
485 {
486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
487 node_online_map);
488 }
489
next_reap_node(void)490 static void next_reap_node(void)
491 {
492 int node = __this_cpu_read(slab_reap_node);
493
494 node = next_node_in(node, node_online_map);
495 __this_cpu_write(slab_reap_node, node);
496 }
497
498 #else
499 #define init_reap_node(cpu) do { } while (0)
500 #define next_reap_node(void) do { } while (0)
501 #endif
502
503 /*
504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
505 * via the workqueue/eventd.
506 * Add the CPU number into the expiration time to minimize the possibility of
507 * the CPUs getting into lockstep and contending for the global cache chain
508 * lock.
509 */
start_cpu_timer(int cpu)510 static void start_cpu_timer(int cpu)
511 {
512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
513
514 if (reap_work->work.func == NULL) {
515 init_reap_node(cpu);
516 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
517 schedule_delayed_work_on(cpu, reap_work,
518 __round_jiffies_relative(HZ, cpu));
519 }
520 }
521
init_arraycache(struct array_cache * ac,int limit,int batch)522 static void init_arraycache(struct array_cache *ac, int limit, int batch)
523 {
524 if (ac) {
525 ac->avail = 0;
526 ac->limit = limit;
527 ac->batchcount = batch;
528 ac->touched = 0;
529 }
530 }
531
alloc_arraycache(int node,int entries,int batchcount,gfp_t gfp)532 static struct array_cache *alloc_arraycache(int node, int entries,
533 int batchcount, gfp_t gfp)
534 {
535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
536 struct array_cache *ac = NULL;
537
538 ac = kmalloc_node(memsize, gfp, node);
539 /*
540 * The array_cache structures contain pointers to free object.
541 * However, when such objects are allocated or transferred to another
542 * cache the pointers are not cleared and they could be counted as
543 * valid references during a kmemleak scan. Therefore, kmemleak must
544 * not scan such objects.
545 */
546 kmemleak_no_scan(ac);
547 init_arraycache(ac, entries, batchcount);
548 return ac;
549 }
550
cache_free_pfmemalloc(struct kmem_cache * cachep,struct slab * slab,void * objp)551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
552 struct slab *slab, void *objp)
553 {
554 struct kmem_cache_node *n;
555 int slab_node;
556 LIST_HEAD(list);
557
558 slab_node = slab_nid(slab);
559 n = get_node(cachep, slab_node);
560
561 raw_spin_lock(&n->list_lock);
562 free_block(cachep, &objp, 1, slab_node, &list);
563 raw_spin_unlock(&n->list_lock);
564
565 slabs_destroy(cachep, &list);
566 }
567
568 /*
569 * Transfer objects in one arraycache to another.
570 * Locking must be handled by the caller.
571 *
572 * Return the number of entries transferred.
573 */
transfer_objects(struct array_cache * to,struct array_cache * from,unsigned int max)574 static int transfer_objects(struct array_cache *to,
575 struct array_cache *from, unsigned int max)
576 {
577 /* Figure out how many entries to transfer */
578 int nr = min3(from->avail, max, to->limit - to->avail);
579
580 if (!nr)
581 return 0;
582
583 memcpy(to->entry + to->avail, from->entry + from->avail - nr,
584 sizeof(void *) *nr);
585
586 from->avail -= nr;
587 to->avail += nr;
588 return nr;
589 }
590
591 /* &alien->lock must be held by alien callers. */
__free_one(struct array_cache * ac,void * objp)592 static __always_inline void __free_one(struct array_cache *ac, void *objp)
593 {
594 /* Avoid trivial double-free. */
595 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
596 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
597 return;
598 ac->entry[ac->avail++] = objp;
599 }
600
601 #ifndef CONFIG_NUMA
602
603 #define drain_alien_cache(cachep, alien) do { } while (0)
604 #define reap_alien(cachep, n) do { } while (0)
605
alloc_alien_cache(int node,int limit,gfp_t gfp)606 static inline struct alien_cache **alloc_alien_cache(int node,
607 int limit, gfp_t gfp)
608 {
609 return NULL;
610 }
611
free_alien_cache(struct alien_cache ** ac_ptr)612 static inline void free_alien_cache(struct alien_cache **ac_ptr)
613 {
614 }
615
cache_free_alien(struct kmem_cache * cachep,void * objp)616 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
617 {
618 return 0;
619 }
620
gfp_exact_node(gfp_t flags)621 static inline gfp_t gfp_exact_node(gfp_t flags)
622 {
623 return flags & ~__GFP_NOFAIL;
624 }
625
626 #else /* CONFIG_NUMA */
627
__alloc_alien_cache(int node,int entries,int batch,gfp_t gfp)628 static struct alien_cache *__alloc_alien_cache(int node, int entries,
629 int batch, gfp_t gfp)
630 {
631 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
632 struct alien_cache *alc = NULL;
633
634 alc = kmalloc_node(memsize, gfp, node);
635 if (alc) {
636 kmemleak_no_scan(alc);
637 init_arraycache(&alc->ac, entries, batch);
638 spin_lock_init(&alc->lock);
639 }
640 return alc;
641 }
642
alloc_alien_cache(int node,int limit,gfp_t gfp)643 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
644 {
645 struct alien_cache **alc_ptr;
646 int i;
647
648 if (limit > 1)
649 limit = 12;
650 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
651 if (!alc_ptr)
652 return NULL;
653
654 for_each_node(i) {
655 if (i == node || !node_online(i))
656 continue;
657 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
658 if (!alc_ptr[i]) {
659 for (i--; i >= 0; i--)
660 kfree(alc_ptr[i]);
661 kfree(alc_ptr);
662 return NULL;
663 }
664 }
665 return alc_ptr;
666 }
667
free_alien_cache(struct alien_cache ** alc_ptr)668 static void free_alien_cache(struct alien_cache **alc_ptr)
669 {
670 int i;
671
672 if (!alc_ptr)
673 return;
674 for_each_node(i)
675 kfree(alc_ptr[i]);
676 kfree(alc_ptr);
677 }
678
__drain_alien_cache(struct kmem_cache * cachep,struct array_cache * ac,int node,struct list_head * list)679 static void __drain_alien_cache(struct kmem_cache *cachep,
680 struct array_cache *ac, int node,
681 struct list_head *list)
682 {
683 struct kmem_cache_node *n = get_node(cachep, node);
684
685 if (ac->avail) {
686 raw_spin_lock(&n->list_lock);
687 /*
688 * Stuff objects into the remote nodes shared array first.
689 * That way we could avoid the overhead of putting the objects
690 * into the free lists and getting them back later.
691 */
692 if (n->shared)
693 transfer_objects(n->shared, ac, ac->limit);
694
695 free_block(cachep, ac->entry, ac->avail, node, list);
696 ac->avail = 0;
697 raw_spin_unlock(&n->list_lock);
698 }
699 }
700
701 /*
702 * Called from cache_reap() to regularly drain alien caches round robin.
703 */
reap_alien(struct kmem_cache * cachep,struct kmem_cache_node * n)704 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
705 {
706 int node = __this_cpu_read(slab_reap_node);
707
708 if (n->alien) {
709 struct alien_cache *alc = n->alien[node];
710 struct array_cache *ac;
711
712 if (alc) {
713 ac = &alc->ac;
714 if (ac->avail && spin_trylock_irq(&alc->lock)) {
715 LIST_HEAD(list);
716
717 __drain_alien_cache(cachep, ac, node, &list);
718 spin_unlock_irq(&alc->lock);
719 slabs_destroy(cachep, &list);
720 }
721 }
722 }
723 }
724
drain_alien_cache(struct kmem_cache * cachep,struct alien_cache ** alien)725 static void drain_alien_cache(struct kmem_cache *cachep,
726 struct alien_cache **alien)
727 {
728 int i = 0;
729 struct alien_cache *alc;
730 struct array_cache *ac;
731 unsigned long flags;
732
733 for_each_online_node(i) {
734 alc = alien[i];
735 if (alc) {
736 LIST_HEAD(list);
737
738 ac = &alc->ac;
739 spin_lock_irqsave(&alc->lock, flags);
740 __drain_alien_cache(cachep, ac, i, &list);
741 spin_unlock_irqrestore(&alc->lock, flags);
742 slabs_destroy(cachep, &list);
743 }
744 }
745 }
746
__cache_free_alien(struct kmem_cache * cachep,void * objp,int node,int slab_node)747 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
748 int node, int slab_node)
749 {
750 struct kmem_cache_node *n;
751 struct alien_cache *alien = NULL;
752 struct array_cache *ac;
753 LIST_HEAD(list);
754
755 n = get_node(cachep, node);
756 STATS_INC_NODEFREES(cachep);
757 if (n->alien && n->alien[slab_node]) {
758 alien = n->alien[slab_node];
759 ac = &alien->ac;
760 spin_lock(&alien->lock);
761 if (unlikely(ac->avail == ac->limit)) {
762 STATS_INC_ACOVERFLOW(cachep);
763 __drain_alien_cache(cachep, ac, slab_node, &list);
764 }
765 __free_one(ac, objp);
766 spin_unlock(&alien->lock);
767 slabs_destroy(cachep, &list);
768 } else {
769 n = get_node(cachep, slab_node);
770 raw_spin_lock(&n->list_lock);
771 free_block(cachep, &objp, 1, slab_node, &list);
772 raw_spin_unlock(&n->list_lock);
773 slabs_destroy(cachep, &list);
774 }
775 return 1;
776 }
777
cache_free_alien(struct kmem_cache * cachep,void * objp)778 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
779 {
780 int slab_node = slab_nid(virt_to_slab(objp));
781 int node = numa_mem_id();
782 /*
783 * Make sure we are not freeing an object from another node to the array
784 * cache on this cpu.
785 */
786 if (likely(node == slab_node))
787 return 0;
788
789 return __cache_free_alien(cachep, objp, node, slab_node);
790 }
791
792 /*
793 * Construct gfp mask to allocate from a specific node but do not reclaim or
794 * warn about failures.
795 */
gfp_exact_node(gfp_t flags)796 static inline gfp_t gfp_exact_node(gfp_t flags)
797 {
798 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
799 }
800 #endif
801
init_cache_node(struct kmem_cache * cachep,int node,gfp_t gfp)802 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
803 {
804 struct kmem_cache_node *n;
805
806 /*
807 * Set up the kmem_cache_node for cpu before we can
808 * begin anything. Make sure some other cpu on this
809 * node has not already allocated this
810 */
811 n = get_node(cachep, node);
812 if (n) {
813 raw_spin_lock_irq(&n->list_lock);
814 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
815 cachep->num;
816 raw_spin_unlock_irq(&n->list_lock);
817
818 return 0;
819 }
820
821 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
822 if (!n)
823 return -ENOMEM;
824
825 kmem_cache_node_init(n);
826 n->next_reap = jiffies + REAPTIMEOUT_NODE +
827 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
828
829 n->free_limit =
830 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
831
832 /*
833 * The kmem_cache_nodes don't come and go as CPUs
834 * come and go. slab_mutex provides sufficient
835 * protection here.
836 */
837 cachep->node[node] = n;
838
839 return 0;
840 }
841
842 #if defined(CONFIG_NUMA) || defined(CONFIG_SMP)
843 /*
844 * Allocates and initializes node for a node on each slab cache, used for
845 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
846 * will be allocated off-node since memory is not yet online for the new node.
847 * When hotplugging memory or a cpu, existing nodes are not replaced if
848 * already in use.
849 *
850 * Must hold slab_mutex.
851 */
init_cache_node_node(int node)852 static int init_cache_node_node(int node)
853 {
854 int ret;
855 struct kmem_cache *cachep;
856
857 list_for_each_entry(cachep, &slab_caches, list) {
858 ret = init_cache_node(cachep, node, GFP_KERNEL);
859 if (ret)
860 return ret;
861 }
862
863 return 0;
864 }
865 #endif
866
setup_kmem_cache_node(struct kmem_cache * cachep,int node,gfp_t gfp,bool force_change)867 static int setup_kmem_cache_node(struct kmem_cache *cachep,
868 int node, gfp_t gfp, bool force_change)
869 {
870 int ret = -ENOMEM;
871 struct kmem_cache_node *n;
872 struct array_cache *old_shared = NULL;
873 struct array_cache *new_shared = NULL;
874 struct alien_cache **new_alien = NULL;
875 LIST_HEAD(list);
876
877 if (use_alien_caches) {
878 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
879 if (!new_alien)
880 goto fail;
881 }
882
883 if (cachep->shared) {
884 new_shared = alloc_arraycache(node,
885 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
886 if (!new_shared)
887 goto fail;
888 }
889
890 ret = init_cache_node(cachep, node, gfp);
891 if (ret)
892 goto fail;
893
894 n = get_node(cachep, node);
895 raw_spin_lock_irq(&n->list_lock);
896 if (n->shared && force_change) {
897 free_block(cachep, n->shared->entry,
898 n->shared->avail, node, &list);
899 n->shared->avail = 0;
900 }
901
902 if (!n->shared || force_change) {
903 old_shared = n->shared;
904 n->shared = new_shared;
905 new_shared = NULL;
906 }
907
908 if (!n->alien) {
909 n->alien = new_alien;
910 new_alien = NULL;
911 }
912
913 raw_spin_unlock_irq(&n->list_lock);
914 slabs_destroy(cachep, &list);
915
916 /*
917 * To protect lockless access to n->shared during irq disabled context.
918 * If n->shared isn't NULL in irq disabled context, accessing to it is
919 * guaranteed to be valid until irq is re-enabled, because it will be
920 * freed after synchronize_rcu().
921 */
922 if (old_shared && force_change)
923 synchronize_rcu();
924
925 fail:
926 kfree(old_shared);
927 kfree(new_shared);
928 free_alien_cache(new_alien);
929
930 return ret;
931 }
932
933 #ifdef CONFIG_SMP
934
cpuup_canceled(long cpu)935 static void cpuup_canceled(long cpu)
936 {
937 struct kmem_cache *cachep;
938 struct kmem_cache_node *n = NULL;
939 int node = cpu_to_mem(cpu);
940 const struct cpumask *mask = cpumask_of_node(node);
941
942 list_for_each_entry(cachep, &slab_caches, list) {
943 struct array_cache *nc;
944 struct array_cache *shared;
945 struct alien_cache **alien;
946 LIST_HEAD(list);
947
948 n = get_node(cachep, node);
949 if (!n)
950 continue;
951
952 raw_spin_lock_irq(&n->list_lock);
953
954 /* Free limit for this kmem_cache_node */
955 n->free_limit -= cachep->batchcount;
956
957 /* cpu is dead; no one can alloc from it. */
958 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
959 free_block(cachep, nc->entry, nc->avail, node, &list);
960 nc->avail = 0;
961
962 if (!cpumask_empty(mask)) {
963 raw_spin_unlock_irq(&n->list_lock);
964 goto free_slab;
965 }
966
967 shared = n->shared;
968 if (shared) {
969 free_block(cachep, shared->entry,
970 shared->avail, node, &list);
971 n->shared = NULL;
972 }
973
974 alien = n->alien;
975 n->alien = NULL;
976
977 raw_spin_unlock_irq(&n->list_lock);
978
979 kfree(shared);
980 if (alien) {
981 drain_alien_cache(cachep, alien);
982 free_alien_cache(alien);
983 }
984
985 free_slab:
986 slabs_destroy(cachep, &list);
987 }
988 /*
989 * In the previous loop, all the objects were freed to
990 * the respective cache's slabs, now we can go ahead and
991 * shrink each nodelist to its limit.
992 */
993 list_for_each_entry(cachep, &slab_caches, list) {
994 n = get_node(cachep, node);
995 if (!n)
996 continue;
997 drain_freelist(cachep, n, INT_MAX);
998 }
999 }
1000
cpuup_prepare(long cpu)1001 static int cpuup_prepare(long cpu)
1002 {
1003 struct kmem_cache *cachep;
1004 int node = cpu_to_mem(cpu);
1005 int err;
1006
1007 /*
1008 * We need to do this right in the beginning since
1009 * alloc_arraycache's are going to use this list.
1010 * kmalloc_node allows us to add the slab to the right
1011 * kmem_cache_node and not this cpu's kmem_cache_node
1012 */
1013 err = init_cache_node_node(node);
1014 if (err < 0)
1015 goto bad;
1016
1017 /*
1018 * Now we can go ahead with allocating the shared arrays and
1019 * array caches
1020 */
1021 list_for_each_entry(cachep, &slab_caches, list) {
1022 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1023 if (err)
1024 goto bad;
1025 }
1026
1027 return 0;
1028 bad:
1029 cpuup_canceled(cpu);
1030 return -ENOMEM;
1031 }
1032
slab_prepare_cpu(unsigned int cpu)1033 int slab_prepare_cpu(unsigned int cpu)
1034 {
1035 int err;
1036
1037 mutex_lock(&slab_mutex);
1038 err = cpuup_prepare(cpu);
1039 mutex_unlock(&slab_mutex);
1040 return err;
1041 }
1042
1043 /*
1044 * This is called for a failed online attempt and for a successful
1045 * offline.
1046 *
1047 * Even if all the cpus of a node are down, we don't free the
1048 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
1049 * a kmalloc allocation from another cpu for memory from the node of
1050 * the cpu going down. The kmem_cache_node structure is usually allocated from
1051 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1052 */
slab_dead_cpu(unsigned int cpu)1053 int slab_dead_cpu(unsigned int cpu)
1054 {
1055 mutex_lock(&slab_mutex);
1056 cpuup_canceled(cpu);
1057 mutex_unlock(&slab_mutex);
1058 return 0;
1059 }
1060 #endif
1061
slab_online_cpu(unsigned int cpu)1062 static int slab_online_cpu(unsigned int cpu)
1063 {
1064 start_cpu_timer(cpu);
1065 return 0;
1066 }
1067
slab_offline_cpu(unsigned int cpu)1068 static int slab_offline_cpu(unsigned int cpu)
1069 {
1070 /*
1071 * Shutdown cache reaper. Note that the slab_mutex is held so
1072 * that if cache_reap() is invoked it cannot do anything
1073 * expensive but will only modify reap_work and reschedule the
1074 * timer.
1075 */
1076 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1077 /* Now the cache_reaper is guaranteed to be not running. */
1078 per_cpu(slab_reap_work, cpu).work.func = NULL;
1079 return 0;
1080 }
1081
1082 #if defined(CONFIG_NUMA)
1083 /*
1084 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1085 * Returns -EBUSY if all objects cannot be drained so that the node is not
1086 * removed.
1087 *
1088 * Must hold slab_mutex.
1089 */
drain_cache_node_node(int node)1090 static int __meminit drain_cache_node_node(int node)
1091 {
1092 struct kmem_cache *cachep;
1093 int ret = 0;
1094
1095 list_for_each_entry(cachep, &slab_caches, list) {
1096 struct kmem_cache_node *n;
1097
1098 n = get_node(cachep, node);
1099 if (!n)
1100 continue;
1101
1102 drain_freelist(cachep, n, INT_MAX);
1103
1104 if (!list_empty(&n->slabs_full) ||
1105 !list_empty(&n->slabs_partial)) {
1106 ret = -EBUSY;
1107 break;
1108 }
1109 }
1110 return ret;
1111 }
1112
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)1113 static int __meminit slab_memory_callback(struct notifier_block *self,
1114 unsigned long action, void *arg)
1115 {
1116 struct memory_notify *mnb = arg;
1117 int ret = 0;
1118 int nid;
1119
1120 nid = mnb->status_change_nid;
1121 if (nid < 0)
1122 goto out;
1123
1124 switch (action) {
1125 case MEM_GOING_ONLINE:
1126 mutex_lock(&slab_mutex);
1127 ret = init_cache_node_node(nid);
1128 mutex_unlock(&slab_mutex);
1129 break;
1130 case MEM_GOING_OFFLINE:
1131 mutex_lock(&slab_mutex);
1132 ret = drain_cache_node_node(nid);
1133 mutex_unlock(&slab_mutex);
1134 break;
1135 case MEM_ONLINE:
1136 case MEM_OFFLINE:
1137 case MEM_CANCEL_ONLINE:
1138 case MEM_CANCEL_OFFLINE:
1139 break;
1140 }
1141 out:
1142 return notifier_from_errno(ret);
1143 }
1144 #endif /* CONFIG_NUMA */
1145
1146 /*
1147 * swap the static kmem_cache_node with kmalloced memory
1148 */
init_list(struct kmem_cache * cachep,struct kmem_cache_node * list,int nodeid)1149 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1150 int nodeid)
1151 {
1152 struct kmem_cache_node *ptr;
1153
1154 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1155 BUG_ON(!ptr);
1156
1157 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1158 /*
1159 * Do not assume that spinlocks can be initialized via memcpy:
1160 */
1161 raw_spin_lock_init(&ptr->list_lock);
1162
1163 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1164 cachep->node[nodeid] = ptr;
1165 }
1166
1167 /*
1168 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1169 * size of kmem_cache_node.
1170 */
set_up_node(struct kmem_cache * cachep,int index)1171 static void __init set_up_node(struct kmem_cache *cachep, int index)
1172 {
1173 int node;
1174
1175 for_each_online_node(node) {
1176 cachep->node[node] = &init_kmem_cache_node[index + node];
1177 cachep->node[node]->next_reap = jiffies +
1178 REAPTIMEOUT_NODE +
1179 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1180 }
1181 }
1182
1183 /*
1184 * Initialisation. Called after the page allocator have been initialised and
1185 * before smp_init().
1186 */
kmem_cache_init(void)1187 void __init kmem_cache_init(void)
1188 {
1189 int i;
1190
1191 kmem_cache = &kmem_cache_boot;
1192
1193 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1194 use_alien_caches = 0;
1195
1196 for (i = 0; i < NUM_INIT_LISTS; i++)
1197 kmem_cache_node_init(&init_kmem_cache_node[i]);
1198
1199 /*
1200 * Fragmentation resistance on low memory - only use bigger
1201 * page orders on machines with more than 32MB of memory if
1202 * not overridden on the command line.
1203 */
1204 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1205 slab_max_order = SLAB_MAX_ORDER_HI;
1206
1207 /* Bootstrap is tricky, because several objects are allocated
1208 * from caches that do not exist yet:
1209 * 1) initialize the kmem_cache cache: it contains the struct
1210 * kmem_cache structures of all caches, except kmem_cache itself:
1211 * kmem_cache is statically allocated.
1212 * Initially an __init data area is used for the head array and the
1213 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1214 * array at the end of the bootstrap.
1215 * 2) Create the first kmalloc cache.
1216 * The struct kmem_cache for the new cache is allocated normally.
1217 * An __init data area is used for the head array.
1218 * 3) Create the remaining kmalloc caches, with minimally sized
1219 * head arrays.
1220 * 4) Replace the __init data head arrays for kmem_cache and the first
1221 * kmalloc cache with kmalloc allocated arrays.
1222 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1223 * the other cache's with kmalloc allocated memory.
1224 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1225 */
1226
1227 /* 1) create the kmem_cache */
1228
1229 /*
1230 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1231 */
1232 create_boot_cache(kmem_cache, "kmem_cache",
1233 offsetof(struct kmem_cache, node) +
1234 nr_node_ids * sizeof(struct kmem_cache_node *),
1235 SLAB_HWCACHE_ALIGN, 0, 0);
1236 list_add(&kmem_cache->list, &slab_caches);
1237 slab_state = PARTIAL;
1238
1239 /*
1240 * Initialize the caches that provide memory for the kmem_cache_node
1241 * structures first. Without this, further allocations will bug.
1242 */
1243 new_kmalloc_cache(INDEX_NODE, KMALLOC_NORMAL, ARCH_KMALLOC_FLAGS);
1244 slab_state = PARTIAL_NODE;
1245 setup_kmalloc_cache_index_table();
1246
1247 /* 5) Replace the bootstrap kmem_cache_node */
1248 {
1249 int nid;
1250
1251 for_each_online_node(nid) {
1252 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1253
1254 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1255 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1256 }
1257 }
1258
1259 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1260 }
1261
kmem_cache_init_late(void)1262 void __init kmem_cache_init_late(void)
1263 {
1264 struct kmem_cache *cachep;
1265
1266 /* 6) resize the head arrays to their final sizes */
1267 mutex_lock(&slab_mutex);
1268 list_for_each_entry(cachep, &slab_caches, list)
1269 if (enable_cpucache(cachep, GFP_NOWAIT))
1270 BUG();
1271 mutex_unlock(&slab_mutex);
1272
1273 /* Done! */
1274 slab_state = FULL;
1275
1276 #ifdef CONFIG_NUMA
1277 /*
1278 * Register a memory hotplug callback that initializes and frees
1279 * node.
1280 */
1281 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1282 #endif
1283
1284 /*
1285 * The reap timers are started later, with a module init call: That part
1286 * of the kernel is not yet operational.
1287 */
1288 }
1289
cpucache_init(void)1290 static int __init cpucache_init(void)
1291 {
1292 int ret;
1293
1294 /*
1295 * Register the timers that return unneeded pages to the page allocator
1296 */
1297 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1298 slab_online_cpu, slab_offline_cpu);
1299 WARN_ON(ret < 0);
1300
1301 return 0;
1302 }
1303 __initcall(cpucache_init);
1304
1305 static noinline void
slab_out_of_memory(struct kmem_cache * cachep,gfp_t gfpflags,int nodeid)1306 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1307 {
1308 #if DEBUG
1309 struct kmem_cache_node *n;
1310 unsigned long flags;
1311 int node;
1312 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1313 DEFAULT_RATELIMIT_BURST);
1314
1315 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1316 return;
1317
1318 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1319 nodeid, gfpflags, &gfpflags);
1320 pr_warn(" cache: %s, object size: %d, order: %d\n",
1321 cachep->name, cachep->size, cachep->gfporder);
1322
1323 for_each_kmem_cache_node(cachep, node, n) {
1324 unsigned long total_slabs, free_slabs, free_objs;
1325
1326 raw_spin_lock_irqsave(&n->list_lock, flags);
1327 total_slabs = n->total_slabs;
1328 free_slabs = n->free_slabs;
1329 free_objs = n->free_objects;
1330 raw_spin_unlock_irqrestore(&n->list_lock, flags);
1331
1332 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1333 node, total_slabs - free_slabs, total_slabs,
1334 (total_slabs * cachep->num) - free_objs,
1335 total_slabs * cachep->num);
1336 }
1337 #endif
1338 }
1339
1340 /*
1341 * Interface to system's page allocator. No need to hold the
1342 * kmem_cache_node ->list_lock.
1343 *
1344 * If we requested dmaable memory, we will get it. Even if we
1345 * did not request dmaable memory, we might get it, but that
1346 * would be relatively rare and ignorable.
1347 */
kmem_getpages(struct kmem_cache * cachep,gfp_t flags,int nodeid)1348 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1349 int nodeid)
1350 {
1351 struct folio *folio;
1352 struct slab *slab;
1353
1354 flags |= cachep->allocflags;
1355
1356 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
1357 if (!folio) {
1358 slab_out_of_memory(cachep, flags, nodeid);
1359 return NULL;
1360 }
1361
1362 slab = folio_slab(folio);
1363
1364 account_slab(slab, cachep->gfporder, cachep, flags);
1365 __folio_set_slab(folio);
1366 /* Make the flag visible before any changes to folio->mapping */
1367 smp_wmb();
1368 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1369 if (sk_memalloc_socks() && folio_is_pfmemalloc(folio))
1370 slab_set_pfmemalloc(slab);
1371
1372 return slab;
1373 }
1374
1375 /*
1376 * Interface to system's page release.
1377 */
kmem_freepages(struct kmem_cache * cachep,struct slab * slab)1378 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
1379 {
1380 int order = cachep->gfporder;
1381 struct folio *folio = slab_folio(slab);
1382
1383 BUG_ON(!folio_test_slab(folio));
1384 __slab_clear_pfmemalloc(slab);
1385 page_mapcount_reset(&folio->page);
1386 folio->mapping = NULL;
1387 /* Make the mapping reset visible before clearing the flag */
1388 smp_wmb();
1389 __folio_clear_slab(folio);
1390
1391 mm_account_reclaimed_pages(1 << order);
1392 unaccount_slab(slab, order, cachep);
1393 __free_pages(&folio->page, order);
1394 }
1395
kmem_rcu_free(struct rcu_head * head)1396 static void kmem_rcu_free(struct rcu_head *head)
1397 {
1398 struct kmem_cache *cachep;
1399 struct slab *slab;
1400
1401 slab = container_of(head, struct slab, rcu_head);
1402 cachep = slab->slab_cache;
1403
1404 kmem_freepages(cachep, slab);
1405 }
1406
1407 #if DEBUG
is_debug_pagealloc_cache(struct kmem_cache * cachep)1408 static inline bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1409 {
1410 return debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1411 ((cachep->size % PAGE_SIZE) == 0);
1412 }
1413
1414 #ifdef CONFIG_DEBUG_PAGEALLOC
slab_kernel_map(struct kmem_cache * cachep,void * objp,int map)1415 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1416 {
1417 if (!is_debug_pagealloc_cache(cachep))
1418 return;
1419
1420 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1421 }
1422
1423 #else
slab_kernel_map(struct kmem_cache * cachep,void * objp,int map)1424 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1425 int map) {}
1426
1427 #endif
1428
poison_obj(struct kmem_cache * cachep,void * addr,unsigned char val)1429 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1430 {
1431 int size = cachep->object_size;
1432 addr = &((char *)addr)[obj_offset(cachep)];
1433
1434 memset(addr, val, size);
1435 *(unsigned char *)(addr + size - 1) = POISON_END;
1436 }
1437
dump_line(char * data,int offset,int limit)1438 static void dump_line(char *data, int offset, int limit)
1439 {
1440 int i;
1441 unsigned char error = 0;
1442 int bad_count = 0;
1443
1444 pr_err("%03x: ", offset);
1445 for (i = 0; i < limit; i++) {
1446 if (data[offset + i] != POISON_FREE) {
1447 error = data[offset + i];
1448 bad_count++;
1449 }
1450 }
1451 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1452 &data[offset], limit, 1);
1453
1454 if (bad_count == 1) {
1455 error ^= POISON_FREE;
1456 if (!(error & (error - 1))) {
1457 pr_err("Single bit error detected. Probably bad RAM.\n");
1458 #ifdef CONFIG_X86
1459 pr_err("Run memtest86+ or a similar memory test tool.\n");
1460 #else
1461 pr_err("Run a memory test tool.\n");
1462 #endif
1463 }
1464 }
1465 }
1466 #endif
1467
1468 #if DEBUG
1469
print_objinfo(struct kmem_cache * cachep,void * objp,int lines)1470 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1471 {
1472 int i, size;
1473 char *realobj;
1474
1475 if (cachep->flags & SLAB_RED_ZONE) {
1476 pr_err("Redzone: 0x%llx/0x%llx\n",
1477 *dbg_redzone1(cachep, objp),
1478 *dbg_redzone2(cachep, objp));
1479 }
1480
1481 if (cachep->flags & SLAB_STORE_USER)
1482 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1483 realobj = (char *)objp + obj_offset(cachep);
1484 size = cachep->object_size;
1485 for (i = 0; i < size && lines; i += 16, lines--) {
1486 int limit;
1487 limit = 16;
1488 if (i + limit > size)
1489 limit = size - i;
1490 dump_line(realobj, i, limit);
1491 }
1492 }
1493
check_poison_obj(struct kmem_cache * cachep,void * objp)1494 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1495 {
1496 char *realobj;
1497 int size, i;
1498 int lines = 0;
1499
1500 if (is_debug_pagealloc_cache(cachep))
1501 return;
1502
1503 realobj = (char *)objp + obj_offset(cachep);
1504 size = cachep->object_size;
1505
1506 for (i = 0; i < size; i++) {
1507 char exp = POISON_FREE;
1508 if (i == size - 1)
1509 exp = POISON_END;
1510 if (realobj[i] != exp) {
1511 int limit;
1512 /* Mismatch ! */
1513 /* Print header */
1514 if (lines == 0) {
1515 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1516 print_tainted(), cachep->name,
1517 realobj, size);
1518 print_objinfo(cachep, objp, 0);
1519 }
1520 /* Hexdump the affected line */
1521 i = (i / 16) * 16;
1522 limit = 16;
1523 if (i + limit > size)
1524 limit = size - i;
1525 dump_line(realobj, i, limit);
1526 i += 16;
1527 lines++;
1528 /* Limit to 5 lines */
1529 if (lines > 5)
1530 break;
1531 }
1532 }
1533 if (lines != 0) {
1534 /* Print some data about the neighboring objects, if they
1535 * exist:
1536 */
1537 struct slab *slab = virt_to_slab(objp);
1538 unsigned int objnr;
1539
1540 objnr = obj_to_index(cachep, slab, objp);
1541 if (objnr) {
1542 objp = index_to_obj(cachep, slab, objnr - 1);
1543 realobj = (char *)objp + obj_offset(cachep);
1544 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1545 print_objinfo(cachep, objp, 2);
1546 }
1547 if (objnr + 1 < cachep->num) {
1548 objp = index_to_obj(cachep, slab, objnr + 1);
1549 realobj = (char *)objp + obj_offset(cachep);
1550 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1551 print_objinfo(cachep, objp, 2);
1552 }
1553 }
1554 }
1555 #endif
1556
1557 #if DEBUG
slab_destroy_debugcheck(struct kmem_cache * cachep,struct slab * slab)1558 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1559 struct slab *slab)
1560 {
1561 int i;
1562
1563 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1564 poison_obj(cachep, slab->freelist - obj_offset(cachep),
1565 POISON_FREE);
1566 }
1567
1568 for (i = 0; i < cachep->num; i++) {
1569 void *objp = index_to_obj(cachep, slab, i);
1570
1571 if (cachep->flags & SLAB_POISON) {
1572 check_poison_obj(cachep, objp);
1573 slab_kernel_map(cachep, objp, 1);
1574 }
1575 if (cachep->flags & SLAB_RED_ZONE) {
1576 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1577 slab_error(cachep, "start of a freed object was overwritten");
1578 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1579 slab_error(cachep, "end of a freed object was overwritten");
1580 }
1581 }
1582 }
1583 #else
slab_destroy_debugcheck(struct kmem_cache * cachep,struct slab * slab)1584 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1585 struct slab *slab)
1586 {
1587 }
1588 #endif
1589
1590 /**
1591 * slab_destroy - destroy and release all objects in a slab
1592 * @cachep: cache pointer being destroyed
1593 * @slab: slab being destroyed
1594 *
1595 * Destroy all the objs in a slab, and release the mem back to the system.
1596 * Before calling the slab must have been unlinked from the cache. The
1597 * kmem_cache_node ->list_lock is not held/needed.
1598 */
slab_destroy(struct kmem_cache * cachep,struct slab * slab)1599 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
1600 {
1601 void *freelist;
1602
1603 freelist = slab->freelist;
1604 slab_destroy_debugcheck(cachep, slab);
1605 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1606 call_rcu(&slab->rcu_head, kmem_rcu_free);
1607 else
1608 kmem_freepages(cachep, slab);
1609
1610 /*
1611 * From now on, we don't use freelist
1612 * although actual page can be freed in rcu context
1613 */
1614 if (OFF_SLAB(cachep))
1615 kfree(freelist);
1616 }
1617
1618 /*
1619 * Update the size of the caches before calling slabs_destroy as it may
1620 * recursively call kfree.
1621 */
slabs_destroy(struct kmem_cache * cachep,struct list_head * list)1622 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1623 {
1624 struct slab *slab, *n;
1625
1626 list_for_each_entry_safe(slab, n, list, slab_list) {
1627 list_del(&slab->slab_list);
1628 slab_destroy(cachep, slab);
1629 }
1630 }
1631
1632 /**
1633 * calculate_slab_order - calculate size (page order) of slabs
1634 * @cachep: pointer to the cache that is being created
1635 * @size: size of objects to be created in this cache.
1636 * @flags: slab allocation flags
1637 *
1638 * Also calculates the number of objects per slab.
1639 *
1640 * This could be made much more intelligent. For now, try to avoid using
1641 * high order pages for slabs. When the gfp() functions are more friendly
1642 * towards high-order requests, this should be changed.
1643 *
1644 * Return: number of left-over bytes in a slab
1645 */
calculate_slab_order(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1646 static size_t calculate_slab_order(struct kmem_cache *cachep,
1647 size_t size, slab_flags_t flags)
1648 {
1649 size_t left_over = 0;
1650 int gfporder;
1651
1652 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1653 unsigned int num;
1654 size_t remainder;
1655
1656 num = cache_estimate(gfporder, size, flags, &remainder);
1657 if (!num)
1658 continue;
1659
1660 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1661 if (num > SLAB_OBJ_MAX_NUM)
1662 break;
1663
1664 if (flags & CFLGS_OFF_SLAB) {
1665 struct kmem_cache *freelist_cache;
1666 size_t freelist_size;
1667 size_t freelist_cache_size;
1668
1669 freelist_size = num * sizeof(freelist_idx_t);
1670 if (freelist_size > KMALLOC_MAX_CACHE_SIZE) {
1671 freelist_cache_size = PAGE_SIZE << get_order(freelist_size);
1672 } else {
1673 freelist_cache = kmalloc_slab(freelist_size, 0u, _RET_IP_);
1674 if (!freelist_cache)
1675 continue;
1676 freelist_cache_size = freelist_cache->size;
1677
1678 /*
1679 * Needed to avoid possible looping condition
1680 * in cache_grow_begin()
1681 */
1682 if (OFF_SLAB(freelist_cache))
1683 continue;
1684 }
1685
1686 /* check if off slab has enough benefit */
1687 if (freelist_cache_size > cachep->size / 2)
1688 continue;
1689 }
1690
1691 /* Found something acceptable - save it away */
1692 cachep->num = num;
1693 cachep->gfporder = gfporder;
1694 left_over = remainder;
1695
1696 /*
1697 * A VFS-reclaimable slab tends to have most allocations
1698 * as GFP_NOFS and we really don't want to have to be allocating
1699 * higher-order pages when we are unable to shrink dcache.
1700 */
1701 if (flags & SLAB_RECLAIM_ACCOUNT)
1702 break;
1703
1704 /*
1705 * Large number of objects is good, but very large slabs are
1706 * currently bad for the gfp()s.
1707 */
1708 if (gfporder >= slab_max_order)
1709 break;
1710
1711 /*
1712 * Acceptable internal fragmentation?
1713 */
1714 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1715 break;
1716 }
1717 return left_over;
1718 }
1719
alloc_kmem_cache_cpus(struct kmem_cache * cachep,int entries,int batchcount)1720 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1721 struct kmem_cache *cachep, int entries, int batchcount)
1722 {
1723 int cpu;
1724 size_t size;
1725 struct array_cache __percpu *cpu_cache;
1726
1727 size = sizeof(void *) * entries + sizeof(struct array_cache);
1728 cpu_cache = __alloc_percpu(size, sizeof(void *));
1729
1730 if (!cpu_cache)
1731 return NULL;
1732
1733 for_each_possible_cpu(cpu) {
1734 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1735 entries, batchcount);
1736 }
1737
1738 return cpu_cache;
1739 }
1740
setup_cpu_cache(struct kmem_cache * cachep,gfp_t gfp)1741 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1742 {
1743 if (slab_state >= FULL)
1744 return enable_cpucache(cachep, gfp);
1745
1746 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1747 if (!cachep->cpu_cache)
1748 return 1;
1749
1750 if (slab_state == DOWN) {
1751 /* Creation of first cache (kmem_cache). */
1752 set_up_node(kmem_cache, CACHE_CACHE);
1753 } else if (slab_state == PARTIAL) {
1754 /* For kmem_cache_node */
1755 set_up_node(cachep, SIZE_NODE);
1756 } else {
1757 int node;
1758
1759 for_each_online_node(node) {
1760 cachep->node[node] = kmalloc_node(
1761 sizeof(struct kmem_cache_node), gfp, node);
1762 BUG_ON(!cachep->node[node]);
1763 kmem_cache_node_init(cachep->node[node]);
1764 }
1765 }
1766
1767 cachep->node[numa_mem_id()]->next_reap =
1768 jiffies + REAPTIMEOUT_NODE +
1769 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1770
1771 cpu_cache_get(cachep)->avail = 0;
1772 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1773 cpu_cache_get(cachep)->batchcount = 1;
1774 cpu_cache_get(cachep)->touched = 0;
1775 cachep->batchcount = 1;
1776 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1777 return 0;
1778 }
1779
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1780 slab_flags_t kmem_cache_flags(unsigned int object_size,
1781 slab_flags_t flags, const char *name)
1782 {
1783 return flags;
1784 }
1785
1786 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))1787 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1788 slab_flags_t flags, void (*ctor)(void *))
1789 {
1790 struct kmem_cache *cachep;
1791
1792 cachep = find_mergeable(size, align, flags, name, ctor);
1793 if (cachep) {
1794 cachep->refcount++;
1795
1796 /*
1797 * Adjust the object sizes so that we clear
1798 * the complete object on kzalloc.
1799 */
1800 cachep->object_size = max_t(int, cachep->object_size, size);
1801 }
1802 return cachep;
1803 }
1804
set_objfreelist_slab_cache(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1805 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1806 size_t size, slab_flags_t flags)
1807 {
1808 size_t left;
1809
1810 cachep->num = 0;
1811
1812 /*
1813 * If slab auto-initialization on free is enabled, store the freelist
1814 * off-slab, so that its contents don't end up in one of the allocated
1815 * objects.
1816 */
1817 if (unlikely(slab_want_init_on_free(cachep)))
1818 return false;
1819
1820 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1821 return false;
1822
1823 left = calculate_slab_order(cachep, size,
1824 flags | CFLGS_OBJFREELIST_SLAB);
1825 if (!cachep->num)
1826 return false;
1827
1828 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1829 return false;
1830
1831 cachep->colour = left / cachep->colour_off;
1832
1833 return true;
1834 }
1835
set_off_slab_cache(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1836 static bool set_off_slab_cache(struct kmem_cache *cachep,
1837 size_t size, slab_flags_t flags)
1838 {
1839 size_t left;
1840
1841 cachep->num = 0;
1842
1843 /*
1844 * Always use on-slab management when SLAB_NOLEAKTRACE
1845 * to avoid recursive calls into kmemleak.
1846 */
1847 if (flags & SLAB_NOLEAKTRACE)
1848 return false;
1849
1850 /*
1851 * Size is large, assume best to place the slab management obj
1852 * off-slab (should allow better packing of objs).
1853 */
1854 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1855 if (!cachep->num)
1856 return false;
1857
1858 /*
1859 * If the slab has been placed off-slab, and we have enough space then
1860 * move it on-slab. This is at the expense of any extra colouring.
1861 */
1862 if (left >= cachep->num * sizeof(freelist_idx_t))
1863 return false;
1864
1865 cachep->colour = left / cachep->colour_off;
1866
1867 return true;
1868 }
1869
set_on_slab_cache(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1870 static bool set_on_slab_cache(struct kmem_cache *cachep,
1871 size_t size, slab_flags_t flags)
1872 {
1873 size_t left;
1874
1875 cachep->num = 0;
1876
1877 left = calculate_slab_order(cachep, size, flags);
1878 if (!cachep->num)
1879 return false;
1880
1881 cachep->colour = left / cachep->colour_off;
1882
1883 return true;
1884 }
1885
1886 /*
1887 * __kmem_cache_create - Create a cache.
1888 * @cachep: cache management descriptor
1889 * @flags: SLAB flags
1890 *
1891 * Returns zero on success, nonzero on failure.
1892 *
1893 * The flags are
1894 *
1895 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1896 * to catch references to uninitialised memory.
1897 *
1898 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1899 * for buffer overruns.
1900 *
1901 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1902 * cacheline. This can be beneficial if you're counting cycles as closely
1903 * as davem.
1904 */
__kmem_cache_create(struct kmem_cache * cachep,slab_flags_t flags)1905 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1906 {
1907 size_t ralign = BYTES_PER_WORD;
1908 gfp_t gfp;
1909 int err;
1910 unsigned int size = cachep->size;
1911
1912 #if DEBUG
1913 #if FORCED_DEBUG
1914 /*
1915 * Enable redzoning and last user accounting, except for caches with
1916 * large objects, if the increased size would increase the object size
1917 * above the next power of two: caches with object sizes just above a
1918 * power of two have a significant amount of internal fragmentation.
1919 */
1920 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1921 2 * sizeof(unsigned long long)))
1922 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1923 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1924 flags |= SLAB_POISON;
1925 #endif
1926 #endif
1927
1928 /*
1929 * Check that size is in terms of words. This is needed to avoid
1930 * unaligned accesses for some archs when redzoning is used, and makes
1931 * sure any on-slab bufctl's are also correctly aligned.
1932 */
1933 size = ALIGN(size, BYTES_PER_WORD);
1934
1935 if (flags & SLAB_RED_ZONE) {
1936 ralign = REDZONE_ALIGN;
1937 /* If redzoning, ensure that the second redzone is suitably
1938 * aligned, by adjusting the object size accordingly. */
1939 size = ALIGN(size, REDZONE_ALIGN);
1940 }
1941
1942 /* 3) caller mandated alignment */
1943 if (ralign < cachep->align) {
1944 ralign = cachep->align;
1945 }
1946 /* disable debug if necessary */
1947 if (ralign > __alignof__(unsigned long long))
1948 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1949 /*
1950 * 4) Store it.
1951 */
1952 cachep->align = ralign;
1953 cachep->colour_off = cache_line_size();
1954 /* Offset must be a multiple of the alignment. */
1955 if (cachep->colour_off < cachep->align)
1956 cachep->colour_off = cachep->align;
1957
1958 if (slab_is_available())
1959 gfp = GFP_KERNEL;
1960 else
1961 gfp = GFP_NOWAIT;
1962
1963 #if DEBUG
1964
1965 /*
1966 * Both debugging options require word-alignment which is calculated
1967 * into align above.
1968 */
1969 if (flags & SLAB_RED_ZONE) {
1970 /* add space for red zone words */
1971 cachep->obj_offset += sizeof(unsigned long long);
1972 size += 2 * sizeof(unsigned long long);
1973 }
1974 if (flags & SLAB_STORE_USER) {
1975 /* user store requires one word storage behind the end of
1976 * the real object. But if the second red zone needs to be
1977 * aligned to 64 bits, we must allow that much space.
1978 */
1979 if (flags & SLAB_RED_ZONE)
1980 size += REDZONE_ALIGN;
1981 else
1982 size += BYTES_PER_WORD;
1983 }
1984 #endif
1985
1986 kasan_cache_create(cachep, &size, &flags);
1987
1988 size = ALIGN(size, cachep->align);
1989 /*
1990 * We should restrict the number of objects in a slab to implement
1991 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
1992 */
1993 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
1994 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
1995
1996 #if DEBUG
1997 /*
1998 * To activate debug pagealloc, off-slab management is necessary
1999 * requirement. In early phase of initialization, small sized slab
2000 * doesn't get initialized so it would not be possible. So, we need
2001 * to check size >= 256. It guarantees that all necessary small
2002 * sized slab is initialized in current slab initialization sequence.
2003 */
2004 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2005 size >= 256 && cachep->object_size > cache_line_size()) {
2006 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2007 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2008
2009 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2010 flags |= CFLGS_OFF_SLAB;
2011 cachep->obj_offset += tmp_size - size;
2012 size = tmp_size;
2013 goto done;
2014 }
2015 }
2016 }
2017 #endif
2018
2019 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2020 flags |= CFLGS_OBJFREELIST_SLAB;
2021 goto done;
2022 }
2023
2024 if (set_off_slab_cache(cachep, size, flags)) {
2025 flags |= CFLGS_OFF_SLAB;
2026 goto done;
2027 }
2028
2029 if (set_on_slab_cache(cachep, size, flags))
2030 goto done;
2031
2032 return -E2BIG;
2033
2034 done:
2035 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2036 cachep->flags = flags;
2037 cachep->allocflags = __GFP_COMP;
2038 if (flags & SLAB_CACHE_DMA)
2039 cachep->allocflags |= GFP_DMA;
2040 if (flags & SLAB_CACHE_DMA32)
2041 cachep->allocflags |= GFP_DMA32;
2042 if (flags & SLAB_RECLAIM_ACCOUNT)
2043 cachep->allocflags |= __GFP_RECLAIMABLE;
2044 cachep->size = size;
2045 cachep->reciprocal_buffer_size = reciprocal_value(size);
2046
2047 #if DEBUG
2048 /*
2049 * If we're going to use the generic kernel_map_pages()
2050 * poisoning, then it's going to smash the contents of
2051 * the redzone and userword anyhow, so switch them off.
2052 */
2053 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2054 (cachep->flags & SLAB_POISON) &&
2055 is_debug_pagealloc_cache(cachep))
2056 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2057 #endif
2058
2059 err = setup_cpu_cache(cachep, gfp);
2060 if (err) {
2061 __kmem_cache_release(cachep);
2062 return err;
2063 }
2064
2065 return 0;
2066 }
2067
2068 #if DEBUG
check_irq_off(void)2069 static void check_irq_off(void)
2070 {
2071 BUG_ON(!irqs_disabled());
2072 }
2073
check_irq_on(void)2074 static void check_irq_on(void)
2075 {
2076 BUG_ON(irqs_disabled());
2077 }
2078
check_mutex_acquired(void)2079 static void check_mutex_acquired(void)
2080 {
2081 BUG_ON(!mutex_is_locked(&slab_mutex));
2082 }
2083
check_spinlock_acquired(struct kmem_cache * cachep)2084 static void check_spinlock_acquired(struct kmem_cache *cachep)
2085 {
2086 #ifdef CONFIG_SMP
2087 check_irq_off();
2088 assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2089 #endif
2090 }
2091
check_spinlock_acquired_node(struct kmem_cache * cachep,int node)2092 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2093 {
2094 #ifdef CONFIG_SMP
2095 check_irq_off();
2096 assert_raw_spin_locked(&get_node(cachep, node)->list_lock);
2097 #endif
2098 }
2099
2100 #else
2101 #define check_irq_off() do { } while(0)
2102 #define check_irq_on() do { } while(0)
2103 #define check_mutex_acquired() do { } while(0)
2104 #define check_spinlock_acquired(x) do { } while(0)
2105 #define check_spinlock_acquired_node(x, y) do { } while(0)
2106 #endif
2107
drain_array_locked(struct kmem_cache * cachep,struct array_cache * ac,int node,bool free_all,struct list_head * list)2108 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2109 int node, bool free_all, struct list_head *list)
2110 {
2111 int tofree;
2112
2113 if (!ac || !ac->avail)
2114 return;
2115
2116 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2117 if (tofree > ac->avail)
2118 tofree = (ac->avail + 1) / 2;
2119
2120 free_block(cachep, ac->entry, tofree, node, list);
2121 ac->avail -= tofree;
2122 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2123 }
2124
do_drain(void * arg)2125 static void do_drain(void *arg)
2126 {
2127 struct kmem_cache *cachep = arg;
2128 struct array_cache *ac;
2129 int node = numa_mem_id();
2130 struct kmem_cache_node *n;
2131 LIST_HEAD(list);
2132
2133 check_irq_off();
2134 ac = cpu_cache_get(cachep);
2135 n = get_node(cachep, node);
2136 raw_spin_lock(&n->list_lock);
2137 free_block(cachep, ac->entry, ac->avail, node, &list);
2138 raw_spin_unlock(&n->list_lock);
2139 ac->avail = 0;
2140 slabs_destroy(cachep, &list);
2141 }
2142
drain_cpu_caches(struct kmem_cache * cachep)2143 static void drain_cpu_caches(struct kmem_cache *cachep)
2144 {
2145 struct kmem_cache_node *n;
2146 int node;
2147 LIST_HEAD(list);
2148
2149 on_each_cpu(do_drain, cachep, 1);
2150 check_irq_on();
2151 for_each_kmem_cache_node(cachep, node, n)
2152 if (n->alien)
2153 drain_alien_cache(cachep, n->alien);
2154
2155 for_each_kmem_cache_node(cachep, node, n) {
2156 raw_spin_lock_irq(&n->list_lock);
2157 drain_array_locked(cachep, n->shared, node, true, &list);
2158 raw_spin_unlock_irq(&n->list_lock);
2159
2160 slabs_destroy(cachep, &list);
2161 }
2162 }
2163
2164 /*
2165 * Remove slabs from the list of free slabs.
2166 * Specify the number of slabs to drain in tofree.
2167 *
2168 * Returns the actual number of slabs released.
2169 */
drain_freelist(struct kmem_cache * cache,struct kmem_cache_node * n,int tofree)2170 static int drain_freelist(struct kmem_cache *cache,
2171 struct kmem_cache_node *n, int tofree)
2172 {
2173 struct list_head *p;
2174 int nr_freed;
2175 struct slab *slab;
2176
2177 nr_freed = 0;
2178 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2179
2180 raw_spin_lock_irq(&n->list_lock);
2181 p = n->slabs_free.prev;
2182 if (p == &n->slabs_free) {
2183 raw_spin_unlock_irq(&n->list_lock);
2184 goto out;
2185 }
2186
2187 slab = list_entry(p, struct slab, slab_list);
2188 list_del(&slab->slab_list);
2189 n->free_slabs--;
2190 n->total_slabs--;
2191 /*
2192 * Safe to drop the lock. The slab is no longer linked
2193 * to the cache.
2194 */
2195 n->free_objects -= cache->num;
2196 raw_spin_unlock_irq(&n->list_lock);
2197 slab_destroy(cache, slab);
2198 nr_freed++;
2199
2200 cond_resched();
2201 }
2202 out:
2203 return nr_freed;
2204 }
2205
__kmem_cache_empty(struct kmem_cache * s)2206 bool __kmem_cache_empty(struct kmem_cache *s)
2207 {
2208 int node;
2209 struct kmem_cache_node *n;
2210
2211 for_each_kmem_cache_node(s, node, n)
2212 if (!list_empty(&n->slabs_full) ||
2213 !list_empty(&n->slabs_partial))
2214 return false;
2215 return true;
2216 }
2217
__kmem_cache_shrink(struct kmem_cache * cachep)2218 int __kmem_cache_shrink(struct kmem_cache *cachep)
2219 {
2220 int ret = 0;
2221 int node;
2222 struct kmem_cache_node *n;
2223
2224 drain_cpu_caches(cachep);
2225
2226 check_irq_on();
2227 for_each_kmem_cache_node(cachep, node, n) {
2228 drain_freelist(cachep, n, INT_MAX);
2229
2230 ret += !list_empty(&n->slabs_full) ||
2231 !list_empty(&n->slabs_partial);
2232 }
2233 return (ret ? 1 : 0);
2234 }
2235
__kmem_cache_shutdown(struct kmem_cache * cachep)2236 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2237 {
2238 return __kmem_cache_shrink(cachep);
2239 }
2240
__kmem_cache_release(struct kmem_cache * cachep)2241 void __kmem_cache_release(struct kmem_cache *cachep)
2242 {
2243 int i;
2244 struct kmem_cache_node *n;
2245
2246 cache_random_seq_destroy(cachep);
2247
2248 free_percpu(cachep->cpu_cache);
2249
2250 /* NUMA: free the node structures */
2251 for_each_kmem_cache_node(cachep, i, n) {
2252 kfree(n->shared);
2253 free_alien_cache(n->alien);
2254 kfree(n);
2255 cachep->node[i] = NULL;
2256 }
2257 }
2258
2259 /*
2260 * Get the memory for a slab management obj.
2261 *
2262 * For a slab cache when the slab descriptor is off-slab, the
2263 * slab descriptor can't come from the same cache which is being created,
2264 * Because if it is the case, that means we defer the creation of
2265 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2266 * And we eventually call down to __kmem_cache_create(), which
2267 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2268 * This is a "chicken-and-egg" problem.
2269 *
2270 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2271 * which are all initialized during kmem_cache_init().
2272 */
alloc_slabmgmt(struct kmem_cache * cachep,struct slab * slab,int colour_off,gfp_t local_flags,int nodeid)2273 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2274 struct slab *slab, int colour_off,
2275 gfp_t local_flags, int nodeid)
2276 {
2277 void *freelist;
2278 void *addr = slab_address(slab);
2279
2280 slab->s_mem = addr + colour_off;
2281 slab->active = 0;
2282
2283 if (OBJFREELIST_SLAB(cachep))
2284 freelist = NULL;
2285 else if (OFF_SLAB(cachep)) {
2286 /* Slab management obj is off-slab. */
2287 freelist = kmalloc_node(cachep->freelist_size,
2288 local_flags, nodeid);
2289 } else {
2290 /* We will use last bytes at the slab for freelist */
2291 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2292 cachep->freelist_size;
2293 }
2294
2295 return freelist;
2296 }
2297
get_free_obj(struct slab * slab,unsigned int idx)2298 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
2299 {
2300 return ((freelist_idx_t *) slab->freelist)[idx];
2301 }
2302
set_free_obj(struct slab * slab,unsigned int idx,freelist_idx_t val)2303 static inline void set_free_obj(struct slab *slab,
2304 unsigned int idx, freelist_idx_t val)
2305 {
2306 ((freelist_idx_t *)(slab->freelist))[idx] = val;
2307 }
2308
cache_init_objs_debug(struct kmem_cache * cachep,struct slab * slab)2309 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
2310 {
2311 #if DEBUG
2312 int i;
2313
2314 for (i = 0; i < cachep->num; i++) {
2315 void *objp = index_to_obj(cachep, slab, i);
2316
2317 if (cachep->flags & SLAB_STORE_USER)
2318 *dbg_userword(cachep, objp) = NULL;
2319
2320 if (cachep->flags & SLAB_RED_ZONE) {
2321 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2322 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2323 }
2324 /*
2325 * Constructors are not allowed to allocate memory from the same
2326 * cache which they are a constructor for. Otherwise, deadlock.
2327 * They must also be threaded.
2328 */
2329 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2330 kasan_unpoison_object_data(cachep,
2331 objp + obj_offset(cachep));
2332 cachep->ctor(objp + obj_offset(cachep));
2333 kasan_poison_object_data(
2334 cachep, objp + obj_offset(cachep));
2335 }
2336
2337 if (cachep->flags & SLAB_RED_ZONE) {
2338 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2339 slab_error(cachep, "constructor overwrote the end of an object");
2340 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2341 slab_error(cachep, "constructor overwrote the start of an object");
2342 }
2343 /* need to poison the objs? */
2344 if (cachep->flags & SLAB_POISON) {
2345 poison_obj(cachep, objp, POISON_FREE);
2346 slab_kernel_map(cachep, objp, 0);
2347 }
2348 }
2349 #endif
2350 }
2351
2352 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2353 /* Hold information during a freelist initialization */
2354 struct freelist_init_state {
2355 unsigned int pos;
2356 unsigned int *list;
2357 unsigned int count;
2358 };
2359
2360 /*
2361 * Initialize the state based on the randomization method available.
2362 * return true if the pre-computed list is available, false otherwise.
2363 */
freelist_state_initialize(struct freelist_init_state * state,struct kmem_cache * cachep,unsigned int count)2364 static bool freelist_state_initialize(struct freelist_init_state *state,
2365 struct kmem_cache *cachep,
2366 unsigned int count)
2367 {
2368 bool ret;
2369 if (!cachep->random_seq) {
2370 ret = false;
2371 } else {
2372 state->list = cachep->random_seq;
2373 state->count = count;
2374 state->pos = get_random_u32_below(count);
2375 ret = true;
2376 }
2377 return ret;
2378 }
2379
2380 /* Get the next entry on the list and randomize it using a random shift */
next_random_slot(struct freelist_init_state * state)2381 static freelist_idx_t next_random_slot(struct freelist_init_state *state)
2382 {
2383 if (state->pos >= state->count)
2384 state->pos = 0;
2385 return state->list[state->pos++];
2386 }
2387
2388 /* Swap two freelist entries */
swap_free_obj(struct slab * slab,unsigned int a,unsigned int b)2389 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
2390 {
2391 swap(((freelist_idx_t *) slab->freelist)[a],
2392 ((freelist_idx_t *) slab->freelist)[b]);
2393 }
2394
2395 /*
2396 * Shuffle the freelist initialization state based on pre-computed lists.
2397 * return true if the list was successfully shuffled, false otherwise.
2398 */
shuffle_freelist(struct kmem_cache * cachep,struct slab * slab)2399 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
2400 {
2401 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2402 struct freelist_init_state state;
2403 bool precomputed;
2404
2405 if (count < 2)
2406 return false;
2407
2408 precomputed = freelist_state_initialize(&state, cachep, count);
2409
2410 /* Take a random entry as the objfreelist */
2411 if (OBJFREELIST_SLAB(cachep)) {
2412 if (!precomputed)
2413 objfreelist = count - 1;
2414 else
2415 objfreelist = next_random_slot(&state);
2416 slab->freelist = index_to_obj(cachep, slab, objfreelist) +
2417 obj_offset(cachep);
2418 count--;
2419 }
2420
2421 /*
2422 * On early boot, generate the list dynamically.
2423 * Later use a pre-computed list for speed.
2424 */
2425 if (!precomputed) {
2426 for (i = 0; i < count; i++)
2427 set_free_obj(slab, i, i);
2428
2429 /* Fisher-Yates shuffle */
2430 for (i = count - 1; i > 0; i--) {
2431 rand = get_random_u32_below(i + 1);
2432 swap_free_obj(slab, i, rand);
2433 }
2434 } else {
2435 for (i = 0; i < count; i++)
2436 set_free_obj(slab, i, next_random_slot(&state));
2437 }
2438
2439 if (OBJFREELIST_SLAB(cachep))
2440 set_free_obj(slab, cachep->num - 1, objfreelist);
2441
2442 return true;
2443 }
2444 #else
shuffle_freelist(struct kmem_cache * cachep,struct slab * slab)2445 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2446 struct slab *slab)
2447 {
2448 return false;
2449 }
2450 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2451
cache_init_objs(struct kmem_cache * cachep,struct slab * slab)2452 static void cache_init_objs(struct kmem_cache *cachep,
2453 struct slab *slab)
2454 {
2455 int i;
2456 void *objp;
2457 bool shuffled;
2458
2459 cache_init_objs_debug(cachep, slab);
2460
2461 /* Try to randomize the freelist if enabled */
2462 shuffled = shuffle_freelist(cachep, slab);
2463
2464 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2465 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
2466 obj_offset(cachep);
2467 }
2468
2469 for (i = 0; i < cachep->num; i++) {
2470 objp = index_to_obj(cachep, slab, i);
2471 objp = kasan_init_slab_obj(cachep, objp);
2472
2473 /* constructor could break poison info */
2474 if (DEBUG == 0 && cachep->ctor) {
2475 kasan_unpoison_object_data(cachep, objp);
2476 cachep->ctor(objp);
2477 kasan_poison_object_data(cachep, objp);
2478 }
2479
2480 if (!shuffled)
2481 set_free_obj(slab, i, i);
2482 }
2483 }
2484
slab_get_obj(struct kmem_cache * cachep,struct slab * slab)2485 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
2486 {
2487 void *objp;
2488
2489 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
2490 slab->active++;
2491
2492 return objp;
2493 }
2494
slab_put_obj(struct kmem_cache * cachep,struct slab * slab,void * objp)2495 static void slab_put_obj(struct kmem_cache *cachep,
2496 struct slab *slab, void *objp)
2497 {
2498 unsigned int objnr = obj_to_index(cachep, slab, objp);
2499 #if DEBUG
2500 unsigned int i;
2501
2502 /* Verify double free bug */
2503 for (i = slab->active; i < cachep->num; i++) {
2504 if (get_free_obj(slab, i) == objnr) {
2505 pr_err("slab: double free detected in cache '%s', objp %px\n",
2506 cachep->name, objp);
2507 BUG();
2508 }
2509 }
2510 #endif
2511 slab->active--;
2512 if (!slab->freelist)
2513 slab->freelist = objp + obj_offset(cachep);
2514
2515 set_free_obj(slab, slab->active, objnr);
2516 }
2517
2518 /*
2519 * Grow (by 1) the number of slabs within a cache. This is called by
2520 * kmem_cache_alloc() when there are no active objs left in a cache.
2521 */
cache_grow_begin(struct kmem_cache * cachep,gfp_t flags,int nodeid)2522 static struct slab *cache_grow_begin(struct kmem_cache *cachep,
2523 gfp_t flags, int nodeid)
2524 {
2525 void *freelist;
2526 size_t offset;
2527 gfp_t local_flags;
2528 int slab_node;
2529 struct kmem_cache_node *n;
2530 struct slab *slab;
2531
2532 /*
2533 * Be lazy and only check for valid flags here, keeping it out of the
2534 * critical path in kmem_cache_alloc().
2535 */
2536 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2537 flags = kmalloc_fix_flags(flags);
2538
2539 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2540 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2541
2542 check_irq_off();
2543 if (gfpflags_allow_blocking(local_flags))
2544 local_irq_enable();
2545
2546 /*
2547 * Get mem for the objs. Attempt to allocate a physical page from
2548 * 'nodeid'.
2549 */
2550 slab = kmem_getpages(cachep, local_flags, nodeid);
2551 if (!slab)
2552 goto failed;
2553
2554 slab_node = slab_nid(slab);
2555 n = get_node(cachep, slab_node);
2556
2557 /* Get colour for the slab, and cal the next value. */
2558 n->colour_next++;
2559 if (n->colour_next >= cachep->colour)
2560 n->colour_next = 0;
2561
2562 offset = n->colour_next;
2563 if (offset >= cachep->colour)
2564 offset = 0;
2565
2566 offset *= cachep->colour_off;
2567
2568 /*
2569 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2570 * page_address() in the latter returns a non-tagged pointer,
2571 * as it should be for slab pages.
2572 */
2573 kasan_poison_slab(slab);
2574
2575 /* Get slab management. */
2576 freelist = alloc_slabmgmt(cachep, slab, offset,
2577 local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
2578 if (OFF_SLAB(cachep) && !freelist)
2579 goto opps1;
2580
2581 slab->slab_cache = cachep;
2582 slab->freelist = freelist;
2583
2584 cache_init_objs(cachep, slab);
2585
2586 if (gfpflags_allow_blocking(local_flags))
2587 local_irq_disable();
2588
2589 return slab;
2590
2591 opps1:
2592 kmem_freepages(cachep, slab);
2593 failed:
2594 if (gfpflags_allow_blocking(local_flags))
2595 local_irq_disable();
2596 return NULL;
2597 }
2598
cache_grow_end(struct kmem_cache * cachep,struct slab * slab)2599 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
2600 {
2601 struct kmem_cache_node *n;
2602 void *list = NULL;
2603
2604 check_irq_off();
2605
2606 if (!slab)
2607 return;
2608
2609 INIT_LIST_HEAD(&slab->slab_list);
2610 n = get_node(cachep, slab_nid(slab));
2611
2612 raw_spin_lock(&n->list_lock);
2613 n->total_slabs++;
2614 if (!slab->active) {
2615 list_add_tail(&slab->slab_list, &n->slabs_free);
2616 n->free_slabs++;
2617 } else
2618 fixup_slab_list(cachep, n, slab, &list);
2619
2620 STATS_INC_GROWN(cachep);
2621 n->free_objects += cachep->num - slab->active;
2622 raw_spin_unlock(&n->list_lock);
2623
2624 fixup_objfreelist_debug(cachep, &list);
2625 }
2626
2627 #if DEBUG
2628
2629 /*
2630 * Perform extra freeing checks:
2631 * - detect bad pointers.
2632 * - POISON/RED_ZONE checking
2633 */
kfree_debugcheck(const void * objp)2634 static void kfree_debugcheck(const void *objp)
2635 {
2636 if (!virt_addr_valid(objp)) {
2637 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2638 (unsigned long)objp);
2639 BUG();
2640 }
2641 }
2642
verify_redzone_free(struct kmem_cache * cache,void * obj)2643 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2644 {
2645 unsigned long long redzone1, redzone2;
2646
2647 redzone1 = *dbg_redzone1(cache, obj);
2648 redzone2 = *dbg_redzone2(cache, obj);
2649
2650 /*
2651 * Redzone is ok.
2652 */
2653 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2654 return;
2655
2656 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2657 slab_error(cache, "double free detected");
2658 else
2659 slab_error(cache, "memory outside object was overwritten");
2660
2661 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2662 obj, redzone1, redzone2);
2663 }
2664
cache_free_debugcheck(struct kmem_cache * cachep,void * objp,unsigned long caller)2665 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2666 unsigned long caller)
2667 {
2668 unsigned int objnr;
2669 struct slab *slab;
2670
2671 BUG_ON(virt_to_cache(objp) != cachep);
2672
2673 objp -= obj_offset(cachep);
2674 kfree_debugcheck(objp);
2675 slab = virt_to_slab(objp);
2676
2677 if (cachep->flags & SLAB_RED_ZONE) {
2678 verify_redzone_free(cachep, objp);
2679 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2680 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2681 }
2682 if (cachep->flags & SLAB_STORE_USER)
2683 *dbg_userword(cachep, objp) = (void *)caller;
2684
2685 objnr = obj_to_index(cachep, slab, objp);
2686
2687 BUG_ON(objnr >= cachep->num);
2688 BUG_ON(objp != index_to_obj(cachep, slab, objnr));
2689
2690 if (cachep->flags & SLAB_POISON) {
2691 poison_obj(cachep, objp, POISON_FREE);
2692 slab_kernel_map(cachep, objp, 0);
2693 }
2694 return objp;
2695 }
2696
2697 #else
2698 #define kfree_debugcheck(x) do { } while(0)
2699 #define cache_free_debugcheck(x, objp, z) (objp)
2700 #endif
2701
fixup_objfreelist_debug(struct kmem_cache * cachep,void ** list)2702 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2703 void **list)
2704 {
2705 #if DEBUG
2706 void *next = *list;
2707 void *objp;
2708
2709 while (next) {
2710 objp = next - obj_offset(cachep);
2711 next = *(void **)next;
2712 poison_obj(cachep, objp, POISON_FREE);
2713 }
2714 #endif
2715 }
2716
fixup_slab_list(struct kmem_cache * cachep,struct kmem_cache_node * n,struct slab * slab,void ** list)2717 static inline void fixup_slab_list(struct kmem_cache *cachep,
2718 struct kmem_cache_node *n, struct slab *slab,
2719 void **list)
2720 {
2721 /* move slabp to correct slabp list: */
2722 list_del(&slab->slab_list);
2723 if (slab->active == cachep->num) {
2724 list_add(&slab->slab_list, &n->slabs_full);
2725 if (OBJFREELIST_SLAB(cachep)) {
2726 #if DEBUG
2727 /* Poisoning will be done without holding the lock */
2728 if (cachep->flags & SLAB_POISON) {
2729 void **objp = slab->freelist;
2730
2731 *objp = *list;
2732 *list = objp;
2733 }
2734 #endif
2735 slab->freelist = NULL;
2736 }
2737 } else
2738 list_add(&slab->slab_list, &n->slabs_partial);
2739 }
2740
2741 /* Try to find non-pfmemalloc slab if needed */
get_valid_first_slab(struct kmem_cache_node * n,struct slab * slab,bool pfmemalloc)2742 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
2743 struct slab *slab, bool pfmemalloc)
2744 {
2745 if (!slab)
2746 return NULL;
2747
2748 if (pfmemalloc)
2749 return slab;
2750
2751 if (!slab_test_pfmemalloc(slab))
2752 return slab;
2753
2754 /* No need to keep pfmemalloc slab if we have enough free objects */
2755 if (n->free_objects > n->free_limit) {
2756 slab_clear_pfmemalloc(slab);
2757 return slab;
2758 }
2759
2760 /* Move pfmemalloc slab to the end of list to speed up next search */
2761 list_del(&slab->slab_list);
2762 if (!slab->active) {
2763 list_add_tail(&slab->slab_list, &n->slabs_free);
2764 n->free_slabs++;
2765 } else
2766 list_add_tail(&slab->slab_list, &n->slabs_partial);
2767
2768 list_for_each_entry(slab, &n->slabs_partial, slab_list) {
2769 if (!slab_test_pfmemalloc(slab))
2770 return slab;
2771 }
2772
2773 n->free_touched = 1;
2774 list_for_each_entry(slab, &n->slabs_free, slab_list) {
2775 if (!slab_test_pfmemalloc(slab)) {
2776 n->free_slabs--;
2777 return slab;
2778 }
2779 }
2780
2781 return NULL;
2782 }
2783
get_first_slab(struct kmem_cache_node * n,bool pfmemalloc)2784 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2785 {
2786 struct slab *slab;
2787
2788 assert_raw_spin_locked(&n->list_lock);
2789 slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
2790 slab_list);
2791 if (!slab) {
2792 n->free_touched = 1;
2793 slab = list_first_entry_or_null(&n->slabs_free, struct slab,
2794 slab_list);
2795 if (slab)
2796 n->free_slabs--;
2797 }
2798
2799 if (sk_memalloc_socks())
2800 slab = get_valid_first_slab(n, slab, pfmemalloc);
2801
2802 return slab;
2803 }
2804
cache_alloc_pfmemalloc(struct kmem_cache * cachep,struct kmem_cache_node * n,gfp_t flags)2805 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2806 struct kmem_cache_node *n, gfp_t flags)
2807 {
2808 struct slab *slab;
2809 void *obj;
2810 void *list = NULL;
2811
2812 if (!gfp_pfmemalloc_allowed(flags))
2813 return NULL;
2814
2815 raw_spin_lock(&n->list_lock);
2816 slab = get_first_slab(n, true);
2817 if (!slab) {
2818 raw_spin_unlock(&n->list_lock);
2819 return NULL;
2820 }
2821
2822 obj = slab_get_obj(cachep, slab);
2823 n->free_objects--;
2824
2825 fixup_slab_list(cachep, n, slab, &list);
2826
2827 raw_spin_unlock(&n->list_lock);
2828 fixup_objfreelist_debug(cachep, &list);
2829
2830 return obj;
2831 }
2832
2833 /*
2834 * Slab list should be fixed up by fixup_slab_list() for existing slab
2835 * or cache_grow_end() for new slab
2836 */
alloc_block(struct kmem_cache * cachep,struct array_cache * ac,struct slab * slab,int batchcount)2837 static __always_inline int alloc_block(struct kmem_cache *cachep,
2838 struct array_cache *ac, struct slab *slab, int batchcount)
2839 {
2840 /*
2841 * There must be at least one object available for
2842 * allocation.
2843 */
2844 BUG_ON(slab->active >= cachep->num);
2845
2846 while (slab->active < cachep->num && batchcount--) {
2847 STATS_INC_ALLOCED(cachep);
2848 STATS_INC_ACTIVE(cachep);
2849 STATS_SET_HIGH(cachep);
2850
2851 ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
2852 }
2853
2854 return batchcount;
2855 }
2856
cache_alloc_refill(struct kmem_cache * cachep,gfp_t flags)2857 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2858 {
2859 int batchcount;
2860 struct kmem_cache_node *n;
2861 struct array_cache *ac, *shared;
2862 int node;
2863 void *list = NULL;
2864 struct slab *slab;
2865
2866 check_irq_off();
2867 node = numa_mem_id();
2868
2869 ac = cpu_cache_get(cachep);
2870 batchcount = ac->batchcount;
2871 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2872 /*
2873 * If there was little recent activity on this cache, then
2874 * perform only a partial refill. Otherwise we could generate
2875 * refill bouncing.
2876 */
2877 batchcount = BATCHREFILL_LIMIT;
2878 }
2879 n = get_node(cachep, node);
2880
2881 BUG_ON(ac->avail > 0 || !n);
2882 shared = READ_ONCE(n->shared);
2883 if (!n->free_objects && (!shared || !shared->avail))
2884 goto direct_grow;
2885
2886 raw_spin_lock(&n->list_lock);
2887 shared = READ_ONCE(n->shared);
2888
2889 /* See if we can refill from the shared array */
2890 if (shared && transfer_objects(ac, shared, batchcount)) {
2891 shared->touched = 1;
2892 goto alloc_done;
2893 }
2894
2895 while (batchcount > 0) {
2896 /* Get slab alloc is to come from. */
2897 slab = get_first_slab(n, false);
2898 if (!slab)
2899 goto must_grow;
2900
2901 check_spinlock_acquired(cachep);
2902
2903 batchcount = alloc_block(cachep, ac, slab, batchcount);
2904 fixup_slab_list(cachep, n, slab, &list);
2905 }
2906
2907 must_grow:
2908 n->free_objects -= ac->avail;
2909 alloc_done:
2910 raw_spin_unlock(&n->list_lock);
2911 fixup_objfreelist_debug(cachep, &list);
2912
2913 direct_grow:
2914 if (unlikely(!ac->avail)) {
2915 /* Check if we can use obj in pfmemalloc slab */
2916 if (sk_memalloc_socks()) {
2917 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2918
2919 if (obj)
2920 return obj;
2921 }
2922
2923 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2924
2925 /*
2926 * cache_grow_begin() can reenable interrupts,
2927 * then ac could change.
2928 */
2929 ac = cpu_cache_get(cachep);
2930 if (!ac->avail && slab)
2931 alloc_block(cachep, ac, slab, batchcount);
2932 cache_grow_end(cachep, slab);
2933
2934 if (!ac->avail)
2935 return NULL;
2936 }
2937 ac->touched = 1;
2938
2939 return ac->entry[--ac->avail];
2940 }
2941
2942 #if DEBUG
cache_alloc_debugcheck_after(struct kmem_cache * cachep,gfp_t flags,void * objp,unsigned long caller)2943 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2944 gfp_t flags, void *objp, unsigned long caller)
2945 {
2946 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2947 if (!objp || is_kfence_address(objp))
2948 return objp;
2949 if (cachep->flags & SLAB_POISON) {
2950 check_poison_obj(cachep, objp);
2951 slab_kernel_map(cachep, objp, 1);
2952 poison_obj(cachep, objp, POISON_INUSE);
2953 }
2954 if (cachep->flags & SLAB_STORE_USER)
2955 *dbg_userword(cachep, objp) = (void *)caller;
2956
2957 if (cachep->flags & SLAB_RED_ZONE) {
2958 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2959 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2960 slab_error(cachep, "double free, or memory outside object was overwritten");
2961 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2962 objp, *dbg_redzone1(cachep, objp),
2963 *dbg_redzone2(cachep, objp));
2964 }
2965 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2966 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2967 }
2968
2969 objp += obj_offset(cachep);
2970 if (cachep->ctor && cachep->flags & SLAB_POISON)
2971 cachep->ctor(objp);
2972 if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
2973 pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
2974 arch_slab_minalign());
2975 }
2976 return objp;
2977 }
2978 #else
2979 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
2980 #endif
2981
____cache_alloc(struct kmem_cache * cachep,gfp_t flags)2982 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2983 {
2984 void *objp;
2985 struct array_cache *ac;
2986
2987 check_irq_off();
2988
2989 ac = cpu_cache_get(cachep);
2990 if (likely(ac->avail)) {
2991 ac->touched = 1;
2992 objp = ac->entry[--ac->avail];
2993
2994 STATS_INC_ALLOCHIT(cachep);
2995 goto out;
2996 }
2997
2998 STATS_INC_ALLOCMISS(cachep);
2999 objp = cache_alloc_refill(cachep, flags);
3000 /*
3001 * the 'ac' may be updated by cache_alloc_refill(),
3002 * and kmemleak_erase() requires its correct value.
3003 */
3004 ac = cpu_cache_get(cachep);
3005
3006 out:
3007 /*
3008 * To avoid a false negative, if an object that is in one of the
3009 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3010 * treat the array pointers as a reference to the object.
3011 */
3012 if (objp)
3013 kmemleak_erase(&ac->entry[ac->avail]);
3014 return objp;
3015 }
3016
3017 #ifdef CONFIG_NUMA
3018 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
3019
3020 /*
3021 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3022 *
3023 * If we are in_interrupt, then process context, including cpusets and
3024 * mempolicy, may not apply and should not be used for allocation policy.
3025 */
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)3026 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3027 {
3028 int nid_alloc, nid_here;
3029
3030 if (in_interrupt() || (flags & __GFP_THISNODE))
3031 return NULL;
3032 nid_alloc = nid_here = numa_mem_id();
3033 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3034 nid_alloc = cpuset_slab_spread_node();
3035 else if (current->mempolicy)
3036 nid_alloc = mempolicy_slab_node();
3037 if (nid_alloc != nid_here)
3038 return ____cache_alloc_node(cachep, flags, nid_alloc);
3039 return NULL;
3040 }
3041
3042 /*
3043 * Fallback function if there was no memory available and no objects on a
3044 * certain node and fall back is permitted. First we scan all the
3045 * available node for available objects. If that fails then we
3046 * perform an allocation without specifying a node. This allows the page
3047 * allocator to do its reclaim / fallback magic. We then insert the
3048 * slab into the proper nodelist and then allocate from it.
3049 */
fallback_alloc(struct kmem_cache * cache,gfp_t flags)3050 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3051 {
3052 struct zonelist *zonelist;
3053 struct zoneref *z;
3054 struct zone *zone;
3055 enum zone_type highest_zoneidx = gfp_zone(flags);
3056 void *obj = NULL;
3057 struct slab *slab;
3058 int nid;
3059 unsigned int cpuset_mems_cookie;
3060
3061 if (flags & __GFP_THISNODE)
3062 return NULL;
3063
3064 retry_cpuset:
3065 cpuset_mems_cookie = read_mems_allowed_begin();
3066 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3067
3068 retry:
3069 /*
3070 * Look through allowed nodes for objects available
3071 * from existing per node queues.
3072 */
3073 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3074 nid = zone_to_nid(zone);
3075
3076 if (cpuset_zone_allowed(zone, flags) &&
3077 get_node(cache, nid) &&
3078 get_node(cache, nid)->free_objects) {
3079 obj = ____cache_alloc_node(cache,
3080 gfp_exact_node(flags), nid);
3081 if (obj)
3082 break;
3083 }
3084 }
3085
3086 if (!obj) {
3087 /*
3088 * This allocation will be performed within the constraints
3089 * of the current cpuset / memory policy requirements.
3090 * We may trigger various forms of reclaim on the allowed
3091 * set and go into memory reserves if necessary.
3092 */
3093 slab = cache_grow_begin(cache, flags, numa_mem_id());
3094 cache_grow_end(cache, slab);
3095 if (slab) {
3096 nid = slab_nid(slab);
3097 obj = ____cache_alloc_node(cache,
3098 gfp_exact_node(flags), nid);
3099
3100 /*
3101 * Another processor may allocate the objects in
3102 * the slab since we are not holding any locks.
3103 */
3104 if (!obj)
3105 goto retry;
3106 }
3107 }
3108
3109 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3110 goto retry_cpuset;
3111 return obj;
3112 }
3113
3114 /*
3115 * An interface to enable slab creation on nodeid
3116 */
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3117 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3118 int nodeid)
3119 {
3120 struct slab *slab;
3121 struct kmem_cache_node *n;
3122 void *obj = NULL;
3123 void *list = NULL;
3124
3125 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3126 n = get_node(cachep, nodeid);
3127 BUG_ON(!n);
3128
3129 check_irq_off();
3130 raw_spin_lock(&n->list_lock);
3131 slab = get_first_slab(n, false);
3132 if (!slab)
3133 goto must_grow;
3134
3135 check_spinlock_acquired_node(cachep, nodeid);
3136
3137 STATS_INC_NODEALLOCS(cachep);
3138 STATS_INC_ACTIVE(cachep);
3139 STATS_SET_HIGH(cachep);
3140
3141 BUG_ON(slab->active == cachep->num);
3142
3143 obj = slab_get_obj(cachep, slab);
3144 n->free_objects--;
3145
3146 fixup_slab_list(cachep, n, slab, &list);
3147
3148 raw_spin_unlock(&n->list_lock);
3149 fixup_objfreelist_debug(cachep, &list);
3150 return obj;
3151
3152 must_grow:
3153 raw_spin_unlock(&n->list_lock);
3154 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3155 if (slab) {
3156 /* This slab isn't counted yet so don't update free_objects */
3157 obj = slab_get_obj(cachep, slab);
3158 }
3159 cache_grow_end(cachep, slab);
3160
3161 return obj ? obj : fallback_alloc(cachep, flags);
3162 }
3163
3164 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cachep,gfp_t flags,int nodeid)3165 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3166 {
3167 void *objp = NULL;
3168 int slab_node = numa_mem_id();
3169
3170 if (nodeid == NUMA_NO_NODE) {
3171 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3172 objp = alternate_node_alloc(cachep, flags);
3173 if (objp)
3174 goto out;
3175 }
3176 /*
3177 * Use the locally cached objects if possible.
3178 * However ____cache_alloc does not allow fallback
3179 * to other nodes. It may fail while we still have
3180 * objects on other nodes available.
3181 */
3182 objp = ____cache_alloc(cachep, flags);
3183 nodeid = slab_node;
3184 } else if (nodeid == slab_node) {
3185 objp = ____cache_alloc(cachep, flags);
3186 } else if (!get_node(cachep, nodeid)) {
3187 /* Node not bootstrapped yet */
3188 objp = fallback_alloc(cachep, flags);
3189 goto out;
3190 }
3191
3192 /*
3193 * We may just have run out of memory on the local node.
3194 * ____cache_alloc_node() knows how to locate memory on other nodes
3195 */
3196 if (!objp)
3197 objp = ____cache_alloc_node(cachep, flags, nodeid);
3198 out:
3199 return objp;
3200 }
3201 #else
3202
3203 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cachep,gfp_t flags,int nodeid __maybe_unused)3204 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused)
3205 {
3206 return ____cache_alloc(cachep, flags);
3207 }
3208
3209 #endif /* CONFIG_NUMA */
3210
3211 static __always_inline void *
slab_alloc_node(struct kmem_cache * cachep,struct list_lru * lru,gfp_t flags,int nodeid,size_t orig_size,unsigned long caller)3212 slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3213 int nodeid, size_t orig_size, unsigned long caller)
3214 {
3215 unsigned long save_flags;
3216 void *objp;
3217 struct obj_cgroup *objcg = NULL;
3218 bool init = false;
3219
3220 flags &= gfp_allowed_mask;
3221 cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
3222 if (unlikely(!cachep))
3223 return NULL;
3224
3225 objp = kfence_alloc(cachep, orig_size, flags);
3226 if (unlikely(objp))
3227 goto out;
3228
3229 local_irq_save(save_flags);
3230 objp = __do_cache_alloc(cachep, flags, nodeid);
3231 local_irq_restore(save_flags);
3232 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3233 prefetchw(objp);
3234 init = slab_want_init_on_alloc(flags, cachep);
3235
3236 out:
3237 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init,
3238 cachep->object_size);
3239 return objp;
3240 }
3241
3242 static __always_inline void *
slab_alloc(struct kmem_cache * cachep,struct list_lru * lru,gfp_t flags,size_t orig_size,unsigned long caller)3243 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3244 size_t orig_size, unsigned long caller)
3245 {
3246 return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size,
3247 caller);
3248 }
3249
3250 /*
3251 * Caller needs to acquire correct kmem_cache_node's list_lock
3252 * @list: List of detached free slabs should be freed by caller
3253 */
free_block(struct kmem_cache * cachep,void ** objpp,int nr_objects,int node,struct list_head * list)3254 static void free_block(struct kmem_cache *cachep, void **objpp,
3255 int nr_objects, int node, struct list_head *list)
3256 {
3257 int i;
3258 struct kmem_cache_node *n = get_node(cachep, node);
3259 struct slab *slab;
3260
3261 n->free_objects += nr_objects;
3262
3263 for (i = 0; i < nr_objects; i++) {
3264 void *objp;
3265 struct slab *slab;
3266
3267 objp = objpp[i];
3268
3269 slab = virt_to_slab(objp);
3270 list_del(&slab->slab_list);
3271 check_spinlock_acquired_node(cachep, node);
3272 slab_put_obj(cachep, slab, objp);
3273 STATS_DEC_ACTIVE(cachep);
3274
3275 /* fixup slab chains */
3276 if (slab->active == 0) {
3277 list_add(&slab->slab_list, &n->slabs_free);
3278 n->free_slabs++;
3279 } else {
3280 /* Unconditionally move a slab to the end of the
3281 * partial list on free - maximum time for the
3282 * other objects to be freed, too.
3283 */
3284 list_add_tail(&slab->slab_list, &n->slabs_partial);
3285 }
3286 }
3287
3288 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3289 n->free_objects -= cachep->num;
3290
3291 slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
3292 list_move(&slab->slab_list, list);
3293 n->free_slabs--;
3294 n->total_slabs--;
3295 }
3296 }
3297
cache_flusharray(struct kmem_cache * cachep,struct array_cache * ac)3298 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3299 {
3300 int batchcount;
3301 struct kmem_cache_node *n;
3302 int node = numa_mem_id();
3303 LIST_HEAD(list);
3304
3305 batchcount = ac->batchcount;
3306
3307 check_irq_off();
3308 n = get_node(cachep, node);
3309 raw_spin_lock(&n->list_lock);
3310 if (n->shared) {
3311 struct array_cache *shared_array = n->shared;
3312 int max = shared_array->limit - shared_array->avail;
3313 if (max) {
3314 if (batchcount > max)
3315 batchcount = max;
3316 memcpy(&(shared_array->entry[shared_array->avail]),
3317 ac->entry, sizeof(void *) * batchcount);
3318 shared_array->avail += batchcount;
3319 goto free_done;
3320 }
3321 }
3322
3323 free_block(cachep, ac->entry, batchcount, node, &list);
3324 free_done:
3325 #if STATS
3326 {
3327 int i = 0;
3328 struct slab *slab;
3329
3330 list_for_each_entry(slab, &n->slabs_free, slab_list) {
3331 BUG_ON(slab->active);
3332
3333 i++;
3334 }
3335 STATS_SET_FREEABLE(cachep, i);
3336 }
3337 #endif
3338 raw_spin_unlock(&n->list_lock);
3339 ac->avail -= batchcount;
3340 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3341 slabs_destroy(cachep, &list);
3342 }
3343
3344 /*
3345 * Release an obj back to its cache. If the obj has a constructed state, it must
3346 * be in this state _before_ it is released. Called with disabled ints.
3347 */
__cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3348 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3349 unsigned long caller)
3350 {
3351 bool init;
3352
3353 memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);
3354
3355 if (is_kfence_address(objp)) {
3356 kmemleak_free_recursive(objp, cachep->flags);
3357 __kfence_free(objp);
3358 return;
3359 }
3360
3361 /*
3362 * As memory initialization might be integrated into KASAN,
3363 * kasan_slab_free and initialization memset must be
3364 * kept together to avoid discrepancies in behavior.
3365 */
3366 init = slab_want_init_on_free(cachep);
3367 if (init && !kasan_has_integrated_init())
3368 memset(objp, 0, cachep->object_size);
3369 /* KASAN might put objp into memory quarantine, delaying its reuse. */
3370 if (kasan_slab_free(cachep, objp, init))
3371 return;
3372
3373 /* Use KCSAN to help debug racy use-after-free. */
3374 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3375 __kcsan_check_access(objp, cachep->object_size,
3376 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3377
3378 ___cache_free(cachep, objp, caller);
3379 }
3380
___cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3381 void ___cache_free(struct kmem_cache *cachep, void *objp,
3382 unsigned long caller)
3383 {
3384 struct array_cache *ac = cpu_cache_get(cachep);
3385
3386 check_irq_off();
3387 kmemleak_free_recursive(objp, cachep->flags);
3388 objp = cache_free_debugcheck(cachep, objp, caller);
3389
3390 /*
3391 * Skip calling cache_free_alien() when the platform is not numa.
3392 * This will avoid cache misses that happen while accessing slabp (which
3393 * is per page memory reference) to get nodeid. Instead use a global
3394 * variable to skip the call, which is mostly likely to be present in
3395 * the cache.
3396 */
3397 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3398 return;
3399
3400 if (ac->avail < ac->limit) {
3401 STATS_INC_FREEHIT(cachep);
3402 } else {
3403 STATS_INC_FREEMISS(cachep);
3404 cache_flusharray(cachep, ac);
3405 }
3406
3407 if (sk_memalloc_socks()) {
3408 struct slab *slab = virt_to_slab(objp);
3409
3410 if (unlikely(slab_test_pfmemalloc(slab))) {
3411 cache_free_pfmemalloc(cachep, slab, objp);
3412 return;
3413 }
3414 }
3415
3416 __free_one(ac, objp);
3417 }
3418
3419 static __always_inline
__kmem_cache_alloc_lru(struct kmem_cache * cachep,struct list_lru * lru,gfp_t flags)3420 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3421 gfp_t flags)
3422 {
3423 void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);
3424
3425 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE);
3426
3427 return ret;
3428 }
3429
kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3430 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3431 {
3432 return __kmem_cache_alloc_lru(cachep, NULL, flags);
3433 }
3434 EXPORT_SYMBOL(kmem_cache_alloc);
3435
kmem_cache_alloc_lru(struct kmem_cache * cachep,struct list_lru * lru,gfp_t flags)3436 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3437 gfp_t flags)
3438 {
3439 return __kmem_cache_alloc_lru(cachep, lru, flags);
3440 }
3441 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3442
3443 static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p,unsigned long caller)3444 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3445 size_t size, void **p, unsigned long caller)
3446 {
3447 size_t i;
3448
3449 for (i = 0; i < size; i++)
3450 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3451 }
3452
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3453 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3454 void **p)
3455 {
3456 struct obj_cgroup *objcg = NULL;
3457 unsigned long irqflags;
3458 size_t i;
3459
3460 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3461 if (!s)
3462 return 0;
3463
3464 local_irq_save(irqflags);
3465 for (i = 0; i < size; i++) {
3466 void *objp = kfence_alloc(s, s->object_size, flags) ?:
3467 __do_cache_alloc(s, flags, NUMA_NO_NODE);
3468
3469 if (unlikely(!objp))
3470 goto error;
3471 p[i] = objp;
3472 }
3473 local_irq_restore(irqflags);
3474
3475 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3476
3477 /*
3478 * memcg and kmem_cache debug support and memory initialization.
3479 * Done outside of the IRQ disabled section.
3480 */
3481 slab_post_alloc_hook(s, objcg, flags, size, p,
3482 slab_want_init_on_alloc(flags, s), s->object_size);
3483 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3484 return size;
3485 error:
3486 local_irq_restore(irqflags);
3487 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3488 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3489 kmem_cache_free_bulk(s, i, p);
3490 return 0;
3491 }
3492 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3493
3494 /**
3495 * kmem_cache_alloc_node - Allocate an object on the specified node
3496 * @cachep: The cache to allocate from.
3497 * @flags: See kmalloc().
3498 * @nodeid: node number of the target node.
3499 *
3500 * Identical to kmem_cache_alloc but it will allocate memory on the given
3501 * node, which can improve the performance for cpu bound structures.
3502 *
3503 * Fallback to other node is possible if __GFP_THISNODE is not set.
3504 *
3505 * Return: pointer to the new object or %NULL in case of error
3506 */
kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3507 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3508 {
3509 void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_);
3510
3511 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid);
3512
3513 return ret;
3514 }
3515 EXPORT_SYMBOL(kmem_cache_alloc_node);
3516
__kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid,size_t orig_size,unsigned long caller)3517 void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3518 int nodeid, size_t orig_size,
3519 unsigned long caller)
3520 {
3521 return slab_alloc_node(cachep, NULL, flags, nodeid,
3522 orig_size, caller);
3523 }
3524
3525 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)3526 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
3527 {
3528 struct kmem_cache *cachep;
3529 unsigned int objnr;
3530 void *objp;
3531
3532 kpp->kp_ptr = object;
3533 kpp->kp_slab = slab;
3534 cachep = slab->slab_cache;
3535 kpp->kp_slab_cache = cachep;
3536 objp = object - obj_offset(cachep);
3537 kpp->kp_data_offset = obj_offset(cachep);
3538 slab = virt_to_slab(objp);
3539 objnr = obj_to_index(cachep, slab, objp);
3540 objp = index_to_obj(cachep, slab, objnr);
3541 kpp->kp_objp = objp;
3542 if (DEBUG && cachep->flags & SLAB_STORE_USER)
3543 kpp->kp_ret = *dbg_userword(cachep, objp);
3544 }
3545 #endif
3546
3547 static __always_inline
__do_kmem_cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3548 void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp,
3549 unsigned long caller)
3550 {
3551 unsigned long flags;
3552
3553 local_irq_save(flags);
3554 debug_check_no_locks_freed(objp, cachep->object_size);
3555 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3556 debug_check_no_obj_freed(objp, cachep->object_size);
3557 __cache_free(cachep, objp, caller);
3558 local_irq_restore(flags);
3559 }
3560
__kmem_cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3561 void __kmem_cache_free(struct kmem_cache *cachep, void *objp,
3562 unsigned long caller)
3563 {
3564 __do_kmem_cache_free(cachep, objp, caller);
3565 }
3566
3567 /**
3568 * kmem_cache_free - Deallocate an object
3569 * @cachep: The cache the allocation was from.
3570 * @objp: The previously allocated object.
3571 *
3572 * Free an object which was previously allocated from this
3573 * cache.
3574 */
kmem_cache_free(struct kmem_cache * cachep,void * objp)3575 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3576 {
3577 cachep = cache_from_obj(cachep, objp);
3578 if (!cachep)
3579 return;
3580
3581 trace_kmem_cache_free(_RET_IP_, objp, cachep);
3582 __do_kmem_cache_free(cachep, objp, _RET_IP_);
3583 }
3584 EXPORT_SYMBOL(kmem_cache_free);
3585
kmem_cache_free_bulk(struct kmem_cache * orig_s,size_t size,void ** p)3586 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3587 {
3588 unsigned long flags;
3589
3590 local_irq_save(flags);
3591 for (int i = 0; i < size; i++) {
3592 void *objp = p[i];
3593 struct kmem_cache *s;
3594
3595 if (!orig_s) {
3596 struct folio *folio = virt_to_folio(objp);
3597
3598 /* called via kfree_bulk */
3599 if (!folio_test_slab(folio)) {
3600 local_irq_restore(flags);
3601 free_large_kmalloc(folio, objp);
3602 local_irq_save(flags);
3603 continue;
3604 }
3605 s = folio_slab(folio)->slab_cache;
3606 } else {
3607 s = cache_from_obj(orig_s, objp);
3608 }
3609
3610 if (!s)
3611 continue;
3612
3613 debug_check_no_locks_freed(objp, s->object_size);
3614 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3615 debug_check_no_obj_freed(objp, s->object_size);
3616
3617 __cache_free(s, objp, _RET_IP_);
3618 }
3619 local_irq_restore(flags);
3620
3621 /* FIXME: add tracing */
3622 }
3623 EXPORT_SYMBOL(kmem_cache_free_bulk);
3624
3625 /*
3626 * This initializes kmem_cache_node or resizes various caches for all nodes.
3627 */
setup_kmem_cache_nodes(struct kmem_cache * cachep,gfp_t gfp)3628 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3629 {
3630 int ret;
3631 int node;
3632 struct kmem_cache_node *n;
3633
3634 for_each_online_node(node) {
3635 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3636 if (ret)
3637 goto fail;
3638
3639 }
3640
3641 return 0;
3642
3643 fail:
3644 if (!cachep->list.next) {
3645 /* Cache is not active yet. Roll back what we did */
3646 node--;
3647 while (node >= 0) {
3648 n = get_node(cachep, node);
3649 if (n) {
3650 kfree(n->shared);
3651 free_alien_cache(n->alien);
3652 kfree(n);
3653 cachep->node[node] = NULL;
3654 }
3655 node--;
3656 }
3657 }
3658 return -ENOMEM;
3659 }
3660
3661 /* Always called with the slab_mutex held */
do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3662 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3663 int batchcount, int shared, gfp_t gfp)
3664 {
3665 struct array_cache __percpu *cpu_cache, *prev;
3666 int cpu;
3667
3668 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3669 if (!cpu_cache)
3670 return -ENOMEM;
3671
3672 prev = cachep->cpu_cache;
3673 cachep->cpu_cache = cpu_cache;
3674 /*
3675 * Without a previous cpu_cache there's no need to synchronize remote
3676 * cpus, so skip the IPIs.
3677 */
3678 if (prev)
3679 kick_all_cpus_sync();
3680
3681 check_irq_on();
3682 cachep->batchcount = batchcount;
3683 cachep->limit = limit;
3684 cachep->shared = shared;
3685
3686 if (!prev)
3687 goto setup_node;
3688
3689 for_each_online_cpu(cpu) {
3690 LIST_HEAD(list);
3691 int node;
3692 struct kmem_cache_node *n;
3693 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3694
3695 node = cpu_to_mem(cpu);
3696 n = get_node(cachep, node);
3697 raw_spin_lock_irq(&n->list_lock);
3698 free_block(cachep, ac->entry, ac->avail, node, &list);
3699 raw_spin_unlock_irq(&n->list_lock);
3700 slabs_destroy(cachep, &list);
3701 }
3702 free_percpu(prev);
3703
3704 setup_node:
3705 return setup_kmem_cache_nodes(cachep, gfp);
3706 }
3707
3708 /* Called with slab_mutex held always */
enable_cpucache(struct kmem_cache * cachep,gfp_t gfp)3709 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3710 {
3711 int err;
3712 int limit = 0;
3713 int shared = 0;
3714 int batchcount = 0;
3715
3716 err = cache_random_seq_create(cachep, cachep->num, gfp);
3717 if (err)
3718 goto end;
3719
3720 /*
3721 * The head array serves three purposes:
3722 * - create a LIFO ordering, i.e. return objects that are cache-warm
3723 * - reduce the number of spinlock operations.
3724 * - reduce the number of linked list operations on the slab and
3725 * bufctl chains: array operations are cheaper.
3726 * The numbers are guessed, we should auto-tune as described by
3727 * Bonwick.
3728 */
3729 if (cachep->size > 131072)
3730 limit = 1;
3731 else if (cachep->size > PAGE_SIZE)
3732 limit = 8;
3733 else if (cachep->size > 1024)
3734 limit = 24;
3735 else if (cachep->size > 256)
3736 limit = 54;
3737 else
3738 limit = 120;
3739
3740 /*
3741 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3742 * allocation behaviour: Most allocs on one cpu, most free operations
3743 * on another cpu. For these cases, an efficient object passing between
3744 * cpus is necessary. This is provided by a shared array. The array
3745 * replaces Bonwick's magazine layer.
3746 * On uniprocessor, it's functionally equivalent (but less efficient)
3747 * to a larger limit. Thus disabled by default.
3748 */
3749 shared = 0;
3750 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3751 shared = 8;
3752
3753 #if DEBUG
3754 /*
3755 * With debugging enabled, large batchcount lead to excessively long
3756 * periods with disabled local interrupts. Limit the batchcount
3757 */
3758 if (limit > 32)
3759 limit = 32;
3760 #endif
3761 batchcount = (limit + 1) / 2;
3762 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3763 end:
3764 if (err)
3765 pr_err("enable_cpucache failed for %s, error %d\n",
3766 cachep->name, -err);
3767 return err;
3768 }
3769
3770 /*
3771 * Drain an array if it contains any elements taking the node lock only if
3772 * necessary. Note that the node listlock also protects the array_cache
3773 * if drain_array() is used on the shared array.
3774 */
drain_array(struct kmem_cache * cachep,struct kmem_cache_node * n,struct array_cache * ac,int node)3775 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3776 struct array_cache *ac, int node)
3777 {
3778 LIST_HEAD(list);
3779
3780 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3781 check_mutex_acquired();
3782
3783 if (!ac || !ac->avail)
3784 return;
3785
3786 if (ac->touched) {
3787 ac->touched = 0;
3788 return;
3789 }
3790
3791 raw_spin_lock_irq(&n->list_lock);
3792 drain_array_locked(cachep, ac, node, false, &list);
3793 raw_spin_unlock_irq(&n->list_lock);
3794
3795 slabs_destroy(cachep, &list);
3796 }
3797
3798 /**
3799 * cache_reap - Reclaim memory from caches.
3800 * @w: work descriptor
3801 *
3802 * Called from workqueue/eventd every few seconds.
3803 * Purpose:
3804 * - clear the per-cpu caches for this CPU.
3805 * - return freeable pages to the main free memory pool.
3806 *
3807 * If we cannot acquire the cache chain mutex then just give up - we'll try
3808 * again on the next iteration.
3809 */
cache_reap(struct work_struct * w)3810 static void cache_reap(struct work_struct *w)
3811 {
3812 struct kmem_cache *searchp;
3813 struct kmem_cache_node *n;
3814 int node = numa_mem_id();
3815 struct delayed_work *work = to_delayed_work(w);
3816
3817 if (!mutex_trylock(&slab_mutex))
3818 /* Give up. Setup the next iteration. */
3819 goto out;
3820
3821 list_for_each_entry(searchp, &slab_caches, list) {
3822 check_irq_on();
3823
3824 /*
3825 * We only take the node lock if absolutely necessary and we
3826 * have established with reasonable certainty that
3827 * we can do some work if the lock was obtained.
3828 */
3829 n = get_node(searchp, node);
3830
3831 reap_alien(searchp, n);
3832
3833 drain_array(searchp, n, cpu_cache_get(searchp), node);
3834
3835 /*
3836 * These are racy checks but it does not matter
3837 * if we skip one check or scan twice.
3838 */
3839 if (time_after(n->next_reap, jiffies))
3840 goto next;
3841
3842 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3843
3844 drain_array(searchp, n, n->shared, node);
3845
3846 if (n->free_touched)
3847 n->free_touched = 0;
3848 else {
3849 int freed;
3850
3851 freed = drain_freelist(searchp, n, (n->free_limit +
3852 5 * searchp->num - 1) / (5 * searchp->num));
3853 STATS_ADD_REAPED(searchp, freed);
3854 }
3855 next:
3856 cond_resched();
3857 }
3858 check_irq_on();
3859 mutex_unlock(&slab_mutex);
3860 next_reap_node();
3861 out:
3862 /* Set up the next iteration */
3863 schedule_delayed_work_on(smp_processor_id(), work,
3864 round_jiffies_relative(REAPTIMEOUT_AC));
3865 }
3866
get_slabinfo(struct kmem_cache * cachep,struct slabinfo * sinfo)3867 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3868 {
3869 unsigned long active_objs, num_objs, active_slabs;
3870 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
3871 unsigned long free_slabs = 0;
3872 int node;
3873 struct kmem_cache_node *n;
3874
3875 for_each_kmem_cache_node(cachep, node, n) {
3876 check_irq_on();
3877 raw_spin_lock_irq(&n->list_lock);
3878
3879 total_slabs += n->total_slabs;
3880 free_slabs += n->free_slabs;
3881 free_objs += n->free_objects;
3882
3883 if (n->shared)
3884 shared_avail += n->shared->avail;
3885
3886 raw_spin_unlock_irq(&n->list_lock);
3887 }
3888 num_objs = total_slabs * cachep->num;
3889 active_slabs = total_slabs - free_slabs;
3890 active_objs = num_objs - free_objs;
3891
3892 sinfo->active_objs = active_objs;
3893 sinfo->num_objs = num_objs;
3894 sinfo->active_slabs = active_slabs;
3895 sinfo->num_slabs = total_slabs;
3896 sinfo->shared_avail = shared_avail;
3897 sinfo->limit = cachep->limit;
3898 sinfo->batchcount = cachep->batchcount;
3899 sinfo->shared = cachep->shared;
3900 sinfo->objects_per_slab = cachep->num;
3901 sinfo->cache_order = cachep->gfporder;
3902 }
3903
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * cachep)3904 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3905 {
3906 #if STATS
3907 { /* node stats */
3908 unsigned long high = cachep->high_mark;
3909 unsigned long allocs = cachep->num_allocations;
3910 unsigned long grown = cachep->grown;
3911 unsigned long reaped = cachep->reaped;
3912 unsigned long errors = cachep->errors;
3913 unsigned long max_freeable = cachep->max_freeable;
3914 unsigned long node_allocs = cachep->node_allocs;
3915 unsigned long node_frees = cachep->node_frees;
3916 unsigned long overflows = cachep->node_overflow;
3917
3918 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
3919 allocs, high, grown,
3920 reaped, errors, max_freeable, node_allocs,
3921 node_frees, overflows);
3922 }
3923 /* cpu stats */
3924 {
3925 unsigned long allochit = atomic_read(&cachep->allochit);
3926 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3927 unsigned long freehit = atomic_read(&cachep->freehit);
3928 unsigned long freemiss = atomic_read(&cachep->freemiss);
3929
3930 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3931 allochit, allocmiss, freehit, freemiss);
3932 }
3933 #endif
3934 }
3935
3936 #define MAX_SLABINFO_WRITE 128
3937 /**
3938 * slabinfo_write - Tuning for the slab allocator
3939 * @file: unused
3940 * @buffer: user buffer
3941 * @count: data length
3942 * @ppos: unused
3943 *
3944 * Return: %0 on success, negative error code otherwise.
3945 */
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)3946 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3947 size_t count, loff_t *ppos)
3948 {
3949 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3950 int limit, batchcount, shared, res;
3951 struct kmem_cache *cachep;
3952
3953 if (count > MAX_SLABINFO_WRITE)
3954 return -EINVAL;
3955 if (copy_from_user(&kbuf, buffer, count))
3956 return -EFAULT;
3957 kbuf[MAX_SLABINFO_WRITE] = '\0';
3958
3959 tmp = strchr(kbuf, ' ');
3960 if (!tmp)
3961 return -EINVAL;
3962 *tmp = '\0';
3963 tmp++;
3964 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3965 return -EINVAL;
3966
3967 /* Find the cache in the chain of caches. */
3968 mutex_lock(&slab_mutex);
3969 res = -EINVAL;
3970 list_for_each_entry(cachep, &slab_caches, list) {
3971 if (!strcmp(cachep->name, kbuf)) {
3972 if (limit < 1 || batchcount < 1 ||
3973 batchcount > limit || shared < 0) {
3974 res = 0;
3975 } else {
3976 res = do_tune_cpucache(cachep, limit,
3977 batchcount, shared,
3978 GFP_KERNEL);
3979 }
3980 break;
3981 }
3982 }
3983 mutex_unlock(&slab_mutex);
3984 if (res >= 0)
3985 res = count;
3986 return res;
3987 }
3988
3989 #ifdef CONFIG_HARDENED_USERCOPY
3990 /*
3991 * Rejects incorrectly sized objects and objects that are to be copied
3992 * to/from userspace but do not fall entirely within the containing slab
3993 * cache's usercopy region.
3994 *
3995 * Returns NULL if check passes, otherwise const char * to name of cache
3996 * to indicate an error.
3997 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)3998 void __check_heap_object(const void *ptr, unsigned long n,
3999 const struct slab *slab, bool to_user)
4000 {
4001 struct kmem_cache *cachep;
4002 unsigned int objnr;
4003 unsigned long offset;
4004
4005 ptr = kasan_reset_tag(ptr);
4006
4007 /* Find and validate object. */
4008 cachep = slab->slab_cache;
4009 objnr = obj_to_index(cachep, slab, (void *)ptr);
4010 BUG_ON(objnr >= cachep->num);
4011
4012 /* Find offset within object. */
4013 if (is_kfence_address(ptr))
4014 offset = ptr - kfence_object_start(ptr);
4015 else
4016 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
4017
4018 /* Allow address range falling entirely within usercopy region. */
4019 if (offset >= cachep->useroffset &&
4020 offset - cachep->useroffset <= cachep->usersize &&
4021 n <= cachep->useroffset - offset + cachep->usersize)
4022 return;
4023
4024 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4025 }
4026 #endif /* CONFIG_HARDENED_USERCOPY */
4027