xref: /openbmc/linux/mm/shmem.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	bool full_inums;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 				struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 			     struct page **pagep, enum sgp_type sgp,
145 			     gfp_t gfp, struct vm_area_struct *vma,
146 			     vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp,
149 		gfp_t gfp, struct vm_area_struct *vma,
150 		struct vm_fault *vmf, vm_fault_t *fault_type);
151 
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 		struct page **pagep, enum sgp_type sgp)
154 {
155 	return shmem_getpage_gfp(inode, index, pagep, sgp,
156 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158 
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175 
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
182 static inline int shmem_reacct_size(unsigned long flags,
183 		loff_t oldsize, loff_t newsize)
184 {
185 	if (!(flags & VM_NORESERVE)) {
186 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 			return security_vm_enough_memory_mm(current->mm,
188 					VM_ACCT(newsize) - VM_ACCT(oldsize));
189 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 	}
192 	return 0;
193 }
194 
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 	if (!(flags & VM_NORESERVE))
204 		return 0;
205 
206 	return security_vm_enough_memory_mm(current->mm,
207 			pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 
221 	if (shmem_acct_block(info->flags, pages))
222 		return false;
223 
224 	if (sbinfo->max_blocks) {
225 		if (percpu_counter_compare(&sbinfo->used_blocks,
226 					   sbinfo->max_blocks - pages) > 0)
227 			goto unacct;
228 		percpu_counter_add(&sbinfo->used_blocks, pages);
229 	}
230 
231 	return true;
232 
233 unacct:
234 	shmem_unacct_blocks(info->flags, pages);
235 	return false;
236 }
237 
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 	struct shmem_inode_info *info = SHMEM_I(inode);
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 
243 	if (sbinfo->max_blocks)
244 		percpu_counter_sub(&sbinfo->used_blocks, pages);
245 	shmem_unacct_blocks(info->flags, pages);
246 }
247 
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256 
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 	return vma->vm_ops == &shmem_vm_ops;
260 }
261 
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 	ino_t ino;
279 
280 	if (!(sb->s_flags & SB_KERNMOUNT)) {
281 		spin_lock(&sbinfo->stat_lock);
282 		if (sbinfo->max_inodes) {
283 			if (!sbinfo->free_inodes) {
284 				spin_unlock(&sbinfo->stat_lock);
285 				return -ENOSPC;
286 			}
287 			sbinfo->free_inodes--;
288 		}
289 		if (inop) {
290 			ino = sbinfo->next_ino++;
291 			if (unlikely(is_zero_ino(ino)))
292 				ino = sbinfo->next_ino++;
293 			if (unlikely(!sbinfo->full_inums &&
294 				     ino > UINT_MAX)) {
295 				/*
296 				 * Emulate get_next_ino uint wraparound for
297 				 * compatibility
298 				 */
299 				if (IS_ENABLED(CONFIG_64BIT))
300 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 						__func__, MINOR(sb->s_dev));
302 				sbinfo->next_ino = 1;
303 				ino = sbinfo->next_ino++;
304 			}
305 			*inop = ino;
306 		}
307 		spin_unlock(&sbinfo->stat_lock);
308 	} else if (inop) {
309 		/*
310 		 * __shmem_file_setup, one of our callers, is lock-free: it
311 		 * doesn't hold stat_lock in shmem_reserve_inode since
312 		 * max_inodes is always 0, and is called from potentially
313 		 * unknown contexts. As such, use a per-cpu batched allocator
314 		 * which doesn't require the per-sb stat_lock unless we are at
315 		 * the batch boundary.
316 		 *
317 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 		 * shmem mounts are not exposed to userspace, so we don't need
319 		 * to worry about things like glibc compatibility.
320 		 */
321 		ino_t *next_ino;
322 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 		ino = *next_ino;
324 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 			spin_lock(&sbinfo->stat_lock);
326 			ino = sbinfo->next_ino;
327 			sbinfo->next_ino += SHMEM_INO_BATCH;
328 			spin_unlock(&sbinfo->stat_lock);
329 			if (unlikely(is_zero_ino(ino)))
330 				ino++;
331 		}
332 		*inop = ino;
333 		*next_ino = ++ino;
334 		put_cpu();
335 	}
336 
337 	return 0;
338 }
339 
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 	if (sbinfo->max_inodes) {
344 		spin_lock(&sbinfo->stat_lock);
345 		sbinfo->free_inodes++;
346 		spin_unlock(&sbinfo->stat_lock);
347 	}
348 }
349 
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 	struct shmem_inode_info *info = SHMEM_I(inode);
365 	long freed;
366 
367 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 	if (freed > 0) {
369 		info->alloced -= freed;
370 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 		shmem_inode_unacct_blocks(inode, freed);
372 	}
373 }
374 
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 	struct shmem_inode_info *info = SHMEM_I(inode);
378 	unsigned long flags;
379 
380 	if (!shmem_inode_acct_block(inode, pages))
381 		return false;
382 
383 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 	inode->i_mapping->nrpages += pages;
385 
386 	spin_lock_irqsave(&info->lock, flags);
387 	info->alloced += pages;
388 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 	shmem_recalc_inode(inode);
390 	spin_unlock_irqrestore(&info->lock, flags);
391 
392 	return true;
393 }
394 
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 	struct shmem_inode_info *info = SHMEM_I(inode);
398 	unsigned long flags;
399 
400 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
401 
402 	spin_lock_irqsave(&info->lock, flags);
403 	info->alloced -= pages;
404 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 	shmem_recalc_inode(inode);
406 	spin_unlock_irqrestore(&info->lock, flags);
407 
408 	shmem_inode_unacct_blocks(inode, pages);
409 }
410 
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415 			pgoff_t index, void *expected, void *replacement)
416 {
417 	XA_STATE(xas, &mapping->i_pages, index);
418 	void *item;
419 
420 	VM_BUG_ON(!expected);
421 	VM_BUG_ON(!replacement);
422 	item = xas_load(&xas);
423 	if (item != expected)
424 		return -ENOENT;
425 	xas_store(&xas, replacement);
426 	return 0;
427 }
428 
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 			       pgoff_t index, swp_entry_t swap)
438 {
439 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441 
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *	disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *	enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *	only allocate huge pages if the page will be fully within i_size,
451  *	also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *	only allocate huge pages if requested with fadvise()/madvise();
454  */
455 
456 #define SHMEM_HUGE_NEVER	0
457 #define SHMEM_HUGE_ALWAYS	1
458 #define SHMEM_HUGE_WITHIN_SIZE	2
459 #define SHMEM_HUGE_ADVISE	3
460 
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *	disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY		(-1)
472 #define SHMEM_HUGE_FORCE	(-2)
473 
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476 
477 static int shmem_huge __read_mostly;
478 
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 	if (!strcmp(str, "never"))
483 		return SHMEM_HUGE_NEVER;
484 	if (!strcmp(str, "always"))
485 		return SHMEM_HUGE_ALWAYS;
486 	if (!strcmp(str, "within_size"))
487 		return SHMEM_HUGE_WITHIN_SIZE;
488 	if (!strcmp(str, "advise"))
489 		return SHMEM_HUGE_ADVISE;
490 	if (!strcmp(str, "deny"))
491 		return SHMEM_HUGE_DENY;
492 	if (!strcmp(str, "force"))
493 		return SHMEM_HUGE_FORCE;
494 	return -EINVAL;
495 }
496 #endif
497 
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 	switch (huge) {
502 	case SHMEM_HUGE_NEVER:
503 		return "never";
504 	case SHMEM_HUGE_ALWAYS:
505 		return "always";
506 	case SHMEM_HUGE_WITHIN_SIZE:
507 		return "within_size";
508 	case SHMEM_HUGE_ADVISE:
509 		return "advise";
510 	case SHMEM_HUGE_DENY:
511 		return "deny";
512 	case SHMEM_HUGE_FORCE:
513 		return "force";
514 	default:
515 		VM_BUG_ON(1);
516 		return "bad_val";
517 	}
518 }
519 #endif
520 
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 		struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 	LIST_HEAD(list), *pos, *next;
525 	LIST_HEAD(to_remove);
526 	struct inode *inode;
527 	struct shmem_inode_info *info;
528 	struct page *page;
529 	unsigned long batch = sc ? sc->nr_to_scan : 128;
530 	int removed = 0, split = 0;
531 
532 	if (list_empty(&sbinfo->shrinklist))
533 		return SHRINK_STOP;
534 
535 	spin_lock(&sbinfo->shrinklist_lock);
536 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
538 
539 		/* pin the inode */
540 		inode = igrab(&info->vfs_inode);
541 
542 		/* inode is about to be evicted */
543 		if (!inode) {
544 			list_del_init(&info->shrinklist);
545 			removed++;
546 			goto next;
547 		}
548 
549 		/* Check if there's anything to gain */
550 		if (round_up(inode->i_size, PAGE_SIZE) ==
551 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 			list_move(&info->shrinklist, &to_remove);
553 			removed++;
554 			goto next;
555 		}
556 
557 		list_move(&info->shrinklist, &list);
558 next:
559 		if (!--batch)
560 			break;
561 	}
562 	spin_unlock(&sbinfo->shrinklist_lock);
563 
564 	list_for_each_safe(pos, next, &to_remove) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 		inode = &info->vfs_inode;
567 		list_del_init(&info->shrinklist);
568 		iput(inode);
569 	}
570 
571 	list_for_each_safe(pos, next, &list) {
572 		int ret;
573 
574 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 		inode = &info->vfs_inode;
576 
577 		if (nr_to_split && split >= nr_to_split)
578 			goto leave;
579 
580 		page = find_get_page(inode->i_mapping,
581 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 		if (!page)
583 			goto drop;
584 
585 		/* No huge page at the end of the file: nothing to split */
586 		if (!PageTransHuge(page)) {
587 			put_page(page);
588 			goto drop;
589 		}
590 
591 		/*
592 		 * Leave the inode on the list if we failed to lock
593 		 * the page at this time.
594 		 *
595 		 * Waiting for the lock may lead to deadlock in the
596 		 * reclaim path.
597 		 */
598 		if (!trylock_page(page)) {
599 			put_page(page);
600 			goto leave;
601 		}
602 
603 		ret = split_huge_page(page);
604 		unlock_page(page);
605 		put_page(page);
606 
607 		/* If split failed leave the inode on the list */
608 		if (ret)
609 			goto leave;
610 
611 		split++;
612 drop:
613 		list_del_init(&info->shrinklist);
614 		removed++;
615 leave:
616 		iput(inode);
617 	}
618 
619 	spin_lock(&sbinfo->shrinklist_lock);
620 	list_splice_tail(&list, &sbinfo->shrinklist);
621 	sbinfo->shrinklist_len -= removed;
622 	spin_unlock(&sbinfo->shrinklist_lock);
623 
624 	return split;
625 }
626 
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 		struct shrink_control *sc)
629 {
630 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631 
632 	if (!READ_ONCE(sbinfo->shrinklist_len))
633 		return SHRINK_STOP;
634 
635 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637 
638 static long shmem_unused_huge_count(struct super_block *sb,
639 		struct shrink_control *sc)
640 {
641 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 	return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645 
646 #define shmem_huge SHMEM_HUGE_DENY
647 
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 		struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654 
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 	    shmem_huge != SHMEM_HUGE_DENY)
660 		return true;
661 	return false;
662 }
663 
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668 				   struct address_space *mapping,
669 				   pgoff_t index, void *expected, gfp_t gfp,
670 				   struct mm_struct *charge_mm)
671 {
672 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 	unsigned long i = 0;
674 	unsigned long nr = compound_nr(page);
675 	int error;
676 
677 	VM_BUG_ON_PAGE(PageTail(page), page);
678 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 	VM_BUG_ON_PAGE(!PageLocked(page), page);
680 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 	VM_BUG_ON(expected && PageTransHuge(page));
682 
683 	page_ref_add(page, nr);
684 	page->mapping = mapping;
685 	page->index = index;
686 
687 	if (!PageSwapCache(page)) {
688 		error = mem_cgroup_charge(page, charge_mm, gfp);
689 		if (error) {
690 			if (PageTransHuge(page)) {
691 				count_vm_event(THP_FILE_FALLBACK);
692 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 			}
694 			goto error;
695 		}
696 	}
697 	cgroup_throttle_swaprate(page, gfp);
698 
699 	do {
700 		void *entry;
701 		xas_lock_irq(&xas);
702 		entry = xas_find_conflict(&xas);
703 		if (entry != expected)
704 			xas_set_err(&xas, -EEXIST);
705 		xas_create_range(&xas);
706 		if (xas_error(&xas))
707 			goto unlock;
708 next:
709 		xas_store(&xas, page);
710 		if (++i < nr) {
711 			xas_next(&xas);
712 			goto next;
713 		}
714 		if (PageTransHuge(page)) {
715 			count_vm_event(THP_FILE_ALLOC);
716 			__inc_node_page_state(page, NR_SHMEM_THPS);
717 		}
718 		mapping->nrpages += nr;
719 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 		xas_unlock_irq(&xas);
723 	} while (xas_nomem(&xas, gfp));
724 
725 	if (xas_error(&xas)) {
726 		error = xas_error(&xas);
727 		goto error;
728 	}
729 
730 	return 0;
731 error:
732 	page->mapping = NULL;
733 	page_ref_sub(page, nr);
734 	return error;
735 }
736 
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 	struct address_space *mapping = page->mapping;
743 	int error;
744 
745 	VM_BUG_ON_PAGE(PageCompound(page), page);
746 
747 	xa_lock_irq(&mapping->i_pages);
748 	error = shmem_replace_entry(mapping, page->index, page, radswap);
749 	page->mapping = NULL;
750 	mapping->nrpages--;
751 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
752 	__dec_lruvec_page_state(page, NR_SHMEM);
753 	xa_unlock_irq(&mapping->i_pages);
754 	put_page(page);
755 	BUG_ON(error);
756 }
757 
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762 			   pgoff_t index, void *radswap)
763 {
764 	void *old;
765 
766 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 	if (old != radswap)
768 		return -ENOENT;
769 	free_swap_and_cache(radix_to_swp_entry(radswap));
770 	return 0;
771 }
772 
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 						pgoff_t start, pgoff_t end)
782 {
783 	XA_STATE(xas, &mapping->i_pages, start);
784 	struct page *page;
785 	unsigned long swapped = 0;
786 
787 	rcu_read_lock();
788 	xas_for_each(&xas, page, end - 1) {
789 		if (xas_retry(&xas, page))
790 			continue;
791 		if (xa_is_value(page))
792 			swapped++;
793 
794 		if (need_resched()) {
795 			xas_pause(&xas);
796 			cond_resched_rcu();
797 		}
798 	}
799 
800 	rcu_read_unlock();
801 
802 	return swapped << PAGE_SHIFT;
803 }
804 
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 	struct inode *inode = file_inode(vma->vm_file);
815 	struct shmem_inode_info *info = SHMEM_I(inode);
816 	struct address_space *mapping = inode->i_mapping;
817 	unsigned long swapped;
818 
819 	/* Be careful as we don't hold info->lock */
820 	swapped = READ_ONCE(info->swapped);
821 
822 	/*
823 	 * The easier cases are when the shmem object has nothing in swap, or
824 	 * the vma maps it whole. Then we can simply use the stats that we
825 	 * already track.
826 	 */
827 	if (!swapped)
828 		return 0;
829 
830 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 		return swapped << PAGE_SHIFT;
832 
833 	/* Here comes the more involved part */
834 	return shmem_partial_swap_usage(mapping,
835 			linear_page_index(vma, vma->vm_start),
836 			linear_page_index(vma, vma->vm_end));
837 }
838 
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 	struct pagevec pvec;
845 	pgoff_t indices[PAGEVEC_SIZE];
846 	pgoff_t index = 0;
847 
848 	pagevec_init(&pvec);
849 	/*
850 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
851 	 */
852 	while (!mapping_unevictable(mapping)) {
853 		/*
854 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
855 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
856 		 */
857 		pvec.nr = find_get_entries(mapping, index,
858 					   PAGEVEC_SIZE, pvec.pages, indices);
859 		if (!pvec.nr)
860 			break;
861 		index = indices[pvec.nr - 1] + 1;
862 		pagevec_remove_exceptionals(&pvec);
863 		check_move_unevictable_pages(&pvec);
864 		pagevec_release(&pvec);
865 		cond_resched();
866 	}
867 }
868 
869 /*
870  * Check whether a hole-punch or truncation needs to split a huge page,
871  * returning true if no split was required, or the split has been successful.
872  *
873  * Eviction (or truncation to 0 size) should never need to split a huge page;
874  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
875  * head, and then succeeded to trylock on tail.
876  *
877  * A split can only succeed when there are no additional references on the
878  * huge page: so the split below relies upon find_get_entries() having stopped
879  * when it found a subpage of the huge page, without getting further references.
880  */
881 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
882 {
883 	if (!PageTransCompound(page))
884 		return true;
885 
886 	/* Just proceed to delete a huge page wholly within the range punched */
887 	if (PageHead(page) &&
888 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
889 		return true;
890 
891 	/* Try to split huge page, so we can truly punch the hole or truncate */
892 	return split_huge_page(page) >= 0;
893 }
894 
895 /*
896  * Remove range of pages and swap entries from page cache, and free them.
897  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
898  */
899 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
900 								 bool unfalloc)
901 {
902 	struct address_space *mapping = inode->i_mapping;
903 	struct shmem_inode_info *info = SHMEM_I(inode);
904 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
905 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
906 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
907 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
908 	struct pagevec pvec;
909 	pgoff_t indices[PAGEVEC_SIZE];
910 	long nr_swaps_freed = 0;
911 	pgoff_t index;
912 	int i;
913 
914 	if (lend == -1)
915 		end = -1;	/* unsigned, so actually very big */
916 
917 	pagevec_init(&pvec);
918 	index = start;
919 	while (index < end) {
920 		pvec.nr = find_get_entries(mapping, index,
921 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
922 			pvec.pages, indices);
923 		if (!pvec.nr)
924 			break;
925 		for (i = 0; i < pagevec_count(&pvec); i++) {
926 			struct page *page = pvec.pages[i];
927 
928 			index = indices[i];
929 			if (index >= end)
930 				break;
931 
932 			if (xa_is_value(page)) {
933 				if (unfalloc)
934 					continue;
935 				nr_swaps_freed += !shmem_free_swap(mapping,
936 								index, page);
937 				continue;
938 			}
939 
940 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
941 
942 			if (!trylock_page(page))
943 				continue;
944 
945 			if ((!unfalloc || !PageUptodate(page)) &&
946 			    page_mapping(page) == mapping) {
947 				VM_BUG_ON_PAGE(PageWriteback(page), page);
948 				if (shmem_punch_compound(page, start, end))
949 					truncate_inode_page(mapping, page);
950 			}
951 			unlock_page(page);
952 		}
953 		pagevec_remove_exceptionals(&pvec);
954 		pagevec_release(&pvec);
955 		cond_resched();
956 		index++;
957 	}
958 
959 	if (partial_start) {
960 		struct page *page = NULL;
961 		shmem_getpage(inode, start - 1, &page, SGP_READ);
962 		if (page) {
963 			unsigned int top = PAGE_SIZE;
964 			if (start > end) {
965 				top = partial_end;
966 				partial_end = 0;
967 			}
968 			zero_user_segment(page, partial_start, top);
969 			set_page_dirty(page);
970 			unlock_page(page);
971 			put_page(page);
972 		}
973 	}
974 	if (partial_end) {
975 		struct page *page = NULL;
976 		shmem_getpage(inode, end, &page, SGP_READ);
977 		if (page) {
978 			zero_user_segment(page, 0, partial_end);
979 			set_page_dirty(page);
980 			unlock_page(page);
981 			put_page(page);
982 		}
983 	}
984 	if (start >= end)
985 		return;
986 
987 	index = start;
988 	while (index < end) {
989 		cond_resched();
990 
991 		pvec.nr = find_get_entries(mapping, index,
992 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
993 				pvec.pages, indices);
994 		if (!pvec.nr) {
995 			/* If all gone or hole-punch or unfalloc, we're done */
996 			if (index == start || end != -1)
997 				break;
998 			/* But if truncating, restart to make sure all gone */
999 			index = start;
1000 			continue;
1001 		}
1002 		for (i = 0; i < pagevec_count(&pvec); i++) {
1003 			struct page *page = pvec.pages[i];
1004 
1005 			index = indices[i];
1006 			if (index >= end)
1007 				break;
1008 
1009 			if (xa_is_value(page)) {
1010 				if (unfalloc)
1011 					continue;
1012 				if (shmem_free_swap(mapping, index, page)) {
1013 					/* Swap was replaced by page: retry */
1014 					index--;
1015 					break;
1016 				}
1017 				nr_swaps_freed++;
1018 				continue;
1019 			}
1020 
1021 			lock_page(page);
1022 
1023 			if (!unfalloc || !PageUptodate(page)) {
1024 				if (page_mapping(page) != mapping) {
1025 					/* Page was replaced by swap: retry */
1026 					unlock_page(page);
1027 					index--;
1028 					break;
1029 				}
1030 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1031 				if (shmem_punch_compound(page, start, end))
1032 					truncate_inode_page(mapping, page);
1033 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034 					/* Wipe the page and don't get stuck */
1035 					clear_highpage(page);
1036 					flush_dcache_page(page);
1037 					set_page_dirty(page);
1038 					if (index <
1039 					    round_up(start, HPAGE_PMD_NR))
1040 						start = index + 1;
1041 				}
1042 			}
1043 			unlock_page(page);
1044 		}
1045 		pagevec_remove_exceptionals(&pvec);
1046 		pagevec_release(&pvec);
1047 		index++;
1048 	}
1049 
1050 	spin_lock_irq(&info->lock);
1051 	info->swapped -= nr_swaps_freed;
1052 	shmem_recalc_inode(inode);
1053 	spin_unlock_irq(&info->lock);
1054 }
1055 
1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057 {
1058 	shmem_undo_range(inode, lstart, lend, false);
1059 	inode->i_ctime = inode->i_mtime = current_time(inode);
1060 }
1061 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1062 
1063 static int shmem_getattr(const struct path *path, struct kstat *stat,
1064 			 u32 request_mask, unsigned int query_flags)
1065 {
1066 	struct inode *inode = path->dentry->d_inode;
1067 	struct shmem_inode_info *info = SHMEM_I(inode);
1068 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1069 
1070 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071 		spin_lock_irq(&info->lock);
1072 		shmem_recalc_inode(inode);
1073 		spin_unlock_irq(&info->lock);
1074 	}
1075 	generic_fillattr(inode, stat);
1076 
1077 	if (is_huge_enabled(sb_info))
1078 		stat->blksize = HPAGE_PMD_SIZE;
1079 
1080 	return 0;
1081 }
1082 
1083 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1084 {
1085 	struct inode *inode = d_inode(dentry);
1086 	struct shmem_inode_info *info = SHMEM_I(inode);
1087 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088 	int error;
1089 
1090 	error = setattr_prepare(dentry, attr);
1091 	if (error)
1092 		return error;
1093 
1094 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095 		loff_t oldsize = inode->i_size;
1096 		loff_t newsize = attr->ia_size;
1097 
1098 		/* protected by i_mutex */
1099 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101 			return -EPERM;
1102 
1103 		if (newsize != oldsize) {
1104 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105 					oldsize, newsize);
1106 			if (error)
1107 				return error;
1108 			i_size_write(inode, newsize);
1109 			inode->i_ctime = inode->i_mtime = current_time(inode);
1110 		}
1111 		if (newsize <= oldsize) {
1112 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113 			if (oldsize > holebegin)
1114 				unmap_mapping_range(inode->i_mapping,
1115 							holebegin, 0, 1);
1116 			if (info->alloced)
1117 				shmem_truncate_range(inode,
1118 							newsize, (loff_t)-1);
1119 			/* unmap again to remove racily COWed private pages */
1120 			if (oldsize > holebegin)
1121 				unmap_mapping_range(inode->i_mapping,
1122 							holebegin, 0, 1);
1123 
1124 			/*
1125 			 * Part of the huge page can be beyond i_size: subject
1126 			 * to shrink under memory pressure.
1127 			 */
1128 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1129 				spin_lock(&sbinfo->shrinklist_lock);
1130 				/*
1131 				 * _careful to defend against unlocked access to
1132 				 * ->shrink_list in shmem_unused_huge_shrink()
1133 				 */
1134 				if (list_empty_careful(&info->shrinklist)) {
1135 					list_add_tail(&info->shrinklist,
1136 							&sbinfo->shrinklist);
1137 					sbinfo->shrinklist_len++;
1138 				}
1139 				spin_unlock(&sbinfo->shrinklist_lock);
1140 			}
1141 		}
1142 	}
1143 
1144 	setattr_copy(inode, attr);
1145 	if (attr->ia_valid & ATTR_MODE)
1146 		error = posix_acl_chmod(inode, inode->i_mode);
1147 	return error;
1148 }
1149 
1150 static void shmem_evict_inode(struct inode *inode)
1151 {
1152 	struct shmem_inode_info *info = SHMEM_I(inode);
1153 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1154 
1155 	if (inode->i_mapping->a_ops == &shmem_aops) {
1156 		shmem_unacct_size(info->flags, inode->i_size);
1157 		inode->i_size = 0;
1158 		shmem_truncate_range(inode, 0, (loff_t)-1);
1159 		if (!list_empty(&info->shrinklist)) {
1160 			spin_lock(&sbinfo->shrinklist_lock);
1161 			if (!list_empty(&info->shrinklist)) {
1162 				list_del_init(&info->shrinklist);
1163 				sbinfo->shrinklist_len--;
1164 			}
1165 			spin_unlock(&sbinfo->shrinklist_lock);
1166 		}
1167 		while (!list_empty(&info->swaplist)) {
1168 			/* Wait while shmem_unuse() is scanning this inode... */
1169 			wait_var_event(&info->stop_eviction,
1170 				       !atomic_read(&info->stop_eviction));
1171 			mutex_lock(&shmem_swaplist_mutex);
1172 			/* ...but beware of the race if we peeked too early */
1173 			if (!atomic_read(&info->stop_eviction))
1174 				list_del_init(&info->swaplist);
1175 			mutex_unlock(&shmem_swaplist_mutex);
1176 		}
1177 	}
1178 
1179 	simple_xattrs_free(&info->xattrs);
1180 	WARN_ON(inode->i_blocks);
1181 	shmem_free_inode(inode->i_sb);
1182 	clear_inode(inode);
1183 }
1184 
1185 extern struct swap_info_struct *swap_info[];
1186 
1187 static int shmem_find_swap_entries(struct address_space *mapping,
1188 				   pgoff_t start, unsigned int nr_entries,
1189 				   struct page **entries, pgoff_t *indices,
1190 				   unsigned int type, bool frontswap)
1191 {
1192 	XA_STATE(xas, &mapping->i_pages, start);
1193 	struct page *page;
1194 	swp_entry_t entry;
1195 	unsigned int ret = 0;
1196 
1197 	if (!nr_entries)
1198 		return 0;
1199 
1200 	rcu_read_lock();
1201 	xas_for_each(&xas, page, ULONG_MAX) {
1202 		if (xas_retry(&xas, page))
1203 			continue;
1204 
1205 		if (!xa_is_value(page))
1206 			continue;
1207 
1208 		entry = radix_to_swp_entry(page);
1209 		if (swp_type(entry) != type)
1210 			continue;
1211 		if (frontswap &&
1212 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1213 			continue;
1214 
1215 		indices[ret] = xas.xa_index;
1216 		entries[ret] = page;
1217 
1218 		if (need_resched()) {
1219 			xas_pause(&xas);
1220 			cond_resched_rcu();
1221 		}
1222 		if (++ret == nr_entries)
1223 			break;
1224 	}
1225 	rcu_read_unlock();
1226 
1227 	return ret;
1228 }
1229 
1230 /*
1231  * Move the swapped pages for an inode to page cache. Returns the count
1232  * of pages swapped in, or the error in case of failure.
1233  */
1234 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1235 				    pgoff_t *indices)
1236 {
1237 	int i = 0;
1238 	int ret = 0;
1239 	int error = 0;
1240 	struct address_space *mapping = inode->i_mapping;
1241 
1242 	for (i = 0; i < pvec.nr; i++) {
1243 		struct page *page = pvec.pages[i];
1244 
1245 		if (!xa_is_value(page))
1246 			continue;
1247 		error = shmem_swapin_page(inode, indices[i],
1248 					  &page, SGP_CACHE,
1249 					  mapping_gfp_mask(mapping),
1250 					  NULL, NULL);
1251 		if (error == 0) {
1252 			unlock_page(page);
1253 			put_page(page);
1254 			ret++;
1255 		}
1256 		if (error == -ENOMEM)
1257 			break;
1258 		error = 0;
1259 	}
1260 	return error ? error : ret;
1261 }
1262 
1263 /*
1264  * If swap found in inode, free it and move page from swapcache to filecache.
1265  */
1266 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1267 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1268 {
1269 	struct address_space *mapping = inode->i_mapping;
1270 	pgoff_t start = 0;
1271 	struct pagevec pvec;
1272 	pgoff_t indices[PAGEVEC_SIZE];
1273 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1274 	int ret = 0;
1275 
1276 	pagevec_init(&pvec);
1277 	do {
1278 		unsigned int nr_entries = PAGEVEC_SIZE;
1279 
1280 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1281 			nr_entries = *fs_pages_to_unuse;
1282 
1283 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1284 						  pvec.pages, indices,
1285 						  type, frontswap);
1286 		if (pvec.nr == 0) {
1287 			ret = 0;
1288 			break;
1289 		}
1290 
1291 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1292 		if (ret < 0)
1293 			break;
1294 
1295 		if (frontswap_partial) {
1296 			*fs_pages_to_unuse -= ret;
1297 			if (*fs_pages_to_unuse == 0) {
1298 				ret = FRONTSWAP_PAGES_UNUSED;
1299 				break;
1300 			}
1301 		}
1302 
1303 		start = indices[pvec.nr - 1];
1304 	} while (true);
1305 
1306 	return ret;
1307 }
1308 
1309 /*
1310  * Read all the shared memory data that resides in the swap
1311  * device 'type' back into memory, so the swap device can be
1312  * unused.
1313  */
1314 int shmem_unuse(unsigned int type, bool frontswap,
1315 		unsigned long *fs_pages_to_unuse)
1316 {
1317 	struct shmem_inode_info *info, *next;
1318 	int error = 0;
1319 
1320 	if (list_empty(&shmem_swaplist))
1321 		return 0;
1322 
1323 	mutex_lock(&shmem_swaplist_mutex);
1324 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1325 		if (!info->swapped) {
1326 			list_del_init(&info->swaplist);
1327 			continue;
1328 		}
1329 		/*
1330 		 * Drop the swaplist mutex while searching the inode for swap;
1331 		 * but before doing so, make sure shmem_evict_inode() will not
1332 		 * remove placeholder inode from swaplist, nor let it be freed
1333 		 * (igrab() would protect from unlink, but not from unmount).
1334 		 */
1335 		atomic_inc(&info->stop_eviction);
1336 		mutex_unlock(&shmem_swaplist_mutex);
1337 
1338 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1339 					  fs_pages_to_unuse);
1340 		cond_resched();
1341 
1342 		mutex_lock(&shmem_swaplist_mutex);
1343 		next = list_next_entry(info, swaplist);
1344 		if (!info->swapped)
1345 			list_del_init(&info->swaplist);
1346 		if (atomic_dec_and_test(&info->stop_eviction))
1347 			wake_up_var(&info->stop_eviction);
1348 		if (error)
1349 			break;
1350 	}
1351 	mutex_unlock(&shmem_swaplist_mutex);
1352 
1353 	return error;
1354 }
1355 
1356 /*
1357  * Move the page from the page cache to the swap cache.
1358  */
1359 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1360 {
1361 	struct shmem_inode_info *info;
1362 	struct address_space *mapping;
1363 	struct inode *inode;
1364 	swp_entry_t swap;
1365 	pgoff_t index;
1366 
1367 	VM_BUG_ON_PAGE(PageCompound(page), page);
1368 	BUG_ON(!PageLocked(page));
1369 	mapping = page->mapping;
1370 	index = page->index;
1371 	inode = mapping->host;
1372 	info = SHMEM_I(inode);
1373 	if (info->flags & VM_LOCKED)
1374 		goto redirty;
1375 	if (!total_swap_pages)
1376 		goto redirty;
1377 
1378 	/*
1379 	 * Our capabilities prevent regular writeback or sync from ever calling
1380 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1381 	 * its underlying filesystem, in which case tmpfs should write out to
1382 	 * swap only in response to memory pressure, and not for the writeback
1383 	 * threads or sync.
1384 	 */
1385 	if (!wbc->for_reclaim) {
1386 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1387 		goto redirty;
1388 	}
1389 
1390 	/*
1391 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1392 	 * value into swapfile.c, the only way we can correctly account for a
1393 	 * fallocated page arriving here is now to initialize it and write it.
1394 	 *
1395 	 * That's okay for a page already fallocated earlier, but if we have
1396 	 * not yet completed the fallocation, then (a) we want to keep track
1397 	 * of this page in case we have to undo it, and (b) it may not be a
1398 	 * good idea to continue anyway, once we're pushing into swap.  So
1399 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1400 	 */
1401 	if (!PageUptodate(page)) {
1402 		if (inode->i_private) {
1403 			struct shmem_falloc *shmem_falloc;
1404 			spin_lock(&inode->i_lock);
1405 			shmem_falloc = inode->i_private;
1406 			if (shmem_falloc &&
1407 			    !shmem_falloc->waitq &&
1408 			    index >= shmem_falloc->start &&
1409 			    index < shmem_falloc->next)
1410 				shmem_falloc->nr_unswapped++;
1411 			else
1412 				shmem_falloc = NULL;
1413 			spin_unlock(&inode->i_lock);
1414 			if (shmem_falloc)
1415 				goto redirty;
1416 		}
1417 		clear_highpage(page);
1418 		flush_dcache_page(page);
1419 		SetPageUptodate(page);
1420 	}
1421 
1422 	swap = get_swap_page(page);
1423 	if (!swap.val)
1424 		goto redirty;
1425 
1426 	/*
1427 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1428 	 * if it's not already there.  Do it now before the page is
1429 	 * moved to swap cache, when its pagelock no longer protects
1430 	 * the inode from eviction.  But don't unlock the mutex until
1431 	 * we've incremented swapped, because shmem_unuse_inode() will
1432 	 * prune a !swapped inode from the swaplist under this mutex.
1433 	 */
1434 	mutex_lock(&shmem_swaplist_mutex);
1435 	if (list_empty(&info->swaplist))
1436 		list_add(&info->swaplist, &shmem_swaplist);
1437 
1438 	if (add_to_swap_cache(page, swap,
1439 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1440 			NULL) == 0) {
1441 		spin_lock_irq(&info->lock);
1442 		shmem_recalc_inode(inode);
1443 		info->swapped++;
1444 		spin_unlock_irq(&info->lock);
1445 
1446 		swap_shmem_alloc(swap);
1447 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1448 
1449 		mutex_unlock(&shmem_swaplist_mutex);
1450 		BUG_ON(page_mapped(page));
1451 		swap_writepage(page, wbc);
1452 		return 0;
1453 	}
1454 
1455 	mutex_unlock(&shmem_swaplist_mutex);
1456 	put_swap_page(page, swap);
1457 redirty:
1458 	set_page_dirty(page);
1459 	if (wbc->for_reclaim)
1460 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1461 	unlock_page(page);
1462 	return 0;
1463 }
1464 
1465 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1466 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1467 {
1468 	char buffer[64];
1469 
1470 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1471 		return;		/* show nothing */
1472 
1473 	mpol_to_str(buffer, sizeof(buffer), mpol);
1474 
1475 	seq_printf(seq, ",mpol=%s", buffer);
1476 }
1477 
1478 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1479 {
1480 	struct mempolicy *mpol = NULL;
1481 	if (sbinfo->mpol) {
1482 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1483 		mpol = sbinfo->mpol;
1484 		mpol_get(mpol);
1485 		spin_unlock(&sbinfo->stat_lock);
1486 	}
1487 	return mpol;
1488 }
1489 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1490 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1491 {
1492 }
1493 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1494 {
1495 	return NULL;
1496 }
1497 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1498 #ifndef CONFIG_NUMA
1499 #define vm_policy vm_private_data
1500 #endif
1501 
1502 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1503 		struct shmem_inode_info *info, pgoff_t index)
1504 {
1505 	/* Create a pseudo vma that just contains the policy */
1506 	vma_init(vma, NULL);
1507 	/* Bias interleave by inode number to distribute better across nodes */
1508 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1509 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1510 }
1511 
1512 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1513 {
1514 	/* Drop reference taken by mpol_shared_policy_lookup() */
1515 	mpol_cond_put(vma->vm_policy);
1516 }
1517 
1518 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1519 			struct shmem_inode_info *info, pgoff_t index)
1520 {
1521 	struct vm_area_struct pvma;
1522 	struct page *page;
1523 	struct vm_fault vmf;
1524 
1525 	shmem_pseudo_vma_init(&pvma, info, index);
1526 	vmf.vma = &pvma;
1527 	vmf.address = 0;
1528 	page = swap_cluster_readahead(swap, gfp, &vmf);
1529 	shmem_pseudo_vma_destroy(&pvma);
1530 
1531 	return page;
1532 }
1533 
1534 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1535 		struct shmem_inode_info *info, pgoff_t index)
1536 {
1537 	struct vm_area_struct pvma;
1538 	struct address_space *mapping = info->vfs_inode.i_mapping;
1539 	pgoff_t hindex;
1540 	struct page *page;
1541 
1542 	hindex = round_down(index, HPAGE_PMD_NR);
1543 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1544 								XA_PRESENT))
1545 		return NULL;
1546 
1547 	shmem_pseudo_vma_init(&pvma, info, hindex);
1548 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1549 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1550 	shmem_pseudo_vma_destroy(&pvma);
1551 	if (page)
1552 		prep_transhuge_page(page);
1553 	else
1554 		count_vm_event(THP_FILE_FALLBACK);
1555 	return page;
1556 }
1557 
1558 static struct page *shmem_alloc_page(gfp_t gfp,
1559 			struct shmem_inode_info *info, pgoff_t index)
1560 {
1561 	struct vm_area_struct pvma;
1562 	struct page *page;
1563 
1564 	shmem_pseudo_vma_init(&pvma, info, index);
1565 	page = alloc_page_vma(gfp, &pvma, 0);
1566 	shmem_pseudo_vma_destroy(&pvma);
1567 
1568 	return page;
1569 }
1570 
1571 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1572 		struct inode *inode,
1573 		pgoff_t index, bool huge)
1574 {
1575 	struct shmem_inode_info *info = SHMEM_I(inode);
1576 	struct page *page;
1577 	int nr;
1578 	int err = -ENOSPC;
1579 
1580 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1581 		huge = false;
1582 	nr = huge ? HPAGE_PMD_NR : 1;
1583 
1584 	if (!shmem_inode_acct_block(inode, nr))
1585 		goto failed;
1586 
1587 	if (huge)
1588 		page = shmem_alloc_hugepage(gfp, info, index);
1589 	else
1590 		page = shmem_alloc_page(gfp, info, index);
1591 	if (page) {
1592 		__SetPageLocked(page);
1593 		__SetPageSwapBacked(page);
1594 		return page;
1595 	}
1596 
1597 	err = -ENOMEM;
1598 	shmem_inode_unacct_blocks(inode, nr);
1599 failed:
1600 	return ERR_PTR(err);
1601 }
1602 
1603 /*
1604  * When a page is moved from swapcache to shmem filecache (either by the
1605  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607  * ignorance of the mapping it belongs to.  If that mapping has special
1608  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609  * we may need to copy to a suitable page before moving to filecache.
1610  *
1611  * In a future release, this may well be extended to respect cpuset and
1612  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613  * but for now it is a simple matter of zone.
1614  */
1615 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1616 {
1617 	return page_zonenum(page) > gfp_zone(gfp);
1618 }
1619 
1620 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621 				struct shmem_inode_info *info, pgoff_t index)
1622 {
1623 	struct page *oldpage, *newpage;
1624 	struct address_space *swap_mapping;
1625 	swp_entry_t entry;
1626 	pgoff_t swap_index;
1627 	int error;
1628 
1629 	oldpage = *pagep;
1630 	entry.val = page_private(oldpage);
1631 	swap_index = swp_offset(entry);
1632 	swap_mapping = page_mapping(oldpage);
1633 
1634 	/*
1635 	 * We have arrived here because our zones are constrained, so don't
1636 	 * limit chance of success by further cpuset and node constraints.
1637 	 */
1638 	gfp &= ~GFP_CONSTRAINT_MASK;
1639 	newpage = shmem_alloc_page(gfp, info, index);
1640 	if (!newpage)
1641 		return -ENOMEM;
1642 
1643 	get_page(newpage);
1644 	copy_highpage(newpage, oldpage);
1645 	flush_dcache_page(newpage);
1646 
1647 	__SetPageLocked(newpage);
1648 	__SetPageSwapBacked(newpage);
1649 	SetPageUptodate(newpage);
1650 	set_page_private(newpage, entry.val);
1651 	SetPageSwapCache(newpage);
1652 
1653 	/*
1654 	 * Our caller will very soon move newpage out of swapcache, but it's
1655 	 * a nice clean interface for us to replace oldpage by newpage there.
1656 	 */
1657 	xa_lock_irq(&swap_mapping->i_pages);
1658 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1659 	if (!error) {
1660 		mem_cgroup_migrate(oldpage, newpage);
1661 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1663 	}
1664 	xa_unlock_irq(&swap_mapping->i_pages);
1665 
1666 	if (unlikely(error)) {
1667 		/*
1668 		 * Is this possible?  I think not, now that our callers check
1669 		 * both PageSwapCache and page_private after getting page lock;
1670 		 * but be defensive.  Reverse old to newpage for clear and free.
1671 		 */
1672 		oldpage = newpage;
1673 	} else {
1674 		lru_cache_add(newpage);
1675 		*pagep = newpage;
1676 	}
1677 
1678 	ClearPageSwapCache(oldpage);
1679 	set_page_private(oldpage, 0);
1680 
1681 	unlock_page(oldpage);
1682 	put_page(oldpage);
1683 	put_page(oldpage);
1684 	return error;
1685 }
1686 
1687 /*
1688  * Swap in the page pointed to by *pagep.
1689  * Caller has to make sure that *pagep contains a valid swapped page.
1690  * Returns 0 and the page in pagep if success. On failure, returns the
1691  * error code and NULL in *pagep.
1692  */
1693 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1694 			     struct page **pagep, enum sgp_type sgp,
1695 			     gfp_t gfp, struct vm_area_struct *vma,
1696 			     vm_fault_t *fault_type)
1697 {
1698 	struct address_space *mapping = inode->i_mapping;
1699 	struct shmem_inode_info *info = SHMEM_I(inode);
1700 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1701 	struct page *page;
1702 	swp_entry_t swap;
1703 	int error;
1704 
1705 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1706 	swap = radix_to_swp_entry(*pagep);
1707 	*pagep = NULL;
1708 
1709 	/* Look it up and read it in.. */
1710 	page = lookup_swap_cache(swap, NULL, 0);
1711 	if (!page) {
1712 		/* Or update major stats only when swapin succeeds?? */
1713 		if (fault_type) {
1714 			*fault_type |= VM_FAULT_MAJOR;
1715 			count_vm_event(PGMAJFAULT);
1716 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1717 		}
1718 		/* Here we actually start the io */
1719 		page = shmem_swapin(swap, gfp, info, index);
1720 		if (!page) {
1721 			error = -ENOMEM;
1722 			goto failed;
1723 		}
1724 	}
1725 
1726 	/* We have to do this with page locked to prevent races */
1727 	lock_page(page);
1728 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1729 	    !shmem_confirm_swap(mapping, index, swap)) {
1730 		error = -EEXIST;
1731 		goto unlock;
1732 	}
1733 	if (!PageUptodate(page)) {
1734 		error = -EIO;
1735 		goto failed;
1736 	}
1737 	wait_on_page_writeback(page);
1738 
1739 	if (shmem_should_replace_page(page, gfp)) {
1740 		error = shmem_replace_page(&page, gfp, info, index);
1741 		if (error)
1742 			goto failed;
1743 	}
1744 
1745 	error = shmem_add_to_page_cache(page, mapping, index,
1746 					swp_to_radix_entry(swap), gfp,
1747 					charge_mm);
1748 	if (error)
1749 		goto failed;
1750 
1751 	spin_lock_irq(&info->lock);
1752 	info->swapped--;
1753 	shmem_recalc_inode(inode);
1754 	spin_unlock_irq(&info->lock);
1755 
1756 	if (sgp == SGP_WRITE)
1757 		mark_page_accessed(page);
1758 
1759 	delete_from_swap_cache(page);
1760 	set_page_dirty(page);
1761 	swap_free(swap);
1762 
1763 	*pagep = page;
1764 	return 0;
1765 failed:
1766 	if (!shmem_confirm_swap(mapping, index, swap))
1767 		error = -EEXIST;
1768 unlock:
1769 	if (page) {
1770 		unlock_page(page);
1771 		put_page(page);
1772 	}
1773 
1774 	return error;
1775 }
1776 
1777 /*
1778  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1779  *
1780  * If we allocate a new one we do not mark it dirty. That's up to the
1781  * vm. If we swap it in we mark it dirty since we also free the swap
1782  * entry since a page cannot live in both the swap and page cache.
1783  *
1784  * vmf and fault_type are only supplied by shmem_fault:
1785  * otherwise they are NULL.
1786  */
1787 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1788 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1789 	struct vm_area_struct *vma, struct vm_fault *vmf,
1790 			vm_fault_t *fault_type)
1791 {
1792 	struct address_space *mapping = inode->i_mapping;
1793 	struct shmem_inode_info *info = SHMEM_I(inode);
1794 	struct shmem_sb_info *sbinfo;
1795 	struct mm_struct *charge_mm;
1796 	struct page *page;
1797 	enum sgp_type sgp_huge = sgp;
1798 	pgoff_t hindex = index;
1799 	int error;
1800 	int once = 0;
1801 	int alloced = 0;
1802 
1803 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1804 		return -EFBIG;
1805 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1806 		sgp = SGP_CACHE;
1807 repeat:
1808 	if (sgp <= SGP_CACHE &&
1809 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1810 		return -EINVAL;
1811 	}
1812 
1813 	sbinfo = SHMEM_SB(inode->i_sb);
1814 	charge_mm = vma ? vma->vm_mm : current->mm;
1815 
1816 	page = find_lock_entry(mapping, index);
1817 	if (xa_is_value(page)) {
1818 		error = shmem_swapin_page(inode, index, &page,
1819 					  sgp, gfp, vma, fault_type);
1820 		if (error == -EEXIST)
1821 			goto repeat;
1822 
1823 		*pagep = page;
1824 		return error;
1825 	}
1826 
1827 	if (page && sgp == SGP_WRITE)
1828 		mark_page_accessed(page);
1829 
1830 	/* fallocated page? */
1831 	if (page && !PageUptodate(page)) {
1832 		if (sgp != SGP_READ)
1833 			goto clear;
1834 		unlock_page(page);
1835 		put_page(page);
1836 		page = NULL;
1837 	}
1838 	if (page || sgp == SGP_READ) {
1839 		*pagep = page;
1840 		return 0;
1841 	}
1842 
1843 	/*
1844 	 * Fast cache lookup did not find it:
1845 	 * bring it back from swap or allocate.
1846 	 */
1847 
1848 	if (vma && userfaultfd_missing(vma)) {
1849 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1850 		return 0;
1851 	}
1852 
1853 	/* shmem_symlink() */
1854 	if (mapping->a_ops != &shmem_aops)
1855 		goto alloc_nohuge;
1856 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1857 		goto alloc_nohuge;
1858 	if (shmem_huge == SHMEM_HUGE_FORCE)
1859 		goto alloc_huge;
1860 	switch (sbinfo->huge) {
1861 	case SHMEM_HUGE_NEVER:
1862 		goto alloc_nohuge;
1863 	case SHMEM_HUGE_WITHIN_SIZE: {
1864 		loff_t i_size;
1865 		pgoff_t off;
1866 
1867 		off = round_up(index, HPAGE_PMD_NR);
1868 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1869 		if (i_size >= HPAGE_PMD_SIZE &&
1870 		    i_size >> PAGE_SHIFT >= off)
1871 			goto alloc_huge;
1872 
1873 		fallthrough;
1874 	}
1875 	case SHMEM_HUGE_ADVISE:
1876 		if (sgp_huge == SGP_HUGE)
1877 			goto alloc_huge;
1878 		/* TODO: implement fadvise() hints */
1879 		goto alloc_nohuge;
1880 	}
1881 
1882 alloc_huge:
1883 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1884 	if (IS_ERR(page)) {
1885 alloc_nohuge:
1886 		page = shmem_alloc_and_acct_page(gfp, inode,
1887 						 index, false);
1888 	}
1889 	if (IS_ERR(page)) {
1890 		int retry = 5;
1891 
1892 		error = PTR_ERR(page);
1893 		page = NULL;
1894 		if (error != -ENOSPC)
1895 			goto unlock;
1896 		/*
1897 		 * Try to reclaim some space by splitting a huge page
1898 		 * beyond i_size on the filesystem.
1899 		 */
1900 		while (retry--) {
1901 			int ret;
1902 
1903 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1904 			if (ret == SHRINK_STOP)
1905 				break;
1906 			if (ret)
1907 				goto alloc_nohuge;
1908 		}
1909 		goto unlock;
1910 	}
1911 
1912 	if (PageTransHuge(page))
1913 		hindex = round_down(index, HPAGE_PMD_NR);
1914 	else
1915 		hindex = index;
1916 
1917 	if (sgp == SGP_WRITE)
1918 		__SetPageReferenced(page);
1919 
1920 	error = shmem_add_to_page_cache(page, mapping, hindex,
1921 					NULL, gfp & GFP_RECLAIM_MASK,
1922 					charge_mm);
1923 	if (error)
1924 		goto unacct;
1925 	lru_cache_add(page);
1926 
1927 	spin_lock_irq(&info->lock);
1928 	info->alloced += compound_nr(page);
1929 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1930 	shmem_recalc_inode(inode);
1931 	spin_unlock_irq(&info->lock);
1932 	alloced = true;
1933 
1934 	if (PageTransHuge(page) &&
1935 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1936 			hindex + HPAGE_PMD_NR - 1) {
1937 		/*
1938 		 * Part of the huge page is beyond i_size: subject
1939 		 * to shrink under memory pressure.
1940 		 */
1941 		spin_lock(&sbinfo->shrinklist_lock);
1942 		/*
1943 		 * _careful to defend against unlocked access to
1944 		 * ->shrink_list in shmem_unused_huge_shrink()
1945 		 */
1946 		if (list_empty_careful(&info->shrinklist)) {
1947 			list_add_tail(&info->shrinklist,
1948 				      &sbinfo->shrinklist);
1949 			sbinfo->shrinklist_len++;
1950 		}
1951 		spin_unlock(&sbinfo->shrinklist_lock);
1952 	}
1953 
1954 	/*
1955 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1956 	 */
1957 	if (sgp == SGP_FALLOC)
1958 		sgp = SGP_WRITE;
1959 clear:
1960 	/*
1961 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1962 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1963 	 * it now, lest undo on failure cancel our earlier guarantee.
1964 	 */
1965 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1966 		struct page *head = compound_head(page);
1967 		int i;
1968 
1969 		for (i = 0; i < compound_nr(head); i++) {
1970 			clear_highpage(head + i);
1971 			flush_dcache_page(head + i);
1972 		}
1973 		SetPageUptodate(head);
1974 	}
1975 
1976 	/* Perhaps the file has been truncated since we checked */
1977 	if (sgp <= SGP_CACHE &&
1978 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1979 		if (alloced) {
1980 			ClearPageDirty(page);
1981 			delete_from_page_cache(page);
1982 			spin_lock_irq(&info->lock);
1983 			shmem_recalc_inode(inode);
1984 			spin_unlock_irq(&info->lock);
1985 		}
1986 		error = -EINVAL;
1987 		goto unlock;
1988 	}
1989 	*pagep = page + index - hindex;
1990 	return 0;
1991 
1992 	/*
1993 	 * Error recovery.
1994 	 */
1995 unacct:
1996 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1997 
1998 	if (PageTransHuge(page)) {
1999 		unlock_page(page);
2000 		put_page(page);
2001 		goto alloc_nohuge;
2002 	}
2003 unlock:
2004 	if (page) {
2005 		unlock_page(page);
2006 		put_page(page);
2007 	}
2008 	if (error == -ENOSPC && !once++) {
2009 		spin_lock_irq(&info->lock);
2010 		shmem_recalc_inode(inode);
2011 		spin_unlock_irq(&info->lock);
2012 		goto repeat;
2013 	}
2014 	if (error == -EEXIST)
2015 		goto repeat;
2016 	return error;
2017 }
2018 
2019 /*
2020  * This is like autoremove_wake_function, but it removes the wait queue
2021  * entry unconditionally - even if something else had already woken the
2022  * target.
2023  */
2024 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2025 {
2026 	int ret = default_wake_function(wait, mode, sync, key);
2027 	list_del_init(&wait->entry);
2028 	return ret;
2029 }
2030 
2031 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2032 {
2033 	struct vm_area_struct *vma = vmf->vma;
2034 	struct inode *inode = file_inode(vma->vm_file);
2035 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2036 	enum sgp_type sgp;
2037 	int err;
2038 	vm_fault_t ret = VM_FAULT_LOCKED;
2039 
2040 	/*
2041 	 * Trinity finds that probing a hole which tmpfs is punching can
2042 	 * prevent the hole-punch from ever completing: which in turn
2043 	 * locks writers out with its hold on i_mutex.  So refrain from
2044 	 * faulting pages into the hole while it's being punched.  Although
2045 	 * shmem_undo_range() does remove the additions, it may be unable to
2046 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2047 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2048 	 *
2049 	 * It does not matter if we sometimes reach this check just before the
2050 	 * hole-punch begins, so that one fault then races with the punch:
2051 	 * we just need to make racing faults a rare case.
2052 	 *
2053 	 * The implementation below would be much simpler if we just used a
2054 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2055 	 * and bloating every shmem inode for this unlikely case would be sad.
2056 	 */
2057 	if (unlikely(inode->i_private)) {
2058 		struct shmem_falloc *shmem_falloc;
2059 
2060 		spin_lock(&inode->i_lock);
2061 		shmem_falloc = inode->i_private;
2062 		if (shmem_falloc &&
2063 		    shmem_falloc->waitq &&
2064 		    vmf->pgoff >= shmem_falloc->start &&
2065 		    vmf->pgoff < shmem_falloc->next) {
2066 			struct file *fpin;
2067 			wait_queue_head_t *shmem_falloc_waitq;
2068 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2069 
2070 			ret = VM_FAULT_NOPAGE;
2071 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2072 			if (fpin)
2073 				ret = VM_FAULT_RETRY;
2074 
2075 			shmem_falloc_waitq = shmem_falloc->waitq;
2076 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2077 					TASK_UNINTERRUPTIBLE);
2078 			spin_unlock(&inode->i_lock);
2079 			schedule();
2080 
2081 			/*
2082 			 * shmem_falloc_waitq points into the shmem_fallocate()
2083 			 * stack of the hole-punching task: shmem_falloc_waitq
2084 			 * is usually invalid by the time we reach here, but
2085 			 * finish_wait() does not dereference it in that case;
2086 			 * though i_lock needed lest racing with wake_up_all().
2087 			 */
2088 			spin_lock(&inode->i_lock);
2089 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2090 			spin_unlock(&inode->i_lock);
2091 
2092 			if (fpin)
2093 				fput(fpin);
2094 			return ret;
2095 		}
2096 		spin_unlock(&inode->i_lock);
2097 	}
2098 
2099 	sgp = SGP_CACHE;
2100 
2101 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2102 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2103 		sgp = SGP_NOHUGE;
2104 	else if (vma->vm_flags & VM_HUGEPAGE)
2105 		sgp = SGP_HUGE;
2106 
2107 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2108 				  gfp, vma, vmf, &ret);
2109 	if (err)
2110 		return vmf_error(err);
2111 	return ret;
2112 }
2113 
2114 unsigned long shmem_get_unmapped_area(struct file *file,
2115 				      unsigned long uaddr, unsigned long len,
2116 				      unsigned long pgoff, unsigned long flags)
2117 {
2118 	unsigned long (*get_area)(struct file *,
2119 		unsigned long, unsigned long, unsigned long, unsigned long);
2120 	unsigned long addr;
2121 	unsigned long offset;
2122 	unsigned long inflated_len;
2123 	unsigned long inflated_addr;
2124 	unsigned long inflated_offset;
2125 
2126 	if (len > TASK_SIZE)
2127 		return -ENOMEM;
2128 
2129 	get_area = current->mm->get_unmapped_area;
2130 	addr = get_area(file, uaddr, len, pgoff, flags);
2131 
2132 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2133 		return addr;
2134 	if (IS_ERR_VALUE(addr))
2135 		return addr;
2136 	if (addr & ~PAGE_MASK)
2137 		return addr;
2138 	if (addr > TASK_SIZE - len)
2139 		return addr;
2140 
2141 	if (shmem_huge == SHMEM_HUGE_DENY)
2142 		return addr;
2143 	if (len < HPAGE_PMD_SIZE)
2144 		return addr;
2145 	if (flags & MAP_FIXED)
2146 		return addr;
2147 	/*
2148 	 * Our priority is to support MAP_SHARED mapped hugely;
2149 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2150 	 * But if caller specified an address hint and we allocated area there
2151 	 * successfully, respect that as before.
2152 	 */
2153 	if (uaddr == addr)
2154 		return addr;
2155 
2156 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2157 		struct super_block *sb;
2158 
2159 		if (file) {
2160 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2161 			sb = file_inode(file)->i_sb;
2162 		} else {
2163 			/*
2164 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2165 			 * for "/dev/zero", to create a shared anonymous object.
2166 			 */
2167 			if (IS_ERR(shm_mnt))
2168 				return addr;
2169 			sb = shm_mnt->mnt_sb;
2170 		}
2171 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2172 			return addr;
2173 	}
2174 
2175 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2176 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2177 		return addr;
2178 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2179 		return addr;
2180 
2181 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2182 	if (inflated_len > TASK_SIZE)
2183 		return addr;
2184 	if (inflated_len < len)
2185 		return addr;
2186 
2187 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2188 	if (IS_ERR_VALUE(inflated_addr))
2189 		return addr;
2190 	if (inflated_addr & ~PAGE_MASK)
2191 		return addr;
2192 
2193 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2194 	inflated_addr += offset - inflated_offset;
2195 	if (inflated_offset > offset)
2196 		inflated_addr += HPAGE_PMD_SIZE;
2197 
2198 	if (inflated_addr > TASK_SIZE - len)
2199 		return addr;
2200 	return inflated_addr;
2201 }
2202 
2203 #ifdef CONFIG_NUMA
2204 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2205 {
2206 	struct inode *inode = file_inode(vma->vm_file);
2207 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2208 }
2209 
2210 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2211 					  unsigned long addr)
2212 {
2213 	struct inode *inode = file_inode(vma->vm_file);
2214 	pgoff_t index;
2215 
2216 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2217 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2218 }
2219 #endif
2220 
2221 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2222 {
2223 	struct inode *inode = file_inode(file);
2224 	struct shmem_inode_info *info = SHMEM_I(inode);
2225 	int retval = -ENOMEM;
2226 
2227 	/*
2228 	 * What serializes the accesses to info->flags?
2229 	 * ipc_lock_object() when called from shmctl_do_lock(),
2230 	 * no serialization needed when called from shm_destroy().
2231 	 */
2232 	if (lock && !(info->flags & VM_LOCKED)) {
2233 		if (!user_shm_lock(inode->i_size, user))
2234 			goto out_nomem;
2235 		info->flags |= VM_LOCKED;
2236 		mapping_set_unevictable(file->f_mapping);
2237 	}
2238 	if (!lock && (info->flags & VM_LOCKED) && user) {
2239 		user_shm_unlock(inode->i_size, user);
2240 		info->flags &= ~VM_LOCKED;
2241 		mapping_clear_unevictable(file->f_mapping);
2242 	}
2243 	retval = 0;
2244 
2245 out_nomem:
2246 	return retval;
2247 }
2248 
2249 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2250 {
2251 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2252 
2253 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2254 		/*
2255 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2256 		 * "future write" seal active.
2257 		 */
2258 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2259 			return -EPERM;
2260 
2261 		/*
2262 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2263 		 * MAP_SHARED and read-only, take care to not allow mprotect to
2264 		 * revert protections on such mappings. Do this only for shared
2265 		 * mappings. For private mappings, don't need to mask
2266 		 * VM_MAYWRITE as we still want them to be COW-writable.
2267 		 */
2268 		if (vma->vm_flags & VM_SHARED)
2269 			vma->vm_flags &= ~(VM_MAYWRITE);
2270 	}
2271 
2272 	file_accessed(file);
2273 	vma->vm_ops = &shmem_vm_ops;
2274 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2275 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2276 			(vma->vm_end & HPAGE_PMD_MASK)) {
2277 		khugepaged_enter(vma, vma->vm_flags);
2278 	}
2279 	return 0;
2280 }
2281 
2282 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2283 				     umode_t mode, dev_t dev, unsigned long flags)
2284 {
2285 	struct inode *inode;
2286 	struct shmem_inode_info *info;
2287 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2288 	ino_t ino;
2289 
2290 	if (shmem_reserve_inode(sb, &ino))
2291 		return NULL;
2292 
2293 	inode = new_inode(sb);
2294 	if (inode) {
2295 		inode->i_ino = ino;
2296 		inode_init_owner(inode, dir, mode);
2297 		inode->i_blocks = 0;
2298 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2299 		inode->i_generation = prandom_u32();
2300 		info = SHMEM_I(inode);
2301 		memset(info, 0, (char *)inode - (char *)info);
2302 		spin_lock_init(&info->lock);
2303 		atomic_set(&info->stop_eviction, 0);
2304 		info->seals = F_SEAL_SEAL;
2305 		info->flags = flags & VM_NORESERVE;
2306 		INIT_LIST_HEAD(&info->shrinklist);
2307 		INIT_LIST_HEAD(&info->swaplist);
2308 		simple_xattrs_init(&info->xattrs);
2309 		cache_no_acl(inode);
2310 
2311 		switch (mode & S_IFMT) {
2312 		default:
2313 			inode->i_op = &shmem_special_inode_operations;
2314 			init_special_inode(inode, mode, dev);
2315 			break;
2316 		case S_IFREG:
2317 			inode->i_mapping->a_ops = &shmem_aops;
2318 			inode->i_op = &shmem_inode_operations;
2319 			inode->i_fop = &shmem_file_operations;
2320 			mpol_shared_policy_init(&info->policy,
2321 						 shmem_get_sbmpol(sbinfo));
2322 			break;
2323 		case S_IFDIR:
2324 			inc_nlink(inode);
2325 			/* Some things misbehave if size == 0 on a directory */
2326 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2327 			inode->i_op = &shmem_dir_inode_operations;
2328 			inode->i_fop = &simple_dir_operations;
2329 			break;
2330 		case S_IFLNK:
2331 			/*
2332 			 * Must not load anything in the rbtree,
2333 			 * mpol_free_shared_policy will not be called.
2334 			 */
2335 			mpol_shared_policy_init(&info->policy, NULL);
2336 			break;
2337 		}
2338 
2339 		lockdep_annotate_inode_mutex_key(inode);
2340 	} else
2341 		shmem_free_inode(sb);
2342 	return inode;
2343 }
2344 
2345 bool shmem_mapping(struct address_space *mapping)
2346 {
2347 	return mapping->a_ops == &shmem_aops;
2348 }
2349 
2350 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2351 				  pmd_t *dst_pmd,
2352 				  struct vm_area_struct *dst_vma,
2353 				  unsigned long dst_addr,
2354 				  unsigned long src_addr,
2355 				  bool zeropage,
2356 				  struct page **pagep)
2357 {
2358 	struct inode *inode = file_inode(dst_vma->vm_file);
2359 	struct shmem_inode_info *info = SHMEM_I(inode);
2360 	struct address_space *mapping = inode->i_mapping;
2361 	gfp_t gfp = mapping_gfp_mask(mapping);
2362 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2363 	spinlock_t *ptl;
2364 	void *page_kaddr;
2365 	struct page *page;
2366 	pte_t _dst_pte, *dst_pte;
2367 	int ret;
2368 	pgoff_t offset, max_off;
2369 
2370 	ret = -ENOMEM;
2371 	if (!shmem_inode_acct_block(inode, 1))
2372 		goto out;
2373 
2374 	if (!*pagep) {
2375 		page = shmem_alloc_page(gfp, info, pgoff);
2376 		if (!page)
2377 			goto out_unacct_blocks;
2378 
2379 		if (!zeropage) {	/* mcopy_atomic */
2380 			page_kaddr = kmap_atomic(page);
2381 			ret = copy_from_user(page_kaddr,
2382 					     (const void __user *)src_addr,
2383 					     PAGE_SIZE);
2384 			kunmap_atomic(page_kaddr);
2385 
2386 			/* fallback to copy_from_user outside mmap_lock */
2387 			if (unlikely(ret)) {
2388 				*pagep = page;
2389 				shmem_inode_unacct_blocks(inode, 1);
2390 				/* don't free the page */
2391 				return -ENOENT;
2392 			}
2393 		} else {		/* mfill_zeropage_atomic */
2394 			clear_highpage(page);
2395 		}
2396 	} else {
2397 		page = *pagep;
2398 		*pagep = NULL;
2399 	}
2400 
2401 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2402 	__SetPageLocked(page);
2403 	__SetPageSwapBacked(page);
2404 	__SetPageUptodate(page);
2405 
2406 	ret = -EFAULT;
2407 	offset = linear_page_index(dst_vma, dst_addr);
2408 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2409 	if (unlikely(offset >= max_off))
2410 		goto out_release;
2411 
2412 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2413 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2414 	if (ret)
2415 		goto out_release;
2416 
2417 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2418 	if (dst_vma->vm_flags & VM_WRITE)
2419 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2420 	else {
2421 		/*
2422 		 * We don't set the pte dirty if the vma has no
2423 		 * VM_WRITE permission, so mark the page dirty or it
2424 		 * could be freed from under us. We could do it
2425 		 * unconditionally before unlock_page(), but doing it
2426 		 * only if VM_WRITE is not set is faster.
2427 		 */
2428 		set_page_dirty(page);
2429 	}
2430 
2431 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2432 
2433 	ret = -EFAULT;
2434 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2435 	if (unlikely(offset >= max_off))
2436 		goto out_release_unlock;
2437 
2438 	ret = -EEXIST;
2439 	if (!pte_none(*dst_pte))
2440 		goto out_release_unlock;
2441 
2442 	lru_cache_add(page);
2443 
2444 	spin_lock_irq(&info->lock);
2445 	info->alloced++;
2446 	inode->i_blocks += BLOCKS_PER_PAGE;
2447 	shmem_recalc_inode(inode);
2448 	spin_unlock_irq(&info->lock);
2449 
2450 	inc_mm_counter(dst_mm, mm_counter_file(page));
2451 	page_add_file_rmap(page, false);
2452 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2453 
2454 	/* No need to invalidate - it was non-present before */
2455 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2456 	pte_unmap_unlock(dst_pte, ptl);
2457 	unlock_page(page);
2458 	ret = 0;
2459 out:
2460 	return ret;
2461 out_release_unlock:
2462 	pte_unmap_unlock(dst_pte, ptl);
2463 	ClearPageDirty(page);
2464 	delete_from_page_cache(page);
2465 out_release:
2466 	unlock_page(page);
2467 	put_page(page);
2468 out_unacct_blocks:
2469 	shmem_inode_unacct_blocks(inode, 1);
2470 	goto out;
2471 }
2472 
2473 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2474 			   pmd_t *dst_pmd,
2475 			   struct vm_area_struct *dst_vma,
2476 			   unsigned long dst_addr,
2477 			   unsigned long src_addr,
2478 			   struct page **pagep)
2479 {
2480 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2481 				      dst_addr, src_addr, false, pagep);
2482 }
2483 
2484 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2485 			     pmd_t *dst_pmd,
2486 			     struct vm_area_struct *dst_vma,
2487 			     unsigned long dst_addr)
2488 {
2489 	struct page *page = NULL;
2490 
2491 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2492 				      dst_addr, 0, true, &page);
2493 }
2494 
2495 #ifdef CONFIG_TMPFS
2496 static const struct inode_operations shmem_symlink_inode_operations;
2497 static const struct inode_operations shmem_short_symlink_operations;
2498 
2499 #ifdef CONFIG_TMPFS_XATTR
2500 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2501 #else
2502 #define shmem_initxattrs NULL
2503 #endif
2504 
2505 static int
2506 shmem_write_begin(struct file *file, struct address_space *mapping,
2507 			loff_t pos, unsigned len, unsigned flags,
2508 			struct page **pagep, void **fsdata)
2509 {
2510 	struct inode *inode = mapping->host;
2511 	struct shmem_inode_info *info = SHMEM_I(inode);
2512 	pgoff_t index = pos >> PAGE_SHIFT;
2513 
2514 	/* i_mutex is held by caller */
2515 	if (unlikely(info->seals & (F_SEAL_GROW |
2516 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2517 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2518 			return -EPERM;
2519 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2520 			return -EPERM;
2521 	}
2522 
2523 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2524 }
2525 
2526 static int
2527 shmem_write_end(struct file *file, struct address_space *mapping,
2528 			loff_t pos, unsigned len, unsigned copied,
2529 			struct page *page, void *fsdata)
2530 {
2531 	struct inode *inode = mapping->host;
2532 
2533 	if (pos + copied > inode->i_size)
2534 		i_size_write(inode, pos + copied);
2535 
2536 	if (!PageUptodate(page)) {
2537 		struct page *head = compound_head(page);
2538 		if (PageTransCompound(page)) {
2539 			int i;
2540 
2541 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2542 				if (head + i == page)
2543 					continue;
2544 				clear_highpage(head + i);
2545 				flush_dcache_page(head + i);
2546 			}
2547 		}
2548 		if (copied < PAGE_SIZE) {
2549 			unsigned from = pos & (PAGE_SIZE - 1);
2550 			zero_user_segments(page, 0, from,
2551 					from + copied, PAGE_SIZE);
2552 		}
2553 		SetPageUptodate(head);
2554 	}
2555 	set_page_dirty(page);
2556 	unlock_page(page);
2557 	put_page(page);
2558 
2559 	return copied;
2560 }
2561 
2562 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2563 {
2564 	struct file *file = iocb->ki_filp;
2565 	struct inode *inode = file_inode(file);
2566 	struct address_space *mapping = inode->i_mapping;
2567 	pgoff_t index;
2568 	unsigned long offset;
2569 	enum sgp_type sgp = SGP_READ;
2570 	int error = 0;
2571 	ssize_t retval = 0;
2572 	loff_t *ppos = &iocb->ki_pos;
2573 
2574 	/*
2575 	 * Might this read be for a stacking filesystem?  Then when reading
2576 	 * holes of a sparse file, we actually need to allocate those pages,
2577 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2578 	 */
2579 	if (!iter_is_iovec(to))
2580 		sgp = SGP_CACHE;
2581 
2582 	index = *ppos >> PAGE_SHIFT;
2583 	offset = *ppos & ~PAGE_MASK;
2584 
2585 	for (;;) {
2586 		struct page *page = NULL;
2587 		pgoff_t end_index;
2588 		unsigned long nr, ret;
2589 		loff_t i_size = i_size_read(inode);
2590 
2591 		end_index = i_size >> PAGE_SHIFT;
2592 		if (index > end_index)
2593 			break;
2594 		if (index == end_index) {
2595 			nr = i_size & ~PAGE_MASK;
2596 			if (nr <= offset)
2597 				break;
2598 		}
2599 
2600 		error = shmem_getpage(inode, index, &page, sgp);
2601 		if (error) {
2602 			if (error == -EINVAL)
2603 				error = 0;
2604 			break;
2605 		}
2606 		if (page) {
2607 			if (sgp == SGP_CACHE)
2608 				set_page_dirty(page);
2609 			unlock_page(page);
2610 		}
2611 
2612 		/*
2613 		 * We must evaluate after, since reads (unlike writes)
2614 		 * are called without i_mutex protection against truncate
2615 		 */
2616 		nr = PAGE_SIZE;
2617 		i_size = i_size_read(inode);
2618 		end_index = i_size >> PAGE_SHIFT;
2619 		if (index == end_index) {
2620 			nr = i_size & ~PAGE_MASK;
2621 			if (nr <= offset) {
2622 				if (page)
2623 					put_page(page);
2624 				break;
2625 			}
2626 		}
2627 		nr -= offset;
2628 
2629 		if (page) {
2630 			/*
2631 			 * If users can be writing to this page using arbitrary
2632 			 * virtual addresses, take care about potential aliasing
2633 			 * before reading the page on the kernel side.
2634 			 */
2635 			if (mapping_writably_mapped(mapping))
2636 				flush_dcache_page(page);
2637 			/*
2638 			 * Mark the page accessed if we read the beginning.
2639 			 */
2640 			if (!offset)
2641 				mark_page_accessed(page);
2642 		} else {
2643 			page = ZERO_PAGE(0);
2644 			get_page(page);
2645 		}
2646 
2647 		/*
2648 		 * Ok, we have the page, and it's up-to-date, so
2649 		 * now we can copy it to user space...
2650 		 */
2651 		ret = copy_page_to_iter(page, offset, nr, to);
2652 		retval += ret;
2653 		offset += ret;
2654 		index += offset >> PAGE_SHIFT;
2655 		offset &= ~PAGE_MASK;
2656 
2657 		put_page(page);
2658 		if (!iov_iter_count(to))
2659 			break;
2660 		if (ret < nr) {
2661 			error = -EFAULT;
2662 			break;
2663 		}
2664 		cond_resched();
2665 	}
2666 
2667 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2668 	file_accessed(file);
2669 	return retval ? retval : error;
2670 }
2671 
2672 /*
2673  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2674  */
2675 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2676 				    pgoff_t index, pgoff_t end, int whence)
2677 {
2678 	struct page *page;
2679 	struct pagevec pvec;
2680 	pgoff_t indices[PAGEVEC_SIZE];
2681 	bool done = false;
2682 	int i;
2683 
2684 	pagevec_init(&pvec);
2685 	pvec.nr = 1;		/* start small: we may be there already */
2686 	while (!done) {
2687 		pvec.nr = find_get_entries(mapping, index,
2688 					pvec.nr, pvec.pages, indices);
2689 		if (!pvec.nr) {
2690 			if (whence == SEEK_DATA)
2691 				index = end;
2692 			break;
2693 		}
2694 		for (i = 0; i < pvec.nr; i++, index++) {
2695 			if (index < indices[i]) {
2696 				if (whence == SEEK_HOLE) {
2697 					done = true;
2698 					break;
2699 				}
2700 				index = indices[i];
2701 			}
2702 			page = pvec.pages[i];
2703 			if (page && !xa_is_value(page)) {
2704 				if (!PageUptodate(page))
2705 					page = NULL;
2706 			}
2707 			if (index >= end ||
2708 			    (page && whence == SEEK_DATA) ||
2709 			    (!page && whence == SEEK_HOLE)) {
2710 				done = true;
2711 				break;
2712 			}
2713 		}
2714 		pagevec_remove_exceptionals(&pvec);
2715 		pagevec_release(&pvec);
2716 		pvec.nr = PAGEVEC_SIZE;
2717 		cond_resched();
2718 	}
2719 	return index;
2720 }
2721 
2722 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2723 {
2724 	struct address_space *mapping = file->f_mapping;
2725 	struct inode *inode = mapping->host;
2726 	pgoff_t start, end;
2727 	loff_t new_offset;
2728 
2729 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2730 		return generic_file_llseek_size(file, offset, whence,
2731 					MAX_LFS_FILESIZE, i_size_read(inode));
2732 	inode_lock(inode);
2733 	/* We're holding i_mutex so we can access i_size directly */
2734 
2735 	if (offset < 0 || offset >= inode->i_size)
2736 		offset = -ENXIO;
2737 	else {
2738 		start = offset >> PAGE_SHIFT;
2739 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2740 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2741 		new_offset <<= PAGE_SHIFT;
2742 		if (new_offset > offset) {
2743 			if (new_offset < inode->i_size)
2744 				offset = new_offset;
2745 			else if (whence == SEEK_DATA)
2746 				offset = -ENXIO;
2747 			else
2748 				offset = inode->i_size;
2749 		}
2750 	}
2751 
2752 	if (offset >= 0)
2753 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2754 	inode_unlock(inode);
2755 	return offset;
2756 }
2757 
2758 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2759 							 loff_t len)
2760 {
2761 	struct inode *inode = file_inode(file);
2762 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2763 	struct shmem_inode_info *info = SHMEM_I(inode);
2764 	struct shmem_falloc shmem_falloc;
2765 	pgoff_t start, index, end;
2766 	int error;
2767 
2768 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2769 		return -EOPNOTSUPP;
2770 
2771 	inode_lock(inode);
2772 
2773 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2774 		struct address_space *mapping = file->f_mapping;
2775 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2776 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2777 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2778 
2779 		/* protected by i_mutex */
2780 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2781 			error = -EPERM;
2782 			goto out;
2783 		}
2784 
2785 		shmem_falloc.waitq = &shmem_falloc_waitq;
2786 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2787 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2788 		spin_lock(&inode->i_lock);
2789 		inode->i_private = &shmem_falloc;
2790 		spin_unlock(&inode->i_lock);
2791 
2792 		if ((u64)unmap_end > (u64)unmap_start)
2793 			unmap_mapping_range(mapping, unmap_start,
2794 					    1 + unmap_end - unmap_start, 0);
2795 		shmem_truncate_range(inode, offset, offset + len - 1);
2796 		/* No need to unmap again: hole-punching leaves COWed pages */
2797 
2798 		spin_lock(&inode->i_lock);
2799 		inode->i_private = NULL;
2800 		wake_up_all(&shmem_falloc_waitq);
2801 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2802 		spin_unlock(&inode->i_lock);
2803 		error = 0;
2804 		goto out;
2805 	}
2806 
2807 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2808 	error = inode_newsize_ok(inode, offset + len);
2809 	if (error)
2810 		goto out;
2811 
2812 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2813 		error = -EPERM;
2814 		goto out;
2815 	}
2816 
2817 	start = offset >> PAGE_SHIFT;
2818 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2819 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2820 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2821 		error = -ENOSPC;
2822 		goto out;
2823 	}
2824 
2825 	shmem_falloc.waitq = NULL;
2826 	shmem_falloc.start = start;
2827 	shmem_falloc.next  = start;
2828 	shmem_falloc.nr_falloced = 0;
2829 	shmem_falloc.nr_unswapped = 0;
2830 	spin_lock(&inode->i_lock);
2831 	inode->i_private = &shmem_falloc;
2832 	spin_unlock(&inode->i_lock);
2833 
2834 	for (index = start; index < end; index++) {
2835 		struct page *page;
2836 
2837 		/*
2838 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2839 		 * been interrupted because we are using up too much memory.
2840 		 */
2841 		if (signal_pending(current))
2842 			error = -EINTR;
2843 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2844 			error = -ENOMEM;
2845 		else
2846 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2847 		if (error) {
2848 			/* Remove the !PageUptodate pages we added */
2849 			if (index > start) {
2850 				shmem_undo_range(inode,
2851 				    (loff_t)start << PAGE_SHIFT,
2852 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2853 			}
2854 			goto undone;
2855 		}
2856 
2857 		/*
2858 		 * Inform shmem_writepage() how far we have reached.
2859 		 * No need for lock or barrier: we have the page lock.
2860 		 */
2861 		shmem_falloc.next++;
2862 		if (!PageUptodate(page))
2863 			shmem_falloc.nr_falloced++;
2864 
2865 		/*
2866 		 * If !PageUptodate, leave it that way so that freeable pages
2867 		 * can be recognized if we need to rollback on error later.
2868 		 * But set_page_dirty so that memory pressure will swap rather
2869 		 * than free the pages we are allocating (and SGP_CACHE pages
2870 		 * might still be clean: we now need to mark those dirty too).
2871 		 */
2872 		set_page_dirty(page);
2873 		unlock_page(page);
2874 		put_page(page);
2875 		cond_resched();
2876 	}
2877 
2878 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2879 		i_size_write(inode, offset + len);
2880 	inode->i_ctime = current_time(inode);
2881 undone:
2882 	spin_lock(&inode->i_lock);
2883 	inode->i_private = NULL;
2884 	spin_unlock(&inode->i_lock);
2885 out:
2886 	inode_unlock(inode);
2887 	return error;
2888 }
2889 
2890 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2891 {
2892 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2893 
2894 	buf->f_type = TMPFS_MAGIC;
2895 	buf->f_bsize = PAGE_SIZE;
2896 	buf->f_namelen = NAME_MAX;
2897 	if (sbinfo->max_blocks) {
2898 		buf->f_blocks = sbinfo->max_blocks;
2899 		buf->f_bavail =
2900 		buf->f_bfree  = sbinfo->max_blocks -
2901 				percpu_counter_sum(&sbinfo->used_blocks);
2902 	}
2903 	if (sbinfo->max_inodes) {
2904 		buf->f_files = sbinfo->max_inodes;
2905 		buf->f_ffree = sbinfo->free_inodes;
2906 	}
2907 	/* else leave those fields 0 like simple_statfs */
2908 	return 0;
2909 }
2910 
2911 /*
2912  * File creation. Allocate an inode, and we're done..
2913  */
2914 static int
2915 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2916 {
2917 	struct inode *inode;
2918 	int error = -ENOSPC;
2919 
2920 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2921 	if (inode) {
2922 		error = simple_acl_create(dir, inode);
2923 		if (error)
2924 			goto out_iput;
2925 		error = security_inode_init_security(inode, dir,
2926 						     &dentry->d_name,
2927 						     shmem_initxattrs, NULL);
2928 		if (error && error != -EOPNOTSUPP)
2929 			goto out_iput;
2930 
2931 		error = 0;
2932 		dir->i_size += BOGO_DIRENT_SIZE;
2933 		dir->i_ctime = dir->i_mtime = current_time(dir);
2934 		d_instantiate(dentry, inode);
2935 		dget(dentry); /* Extra count - pin the dentry in core */
2936 	}
2937 	return error;
2938 out_iput:
2939 	iput(inode);
2940 	return error;
2941 }
2942 
2943 static int
2944 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2945 {
2946 	struct inode *inode;
2947 	int error = -ENOSPC;
2948 
2949 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2950 	if (inode) {
2951 		error = security_inode_init_security(inode, dir,
2952 						     NULL,
2953 						     shmem_initxattrs, NULL);
2954 		if (error && error != -EOPNOTSUPP)
2955 			goto out_iput;
2956 		error = simple_acl_create(dir, inode);
2957 		if (error)
2958 			goto out_iput;
2959 		d_tmpfile(dentry, inode);
2960 	}
2961 	return error;
2962 out_iput:
2963 	iput(inode);
2964 	return error;
2965 }
2966 
2967 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2968 {
2969 	int error;
2970 
2971 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2972 		return error;
2973 	inc_nlink(dir);
2974 	return 0;
2975 }
2976 
2977 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2978 		bool excl)
2979 {
2980 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2981 }
2982 
2983 /*
2984  * Link a file..
2985  */
2986 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2987 {
2988 	struct inode *inode = d_inode(old_dentry);
2989 	int ret = 0;
2990 
2991 	/*
2992 	 * No ordinary (disk based) filesystem counts links as inodes;
2993 	 * but each new link needs a new dentry, pinning lowmem, and
2994 	 * tmpfs dentries cannot be pruned until they are unlinked.
2995 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2996 	 * first link must skip that, to get the accounting right.
2997 	 */
2998 	if (inode->i_nlink) {
2999 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3000 		if (ret)
3001 			goto out;
3002 	}
3003 
3004 	dir->i_size += BOGO_DIRENT_SIZE;
3005 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3006 	inc_nlink(inode);
3007 	ihold(inode);	/* New dentry reference */
3008 	dget(dentry);		/* Extra pinning count for the created dentry */
3009 	d_instantiate(dentry, inode);
3010 out:
3011 	return ret;
3012 }
3013 
3014 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3015 {
3016 	struct inode *inode = d_inode(dentry);
3017 
3018 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3019 		shmem_free_inode(inode->i_sb);
3020 
3021 	dir->i_size -= BOGO_DIRENT_SIZE;
3022 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3023 	drop_nlink(inode);
3024 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3025 	return 0;
3026 }
3027 
3028 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3029 {
3030 	if (!simple_empty(dentry))
3031 		return -ENOTEMPTY;
3032 
3033 	drop_nlink(d_inode(dentry));
3034 	drop_nlink(dir);
3035 	return shmem_unlink(dir, dentry);
3036 }
3037 
3038 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3039 {
3040 	bool old_is_dir = d_is_dir(old_dentry);
3041 	bool new_is_dir = d_is_dir(new_dentry);
3042 
3043 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3044 		if (old_is_dir) {
3045 			drop_nlink(old_dir);
3046 			inc_nlink(new_dir);
3047 		} else {
3048 			drop_nlink(new_dir);
3049 			inc_nlink(old_dir);
3050 		}
3051 	}
3052 	old_dir->i_ctime = old_dir->i_mtime =
3053 	new_dir->i_ctime = new_dir->i_mtime =
3054 	d_inode(old_dentry)->i_ctime =
3055 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3056 
3057 	return 0;
3058 }
3059 
3060 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3061 {
3062 	struct dentry *whiteout;
3063 	int error;
3064 
3065 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3066 	if (!whiteout)
3067 		return -ENOMEM;
3068 
3069 	error = shmem_mknod(old_dir, whiteout,
3070 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3071 	dput(whiteout);
3072 	if (error)
3073 		return error;
3074 
3075 	/*
3076 	 * Cheat and hash the whiteout while the old dentry is still in
3077 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3078 	 *
3079 	 * d_lookup() will consistently find one of them at this point,
3080 	 * not sure which one, but that isn't even important.
3081 	 */
3082 	d_rehash(whiteout);
3083 	return 0;
3084 }
3085 
3086 /*
3087  * The VFS layer already does all the dentry stuff for rename,
3088  * we just have to decrement the usage count for the target if
3089  * it exists so that the VFS layer correctly free's it when it
3090  * gets overwritten.
3091  */
3092 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3093 {
3094 	struct inode *inode = d_inode(old_dentry);
3095 	int they_are_dirs = S_ISDIR(inode->i_mode);
3096 
3097 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3098 		return -EINVAL;
3099 
3100 	if (flags & RENAME_EXCHANGE)
3101 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3102 
3103 	if (!simple_empty(new_dentry))
3104 		return -ENOTEMPTY;
3105 
3106 	if (flags & RENAME_WHITEOUT) {
3107 		int error;
3108 
3109 		error = shmem_whiteout(old_dir, old_dentry);
3110 		if (error)
3111 			return error;
3112 	}
3113 
3114 	if (d_really_is_positive(new_dentry)) {
3115 		(void) shmem_unlink(new_dir, new_dentry);
3116 		if (they_are_dirs) {
3117 			drop_nlink(d_inode(new_dentry));
3118 			drop_nlink(old_dir);
3119 		}
3120 	} else if (they_are_dirs) {
3121 		drop_nlink(old_dir);
3122 		inc_nlink(new_dir);
3123 	}
3124 
3125 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3126 	new_dir->i_size += BOGO_DIRENT_SIZE;
3127 	old_dir->i_ctime = old_dir->i_mtime =
3128 	new_dir->i_ctime = new_dir->i_mtime =
3129 	inode->i_ctime = current_time(old_dir);
3130 	return 0;
3131 }
3132 
3133 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3134 {
3135 	int error;
3136 	int len;
3137 	struct inode *inode;
3138 	struct page *page;
3139 
3140 	len = strlen(symname) + 1;
3141 	if (len > PAGE_SIZE)
3142 		return -ENAMETOOLONG;
3143 
3144 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3145 				VM_NORESERVE);
3146 	if (!inode)
3147 		return -ENOSPC;
3148 
3149 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3150 					     shmem_initxattrs, NULL);
3151 	if (error && error != -EOPNOTSUPP) {
3152 		iput(inode);
3153 		return error;
3154 	}
3155 
3156 	inode->i_size = len-1;
3157 	if (len <= SHORT_SYMLINK_LEN) {
3158 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3159 		if (!inode->i_link) {
3160 			iput(inode);
3161 			return -ENOMEM;
3162 		}
3163 		inode->i_op = &shmem_short_symlink_operations;
3164 	} else {
3165 		inode_nohighmem(inode);
3166 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3167 		if (error) {
3168 			iput(inode);
3169 			return error;
3170 		}
3171 		inode->i_mapping->a_ops = &shmem_aops;
3172 		inode->i_op = &shmem_symlink_inode_operations;
3173 		memcpy(page_address(page), symname, len);
3174 		SetPageUptodate(page);
3175 		set_page_dirty(page);
3176 		unlock_page(page);
3177 		put_page(page);
3178 	}
3179 	dir->i_size += BOGO_DIRENT_SIZE;
3180 	dir->i_ctime = dir->i_mtime = current_time(dir);
3181 	d_instantiate(dentry, inode);
3182 	dget(dentry);
3183 	return 0;
3184 }
3185 
3186 static void shmem_put_link(void *arg)
3187 {
3188 	mark_page_accessed(arg);
3189 	put_page(arg);
3190 }
3191 
3192 static const char *shmem_get_link(struct dentry *dentry,
3193 				  struct inode *inode,
3194 				  struct delayed_call *done)
3195 {
3196 	struct page *page = NULL;
3197 	int error;
3198 	if (!dentry) {
3199 		page = find_get_page(inode->i_mapping, 0);
3200 		if (!page)
3201 			return ERR_PTR(-ECHILD);
3202 		if (!PageUptodate(page)) {
3203 			put_page(page);
3204 			return ERR_PTR(-ECHILD);
3205 		}
3206 	} else {
3207 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3208 		if (error)
3209 			return ERR_PTR(error);
3210 		unlock_page(page);
3211 	}
3212 	set_delayed_call(done, shmem_put_link, page);
3213 	return page_address(page);
3214 }
3215 
3216 #ifdef CONFIG_TMPFS_XATTR
3217 /*
3218  * Superblocks without xattr inode operations may get some security.* xattr
3219  * support from the LSM "for free". As soon as we have any other xattrs
3220  * like ACLs, we also need to implement the security.* handlers at
3221  * filesystem level, though.
3222  */
3223 
3224 /*
3225  * Callback for security_inode_init_security() for acquiring xattrs.
3226  */
3227 static int shmem_initxattrs(struct inode *inode,
3228 			    const struct xattr *xattr_array,
3229 			    void *fs_info)
3230 {
3231 	struct shmem_inode_info *info = SHMEM_I(inode);
3232 	const struct xattr *xattr;
3233 	struct simple_xattr *new_xattr;
3234 	size_t len;
3235 
3236 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3237 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3238 		if (!new_xattr)
3239 			return -ENOMEM;
3240 
3241 		len = strlen(xattr->name) + 1;
3242 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3243 					  GFP_KERNEL);
3244 		if (!new_xattr->name) {
3245 			kvfree(new_xattr);
3246 			return -ENOMEM;
3247 		}
3248 
3249 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3250 		       XATTR_SECURITY_PREFIX_LEN);
3251 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3252 		       xattr->name, len);
3253 
3254 		simple_xattr_list_add(&info->xattrs, new_xattr);
3255 	}
3256 
3257 	return 0;
3258 }
3259 
3260 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3261 				   struct dentry *unused, struct inode *inode,
3262 				   const char *name, void *buffer, size_t size)
3263 {
3264 	struct shmem_inode_info *info = SHMEM_I(inode);
3265 
3266 	name = xattr_full_name(handler, name);
3267 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3268 }
3269 
3270 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3271 				   struct dentry *unused, struct inode *inode,
3272 				   const char *name, const void *value,
3273 				   size_t size, int flags)
3274 {
3275 	struct shmem_inode_info *info = SHMEM_I(inode);
3276 
3277 	name = xattr_full_name(handler, name);
3278 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3279 }
3280 
3281 static const struct xattr_handler shmem_security_xattr_handler = {
3282 	.prefix = XATTR_SECURITY_PREFIX,
3283 	.get = shmem_xattr_handler_get,
3284 	.set = shmem_xattr_handler_set,
3285 };
3286 
3287 static const struct xattr_handler shmem_trusted_xattr_handler = {
3288 	.prefix = XATTR_TRUSTED_PREFIX,
3289 	.get = shmem_xattr_handler_get,
3290 	.set = shmem_xattr_handler_set,
3291 };
3292 
3293 static const struct xattr_handler *shmem_xattr_handlers[] = {
3294 #ifdef CONFIG_TMPFS_POSIX_ACL
3295 	&posix_acl_access_xattr_handler,
3296 	&posix_acl_default_xattr_handler,
3297 #endif
3298 	&shmem_security_xattr_handler,
3299 	&shmem_trusted_xattr_handler,
3300 	NULL
3301 };
3302 
3303 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3304 {
3305 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3306 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3307 }
3308 #endif /* CONFIG_TMPFS_XATTR */
3309 
3310 static const struct inode_operations shmem_short_symlink_operations = {
3311 	.get_link	= simple_get_link,
3312 #ifdef CONFIG_TMPFS_XATTR
3313 	.listxattr	= shmem_listxattr,
3314 #endif
3315 };
3316 
3317 static const struct inode_operations shmem_symlink_inode_operations = {
3318 	.get_link	= shmem_get_link,
3319 #ifdef CONFIG_TMPFS_XATTR
3320 	.listxattr	= shmem_listxattr,
3321 #endif
3322 };
3323 
3324 static struct dentry *shmem_get_parent(struct dentry *child)
3325 {
3326 	return ERR_PTR(-ESTALE);
3327 }
3328 
3329 static int shmem_match(struct inode *ino, void *vfh)
3330 {
3331 	__u32 *fh = vfh;
3332 	__u64 inum = fh[2];
3333 	inum = (inum << 32) | fh[1];
3334 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3335 }
3336 
3337 /* Find any alias of inode, but prefer a hashed alias */
3338 static struct dentry *shmem_find_alias(struct inode *inode)
3339 {
3340 	struct dentry *alias = d_find_alias(inode);
3341 
3342 	return alias ?: d_find_any_alias(inode);
3343 }
3344 
3345 
3346 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3347 		struct fid *fid, int fh_len, int fh_type)
3348 {
3349 	struct inode *inode;
3350 	struct dentry *dentry = NULL;
3351 	u64 inum;
3352 
3353 	if (fh_len < 3)
3354 		return NULL;
3355 
3356 	inum = fid->raw[2];
3357 	inum = (inum << 32) | fid->raw[1];
3358 
3359 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3360 			shmem_match, fid->raw);
3361 	if (inode) {
3362 		dentry = shmem_find_alias(inode);
3363 		iput(inode);
3364 	}
3365 
3366 	return dentry;
3367 }
3368 
3369 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3370 				struct inode *parent)
3371 {
3372 	if (*len < 3) {
3373 		*len = 3;
3374 		return FILEID_INVALID;
3375 	}
3376 
3377 	if (inode_unhashed(inode)) {
3378 		/* Unfortunately insert_inode_hash is not idempotent,
3379 		 * so as we hash inodes here rather than at creation
3380 		 * time, we need a lock to ensure we only try
3381 		 * to do it once
3382 		 */
3383 		static DEFINE_SPINLOCK(lock);
3384 		spin_lock(&lock);
3385 		if (inode_unhashed(inode))
3386 			__insert_inode_hash(inode,
3387 					    inode->i_ino + inode->i_generation);
3388 		spin_unlock(&lock);
3389 	}
3390 
3391 	fh[0] = inode->i_generation;
3392 	fh[1] = inode->i_ino;
3393 	fh[2] = ((__u64)inode->i_ino) >> 32;
3394 
3395 	*len = 3;
3396 	return 1;
3397 }
3398 
3399 static const struct export_operations shmem_export_ops = {
3400 	.get_parent     = shmem_get_parent,
3401 	.encode_fh      = shmem_encode_fh,
3402 	.fh_to_dentry	= shmem_fh_to_dentry,
3403 };
3404 
3405 enum shmem_param {
3406 	Opt_gid,
3407 	Opt_huge,
3408 	Opt_mode,
3409 	Opt_mpol,
3410 	Opt_nr_blocks,
3411 	Opt_nr_inodes,
3412 	Opt_size,
3413 	Opt_uid,
3414 	Opt_inode32,
3415 	Opt_inode64,
3416 };
3417 
3418 static const struct constant_table shmem_param_enums_huge[] = {
3419 	{"never",	SHMEM_HUGE_NEVER },
3420 	{"always",	SHMEM_HUGE_ALWAYS },
3421 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3422 	{"advise",	SHMEM_HUGE_ADVISE },
3423 	{}
3424 };
3425 
3426 const struct fs_parameter_spec shmem_fs_parameters[] = {
3427 	fsparam_u32   ("gid",		Opt_gid),
3428 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3429 	fsparam_u32oct("mode",		Opt_mode),
3430 	fsparam_string("mpol",		Opt_mpol),
3431 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3432 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3433 	fsparam_string("size",		Opt_size),
3434 	fsparam_u32   ("uid",		Opt_uid),
3435 	fsparam_flag  ("inode32",	Opt_inode32),
3436 	fsparam_flag  ("inode64",	Opt_inode64),
3437 	{}
3438 };
3439 
3440 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3441 {
3442 	struct shmem_options *ctx = fc->fs_private;
3443 	struct fs_parse_result result;
3444 	unsigned long long size;
3445 	char *rest;
3446 	int opt;
3447 
3448 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3449 	if (opt < 0)
3450 		return opt;
3451 
3452 	switch (opt) {
3453 	case Opt_size:
3454 		size = memparse(param->string, &rest);
3455 		if (*rest == '%') {
3456 			size <<= PAGE_SHIFT;
3457 			size *= totalram_pages();
3458 			do_div(size, 100);
3459 			rest++;
3460 		}
3461 		if (*rest)
3462 			goto bad_value;
3463 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3464 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3465 		break;
3466 	case Opt_nr_blocks:
3467 		ctx->blocks = memparse(param->string, &rest);
3468 		if (*rest)
3469 			goto bad_value;
3470 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3471 		break;
3472 	case Opt_nr_inodes:
3473 		ctx->inodes = memparse(param->string, &rest);
3474 		if (*rest)
3475 			goto bad_value;
3476 		ctx->seen |= SHMEM_SEEN_INODES;
3477 		break;
3478 	case Opt_mode:
3479 		ctx->mode = result.uint_32 & 07777;
3480 		break;
3481 	case Opt_uid:
3482 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3483 		if (!uid_valid(ctx->uid))
3484 			goto bad_value;
3485 		break;
3486 	case Opt_gid:
3487 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3488 		if (!gid_valid(ctx->gid))
3489 			goto bad_value;
3490 		break;
3491 	case Opt_huge:
3492 		ctx->huge = result.uint_32;
3493 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3494 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3495 		      has_transparent_hugepage()))
3496 			goto unsupported_parameter;
3497 		ctx->seen |= SHMEM_SEEN_HUGE;
3498 		break;
3499 	case Opt_mpol:
3500 		if (IS_ENABLED(CONFIG_NUMA)) {
3501 			mpol_put(ctx->mpol);
3502 			ctx->mpol = NULL;
3503 			if (mpol_parse_str(param->string, &ctx->mpol))
3504 				goto bad_value;
3505 			break;
3506 		}
3507 		goto unsupported_parameter;
3508 	case Opt_inode32:
3509 		ctx->full_inums = false;
3510 		ctx->seen |= SHMEM_SEEN_INUMS;
3511 		break;
3512 	case Opt_inode64:
3513 		if (sizeof(ino_t) < 8) {
3514 			return invalfc(fc,
3515 				       "Cannot use inode64 with <64bit inums in kernel\n");
3516 		}
3517 		ctx->full_inums = true;
3518 		ctx->seen |= SHMEM_SEEN_INUMS;
3519 		break;
3520 	}
3521 	return 0;
3522 
3523 unsupported_parameter:
3524 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3525 bad_value:
3526 	return invalfc(fc, "Bad value for '%s'", param->key);
3527 }
3528 
3529 static int shmem_parse_options(struct fs_context *fc, void *data)
3530 {
3531 	char *options = data;
3532 
3533 	if (options) {
3534 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3535 		if (err)
3536 			return err;
3537 	}
3538 
3539 	while (options != NULL) {
3540 		char *this_char = options;
3541 		for (;;) {
3542 			/*
3543 			 * NUL-terminate this option: unfortunately,
3544 			 * mount options form a comma-separated list,
3545 			 * but mpol's nodelist may also contain commas.
3546 			 */
3547 			options = strchr(options, ',');
3548 			if (options == NULL)
3549 				break;
3550 			options++;
3551 			if (!isdigit(*options)) {
3552 				options[-1] = '\0';
3553 				break;
3554 			}
3555 		}
3556 		if (*this_char) {
3557 			char *value = strchr(this_char,'=');
3558 			size_t len = 0;
3559 			int err;
3560 
3561 			if (value) {
3562 				*value++ = '\0';
3563 				len = strlen(value);
3564 			}
3565 			err = vfs_parse_fs_string(fc, this_char, value, len);
3566 			if (err < 0)
3567 				return err;
3568 		}
3569 	}
3570 	return 0;
3571 }
3572 
3573 /*
3574  * Reconfigure a shmem filesystem.
3575  *
3576  * Note that we disallow change from limited->unlimited blocks/inodes while any
3577  * are in use; but we must separately disallow unlimited->limited, because in
3578  * that case we have no record of how much is already in use.
3579  */
3580 static int shmem_reconfigure(struct fs_context *fc)
3581 {
3582 	struct shmem_options *ctx = fc->fs_private;
3583 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3584 	unsigned long inodes;
3585 	const char *err;
3586 
3587 	spin_lock(&sbinfo->stat_lock);
3588 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3589 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3590 		if (!sbinfo->max_blocks) {
3591 			err = "Cannot retroactively limit size";
3592 			goto out;
3593 		}
3594 		if (percpu_counter_compare(&sbinfo->used_blocks,
3595 					   ctx->blocks) > 0) {
3596 			err = "Too small a size for current use";
3597 			goto out;
3598 		}
3599 	}
3600 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3601 		if (!sbinfo->max_inodes) {
3602 			err = "Cannot retroactively limit inodes";
3603 			goto out;
3604 		}
3605 		if (ctx->inodes < inodes) {
3606 			err = "Too few inodes for current use";
3607 			goto out;
3608 		}
3609 	}
3610 
3611 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3612 	    sbinfo->next_ino > UINT_MAX) {
3613 		err = "Current inum too high to switch to 32-bit inums";
3614 		goto out;
3615 	}
3616 
3617 	if (ctx->seen & SHMEM_SEEN_HUGE)
3618 		sbinfo->huge = ctx->huge;
3619 	if (ctx->seen & SHMEM_SEEN_INUMS)
3620 		sbinfo->full_inums = ctx->full_inums;
3621 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3622 		sbinfo->max_blocks  = ctx->blocks;
3623 	if (ctx->seen & SHMEM_SEEN_INODES) {
3624 		sbinfo->max_inodes  = ctx->inodes;
3625 		sbinfo->free_inodes = ctx->inodes - inodes;
3626 	}
3627 
3628 	/*
3629 	 * Preserve previous mempolicy unless mpol remount option was specified.
3630 	 */
3631 	if (ctx->mpol) {
3632 		mpol_put(sbinfo->mpol);
3633 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3634 		ctx->mpol = NULL;
3635 	}
3636 	spin_unlock(&sbinfo->stat_lock);
3637 	return 0;
3638 out:
3639 	spin_unlock(&sbinfo->stat_lock);
3640 	return invalfc(fc, "%s", err);
3641 }
3642 
3643 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3644 {
3645 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3646 
3647 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3648 		seq_printf(seq, ",size=%luk",
3649 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3650 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3651 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3652 	if (sbinfo->mode != (0777 | S_ISVTX))
3653 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3654 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3655 		seq_printf(seq, ",uid=%u",
3656 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3657 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3658 		seq_printf(seq, ",gid=%u",
3659 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3660 
3661 	/*
3662 	 * Showing inode{64,32} might be useful even if it's the system default,
3663 	 * since then people don't have to resort to checking both here and
3664 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3665 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3666 	 *
3667 	 * We hide it when inode64 isn't the default and we are using 32-bit
3668 	 * inodes, since that probably just means the feature isn't even under
3669 	 * consideration.
3670 	 *
3671 	 * As such:
3672 	 *
3673 	 *                     +-----------------+-----------------+
3674 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3675 	 *  +------------------+-----------------+-----------------+
3676 	 *  | full_inums=true  | show            | show            |
3677 	 *  | full_inums=false | show            | hide            |
3678 	 *  +------------------+-----------------+-----------------+
3679 	 *
3680 	 */
3681 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3682 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3684 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3685 	if (sbinfo->huge)
3686 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3687 #endif
3688 	shmem_show_mpol(seq, sbinfo->mpol);
3689 	return 0;
3690 }
3691 
3692 #endif /* CONFIG_TMPFS */
3693 
3694 static void shmem_put_super(struct super_block *sb)
3695 {
3696 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3697 
3698 	free_percpu(sbinfo->ino_batch);
3699 	percpu_counter_destroy(&sbinfo->used_blocks);
3700 	mpol_put(sbinfo->mpol);
3701 	kfree(sbinfo);
3702 	sb->s_fs_info = NULL;
3703 }
3704 
3705 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3706 {
3707 	struct shmem_options *ctx = fc->fs_private;
3708 	struct inode *inode;
3709 	struct shmem_sb_info *sbinfo;
3710 	int err = -ENOMEM;
3711 
3712 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3713 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3714 				L1_CACHE_BYTES), GFP_KERNEL);
3715 	if (!sbinfo)
3716 		return -ENOMEM;
3717 
3718 	sb->s_fs_info = sbinfo;
3719 
3720 #ifdef CONFIG_TMPFS
3721 	/*
3722 	 * Per default we only allow half of the physical ram per
3723 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3724 	 * but the internal instance is left unlimited.
3725 	 */
3726 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3727 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3728 			ctx->blocks = shmem_default_max_blocks();
3729 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3730 			ctx->inodes = shmem_default_max_inodes();
3731 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3732 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3733 	} else {
3734 		sb->s_flags |= SB_NOUSER;
3735 	}
3736 	sb->s_export_op = &shmem_export_ops;
3737 	sb->s_flags |= SB_NOSEC;
3738 #else
3739 	sb->s_flags |= SB_NOUSER;
3740 #endif
3741 	sbinfo->max_blocks = ctx->blocks;
3742 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3743 	if (sb->s_flags & SB_KERNMOUNT) {
3744 		sbinfo->ino_batch = alloc_percpu(ino_t);
3745 		if (!sbinfo->ino_batch)
3746 			goto failed;
3747 	}
3748 	sbinfo->uid = ctx->uid;
3749 	sbinfo->gid = ctx->gid;
3750 	sbinfo->full_inums = ctx->full_inums;
3751 	sbinfo->mode = ctx->mode;
3752 	sbinfo->huge = ctx->huge;
3753 	sbinfo->mpol = ctx->mpol;
3754 	ctx->mpol = NULL;
3755 
3756 	spin_lock_init(&sbinfo->stat_lock);
3757 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3758 		goto failed;
3759 	spin_lock_init(&sbinfo->shrinklist_lock);
3760 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3761 
3762 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3763 	sb->s_blocksize = PAGE_SIZE;
3764 	sb->s_blocksize_bits = PAGE_SHIFT;
3765 	sb->s_magic = TMPFS_MAGIC;
3766 	sb->s_op = &shmem_ops;
3767 	sb->s_time_gran = 1;
3768 #ifdef CONFIG_TMPFS_XATTR
3769 	sb->s_xattr = shmem_xattr_handlers;
3770 #endif
3771 #ifdef CONFIG_TMPFS_POSIX_ACL
3772 	sb->s_flags |= SB_POSIXACL;
3773 #endif
3774 	uuid_gen(&sb->s_uuid);
3775 
3776 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3777 	if (!inode)
3778 		goto failed;
3779 	inode->i_uid = sbinfo->uid;
3780 	inode->i_gid = sbinfo->gid;
3781 	sb->s_root = d_make_root(inode);
3782 	if (!sb->s_root)
3783 		goto failed;
3784 	return 0;
3785 
3786 failed:
3787 	shmem_put_super(sb);
3788 	return err;
3789 }
3790 
3791 static int shmem_get_tree(struct fs_context *fc)
3792 {
3793 	return get_tree_nodev(fc, shmem_fill_super);
3794 }
3795 
3796 static void shmem_free_fc(struct fs_context *fc)
3797 {
3798 	struct shmem_options *ctx = fc->fs_private;
3799 
3800 	if (ctx) {
3801 		mpol_put(ctx->mpol);
3802 		kfree(ctx);
3803 	}
3804 }
3805 
3806 static const struct fs_context_operations shmem_fs_context_ops = {
3807 	.free			= shmem_free_fc,
3808 	.get_tree		= shmem_get_tree,
3809 #ifdef CONFIG_TMPFS
3810 	.parse_monolithic	= shmem_parse_options,
3811 	.parse_param		= shmem_parse_one,
3812 	.reconfigure		= shmem_reconfigure,
3813 #endif
3814 };
3815 
3816 static struct kmem_cache *shmem_inode_cachep;
3817 
3818 static struct inode *shmem_alloc_inode(struct super_block *sb)
3819 {
3820 	struct shmem_inode_info *info;
3821 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3822 	if (!info)
3823 		return NULL;
3824 	return &info->vfs_inode;
3825 }
3826 
3827 static void shmem_free_in_core_inode(struct inode *inode)
3828 {
3829 	if (S_ISLNK(inode->i_mode))
3830 		kfree(inode->i_link);
3831 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3832 }
3833 
3834 static void shmem_destroy_inode(struct inode *inode)
3835 {
3836 	if (S_ISREG(inode->i_mode))
3837 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3838 }
3839 
3840 static void shmem_init_inode(void *foo)
3841 {
3842 	struct shmem_inode_info *info = foo;
3843 	inode_init_once(&info->vfs_inode);
3844 }
3845 
3846 static void shmem_init_inodecache(void)
3847 {
3848 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3849 				sizeof(struct shmem_inode_info),
3850 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3851 }
3852 
3853 static void shmem_destroy_inodecache(void)
3854 {
3855 	kmem_cache_destroy(shmem_inode_cachep);
3856 }
3857 
3858 static const struct address_space_operations shmem_aops = {
3859 	.writepage	= shmem_writepage,
3860 	.set_page_dirty	= __set_page_dirty_no_writeback,
3861 #ifdef CONFIG_TMPFS
3862 	.write_begin	= shmem_write_begin,
3863 	.write_end	= shmem_write_end,
3864 #endif
3865 #ifdef CONFIG_MIGRATION
3866 	.migratepage	= migrate_page,
3867 #endif
3868 	.error_remove_page = generic_error_remove_page,
3869 };
3870 
3871 static const struct file_operations shmem_file_operations = {
3872 	.mmap		= shmem_mmap,
3873 	.get_unmapped_area = shmem_get_unmapped_area,
3874 #ifdef CONFIG_TMPFS
3875 	.llseek		= shmem_file_llseek,
3876 	.read_iter	= shmem_file_read_iter,
3877 	.write_iter	= generic_file_write_iter,
3878 	.fsync		= noop_fsync,
3879 	.splice_read	= generic_file_splice_read,
3880 	.splice_write	= iter_file_splice_write,
3881 	.fallocate	= shmem_fallocate,
3882 #endif
3883 };
3884 
3885 static const struct inode_operations shmem_inode_operations = {
3886 	.getattr	= shmem_getattr,
3887 	.setattr	= shmem_setattr,
3888 #ifdef CONFIG_TMPFS_XATTR
3889 	.listxattr	= shmem_listxattr,
3890 	.set_acl	= simple_set_acl,
3891 #endif
3892 };
3893 
3894 static const struct inode_operations shmem_dir_inode_operations = {
3895 #ifdef CONFIG_TMPFS
3896 	.create		= shmem_create,
3897 	.lookup		= simple_lookup,
3898 	.link		= shmem_link,
3899 	.unlink		= shmem_unlink,
3900 	.symlink	= shmem_symlink,
3901 	.mkdir		= shmem_mkdir,
3902 	.rmdir		= shmem_rmdir,
3903 	.mknod		= shmem_mknod,
3904 	.rename		= shmem_rename2,
3905 	.tmpfile	= shmem_tmpfile,
3906 #endif
3907 #ifdef CONFIG_TMPFS_XATTR
3908 	.listxattr	= shmem_listxattr,
3909 #endif
3910 #ifdef CONFIG_TMPFS_POSIX_ACL
3911 	.setattr	= shmem_setattr,
3912 	.set_acl	= simple_set_acl,
3913 #endif
3914 };
3915 
3916 static const struct inode_operations shmem_special_inode_operations = {
3917 #ifdef CONFIG_TMPFS_XATTR
3918 	.listxattr	= shmem_listxattr,
3919 #endif
3920 #ifdef CONFIG_TMPFS_POSIX_ACL
3921 	.setattr	= shmem_setattr,
3922 	.set_acl	= simple_set_acl,
3923 #endif
3924 };
3925 
3926 static const struct super_operations shmem_ops = {
3927 	.alloc_inode	= shmem_alloc_inode,
3928 	.free_inode	= shmem_free_in_core_inode,
3929 	.destroy_inode	= shmem_destroy_inode,
3930 #ifdef CONFIG_TMPFS
3931 	.statfs		= shmem_statfs,
3932 	.show_options	= shmem_show_options,
3933 #endif
3934 	.evict_inode	= shmem_evict_inode,
3935 	.drop_inode	= generic_delete_inode,
3936 	.put_super	= shmem_put_super,
3937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3938 	.nr_cached_objects	= shmem_unused_huge_count,
3939 	.free_cached_objects	= shmem_unused_huge_scan,
3940 #endif
3941 };
3942 
3943 static const struct vm_operations_struct shmem_vm_ops = {
3944 	.fault		= shmem_fault,
3945 	.map_pages	= filemap_map_pages,
3946 #ifdef CONFIG_NUMA
3947 	.set_policy     = shmem_set_policy,
3948 	.get_policy     = shmem_get_policy,
3949 #endif
3950 };
3951 
3952 int shmem_init_fs_context(struct fs_context *fc)
3953 {
3954 	struct shmem_options *ctx;
3955 
3956 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3957 	if (!ctx)
3958 		return -ENOMEM;
3959 
3960 	ctx->mode = 0777 | S_ISVTX;
3961 	ctx->uid = current_fsuid();
3962 	ctx->gid = current_fsgid();
3963 
3964 	fc->fs_private = ctx;
3965 	fc->ops = &shmem_fs_context_ops;
3966 	return 0;
3967 }
3968 
3969 static struct file_system_type shmem_fs_type = {
3970 	.owner		= THIS_MODULE,
3971 	.name		= "tmpfs",
3972 	.init_fs_context = shmem_init_fs_context,
3973 #ifdef CONFIG_TMPFS
3974 	.parameters	= shmem_fs_parameters,
3975 #endif
3976 	.kill_sb	= kill_litter_super,
3977 	.fs_flags	= FS_USERNS_MOUNT,
3978 };
3979 
3980 int __init shmem_init(void)
3981 {
3982 	int error;
3983 
3984 	shmem_init_inodecache();
3985 
3986 	error = register_filesystem(&shmem_fs_type);
3987 	if (error) {
3988 		pr_err("Could not register tmpfs\n");
3989 		goto out2;
3990 	}
3991 
3992 	shm_mnt = kern_mount(&shmem_fs_type);
3993 	if (IS_ERR(shm_mnt)) {
3994 		error = PTR_ERR(shm_mnt);
3995 		pr_err("Could not kern_mount tmpfs\n");
3996 		goto out1;
3997 	}
3998 
3999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4000 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4001 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4002 	else
4003 		shmem_huge = 0; /* just in case it was patched */
4004 #endif
4005 	return 0;
4006 
4007 out1:
4008 	unregister_filesystem(&shmem_fs_type);
4009 out2:
4010 	shmem_destroy_inodecache();
4011 	shm_mnt = ERR_PTR(error);
4012 	return error;
4013 }
4014 
4015 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4016 static ssize_t shmem_enabled_show(struct kobject *kobj,
4017 		struct kobj_attribute *attr, char *buf)
4018 {
4019 	static const int values[] = {
4020 		SHMEM_HUGE_ALWAYS,
4021 		SHMEM_HUGE_WITHIN_SIZE,
4022 		SHMEM_HUGE_ADVISE,
4023 		SHMEM_HUGE_NEVER,
4024 		SHMEM_HUGE_DENY,
4025 		SHMEM_HUGE_FORCE,
4026 	};
4027 	int i, count;
4028 
4029 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4030 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4031 
4032 		count += sprintf(buf + count, fmt,
4033 				shmem_format_huge(values[i]));
4034 	}
4035 	buf[count - 1] = '\n';
4036 	return count;
4037 }
4038 
4039 static ssize_t shmem_enabled_store(struct kobject *kobj,
4040 		struct kobj_attribute *attr, const char *buf, size_t count)
4041 {
4042 	char tmp[16];
4043 	int huge;
4044 
4045 	if (count + 1 > sizeof(tmp))
4046 		return -EINVAL;
4047 	memcpy(tmp, buf, count);
4048 	tmp[count] = '\0';
4049 	if (count && tmp[count - 1] == '\n')
4050 		tmp[count - 1] = '\0';
4051 
4052 	huge = shmem_parse_huge(tmp);
4053 	if (huge == -EINVAL)
4054 		return -EINVAL;
4055 	if (!has_transparent_hugepage() &&
4056 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4057 		return -EINVAL;
4058 
4059 	shmem_huge = huge;
4060 	if (shmem_huge > SHMEM_HUGE_DENY)
4061 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4062 	return count;
4063 }
4064 
4065 struct kobj_attribute shmem_enabled_attr =
4066 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4067 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4068 
4069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4070 bool shmem_huge_enabled(struct vm_area_struct *vma)
4071 {
4072 	struct inode *inode = file_inode(vma->vm_file);
4073 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4074 	loff_t i_size;
4075 	pgoff_t off;
4076 
4077 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4078 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4079 		return false;
4080 	if (shmem_huge == SHMEM_HUGE_FORCE)
4081 		return true;
4082 	if (shmem_huge == SHMEM_HUGE_DENY)
4083 		return false;
4084 	switch (sbinfo->huge) {
4085 		case SHMEM_HUGE_NEVER:
4086 			return false;
4087 		case SHMEM_HUGE_ALWAYS:
4088 			return true;
4089 		case SHMEM_HUGE_WITHIN_SIZE:
4090 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4091 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4092 			if (i_size >= HPAGE_PMD_SIZE &&
4093 					i_size >> PAGE_SHIFT >= off)
4094 				return true;
4095 			fallthrough;
4096 		case SHMEM_HUGE_ADVISE:
4097 			/* TODO: implement fadvise() hints */
4098 			return (vma->vm_flags & VM_HUGEPAGE);
4099 		default:
4100 			VM_BUG_ON(1);
4101 			return false;
4102 	}
4103 }
4104 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4105 
4106 #else /* !CONFIG_SHMEM */
4107 
4108 /*
4109  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4110  *
4111  * This is intended for small system where the benefits of the full
4112  * shmem code (swap-backed and resource-limited) are outweighed by
4113  * their complexity. On systems without swap this code should be
4114  * effectively equivalent, but much lighter weight.
4115  */
4116 
4117 static struct file_system_type shmem_fs_type = {
4118 	.name		= "tmpfs",
4119 	.init_fs_context = ramfs_init_fs_context,
4120 	.parameters	= ramfs_fs_parameters,
4121 	.kill_sb	= kill_litter_super,
4122 	.fs_flags	= FS_USERNS_MOUNT,
4123 };
4124 
4125 int __init shmem_init(void)
4126 {
4127 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4128 
4129 	shm_mnt = kern_mount(&shmem_fs_type);
4130 	BUG_ON(IS_ERR(shm_mnt));
4131 
4132 	return 0;
4133 }
4134 
4135 int shmem_unuse(unsigned int type, bool frontswap,
4136 		unsigned long *fs_pages_to_unuse)
4137 {
4138 	return 0;
4139 }
4140 
4141 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4142 {
4143 	return 0;
4144 }
4145 
4146 void shmem_unlock_mapping(struct address_space *mapping)
4147 {
4148 }
4149 
4150 #ifdef CONFIG_MMU
4151 unsigned long shmem_get_unmapped_area(struct file *file,
4152 				      unsigned long addr, unsigned long len,
4153 				      unsigned long pgoff, unsigned long flags)
4154 {
4155 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4156 }
4157 #endif
4158 
4159 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4160 {
4161 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4162 }
4163 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4164 
4165 #define shmem_vm_ops				generic_file_vm_ops
4166 #define shmem_file_operations			ramfs_file_operations
4167 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4168 #define shmem_acct_size(flags, size)		0
4169 #define shmem_unacct_size(flags, size)		do {} while (0)
4170 
4171 #endif /* CONFIG_SHMEM */
4172 
4173 /* common code */
4174 
4175 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4176 				       unsigned long flags, unsigned int i_flags)
4177 {
4178 	struct inode *inode;
4179 	struct file *res;
4180 
4181 	if (IS_ERR(mnt))
4182 		return ERR_CAST(mnt);
4183 
4184 	if (size < 0 || size > MAX_LFS_FILESIZE)
4185 		return ERR_PTR(-EINVAL);
4186 
4187 	if (shmem_acct_size(flags, size))
4188 		return ERR_PTR(-ENOMEM);
4189 
4190 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4191 				flags);
4192 	if (unlikely(!inode)) {
4193 		shmem_unacct_size(flags, size);
4194 		return ERR_PTR(-ENOSPC);
4195 	}
4196 	inode->i_flags |= i_flags;
4197 	inode->i_size = size;
4198 	clear_nlink(inode);	/* It is unlinked */
4199 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4200 	if (!IS_ERR(res))
4201 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4202 				&shmem_file_operations);
4203 	if (IS_ERR(res))
4204 		iput(inode);
4205 	return res;
4206 }
4207 
4208 /**
4209  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4210  * 	kernel internal.  There will be NO LSM permission checks against the
4211  * 	underlying inode.  So users of this interface must do LSM checks at a
4212  *	higher layer.  The users are the big_key and shm implementations.  LSM
4213  *	checks are provided at the key or shm level rather than the inode.
4214  * @name: name for dentry (to be seen in /proc/<pid>/maps
4215  * @size: size to be set for the file
4216  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4217  */
4218 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4219 {
4220 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4221 }
4222 
4223 /**
4224  * shmem_file_setup - get an unlinked file living in tmpfs
4225  * @name: name for dentry (to be seen in /proc/<pid>/maps
4226  * @size: size to be set for the file
4227  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4228  */
4229 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4230 {
4231 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4232 }
4233 EXPORT_SYMBOL_GPL(shmem_file_setup);
4234 
4235 /**
4236  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4237  * @mnt: the tmpfs mount where the file will be created
4238  * @name: name for dentry (to be seen in /proc/<pid>/maps
4239  * @size: size to be set for the file
4240  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4241  */
4242 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4243 				       loff_t size, unsigned long flags)
4244 {
4245 	return __shmem_file_setup(mnt, name, size, flags, 0);
4246 }
4247 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4248 
4249 /**
4250  * shmem_zero_setup - setup a shared anonymous mapping
4251  * @vma: the vma to be mmapped is prepared by do_mmap
4252  */
4253 int shmem_zero_setup(struct vm_area_struct *vma)
4254 {
4255 	struct file *file;
4256 	loff_t size = vma->vm_end - vma->vm_start;
4257 
4258 	/*
4259 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4260 	 * between XFS directory reading and selinux: since this file is only
4261 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4262 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4263 	 */
4264 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4265 	if (IS_ERR(file))
4266 		return PTR_ERR(file);
4267 
4268 	if (vma->vm_file)
4269 		fput(vma->vm_file);
4270 	vma->vm_file = file;
4271 	vma->vm_ops = &shmem_vm_ops;
4272 
4273 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4274 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4275 			(vma->vm_end & HPAGE_PMD_MASK)) {
4276 		khugepaged_enter(vma, vma->vm_flags);
4277 	}
4278 
4279 	return 0;
4280 }
4281 
4282 /**
4283  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4284  * @mapping:	the page's address_space
4285  * @index:	the page index
4286  * @gfp:	the page allocator flags to use if allocating
4287  *
4288  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4289  * with any new page allocations done using the specified allocation flags.
4290  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4291  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4292  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4293  *
4294  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4295  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4296  */
4297 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4298 					 pgoff_t index, gfp_t gfp)
4299 {
4300 #ifdef CONFIG_SHMEM
4301 	struct inode *inode = mapping->host;
4302 	struct page *page;
4303 	int error;
4304 
4305 	BUG_ON(mapping->a_ops != &shmem_aops);
4306 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4307 				  gfp, NULL, NULL, NULL);
4308 	if (error)
4309 		page = ERR_PTR(error);
4310 	else
4311 		unlock_page(page);
4312 	return page;
4313 #else
4314 	/*
4315 	 * The tiny !SHMEM case uses ramfs without swap
4316 	 */
4317 	return read_cache_page_gfp(mapping, index, gfp);
4318 #endif
4319 }
4320 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4321