xref: /openbmc/linux/mm/shmem.c (revision f79e4d5f)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38 
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40 
41 static struct vfsmount *shm_mnt;
42 
43 #ifdef CONFIG_SHMEM
44 /*
45  * This virtual memory filesystem is heavily based on the ramfs. It
46  * extends ramfs by the ability to use swap and honor resource limits
47  * which makes it a completely usable filesystem.
48  */
49 
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_mutex making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 		struct page **pagep, enum sgp_type sgp,
125 		gfp_t gfp, struct vm_area_struct *vma,
126 		struct vm_fault *vmf, int *fault_type);
127 
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 		struct page **pagep, enum sgp_type sgp)
130 {
131 	return shmem_getpage_gfp(inode, index, pagep, sgp,
132 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134 
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137 	return sb->s_fs_info;
138 }
139 
140 /*
141  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142  * for shared memory and for shared anonymous (/dev/zero) mappings
143  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144  * consistent with the pre-accounting of private mappings ...
145  */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148 	return (flags & VM_NORESERVE) ?
149 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151 
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154 	if (!(flags & VM_NORESERVE))
155 		vm_unacct_memory(VM_ACCT(size));
156 }
157 
158 static inline int shmem_reacct_size(unsigned long flags,
159 		loff_t oldsize, loff_t newsize)
160 {
161 	if (!(flags & VM_NORESERVE)) {
162 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 			return security_vm_enough_memory_mm(current->mm,
164 					VM_ACCT(newsize) - VM_ACCT(oldsize));
165 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 	}
168 	return 0;
169 }
170 
171 /*
172  * ... whereas tmpfs objects are accounted incrementally as
173  * pages are allocated, in order to allow large sparse files.
174  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176  */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		return 0;
181 
182 	return security_vm_enough_memory_mm(current->mm,
183 			pages * VM_ACCT(PAGE_SIZE));
184 }
185 
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 	if (flags & VM_NORESERVE)
189 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191 
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194 	struct shmem_inode_info *info = SHMEM_I(inode);
195 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196 
197 	if (shmem_acct_block(info->flags, pages))
198 		return false;
199 
200 	if (sbinfo->max_blocks) {
201 		if (percpu_counter_compare(&sbinfo->used_blocks,
202 					   sbinfo->max_blocks - pages) > 0)
203 			goto unacct;
204 		percpu_counter_add(&sbinfo->used_blocks, pages);
205 	}
206 
207 	return true;
208 
209 unacct:
210 	shmem_unacct_blocks(info->flags, pages);
211 	return false;
212 }
213 
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216 	struct shmem_inode_info *info = SHMEM_I(inode);
217 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 
219 	if (sbinfo->max_blocks)
220 		percpu_counter_sub(&sbinfo->used_blocks, pages);
221 	shmem_unacct_blocks(info->flags, pages);
222 }
223 
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232 
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235 	return vma->vm_ops == &shmem_vm_ops;
236 }
237 
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240 
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 	if (sbinfo->max_inodes) {
245 		spin_lock(&sbinfo->stat_lock);
246 		if (!sbinfo->free_inodes) {
247 			spin_unlock(&sbinfo->stat_lock);
248 			return -ENOSPC;
249 		}
250 		sbinfo->free_inodes--;
251 		spin_unlock(&sbinfo->stat_lock);
252 	}
253 	return 0;
254 }
255 
256 static void shmem_free_inode(struct super_block *sb)
257 {
258 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 	if (sbinfo->max_inodes) {
260 		spin_lock(&sbinfo->stat_lock);
261 		sbinfo->free_inodes++;
262 		spin_unlock(&sbinfo->stat_lock);
263 	}
264 }
265 
266 /**
267  * shmem_recalc_inode - recalculate the block usage of an inode
268  * @inode: inode to recalc
269  *
270  * We have to calculate the free blocks since the mm can drop
271  * undirtied hole pages behind our back.
272  *
273  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
274  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275  *
276  * It has to be called with the spinlock held.
277  */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280 	struct shmem_inode_info *info = SHMEM_I(inode);
281 	long freed;
282 
283 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 	if (freed > 0) {
285 		info->alloced -= freed;
286 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 		shmem_inode_unacct_blocks(inode, freed);
288 	}
289 }
290 
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293 	struct shmem_inode_info *info = SHMEM_I(inode);
294 	unsigned long flags;
295 
296 	if (!shmem_inode_acct_block(inode, pages))
297 		return false;
298 
299 	spin_lock_irqsave(&info->lock, flags);
300 	info->alloced += pages;
301 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 	shmem_recalc_inode(inode);
303 	spin_unlock_irqrestore(&info->lock, flags);
304 	inode->i_mapping->nrpages += pages;
305 
306 	return true;
307 }
308 
309 void shmem_uncharge(struct inode *inode, long pages)
310 {
311 	struct shmem_inode_info *info = SHMEM_I(inode);
312 	unsigned long flags;
313 
314 	spin_lock_irqsave(&info->lock, flags);
315 	info->alloced -= pages;
316 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 	shmem_recalc_inode(inode);
318 	spin_unlock_irqrestore(&info->lock, flags);
319 
320 	shmem_inode_unacct_blocks(inode, pages);
321 }
322 
323 /*
324  * Replace item expected in radix tree by a new item, while holding tree lock.
325  */
326 static int shmem_radix_tree_replace(struct address_space *mapping,
327 			pgoff_t index, void *expected, void *replacement)
328 {
329 	struct radix_tree_node *node;
330 	void __rcu **pslot;
331 	void *item;
332 
333 	VM_BUG_ON(!expected);
334 	VM_BUG_ON(!replacement);
335 	item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
336 	if (!item)
337 		return -ENOENT;
338 	if (item != expected)
339 		return -ENOENT;
340 	__radix_tree_replace(&mapping->i_pages, node, pslot,
341 			     replacement, NULL);
342 	return 0;
343 }
344 
345 /*
346  * Sometimes, before we decide whether to proceed or to fail, we must check
347  * that an entry was not already brought back from swap by a racing thread.
348  *
349  * Checking page is not enough: by the time a SwapCache page is locked, it
350  * might be reused, and again be SwapCache, using the same swap as before.
351  */
352 static bool shmem_confirm_swap(struct address_space *mapping,
353 			       pgoff_t index, swp_entry_t swap)
354 {
355 	void *item;
356 
357 	rcu_read_lock();
358 	item = radix_tree_lookup(&mapping->i_pages, index);
359 	rcu_read_unlock();
360 	return item == swp_to_radix_entry(swap);
361 }
362 
363 /*
364  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365  *
366  * SHMEM_HUGE_NEVER:
367  *	disables huge pages for the mount;
368  * SHMEM_HUGE_ALWAYS:
369  *	enables huge pages for the mount;
370  * SHMEM_HUGE_WITHIN_SIZE:
371  *	only allocate huge pages if the page will be fully within i_size,
372  *	also respect fadvise()/madvise() hints;
373  * SHMEM_HUGE_ADVISE:
374  *	only allocate huge pages if requested with fadvise()/madvise();
375  */
376 
377 #define SHMEM_HUGE_NEVER	0
378 #define SHMEM_HUGE_ALWAYS	1
379 #define SHMEM_HUGE_WITHIN_SIZE	2
380 #define SHMEM_HUGE_ADVISE	3
381 
382 /*
383  * Special values.
384  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385  *
386  * SHMEM_HUGE_DENY:
387  *	disables huge on shm_mnt and all mounts, for emergency use;
388  * SHMEM_HUGE_FORCE:
389  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390  *
391  */
392 #define SHMEM_HUGE_DENY		(-1)
393 #define SHMEM_HUGE_FORCE	(-2)
394 
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
397 
398 static int shmem_huge __read_mostly;
399 
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str)
402 {
403 	if (!strcmp(str, "never"))
404 		return SHMEM_HUGE_NEVER;
405 	if (!strcmp(str, "always"))
406 		return SHMEM_HUGE_ALWAYS;
407 	if (!strcmp(str, "within_size"))
408 		return SHMEM_HUGE_WITHIN_SIZE;
409 	if (!strcmp(str, "advise"))
410 		return SHMEM_HUGE_ADVISE;
411 	if (!strcmp(str, "deny"))
412 		return SHMEM_HUGE_DENY;
413 	if (!strcmp(str, "force"))
414 		return SHMEM_HUGE_FORCE;
415 	return -EINVAL;
416 }
417 
418 static const char *shmem_format_huge(int huge)
419 {
420 	switch (huge) {
421 	case SHMEM_HUGE_NEVER:
422 		return "never";
423 	case SHMEM_HUGE_ALWAYS:
424 		return "always";
425 	case SHMEM_HUGE_WITHIN_SIZE:
426 		return "within_size";
427 	case SHMEM_HUGE_ADVISE:
428 		return "advise";
429 	case SHMEM_HUGE_DENY:
430 		return "deny";
431 	case SHMEM_HUGE_FORCE:
432 		return "force";
433 	default:
434 		VM_BUG_ON(1);
435 		return "bad_val";
436 	}
437 }
438 #endif
439 
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 		struct shrink_control *sc, unsigned long nr_to_split)
442 {
443 	LIST_HEAD(list), *pos, *next;
444 	LIST_HEAD(to_remove);
445 	struct inode *inode;
446 	struct shmem_inode_info *info;
447 	struct page *page;
448 	unsigned long batch = sc ? sc->nr_to_scan : 128;
449 	int removed = 0, split = 0;
450 
451 	if (list_empty(&sbinfo->shrinklist))
452 		return SHRINK_STOP;
453 
454 	spin_lock(&sbinfo->shrinklist_lock);
455 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
457 
458 		/* pin the inode */
459 		inode = igrab(&info->vfs_inode);
460 
461 		/* inode is about to be evicted */
462 		if (!inode) {
463 			list_del_init(&info->shrinklist);
464 			removed++;
465 			goto next;
466 		}
467 
468 		/* Check if there's anything to gain */
469 		if (round_up(inode->i_size, PAGE_SIZE) ==
470 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
471 			list_move(&info->shrinklist, &to_remove);
472 			removed++;
473 			goto next;
474 		}
475 
476 		list_move(&info->shrinklist, &list);
477 next:
478 		if (!--batch)
479 			break;
480 	}
481 	spin_unlock(&sbinfo->shrinklist_lock);
482 
483 	list_for_each_safe(pos, next, &to_remove) {
484 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 		inode = &info->vfs_inode;
486 		list_del_init(&info->shrinklist);
487 		iput(inode);
488 	}
489 
490 	list_for_each_safe(pos, next, &list) {
491 		int ret;
492 
493 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 		inode = &info->vfs_inode;
495 
496 		if (nr_to_split && split >= nr_to_split)
497 			goto leave;
498 
499 		page = find_get_page(inode->i_mapping,
500 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 		if (!page)
502 			goto drop;
503 
504 		/* No huge page at the end of the file: nothing to split */
505 		if (!PageTransHuge(page)) {
506 			put_page(page);
507 			goto drop;
508 		}
509 
510 		/*
511 		 * Leave the inode on the list if we failed to lock
512 		 * the page at this time.
513 		 *
514 		 * Waiting for the lock may lead to deadlock in the
515 		 * reclaim path.
516 		 */
517 		if (!trylock_page(page)) {
518 			put_page(page);
519 			goto leave;
520 		}
521 
522 		ret = split_huge_page(page);
523 		unlock_page(page);
524 		put_page(page);
525 
526 		/* If split failed leave the inode on the list */
527 		if (ret)
528 			goto leave;
529 
530 		split++;
531 drop:
532 		list_del_init(&info->shrinklist);
533 		removed++;
534 leave:
535 		iput(inode);
536 	}
537 
538 	spin_lock(&sbinfo->shrinklist_lock);
539 	list_splice_tail(&list, &sbinfo->shrinklist);
540 	sbinfo->shrinklist_len -= removed;
541 	spin_unlock(&sbinfo->shrinklist_lock);
542 
543 	return split;
544 }
545 
546 static long shmem_unused_huge_scan(struct super_block *sb,
547 		struct shrink_control *sc)
548 {
549 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550 
551 	if (!READ_ONCE(sbinfo->shrinklist_len))
552 		return SHRINK_STOP;
553 
554 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
555 }
556 
557 static long shmem_unused_huge_count(struct super_block *sb,
558 		struct shrink_control *sc)
559 {
560 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 	return READ_ONCE(sbinfo->shrinklist_len);
562 }
563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
564 
565 #define shmem_huge SHMEM_HUGE_DENY
566 
567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 		struct shrink_control *sc, unsigned long nr_to_split)
569 {
570 	return 0;
571 }
572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
573 
574 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
575 {
576 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
577 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
578 	    shmem_huge != SHMEM_HUGE_DENY)
579 		return true;
580 	return false;
581 }
582 
583 /*
584  * Like add_to_page_cache_locked, but error if expected item has gone.
585  */
586 static int shmem_add_to_page_cache(struct page *page,
587 				   struct address_space *mapping,
588 				   pgoff_t index, void *expected)
589 {
590 	int error, nr = hpage_nr_pages(page);
591 
592 	VM_BUG_ON_PAGE(PageTail(page), page);
593 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
594 	VM_BUG_ON_PAGE(!PageLocked(page), page);
595 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
596 	VM_BUG_ON(expected && PageTransHuge(page));
597 
598 	page_ref_add(page, nr);
599 	page->mapping = mapping;
600 	page->index = index;
601 
602 	xa_lock_irq(&mapping->i_pages);
603 	if (PageTransHuge(page)) {
604 		void __rcu **results;
605 		pgoff_t idx;
606 		int i;
607 
608 		error = 0;
609 		if (radix_tree_gang_lookup_slot(&mapping->i_pages,
610 					&results, &idx, index, 1) &&
611 				idx < index + HPAGE_PMD_NR) {
612 			error = -EEXIST;
613 		}
614 
615 		if (!error) {
616 			for (i = 0; i < HPAGE_PMD_NR; i++) {
617 				error = radix_tree_insert(&mapping->i_pages,
618 						index + i, page + i);
619 				VM_BUG_ON(error);
620 			}
621 			count_vm_event(THP_FILE_ALLOC);
622 		}
623 	} else if (!expected) {
624 		error = radix_tree_insert(&mapping->i_pages, index, page);
625 	} else {
626 		error = shmem_radix_tree_replace(mapping, index, expected,
627 								 page);
628 	}
629 
630 	if (!error) {
631 		mapping->nrpages += nr;
632 		if (PageTransHuge(page))
633 			__inc_node_page_state(page, NR_SHMEM_THPS);
634 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
635 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
636 		xa_unlock_irq(&mapping->i_pages);
637 	} else {
638 		page->mapping = NULL;
639 		xa_unlock_irq(&mapping->i_pages);
640 		page_ref_sub(page, nr);
641 	}
642 	return error;
643 }
644 
645 /*
646  * Like delete_from_page_cache, but substitutes swap for page.
647  */
648 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
649 {
650 	struct address_space *mapping = page->mapping;
651 	int error;
652 
653 	VM_BUG_ON_PAGE(PageCompound(page), page);
654 
655 	xa_lock_irq(&mapping->i_pages);
656 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
657 	page->mapping = NULL;
658 	mapping->nrpages--;
659 	__dec_node_page_state(page, NR_FILE_PAGES);
660 	__dec_node_page_state(page, NR_SHMEM);
661 	xa_unlock_irq(&mapping->i_pages);
662 	put_page(page);
663 	BUG_ON(error);
664 }
665 
666 /*
667  * Remove swap entry from radix tree, free the swap and its page cache.
668  */
669 static int shmem_free_swap(struct address_space *mapping,
670 			   pgoff_t index, void *radswap)
671 {
672 	void *old;
673 
674 	xa_lock_irq(&mapping->i_pages);
675 	old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
676 	xa_unlock_irq(&mapping->i_pages);
677 	if (old != radswap)
678 		return -ENOENT;
679 	free_swap_and_cache(radix_to_swp_entry(radswap));
680 	return 0;
681 }
682 
683 /*
684  * Determine (in bytes) how many of the shmem object's pages mapped by the
685  * given offsets are swapped out.
686  *
687  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
688  * as long as the inode doesn't go away and racy results are not a problem.
689  */
690 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
691 						pgoff_t start, pgoff_t end)
692 {
693 	struct radix_tree_iter iter;
694 	void __rcu **slot;
695 	struct page *page;
696 	unsigned long swapped = 0;
697 
698 	rcu_read_lock();
699 
700 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
701 		if (iter.index >= end)
702 			break;
703 
704 		page = radix_tree_deref_slot(slot);
705 
706 		if (radix_tree_deref_retry(page)) {
707 			slot = radix_tree_iter_retry(&iter);
708 			continue;
709 		}
710 
711 		if (radix_tree_exceptional_entry(page))
712 			swapped++;
713 
714 		if (need_resched()) {
715 			slot = radix_tree_iter_resume(slot, &iter);
716 			cond_resched_rcu();
717 		}
718 	}
719 
720 	rcu_read_unlock();
721 
722 	return swapped << PAGE_SHIFT;
723 }
724 
725 /*
726  * Determine (in bytes) how many of the shmem object's pages mapped by the
727  * given vma is swapped out.
728  *
729  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
730  * as long as the inode doesn't go away and racy results are not a problem.
731  */
732 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
733 {
734 	struct inode *inode = file_inode(vma->vm_file);
735 	struct shmem_inode_info *info = SHMEM_I(inode);
736 	struct address_space *mapping = inode->i_mapping;
737 	unsigned long swapped;
738 
739 	/* Be careful as we don't hold info->lock */
740 	swapped = READ_ONCE(info->swapped);
741 
742 	/*
743 	 * The easier cases are when the shmem object has nothing in swap, or
744 	 * the vma maps it whole. Then we can simply use the stats that we
745 	 * already track.
746 	 */
747 	if (!swapped)
748 		return 0;
749 
750 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
751 		return swapped << PAGE_SHIFT;
752 
753 	/* Here comes the more involved part */
754 	return shmem_partial_swap_usage(mapping,
755 			linear_page_index(vma, vma->vm_start),
756 			linear_page_index(vma, vma->vm_end));
757 }
758 
759 /*
760  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
761  */
762 void shmem_unlock_mapping(struct address_space *mapping)
763 {
764 	struct pagevec pvec;
765 	pgoff_t indices[PAGEVEC_SIZE];
766 	pgoff_t index = 0;
767 
768 	pagevec_init(&pvec);
769 	/*
770 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
771 	 */
772 	while (!mapping_unevictable(mapping)) {
773 		/*
774 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
775 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
776 		 */
777 		pvec.nr = find_get_entries(mapping, index,
778 					   PAGEVEC_SIZE, pvec.pages, indices);
779 		if (!pvec.nr)
780 			break;
781 		index = indices[pvec.nr - 1] + 1;
782 		pagevec_remove_exceptionals(&pvec);
783 		check_move_unevictable_pages(pvec.pages, pvec.nr);
784 		pagevec_release(&pvec);
785 		cond_resched();
786 	}
787 }
788 
789 /*
790  * Remove range of pages and swap entries from radix tree, and free them.
791  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
792  */
793 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
794 								 bool unfalloc)
795 {
796 	struct address_space *mapping = inode->i_mapping;
797 	struct shmem_inode_info *info = SHMEM_I(inode);
798 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
799 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
800 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
801 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
802 	struct pagevec pvec;
803 	pgoff_t indices[PAGEVEC_SIZE];
804 	long nr_swaps_freed = 0;
805 	pgoff_t index;
806 	int i;
807 
808 	if (lend == -1)
809 		end = -1;	/* unsigned, so actually very big */
810 
811 	pagevec_init(&pvec);
812 	index = start;
813 	while (index < end) {
814 		pvec.nr = find_get_entries(mapping, index,
815 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
816 			pvec.pages, indices);
817 		if (!pvec.nr)
818 			break;
819 		for (i = 0; i < pagevec_count(&pvec); i++) {
820 			struct page *page = pvec.pages[i];
821 
822 			index = indices[i];
823 			if (index >= end)
824 				break;
825 
826 			if (radix_tree_exceptional_entry(page)) {
827 				if (unfalloc)
828 					continue;
829 				nr_swaps_freed += !shmem_free_swap(mapping,
830 								index, page);
831 				continue;
832 			}
833 
834 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
835 
836 			if (!trylock_page(page))
837 				continue;
838 
839 			if (PageTransTail(page)) {
840 				/* Middle of THP: zero out the page */
841 				clear_highpage(page);
842 				unlock_page(page);
843 				continue;
844 			} else if (PageTransHuge(page)) {
845 				if (index == round_down(end, HPAGE_PMD_NR)) {
846 					/*
847 					 * Range ends in the middle of THP:
848 					 * zero out the page
849 					 */
850 					clear_highpage(page);
851 					unlock_page(page);
852 					continue;
853 				}
854 				index += HPAGE_PMD_NR - 1;
855 				i += HPAGE_PMD_NR - 1;
856 			}
857 
858 			if (!unfalloc || !PageUptodate(page)) {
859 				VM_BUG_ON_PAGE(PageTail(page), page);
860 				if (page_mapping(page) == mapping) {
861 					VM_BUG_ON_PAGE(PageWriteback(page), page);
862 					truncate_inode_page(mapping, page);
863 				}
864 			}
865 			unlock_page(page);
866 		}
867 		pagevec_remove_exceptionals(&pvec);
868 		pagevec_release(&pvec);
869 		cond_resched();
870 		index++;
871 	}
872 
873 	if (partial_start) {
874 		struct page *page = NULL;
875 		shmem_getpage(inode, start - 1, &page, SGP_READ);
876 		if (page) {
877 			unsigned int top = PAGE_SIZE;
878 			if (start > end) {
879 				top = partial_end;
880 				partial_end = 0;
881 			}
882 			zero_user_segment(page, partial_start, top);
883 			set_page_dirty(page);
884 			unlock_page(page);
885 			put_page(page);
886 		}
887 	}
888 	if (partial_end) {
889 		struct page *page = NULL;
890 		shmem_getpage(inode, end, &page, SGP_READ);
891 		if (page) {
892 			zero_user_segment(page, 0, partial_end);
893 			set_page_dirty(page);
894 			unlock_page(page);
895 			put_page(page);
896 		}
897 	}
898 	if (start >= end)
899 		return;
900 
901 	index = start;
902 	while (index < end) {
903 		cond_resched();
904 
905 		pvec.nr = find_get_entries(mapping, index,
906 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
907 				pvec.pages, indices);
908 		if (!pvec.nr) {
909 			/* If all gone or hole-punch or unfalloc, we're done */
910 			if (index == start || end != -1)
911 				break;
912 			/* But if truncating, restart to make sure all gone */
913 			index = start;
914 			continue;
915 		}
916 		for (i = 0; i < pagevec_count(&pvec); i++) {
917 			struct page *page = pvec.pages[i];
918 
919 			index = indices[i];
920 			if (index >= end)
921 				break;
922 
923 			if (radix_tree_exceptional_entry(page)) {
924 				if (unfalloc)
925 					continue;
926 				if (shmem_free_swap(mapping, index, page)) {
927 					/* Swap was replaced by page: retry */
928 					index--;
929 					break;
930 				}
931 				nr_swaps_freed++;
932 				continue;
933 			}
934 
935 			lock_page(page);
936 
937 			if (PageTransTail(page)) {
938 				/* Middle of THP: zero out the page */
939 				clear_highpage(page);
940 				unlock_page(page);
941 				/*
942 				 * Partial thp truncate due 'start' in middle
943 				 * of THP: don't need to look on these pages
944 				 * again on !pvec.nr restart.
945 				 */
946 				if (index != round_down(end, HPAGE_PMD_NR))
947 					start++;
948 				continue;
949 			} else if (PageTransHuge(page)) {
950 				if (index == round_down(end, HPAGE_PMD_NR)) {
951 					/*
952 					 * Range ends in the middle of THP:
953 					 * zero out the page
954 					 */
955 					clear_highpage(page);
956 					unlock_page(page);
957 					continue;
958 				}
959 				index += HPAGE_PMD_NR - 1;
960 				i += HPAGE_PMD_NR - 1;
961 			}
962 
963 			if (!unfalloc || !PageUptodate(page)) {
964 				VM_BUG_ON_PAGE(PageTail(page), page);
965 				if (page_mapping(page) == mapping) {
966 					VM_BUG_ON_PAGE(PageWriteback(page), page);
967 					truncate_inode_page(mapping, page);
968 				} else {
969 					/* Page was replaced by swap: retry */
970 					unlock_page(page);
971 					index--;
972 					break;
973 				}
974 			}
975 			unlock_page(page);
976 		}
977 		pagevec_remove_exceptionals(&pvec);
978 		pagevec_release(&pvec);
979 		index++;
980 	}
981 
982 	spin_lock_irq(&info->lock);
983 	info->swapped -= nr_swaps_freed;
984 	shmem_recalc_inode(inode);
985 	spin_unlock_irq(&info->lock);
986 }
987 
988 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
989 {
990 	shmem_undo_range(inode, lstart, lend, false);
991 	inode->i_ctime = inode->i_mtime = current_time(inode);
992 }
993 EXPORT_SYMBOL_GPL(shmem_truncate_range);
994 
995 static int shmem_getattr(const struct path *path, struct kstat *stat,
996 			 u32 request_mask, unsigned int query_flags)
997 {
998 	struct inode *inode = path->dentry->d_inode;
999 	struct shmem_inode_info *info = SHMEM_I(inode);
1000 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1001 
1002 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1003 		spin_lock_irq(&info->lock);
1004 		shmem_recalc_inode(inode);
1005 		spin_unlock_irq(&info->lock);
1006 	}
1007 	generic_fillattr(inode, stat);
1008 
1009 	if (is_huge_enabled(sb_info))
1010 		stat->blksize = HPAGE_PMD_SIZE;
1011 
1012 	return 0;
1013 }
1014 
1015 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1016 {
1017 	struct inode *inode = d_inode(dentry);
1018 	struct shmem_inode_info *info = SHMEM_I(inode);
1019 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1020 	int error;
1021 
1022 	error = setattr_prepare(dentry, attr);
1023 	if (error)
1024 		return error;
1025 
1026 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1027 		loff_t oldsize = inode->i_size;
1028 		loff_t newsize = attr->ia_size;
1029 
1030 		/* protected by i_mutex */
1031 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1032 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1033 			return -EPERM;
1034 
1035 		if (newsize != oldsize) {
1036 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1037 					oldsize, newsize);
1038 			if (error)
1039 				return error;
1040 			i_size_write(inode, newsize);
1041 			inode->i_ctime = inode->i_mtime = current_time(inode);
1042 		}
1043 		if (newsize <= oldsize) {
1044 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1045 			if (oldsize > holebegin)
1046 				unmap_mapping_range(inode->i_mapping,
1047 							holebegin, 0, 1);
1048 			if (info->alloced)
1049 				shmem_truncate_range(inode,
1050 							newsize, (loff_t)-1);
1051 			/* unmap again to remove racily COWed private pages */
1052 			if (oldsize > holebegin)
1053 				unmap_mapping_range(inode->i_mapping,
1054 							holebegin, 0, 1);
1055 
1056 			/*
1057 			 * Part of the huge page can be beyond i_size: subject
1058 			 * to shrink under memory pressure.
1059 			 */
1060 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1061 				spin_lock(&sbinfo->shrinklist_lock);
1062 				/*
1063 				 * _careful to defend against unlocked access to
1064 				 * ->shrink_list in shmem_unused_huge_shrink()
1065 				 */
1066 				if (list_empty_careful(&info->shrinklist)) {
1067 					list_add_tail(&info->shrinklist,
1068 							&sbinfo->shrinklist);
1069 					sbinfo->shrinklist_len++;
1070 				}
1071 				spin_unlock(&sbinfo->shrinklist_lock);
1072 			}
1073 		}
1074 	}
1075 
1076 	setattr_copy(inode, attr);
1077 	if (attr->ia_valid & ATTR_MODE)
1078 		error = posix_acl_chmod(inode, inode->i_mode);
1079 	return error;
1080 }
1081 
1082 static void shmem_evict_inode(struct inode *inode)
1083 {
1084 	struct shmem_inode_info *info = SHMEM_I(inode);
1085 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1086 
1087 	if (inode->i_mapping->a_ops == &shmem_aops) {
1088 		shmem_unacct_size(info->flags, inode->i_size);
1089 		inode->i_size = 0;
1090 		shmem_truncate_range(inode, 0, (loff_t)-1);
1091 		if (!list_empty(&info->shrinklist)) {
1092 			spin_lock(&sbinfo->shrinklist_lock);
1093 			if (!list_empty(&info->shrinklist)) {
1094 				list_del_init(&info->shrinklist);
1095 				sbinfo->shrinklist_len--;
1096 			}
1097 			spin_unlock(&sbinfo->shrinklist_lock);
1098 		}
1099 		if (!list_empty(&info->swaplist)) {
1100 			mutex_lock(&shmem_swaplist_mutex);
1101 			list_del_init(&info->swaplist);
1102 			mutex_unlock(&shmem_swaplist_mutex);
1103 		}
1104 	}
1105 
1106 	simple_xattrs_free(&info->xattrs);
1107 	WARN_ON(inode->i_blocks);
1108 	shmem_free_inode(inode->i_sb);
1109 	clear_inode(inode);
1110 }
1111 
1112 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1113 {
1114 	struct radix_tree_iter iter;
1115 	void __rcu **slot;
1116 	unsigned long found = -1;
1117 	unsigned int checked = 0;
1118 
1119 	rcu_read_lock();
1120 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1121 		void *entry = radix_tree_deref_slot(slot);
1122 
1123 		if (radix_tree_deref_retry(entry)) {
1124 			slot = radix_tree_iter_retry(&iter);
1125 			continue;
1126 		}
1127 		if (entry == item) {
1128 			found = iter.index;
1129 			break;
1130 		}
1131 		checked++;
1132 		if ((checked % 4096) != 0)
1133 			continue;
1134 		slot = radix_tree_iter_resume(slot, &iter);
1135 		cond_resched_rcu();
1136 	}
1137 
1138 	rcu_read_unlock();
1139 	return found;
1140 }
1141 
1142 /*
1143  * If swap found in inode, free it and move page from swapcache to filecache.
1144  */
1145 static int shmem_unuse_inode(struct shmem_inode_info *info,
1146 			     swp_entry_t swap, struct page **pagep)
1147 {
1148 	struct address_space *mapping = info->vfs_inode.i_mapping;
1149 	void *radswap;
1150 	pgoff_t index;
1151 	gfp_t gfp;
1152 	int error = 0;
1153 
1154 	radswap = swp_to_radix_entry(swap);
1155 	index = find_swap_entry(&mapping->i_pages, radswap);
1156 	if (index == -1)
1157 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1158 
1159 	/*
1160 	 * Move _head_ to start search for next from here.
1161 	 * But be careful: shmem_evict_inode checks list_empty without taking
1162 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1163 	 * would appear empty, if it were the only one on shmem_swaplist.
1164 	 */
1165 	if (shmem_swaplist.next != &info->swaplist)
1166 		list_move_tail(&shmem_swaplist, &info->swaplist);
1167 
1168 	gfp = mapping_gfp_mask(mapping);
1169 	if (shmem_should_replace_page(*pagep, gfp)) {
1170 		mutex_unlock(&shmem_swaplist_mutex);
1171 		error = shmem_replace_page(pagep, gfp, info, index);
1172 		mutex_lock(&shmem_swaplist_mutex);
1173 		/*
1174 		 * We needed to drop mutex to make that restrictive page
1175 		 * allocation, but the inode might have been freed while we
1176 		 * dropped it: although a racing shmem_evict_inode() cannot
1177 		 * complete without emptying the radix_tree, our page lock
1178 		 * on this swapcache page is not enough to prevent that -
1179 		 * free_swap_and_cache() of our swap entry will only
1180 		 * trylock_page(), removing swap from radix_tree whatever.
1181 		 *
1182 		 * We must not proceed to shmem_add_to_page_cache() if the
1183 		 * inode has been freed, but of course we cannot rely on
1184 		 * inode or mapping or info to check that.  However, we can
1185 		 * safely check if our swap entry is still in use (and here
1186 		 * it can't have got reused for another page): if it's still
1187 		 * in use, then the inode cannot have been freed yet, and we
1188 		 * can safely proceed (if it's no longer in use, that tells
1189 		 * nothing about the inode, but we don't need to unuse swap).
1190 		 */
1191 		if (!page_swapcount(*pagep))
1192 			error = -ENOENT;
1193 	}
1194 
1195 	/*
1196 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1197 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1198 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1199 	 */
1200 	if (!error)
1201 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1202 						radswap);
1203 	if (error != -ENOMEM) {
1204 		/*
1205 		 * Truncation and eviction use free_swap_and_cache(), which
1206 		 * only does trylock page: if we raced, best clean up here.
1207 		 */
1208 		delete_from_swap_cache(*pagep);
1209 		set_page_dirty(*pagep);
1210 		if (!error) {
1211 			spin_lock_irq(&info->lock);
1212 			info->swapped--;
1213 			spin_unlock_irq(&info->lock);
1214 			swap_free(swap);
1215 		}
1216 	}
1217 	return error;
1218 }
1219 
1220 /*
1221  * Search through swapped inodes to find and replace swap by page.
1222  */
1223 int shmem_unuse(swp_entry_t swap, struct page *page)
1224 {
1225 	struct list_head *this, *next;
1226 	struct shmem_inode_info *info;
1227 	struct mem_cgroup *memcg;
1228 	int error = 0;
1229 
1230 	/*
1231 	 * There's a faint possibility that swap page was replaced before
1232 	 * caller locked it: caller will come back later with the right page.
1233 	 */
1234 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1235 		goto out;
1236 
1237 	/*
1238 	 * Charge page using GFP_KERNEL while we can wait, before taking
1239 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1240 	 * Charged back to the user (not to caller) when swap account is used.
1241 	 */
1242 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1243 			false);
1244 	if (error)
1245 		goto out;
1246 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1247 	error = -EAGAIN;
1248 
1249 	mutex_lock(&shmem_swaplist_mutex);
1250 	list_for_each_safe(this, next, &shmem_swaplist) {
1251 		info = list_entry(this, struct shmem_inode_info, swaplist);
1252 		if (info->swapped)
1253 			error = shmem_unuse_inode(info, swap, &page);
1254 		else
1255 			list_del_init(&info->swaplist);
1256 		cond_resched();
1257 		if (error != -EAGAIN)
1258 			break;
1259 		/* found nothing in this: move on to search the next */
1260 	}
1261 	mutex_unlock(&shmem_swaplist_mutex);
1262 
1263 	if (error) {
1264 		if (error != -ENOMEM)
1265 			error = 0;
1266 		mem_cgroup_cancel_charge(page, memcg, false);
1267 	} else
1268 		mem_cgroup_commit_charge(page, memcg, true, false);
1269 out:
1270 	unlock_page(page);
1271 	put_page(page);
1272 	return error;
1273 }
1274 
1275 /*
1276  * Move the page from the page cache to the swap cache.
1277  */
1278 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1279 {
1280 	struct shmem_inode_info *info;
1281 	struct address_space *mapping;
1282 	struct inode *inode;
1283 	swp_entry_t swap;
1284 	pgoff_t index;
1285 
1286 	VM_BUG_ON_PAGE(PageCompound(page), page);
1287 	BUG_ON(!PageLocked(page));
1288 	mapping = page->mapping;
1289 	index = page->index;
1290 	inode = mapping->host;
1291 	info = SHMEM_I(inode);
1292 	if (info->flags & VM_LOCKED)
1293 		goto redirty;
1294 	if (!total_swap_pages)
1295 		goto redirty;
1296 
1297 	/*
1298 	 * Our capabilities prevent regular writeback or sync from ever calling
1299 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 	 * its underlying filesystem, in which case tmpfs should write out to
1301 	 * swap only in response to memory pressure, and not for the writeback
1302 	 * threads or sync.
1303 	 */
1304 	if (!wbc->for_reclaim) {
1305 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1306 		goto redirty;
1307 	}
1308 
1309 	/*
1310 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 	 * value into swapfile.c, the only way we can correctly account for a
1312 	 * fallocated page arriving here is now to initialize it and write it.
1313 	 *
1314 	 * That's okay for a page already fallocated earlier, but if we have
1315 	 * not yet completed the fallocation, then (a) we want to keep track
1316 	 * of this page in case we have to undo it, and (b) it may not be a
1317 	 * good idea to continue anyway, once we're pushing into swap.  So
1318 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1319 	 */
1320 	if (!PageUptodate(page)) {
1321 		if (inode->i_private) {
1322 			struct shmem_falloc *shmem_falloc;
1323 			spin_lock(&inode->i_lock);
1324 			shmem_falloc = inode->i_private;
1325 			if (shmem_falloc &&
1326 			    !shmem_falloc->waitq &&
1327 			    index >= shmem_falloc->start &&
1328 			    index < shmem_falloc->next)
1329 				shmem_falloc->nr_unswapped++;
1330 			else
1331 				shmem_falloc = NULL;
1332 			spin_unlock(&inode->i_lock);
1333 			if (shmem_falloc)
1334 				goto redirty;
1335 		}
1336 		clear_highpage(page);
1337 		flush_dcache_page(page);
1338 		SetPageUptodate(page);
1339 	}
1340 
1341 	swap = get_swap_page(page);
1342 	if (!swap.val)
1343 		goto redirty;
1344 
1345 	/*
1346 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1347 	 * if it's not already there.  Do it now before the page is
1348 	 * moved to swap cache, when its pagelock no longer protects
1349 	 * the inode from eviction.  But don't unlock the mutex until
1350 	 * we've incremented swapped, because shmem_unuse_inode() will
1351 	 * prune a !swapped inode from the swaplist under this mutex.
1352 	 */
1353 	mutex_lock(&shmem_swaplist_mutex);
1354 	if (list_empty(&info->swaplist))
1355 		list_add_tail(&info->swaplist, &shmem_swaplist);
1356 
1357 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1358 		spin_lock_irq(&info->lock);
1359 		shmem_recalc_inode(inode);
1360 		info->swapped++;
1361 		spin_unlock_irq(&info->lock);
1362 
1363 		swap_shmem_alloc(swap);
1364 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1365 
1366 		mutex_unlock(&shmem_swaplist_mutex);
1367 		BUG_ON(page_mapped(page));
1368 		swap_writepage(page, wbc);
1369 		return 0;
1370 	}
1371 
1372 	mutex_unlock(&shmem_swaplist_mutex);
1373 	put_swap_page(page, swap);
1374 redirty:
1375 	set_page_dirty(page);
1376 	if (wbc->for_reclaim)
1377 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1378 	unlock_page(page);
1379 	return 0;
1380 }
1381 
1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1383 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1384 {
1385 	char buffer[64];
1386 
1387 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1388 		return;		/* show nothing */
1389 
1390 	mpol_to_str(buffer, sizeof(buffer), mpol);
1391 
1392 	seq_printf(seq, ",mpol=%s", buffer);
1393 }
1394 
1395 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1396 {
1397 	struct mempolicy *mpol = NULL;
1398 	if (sbinfo->mpol) {
1399 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1400 		mpol = sbinfo->mpol;
1401 		mpol_get(mpol);
1402 		spin_unlock(&sbinfo->stat_lock);
1403 	}
1404 	return mpol;
1405 }
1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1408 {
1409 }
1410 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411 {
1412 	return NULL;
1413 }
1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1415 #ifndef CONFIG_NUMA
1416 #define vm_policy vm_private_data
1417 #endif
1418 
1419 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1420 		struct shmem_inode_info *info, pgoff_t index)
1421 {
1422 	/* Create a pseudo vma that just contains the policy */
1423 	memset(vma, 0, sizeof(*vma));
1424 	vma_init(vma, NULL);
1425 	/* Bias interleave by inode number to distribute better across nodes */
1426 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1427 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1428 }
1429 
1430 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1431 {
1432 	/* Drop reference taken by mpol_shared_policy_lookup() */
1433 	mpol_cond_put(vma->vm_policy);
1434 }
1435 
1436 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1437 			struct shmem_inode_info *info, pgoff_t index)
1438 {
1439 	struct vm_area_struct pvma;
1440 	struct page *page;
1441 	struct vm_fault vmf;
1442 
1443 	shmem_pseudo_vma_init(&pvma, info, index);
1444 	vmf.vma = &pvma;
1445 	vmf.address = 0;
1446 	page = swap_cluster_readahead(swap, gfp, &vmf);
1447 	shmem_pseudo_vma_destroy(&pvma);
1448 
1449 	return page;
1450 }
1451 
1452 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1453 		struct shmem_inode_info *info, pgoff_t index)
1454 {
1455 	struct vm_area_struct pvma;
1456 	struct inode *inode = &info->vfs_inode;
1457 	struct address_space *mapping = inode->i_mapping;
1458 	pgoff_t idx, hindex;
1459 	void __rcu **results;
1460 	struct page *page;
1461 
1462 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1463 		return NULL;
1464 
1465 	hindex = round_down(index, HPAGE_PMD_NR);
1466 	rcu_read_lock();
1467 	if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1468 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1469 		rcu_read_unlock();
1470 		return NULL;
1471 	}
1472 	rcu_read_unlock();
1473 
1474 	shmem_pseudo_vma_init(&pvma, info, hindex);
1475 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1476 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1477 	shmem_pseudo_vma_destroy(&pvma);
1478 	if (page)
1479 		prep_transhuge_page(page);
1480 	return page;
1481 }
1482 
1483 static struct page *shmem_alloc_page(gfp_t gfp,
1484 			struct shmem_inode_info *info, pgoff_t index)
1485 {
1486 	struct vm_area_struct pvma;
1487 	struct page *page;
1488 
1489 	shmem_pseudo_vma_init(&pvma, info, index);
1490 	page = alloc_page_vma(gfp, &pvma, 0);
1491 	shmem_pseudo_vma_destroy(&pvma);
1492 
1493 	return page;
1494 }
1495 
1496 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1497 		struct inode *inode,
1498 		pgoff_t index, bool huge)
1499 {
1500 	struct shmem_inode_info *info = SHMEM_I(inode);
1501 	struct page *page;
1502 	int nr;
1503 	int err = -ENOSPC;
1504 
1505 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1506 		huge = false;
1507 	nr = huge ? HPAGE_PMD_NR : 1;
1508 
1509 	if (!shmem_inode_acct_block(inode, nr))
1510 		goto failed;
1511 
1512 	if (huge)
1513 		page = shmem_alloc_hugepage(gfp, info, index);
1514 	else
1515 		page = shmem_alloc_page(gfp, info, index);
1516 	if (page) {
1517 		__SetPageLocked(page);
1518 		__SetPageSwapBacked(page);
1519 		return page;
1520 	}
1521 
1522 	err = -ENOMEM;
1523 	shmem_inode_unacct_blocks(inode, nr);
1524 failed:
1525 	return ERR_PTR(err);
1526 }
1527 
1528 /*
1529  * When a page is moved from swapcache to shmem filecache (either by the
1530  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1531  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1532  * ignorance of the mapping it belongs to.  If that mapping has special
1533  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1534  * we may need to copy to a suitable page before moving to filecache.
1535  *
1536  * In a future release, this may well be extended to respect cpuset and
1537  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1538  * but for now it is a simple matter of zone.
1539  */
1540 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1541 {
1542 	return page_zonenum(page) > gfp_zone(gfp);
1543 }
1544 
1545 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1546 				struct shmem_inode_info *info, pgoff_t index)
1547 {
1548 	struct page *oldpage, *newpage;
1549 	struct address_space *swap_mapping;
1550 	pgoff_t swap_index;
1551 	int error;
1552 
1553 	oldpage = *pagep;
1554 	swap_index = page_private(oldpage);
1555 	swap_mapping = page_mapping(oldpage);
1556 
1557 	/*
1558 	 * We have arrived here because our zones are constrained, so don't
1559 	 * limit chance of success by further cpuset and node constraints.
1560 	 */
1561 	gfp &= ~GFP_CONSTRAINT_MASK;
1562 	newpage = shmem_alloc_page(gfp, info, index);
1563 	if (!newpage)
1564 		return -ENOMEM;
1565 
1566 	get_page(newpage);
1567 	copy_highpage(newpage, oldpage);
1568 	flush_dcache_page(newpage);
1569 
1570 	__SetPageLocked(newpage);
1571 	__SetPageSwapBacked(newpage);
1572 	SetPageUptodate(newpage);
1573 	set_page_private(newpage, swap_index);
1574 	SetPageSwapCache(newpage);
1575 
1576 	/*
1577 	 * Our caller will very soon move newpage out of swapcache, but it's
1578 	 * a nice clean interface for us to replace oldpage by newpage there.
1579 	 */
1580 	xa_lock_irq(&swap_mapping->i_pages);
1581 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1582 								   newpage);
1583 	if (!error) {
1584 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1585 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1586 	}
1587 	xa_unlock_irq(&swap_mapping->i_pages);
1588 
1589 	if (unlikely(error)) {
1590 		/*
1591 		 * Is this possible?  I think not, now that our callers check
1592 		 * both PageSwapCache and page_private after getting page lock;
1593 		 * but be defensive.  Reverse old to newpage for clear and free.
1594 		 */
1595 		oldpage = newpage;
1596 	} else {
1597 		mem_cgroup_migrate(oldpage, newpage);
1598 		lru_cache_add_anon(newpage);
1599 		*pagep = newpage;
1600 	}
1601 
1602 	ClearPageSwapCache(oldpage);
1603 	set_page_private(oldpage, 0);
1604 
1605 	unlock_page(oldpage);
1606 	put_page(oldpage);
1607 	put_page(oldpage);
1608 	return error;
1609 }
1610 
1611 /*
1612  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1613  *
1614  * If we allocate a new one we do not mark it dirty. That's up to the
1615  * vm. If we swap it in we mark it dirty since we also free the swap
1616  * entry since a page cannot live in both the swap and page cache.
1617  *
1618  * fault_mm and fault_type are only supplied by shmem_fault:
1619  * otherwise they are NULL.
1620  */
1621 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1622 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1623 	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1624 {
1625 	struct address_space *mapping = inode->i_mapping;
1626 	struct shmem_inode_info *info = SHMEM_I(inode);
1627 	struct shmem_sb_info *sbinfo;
1628 	struct mm_struct *charge_mm;
1629 	struct mem_cgroup *memcg;
1630 	struct page *page;
1631 	swp_entry_t swap;
1632 	enum sgp_type sgp_huge = sgp;
1633 	pgoff_t hindex = index;
1634 	int error;
1635 	int once = 0;
1636 	int alloced = 0;
1637 
1638 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1639 		return -EFBIG;
1640 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1641 		sgp = SGP_CACHE;
1642 repeat:
1643 	swap.val = 0;
1644 	page = find_lock_entry(mapping, index);
1645 	if (radix_tree_exceptional_entry(page)) {
1646 		swap = radix_to_swp_entry(page);
1647 		page = NULL;
1648 	}
1649 
1650 	if (sgp <= SGP_CACHE &&
1651 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1652 		error = -EINVAL;
1653 		goto unlock;
1654 	}
1655 
1656 	if (page && sgp == SGP_WRITE)
1657 		mark_page_accessed(page);
1658 
1659 	/* fallocated page? */
1660 	if (page && !PageUptodate(page)) {
1661 		if (sgp != SGP_READ)
1662 			goto clear;
1663 		unlock_page(page);
1664 		put_page(page);
1665 		page = NULL;
1666 	}
1667 	if (page || (sgp == SGP_READ && !swap.val)) {
1668 		*pagep = page;
1669 		return 0;
1670 	}
1671 
1672 	/*
1673 	 * Fast cache lookup did not find it:
1674 	 * bring it back from swap or allocate.
1675 	 */
1676 	sbinfo = SHMEM_SB(inode->i_sb);
1677 	charge_mm = vma ? vma->vm_mm : current->mm;
1678 
1679 	if (swap.val) {
1680 		/* Look it up and read it in.. */
1681 		page = lookup_swap_cache(swap, NULL, 0);
1682 		if (!page) {
1683 			/* Or update major stats only when swapin succeeds?? */
1684 			if (fault_type) {
1685 				*fault_type |= VM_FAULT_MAJOR;
1686 				count_vm_event(PGMAJFAULT);
1687 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1688 			}
1689 			/* Here we actually start the io */
1690 			page = shmem_swapin(swap, gfp, info, index);
1691 			if (!page) {
1692 				error = -ENOMEM;
1693 				goto failed;
1694 			}
1695 		}
1696 
1697 		/* We have to do this with page locked to prevent races */
1698 		lock_page(page);
1699 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1700 		    !shmem_confirm_swap(mapping, index, swap)) {
1701 			error = -EEXIST;	/* try again */
1702 			goto unlock;
1703 		}
1704 		if (!PageUptodate(page)) {
1705 			error = -EIO;
1706 			goto failed;
1707 		}
1708 		wait_on_page_writeback(page);
1709 
1710 		if (shmem_should_replace_page(page, gfp)) {
1711 			error = shmem_replace_page(&page, gfp, info, index);
1712 			if (error)
1713 				goto failed;
1714 		}
1715 
1716 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1717 				false);
1718 		if (!error) {
1719 			error = shmem_add_to_page_cache(page, mapping, index,
1720 						swp_to_radix_entry(swap));
1721 			/*
1722 			 * We already confirmed swap under page lock, and make
1723 			 * no memory allocation here, so usually no possibility
1724 			 * of error; but free_swap_and_cache() only trylocks a
1725 			 * page, so it is just possible that the entry has been
1726 			 * truncated or holepunched since swap was confirmed.
1727 			 * shmem_undo_range() will have done some of the
1728 			 * unaccounting, now delete_from_swap_cache() will do
1729 			 * the rest.
1730 			 * Reset swap.val? No, leave it so "failed" goes back to
1731 			 * "repeat": reading a hole and writing should succeed.
1732 			 */
1733 			if (error) {
1734 				mem_cgroup_cancel_charge(page, memcg, false);
1735 				delete_from_swap_cache(page);
1736 			}
1737 		}
1738 		if (error)
1739 			goto failed;
1740 
1741 		mem_cgroup_commit_charge(page, memcg, true, false);
1742 
1743 		spin_lock_irq(&info->lock);
1744 		info->swapped--;
1745 		shmem_recalc_inode(inode);
1746 		spin_unlock_irq(&info->lock);
1747 
1748 		if (sgp == SGP_WRITE)
1749 			mark_page_accessed(page);
1750 
1751 		delete_from_swap_cache(page);
1752 		set_page_dirty(page);
1753 		swap_free(swap);
1754 
1755 	} else {
1756 		if (vma && userfaultfd_missing(vma)) {
1757 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1758 			return 0;
1759 		}
1760 
1761 		/* shmem_symlink() */
1762 		if (mapping->a_ops != &shmem_aops)
1763 			goto alloc_nohuge;
1764 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1765 			goto alloc_nohuge;
1766 		if (shmem_huge == SHMEM_HUGE_FORCE)
1767 			goto alloc_huge;
1768 		switch (sbinfo->huge) {
1769 			loff_t i_size;
1770 			pgoff_t off;
1771 		case SHMEM_HUGE_NEVER:
1772 			goto alloc_nohuge;
1773 		case SHMEM_HUGE_WITHIN_SIZE:
1774 			off = round_up(index, HPAGE_PMD_NR);
1775 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1776 			if (i_size >= HPAGE_PMD_SIZE &&
1777 					i_size >> PAGE_SHIFT >= off)
1778 				goto alloc_huge;
1779 			/* fallthrough */
1780 		case SHMEM_HUGE_ADVISE:
1781 			if (sgp_huge == SGP_HUGE)
1782 				goto alloc_huge;
1783 			/* TODO: implement fadvise() hints */
1784 			goto alloc_nohuge;
1785 		}
1786 
1787 alloc_huge:
1788 		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1789 		if (IS_ERR(page)) {
1790 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1791 					index, false);
1792 		}
1793 		if (IS_ERR(page)) {
1794 			int retry = 5;
1795 			error = PTR_ERR(page);
1796 			page = NULL;
1797 			if (error != -ENOSPC)
1798 				goto failed;
1799 			/*
1800 			 * Try to reclaim some spece by splitting a huge page
1801 			 * beyond i_size on the filesystem.
1802 			 */
1803 			while (retry--) {
1804 				int ret;
1805 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1806 				if (ret == SHRINK_STOP)
1807 					break;
1808 				if (ret)
1809 					goto alloc_nohuge;
1810 			}
1811 			goto failed;
1812 		}
1813 
1814 		if (PageTransHuge(page))
1815 			hindex = round_down(index, HPAGE_PMD_NR);
1816 		else
1817 			hindex = index;
1818 
1819 		if (sgp == SGP_WRITE)
1820 			__SetPageReferenced(page);
1821 
1822 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1823 				PageTransHuge(page));
1824 		if (error)
1825 			goto unacct;
1826 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1827 				compound_order(page));
1828 		if (!error) {
1829 			error = shmem_add_to_page_cache(page, mapping, hindex,
1830 							NULL);
1831 			radix_tree_preload_end();
1832 		}
1833 		if (error) {
1834 			mem_cgroup_cancel_charge(page, memcg,
1835 					PageTransHuge(page));
1836 			goto unacct;
1837 		}
1838 		mem_cgroup_commit_charge(page, memcg, false,
1839 				PageTransHuge(page));
1840 		lru_cache_add_anon(page);
1841 
1842 		spin_lock_irq(&info->lock);
1843 		info->alloced += 1 << compound_order(page);
1844 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1845 		shmem_recalc_inode(inode);
1846 		spin_unlock_irq(&info->lock);
1847 		alloced = true;
1848 
1849 		if (PageTransHuge(page) &&
1850 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1851 				hindex + HPAGE_PMD_NR - 1) {
1852 			/*
1853 			 * Part of the huge page is beyond i_size: subject
1854 			 * to shrink under memory pressure.
1855 			 */
1856 			spin_lock(&sbinfo->shrinklist_lock);
1857 			/*
1858 			 * _careful to defend against unlocked access to
1859 			 * ->shrink_list in shmem_unused_huge_shrink()
1860 			 */
1861 			if (list_empty_careful(&info->shrinklist)) {
1862 				list_add_tail(&info->shrinklist,
1863 						&sbinfo->shrinklist);
1864 				sbinfo->shrinklist_len++;
1865 			}
1866 			spin_unlock(&sbinfo->shrinklist_lock);
1867 		}
1868 
1869 		/*
1870 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1871 		 */
1872 		if (sgp == SGP_FALLOC)
1873 			sgp = SGP_WRITE;
1874 clear:
1875 		/*
1876 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1877 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1878 		 * it now, lest undo on failure cancel our earlier guarantee.
1879 		 */
1880 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1881 			struct page *head = compound_head(page);
1882 			int i;
1883 
1884 			for (i = 0; i < (1 << compound_order(head)); i++) {
1885 				clear_highpage(head + i);
1886 				flush_dcache_page(head + i);
1887 			}
1888 			SetPageUptodate(head);
1889 		}
1890 	}
1891 
1892 	/* Perhaps the file has been truncated since we checked */
1893 	if (sgp <= SGP_CACHE &&
1894 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1895 		if (alloced) {
1896 			ClearPageDirty(page);
1897 			delete_from_page_cache(page);
1898 			spin_lock_irq(&info->lock);
1899 			shmem_recalc_inode(inode);
1900 			spin_unlock_irq(&info->lock);
1901 		}
1902 		error = -EINVAL;
1903 		goto unlock;
1904 	}
1905 	*pagep = page + index - hindex;
1906 	return 0;
1907 
1908 	/*
1909 	 * Error recovery.
1910 	 */
1911 unacct:
1912 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1913 
1914 	if (PageTransHuge(page)) {
1915 		unlock_page(page);
1916 		put_page(page);
1917 		goto alloc_nohuge;
1918 	}
1919 failed:
1920 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1921 		error = -EEXIST;
1922 unlock:
1923 	if (page) {
1924 		unlock_page(page);
1925 		put_page(page);
1926 	}
1927 	if (error == -ENOSPC && !once++) {
1928 		spin_lock_irq(&info->lock);
1929 		shmem_recalc_inode(inode);
1930 		spin_unlock_irq(&info->lock);
1931 		goto repeat;
1932 	}
1933 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1934 		goto repeat;
1935 	return error;
1936 }
1937 
1938 /*
1939  * This is like autoremove_wake_function, but it removes the wait queue
1940  * entry unconditionally - even if something else had already woken the
1941  * target.
1942  */
1943 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1944 {
1945 	int ret = default_wake_function(wait, mode, sync, key);
1946 	list_del_init(&wait->entry);
1947 	return ret;
1948 }
1949 
1950 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1951 {
1952 	struct vm_area_struct *vma = vmf->vma;
1953 	struct inode *inode = file_inode(vma->vm_file);
1954 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1955 	enum sgp_type sgp;
1956 	int err;
1957 	vm_fault_t ret = VM_FAULT_LOCKED;
1958 
1959 	/*
1960 	 * Trinity finds that probing a hole which tmpfs is punching can
1961 	 * prevent the hole-punch from ever completing: which in turn
1962 	 * locks writers out with its hold on i_mutex.  So refrain from
1963 	 * faulting pages into the hole while it's being punched.  Although
1964 	 * shmem_undo_range() does remove the additions, it may be unable to
1965 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1966 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1967 	 *
1968 	 * It does not matter if we sometimes reach this check just before the
1969 	 * hole-punch begins, so that one fault then races with the punch:
1970 	 * we just need to make racing faults a rare case.
1971 	 *
1972 	 * The implementation below would be much simpler if we just used a
1973 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1974 	 * and bloating every shmem inode for this unlikely case would be sad.
1975 	 */
1976 	if (unlikely(inode->i_private)) {
1977 		struct shmem_falloc *shmem_falloc;
1978 
1979 		spin_lock(&inode->i_lock);
1980 		shmem_falloc = inode->i_private;
1981 		if (shmem_falloc &&
1982 		    shmem_falloc->waitq &&
1983 		    vmf->pgoff >= shmem_falloc->start &&
1984 		    vmf->pgoff < shmem_falloc->next) {
1985 			wait_queue_head_t *shmem_falloc_waitq;
1986 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1987 
1988 			ret = VM_FAULT_NOPAGE;
1989 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1990 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1991 				/* It's polite to up mmap_sem if we can */
1992 				up_read(&vma->vm_mm->mmap_sem);
1993 				ret = VM_FAULT_RETRY;
1994 			}
1995 
1996 			shmem_falloc_waitq = shmem_falloc->waitq;
1997 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1998 					TASK_UNINTERRUPTIBLE);
1999 			spin_unlock(&inode->i_lock);
2000 			schedule();
2001 
2002 			/*
2003 			 * shmem_falloc_waitq points into the shmem_fallocate()
2004 			 * stack of the hole-punching task: shmem_falloc_waitq
2005 			 * is usually invalid by the time we reach here, but
2006 			 * finish_wait() does not dereference it in that case;
2007 			 * though i_lock needed lest racing with wake_up_all().
2008 			 */
2009 			spin_lock(&inode->i_lock);
2010 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2011 			spin_unlock(&inode->i_lock);
2012 			return ret;
2013 		}
2014 		spin_unlock(&inode->i_lock);
2015 	}
2016 
2017 	sgp = SGP_CACHE;
2018 
2019 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2020 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2021 		sgp = SGP_NOHUGE;
2022 	else if (vma->vm_flags & VM_HUGEPAGE)
2023 		sgp = SGP_HUGE;
2024 
2025 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2026 				  gfp, vma, vmf, &ret);
2027 	if (err)
2028 		return vmf_error(err);
2029 	return ret;
2030 }
2031 
2032 unsigned long shmem_get_unmapped_area(struct file *file,
2033 				      unsigned long uaddr, unsigned long len,
2034 				      unsigned long pgoff, unsigned long flags)
2035 {
2036 	unsigned long (*get_area)(struct file *,
2037 		unsigned long, unsigned long, unsigned long, unsigned long);
2038 	unsigned long addr;
2039 	unsigned long offset;
2040 	unsigned long inflated_len;
2041 	unsigned long inflated_addr;
2042 	unsigned long inflated_offset;
2043 
2044 	if (len > TASK_SIZE)
2045 		return -ENOMEM;
2046 
2047 	get_area = current->mm->get_unmapped_area;
2048 	addr = get_area(file, uaddr, len, pgoff, flags);
2049 
2050 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2051 		return addr;
2052 	if (IS_ERR_VALUE(addr))
2053 		return addr;
2054 	if (addr & ~PAGE_MASK)
2055 		return addr;
2056 	if (addr > TASK_SIZE - len)
2057 		return addr;
2058 
2059 	if (shmem_huge == SHMEM_HUGE_DENY)
2060 		return addr;
2061 	if (len < HPAGE_PMD_SIZE)
2062 		return addr;
2063 	if (flags & MAP_FIXED)
2064 		return addr;
2065 	/*
2066 	 * Our priority is to support MAP_SHARED mapped hugely;
2067 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2068 	 * But if caller specified an address hint, respect that as before.
2069 	 */
2070 	if (uaddr)
2071 		return addr;
2072 
2073 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2074 		struct super_block *sb;
2075 
2076 		if (file) {
2077 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2078 			sb = file_inode(file)->i_sb;
2079 		} else {
2080 			/*
2081 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2082 			 * for "/dev/zero", to create a shared anonymous object.
2083 			 */
2084 			if (IS_ERR(shm_mnt))
2085 				return addr;
2086 			sb = shm_mnt->mnt_sb;
2087 		}
2088 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2089 			return addr;
2090 	}
2091 
2092 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2093 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2094 		return addr;
2095 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2096 		return addr;
2097 
2098 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2099 	if (inflated_len > TASK_SIZE)
2100 		return addr;
2101 	if (inflated_len < len)
2102 		return addr;
2103 
2104 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2105 	if (IS_ERR_VALUE(inflated_addr))
2106 		return addr;
2107 	if (inflated_addr & ~PAGE_MASK)
2108 		return addr;
2109 
2110 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2111 	inflated_addr += offset - inflated_offset;
2112 	if (inflated_offset > offset)
2113 		inflated_addr += HPAGE_PMD_SIZE;
2114 
2115 	if (inflated_addr > TASK_SIZE - len)
2116 		return addr;
2117 	return inflated_addr;
2118 }
2119 
2120 #ifdef CONFIG_NUMA
2121 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2122 {
2123 	struct inode *inode = file_inode(vma->vm_file);
2124 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2125 }
2126 
2127 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2128 					  unsigned long addr)
2129 {
2130 	struct inode *inode = file_inode(vma->vm_file);
2131 	pgoff_t index;
2132 
2133 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2134 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2135 }
2136 #endif
2137 
2138 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2139 {
2140 	struct inode *inode = file_inode(file);
2141 	struct shmem_inode_info *info = SHMEM_I(inode);
2142 	int retval = -ENOMEM;
2143 
2144 	spin_lock_irq(&info->lock);
2145 	if (lock && !(info->flags & VM_LOCKED)) {
2146 		if (!user_shm_lock(inode->i_size, user))
2147 			goto out_nomem;
2148 		info->flags |= VM_LOCKED;
2149 		mapping_set_unevictable(file->f_mapping);
2150 	}
2151 	if (!lock && (info->flags & VM_LOCKED) && user) {
2152 		user_shm_unlock(inode->i_size, user);
2153 		info->flags &= ~VM_LOCKED;
2154 		mapping_clear_unevictable(file->f_mapping);
2155 	}
2156 	retval = 0;
2157 
2158 out_nomem:
2159 	spin_unlock_irq(&info->lock);
2160 	return retval;
2161 }
2162 
2163 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2164 {
2165 	file_accessed(file);
2166 	vma->vm_ops = &shmem_vm_ops;
2167 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2168 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2169 			(vma->vm_end & HPAGE_PMD_MASK)) {
2170 		khugepaged_enter(vma, vma->vm_flags);
2171 	}
2172 	return 0;
2173 }
2174 
2175 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2176 				     umode_t mode, dev_t dev, unsigned long flags)
2177 {
2178 	struct inode *inode;
2179 	struct shmem_inode_info *info;
2180 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2181 
2182 	if (shmem_reserve_inode(sb))
2183 		return NULL;
2184 
2185 	inode = new_inode(sb);
2186 	if (inode) {
2187 		inode->i_ino = get_next_ino();
2188 		inode_init_owner(inode, dir, mode);
2189 		inode->i_blocks = 0;
2190 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2191 		inode->i_generation = get_seconds();
2192 		info = SHMEM_I(inode);
2193 		memset(info, 0, (char *)inode - (char *)info);
2194 		spin_lock_init(&info->lock);
2195 		info->seals = F_SEAL_SEAL;
2196 		info->flags = flags & VM_NORESERVE;
2197 		INIT_LIST_HEAD(&info->shrinklist);
2198 		INIT_LIST_HEAD(&info->swaplist);
2199 		simple_xattrs_init(&info->xattrs);
2200 		cache_no_acl(inode);
2201 
2202 		switch (mode & S_IFMT) {
2203 		default:
2204 			inode->i_op = &shmem_special_inode_operations;
2205 			init_special_inode(inode, mode, dev);
2206 			break;
2207 		case S_IFREG:
2208 			inode->i_mapping->a_ops = &shmem_aops;
2209 			inode->i_op = &shmem_inode_operations;
2210 			inode->i_fop = &shmem_file_operations;
2211 			mpol_shared_policy_init(&info->policy,
2212 						 shmem_get_sbmpol(sbinfo));
2213 			break;
2214 		case S_IFDIR:
2215 			inc_nlink(inode);
2216 			/* Some things misbehave if size == 0 on a directory */
2217 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2218 			inode->i_op = &shmem_dir_inode_operations;
2219 			inode->i_fop = &simple_dir_operations;
2220 			break;
2221 		case S_IFLNK:
2222 			/*
2223 			 * Must not load anything in the rbtree,
2224 			 * mpol_free_shared_policy will not be called.
2225 			 */
2226 			mpol_shared_policy_init(&info->policy, NULL);
2227 			break;
2228 		}
2229 	} else
2230 		shmem_free_inode(sb);
2231 	return inode;
2232 }
2233 
2234 bool shmem_mapping(struct address_space *mapping)
2235 {
2236 	return mapping->a_ops == &shmem_aops;
2237 }
2238 
2239 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2240 				  pmd_t *dst_pmd,
2241 				  struct vm_area_struct *dst_vma,
2242 				  unsigned long dst_addr,
2243 				  unsigned long src_addr,
2244 				  bool zeropage,
2245 				  struct page **pagep)
2246 {
2247 	struct inode *inode = file_inode(dst_vma->vm_file);
2248 	struct shmem_inode_info *info = SHMEM_I(inode);
2249 	struct address_space *mapping = inode->i_mapping;
2250 	gfp_t gfp = mapping_gfp_mask(mapping);
2251 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2252 	struct mem_cgroup *memcg;
2253 	spinlock_t *ptl;
2254 	void *page_kaddr;
2255 	struct page *page;
2256 	pte_t _dst_pte, *dst_pte;
2257 	int ret;
2258 
2259 	ret = -ENOMEM;
2260 	if (!shmem_inode_acct_block(inode, 1))
2261 		goto out;
2262 
2263 	if (!*pagep) {
2264 		page = shmem_alloc_page(gfp, info, pgoff);
2265 		if (!page)
2266 			goto out_unacct_blocks;
2267 
2268 		if (!zeropage) {	/* mcopy_atomic */
2269 			page_kaddr = kmap_atomic(page);
2270 			ret = copy_from_user(page_kaddr,
2271 					     (const void __user *)src_addr,
2272 					     PAGE_SIZE);
2273 			kunmap_atomic(page_kaddr);
2274 
2275 			/* fallback to copy_from_user outside mmap_sem */
2276 			if (unlikely(ret)) {
2277 				*pagep = page;
2278 				shmem_inode_unacct_blocks(inode, 1);
2279 				/* don't free the page */
2280 				return -EFAULT;
2281 			}
2282 		} else {		/* mfill_zeropage_atomic */
2283 			clear_highpage(page);
2284 		}
2285 	} else {
2286 		page = *pagep;
2287 		*pagep = NULL;
2288 	}
2289 
2290 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2291 	__SetPageLocked(page);
2292 	__SetPageSwapBacked(page);
2293 	__SetPageUptodate(page);
2294 
2295 	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2296 	if (ret)
2297 		goto out_release;
2298 
2299 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2300 	if (!ret) {
2301 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2302 		radix_tree_preload_end();
2303 	}
2304 	if (ret)
2305 		goto out_release_uncharge;
2306 
2307 	mem_cgroup_commit_charge(page, memcg, false, false);
2308 
2309 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2310 	if (dst_vma->vm_flags & VM_WRITE)
2311 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2312 
2313 	ret = -EEXIST;
2314 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2315 	if (!pte_none(*dst_pte))
2316 		goto out_release_uncharge_unlock;
2317 
2318 	lru_cache_add_anon(page);
2319 
2320 	spin_lock(&info->lock);
2321 	info->alloced++;
2322 	inode->i_blocks += BLOCKS_PER_PAGE;
2323 	shmem_recalc_inode(inode);
2324 	spin_unlock(&info->lock);
2325 
2326 	inc_mm_counter(dst_mm, mm_counter_file(page));
2327 	page_add_file_rmap(page, false);
2328 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2329 
2330 	/* No need to invalidate - it was non-present before */
2331 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2332 	unlock_page(page);
2333 	pte_unmap_unlock(dst_pte, ptl);
2334 	ret = 0;
2335 out:
2336 	return ret;
2337 out_release_uncharge_unlock:
2338 	pte_unmap_unlock(dst_pte, ptl);
2339 out_release_uncharge:
2340 	mem_cgroup_cancel_charge(page, memcg, false);
2341 out_release:
2342 	unlock_page(page);
2343 	put_page(page);
2344 out_unacct_blocks:
2345 	shmem_inode_unacct_blocks(inode, 1);
2346 	goto out;
2347 }
2348 
2349 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2350 			   pmd_t *dst_pmd,
2351 			   struct vm_area_struct *dst_vma,
2352 			   unsigned long dst_addr,
2353 			   unsigned long src_addr,
2354 			   struct page **pagep)
2355 {
2356 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2357 				      dst_addr, src_addr, false, pagep);
2358 }
2359 
2360 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2361 			     pmd_t *dst_pmd,
2362 			     struct vm_area_struct *dst_vma,
2363 			     unsigned long dst_addr)
2364 {
2365 	struct page *page = NULL;
2366 
2367 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2368 				      dst_addr, 0, true, &page);
2369 }
2370 
2371 #ifdef CONFIG_TMPFS
2372 static const struct inode_operations shmem_symlink_inode_operations;
2373 static const struct inode_operations shmem_short_symlink_operations;
2374 
2375 #ifdef CONFIG_TMPFS_XATTR
2376 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2377 #else
2378 #define shmem_initxattrs NULL
2379 #endif
2380 
2381 static int
2382 shmem_write_begin(struct file *file, struct address_space *mapping,
2383 			loff_t pos, unsigned len, unsigned flags,
2384 			struct page **pagep, void **fsdata)
2385 {
2386 	struct inode *inode = mapping->host;
2387 	struct shmem_inode_info *info = SHMEM_I(inode);
2388 	pgoff_t index = pos >> PAGE_SHIFT;
2389 
2390 	/* i_mutex is held by caller */
2391 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2392 		if (info->seals & F_SEAL_WRITE)
2393 			return -EPERM;
2394 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2395 			return -EPERM;
2396 	}
2397 
2398 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2399 }
2400 
2401 static int
2402 shmem_write_end(struct file *file, struct address_space *mapping,
2403 			loff_t pos, unsigned len, unsigned copied,
2404 			struct page *page, void *fsdata)
2405 {
2406 	struct inode *inode = mapping->host;
2407 
2408 	if (pos + copied > inode->i_size)
2409 		i_size_write(inode, pos + copied);
2410 
2411 	if (!PageUptodate(page)) {
2412 		struct page *head = compound_head(page);
2413 		if (PageTransCompound(page)) {
2414 			int i;
2415 
2416 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2417 				if (head + i == page)
2418 					continue;
2419 				clear_highpage(head + i);
2420 				flush_dcache_page(head + i);
2421 			}
2422 		}
2423 		if (copied < PAGE_SIZE) {
2424 			unsigned from = pos & (PAGE_SIZE - 1);
2425 			zero_user_segments(page, 0, from,
2426 					from + copied, PAGE_SIZE);
2427 		}
2428 		SetPageUptodate(head);
2429 	}
2430 	set_page_dirty(page);
2431 	unlock_page(page);
2432 	put_page(page);
2433 
2434 	return copied;
2435 }
2436 
2437 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2438 {
2439 	struct file *file = iocb->ki_filp;
2440 	struct inode *inode = file_inode(file);
2441 	struct address_space *mapping = inode->i_mapping;
2442 	pgoff_t index;
2443 	unsigned long offset;
2444 	enum sgp_type sgp = SGP_READ;
2445 	int error = 0;
2446 	ssize_t retval = 0;
2447 	loff_t *ppos = &iocb->ki_pos;
2448 
2449 	/*
2450 	 * Might this read be for a stacking filesystem?  Then when reading
2451 	 * holes of a sparse file, we actually need to allocate those pages,
2452 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2453 	 */
2454 	if (!iter_is_iovec(to))
2455 		sgp = SGP_CACHE;
2456 
2457 	index = *ppos >> PAGE_SHIFT;
2458 	offset = *ppos & ~PAGE_MASK;
2459 
2460 	for (;;) {
2461 		struct page *page = NULL;
2462 		pgoff_t end_index;
2463 		unsigned long nr, ret;
2464 		loff_t i_size = i_size_read(inode);
2465 
2466 		end_index = i_size >> PAGE_SHIFT;
2467 		if (index > end_index)
2468 			break;
2469 		if (index == end_index) {
2470 			nr = i_size & ~PAGE_MASK;
2471 			if (nr <= offset)
2472 				break;
2473 		}
2474 
2475 		error = shmem_getpage(inode, index, &page, sgp);
2476 		if (error) {
2477 			if (error == -EINVAL)
2478 				error = 0;
2479 			break;
2480 		}
2481 		if (page) {
2482 			if (sgp == SGP_CACHE)
2483 				set_page_dirty(page);
2484 			unlock_page(page);
2485 		}
2486 
2487 		/*
2488 		 * We must evaluate after, since reads (unlike writes)
2489 		 * are called without i_mutex protection against truncate
2490 		 */
2491 		nr = PAGE_SIZE;
2492 		i_size = i_size_read(inode);
2493 		end_index = i_size >> PAGE_SHIFT;
2494 		if (index == end_index) {
2495 			nr = i_size & ~PAGE_MASK;
2496 			if (nr <= offset) {
2497 				if (page)
2498 					put_page(page);
2499 				break;
2500 			}
2501 		}
2502 		nr -= offset;
2503 
2504 		if (page) {
2505 			/*
2506 			 * If users can be writing to this page using arbitrary
2507 			 * virtual addresses, take care about potential aliasing
2508 			 * before reading the page on the kernel side.
2509 			 */
2510 			if (mapping_writably_mapped(mapping))
2511 				flush_dcache_page(page);
2512 			/*
2513 			 * Mark the page accessed if we read the beginning.
2514 			 */
2515 			if (!offset)
2516 				mark_page_accessed(page);
2517 		} else {
2518 			page = ZERO_PAGE(0);
2519 			get_page(page);
2520 		}
2521 
2522 		/*
2523 		 * Ok, we have the page, and it's up-to-date, so
2524 		 * now we can copy it to user space...
2525 		 */
2526 		ret = copy_page_to_iter(page, offset, nr, to);
2527 		retval += ret;
2528 		offset += ret;
2529 		index += offset >> PAGE_SHIFT;
2530 		offset &= ~PAGE_MASK;
2531 
2532 		put_page(page);
2533 		if (!iov_iter_count(to))
2534 			break;
2535 		if (ret < nr) {
2536 			error = -EFAULT;
2537 			break;
2538 		}
2539 		cond_resched();
2540 	}
2541 
2542 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2543 	file_accessed(file);
2544 	return retval ? retval : error;
2545 }
2546 
2547 /*
2548  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2549  */
2550 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2551 				    pgoff_t index, pgoff_t end, int whence)
2552 {
2553 	struct page *page;
2554 	struct pagevec pvec;
2555 	pgoff_t indices[PAGEVEC_SIZE];
2556 	bool done = false;
2557 	int i;
2558 
2559 	pagevec_init(&pvec);
2560 	pvec.nr = 1;		/* start small: we may be there already */
2561 	while (!done) {
2562 		pvec.nr = find_get_entries(mapping, index,
2563 					pvec.nr, pvec.pages, indices);
2564 		if (!pvec.nr) {
2565 			if (whence == SEEK_DATA)
2566 				index = end;
2567 			break;
2568 		}
2569 		for (i = 0; i < pvec.nr; i++, index++) {
2570 			if (index < indices[i]) {
2571 				if (whence == SEEK_HOLE) {
2572 					done = true;
2573 					break;
2574 				}
2575 				index = indices[i];
2576 			}
2577 			page = pvec.pages[i];
2578 			if (page && !radix_tree_exceptional_entry(page)) {
2579 				if (!PageUptodate(page))
2580 					page = NULL;
2581 			}
2582 			if (index >= end ||
2583 			    (page && whence == SEEK_DATA) ||
2584 			    (!page && whence == SEEK_HOLE)) {
2585 				done = true;
2586 				break;
2587 			}
2588 		}
2589 		pagevec_remove_exceptionals(&pvec);
2590 		pagevec_release(&pvec);
2591 		pvec.nr = PAGEVEC_SIZE;
2592 		cond_resched();
2593 	}
2594 	return index;
2595 }
2596 
2597 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2598 {
2599 	struct address_space *mapping = file->f_mapping;
2600 	struct inode *inode = mapping->host;
2601 	pgoff_t start, end;
2602 	loff_t new_offset;
2603 
2604 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2605 		return generic_file_llseek_size(file, offset, whence,
2606 					MAX_LFS_FILESIZE, i_size_read(inode));
2607 	inode_lock(inode);
2608 	/* We're holding i_mutex so we can access i_size directly */
2609 
2610 	if (offset < 0)
2611 		offset = -EINVAL;
2612 	else if (offset >= inode->i_size)
2613 		offset = -ENXIO;
2614 	else {
2615 		start = offset >> PAGE_SHIFT;
2616 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2617 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2618 		new_offset <<= PAGE_SHIFT;
2619 		if (new_offset > offset) {
2620 			if (new_offset < inode->i_size)
2621 				offset = new_offset;
2622 			else if (whence == SEEK_DATA)
2623 				offset = -ENXIO;
2624 			else
2625 				offset = inode->i_size;
2626 		}
2627 	}
2628 
2629 	if (offset >= 0)
2630 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2631 	inode_unlock(inode);
2632 	return offset;
2633 }
2634 
2635 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2636 							 loff_t len)
2637 {
2638 	struct inode *inode = file_inode(file);
2639 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2640 	struct shmem_inode_info *info = SHMEM_I(inode);
2641 	struct shmem_falloc shmem_falloc;
2642 	pgoff_t start, index, end;
2643 	int error;
2644 
2645 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2646 		return -EOPNOTSUPP;
2647 
2648 	inode_lock(inode);
2649 
2650 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2651 		struct address_space *mapping = file->f_mapping;
2652 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2653 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2654 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2655 
2656 		/* protected by i_mutex */
2657 		if (info->seals & F_SEAL_WRITE) {
2658 			error = -EPERM;
2659 			goto out;
2660 		}
2661 
2662 		shmem_falloc.waitq = &shmem_falloc_waitq;
2663 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2664 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2665 		spin_lock(&inode->i_lock);
2666 		inode->i_private = &shmem_falloc;
2667 		spin_unlock(&inode->i_lock);
2668 
2669 		if ((u64)unmap_end > (u64)unmap_start)
2670 			unmap_mapping_range(mapping, unmap_start,
2671 					    1 + unmap_end - unmap_start, 0);
2672 		shmem_truncate_range(inode, offset, offset + len - 1);
2673 		/* No need to unmap again: hole-punching leaves COWed pages */
2674 
2675 		spin_lock(&inode->i_lock);
2676 		inode->i_private = NULL;
2677 		wake_up_all(&shmem_falloc_waitq);
2678 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2679 		spin_unlock(&inode->i_lock);
2680 		error = 0;
2681 		goto out;
2682 	}
2683 
2684 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2685 	error = inode_newsize_ok(inode, offset + len);
2686 	if (error)
2687 		goto out;
2688 
2689 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2690 		error = -EPERM;
2691 		goto out;
2692 	}
2693 
2694 	start = offset >> PAGE_SHIFT;
2695 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2696 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2697 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2698 		error = -ENOSPC;
2699 		goto out;
2700 	}
2701 
2702 	shmem_falloc.waitq = NULL;
2703 	shmem_falloc.start = start;
2704 	shmem_falloc.next  = start;
2705 	shmem_falloc.nr_falloced = 0;
2706 	shmem_falloc.nr_unswapped = 0;
2707 	spin_lock(&inode->i_lock);
2708 	inode->i_private = &shmem_falloc;
2709 	spin_unlock(&inode->i_lock);
2710 
2711 	for (index = start; index < end; index++) {
2712 		struct page *page;
2713 
2714 		/*
2715 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2716 		 * been interrupted because we are using up too much memory.
2717 		 */
2718 		if (signal_pending(current))
2719 			error = -EINTR;
2720 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2721 			error = -ENOMEM;
2722 		else
2723 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2724 		if (error) {
2725 			/* Remove the !PageUptodate pages we added */
2726 			if (index > start) {
2727 				shmem_undo_range(inode,
2728 				    (loff_t)start << PAGE_SHIFT,
2729 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2730 			}
2731 			goto undone;
2732 		}
2733 
2734 		/*
2735 		 * Inform shmem_writepage() how far we have reached.
2736 		 * No need for lock or barrier: we have the page lock.
2737 		 */
2738 		shmem_falloc.next++;
2739 		if (!PageUptodate(page))
2740 			shmem_falloc.nr_falloced++;
2741 
2742 		/*
2743 		 * If !PageUptodate, leave it that way so that freeable pages
2744 		 * can be recognized if we need to rollback on error later.
2745 		 * But set_page_dirty so that memory pressure will swap rather
2746 		 * than free the pages we are allocating (and SGP_CACHE pages
2747 		 * might still be clean: we now need to mark those dirty too).
2748 		 */
2749 		set_page_dirty(page);
2750 		unlock_page(page);
2751 		put_page(page);
2752 		cond_resched();
2753 	}
2754 
2755 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2756 		i_size_write(inode, offset + len);
2757 	inode->i_ctime = current_time(inode);
2758 undone:
2759 	spin_lock(&inode->i_lock);
2760 	inode->i_private = NULL;
2761 	spin_unlock(&inode->i_lock);
2762 out:
2763 	inode_unlock(inode);
2764 	return error;
2765 }
2766 
2767 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2768 {
2769 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2770 
2771 	buf->f_type = TMPFS_MAGIC;
2772 	buf->f_bsize = PAGE_SIZE;
2773 	buf->f_namelen = NAME_MAX;
2774 	if (sbinfo->max_blocks) {
2775 		buf->f_blocks = sbinfo->max_blocks;
2776 		buf->f_bavail =
2777 		buf->f_bfree  = sbinfo->max_blocks -
2778 				percpu_counter_sum(&sbinfo->used_blocks);
2779 	}
2780 	if (sbinfo->max_inodes) {
2781 		buf->f_files = sbinfo->max_inodes;
2782 		buf->f_ffree = sbinfo->free_inodes;
2783 	}
2784 	/* else leave those fields 0 like simple_statfs */
2785 	return 0;
2786 }
2787 
2788 /*
2789  * File creation. Allocate an inode, and we're done..
2790  */
2791 static int
2792 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2793 {
2794 	struct inode *inode;
2795 	int error = -ENOSPC;
2796 
2797 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2798 	if (inode) {
2799 		error = simple_acl_create(dir, inode);
2800 		if (error)
2801 			goto out_iput;
2802 		error = security_inode_init_security(inode, dir,
2803 						     &dentry->d_name,
2804 						     shmem_initxattrs, NULL);
2805 		if (error && error != -EOPNOTSUPP)
2806 			goto out_iput;
2807 
2808 		error = 0;
2809 		dir->i_size += BOGO_DIRENT_SIZE;
2810 		dir->i_ctime = dir->i_mtime = current_time(dir);
2811 		d_instantiate(dentry, inode);
2812 		dget(dentry); /* Extra count - pin the dentry in core */
2813 	}
2814 	return error;
2815 out_iput:
2816 	iput(inode);
2817 	return error;
2818 }
2819 
2820 static int
2821 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2822 {
2823 	struct inode *inode;
2824 	int error = -ENOSPC;
2825 
2826 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2827 	if (inode) {
2828 		error = security_inode_init_security(inode, dir,
2829 						     NULL,
2830 						     shmem_initxattrs, NULL);
2831 		if (error && error != -EOPNOTSUPP)
2832 			goto out_iput;
2833 		error = simple_acl_create(dir, inode);
2834 		if (error)
2835 			goto out_iput;
2836 		d_tmpfile(dentry, inode);
2837 	}
2838 	return error;
2839 out_iput:
2840 	iput(inode);
2841 	return error;
2842 }
2843 
2844 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2845 {
2846 	int error;
2847 
2848 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2849 		return error;
2850 	inc_nlink(dir);
2851 	return 0;
2852 }
2853 
2854 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2855 		bool excl)
2856 {
2857 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2858 }
2859 
2860 /*
2861  * Link a file..
2862  */
2863 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2864 {
2865 	struct inode *inode = d_inode(old_dentry);
2866 	int ret;
2867 
2868 	/*
2869 	 * No ordinary (disk based) filesystem counts links as inodes;
2870 	 * but each new link needs a new dentry, pinning lowmem, and
2871 	 * tmpfs dentries cannot be pruned until they are unlinked.
2872 	 */
2873 	ret = shmem_reserve_inode(inode->i_sb);
2874 	if (ret)
2875 		goto out;
2876 
2877 	dir->i_size += BOGO_DIRENT_SIZE;
2878 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2879 	inc_nlink(inode);
2880 	ihold(inode);	/* New dentry reference */
2881 	dget(dentry);		/* Extra pinning count for the created dentry */
2882 	d_instantiate(dentry, inode);
2883 out:
2884 	return ret;
2885 }
2886 
2887 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2888 {
2889 	struct inode *inode = d_inode(dentry);
2890 
2891 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2892 		shmem_free_inode(inode->i_sb);
2893 
2894 	dir->i_size -= BOGO_DIRENT_SIZE;
2895 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2896 	drop_nlink(inode);
2897 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2898 	return 0;
2899 }
2900 
2901 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2902 {
2903 	if (!simple_empty(dentry))
2904 		return -ENOTEMPTY;
2905 
2906 	drop_nlink(d_inode(dentry));
2907 	drop_nlink(dir);
2908 	return shmem_unlink(dir, dentry);
2909 }
2910 
2911 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2912 {
2913 	bool old_is_dir = d_is_dir(old_dentry);
2914 	bool new_is_dir = d_is_dir(new_dentry);
2915 
2916 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2917 		if (old_is_dir) {
2918 			drop_nlink(old_dir);
2919 			inc_nlink(new_dir);
2920 		} else {
2921 			drop_nlink(new_dir);
2922 			inc_nlink(old_dir);
2923 		}
2924 	}
2925 	old_dir->i_ctime = old_dir->i_mtime =
2926 	new_dir->i_ctime = new_dir->i_mtime =
2927 	d_inode(old_dentry)->i_ctime =
2928 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2929 
2930 	return 0;
2931 }
2932 
2933 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2934 {
2935 	struct dentry *whiteout;
2936 	int error;
2937 
2938 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2939 	if (!whiteout)
2940 		return -ENOMEM;
2941 
2942 	error = shmem_mknod(old_dir, whiteout,
2943 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2944 	dput(whiteout);
2945 	if (error)
2946 		return error;
2947 
2948 	/*
2949 	 * Cheat and hash the whiteout while the old dentry is still in
2950 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2951 	 *
2952 	 * d_lookup() will consistently find one of them at this point,
2953 	 * not sure which one, but that isn't even important.
2954 	 */
2955 	d_rehash(whiteout);
2956 	return 0;
2957 }
2958 
2959 /*
2960  * The VFS layer already does all the dentry stuff for rename,
2961  * we just have to decrement the usage count for the target if
2962  * it exists so that the VFS layer correctly free's it when it
2963  * gets overwritten.
2964  */
2965 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2966 {
2967 	struct inode *inode = d_inode(old_dentry);
2968 	int they_are_dirs = S_ISDIR(inode->i_mode);
2969 
2970 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2971 		return -EINVAL;
2972 
2973 	if (flags & RENAME_EXCHANGE)
2974 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2975 
2976 	if (!simple_empty(new_dentry))
2977 		return -ENOTEMPTY;
2978 
2979 	if (flags & RENAME_WHITEOUT) {
2980 		int error;
2981 
2982 		error = shmem_whiteout(old_dir, old_dentry);
2983 		if (error)
2984 			return error;
2985 	}
2986 
2987 	if (d_really_is_positive(new_dentry)) {
2988 		(void) shmem_unlink(new_dir, new_dentry);
2989 		if (they_are_dirs) {
2990 			drop_nlink(d_inode(new_dentry));
2991 			drop_nlink(old_dir);
2992 		}
2993 	} else if (they_are_dirs) {
2994 		drop_nlink(old_dir);
2995 		inc_nlink(new_dir);
2996 	}
2997 
2998 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2999 	new_dir->i_size += BOGO_DIRENT_SIZE;
3000 	old_dir->i_ctime = old_dir->i_mtime =
3001 	new_dir->i_ctime = new_dir->i_mtime =
3002 	inode->i_ctime = current_time(old_dir);
3003 	return 0;
3004 }
3005 
3006 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3007 {
3008 	int error;
3009 	int len;
3010 	struct inode *inode;
3011 	struct page *page;
3012 
3013 	len = strlen(symname) + 1;
3014 	if (len > PAGE_SIZE)
3015 		return -ENAMETOOLONG;
3016 
3017 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3018 				VM_NORESERVE);
3019 	if (!inode)
3020 		return -ENOSPC;
3021 
3022 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3023 					     shmem_initxattrs, NULL);
3024 	if (error) {
3025 		if (error != -EOPNOTSUPP) {
3026 			iput(inode);
3027 			return error;
3028 		}
3029 		error = 0;
3030 	}
3031 
3032 	inode->i_size = len-1;
3033 	if (len <= SHORT_SYMLINK_LEN) {
3034 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3035 		if (!inode->i_link) {
3036 			iput(inode);
3037 			return -ENOMEM;
3038 		}
3039 		inode->i_op = &shmem_short_symlink_operations;
3040 	} else {
3041 		inode_nohighmem(inode);
3042 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3043 		if (error) {
3044 			iput(inode);
3045 			return error;
3046 		}
3047 		inode->i_mapping->a_ops = &shmem_aops;
3048 		inode->i_op = &shmem_symlink_inode_operations;
3049 		memcpy(page_address(page), symname, len);
3050 		SetPageUptodate(page);
3051 		set_page_dirty(page);
3052 		unlock_page(page);
3053 		put_page(page);
3054 	}
3055 	dir->i_size += BOGO_DIRENT_SIZE;
3056 	dir->i_ctime = dir->i_mtime = current_time(dir);
3057 	d_instantiate(dentry, inode);
3058 	dget(dentry);
3059 	return 0;
3060 }
3061 
3062 static void shmem_put_link(void *arg)
3063 {
3064 	mark_page_accessed(arg);
3065 	put_page(arg);
3066 }
3067 
3068 static const char *shmem_get_link(struct dentry *dentry,
3069 				  struct inode *inode,
3070 				  struct delayed_call *done)
3071 {
3072 	struct page *page = NULL;
3073 	int error;
3074 	if (!dentry) {
3075 		page = find_get_page(inode->i_mapping, 0);
3076 		if (!page)
3077 			return ERR_PTR(-ECHILD);
3078 		if (!PageUptodate(page)) {
3079 			put_page(page);
3080 			return ERR_PTR(-ECHILD);
3081 		}
3082 	} else {
3083 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3084 		if (error)
3085 			return ERR_PTR(error);
3086 		unlock_page(page);
3087 	}
3088 	set_delayed_call(done, shmem_put_link, page);
3089 	return page_address(page);
3090 }
3091 
3092 #ifdef CONFIG_TMPFS_XATTR
3093 /*
3094  * Superblocks without xattr inode operations may get some security.* xattr
3095  * support from the LSM "for free". As soon as we have any other xattrs
3096  * like ACLs, we also need to implement the security.* handlers at
3097  * filesystem level, though.
3098  */
3099 
3100 /*
3101  * Callback for security_inode_init_security() for acquiring xattrs.
3102  */
3103 static int shmem_initxattrs(struct inode *inode,
3104 			    const struct xattr *xattr_array,
3105 			    void *fs_info)
3106 {
3107 	struct shmem_inode_info *info = SHMEM_I(inode);
3108 	const struct xattr *xattr;
3109 	struct simple_xattr *new_xattr;
3110 	size_t len;
3111 
3112 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3113 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3114 		if (!new_xattr)
3115 			return -ENOMEM;
3116 
3117 		len = strlen(xattr->name) + 1;
3118 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3119 					  GFP_KERNEL);
3120 		if (!new_xattr->name) {
3121 			kfree(new_xattr);
3122 			return -ENOMEM;
3123 		}
3124 
3125 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3126 		       XATTR_SECURITY_PREFIX_LEN);
3127 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3128 		       xattr->name, len);
3129 
3130 		simple_xattr_list_add(&info->xattrs, new_xattr);
3131 	}
3132 
3133 	return 0;
3134 }
3135 
3136 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3137 				   struct dentry *unused, struct inode *inode,
3138 				   const char *name, void *buffer, size_t size)
3139 {
3140 	struct shmem_inode_info *info = SHMEM_I(inode);
3141 
3142 	name = xattr_full_name(handler, name);
3143 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3144 }
3145 
3146 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3147 				   struct dentry *unused, struct inode *inode,
3148 				   const char *name, const void *value,
3149 				   size_t size, int flags)
3150 {
3151 	struct shmem_inode_info *info = SHMEM_I(inode);
3152 
3153 	name = xattr_full_name(handler, name);
3154 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3155 }
3156 
3157 static const struct xattr_handler shmem_security_xattr_handler = {
3158 	.prefix = XATTR_SECURITY_PREFIX,
3159 	.get = shmem_xattr_handler_get,
3160 	.set = shmem_xattr_handler_set,
3161 };
3162 
3163 static const struct xattr_handler shmem_trusted_xattr_handler = {
3164 	.prefix = XATTR_TRUSTED_PREFIX,
3165 	.get = shmem_xattr_handler_get,
3166 	.set = shmem_xattr_handler_set,
3167 };
3168 
3169 static const struct xattr_handler *shmem_xattr_handlers[] = {
3170 #ifdef CONFIG_TMPFS_POSIX_ACL
3171 	&posix_acl_access_xattr_handler,
3172 	&posix_acl_default_xattr_handler,
3173 #endif
3174 	&shmem_security_xattr_handler,
3175 	&shmem_trusted_xattr_handler,
3176 	NULL
3177 };
3178 
3179 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3180 {
3181 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3182 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3183 }
3184 #endif /* CONFIG_TMPFS_XATTR */
3185 
3186 static const struct inode_operations shmem_short_symlink_operations = {
3187 	.get_link	= simple_get_link,
3188 #ifdef CONFIG_TMPFS_XATTR
3189 	.listxattr	= shmem_listxattr,
3190 #endif
3191 };
3192 
3193 static const struct inode_operations shmem_symlink_inode_operations = {
3194 	.get_link	= shmem_get_link,
3195 #ifdef CONFIG_TMPFS_XATTR
3196 	.listxattr	= shmem_listxattr,
3197 #endif
3198 };
3199 
3200 static struct dentry *shmem_get_parent(struct dentry *child)
3201 {
3202 	return ERR_PTR(-ESTALE);
3203 }
3204 
3205 static int shmem_match(struct inode *ino, void *vfh)
3206 {
3207 	__u32 *fh = vfh;
3208 	__u64 inum = fh[2];
3209 	inum = (inum << 32) | fh[1];
3210 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3211 }
3212 
3213 /* Find any alias of inode, but prefer a hashed alias */
3214 static struct dentry *shmem_find_alias(struct inode *inode)
3215 {
3216 	struct dentry *alias = d_find_alias(inode);
3217 
3218 	return alias ?: d_find_any_alias(inode);
3219 }
3220 
3221 
3222 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3223 		struct fid *fid, int fh_len, int fh_type)
3224 {
3225 	struct inode *inode;
3226 	struct dentry *dentry = NULL;
3227 	u64 inum;
3228 
3229 	if (fh_len < 3)
3230 		return NULL;
3231 
3232 	inum = fid->raw[2];
3233 	inum = (inum << 32) | fid->raw[1];
3234 
3235 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3236 			shmem_match, fid->raw);
3237 	if (inode) {
3238 		dentry = shmem_find_alias(inode);
3239 		iput(inode);
3240 	}
3241 
3242 	return dentry;
3243 }
3244 
3245 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3246 				struct inode *parent)
3247 {
3248 	if (*len < 3) {
3249 		*len = 3;
3250 		return FILEID_INVALID;
3251 	}
3252 
3253 	if (inode_unhashed(inode)) {
3254 		/* Unfortunately insert_inode_hash is not idempotent,
3255 		 * so as we hash inodes here rather than at creation
3256 		 * time, we need a lock to ensure we only try
3257 		 * to do it once
3258 		 */
3259 		static DEFINE_SPINLOCK(lock);
3260 		spin_lock(&lock);
3261 		if (inode_unhashed(inode))
3262 			__insert_inode_hash(inode,
3263 					    inode->i_ino + inode->i_generation);
3264 		spin_unlock(&lock);
3265 	}
3266 
3267 	fh[0] = inode->i_generation;
3268 	fh[1] = inode->i_ino;
3269 	fh[2] = ((__u64)inode->i_ino) >> 32;
3270 
3271 	*len = 3;
3272 	return 1;
3273 }
3274 
3275 static const struct export_operations shmem_export_ops = {
3276 	.get_parent     = shmem_get_parent,
3277 	.encode_fh      = shmem_encode_fh,
3278 	.fh_to_dentry	= shmem_fh_to_dentry,
3279 };
3280 
3281 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3282 			       bool remount)
3283 {
3284 	char *this_char, *value, *rest;
3285 	struct mempolicy *mpol = NULL;
3286 	uid_t uid;
3287 	gid_t gid;
3288 
3289 	while (options != NULL) {
3290 		this_char = options;
3291 		for (;;) {
3292 			/*
3293 			 * NUL-terminate this option: unfortunately,
3294 			 * mount options form a comma-separated list,
3295 			 * but mpol's nodelist may also contain commas.
3296 			 */
3297 			options = strchr(options, ',');
3298 			if (options == NULL)
3299 				break;
3300 			options++;
3301 			if (!isdigit(*options)) {
3302 				options[-1] = '\0';
3303 				break;
3304 			}
3305 		}
3306 		if (!*this_char)
3307 			continue;
3308 		if ((value = strchr(this_char,'=')) != NULL) {
3309 			*value++ = 0;
3310 		} else {
3311 			pr_err("tmpfs: No value for mount option '%s'\n",
3312 			       this_char);
3313 			goto error;
3314 		}
3315 
3316 		if (!strcmp(this_char,"size")) {
3317 			unsigned long long size;
3318 			size = memparse(value,&rest);
3319 			if (*rest == '%') {
3320 				size <<= PAGE_SHIFT;
3321 				size *= totalram_pages;
3322 				do_div(size, 100);
3323 				rest++;
3324 			}
3325 			if (*rest)
3326 				goto bad_val;
3327 			sbinfo->max_blocks =
3328 				DIV_ROUND_UP(size, PAGE_SIZE);
3329 		} else if (!strcmp(this_char,"nr_blocks")) {
3330 			sbinfo->max_blocks = memparse(value, &rest);
3331 			if (*rest)
3332 				goto bad_val;
3333 		} else if (!strcmp(this_char,"nr_inodes")) {
3334 			sbinfo->max_inodes = memparse(value, &rest);
3335 			if (*rest)
3336 				goto bad_val;
3337 		} else if (!strcmp(this_char,"mode")) {
3338 			if (remount)
3339 				continue;
3340 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3341 			if (*rest)
3342 				goto bad_val;
3343 		} else if (!strcmp(this_char,"uid")) {
3344 			if (remount)
3345 				continue;
3346 			uid = simple_strtoul(value, &rest, 0);
3347 			if (*rest)
3348 				goto bad_val;
3349 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3350 			if (!uid_valid(sbinfo->uid))
3351 				goto bad_val;
3352 		} else if (!strcmp(this_char,"gid")) {
3353 			if (remount)
3354 				continue;
3355 			gid = simple_strtoul(value, &rest, 0);
3356 			if (*rest)
3357 				goto bad_val;
3358 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3359 			if (!gid_valid(sbinfo->gid))
3360 				goto bad_val;
3361 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3362 		} else if (!strcmp(this_char, "huge")) {
3363 			int huge;
3364 			huge = shmem_parse_huge(value);
3365 			if (huge < 0)
3366 				goto bad_val;
3367 			if (!has_transparent_hugepage() &&
3368 					huge != SHMEM_HUGE_NEVER)
3369 				goto bad_val;
3370 			sbinfo->huge = huge;
3371 #endif
3372 #ifdef CONFIG_NUMA
3373 		} else if (!strcmp(this_char,"mpol")) {
3374 			mpol_put(mpol);
3375 			mpol = NULL;
3376 			if (mpol_parse_str(value, &mpol))
3377 				goto bad_val;
3378 #endif
3379 		} else {
3380 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3381 			goto error;
3382 		}
3383 	}
3384 	sbinfo->mpol = mpol;
3385 	return 0;
3386 
3387 bad_val:
3388 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3389 	       value, this_char);
3390 error:
3391 	mpol_put(mpol);
3392 	return 1;
3393 
3394 }
3395 
3396 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3397 {
3398 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3399 	struct shmem_sb_info config = *sbinfo;
3400 	unsigned long inodes;
3401 	int error = -EINVAL;
3402 
3403 	config.mpol = NULL;
3404 	if (shmem_parse_options(data, &config, true))
3405 		return error;
3406 
3407 	spin_lock(&sbinfo->stat_lock);
3408 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3409 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3410 		goto out;
3411 	if (config.max_inodes < inodes)
3412 		goto out;
3413 	/*
3414 	 * Those tests disallow limited->unlimited while any are in use;
3415 	 * but we must separately disallow unlimited->limited, because
3416 	 * in that case we have no record of how much is already in use.
3417 	 */
3418 	if (config.max_blocks && !sbinfo->max_blocks)
3419 		goto out;
3420 	if (config.max_inodes && !sbinfo->max_inodes)
3421 		goto out;
3422 
3423 	error = 0;
3424 	sbinfo->huge = config.huge;
3425 	sbinfo->max_blocks  = config.max_blocks;
3426 	sbinfo->max_inodes  = config.max_inodes;
3427 	sbinfo->free_inodes = config.max_inodes - inodes;
3428 
3429 	/*
3430 	 * Preserve previous mempolicy unless mpol remount option was specified.
3431 	 */
3432 	if (config.mpol) {
3433 		mpol_put(sbinfo->mpol);
3434 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3435 	}
3436 out:
3437 	spin_unlock(&sbinfo->stat_lock);
3438 	return error;
3439 }
3440 
3441 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3442 {
3443 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3444 
3445 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3446 		seq_printf(seq, ",size=%luk",
3447 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3448 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3449 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3450 	if (sbinfo->mode != (0777 | S_ISVTX))
3451 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3452 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3453 		seq_printf(seq, ",uid=%u",
3454 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3455 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3456 		seq_printf(seq, ",gid=%u",
3457 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3458 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3459 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3460 	if (sbinfo->huge)
3461 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3462 #endif
3463 	shmem_show_mpol(seq, sbinfo->mpol);
3464 	return 0;
3465 }
3466 
3467 #endif /* CONFIG_TMPFS */
3468 
3469 static void shmem_put_super(struct super_block *sb)
3470 {
3471 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3472 
3473 	percpu_counter_destroy(&sbinfo->used_blocks);
3474 	mpol_put(sbinfo->mpol);
3475 	kfree(sbinfo);
3476 	sb->s_fs_info = NULL;
3477 }
3478 
3479 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3480 {
3481 	struct inode *inode;
3482 	struct shmem_sb_info *sbinfo;
3483 	int err = -ENOMEM;
3484 
3485 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3486 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3487 				L1_CACHE_BYTES), GFP_KERNEL);
3488 	if (!sbinfo)
3489 		return -ENOMEM;
3490 
3491 	sbinfo->mode = 0777 | S_ISVTX;
3492 	sbinfo->uid = current_fsuid();
3493 	sbinfo->gid = current_fsgid();
3494 	sb->s_fs_info = sbinfo;
3495 
3496 #ifdef CONFIG_TMPFS
3497 	/*
3498 	 * Per default we only allow half of the physical ram per
3499 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3500 	 * but the internal instance is left unlimited.
3501 	 */
3502 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3503 		sbinfo->max_blocks = shmem_default_max_blocks();
3504 		sbinfo->max_inodes = shmem_default_max_inodes();
3505 		if (shmem_parse_options(data, sbinfo, false)) {
3506 			err = -EINVAL;
3507 			goto failed;
3508 		}
3509 	} else {
3510 		sb->s_flags |= SB_NOUSER;
3511 	}
3512 	sb->s_export_op = &shmem_export_ops;
3513 	sb->s_flags |= SB_NOSEC;
3514 #else
3515 	sb->s_flags |= SB_NOUSER;
3516 #endif
3517 
3518 	spin_lock_init(&sbinfo->stat_lock);
3519 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3520 		goto failed;
3521 	sbinfo->free_inodes = sbinfo->max_inodes;
3522 	spin_lock_init(&sbinfo->shrinklist_lock);
3523 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3524 
3525 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3526 	sb->s_blocksize = PAGE_SIZE;
3527 	sb->s_blocksize_bits = PAGE_SHIFT;
3528 	sb->s_magic = TMPFS_MAGIC;
3529 	sb->s_op = &shmem_ops;
3530 	sb->s_time_gran = 1;
3531 #ifdef CONFIG_TMPFS_XATTR
3532 	sb->s_xattr = shmem_xattr_handlers;
3533 #endif
3534 #ifdef CONFIG_TMPFS_POSIX_ACL
3535 	sb->s_flags |= SB_POSIXACL;
3536 #endif
3537 	uuid_gen(&sb->s_uuid);
3538 
3539 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3540 	if (!inode)
3541 		goto failed;
3542 	inode->i_uid = sbinfo->uid;
3543 	inode->i_gid = sbinfo->gid;
3544 	sb->s_root = d_make_root(inode);
3545 	if (!sb->s_root)
3546 		goto failed;
3547 	return 0;
3548 
3549 failed:
3550 	shmem_put_super(sb);
3551 	return err;
3552 }
3553 
3554 static struct kmem_cache *shmem_inode_cachep;
3555 
3556 static struct inode *shmem_alloc_inode(struct super_block *sb)
3557 {
3558 	struct shmem_inode_info *info;
3559 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3560 	if (!info)
3561 		return NULL;
3562 	return &info->vfs_inode;
3563 }
3564 
3565 static void shmem_destroy_callback(struct rcu_head *head)
3566 {
3567 	struct inode *inode = container_of(head, struct inode, i_rcu);
3568 	if (S_ISLNK(inode->i_mode))
3569 		kfree(inode->i_link);
3570 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3571 }
3572 
3573 static void shmem_destroy_inode(struct inode *inode)
3574 {
3575 	if (S_ISREG(inode->i_mode))
3576 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3577 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3578 }
3579 
3580 static void shmem_init_inode(void *foo)
3581 {
3582 	struct shmem_inode_info *info = foo;
3583 	inode_init_once(&info->vfs_inode);
3584 }
3585 
3586 static void shmem_init_inodecache(void)
3587 {
3588 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3589 				sizeof(struct shmem_inode_info),
3590 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3591 }
3592 
3593 static void shmem_destroy_inodecache(void)
3594 {
3595 	kmem_cache_destroy(shmem_inode_cachep);
3596 }
3597 
3598 static const struct address_space_operations shmem_aops = {
3599 	.writepage	= shmem_writepage,
3600 	.set_page_dirty	= __set_page_dirty_no_writeback,
3601 #ifdef CONFIG_TMPFS
3602 	.write_begin	= shmem_write_begin,
3603 	.write_end	= shmem_write_end,
3604 #endif
3605 #ifdef CONFIG_MIGRATION
3606 	.migratepage	= migrate_page,
3607 #endif
3608 	.error_remove_page = generic_error_remove_page,
3609 };
3610 
3611 static const struct file_operations shmem_file_operations = {
3612 	.mmap		= shmem_mmap,
3613 	.get_unmapped_area = shmem_get_unmapped_area,
3614 #ifdef CONFIG_TMPFS
3615 	.llseek		= shmem_file_llseek,
3616 	.read_iter	= shmem_file_read_iter,
3617 	.write_iter	= generic_file_write_iter,
3618 	.fsync		= noop_fsync,
3619 	.splice_read	= generic_file_splice_read,
3620 	.splice_write	= iter_file_splice_write,
3621 	.fallocate	= shmem_fallocate,
3622 #endif
3623 };
3624 
3625 static const struct inode_operations shmem_inode_operations = {
3626 	.getattr	= shmem_getattr,
3627 	.setattr	= shmem_setattr,
3628 #ifdef CONFIG_TMPFS_XATTR
3629 	.listxattr	= shmem_listxattr,
3630 	.set_acl	= simple_set_acl,
3631 #endif
3632 };
3633 
3634 static const struct inode_operations shmem_dir_inode_operations = {
3635 #ifdef CONFIG_TMPFS
3636 	.create		= shmem_create,
3637 	.lookup		= simple_lookup,
3638 	.link		= shmem_link,
3639 	.unlink		= shmem_unlink,
3640 	.symlink	= shmem_symlink,
3641 	.mkdir		= shmem_mkdir,
3642 	.rmdir		= shmem_rmdir,
3643 	.mknod		= shmem_mknod,
3644 	.rename		= shmem_rename2,
3645 	.tmpfile	= shmem_tmpfile,
3646 #endif
3647 #ifdef CONFIG_TMPFS_XATTR
3648 	.listxattr	= shmem_listxattr,
3649 #endif
3650 #ifdef CONFIG_TMPFS_POSIX_ACL
3651 	.setattr	= shmem_setattr,
3652 	.set_acl	= simple_set_acl,
3653 #endif
3654 };
3655 
3656 static const struct inode_operations shmem_special_inode_operations = {
3657 #ifdef CONFIG_TMPFS_XATTR
3658 	.listxattr	= shmem_listxattr,
3659 #endif
3660 #ifdef CONFIG_TMPFS_POSIX_ACL
3661 	.setattr	= shmem_setattr,
3662 	.set_acl	= simple_set_acl,
3663 #endif
3664 };
3665 
3666 static const struct super_operations shmem_ops = {
3667 	.alloc_inode	= shmem_alloc_inode,
3668 	.destroy_inode	= shmem_destroy_inode,
3669 #ifdef CONFIG_TMPFS
3670 	.statfs		= shmem_statfs,
3671 	.remount_fs	= shmem_remount_fs,
3672 	.show_options	= shmem_show_options,
3673 #endif
3674 	.evict_inode	= shmem_evict_inode,
3675 	.drop_inode	= generic_delete_inode,
3676 	.put_super	= shmem_put_super,
3677 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3678 	.nr_cached_objects	= shmem_unused_huge_count,
3679 	.free_cached_objects	= shmem_unused_huge_scan,
3680 #endif
3681 };
3682 
3683 static const struct vm_operations_struct shmem_vm_ops = {
3684 	.fault		= shmem_fault,
3685 	.map_pages	= filemap_map_pages,
3686 #ifdef CONFIG_NUMA
3687 	.set_policy     = shmem_set_policy,
3688 	.get_policy     = shmem_get_policy,
3689 #endif
3690 };
3691 
3692 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3693 	int flags, const char *dev_name, void *data)
3694 {
3695 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3696 }
3697 
3698 static struct file_system_type shmem_fs_type = {
3699 	.owner		= THIS_MODULE,
3700 	.name		= "tmpfs",
3701 	.mount		= shmem_mount,
3702 	.kill_sb	= kill_litter_super,
3703 	.fs_flags	= FS_USERNS_MOUNT,
3704 };
3705 
3706 int __init shmem_init(void)
3707 {
3708 	int error;
3709 
3710 	/* If rootfs called this, don't re-init */
3711 	if (shmem_inode_cachep)
3712 		return 0;
3713 
3714 	shmem_init_inodecache();
3715 
3716 	error = register_filesystem(&shmem_fs_type);
3717 	if (error) {
3718 		pr_err("Could not register tmpfs\n");
3719 		goto out2;
3720 	}
3721 
3722 	shm_mnt = kern_mount(&shmem_fs_type);
3723 	if (IS_ERR(shm_mnt)) {
3724 		error = PTR_ERR(shm_mnt);
3725 		pr_err("Could not kern_mount tmpfs\n");
3726 		goto out1;
3727 	}
3728 
3729 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3730 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3731 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3732 	else
3733 		shmem_huge = 0; /* just in case it was patched */
3734 #endif
3735 	return 0;
3736 
3737 out1:
3738 	unregister_filesystem(&shmem_fs_type);
3739 out2:
3740 	shmem_destroy_inodecache();
3741 	shm_mnt = ERR_PTR(error);
3742 	return error;
3743 }
3744 
3745 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3746 static ssize_t shmem_enabled_show(struct kobject *kobj,
3747 		struct kobj_attribute *attr, char *buf)
3748 {
3749 	int values[] = {
3750 		SHMEM_HUGE_ALWAYS,
3751 		SHMEM_HUGE_WITHIN_SIZE,
3752 		SHMEM_HUGE_ADVISE,
3753 		SHMEM_HUGE_NEVER,
3754 		SHMEM_HUGE_DENY,
3755 		SHMEM_HUGE_FORCE,
3756 	};
3757 	int i, count;
3758 
3759 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3760 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3761 
3762 		count += sprintf(buf + count, fmt,
3763 				shmem_format_huge(values[i]));
3764 	}
3765 	buf[count - 1] = '\n';
3766 	return count;
3767 }
3768 
3769 static ssize_t shmem_enabled_store(struct kobject *kobj,
3770 		struct kobj_attribute *attr, const char *buf, size_t count)
3771 {
3772 	char tmp[16];
3773 	int huge;
3774 
3775 	if (count + 1 > sizeof(tmp))
3776 		return -EINVAL;
3777 	memcpy(tmp, buf, count);
3778 	tmp[count] = '\0';
3779 	if (count && tmp[count - 1] == '\n')
3780 		tmp[count - 1] = '\0';
3781 
3782 	huge = shmem_parse_huge(tmp);
3783 	if (huge == -EINVAL)
3784 		return -EINVAL;
3785 	if (!has_transparent_hugepage() &&
3786 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3787 		return -EINVAL;
3788 
3789 	shmem_huge = huge;
3790 	if (shmem_huge > SHMEM_HUGE_DENY)
3791 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3792 	return count;
3793 }
3794 
3795 struct kobj_attribute shmem_enabled_attr =
3796 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3797 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3798 
3799 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3800 bool shmem_huge_enabled(struct vm_area_struct *vma)
3801 {
3802 	struct inode *inode = file_inode(vma->vm_file);
3803 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3804 	loff_t i_size;
3805 	pgoff_t off;
3806 
3807 	if (shmem_huge == SHMEM_HUGE_FORCE)
3808 		return true;
3809 	if (shmem_huge == SHMEM_HUGE_DENY)
3810 		return false;
3811 	switch (sbinfo->huge) {
3812 		case SHMEM_HUGE_NEVER:
3813 			return false;
3814 		case SHMEM_HUGE_ALWAYS:
3815 			return true;
3816 		case SHMEM_HUGE_WITHIN_SIZE:
3817 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3818 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3819 			if (i_size >= HPAGE_PMD_SIZE &&
3820 					i_size >> PAGE_SHIFT >= off)
3821 				return true;
3822 			/* fall through */
3823 		case SHMEM_HUGE_ADVISE:
3824 			/* TODO: implement fadvise() hints */
3825 			return (vma->vm_flags & VM_HUGEPAGE);
3826 		default:
3827 			VM_BUG_ON(1);
3828 			return false;
3829 	}
3830 }
3831 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3832 
3833 #else /* !CONFIG_SHMEM */
3834 
3835 /*
3836  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3837  *
3838  * This is intended for small system where the benefits of the full
3839  * shmem code (swap-backed and resource-limited) are outweighed by
3840  * their complexity. On systems without swap this code should be
3841  * effectively equivalent, but much lighter weight.
3842  */
3843 
3844 static struct file_system_type shmem_fs_type = {
3845 	.name		= "tmpfs",
3846 	.mount		= ramfs_mount,
3847 	.kill_sb	= kill_litter_super,
3848 	.fs_flags	= FS_USERNS_MOUNT,
3849 };
3850 
3851 int __init shmem_init(void)
3852 {
3853 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3854 
3855 	shm_mnt = kern_mount(&shmem_fs_type);
3856 	BUG_ON(IS_ERR(shm_mnt));
3857 
3858 	return 0;
3859 }
3860 
3861 int shmem_unuse(swp_entry_t swap, struct page *page)
3862 {
3863 	return 0;
3864 }
3865 
3866 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3867 {
3868 	return 0;
3869 }
3870 
3871 void shmem_unlock_mapping(struct address_space *mapping)
3872 {
3873 }
3874 
3875 #ifdef CONFIG_MMU
3876 unsigned long shmem_get_unmapped_area(struct file *file,
3877 				      unsigned long addr, unsigned long len,
3878 				      unsigned long pgoff, unsigned long flags)
3879 {
3880 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3881 }
3882 #endif
3883 
3884 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3885 {
3886 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3887 }
3888 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3889 
3890 #define shmem_vm_ops				generic_file_vm_ops
3891 #define shmem_file_operations			ramfs_file_operations
3892 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3893 #define shmem_acct_size(flags, size)		0
3894 #define shmem_unacct_size(flags, size)		do {} while (0)
3895 
3896 #endif /* CONFIG_SHMEM */
3897 
3898 /* common code */
3899 
3900 static const struct dentry_operations anon_ops = {
3901 	.d_dname = simple_dname
3902 };
3903 
3904 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3905 				       unsigned long flags, unsigned int i_flags)
3906 {
3907 	struct file *res;
3908 	struct inode *inode;
3909 	struct path path;
3910 	struct super_block *sb;
3911 	struct qstr this;
3912 
3913 	if (IS_ERR(mnt))
3914 		return ERR_CAST(mnt);
3915 
3916 	if (size < 0 || size > MAX_LFS_FILESIZE)
3917 		return ERR_PTR(-EINVAL);
3918 
3919 	if (shmem_acct_size(flags, size))
3920 		return ERR_PTR(-ENOMEM);
3921 
3922 	res = ERR_PTR(-ENOMEM);
3923 	this.name = name;
3924 	this.len = strlen(name);
3925 	this.hash = 0; /* will go */
3926 	sb = mnt->mnt_sb;
3927 	path.mnt = mntget(mnt);
3928 	path.dentry = d_alloc_pseudo(sb, &this);
3929 	if (!path.dentry)
3930 		goto put_memory;
3931 	d_set_d_op(path.dentry, &anon_ops);
3932 
3933 	res = ERR_PTR(-ENOSPC);
3934 	inode = shmem_get_inode(sb, NULL, S_IFREG | 0777, 0, flags);
3935 	if (!inode)
3936 		goto put_memory;
3937 
3938 	inode->i_flags |= i_flags;
3939 	d_instantiate(path.dentry, inode);
3940 	inode->i_size = size;
3941 	clear_nlink(inode);	/* It is unlinked */
3942 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3943 	if (IS_ERR(res))
3944 		goto put_path;
3945 
3946 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3947 		  &shmem_file_operations);
3948 	if (IS_ERR(res))
3949 		goto put_path;
3950 
3951 	return res;
3952 
3953 put_memory:
3954 	shmem_unacct_size(flags, size);
3955 put_path:
3956 	path_put(&path);
3957 	return res;
3958 }
3959 
3960 /**
3961  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3962  * 	kernel internal.  There will be NO LSM permission checks against the
3963  * 	underlying inode.  So users of this interface must do LSM checks at a
3964  *	higher layer.  The users are the big_key and shm implementations.  LSM
3965  *	checks are provided at the key or shm level rather than the inode.
3966  * @name: name for dentry (to be seen in /proc/<pid>/maps
3967  * @size: size to be set for the file
3968  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3969  */
3970 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3971 {
3972 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3973 }
3974 
3975 /**
3976  * shmem_file_setup - get an unlinked file living in tmpfs
3977  * @name: name for dentry (to be seen in /proc/<pid>/maps
3978  * @size: size to be set for the file
3979  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3980  */
3981 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3982 {
3983 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3984 }
3985 EXPORT_SYMBOL_GPL(shmem_file_setup);
3986 
3987 /**
3988  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3989  * @mnt: the tmpfs mount where the file will be created
3990  * @name: name for dentry (to be seen in /proc/<pid>/maps
3991  * @size: size to be set for the file
3992  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3993  */
3994 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3995 				       loff_t size, unsigned long flags)
3996 {
3997 	return __shmem_file_setup(mnt, name, size, flags, 0);
3998 }
3999 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4000 
4001 /**
4002  * shmem_zero_setup - setup a shared anonymous mapping
4003  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4004  */
4005 int shmem_zero_setup(struct vm_area_struct *vma)
4006 {
4007 	struct file *file;
4008 	loff_t size = vma->vm_end - vma->vm_start;
4009 
4010 	/*
4011 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4012 	 * between XFS directory reading and selinux: since this file is only
4013 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4014 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4015 	 */
4016 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4017 	if (IS_ERR(file))
4018 		return PTR_ERR(file);
4019 
4020 	if (vma->vm_file)
4021 		fput(vma->vm_file);
4022 	vma->vm_file = file;
4023 	vma->vm_ops = &shmem_vm_ops;
4024 
4025 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4026 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4027 			(vma->vm_end & HPAGE_PMD_MASK)) {
4028 		khugepaged_enter(vma, vma->vm_flags);
4029 	}
4030 
4031 	return 0;
4032 }
4033 
4034 /**
4035  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4036  * @mapping:	the page's address_space
4037  * @index:	the page index
4038  * @gfp:	the page allocator flags to use if allocating
4039  *
4040  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4041  * with any new page allocations done using the specified allocation flags.
4042  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4043  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4044  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4045  *
4046  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4047  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4048  */
4049 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4050 					 pgoff_t index, gfp_t gfp)
4051 {
4052 #ifdef CONFIG_SHMEM
4053 	struct inode *inode = mapping->host;
4054 	struct page *page;
4055 	int error;
4056 
4057 	BUG_ON(mapping->a_ops != &shmem_aops);
4058 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4059 				  gfp, NULL, NULL, NULL);
4060 	if (error)
4061 		page = ERR_PTR(error);
4062 	else
4063 		unlock_page(page);
4064 	return page;
4065 #else
4066 	/*
4067 	 * The tiny !SHMEM case uses ramfs without swap
4068 	 */
4069 	return read_cache_page_gfp(mapping, index, gfp);
4070 #endif
4071 }
4072 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4073