xref: /openbmc/linux/mm/shmem.c (revision f3a8b664)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36 
37 static struct vfsmount *shm_mnt;
38 
39 #ifdef CONFIG_SHMEM
40 /*
41  * This virtual memory filesystem is heavily based on the ramfs. It
42  * extends ramfs by the ability to use swap and honor resource limits
43  * which makes it a completely usable filesystem.
44  */
45 
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73 
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76 
77 #include "internal.h"
78 
79 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81 
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84 
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87 
88 /*
89  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90  * inode->i_private (with i_mutex making sure that it has only one user at
91  * a time): we would prefer not to enlarge the shmem inode just for that.
92  */
93 struct shmem_falloc {
94 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 	pgoff_t start;		/* start of range currently being fallocated */
96 	pgoff_t next;		/* the next page offset to be fallocated */
97 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
98 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
99 };
100 
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 	return totalram_pages / 2;
105 }
106 
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112 
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 				struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 		struct page **pagep, enum sgp_type sgp,
118 		gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119 
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 		struct page **pagep, enum sgp_type sgp)
122 {
123 	return shmem_getpage_gfp(inode, index, pagep, sgp,
124 		mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126 
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129 	return sb->s_fs_info;
130 }
131 
132 /*
133  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134  * for shared memory and for shared anonymous (/dev/zero) mappings
135  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136  * consistent with the pre-accounting of private mappings ...
137  */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140 	return (flags & VM_NORESERVE) ?
141 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143 
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146 	if (!(flags & VM_NORESERVE))
147 		vm_unacct_memory(VM_ACCT(size));
148 }
149 
150 static inline int shmem_reacct_size(unsigned long flags,
151 		loff_t oldsize, loff_t newsize)
152 {
153 	if (!(flags & VM_NORESERVE)) {
154 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 			return security_vm_enough_memory_mm(current->mm,
156 					VM_ACCT(newsize) - VM_ACCT(oldsize));
157 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 	}
160 	return 0;
161 }
162 
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow large sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171 	if (!(flags & VM_NORESERVE))
172 		return 0;
173 
174 	return security_vm_enough_memory_mm(current->mm,
175 			pages * VM_ACCT(PAGE_SIZE));
176 }
177 
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180 	if (flags & VM_NORESERVE)
181 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183 
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192 
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195 
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 	if (sbinfo->max_inodes) {
200 		spin_lock(&sbinfo->stat_lock);
201 		if (!sbinfo->free_inodes) {
202 			spin_unlock(&sbinfo->stat_lock);
203 			return -ENOSPC;
204 		}
205 		sbinfo->free_inodes--;
206 		spin_unlock(&sbinfo->stat_lock);
207 	}
208 	return 0;
209 }
210 
211 static void shmem_free_inode(struct super_block *sb)
212 {
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 	if (sbinfo->max_inodes) {
215 		spin_lock(&sbinfo->stat_lock);
216 		sbinfo->free_inodes++;
217 		spin_unlock(&sbinfo->stat_lock);
218 	}
219 }
220 
221 /**
222  * shmem_recalc_inode - recalculate the block usage of an inode
223  * @inode: inode to recalc
224  *
225  * We have to calculate the free blocks since the mm can drop
226  * undirtied hole pages behind our back.
227  *
228  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
229  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230  *
231  * It has to be called with the spinlock held.
232  */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	long freed;
237 
238 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 	if (freed > 0) {
240 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 		if (sbinfo->max_blocks)
242 			percpu_counter_add(&sbinfo->used_blocks, -freed);
243 		info->alloced -= freed;
244 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 		shmem_unacct_blocks(info->flags, freed);
246 	}
247 }
248 
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251 	struct shmem_inode_info *info = SHMEM_I(inode);
252 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 	unsigned long flags;
254 
255 	if (shmem_acct_block(info->flags, pages))
256 		return false;
257 	spin_lock_irqsave(&info->lock, flags);
258 	info->alloced += pages;
259 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 	shmem_recalc_inode(inode);
261 	spin_unlock_irqrestore(&info->lock, flags);
262 	inode->i_mapping->nrpages += pages;
263 
264 	if (!sbinfo->max_blocks)
265 		return true;
266 	if (percpu_counter_compare(&sbinfo->used_blocks,
267 				sbinfo->max_blocks - pages) > 0) {
268 		inode->i_mapping->nrpages -= pages;
269 		spin_lock_irqsave(&info->lock, flags);
270 		info->alloced -= pages;
271 		shmem_recalc_inode(inode);
272 		spin_unlock_irqrestore(&info->lock, flags);
273 		shmem_unacct_blocks(info->flags, pages);
274 		return false;
275 	}
276 	percpu_counter_add(&sbinfo->used_blocks, pages);
277 	return true;
278 }
279 
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282 	struct shmem_inode_info *info = SHMEM_I(inode);
283 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&info->lock, flags);
287 	info->alloced -= pages;
288 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 	shmem_recalc_inode(inode);
290 	spin_unlock_irqrestore(&info->lock, flags);
291 
292 	if (sbinfo->max_blocks)
293 		percpu_counter_sub(&sbinfo->used_blocks, pages);
294 	shmem_unacct_blocks(info->flags, pages);
295 }
296 
297 /*
298  * Replace item expected in radix tree by a new item, while holding tree lock.
299  */
300 static int shmem_radix_tree_replace(struct address_space *mapping,
301 			pgoff_t index, void *expected, void *replacement)
302 {
303 	void **pslot;
304 	void *item;
305 
306 	VM_BUG_ON(!expected);
307 	VM_BUG_ON(!replacement);
308 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
309 	if (!pslot)
310 		return -ENOENT;
311 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
312 	if (item != expected)
313 		return -ENOENT;
314 	radix_tree_replace_slot(pslot, replacement);
315 	return 0;
316 }
317 
318 /*
319  * Sometimes, before we decide whether to proceed or to fail, we must check
320  * that an entry was not already brought back from swap by a racing thread.
321  *
322  * Checking page is not enough: by the time a SwapCache page is locked, it
323  * might be reused, and again be SwapCache, using the same swap as before.
324  */
325 static bool shmem_confirm_swap(struct address_space *mapping,
326 			       pgoff_t index, swp_entry_t swap)
327 {
328 	void *item;
329 
330 	rcu_read_lock();
331 	item = radix_tree_lookup(&mapping->page_tree, index);
332 	rcu_read_unlock();
333 	return item == swp_to_radix_entry(swap);
334 }
335 
336 /*
337  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
338  *
339  * SHMEM_HUGE_NEVER:
340  *	disables huge pages for the mount;
341  * SHMEM_HUGE_ALWAYS:
342  *	enables huge pages for the mount;
343  * SHMEM_HUGE_WITHIN_SIZE:
344  *	only allocate huge pages if the page will be fully within i_size,
345  *	also respect fadvise()/madvise() hints;
346  * SHMEM_HUGE_ADVISE:
347  *	only allocate huge pages if requested with fadvise()/madvise();
348  */
349 
350 #define SHMEM_HUGE_NEVER	0
351 #define SHMEM_HUGE_ALWAYS	1
352 #define SHMEM_HUGE_WITHIN_SIZE	2
353 #define SHMEM_HUGE_ADVISE	3
354 
355 /*
356  * Special values.
357  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
358  *
359  * SHMEM_HUGE_DENY:
360  *	disables huge on shm_mnt and all mounts, for emergency use;
361  * SHMEM_HUGE_FORCE:
362  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
363  *
364  */
365 #define SHMEM_HUGE_DENY		(-1)
366 #define SHMEM_HUGE_FORCE	(-2)
367 
368 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
369 /* ifdef here to avoid bloating shmem.o when not necessary */
370 
371 int shmem_huge __read_mostly;
372 
373 static int shmem_parse_huge(const char *str)
374 {
375 	if (!strcmp(str, "never"))
376 		return SHMEM_HUGE_NEVER;
377 	if (!strcmp(str, "always"))
378 		return SHMEM_HUGE_ALWAYS;
379 	if (!strcmp(str, "within_size"))
380 		return SHMEM_HUGE_WITHIN_SIZE;
381 	if (!strcmp(str, "advise"))
382 		return SHMEM_HUGE_ADVISE;
383 	if (!strcmp(str, "deny"))
384 		return SHMEM_HUGE_DENY;
385 	if (!strcmp(str, "force"))
386 		return SHMEM_HUGE_FORCE;
387 	return -EINVAL;
388 }
389 
390 static const char *shmem_format_huge(int huge)
391 {
392 	switch (huge) {
393 	case SHMEM_HUGE_NEVER:
394 		return "never";
395 	case SHMEM_HUGE_ALWAYS:
396 		return "always";
397 	case SHMEM_HUGE_WITHIN_SIZE:
398 		return "within_size";
399 	case SHMEM_HUGE_ADVISE:
400 		return "advise";
401 	case SHMEM_HUGE_DENY:
402 		return "deny";
403 	case SHMEM_HUGE_FORCE:
404 		return "force";
405 	default:
406 		VM_BUG_ON(1);
407 		return "bad_val";
408 	}
409 }
410 
411 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
412 		struct shrink_control *sc, unsigned long nr_to_split)
413 {
414 	LIST_HEAD(list), *pos, *next;
415 	struct inode *inode;
416 	struct shmem_inode_info *info;
417 	struct page *page;
418 	unsigned long batch = sc ? sc->nr_to_scan : 128;
419 	int removed = 0, split = 0;
420 
421 	if (list_empty(&sbinfo->shrinklist))
422 		return SHRINK_STOP;
423 
424 	spin_lock(&sbinfo->shrinklist_lock);
425 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
426 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
427 
428 		/* pin the inode */
429 		inode = igrab(&info->vfs_inode);
430 
431 		/* inode is about to be evicted */
432 		if (!inode) {
433 			list_del_init(&info->shrinklist);
434 			removed++;
435 			goto next;
436 		}
437 
438 		/* Check if there's anything to gain */
439 		if (round_up(inode->i_size, PAGE_SIZE) ==
440 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
441 			list_del_init(&info->shrinklist);
442 			removed++;
443 			iput(inode);
444 			goto next;
445 		}
446 
447 		list_move(&info->shrinklist, &list);
448 next:
449 		if (!--batch)
450 			break;
451 	}
452 	spin_unlock(&sbinfo->shrinklist_lock);
453 
454 	list_for_each_safe(pos, next, &list) {
455 		int ret;
456 
457 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
458 		inode = &info->vfs_inode;
459 
460 		if (nr_to_split && split >= nr_to_split) {
461 			iput(inode);
462 			continue;
463 		}
464 
465 		page = find_lock_page(inode->i_mapping,
466 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
467 		if (!page)
468 			goto drop;
469 
470 		if (!PageTransHuge(page)) {
471 			unlock_page(page);
472 			put_page(page);
473 			goto drop;
474 		}
475 
476 		ret = split_huge_page(page);
477 		unlock_page(page);
478 		put_page(page);
479 
480 		if (ret) {
481 			/* split failed: leave it on the list */
482 			iput(inode);
483 			continue;
484 		}
485 
486 		split++;
487 drop:
488 		list_del_init(&info->shrinklist);
489 		removed++;
490 		iput(inode);
491 	}
492 
493 	spin_lock(&sbinfo->shrinklist_lock);
494 	list_splice_tail(&list, &sbinfo->shrinklist);
495 	sbinfo->shrinklist_len -= removed;
496 	spin_unlock(&sbinfo->shrinklist_lock);
497 
498 	return split;
499 }
500 
501 static long shmem_unused_huge_scan(struct super_block *sb,
502 		struct shrink_control *sc)
503 {
504 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
505 
506 	if (!READ_ONCE(sbinfo->shrinklist_len))
507 		return SHRINK_STOP;
508 
509 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
510 }
511 
512 static long shmem_unused_huge_count(struct super_block *sb,
513 		struct shrink_control *sc)
514 {
515 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
516 	return READ_ONCE(sbinfo->shrinklist_len);
517 }
518 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
519 
520 #define shmem_huge SHMEM_HUGE_DENY
521 
522 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
523 		struct shrink_control *sc, unsigned long nr_to_split)
524 {
525 	return 0;
526 }
527 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
528 
529 /*
530  * Like add_to_page_cache_locked, but error if expected item has gone.
531  */
532 static int shmem_add_to_page_cache(struct page *page,
533 				   struct address_space *mapping,
534 				   pgoff_t index, void *expected)
535 {
536 	int error, nr = hpage_nr_pages(page);
537 
538 	VM_BUG_ON_PAGE(PageTail(page), page);
539 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
540 	VM_BUG_ON_PAGE(!PageLocked(page), page);
541 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
542 	VM_BUG_ON(expected && PageTransHuge(page));
543 
544 	page_ref_add(page, nr);
545 	page->mapping = mapping;
546 	page->index = index;
547 
548 	spin_lock_irq(&mapping->tree_lock);
549 	if (PageTransHuge(page)) {
550 		void __rcu **results;
551 		pgoff_t idx;
552 		int i;
553 
554 		error = 0;
555 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
556 					&results, &idx, index, 1) &&
557 				idx < index + HPAGE_PMD_NR) {
558 			error = -EEXIST;
559 		}
560 
561 		if (!error) {
562 			for (i = 0; i < HPAGE_PMD_NR; i++) {
563 				error = radix_tree_insert(&mapping->page_tree,
564 						index + i, page + i);
565 				VM_BUG_ON(error);
566 			}
567 			count_vm_event(THP_FILE_ALLOC);
568 		}
569 	} else if (!expected) {
570 		error = radix_tree_insert(&mapping->page_tree, index, page);
571 	} else {
572 		error = shmem_radix_tree_replace(mapping, index, expected,
573 								 page);
574 	}
575 
576 	if (!error) {
577 		mapping->nrpages += nr;
578 		if (PageTransHuge(page))
579 			__inc_node_page_state(page, NR_SHMEM_THPS);
580 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
581 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
582 		spin_unlock_irq(&mapping->tree_lock);
583 	} else {
584 		page->mapping = NULL;
585 		spin_unlock_irq(&mapping->tree_lock);
586 		page_ref_sub(page, nr);
587 	}
588 	return error;
589 }
590 
591 /*
592  * Like delete_from_page_cache, but substitutes swap for page.
593  */
594 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
595 {
596 	struct address_space *mapping = page->mapping;
597 	int error;
598 
599 	VM_BUG_ON_PAGE(PageCompound(page), page);
600 
601 	spin_lock_irq(&mapping->tree_lock);
602 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
603 	page->mapping = NULL;
604 	mapping->nrpages--;
605 	__dec_node_page_state(page, NR_FILE_PAGES);
606 	__dec_node_page_state(page, NR_SHMEM);
607 	spin_unlock_irq(&mapping->tree_lock);
608 	put_page(page);
609 	BUG_ON(error);
610 }
611 
612 /*
613  * Remove swap entry from radix tree, free the swap and its page cache.
614  */
615 static int shmem_free_swap(struct address_space *mapping,
616 			   pgoff_t index, void *radswap)
617 {
618 	void *old;
619 
620 	spin_lock_irq(&mapping->tree_lock);
621 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
622 	spin_unlock_irq(&mapping->tree_lock);
623 	if (old != radswap)
624 		return -ENOENT;
625 	free_swap_and_cache(radix_to_swp_entry(radswap));
626 	return 0;
627 }
628 
629 /*
630  * Determine (in bytes) how many of the shmem object's pages mapped by the
631  * given offsets are swapped out.
632  *
633  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
634  * as long as the inode doesn't go away and racy results are not a problem.
635  */
636 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
637 						pgoff_t start, pgoff_t end)
638 {
639 	struct radix_tree_iter iter;
640 	void **slot;
641 	struct page *page;
642 	unsigned long swapped = 0;
643 
644 	rcu_read_lock();
645 
646 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
647 		if (iter.index >= end)
648 			break;
649 
650 		page = radix_tree_deref_slot(slot);
651 
652 		if (radix_tree_deref_retry(page)) {
653 			slot = radix_tree_iter_retry(&iter);
654 			continue;
655 		}
656 
657 		if (radix_tree_exceptional_entry(page))
658 			swapped++;
659 
660 		if (need_resched()) {
661 			cond_resched_rcu();
662 			slot = radix_tree_iter_next(&iter);
663 		}
664 	}
665 
666 	rcu_read_unlock();
667 
668 	return swapped << PAGE_SHIFT;
669 }
670 
671 /*
672  * Determine (in bytes) how many of the shmem object's pages mapped by the
673  * given vma is swapped out.
674  *
675  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
676  * as long as the inode doesn't go away and racy results are not a problem.
677  */
678 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
679 {
680 	struct inode *inode = file_inode(vma->vm_file);
681 	struct shmem_inode_info *info = SHMEM_I(inode);
682 	struct address_space *mapping = inode->i_mapping;
683 	unsigned long swapped;
684 
685 	/* Be careful as we don't hold info->lock */
686 	swapped = READ_ONCE(info->swapped);
687 
688 	/*
689 	 * The easier cases are when the shmem object has nothing in swap, or
690 	 * the vma maps it whole. Then we can simply use the stats that we
691 	 * already track.
692 	 */
693 	if (!swapped)
694 		return 0;
695 
696 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
697 		return swapped << PAGE_SHIFT;
698 
699 	/* Here comes the more involved part */
700 	return shmem_partial_swap_usage(mapping,
701 			linear_page_index(vma, vma->vm_start),
702 			linear_page_index(vma, vma->vm_end));
703 }
704 
705 /*
706  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
707  */
708 void shmem_unlock_mapping(struct address_space *mapping)
709 {
710 	struct pagevec pvec;
711 	pgoff_t indices[PAGEVEC_SIZE];
712 	pgoff_t index = 0;
713 
714 	pagevec_init(&pvec, 0);
715 	/*
716 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
717 	 */
718 	while (!mapping_unevictable(mapping)) {
719 		/*
720 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
721 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
722 		 */
723 		pvec.nr = find_get_entries(mapping, index,
724 					   PAGEVEC_SIZE, pvec.pages, indices);
725 		if (!pvec.nr)
726 			break;
727 		index = indices[pvec.nr - 1] + 1;
728 		pagevec_remove_exceptionals(&pvec);
729 		check_move_unevictable_pages(pvec.pages, pvec.nr);
730 		pagevec_release(&pvec);
731 		cond_resched();
732 	}
733 }
734 
735 /*
736  * Remove range of pages and swap entries from radix tree, and free them.
737  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
738  */
739 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
740 								 bool unfalloc)
741 {
742 	struct address_space *mapping = inode->i_mapping;
743 	struct shmem_inode_info *info = SHMEM_I(inode);
744 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
745 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
746 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
747 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
748 	struct pagevec pvec;
749 	pgoff_t indices[PAGEVEC_SIZE];
750 	long nr_swaps_freed = 0;
751 	pgoff_t index;
752 	int i;
753 
754 	if (lend == -1)
755 		end = -1;	/* unsigned, so actually very big */
756 
757 	pagevec_init(&pvec, 0);
758 	index = start;
759 	while (index < end) {
760 		pvec.nr = find_get_entries(mapping, index,
761 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
762 			pvec.pages, indices);
763 		if (!pvec.nr)
764 			break;
765 		for (i = 0; i < pagevec_count(&pvec); i++) {
766 			struct page *page = pvec.pages[i];
767 
768 			index = indices[i];
769 			if (index >= end)
770 				break;
771 
772 			if (radix_tree_exceptional_entry(page)) {
773 				if (unfalloc)
774 					continue;
775 				nr_swaps_freed += !shmem_free_swap(mapping,
776 								index, page);
777 				continue;
778 			}
779 
780 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
781 
782 			if (!trylock_page(page))
783 				continue;
784 
785 			if (PageTransTail(page)) {
786 				/* Middle of THP: zero out the page */
787 				clear_highpage(page);
788 				unlock_page(page);
789 				continue;
790 			} else if (PageTransHuge(page)) {
791 				if (index == round_down(end, HPAGE_PMD_NR)) {
792 					/*
793 					 * Range ends in the middle of THP:
794 					 * zero out the page
795 					 */
796 					clear_highpage(page);
797 					unlock_page(page);
798 					continue;
799 				}
800 				index += HPAGE_PMD_NR - 1;
801 				i += HPAGE_PMD_NR - 1;
802 			}
803 
804 			if (!unfalloc || !PageUptodate(page)) {
805 				VM_BUG_ON_PAGE(PageTail(page), page);
806 				if (page_mapping(page) == mapping) {
807 					VM_BUG_ON_PAGE(PageWriteback(page), page);
808 					truncate_inode_page(mapping, page);
809 				}
810 			}
811 			unlock_page(page);
812 		}
813 		pagevec_remove_exceptionals(&pvec);
814 		pagevec_release(&pvec);
815 		cond_resched();
816 		index++;
817 	}
818 
819 	if (partial_start) {
820 		struct page *page = NULL;
821 		shmem_getpage(inode, start - 1, &page, SGP_READ);
822 		if (page) {
823 			unsigned int top = PAGE_SIZE;
824 			if (start > end) {
825 				top = partial_end;
826 				partial_end = 0;
827 			}
828 			zero_user_segment(page, partial_start, top);
829 			set_page_dirty(page);
830 			unlock_page(page);
831 			put_page(page);
832 		}
833 	}
834 	if (partial_end) {
835 		struct page *page = NULL;
836 		shmem_getpage(inode, end, &page, SGP_READ);
837 		if (page) {
838 			zero_user_segment(page, 0, partial_end);
839 			set_page_dirty(page);
840 			unlock_page(page);
841 			put_page(page);
842 		}
843 	}
844 	if (start >= end)
845 		return;
846 
847 	index = start;
848 	while (index < end) {
849 		cond_resched();
850 
851 		pvec.nr = find_get_entries(mapping, index,
852 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
853 				pvec.pages, indices);
854 		if (!pvec.nr) {
855 			/* If all gone or hole-punch or unfalloc, we're done */
856 			if (index == start || end != -1)
857 				break;
858 			/* But if truncating, restart to make sure all gone */
859 			index = start;
860 			continue;
861 		}
862 		for (i = 0; i < pagevec_count(&pvec); i++) {
863 			struct page *page = pvec.pages[i];
864 
865 			index = indices[i];
866 			if (index >= end)
867 				break;
868 
869 			if (radix_tree_exceptional_entry(page)) {
870 				if (unfalloc)
871 					continue;
872 				if (shmem_free_swap(mapping, index, page)) {
873 					/* Swap was replaced by page: retry */
874 					index--;
875 					break;
876 				}
877 				nr_swaps_freed++;
878 				continue;
879 			}
880 
881 			lock_page(page);
882 
883 			if (PageTransTail(page)) {
884 				/* Middle of THP: zero out the page */
885 				clear_highpage(page);
886 				unlock_page(page);
887 				/*
888 				 * Partial thp truncate due 'start' in middle
889 				 * of THP: don't need to look on these pages
890 				 * again on !pvec.nr restart.
891 				 */
892 				if (index != round_down(end, HPAGE_PMD_NR))
893 					start++;
894 				continue;
895 			} else if (PageTransHuge(page)) {
896 				if (index == round_down(end, HPAGE_PMD_NR)) {
897 					/*
898 					 * Range ends in the middle of THP:
899 					 * zero out the page
900 					 */
901 					clear_highpage(page);
902 					unlock_page(page);
903 					continue;
904 				}
905 				index += HPAGE_PMD_NR - 1;
906 				i += HPAGE_PMD_NR - 1;
907 			}
908 
909 			if (!unfalloc || !PageUptodate(page)) {
910 				VM_BUG_ON_PAGE(PageTail(page), page);
911 				if (page_mapping(page) == mapping) {
912 					VM_BUG_ON_PAGE(PageWriteback(page), page);
913 					truncate_inode_page(mapping, page);
914 				} else {
915 					/* Page was replaced by swap: retry */
916 					unlock_page(page);
917 					index--;
918 					break;
919 				}
920 			}
921 			unlock_page(page);
922 		}
923 		pagevec_remove_exceptionals(&pvec);
924 		pagevec_release(&pvec);
925 		index++;
926 	}
927 
928 	spin_lock_irq(&info->lock);
929 	info->swapped -= nr_swaps_freed;
930 	shmem_recalc_inode(inode);
931 	spin_unlock_irq(&info->lock);
932 }
933 
934 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
935 {
936 	shmem_undo_range(inode, lstart, lend, false);
937 	inode->i_ctime = inode->i_mtime = current_time(inode);
938 }
939 EXPORT_SYMBOL_GPL(shmem_truncate_range);
940 
941 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
942 			 struct kstat *stat)
943 {
944 	struct inode *inode = dentry->d_inode;
945 	struct shmem_inode_info *info = SHMEM_I(inode);
946 
947 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
948 		spin_lock_irq(&info->lock);
949 		shmem_recalc_inode(inode);
950 		spin_unlock_irq(&info->lock);
951 	}
952 	generic_fillattr(inode, stat);
953 	return 0;
954 }
955 
956 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
957 {
958 	struct inode *inode = d_inode(dentry);
959 	struct shmem_inode_info *info = SHMEM_I(inode);
960 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
961 	int error;
962 
963 	error = setattr_prepare(dentry, attr);
964 	if (error)
965 		return error;
966 
967 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
968 		loff_t oldsize = inode->i_size;
969 		loff_t newsize = attr->ia_size;
970 
971 		/* protected by i_mutex */
972 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
973 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
974 			return -EPERM;
975 
976 		if (newsize != oldsize) {
977 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
978 					oldsize, newsize);
979 			if (error)
980 				return error;
981 			i_size_write(inode, newsize);
982 			inode->i_ctime = inode->i_mtime = current_time(inode);
983 		}
984 		if (newsize <= oldsize) {
985 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
986 			if (oldsize > holebegin)
987 				unmap_mapping_range(inode->i_mapping,
988 							holebegin, 0, 1);
989 			if (info->alloced)
990 				shmem_truncate_range(inode,
991 							newsize, (loff_t)-1);
992 			/* unmap again to remove racily COWed private pages */
993 			if (oldsize > holebegin)
994 				unmap_mapping_range(inode->i_mapping,
995 							holebegin, 0, 1);
996 
997 			/*
998 			 * Part of the huge page can be beyond i_size: subject
999 			 * to shrink under memory pressure.
1000 			 */
1001 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1002 				spin_lock(&sbinfo->shrinklist_lock);
1003 				if (list_empty(&info->shrinklist)) {
1004 					list_add_tail(&info->shrinklist,
1005 							&sbinfo->shrinklist);
1006 					sbinfo->shrinklist_len++;
1007 				}
1008 				spin_unlock(&sbinfo->shrinklist_lock);
1009 			}
1010 		}
1011 	}
1012 
1013 	setattr_copy(inode, attr);
1014 	if (attr->ia_valid & ATTR_MODE)
1015 		error = posix_acl_chmod(inode, inode->i_mode);
1016 	return error;
1017 }
1018 
1019 static void shmem_evict_inode(struct inode *inode)
1020 {
1021 	struct shmem_inode_info *info = SHMEM_I(inode);
1022 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1023 
1024 	if (inode->i_mapping->a_ops == &shmem_aops) {
1025 		shmem_unacct_size(info->flags, inode->i_size);
1026 		inode->i_size = 0;
1027 		shmem_truncate_range(inode, 0, (loff_t)-1);
1028 		if (!list_empty(&info->shrinklist)) {
1029 			spin_lock(&sbinfo->shrinklist_lock);
1030 			if (!list_empty(&info->shrinklist)) {
1031 				list_del_init(&info->shrinklist);
1032 				sbinfo->shrinklist_len--;
1033 			}
1034 			spin_unlock(&sbinfo->shrinklist_lock);
1035 		}
1036 		if (!list_empty(&info->swaplist)) {
1037 			mutex_lock(&shmem_swaplist_mutex);
1038 			list_del_init(&info->swaplist);
1039 			mutex_unlock(&shmem_swaplist_mutex);
1040 		}
1041 	}
1042 
1043 	simple_xattrs_free(&info->xattrs);
1044 	WARN_ON(inode->i_blocks);
1045 	shmem_free_inode(inode->i_sb);
1046 	clear_inode(inode);
1047 }
1048 
1049 /*
1050  * If swap found in inode, free it and move page from swapcache to filecache.
1051  */
1052 static int shmem_unuse_inode(struct shmem_inode_info *info,
1053 			     swp_entry_t swap, struct page **pagep)
1054 {
1055 	struct address_space *mapping = info->vfs_inode.i_mapping;
1056 	void *radswap;
1057 	pgoff_t index;
1058 	gfp_t gfp;
1059 	int error = 0;
1060 
1061 	radswap = swp_to_radix_entry(swap);
1062 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
1063 	if (index == -1)
1064 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1065 
1066 	/*
1067 	 * Move _head_ to start search for next from here.
1068 	 * But be careful: shmem_evict_inode checks list_empty without taking
1069 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1070 	 * would appear empty, if it were the only one on shmem_swaplist.
1071 	 */
1072 	if (shmem_swaplist.next != &info->swaplist)
1073 		list_move_tail(&shmem_swaplist, &info->swaplist);
1074 
1075 	gfp = mapping_gfp_mask(mapping);
1076 	if (shmem_should_replace_page(*pagep, gfp)) {
1077 		mutex_unlock(&shmem_swaplist_mutex);
1078 		error = shmem_replace_page(pagep, gfp, info, index);
1079 		mutex_lock(&shmem_swaplist_mutex);
1080 		/*
1081 		 * We needed to drop mutex to make that restrictive page
1082 		 * allocation, but the inode might have been freed while we
1083 		 * dropped it: although a racing shmem_evict_inode() cannot
1084 		 * complete without emptying the radix_tree, our page lock
1085 		 * on this swapcache page is not enough to prevent that -
1086 		 * free_swap_and_cache() of our swap entry will only
1087 		 * trylock_page(), removing swap from radix_tree whatever.
1088 		 *
1089 		 * We must not proceed to shmem_add_to_page_cache() if the
1090 		 * inode has been freed, but of course we cannot rely on
1091 		 * inode or mapping or info to check that.  However, we can
1092 		 * safely check if our swap entry is still in use (and here
1093 		 * it can't have got reused for another page): if it's still
1094 		 * in use, then the inode cannot have been freed yet, and we
1095 		 * can safely proceed (if it's no longer in use, that tells
1096 		 * nothing about the inode, but we don't need to unuse swap).
1097 		 */
1098 		if (!page_swapcount(*pagep))
1099 			error = -ENOENT;
1100 	}
1101 
1102 	/*
1103 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1104 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1105 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1106 	 */
1107 	if (!error)
1108 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1109 						radswap);
1110 	if (error != -ENOMEM) {
1111 		/*
1112 		 * Truncation and eviction use free_swap_and_cache(), which
1113 		 * only does trylock page: if we raced, best clean up here.
1114 		 */
1115 		delete_from_swap_cache(*pagep);
1116 		set_page_dirty(*pagep);
1117 		if (!error) {
1118 			spin_lock_irq(&info->lock);
1119 			info->swapped--;
1120 			spin_unlock_irq(&info->lock);
1121 			swap_free(swap);
1122 		}
1123 	}
1124 	return error;
1125 }
1126 
1127 /*
1128  * Search through swapped inodes to find and replace swap by page.
1129  */
1130 int shmem_unuse(swp_entry_t swap, struct page *page)
1131 {
1132 	struct list_head *this, *next;
1133 	struct shmem_inode_info *info;
1134 	struct mem_cgroup *memcg;
1135 	int error = 0;
1136 
1137 	/*
1138 	 * There's a faint possibility that swap page was replaced before
1139 	 * caller locked it: caller will come back later with the right page.
1140 	 */
1141 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1142 		goto out;
1143 
1144 	/*
1145 	 * Charge page using GFP_KERNEL while we can wait, before taking
1146 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1147 	 * Charged back to the user (not to caller) when swap account is used.
1148 	 */
1149 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1150 			false);
1151 	if (error)
1152 		goto out;
1153 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1154 	error = -EAGAIN;
1155 
1156 	mutex_lock(&shmem_swaplist_mutex);
1157 	list_for_each_safe(this, next, &shmem_swaplist) {
1158 		info = list_entry(this, struct shmem_inode_info, swaplist);
1159 		if (info->swapped)
1160 			error = shmem_unuse_inode(info, swap, &page);
1161 		else
1162 			list_del_init(&info->swaplist);
1163 		cond_resched();
1164 		if (error != -EAGAIN)
1165 			break;
1166 		/* found nothing in this: move on to search the next */
1167 	}
1168 	mutex_unlock(&shmem_swaplist_mutex);
1169 
1170 	if (error) {
1171 		if (error != -ENOMEM)
1172 			error = 0;
1173 		mem_cgroup_cancel_charge(page, memcg, false);
1174 	} else
1175 		mem_cgroup_commit_charge(page, memcg, true, false);
1176 out:
1177 	unlock_page(page);
1178 	put_page(page);
1179 	return error;
1180 }
1181 
1182 /*
1183  * Move the page from the page cache to the swap cache.
1184  */
1185 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1186 {
1187 	struct shmem_inode_info *info;
1188 	struct address_space *mapping;
1189 	struct inode *inode;
1190 	swp_entry_t swap;
1191 	pgoff_t index;
1192 
1193 	VM_BUG_ON_PAGE(PageCompound(page), page);
1194 	BUG_ON(!PageLocked(page));
1195 	mapping = page->mapping;
1196 	index = page->index;
1197 	inode = mapping->host;
1198 	info = SHMEM_I(inode);
1199 	if (info->flags & VM_LOCKED)
1200 		goto redirty;
1201 	if (!total_swap_pages)
1202 		goto redirty;
1203 
1204 	/*
1205 	 * Our capabilities prevent regular writeback or sync from ever calling
1206 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1207 	 * its underlying filesystem, in which case tmpfs should write out to
1208 	 * swap only in response to memory pressure, and not for the writeback
1209 	 * threads or sync.
1210 	 */
1211 	if (!wbc->for_reclaim) {
1212 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1213 		goto redirty;
1214 	}
1215 
1216 	/*
1217 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1218 	 * value into swapfile.c, the only way we can correctly account for a
1219 	 * fallocated page arriving here is now to initialize it and write it.
1220 	 *
1221 	 * That's okay for a page already fallocated earlier, but if we have
1222 	 * not yet completed the fallocation, then (a) we want to keep track
1223 	 * of this page in case we have to undo it, and (b) it may not be a
1224 	 * good idea to continue anyway, once we're pushing into swap.  So
1225 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1226 	 */
1227 	if (!PageUptodate(page)) {
1228 		if (inode->i_private) {
1229 			struct shmem_falloc *shmem_falloc;
1230 			spin_lock(&inode->i_lock);
1231 			shmem_falloc = inode->i_private;
1232 			if (shmem_falloc &&
1233 			    !shmem_falloc->waitq &&
1234 			    index >= shmem_falloc->start &&
1235 			    index < shmem_falloc->next)
1236 				shmem_falloc->nr_unswapped++;
1237 			else
1238 				shmem_falloc = NULL;
1239 			spin_unlock(&inode->i_lock);
1240 			if (shmem_falloc)
1241 				goto redirty;
1242 		}
1243 		clear_highpage(page);
1244 		flush_dcache_page(page);
1245 		SetPageUptodate(page);
1246 	}
1247 
1248 	swap = get_swap_page();
1249 	if (!swap.val)
1250 		goto redirty;
1251 
1252 	if (mem_cgroup_try_charge_swap(page, swap))
1253 		goto free_swap;
1254 
1255 	/*
1256 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1257 	 * if it's not already there.  Do it now before the page is
1258 	 * moved to swap cache, when its pagelock no longer protects
1259 	 * the inode from eviction.  But don't unlock the mutex until
1260 	 * we've incremented swapped, because shmem_unuse_inode() will
1261 	 * prune a !swapped inode from the swaplist under this mutex.
1262 	 */
1263 	mutex_lock(&shmem_swaplist_mutex);
1264 	if (list_empty(&info->swaplist))
1265 		list_add_tail(&info->swaplist, &shmem_swaplist);
1266 
1267 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1268 		spin_lock_irq(&info->lock);
1269 		shmem_recalc_inode(inode);
1270 		info->swapped++;
1271 		spin_unlock_irq(&info->lock);
1272 
1273 		swap_shmem_alloc(swap);
1274 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1275 
1276 		mutex_unlock(&shmem_swaplist_mutex);
1277 		BUG_ON(page_mapped(page));
1278 		swap_writepage(page, wbc);
1279 		return 0;
1280 	}
1281 
1282 	mutex_unlock(&shmem_swaplist_mutex);
1283 free_swap:
1284 	swapcache_free(swap);
1285 redirty:
1286 	set_page_dirty(page);
1287 	if (wbc->for_reclaim)
1288 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1289 	unlock_page(page);
1290 	return 0;
1291 }
1292 
1293 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1294 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1295 {
1296 	char buffer[64];
1297 
1298 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1299 		return;		/* show nothing */
1300 
1301 	mpol_to_str(buffer, sizeof(buffer), mpol);
1302 
1303 	seq_printf(seq, ",mpol=%s", buffer);
1304 }
1305 
1306 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1307 {
1308 	struct mempolicy *mpol = NULL;
1309 	if (sbinfo->mpol) {
1310 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1311 		mpol = sbinfo->mpol;
1312 		mpol_get(mpol);
1313 		spin_unlock(&sbinfo->stat_lock);
1314 	}
1315 	return mpol;
1316 }
1317 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1318 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1319 {
1320 }
1321 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1322 {
1323 	return NULL;
1324 }
1325 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1326 #ifndef CONFIG_NUMA
1327 #define vm_policy vm_private_data
1328 #endif
1329 
1330 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1331 		struct shmem_inode_info *info, pgoff_t index)
1332 {
1333 	/* Create a pseudo vma that just contains the policy */
1334 	vma->vm_start = 0;
1335 	/* Bias interleave by inode number to distribute better across nodes */
1336 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1337 	vma->vm_ops = NULL;
1338 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1339 }
1340 
1341 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1342 {
1343 	/* Drop reference taken by mpol_shared_policy_lookup() */
1344 	mpol_cond_put(vma->vm_policy);
1345 }
1346 
1347 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1348 			struct shmem_inode_info *info, pgoff_t index)
1349 {
1350 	struct vm_area_struct pvma;
1351 	struct page *page;
1352 
1353 	shmem_pseudo_vma_init(&pvma, info, index);
1354 	page = swapin_readahead(swap, gfp, &pvma, 0);
1355 	shmem_pseudo_vma_destroy(&pvma);
1356 
1357 	return page;
1358 }
1359 
1360 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1361 		struct shmem_inode_info *info, pgoff_t index)
1362 {
1363 	struct vm_area_struct pvma;
1364 	struct inode *inode = &info->vfs_inode;
1365 	struct address_space *mapping = inode->i_mapping;
1366 	pgoff_t idx, hindex;
1367 	void __rcu **results;
1368 	struct page *page;
1369 
1370 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1371 		return NULL;
1372 
1373 	hindex = round_down(index, HPAGE_PMD_NR);
1374 	rcu_read_lock();
1375 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1376 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1377 		rcu_read_unlock();
1378 		return NULL;
1379 	}
1380 	rcu_read_unlock();
1381 
1382 	shmem_pseudo_vma_init(&pvma, info, hindex);
1383 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1384 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1385 	shmem_pseudo_vma_destroy(&pvma);
1386 	if (page)
1387 		prep_transhuge_page(page);
1388 	return page;
1389 }
1390 
1391 static struct page *shmem_alloc_page(gfp_t gfp,
1392 			struct shmem_inode_info *info, pgoff_t index)
1393 {
1394 	struct vm_area_struct pvma;
1395 	struct page *page;
1396 
1397 	shmem_pseudo_vma_init(&pvma, info, index);
1398 	page = alloc_page_vma(gfp, &pvma, 0);
1399 	shmem_pseudo_vma_destroy(&pvma);
1400 
1401 	return page;
1402 }
1403 
1404 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1405 		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1406 		pgoff_t index, bool huge)
1407 {
1408 	struct page *page;
1409 	int nr;
1410 	int err = -ENOSPC;
1411 
1412 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1413 		huge = false;
1414 	nr = huge ? HPAGE_PMD_NR : 1;
1415 
1416 	if (shmem_acct_block(info->flags, nr))
1417 		goto failed;
1418 	if (sbinfo->max_blocks) {
1419 		if (percpu_counter_compare(&sbinfo->used_blocks,
1420 					sbinfo->max_blocks - nr) > 0)
1421 			goto unacct;
1422 		percpu_counter_add(&sbinfo->used_blocks, nr);
1423 	}
1424 
1425 	if (huge)
1426 		page = shmem_alloc_hugepage(gfp, info, index);
1427 	else
1428 		page = shmem_alloc_page(gfp, info, index);
1429 	if (page) {
1430 		__SetPageLocked(page);
1431 		__SetPageSwapBacked(page);
1432 		return page;
1433 	}
1434 
1435 	err = -ENOMEM;
1436 	if (sbinfo->max_blocks)
1437 		percpu_counter_add(&sbinfo->used_blocks, -nr);
1438 unacct:
1439 	shmem_unacct_blocks(info->flags, nr);
1440 failed:
1441 	return ERR_PTR(err);
1442 }
1443 
1444 /*
1445  * When a page is moved from swapcache to shmem filecache (either by the
1446  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1447  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1448  * ignorance of the mapping it belongs to.  If that mapping has special
1449  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1450  * we may need to copy to a suitable page before moving to filecache.
1451  *
1452  * In a future release, this may well be extended to respect cpuset and
1453  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1454  * but for now it is a simple matter of zone.
1455  */
1456 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1457 {
1458 	return page_zonenum(page) > gfp_zone(gfp);
1459 }
1460 
1461 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1462 				struct shmem_inode_info *info, pgoff_t index)
1463 {
1464 	struct page *oldpage, *newpage;
1465 	struct address_space *swap_mapping;
1466 	pgoff_t swap_index;
1467 	int error;
1468 
1469 	oldpage = *pagep;
1470 	swap_index = page_private(oldpage);
1471 	swap_mapping = page_mapping(oldpage);
1472 
1473 	/*
1474 	 * We have arrived here because our zones are constrained, so don't
1475 	 * limit chance of success by further cpuset and node constraints.
1476 	 */
1477 	gfp &= ~GFP_CONSTRAINT_MASK;
1478 	newpage = shmem_alloc_page(gfp, info, index);
1479 	if (!newpage)
1480 		return -ENOMEM;
1481 
1482 	get_page(newpage);
1483 	copy_highpage(newpage, oldpage);
1484 	flush_dcache_page(newpage);
1485 
1486 	SetPageUptodate(newpage);
1487 	set_page_private(newpage, swap_index);
1488 	SetPageSwapCache(newpage);
1489 
1490 	/*
1491 	 * Our caller will very soon move newpage out of swapcache, but it's
1492 	 * a nice clean interface for us to replace oldpage by newpage there.
1493 	 */
1494 	spin_lock_irq(&swap_mapping->tree_lock);
1495 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1496 								   newpage);
1497 	if (!error) {
1498 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1499 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1500 	}
1501 	spin_unlock_irq(&swap_mapping->tree_lock);
1502 
1503 	if (unlikely(error)) {
1504 		/*
1505 		 * Is this possible?  I think not, now that our callers check
1506 		 * both PageSwapCache and page_private after getting page lock;
1507 		 * but be defensive.  Reverse old to newpage for clear and free.
1508 		 */
1509 		oldpage = newpage;
1510 	} else {
1511 		mem_cgroup_migrate(oldpage, newpage);
1512 		lru_cache_add_anon(newpage);
1513 		*pagep = newpage;
1514 	}
1515 
1516 	ClearPageSwapCache(oldpage);
1517 	set_page_private(oldpage, 0);
1518 
1519 	unlock_page(oldpage);
1520 	put_page(oldpage);
1521 	put_page(oldpage);
1522 	return error;
1523 }
1524 
1525 /*
1526  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1527  *
1528  * If we allocate a new one we do not mark it dirty. That's up to the
1529  * vm. If we swap it in we mark it dirty since we also free the swap
1530  * entry since a page cannot live in both the swap and page cache.
1531  *
1532  * fault_mm and fault_type are only supplied by shmem_fault:
1533  * otherwise they are NULL.
1534  */
1535 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1536 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1537 	struct mm_struct *fault_mm, int *fault_type)
1538 {
1539 	struct address_space *mapping = inode->i_mapping;
1540 	struct shmem_inode_info *info;
1541 	struct shmem_sb_info *sbinfo;
1542 	struct mm_struct *charge_mm;
1543 	struct mem_cgroup *memcg;
1544 	struct page *page;
1545 	swp_entry_t swap;
1546 	enum sgp_type sgp_huge = sgp;
1547 	pgoff_t hindex = index;
1548 	int error;
1549 	int once = 0;
1550 	int alloced = 0;
1551 
1552 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1553 		return -EFBIG;
1554 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1555 		sgp = SGP_CACHE;
1556 repeat:
1557 	swap.val = 0;
1558 	page = find_lock_entry(mapping, index);
1559 	if (radix_tree_exceptional_entry(page)) {
1560 		swap = radix_to_swp_entry(page);
1561 		page = NULL;
1562 	}
1563 
1564 	if (sgp <= SGP_CACHE &&
1565 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1566 		error = -EINVAL;
1567 		goto unlock;
1568 	}
1569 
1570 	if (page && sgp == SGP_WRITE)
1571 		mark_page_accessed(page);
1572 
1573 	/* fallocated page? */
1574 	if (page && !PageUptodate(page)) {
1575 		if (sgp != SGP_READ)
1576 			goto clear;
1577 		unlock_page(page);
1578 		put_page(page);
1579 		page = NULL;
1580 	}
1581 	if (page || (sgp == SGP_READ && !swap.val)) {
1582 		*pagep = page;
1583 		return 0;
1584 	}
1585 
1586 	/*
1587 	 * Fast cache lookup did not find it:
1588 	 * bring it back from swap or allocate.
1589 	 */
1590 	info = SHMEM_I(inode);
1591 	sbinfo = SHMEM_SB(inode->i_sb);
1592 	charge_mm = fault_mm ? : current->mm;
1593 
1594 	if (swap.val) {
1595 		/* Look it up and read it in.. */
1596 		page = lookup_swap_cache(swap);
1597 		if (!page) {
1598 			/* Or update major stats only when swapin succeeds?? */
1599 			if (fault_type) {
1600 				*fault_type |= VM_FAULT_MAJOR;
1601 				count_vm_event(PGMAJFAULT);
1602 				mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1603 			}
1604 			/* Here we actually start the io */
1605 			page = shmem_swapin(swap, gfp, info, index);
1606 			if (!page) {
1607 				error = -ENOMEM;
1608 				goto failed;
1609 			}
1610 		}
1611 
1612 		/* We have to do this with page locked to prevent races */
1613 		lock_page(page);
1614 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1615 		    !shmem_confirm_swap(mapping, index, swap)) {
1616 			error = -EEXIST;	/* try again */
1617 			goto unlock;
1618 		}
1619 		if (!PageUptodate(page)) {
1620 			error = -EIO;
1621 			goto failed;
1622 		}
1623 		wait_on_page_writeback(page);
1624 
1625 		if (shmem_should_replace_page(page, gfp)) {
1626 			error = shmem_replace_page(&page, gfp, info, index);
1627 			if (error)
1628 				goto failed;
1629 		}
1630 
1631 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1632 				false);
1633 		if (!error) {
1634 			error = shmem_add_to_page_cache(page, mapping, index,
1635 						swp_to_radix_entry(swap));
1636 			/*
1637 			 * We already confirmed swap under page lock, and make
1638 			 * no memory allocation here, so usually no possibility
1639 			 * of error; but free_swap_and_cache() only trylocks a
1640 			 * page, so it is just possible that the entry has been
1641 			 * truncated or holepunched since swap was confirmed.
1642 			 * shmem_undo_range() will have done some of the
1643 			 * unaccounting, now delete_from_swap_cache() will do
1644 			 * the rest.
1645 			 * Reset swap.val? No, leave it so "failed" goes back to
1646 			 * "repeat": reading a hole and writing should succeed.
1647 			 */
1648 			if (error) {
1649 				mem_cgroup_cancel_charge(page, memcg, false);
1650 				delete_from_swap_cache(page);
1651 			}
1652 		}
1653 		if (error)
1654 			goto failed;
1655 
1656 		mem_cgroup_commit_charge(page, memcg, true, false);
1657 
1658 		spin_lock_irq(&info->lock);
1659 		info->swapped--;
1660 		shmem_recalc_inode(inode);
1661 		spin_unlock_irq(&info->lock);
1662 
1663 		if (sgp == SGP_WRITE)
1664 			mark_page_accessed(page);
1665 
1666 		delete_from_swap_cache(page);
1667 		set_page_dirty(page);
1668 		swap_free(swap);
1669 
1670 	} else {
1671 		/* shmem_symlink() */
1672 		if (mapping->a_ops != &shmem_aops)
1673 			goto alloc_nohuge;
1674 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1675 			goto alloc_nohuge;
1676 		if (shmem_huge == SHMEM_HUGE_FORCE)
1677 			goto alloc_huge;
1678 		switch (sbinfo->huge) {
1679 			loff_t i_size;
1680 			pgoff_t off;
1681 		case SHMEM_HUGE_NEVER:
1682 			goto alloc_nohuge;
1683 		case SHMEM_HUGE_WITHIN_SIZE:
1684 			off = round_up(index, HPAGE_PMD_NR);
1685 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1686 			if (i_size >= HPAGE_PMD_SIZE &&
1687 					i_size >> PAGE_SHIFT >= off)
1688 				goto alloc_huge;
1689 			/* fallthrough */
1690 		case SHMEM_HUGE_ADVISE:
1691 			if (sgp_huge == SGP_HUGE)
1692 				goto alloc_huge;
1693 			/* TODO: implement fadvise() hints */
1694 			goto alloc_nohuge;
1695 		}
1696 
1697 alloc_huge:
1698 		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1699 				index, true);
1700 		if (IS_ERR(page)) {
1701 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1702 					index, false);
1703 		}
1704 		if (IS_ERR(page)) {
1705 			int retry = 5;
1706 			error = PTR_ERR(page);
1707 			page = NULL;
1708 			if (error != -ENOSPC)
1709 				goto failed;
1710 			/*
1711 			 * Try to reclaim some spece by splitting a huge page
1712 			 * beyond i_size on the filesystem.
1713 			 */
1714 			while (retry--) {
1715 				int ret;
1716 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1717 				if (ret == SHRINK_STOP)
1718 					break;
1719 				if (ret)
1720 					goto alloc_nohuge;
1721 			}
1722 			goto failed;
1723 		}
1724 
1725 		if (PageTransHuge(page))
1726 			hindex = round_down(index, HPAGE_PMD_NR);
1727 		else
1728 			hindex = index;
1729 
1730 		if (sgp == SGP_WRITE)
1731 			__SetPageReferenced(page);
1732 
1733 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1734 				PageTransHuge(page));
1735 		if (error)
1736 			goto unacct;
1737 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1738 				compound_order(page));
1739 		if (!error) {
1740 			error = shmem_add_to_page_cache(page, mapping, hindex,
1741 							NULL);
1742 			radix_tree_preload_end();
1743 		}
1744 		if (error) {
1745 			mem_cgroup_cancel_charge(page, memcg,
1746 					PageTransHuge(page));
1747 			goto unacct;
1748 		}
1749 		mem_cgroup_commit_charge(page, memcg, false,
1750 				PageTransHuge(page));
1751 		lru_cache_add_anon(page);
1752 
1753 		spin_lock_irq(&info->lock);
1754 		info->alloced += 1 << compound_order(page);
1755 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1756 		shmem_recalc_inode(inode);
1757 		spin_unlock_irq(&info->lock);
1758 		alloced = true;
1759 
1760 		if (PageTransHuge(page) &&
1761 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1762 				hindex + HPAGE_PMD_NR - 1) {
1763 			/*
1764 			 * Part of the huge page is beyond i_size: subject
1765 			 * to shrink under memory pressure.
1766 			 */
1767 			spin_lock(&sbinfo->shrinklist_lock);
1768 			if (list_empty(&info->shrinklist)) {
1769 				list_add_tail(&info->shrinklist,
1770 						&sbinfo->shrinklist);
1771 				sbinfo->shrinklist_len++;
1772 			}
1773 			spin_unlock(&sbinfo->shrinklist_lock);
1774 		}
1775 
1776 		/*
1777 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1778 		 */
1779 		if (sgp == SGP_FALLOC)
1780 			sgp = SGP_WRITE;
1781 clear:
1782 		/*
1783 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1784 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1785 		 * it now, lest undo on failure cancel our earlier guarantee.
1786 		 */
1787 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1788 			struct page *head = compound_head(page);
1789 			int i;
1790 
1791 			for (i = 0; i < (1 << compound_order(head)); i++) {
1792 				clear_highpage(head + i);
1793 				flush_dcache_page(head + i);
1794 			}
1795 			SetPageUptodate(head);
1796 		}
1797 	}
1798 
1799 	/* Perhaps the file has been truncated since we checked */
1800 	if (sgp <= SGP_CACHE &&
1801 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1802 		if (alloced) {
1803 			ClearPageDirty(page);
1804 			delete_from_page_cache(page);
1805 			spin_lock_irq(&info->lock);
1806 			shmem_recalc_inode(inode);
1807 			spin_unlock_irq(&info->lock);
1808 		}
1809 		error = -EINVAL;
1810 		goto unlock;
1811 	}
1812 	*pagep = page + index - hindex;
1813 	return 0;
1814 
1815 	/*
1816 	 * Error recovery.
1817 	 */
1818 unacct:
1819 	if (sbinfo->max_blocks)
1820 		percpu_counter_sub(&sbinfo->used_blocks,
1821 				1 << compound_order(page));
1822 	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1823 
1824 	if (PageTransHuge(page)) {
1825 		unlock_page(page);
1826 		put_page(page);
1827 		goto alloc_nohuge;
1828 	}
1829 failed:
1830 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1831 		error = -EEXIST;
1832 unlock:
1833 	if (page) {
1834 		unlock_page(page);
1835 		put_page(page);
1836 	}
1837 	if (error == -ENOSPC && !once++) {
1838 		info = SHMEM_I(inode);
1839 		spin_lock_irq(&info->lock);
1840 		shmem_recalc_inode(inode);
1841 		spin_unlock_irq(&info->lock);
1842 		goto repeat;
1843 	}
1844 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1845 		goto repeat;
1846 	return error;
1847 }
1848 
1849 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1850 {
1851 	struct inode *inode = file_inode(vma->vm_file);
1852 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1853 	enum sgp_type sgp;
1854 	int error;
1855 	int ret = VM_FAULT_LOCKED;
1856 
1857 	/*
1858 	 * Trinity finds that probing a hole which tmpfs is punching can
1859 	 * prevent the hole-punch from ever completing: which in turn
1860 	 * locks writers out with its hold on i_mutex.  So refrain from
1861 	 * faulting pages into the hole while it's being punched.  Although
1862 	 * shmem_undo_range() does remove the additions, it may be unable to
1863 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1864 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1865 	 *
1866 	 * It does not matter if we sometimes reach this check just before the
1867 	 * hole-punch begins, so that one fault then races with the punch:
1868 	 * we just need to make racing faults a rare case.
1869 	 *
1870 	 * The implementation below would be much simpler if we just used a
1871 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1872 	 * and bloating every shmem inode for this unlikely case would be sad.
1873 	 */
1874 	if (unlikely(inode->i_private)) {
1875 		struct shmem_falloc *shmem_falloc;
1876 
1877 		spin_lock(&inode->i_lock);
1878 		shmem_falloc = inode->i_private;
1879 		if (shmem_falloc &&
1880 		    shmem_falloc->waitq &&
1881 		    vmf->pgoff >= shmem_falloc->start &&
1882 		    vmf->pgoff < shmem_falloc->next) {
1883 			wait_queue_head_t *shmem_falloc_waitq;
1884 			DEFINE_WAIT(shmem_fault_wait);
1885 
1886 			ret = VM_FAULT_NOPAGE;
1887 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1888 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1889 				/* It's polite to up mmap_sem if we can */
1890 				up_read(&vma->vm_mm->mmap_sem);
1891 				ret = VM_FAULT_RETRY;
1892 			}
1893 
1894 			shmem_falloc_waitq = shmem_falloc->waitq;
1895 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1896 					TASK_UNINTERRUPTIBLE);
1897 			spin_unlock(&inode->i_lock);
1898 			schedule();
1899 
1900 			/*
1901 			 * shmem_falloc_waitq points into the shmem_fallocate()
1902 			 * stack of the hole-punching task: shmem_falloc_waitq
1903 			 * is usually invalid by the time we reach here, but
1904 			 * finish_wait() does not dereference it in that case;
1905 			 * though i_lock needed lest racing with wake_up_all().
1906 			 */
1907 			spin_lock(&inode->i_lock);
1908 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1909 			spin_unlock(&inode->i_lock);
1910 			return ret;
1911 		}
1912 		spin_unlock(&inode->i_lock);
1913 	}
1914 
1915 	sgp = SGP_CACHE;
1916 	if (vma->vm_flags & VM_HUGEPAGE)
1917 		sgp = SGP_HUGE;
1918 	else if (vma->vm_flags & VM_NOHUGEPAGE)
1919 		sgp = SGP_NOHUGE;
1920 
1921 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1922 				  gfp, vma->vm_mm, &ret);
1923 	if (error)
1924 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1925 	return ret;
1926 }
1927 
1928 unsigned long shmem_get_unmapped_area(struct file *file,
1929 				      unsigned long uaddr, unsigned long len,
1930 				      unsigned long pgoff, unsigned long flags)
1931 {
1932 	unsigned long (*get_area)(struct file *,
1933 		unsigned long, unsigned long, unsigned long, unsigned long);
1934 	unsigned long addr;
1935 	unsigned long offset;
1936 	unsigned long inflated_len;
1937 	unsigned long inflated_addr;
1938 	unsigned long inflated_offset;
1939 
1940 	if (len > TASK_SIZE)
1941 		return -ENOMEM;
1942 
1943 	get_area = current->mm->get_unmapped_area;
1944 	addr = get_area(file, uaddr, len, pgoff, flags);
1945 
1946 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1947 		return addr;
1948 	if (IS_ERR_VALUE(addr))
1949 		return addr;
1950 	if (addr & ~PAGE_MASK)
1951 		return addr;
1952 	if (addr > TASK_SIZE - len)
1953 		return addr;
1954 
1955 	if (shmem_huge == SHMEM_HUGE_DENY)
1956 		return addr;
1957 	if (len < HPAGE_PMD_SIZE)
1958 		return addr;
1959 	if (flags & MAP_FIXED)
1960 		return addr;
1961 	/*
1962 	 * Our priority is to support MAP_SHARED mapped hugely;
1963 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1964 	 * But if caller specified an address hint, respect that as before.
1965 	 */
1966 	if (uaddr)
1967 		return addr;
1968 
1969 	if (shmem_huge != SHMEM_HUGE_FORCE) {
1970 		struct super_block *sb;
1971 
1972 		if (file) {
1973 			VM_BUG_ON(file->f_op != &shmem_file_operations);
1974 			sb = file_inode(file)->i_sb;
1975 		} else {
1976 			/*
1977 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
1978 			 * for "/dev/zero", to create a shared anonymous object.
1979 			 */
1980 			if (IS_ERR(shm_mnt))
1981 				return addr;
1982 			sb = shm_mnt->mnt_sb;
1983 		}
1984 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
1985 			return addr;
1986 	}
1987 
1988 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1989 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1990 		return addr;
1991 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1992 		return addr;
1993 
1994 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1995 	if (inflated_len > TASK_SIZE)
1996 		return addr;
1997 	if (inflated_len < len)
1998 		return addr;
1999 
2000 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2001 	if (IS_ERR_VALUE(inflated_addr))
2002 		return addr;
2003 	if (inflated_addr & ~PAGE_MASK)
2004 		return addr;
2005 
2006 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2007 	inflated_addr += offset - inflated_offset;
2008 	if (inflated_offset > offset)
2009 		inflated_addr += HPAGE_PMD_SIZE;
2010 
2011 	if (inflated_addr > TASK_SIZE - len)
2012 		return addr;
2013 	return inflated_addr;
2014 }
2015 
2016 #ifdef CONFIG_NUMA
2017 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2018 {
2019 	struct inode *inode = file_inode(vma->vm_file);
2020 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2021 }
2022 
2023 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2024 					  unsigned long addr)
2025 {
2026 	struct inode *inode = file_inode(vma->vm_file);
2027 	pgoff_t index;
2028 
2029 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2030 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2031 }
2032 #endif
2033 
2034 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2035 {
2036 	struct inode *inode = file_inode(file);
2037 	struct shmem_inode_info *info = SHMEM_I(inode);
2038 	int retval = -ENOMEM;
2039 
2040 	spin_lock_irq(&info->lock);
2041 	if (lock && !(info->flags & VM_LOCKED)) {
2042 		if (!user_shm_lock(inode->i_size, user))
2043 			goto out_nomem;
2044 		info->flags |= VM_LOCKED;
2045 		mapping_set_unevictable(file->f_mapping);
2046 	}
2047 	if (!lock && (info->flags & VM_LOCKED) && user) {
2048 		user_shm_unlock(inode->i_size, user);
2049 		info->flags &= ~VM_LOCKED;
2050 		mapping_clear_unevictable(file->f_mapping);
2051 	}
2052 	retval = 0;
2053 
2054 out_nomem:
2055 	spin_unlock_irq(&info->lock);
2056 	return retval;
2057 }
2058 
2059 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2060 {
2061 	file_accessed(file);
2062 	vma->vm_ops = &shmem_vm_ops;
2063 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2064 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2065 			(vma->vm_end & HPAGE_PMD_MASK)) {
2066 		khugepaged_enter(vma, vma->vm_flags);
2067 	}
2068 	return 0;
2069 }
2070 
2071 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2072 				     umode_t mode, dev_t dev, unsigned long flags)
2073 {
2074 	struct inode *inode;
2075 	struct shmem_inode_info *info;
2076 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2077 
2078 	if (shmem_reserve_inode(sb))
2079 		return NULL;
2080 
2081 	inode = new_inode(sb);
2082 	if (inode) {
2083 		inode->i_ino = get_next_ino();
2084 		inode_init_owner(inode, dir, mode);
2085 		inode->i_blocks = 0;
2086 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2087 		inode->i_generation = get_seconds();
2088 		info = SHMEM_I(inode);
2089 		memset(info, 0, (char *)inode - (char *)info);
2090 		spin_lock_init(&info->lock);
2091 		info->seals = F_SEAL_SEAL;
2092 		info->flags = flags & VM_NORESERVE;
2093 		INIT_LIST_HEAD(&info->shrinklist);
2094 		INIT_LIST_HEAD(&info->swaplist);
2095 		simple_xattrs_init(&info->xattrs);
2096 		cache_no_acl(inode);
2097 
2098 		switch (mode & S_IFMT) {
2099 		default:
2100 			inode->i_op = &shmem_special_inode_operations;
2101 			init_special_inode(inode, mode, dev);
2102 			break;
2103 		case S_IFREG:
2104 			inode->i_mapping->a_ops = &shmem_aops;
2105 			inode->i_op = &shmem_inode_operations;
2106 			inode->i_fop = &shmem_file_operations;
2107 			mpol_shared_policy_init(&info->policy,
2108 						 shmem_get_sbmpol(sbinfo));
2109 			break;
2110 		case S_IFDIR:
2111 			inc_nlink(inode);
2112 			/* Some things misbehave if size == 0 on a directory */
2113 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2114 			inode->i_op = &shmem_dir_inode_operations;
2115 			inode->i_fop = &simple_dir_operations;
2116 			break;
2117 		case S_IFLNK:
2118 			/*
2119 			 * Must not load anything in the rbtree,
2120 			 * mpol_free_shared_policy will not be called.
2121 			 */
2122 			mpol_shared_policy_init(&info->policy, NULL);
2123 			break;
2124 		}
2125 	} else
2126 		shmem_free_inode(sb);
2127 	return inode;
2128 }
2129 
2130 bool shmem_mapping(struct address_space *mapping)
2131 {
2132 	if (!mapping->host)
2133 		return false;
2134 
2135 	return mapping->host->i_sb->s_op == &shmem_ops;
2136 }
2137 
2138 #ifdef CONFIG_TMPFS
2139 static const struct inode_operations shmem_symlink_inode_operations;
2140 static const struct inode_operations shmem_short_symlink_operations;
2141 
2142 #ifdef CONFIG_TMPFS_XATTR
2143 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2144 #else
2145 #define shmem_initxattrs NULL
2146 #endif
2147 
2148 static int
2149 shmem_write_begin(struct file *file, struct address_space *mapping,
2150 			loff_t pos, unsigned len, unsigned flags,
2151 			struct page **pagep, void **fsdata)
2152 {
2153 	struct inode *inode = mapping->host;
2154 	struct shmem_inode_info *info = SHMEM_I(inode);
2155 	pgoff_t index = pos >> PAGE_SHIFT;
2156 
2157 	/* i_mutex is held by caller */
2158 	if (unlikely(info->seals)) {
2159 		if (info->seals & F_SEAL_WRITE)
2160 			return -EPERM;
2161 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2162 			return -EPERM;
2163 	}
2164 
2165 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2166 }
2167 
2168 static int
2169 shmem_write_end(struct file *file, struct address_space *mapping,
2170 			loff_t pos, unsigned len, unsigned copied,
2171 			struct page *page, void *fsdata)
2172 {
2173 	struct inode *inode = mapping->host;
2174 
2175 	if (pos + copied > inode->i_size)
2176 		i_size_write(inode, pos + copied);
2177 
2178 	if (!PageUptodate(page)) {
2179 		struct page *head = compound_head(page);
2180 		if (PageTransCompound(page)) {
2181 			int i;
2182 
2183 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2184 				if (head + i == page)
2185 					continue;
2186 				clear_highpage(head + i);
2187 				flush_dcache_page(head + i);
2188 			}
2189 		}
2190 		if (copied < PAGE_SIZE) {
2191 			unsigned from = pos & (PAGE_SIZE - 1);
2192 			zero_user_segments(page, 0, from,
2193 					from + copied, PAGE_SIZE);
2194 		}
2195 		SetPageUptodate(head);
2196 	}
2197 	set_page_dirty(page);
2198 	unlock_page(page);
2199 	put_page(page);
2200 
2201 	return copied;
2202 }
2203 
2204 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2205 {
2206 	struct file *file = iocb->ki_filp;
2207 	struct inode *inode = file_inode(file);
2208 	struct address_space *mapping = inode->i_mapping;
2209 	pgoff_t index;
2210 	unsigned long offset;
2211 	enum sgp_type sgp = SGP_READ;
2212 	int error = 0;
2213 	ssize_t retval = 0;
2214 	loff_t *ppos = &iocb->ki_pos;
2215 
2216 	/*
2217 	 * Might this read be for a stacking filesystem?  Then when reading
2218 	 * holes of a sparse file, we actually need to allocate those pages,
2219 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2220 	 */
2221 	if (!iter_is_iovec(to))
2222 		sgp = SGP_CACHE;
2223 
2224 	index = *ppos >> PAGE_SHIFT;
2225 	offset = *ppos & ~PAGE_MASK;
2226 
2227 	for (;;) {
2228 		struct page *page = NULL;
2229 		pgoff_t end_index;
2230 		unsigned long nr, ret;
2231 		loff_t i_size = i_size_read(inode);
2232 
2233 		end_index = i_size >> PAGE_SHIFT;
2234 		if (index > end_index)
2235 			break;
2236 		if (index == end_index) {
2237 			nr = i_size & ~PAGE_MASK;
2238 			if (nr <= offset)
2239 				break;
2240 		}
2241 
2242 		error = shmem_getpage(inode, index, &page, sgp);
2243 		if (error) {
2244 			if (error == -EINVAL)
2245 				error = 0;
2246 			break;
2247 		}
2248 		if (page) {
2249 			if (sgp == SGP_CACHE)
2250 				set_page_dirty(page);
2251 			unlock_page(page);
2252 		}
2253 
2254 		/*
2255 		 * We must evaluate after, since reads (unlike writes)
2256 		 * are called without i_mutex protection against truncate
2257 		 */
2258 		nr = PAGE_SIZE;
2259 		i_size = i_size_read(inode);
2260 		end_index = i_size >> PAGE_SHIFT;
2261 		if (index == end_index) {
2262 			nr = i_size & ~PAGE_MASK;
2263 			if (nr <= offset) {
2264 				if (page)
2265 					put_page(page);
2266 				break;
2267 			}
2268 		}
2269 		nr -= offset;
2270 
2271 		if (page) {
2272 			/*
2273 			 * If users can be writing to this page using arbitrary
2274 			 * virtual addresses, take care about potential aliasing
2275 			 * before reading the page on the kernel side.
2276 			 */
2277 			if (mapping_writably_mapped(mapping))
2278 				flush_dcache_page(page);
2279 			/*
2280 			 * Mark the page accessed if we read the beginning.
2281 			 */
2282 			if (!offset)
2283 				mark_page_accessed(page);
2284 		} else {
2285 			page = ZERO_PAGE(0);
2286 			get_page(page);
2287 		}
2288 
2289 		/*
2290 		 * Ok, we have the page, and it's up-to-date, so
2291 		 * now we can copy it to user space...
2292 		 */
2293 		ret = copy_page_to_iter(page, offset, nr, to);
2294 		retval += ret;
2295 		offset += ret;
2296 		index += offset >> PAGE_SHIFT;
2297 		offset &= ~PAGE_MASK;
2298 
2299 		put_page(page);
2300 		if (!iov_iter_count(to))
2301 			break;
2302 		if (ret < nr) {
2303 			error = -EFAULT;
2304 			break;
2305 		}
2306 		cond_resched();
2307 	}
2308 
2309 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2310 	file_accessed(file);
2311 	return retval ? retval : error;
2312 }
2313 
2314 /*
2315  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2316  */
2317 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2318 				    pgoff_t index, pgoff_t end, int whence)
2319 {
2320 	struct page *page;
2321 	struct pagevec pvec;
2322 	pgoff_t indices[PAGEVEC_SIZE];
2323 	bool done = false;
2324 	int i;
2325 
2326 	pagevec_init(&pvec, 0);
2327 	pvec.nr = 1;		/* start small: we may be there already */
2328 	while (!done) {
2329 		pvec.nr = find_get_entries(mapping, index,
2330 					pvec.nr, pvec.pages, indices);
2331 		if (!pvec.nr) {
2332 			if (whence == SEEK_DATA)
2333 				index = end;
2334 			break;
2335 		}
2336 		for (i = 0; i < pvec.nr; i++, index++) {
2337 			if (index < indices[i]) {
2338 				if (whence == SEEK_HOLE) {
2339 					done = true;
2340 					break;
2341 				}
2342 				index = indices[i];
2343 			}
2344 			page = pvec.pages[i];
2345 			if (page && !radix_tree_exceptional_entry(page)) {
2346 				if (!PageUptodate(page))
2347 					page = NULL;
2348 			}
2349 			if (index >= end ||
2350 			    (page && whence == SEEK_DATA) ||
2351 			    (!page && whence == SEEK_HOLE)) {
2352 				done = true;
2353 				break;
2354 			}
2355 		}
2356 		pagevec_remove_exceptionals(&pvec);
2357 		pagevec_release(&pvec);
2358 		pvec.nr = PAGEVEC_SIZE;
2359 		cond_resched();
2360 	}
2361 	return index;
2362 }
2363 
2364 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2365 {
2366 	struct address_space *mapping = file->f_mapping;
2367 	struct inode *inode = mapping->host;
2368 	pgoff_t start, end;
2369 	loff_t new_offset;
2370 
2371 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2372 		return generic_file_llseek_size(file, offset, whence,
2373 					MAX_LFS_FILESIZE, i_size_read(inode));
2374 	inode_lock(inode);
2375 	/* We're holding i_mutex so we can access i_size directly */
2376 
2377 	if (offset < 0)
2378 		offset = -EINVAL;
2379 	else if (offset >= inode->i_size)
2380 		offset = -ENXIO;
2381 	else {
2382 		start = offset >> PAGE_SHIFT;
2383 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2384 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2385 		new_offset <<= PAGE_SHIFT;
2386 		if (new_offset > offset) {
2387 			if (new_offset < inode->i_size)
2388 				offset = new_offset;
2389 			else if (whence == SEEK_DATA)
2390 				offset = -ENXIO;
2391 			else
2392 				offset = inode->i_size;
2393 		}
2394 	}
2395 
2396 	if (offset >= 0)
2397 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2398 	inode_unlock(inode);
2399 	return offset;
2400 }
2401 
2402 /*
2403  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2404  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2405  */
2406 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2407 #define LAST_SCAN               4       /* about 150ms max */
2408 
2409 static void shmem_tag_pins(struct address_space *mapping)
2410 {
2411 	struct radix_tree_iter iter;
2412 	void **slot;
2413 	pgoff_t start;
2414 	struct page *page;
2415 
2416 	lru_add_drain();
2417 	start = 0;
2418 	rcu_read_lock();
2419 
2420 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2421 		page = radix_tree_deref_slot(slot);
2422 		if (!page || radix_tree_exception(page)) {
2423 			if (radix_tree_deref_retry(page)) {
2424 				slot = radix_tree_iter_retry(&iter);
2425 				continue;
2426 			}
2427 		} else if (page_count(page) - page_mapcount(page) > 1) {
2428 			spin_lock_irq(&mapping->tree_lock);
2429 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2430 					   SHMEM_TAG_PINNED);
2431 			spin_unlock_irq(&mapping->tree_lock);
2432 		}
2433 
2434 		if (need_resched()) {
2435 			cond_resched_rcu();
2436 			slot = radix_tree_iter_next(&iter);
2437 		}
2438 	}
2439 	rcu_read_unlock();
2440 }
2441 
2442 /*
2443  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2444  * via get_user_pages(), drivers might have some pending I/O without any active
2445  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2446  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2447  * them to be dropped.
2448  * The caller must guarantee that no new user will acquire writable references
2449  * to those pages to avoid races.
2450  */
2451 static int shmem_wait_for_pins(struct address_space *mapping)
2452 {
2453 	struct radix_tree_iter iter;
2454 	void **slot;
2455 	pgoff_t start;
2456 	struct page *page;
2457 	int error, scan;
2458 
2459 	shmem_tag_pins(mapping);
2460 
2461 	error = 0;
2462 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2463 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2464 			break;
2465 
2466 		if (!scan)
2467 			lru_add_drain_all();
2468 		else if (schedule_timeout_killable((HZ << scan) / 200))
2469 			scan = LAST_SCAN;
2470 
2471 		start = 0;
2472 		rcu_read_lock();
2473 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2474 					   start, SHMEM_TAG_PINNED) {
2475 
2476 			page = radix_tree_deref_slot(slot);
2477 			if (radix_tree_exception(page)) {
2478 				if (radix_tree_deref_retry(page)) {
2479 					slot = radix_tree_iter_retry(&iter);
2480 					continue;
2481 				}
2482 
2483 				page = NULL;
2484 			}
2485 
2486 			if (page &&
2487 			    page_count(page) - page_mapcount(page) != 1) {
2488 				if (scan < LAST_SCAN)
2489 					goto continue_resched;
2490 
2491 				/*
2492 				 * On the last scan, we clean up all those tags
2493 				 * we inserted; but make a note that we still
2494 				 * found pages pinned.
2495 				 */
2496 				error = -EBUSY;
2497 			}
2498 
2499 			spin_lock_irq(&mapping->tree_lock);
2500 			radix_tree_tag_clear(&mapping->page_tree,
2501 					     iter.index, SHMEM_TAG_PINNED);
2502 			spin_unlock_irq(&mapping->tree_lock);
2503 continue_resched:
2504 			if (need_resched()) {
2505 				cond_resched_rcu();
2506 				slot = radix_tree_iter_next(&iter);
2507 			}
2508 		}
2509 		rcu_read_unlock();
2510 	}
2511 
2512 	return error;
2513 }
2514 
2515 #define F_ALL_SEALS (F_SEAL_SEAL | \
2516 		     F_SEAL_SHRINK | \
2517 		     F_SEAL_GROW | \
2518 		     F_SEAL_WRITE)
2519 
2520 int shmem_add_seals(struct file *file, unsigned int seals)
2521 {
2522 	struct inode *inode = file_inode(file);
2523 	struct shmem_inode_info *info = SHMEM_I(inode);
2524 	int error;
2525 
2526 	/*
2527 	 * SEALING
2528 	 * Sealing allows multiple parties to share a shmem-file but restrict
2529 	 * access to a specific subset of file operations. Seals can only be
2530 	 * added, but never removed. This way, mutually untrusted parties can
2531 	 * share common memory regions with a well-defined policy. A malicious
2532 	 * peer can thus never perform unwanted operations on a shared object.
2533 	 *
2534 	 * Seals are only supported on special shmem-files and always affect
2535 	 * the whole underlying inode. Once a seal is set, it may prevent some
2536 	 * kinds of access to the file. Currently, the following seals are
2537 	 * defined:
2538 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2539 	 *   SEAL_SHRINK: Prevent the file from shrinking
2540 	 *   SEAL_GROW: Prevent the file from growing
2541 	 *   SEAL_WRITE: Prevent write access to the file
2542 	 *
2543 	 * As we don't require any trust relationship between two parties, we
2544 	 * must prevent seals from being removed. Therefore, sealing a file
2545 	 * only adds a given set of seals to the file, it never touches
2546 	 * existing seals. Furthermore, the "setting seals"-operation can be
2547 	 * sealed itself, which basically prevents any further seal from being
2548 	 * added.
2549 	 *
2550 	 * Semantics of sealing are only defined on volatile files. Only
2551 	 * anonymous shmem files support sealing. More importantly, seals are
2552 	 * never written to disk. Therefore, there's no plan to support it on
2553 	 * other file types.
2554 	 */
2555 
2556 	if (file->f_op != &shmem_file_operations)
2557 		return -EINVAL;
2558 	if (!(file->f_mode & FMODE_WRITE))
2559 		return -EPERM;
2560 	if (seals & ~(unsigned int)F_ALL_SEALS)
2561 		return -EINVAL;
2562 
2563 	inode_lock(inode);
2564 
2565 	if (info->seals & F_SEAL_SEAL) {
2566 		error = -EPERM;
2567 		goto unlock;
2568 	}
2569 
2570 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2571 		error = mapping_deny_writable(file->f_mapping);
2572 		if (error)
2573 			goto unlock;
2574 
2575 		error = shmem_wait_for_pins(file->f_mapping);
2576 		if (error) {
2577 			mapping_allow_writable(file->f_mapping);
2578 			goto unlock;
2579 		}
2580 	}
2581 
2582 	info->seals |= seals;
2583 	error = 0;
2584 
2585 unlock:
2586 	inode_unlock(inode);
2587 	return error;
2588 }
2589 EXPORT_SYMBOL_GPL(shmem_add_seals);
2590 
2591 int shmem_get_seals(struct file *file)
2592 {
2593 	if (file->f_op != &shmem_file_operations)
2594 		return -EINVAL;
2595 
2596 	return SHMEM_I(file_inode(file))->seals;
2597 }
2598 EXPORT_SYMBOL_GPL(shmem_get_seals);
2599 
2600 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2601 {
2602 	long error;
2603 
2604 	switch (cmd) {
2605 	case F_ADD_SEALS:
2606 		/* disallow upper 32bit */
2607 		if (arg > UINT_MAX)
2608 			return -EINVAL;
2609 
2610 		error = shmem_add_seals(file, arg);
2611 		break;
2612 	case F_GET_SEALS:
2613 		error = shmem_get_seals(file);
2614 		break;
2615 	default:
2616 		error = -EINVAL;
2617 		break;
2618 	}
2619 
2620 	return error;
2621 }
2622 
2623 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2624 							 loff_t len)
2625 {
2626 	struct inode *inode = file_inode(file);
2627 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2628 	struct shmem_inode_info *info = SHMEM_I(inode);
2629 	struct shmem_falloc shmem_falloc;
2630 	pgoff_t start, index, end;
2631 	int error;
2632 
2633 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2634 		return -EOPNOTSUPP;
2635 
2636 	inode_lock(inode);
2637 
2638 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2639 		struct address_space *mapping = file->f_mapping;
2640 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2641 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2642 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2643 
2644 		/* protected by i_mutex */
2645 		if (info->seals & F_SEAL_WRITE) {
2646 			error = -EPERM;
2647 			goto out;
2648 		}
2649 
2650 		shmem_falloc.waitq = &shmem_falloc_waitq;
2651 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2652 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2653 		spin_lock(&inode->i_lock);
2654 		inode->i_private = &shmem_falloc;
2655 		spin_unlock(&inode->i_lock);
2656 
2657 		if ((u64)unmap_end > (u64)unmap_start)
2658 			unmap_mapping_range(mapping, unmap_start,
2659 					    1 + unmap_end - unmap_start, 0);
2660 		shmem_truncate_range(inode, offset, offset + len - 1);
2661 		/* No need to unmap again: hole-punching leaves COWed pages */
2662 
2663 		spin_lock(&inode->i_lock);
2664 		inode->i_private = NULL;
2665 		wake_up_all(&shmem_falloc_waitq);
2666 		spin_unlock(&inode->i_lock);
2667 		error = 0;
2668 		goto out;
2669 	}
2670 
2671 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2672 	error = inode_newsize_ok(inode, offset + len);
2673 	if (error)
2674 		goto out;
2675 
2676 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2677 		error = -EPERM;
2678 		goto out;
2679 	}
2680 
2681 	start = offset >> PAGE_SHIFT;
2682 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2683 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2684 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2685 		error = -ENOSPC;
2686 		goto out;
2687 	}
2688 
2689 	shmem_falloc.waitq = NULL;
2690 	shmem_falloc.start = start;
2691 	shmem_falloc.next  = start;
2692 	shmem_falloc.nr_falloced = 0;
2693 	shmem_falloc.nr_unswapped = 0;
2694 	spin_lock(&inode->i_lock);
2695 	inode->i_private = &shmem_falloc;
2696 	spin_unlock(&inode->i_lock);
2697 
2698 	for (index = start; index < end; index++) {
2699 		struct page *page;
2700 
2701 		/*
2702 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2703 		 * been interrupted because we are using up too much memory.
2704 		 */
2705 		if (signal_pending(current))
2706 			error = -EINTR;
2707 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2708 			error = -ENOMEM;
2709 		else
2710 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2711 		if (error) {
2712 			/* Remove the !PageUptodate pages we added */
2713 			if (index > start) {
2714 				shmem_undo_range(inode,
2715 				    (loff_t)start << PAGE_SHIFT,
2716 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2717 			}
2718 			goto undone;
2719 		}
2720 
2721 		/*
2722 		 * Inform shmem_writepage() how far we have reached.
2723 		 * No need for lock or barrier: we have the page lock.
2724 		 */
2725 		shmem_falloc.next++;
2726 		if (!PageUptodate(page))
2727 			shmem_falloc.nr_falloced++;
2728 
2729 		/*
2730 		 * If !PageUptodate, leave it that way so that freeable pages
2731 		 * can be recognized if we need to rollback on error later.
2732 		 * But set_page_dirty so that memory pressure will swap rather
2733 		 * than free the pages we are allocating (and SGP_CACHE pages
2734 		 * might still be clean: we now need to mark those dirty too).
2735 		 */
2736 		set_page_dirty(page);
2737 		unlock_page(page);
2738 		put_page(page);
2739 		cond_resched();
2740 	}
2741 
2742 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2743 		i_size_write(inode, offset + len);
2744 	inode->i_ctime = current_time(inode);
2745 undone:
2746 	spin_lock(&inode->i_lock);
2747 	inode->i_private = NULL;
2748 	spin_unlock(&inode->i_lock);
2749 out:
2750 	inode_unlock(inode);
2751 	return error;
2752 }
2753 
2754 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2755 {
2756 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2757 
2758 	buf->f_type = TMPFS_MAGIC;
2759 	buf->f_bsize = PAGE_SIZE;
2760 	buf->f_namelen = NAME_MAX;
2761 	if (sbinfo->max_blocks) {
2762 		buf->f_blocks = sbinfo->max_blocks;
2763 		buf->f_bavail =
2764 		buf->f_bfree  = sbinfo->max_blocks -
2765 				percpu_counter_sum(&sbinfo->used_blocks);
2766 	}
2767 	if (sbinfo->max_inodes) {
2768 		buf->f_files = sbinfo->max_inodes;
2769 		buf->f_ffree = sbinfo->free_inodes;
2770 	}
2771 	/* else leave those fields 0 like simple_statfs */
2772 	return 0;
2773 }
2774 
2775 /*
2776  * File creation. Allocate an inode, and we're done..
2777  */
2778 static int
2779 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2780 {
2781 	struct inode *inode;
2782 	int error = -ENOSPC;
2783 
2784 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2785 	if (inode) {
2786 		error = simple_acl_create(dir, inode);
2787 		if (error)
2788 			goto out_iput;
2789 		error = security_inode_init_security(inode, dir,
2790 						     &dentry->d_name,
2791 						     shmem_initxattrs, NULL);
2792 		if (error && error != -EOPNOTSUPP)
2793 			goto out_iput;
2794 
2795 		error = 0;
2796 		dir->i_size += BOGO_DIRENT_SIZE;
2797 		dir->i_ctime = dir->i_mtime = current_time(dir);
2798 		d_instantiate(dentry, inode);
2799 		dget(dentry); /* Extra count - pin the dentry in core */
2800 	}
2801 	return error;
2802 out_iput:
2803 	iput(inode);
2804 	return error;
2805 }
2806 
2807 static int
2808 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2809 {
2810 	struct inode *inode;
2811 	int error = -ENOSPC;
2812 
2813 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2814 	if (inode) {
2815 		error = security_inode_init_security(inode, dir,
2816 						     NULL,
2817 						     shmem_initxattrs, NULL);
2818 		if (error && error != -EOPNOTSUPP)
2819 			goto out_iput;
2820 		error = simple_acl_create(dir, inode);
2821 		if (error)
2822 			goto out_iput;
2823 		d_tmpfile(dentry, inode);
2824 	}
2825 	return error;
2826 out_iput:
2827 	iput(inode);
2828 	return error;
2829 }
2830 
2831 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2832 {
2833 	int error;
2834 
2835 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2836 		return error;
2837 	inc_nlink(dir);
2838 	return 0;
2839 }
2840 
2841 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2842 		bool excl)
2843 {
2844 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2845 }
2846 
2847 /*
2848  * Link a file..
2849  */
2850 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2851 {
2852 	struct inode *inode = d_inode(old_dentry);
2853 	int ret;
2854 
2855 	/*
2856 	 * No ordinary (disk based) filesystem counts links as inodes;
2857 	 * but each new link needs a new dentry, pinning lowmem, and
2858 	 * tmpfs dentries cannot be pruned until they are unlinked.
2859 	 */
2860 	ret = shmem_reserve_inode(inode->i_sb);
2861 	if (ret)
2862 		goto out;
2863 
2864 	dir->i_size += BOGO_DIRENT_SIZE;
2865 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2866 	inc_nlink(inode);
2867 	ihold(inode);	/* New dentry reference */
2868 	dget(dentry);		/* Extra pinning count for the created dentry */
2869 	d_instantiate(dentry, inode);
2870 out:
2871 	return ret;
2872 }
2873 
2874 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2875 {
2876 	struct inode *inode = d_inode(dentry);
2877 
2878 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2879 		shmem_free_inode(inode->i_sb);
2880 
2881 	dir->i_size -= BOGO_DIRENT_SIZE;
2882 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2883 	drop_nlink(inode);
2884 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2885 	return 0;
2886 }
2887 
2888 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2889 {
2890 	if (!simple_empty(dentry))
2891 		return -ENOTEMPTY;
2892 
2893 	drop_nlink(d_inode(dentry));
2894 	drop_nlink(dir);
2895 	return shmem_unlink(dir, dentry);
2896 }
2897 
2898 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2899 {
2900 	bool old_is_dir = d_is_dir(old_dentry);
2901 	bool new_is_dir = d_is_dir(new_dentry);
2902 
2903 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2904 		if (old_is_dir) {
2905 			drop_nlink(old_dir);
2906 			inc_nlink(new_dir);
2907 		} else {
2908 			drop_nlink(new_dir);
2909 			inc_nlink(old_dir);
2910 		}
2911 	}
2912 	old_dir->i_ctime = old_dir->i_mtime =
2913 	new_dir->i_ctime = new_dir->i_mtime =
2914 	d_inode(old_dentry)->i_ctime =
2915 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2916 
2917 	return 0;
2918 }
2919 
2920 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2921 {
2922 	struct dentry *whiteout;
2923 	int error;
2924 
2925 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2926 	if (!whiteout)
2927 		return -ENOMEM;
2928 
2929 	error = shmem_mknod(old_dir, whiteout,
2930 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2931 	dput(whiteout);
2932 	if (error)
2933 		return error;
2934 
2935 	/*
2936 	 * Cheat and hash the whiteout while the old dentry is still in
2937 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2938 	 *
2939 	 * d_lookup() will consistently find one of them at this point,
2940 	 * not sure which one, but that isn't even important.
2941 	 */
2942 	d_rehash(whiteout);
2943 	return 0;
2944 }
2945 
2946 /*
2947  * The VFS layer already does all the dentry stuff for rename,
2948  * we just have to decrement the usage count for the target if
2949  * it exists so that the VFS layer correctly free's it when it
2950  * gets overwritten.
2951  */
2952 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2953 {
2954 	struct inode *inode = d_inode(old_dentry);
2955 	int they_are_dirs = S_ISDIR(inode->i_mode);
2956 
2957 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2958 		return -EINVAL;
2959 
2960 	if (flags & RENAME_EXCHANGE)
2961 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2962 
2963 	if (!simple_empty(new_dentry))
2964 		return -ENOTEMPTY;
2965 
2966 	if (flags & RENAME_WHITEOUT) {
2967 		int error;
2968 
2969 		error = shmem_whiteout(old_dir, old_dentry);
2970 		if (error)
2971 			return error;
2972 	}
2973 
2974 	if (d_really_is_positive(new_dentry)) {
2975 		(void) shmem_unlink(new_dir, new_dentry);
2976 		if (they_are_dirs) {
2977 			drop_nlink(d_inode(new_dentry));
2978 			drop_nlink(old_dir);
2979 		}
2980 	} else if (they_are_dirs) {
2981 		drop_nlink(old_dir);
2982 		inc_nlink(new_dir);
2983 	}
2984 
2985 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2986 	new_dir->i_size += BOGO_DIRENT_SIZE;
2987 	old_dir->i_ctime = old_dir->i_mtime =
2988 	new_dir->i_ctime = new_dir->i_mtime =
2989 	inode->i_ctime = current_time(old_dir);
2990 	return 0;
2991 }
2992 
2993 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2994 {
2995 	int error;
2996 	int len;
2997 	struct inode *inode;
2998 	struct page *page;
2999 	struct shmem_inode_info *info;
3000 
3001 	len = strlen(symname) + 1;
3002 	if (len > PAGE_SIZE)
3003 		return -ENAMETOOLONG;
3004 
3005 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3006 	if (!inode)
3007 		return -ENOSPC;
3008 
3009 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3010 					     shmem_initxattrs, NULL);
3011 	if (error) {
3012 		if (error != -EOPNOTSUPP) {
3013 			iput(inode);
3014 			return error;
3015 		}
3016 		error = 0;
3017 	}
3018 
3019 	info = SHMEM_I(inode);
3020 	inode->i_size = len-1;
3021 	if (len <= SHORT_SYMLINK_LEN) {
3022 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3023 		if (!inode->i_link) {
3024 			iput(inode);
3025 			return -ENOMEM;
3026 		}
3027 		inode->i_op = &shmem_short_symlink_operations;
3028 	} else {
3029 		inode_nohighmem(inode);
3030 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3031 		if (error) {
3032 			iput(inode);
3033 			return error;
3034 		}
3035 		inode->i_mapping->a_ops = &shmem_aops;
3036 		inode->i_op = &shmem_symlink_inode_operations;
3037 		memcpy(page_address(page), symname, len);
3038 		SetPageUptodate(page);
3039 		set_page_dirty(page);
3040 		unlock_page(page);
3041 		put_page(page);
3042 	}
3043 	dir->i_size += BOGO_DIRENT_SIZE;
3044 	dir->i_ctime = dir->i_mtime = current_time(dir);
3045 	d_instantiate(dentry, inode);
3046 	dget(dentry);
3047 	return 0;
3048 }
3049 
3050 static void shmem_put_link(void *arg)
3051 {
3052 	mark_page_accessed(arg);
3053 	put_page(arg);
3054 }
3055 
3056 static const char *shmem_get_link(struct dentry *dentry,
3057 				  struct inode *inode,
3058 				  struct delayed_call *done)
3059 {
3060 	struct page *page = NULL;
3061 	int error;
3062 	if (!dentry) {
3063 		page = find_get_page(inode->i_mapping, 0);
3064 		if (!page)
3065 			return ERR_PTR(-ECHILD);
3066 		if (!PageUptodate(page)) {
3067 			put_page(page);
3068 			return ERR_PTR(-ECHILD);
3069 		}
3070 	} else {
3071 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3072 		if (error)
3073 			return ERR_PTR(error);
3074 		unlock_page(page);
3075 	}
3076 	set_delayed_call(done, shmem_put_link, page);
3077 	return page_address(page);
3078 }
3079 
3080 #ifdef CONFIG_TMPFS_XATTR
3081 /*
3082  * Superblocks without xattr inode operations may get some security.* xattr
3083  * support from the LSM "for free". As soon as we have any other xattrs
3084  * like ACLs, we also need to implement the security.* handlers at
3085  * filesystem level, though.
3086  */
3087 
3088 /*
3089  * Callback for security_inode_init_security() for acquiring xattrs.
3090  */
3091 static int shmem_initxattrs(struct inode *inode,
3092 			    const struct xattr *xattr_array,
3093 			    void *fs_info)
3094 {
3095 	struct shmem_inode_info *info = SHMEM_I(inode);
3096 	const struct xattr *xattr;
3097 	struct simple_xattr *new_xattr;
3098 	size_t len;
3099 
3100 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3101 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3102 		if (!new_xattr)
3103 			return -ENOMEM;
3104 
3105 		len = strlen(xattr->name) + 1;
3106 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3107 					  GFP_KERNEL);
3108 		if (!new_xattr->name) {
3109 			kfree(new_xattr);
3110 			return -ENOMEM;
3111 		}
3112 
3113 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3114 		       XATTR_SECURITY_PREFIX_LEN);
3115 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3116 		       xattr->name, len);
3117 
3118 		simple_xattr_list_add(&info->xattrs, new_xattr);
3119 	}
3120 
3121 	return 0;
3122 }
3123 
3124 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3125 				   struct dentry *unused, struct inode *inode,
3126 				   const char *name, void *buffer, size_t size)
3127 {
3128 	struct shmem_inode_info *info = SHMEM_I(inode);
3129 
3130 	name = xattr_full_name(handler, name);
3131 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3132 }
3133 
3134 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3135 				   struct dentry *unused, struct inode *inode,
3136 				   const char *name, const void *value,
3137 				   size_t size, int flags)
3138 {
3139 	struct shmem_inode_info *info = SHMEM_I(inode);
3140 
3141 	name = xattr_full_name(handler, name);
3142 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3143 }
3144 
3145 static const struct xattr_handler shmem_security_xattr_handler = {
3146 	.prefix = XATTR_SECURITY_PREFIX,
3147 	.get = shmem_xattr_handler_get,
3148 	.set = shmem_xattr_handler_set,
3149 };
3150 
3151 static const struct xattr_handler shmem_trusted_xattr_handler = {
3152 	.prefix = XATTR_TRUSTED_PREFIX,
3153 	.get = shmem_xattr_handler_get,
3154 	.set = shmem_xattr_handler_set,
3155 };
3156 
3157 static const struct xattr_handler *shmem_xattr_handlers[] = {
3158 #ifdef CONFIG_TMPFS_POSIX_ACL
3159 	&posix_acl_access_xattr_handler,
3160 	&posix_acl_default_xattr_handler,
3161 #endif
3162 	&shmem_security_xattr_handler,
3163 	&shmem_trusted_xattr_handler,
3164 	NULL
3165 };
3166 
3167 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3168 {
3169 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3170 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3171 }
3172 #endif /* CONFIG_TMPFS_XATTR */
3173 
3174 static const struct inode_operations shmem_short_symlink_operations = {
3175 	.readlink	= generic_readlink,
3176 	.get_link	= simple_get_link,
3177 #ifdef CONFIG_TMPFS_XATTR
3178 	.listxattr	= shmem_listxattr,
3179 #endif
3180 };
3181 
3182 static const struct inode_operations shmem_symlink_inode_operations = {
3183 	.readlink	= generic_readlink,
3184 	.get_link	= shmem_get_link,
3185 #ifdef CONFIG_TMPFS_XATTR
3186 	.listxattr	= shmem_listxattr,
3187 #endif
3188 };
3189 
3190 static struct dentry *shmem_get_parent(struct dentry *child)
3191 {
3192 	return ERR_PTR(-ESTALE);
3193 }
3194 
3195 static int shmem_match(struct inode *ino, void *vfh)
3196 {
3197 	__u32 *fh = vfh;
3198 	__u64 inum = fh[2];
3199 	inum = (inum << 32) | fh[1];
3200 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3201 }
3202 
3203 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3204 		struct fid *fid, int fh_len, int fh_type)
3205 {
3206 	struct inode *inode;
3207 	struct dentry *dentry = NULL;
3208 	u64 inum;
3209 
3210 	if (fh_len < 3)
3211 		return NULL;
3212 
3213 	inum = fid->raw[2];
3214 	inum = (inum << 32) | fid->raw[1];
3215 
3216 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3217 			shmem_match, fid->raw);
3218 	if (inode) {
3219 		dentry = d_find_alias(inode);
3220 		iput(inode);
3221 	}
3222 
3223 	return dentry;
3224 }
3225 
3226 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3227 				struct inode *parent)
3228 {
3229 	if (*len < 3) {
3230 		*len = 3;
3231 		return FILEID_INVALID;
3232 	}
3233 
3234 	if (inode_unhashed(inode)) {
3235 		/* Unfortunately insert_inode_hash is not idempotent,
3236 		 * so as we hash inodes here rather than at creation
3237 		 * time, we need a lock to ensure we only try
3238 		 * to do it once
3239 		 */
3240 		static DEFINE_SPINLOCK(lock);
3241 		spin_lock(&lock);
3242 		if (inode_unhashed(inode))
3243 			__insert_inode_hash(inode,
3244 					    inode->i_ino + inode->i_generation);
3245 		spin_unlock(&lock);
3246 	}
3247 
3248 	fh[0] = inode->i_generation;
3249 	fh[1] = inode->i_ino;
3250 	fh[2] = ((__u64)inode->i_ino) >> 32;
3251 
3252 	*len = 3;
3253 	return 1;
3254 }
3255 
3256 static const struct export_operations shmem_export_ops = {
3257 	.get_parent     = shmem_get_parent,
3258 	.encode_fh      = shmem_encode_fh,
3259 	.fh_to_dentry	= shmem_fh_to_dentry,
3260 };
3261 
3262 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3263 			       bool remount)
3264 {
3265 	char *this_char, *value, *rest;
3266 	struct mempolicy *mpol = NULL;
3267 	uid_t uid;
3268 	gid_t gid;
3269 
3270 	while (options != NULL) {
3271 		this_char = options;
3272 		for (;;) {
3273 			/*
3274 			 * NUL-terminate this option: unfortunately,
3275 			 * mount options form a comma-separated list,
3276 			 * but mpol's nodelist may also contain commas.
3277 			 */
3278 			options = strchr(options, ',');
3279 			if (options == NULL)
3280 				break;
3281 			options++;
3282 			if (!isdigit(*options)) {
3283 				options[-1] = '\0';
3284 				break;
3285 			}
3286 		}
3287 		if (!*this_char)
3288 			continue;
3289 		if ((value = strchr(this_char,'=')) != NULL) {
3290 			*value++ = 0;
3291 		} else {
3292 			pr_err("tmpfs: No value for mount option '%s'\n",
3293 			       this_char);
3294 			goto error;
3295 		}
3296 
3297 		if (!strcmp(this_char,"size")) {
3298 			unsigned long long size;
3299 			size = memparse(value,&rest);
3300 			if (*rest == '%') {
3301 				size <<= PAGE_SHIFT;
3302 				size *= totalram_pages;
3303 				do_div(size, 100);
3304 				rest++;
3305 			}
3306 			if (*rest)
3307 				goto bad_val;
3308 			sbinfo->max_blocks =
3309 				DIV_ROUND_UP(size, PAGE_SIZE);
3310 		} else if (!strcmp(this_char,"nr_blocks")) {
3311 			sbinfo->max_blocks = memparse(value, &rest);
3312 			if (*rest)
3313 				goto bad_val;
3314 		} else if (!strcmp(this_char,"nr_inodes")) {
3315 			sbinfo->max_inodes = memparse(value, &rest);
3316 			if (*rest)
3317 				goto bad_val;
3318 		} else if (!strcmp(this_char,"mode")) {
3319 			if (remount)
3320 				continue;
3321 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3322 			if (*rest)
3323 				goto bad_val;
3324 		} else if (!strcmp(this_char,"uid")) {
3325 			if (remount)
3326 				continue;
3327 			uid = simple_strtoul(value, &rest, 0);
3328 			if (*rest)
3329 				goto bad_val;
3330 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3331 			if (!uid_valid(sbinfo->uid))
3332 				goto bad_val;
3333 		} else if (!strcmp(this_char,"gid")) {
3334 			if (remount)
3335 				continue;
3336 			gid = simple_strtoul(value, &rest, 0);
3337 			if (*rest)
3338 				goto bad_val;
3339 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3340 			if (!gid_valid(sbinfo->gid))
3341 				goto bad_val;
3342 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3343 		} else if (!strcmp(this_char, "huge")) {
3344 			int huge;
3345 			huge = shmem_parse_huge(value);
3346 			if (huge < 0)
3347 				goto bad_val;
3348 			if (!has_transparent_hugepage() &&
3349 					huge != SHMEM_HUGE_NEVER)
3350 				goto bad_val;
3351 			sbinfo->huge = huge;
3352 #endif
3353 #ifdef CONFIG_NUMA
3354 		} else if (!strcmp(this_char,"mpol")) {
3355 			mpol_put(mpol);
3356 			mpol = NULL;
3357 			if (mpol_parse_str(value, &mpol))
3358 				goto bad_val;
3359 #endif
3360 		} else {
3361 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3362 			goto error;
3363 		}
3364 	}
3365 	sbinfo->mpol = mpol;
3366 	return 0;
3367 
3368 bad_val:
3369 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3370 	       value, this_char);
3371 error:
3372 	mpol_put(mpol);
3373 	return 1;
3374 
3375 }
3376 
3377 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3378 {
3379 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3380 	struct shmem_sb_info config = *sbinfo;
3381 	unsigned long inodes;
3382 	int error = -EINVAL;
3383 
3384 	config.mpol = NULL;
3385 	if (shmem_parse_options(data, &config, true))
3386 		return error;
3387 
3388 	spin_lock(&sbinfo->stat_lock);
3389 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3390 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3391 		goto out;
3392 	if (config.max_inodes < inodes)
3393 		goto out;
3394 	/*
3395 	 * Those tests disallow limited->unlimited while any are in use;
3396 	 * but we must separately disallow unlimited->limited, because
3397 	 * in that case we have no record of how much is already in use.
3398 	 */
3399 	if (config.max_blocks && !sbinfo->max_blocks)
3400 		goto out;
3401 	if (config.max_inodes && !sbinfo->max_inodes)
3402 		goto out;
3403 
3404 	error = 0;
3405 	sbinfo->huge = config.huge;
3406 	sbinfo->max_blocks  = config.max_blocks;
3407 	sbinfo->max_inodes  = config.max_inodes;
3408 	sbinfo->free_inodes = config.max_inodes - inodes;
3409 
3410 	/*
3411 	 * Preserve previous mempolicy unless mpol remount option was specified.
3412 	 */
3413 	if (config.mpol) {
3414 		mpol_put(sbinfo->mpol);
3415 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3416 	}
3417 out:
3418 	spin_unlock(&sbinfo->stat_lock);
3419 	return error;
3420 }
3421 
3422 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3423 {
3424 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3425 
3426 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3427 		seq_printf(seq, ",size=%luk",
3428 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3429 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3430 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3431 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3432 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3433 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3434 		seq_printf(seq, ",uid=%u",
3435 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3436 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3437 		seq_printf(seq, ",gid=%u",
3438 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3439 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3440 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3441 	if (sbinfo->huge)
3442 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3443 #endif
3444 	shmem_show_mpol(seq, sbinfo->mpol);
3445 	return 0;
3446 }
3447 
3448 #define MFD_NAME_PREFIX "memfd:"
3449 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3450 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3451 
3452 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3453 
3454 SYSCALL_DEFINE2(memfd_create,
3455 		const char __user *, uname,
3456 		unsigned int, flags)
3457 {
3458 	struct shmem_inode_info *info;
3459 	struct file *file;
3460 	int fd, error;
3461 	char *name;
3462 	long len;
3463 
3464 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3465 		return -EINVAL;
3466 
3467 	/* length includes terminating zero */
3468 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3469 	if (len <= 0)
3470 		return -EFAULT;
3471 	if (len > MFD_NAME_MAX_LEN + 1)
3472 		return -EINVAL;
3473 
3474 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3475 	if (!name)
3476 		return -ENOMEM;
3477 
3478 	strcpy(name, MFD_NAME_PREFIX);
3479 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3480 		error = -EFAULT;
3481 		goto err_name;
3482 	}
3483 
3484 	/* terminating-zero may have changed after strnlen_user() returned */
3485 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3486 		error = -EFAULT;
3487 		goto err_name;
3488 	}
3489 
3490 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3491 	if (fd < 0) {
3492 		error = fd;
3493 		goto err_name;
3494 	}
3495 
3496 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3497 	if (IS_ERR(file)) {
3498 		error = PTR_ERR(file);
3499 		goto err_fd;
3500 	}
3501 	info = SHMEM_I(file_inode(file));
3502 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3503 	file->f_flags |= O_RDWR | O_LARGEFILE;
3504 	if (flags & MFD_ALLOW_SEALING)
3505 		info->seals &= ~F_SEAL_SEAL;
3506 
3507 	fd_install(fd, file);
3508 	kfree(name);
3509 	return fd;
3510 
3511 err_fd:
3512 	put_unused_fd(fd);
3513 err_name:
3514 	kfree(name);
3515 	return error;
3516 }
3517 
3518 #endif /* CONFIG_TMPFS */
3519 
3520 static void shmem_put_super(struct super_block *sb)
3521 {
3522 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3523 
3524 	percpu_counter_destroy(&sbinfo->used_blocks);
3525 	mpol_put(sbinfo->mpol);
3526 	kfree(sbinfo);
3527 	sb->s_fs_info = NULL;
3528 }
3529 
3530 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3531 {
3532 	struct inode *inode;
3533 	struct shmem_sb_info *sbinfo;
3534 	int err = -ENOMEM;
3535 
3536 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3537 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3538 				L1_CACHE_BYTES), GFP_KERNEL);
3539 	if (!sbinfo)
3540 		return -ENOMEM;
3541 
3542 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3543 	sbinfo->uid = current_fsuid();
3544 	sbinfo->gid = current_fsgid();
3545 	sb->s_fs_info = sbinfo;
3546 
3547 #ifdef CONFIG_TMPFS
3548 	/*
3549 	 * Per default we only allow half of the physical ram per
3550 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3551 	 * but the internal instance is left unlimited.
3552 	 */
3553 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3554 		sbinfo->max_blocks = shmem_default_max_blocks();
3555 		sbinfo->max_inodes = shmem_default_max_inodes();
3556 		if (shmem_parse_options(data, sbinfo, false)) {
3557 			err = -EINVAL;
3558 			goto failed;
3559 		}
3560 	} else {
3561 		sb->s_flags |= MS_NOUSER;
3562 	}
3563 	sb->s_export_op = &shmem_export_ops;
3564 	sb->s_flags |= MS_NOSEC;
3565 #else
3566 	sb->s_flags |= MS_NOUSER;
3567 #endif
3568 
3569 	spin_lock_init(&sbinfo->stat_lock);
3570 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3571 		goto failed;
3572 	sbinfo->free_inodes = sbinfo->max_inodes;
3573 	spin_lock_init(&sbinfo->shrinklist_lock);
3574 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3575 
3576 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3577 	sb->s_blocksize = PAGE_SIZE;
3578 	sb->s_blocksize_bits = PAGE_SHIFT;
3579 	sb->s_magic = TMPFS_MAGIC;
3580 	sb->s_op = &shmem_ops;
3581 	sb->s_time_gran = 1;
3582 #ifdef CONFIG_TMPFS_XATTR
3583 	sb->s_xattr = shmem_xattr_handlers;
3584 #endif
3585 #ifdef CONFIG_TMPFS_POSIX_ACL
3586 	sb->s_flags |= MS_POSIXACL;
3587 #endif
3588 
3589 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3590 	if (!inode)
3591 		goto failed;
3592 	inode->i_uid = sbinfo->uid;
3593 	inode->i_gid = sbinfo->gid;
3594 	sb->s_root = d_make_root(inode);
3595 	if (!sb->s_root)
3596 		goto failed;
3597 	return 0;
3598 
3599 failed:
3600 	shmem_put_super(sb);
3601 	return err;
3602 }
3603 
3604 static struct kmem_cache *shmem_inode_cachep;
3605 
3606 static struct inode *shmem_alloc_inode(struct super_block *sb)
3607 {
3608 	struct shmem_inode_info *info;
3609 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3610 	if (!info)
3611 		return NULL;
3612 	return &info->vfs_inode;
3613 }
3614 
3615 static void shmem_destroy_callback(struct rcu_head *head)
3616 {
3617 	struct inode *inode = container_of(head, struct inode, i_rcu);
3618 	if (S_ISLNK(inode->i_mode))
3619 		kfree(inode->i_link);
3620 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3621 }
3622 
3623 static void shmem_destroy_inode(struct inode *inode)
3624 {
3625 	if (S_ISREG(inode->i_mode))
3626 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3627 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3628 }
3629 
3630 static void shmem_init_inode(void *foo)
3631 {
3632 	struct shmem_inode_info *info = foo;
3633 	inode_init_once(&info->vfs_inode);
3634 }
3635 
3636 static int shmem_init_inodecache(void)
3637 {
3638 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3639 				sizeof(struct shmem_inode_info),
3640 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3641 	return 0;
3642 }
3643 
3644 static void shmem_destroy_inodecache(void)
3645 {
3646 	kmem_cache_destroy(shmem_inode_cachep);
3647 }
3648 
3649 static const struct address_space_operations shmem_aops = {
3650 	.writepage	= shmem_writepage,
3651 	.set_page_dirty	= __set_page_dirty_no_writeback,
3652 #ifdef CONFIG_TMPFS
3653 	.write_begin	= shmem_write_begin,
3654 	.write_end	= shmem_write_end,
3655 #endif
3656 #ifdef CONFIG_MIGRATION
3657 	.migratepage	= migrate_page,
3658 #endif
3659 	.error_remove_page = generic_error_remove_page,
3660 };
3661 
3662 static const struct file_operations shmem_file_operations = {
3663 	.mmap		= shmem_mmap,
3664 	.get_unmapped_area = shmem_get_unmapped_area,
3665 #ifdef CONFIG_TMPFS
3666 	.llseek		= shmem_file_llseek,
3667 	.read_iter	= shmem_file_read_iter,
3668 	.write_iter	= generic_file_write_iter,
3669 	.fsync		= noop_fsync,
3670 	.splice_read	= generic_file_splice_read,
3671 	.splice_write	= iter_file_splice_write,
3672 	.fallocate	= shmem_fallocate,
3673 #endif
3674 };
3675 
3676 static const struct inode_operations shmem_inode_operations = {
3677 	.getattr	= shmem_getattr,
3678 	.setattr	= shmem_setattr,
3679 #ifdef CONFIG_TMPFS_XATTR
3680 	.listxattr	= shmem_listxattr,
3681 	.set_acl	= simple_set_acl,
3682 #endif
3683 };
3684 
3685 static const struct inode_operations shmem_dir_inode_operations = {
3686 #ifdef CONFIG_TMPFS
3687 	.create		= shmem_create,
3688 	.lookup		= simple_lookup,
3689 	.link		= shmem_link,
3690 	.unlink		= shmem_unlink,
3691 	.symlink	= shmem_symlink,
3692 	.mkdir		= shmem_mkdir,
3693 	.rmdir		= shmem_rmdir,
3694 	.mknod		= shmem_mknod,
3695 	.rename		= shmem_rename2,
3696 	.tmpfile	= shmem_tmpfile,
3697 #endif
3698 #ifdef CONFIG_TMPFS_XATTR
3699 	.listxattr	= shmem_listxattr,
3700 #endif
3701 #ifdef CONFIG_TMPFS_POSIX_ACL
3702 	.setattr	= shmem_setattr,
3703 	.set_acl	= simple_set_acl,
3704 #endif
3705 };
3706 
3707 static const struct inode_operations shmem_special_inode_operations = {
3708 #ifdef CONFIG_TMPFS_XATTR
3709 	.listxattr	= shmem_listxattr,
3710 #endif
3711 #ifdef CONFIG_TMPFS_POSIX_ACL
3712 	.setattr	= shmem_setattr,
3713 	.set_acl	= simple_set_acl,
3714 #endif
3715 };
3716 
3717 static const struct super_operations shmem_ops = {
3718 	.alloc_inode	= shmem_alloc_inode,
3719 	.destroy_inode	= shmem_destroy_inode,
3720 #ifdef CONFIG_TMPFS
3721 	.statfs		= shmem_statfs,
3722 	.remount_fs	= shmem_remount_fs,
3723 	.show_options	= shmem_show_options,
3724 #endif
3725 	.evict_inode	= shmem_evict_inode,
3726 	.drop_inode	= generic_delete_inode,
3727 	.put_super	= shmem_put_super,
3728 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3729 	.nr_cached_objects	= shmem_unused_huge_count,
3730 	.free_cached_objects	= shmem_unused_huge_scan,
3731 #endif
3732 };
3733 
3734 static const struct vm_operations_struct shmem_vm_ops = {
3735 	.fault		= shmem_fault,
3736 	.map_pages	= filemap_map_pages,
3737 #ifdef CONFIG_NUMA
3738 	.set_policy     = shmem_set_policy,
3739 	.get_policy     = shmem_get_policy,
3740 #endif
3741 };
3742 
3743 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3744 	int flags, const char *dev_name, void *data)
3745 {
3746 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3747 }
3748 
3749 static struct file_system_type shmem_fs_type = {
3750 	.owner		= THIS_MODULE,
3751 	.name		= "tmpfs",
3752 	.mount		= shmem_mount,
3753 	.kill_sb	= kill_litter_super,
3754 	.fs_flags	= FS_USERNS_MOUNT,
3755 };
3756 
3757 int __init shmem_init(void)
3758 {
3759 	int error;
3760 
3761 	/* If rootfs called this, don't re-init */
3762 	if (shmem_inode_cachep)
3763 		return 0;
3764 
3765 	error = shmem_init_inodecache();
3766 	if (error)
3767 		goto out3;
3768 
3769 	error = register_filesystem(&shmem_fs_type);
3770 	if (error) {
3771 		pr_err("Could not register tmpfs\n");
3772 		goto out2;
3773 	}
3774 
3775 	shm_mnt = kern_mount(&shmem_fs_type);
3776 	if (IS_ERR(shm_mnt)) {
3777 		error = PTR_ERR(shm_mnt);
3778 		pr_err("Could not kern_mount tmpfs\n");
3779 		goto out1;
3780 	}
3781 
3782 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3783 	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3784 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3785 	else
3786 		shmem_huge = 0; /* just in case it was patched */
3787 #endif
3788 	return 0;
3789 
3790 out1:
3791 	unregister_filesystem(&shmem_fs_type);
3792 out2:
3793 	shmem_destroy_inodecache();
3794 out3:
3795 	shm_mnt = ERR_PTR(error);
3796 	return error;
3797 }
3798 
3799 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3800 static ssize_t shmem_enabled_show(struct kobject *kobj,
3801 		struct kobj_attribute *attr, char *buf)
3802 {
3803 	int values[] = {
3804 		SHMEM_HUGE_ALWAYS,
3805 		SHMEM_HUGE_WITHIN_SIZE,
3806 		SHMEM_HUGE_ADVISE,
3807 		SHMEM_HUGE_NEVER,
3808 		SHMEM_HUGE_DENY,
3809 		SHMEM_HUGE_FORCE,
3810 	};
3811 	int i, count;
3812 
3813 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3814 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3815 
3816 		count += sprintf(buf + count, fmt,
3817 				shmem_format_huge(values[i]));
3818 	}
3819 	buf[count - 1] = '\n';
3820 	return count;
3821 }
3822 
3823 static ssize_t shmem_enabled_store(struct kobject *kobj,
3824 		struct kobj_attribute *attr, const char *buf, size_t count)
3825 {
3826 	char tmp[16];
3827 	int huge;
3828 
3829 	if (count + 1 > sizeof(tmp))
3830 		return -EINVAL;
3831 	memcpy(tmp, buf, count);
3832 	tmp[count] = '\0';
3833 	if (count && tmp[count - 1] == '\n')
3834 		tmp[count - 1] = '\0';
3835 
3836 	huge = shmem_parse_huge(tmp);
3837 	if (huge == -EINVAL)
3838 		return -EINVAL;
3839 	if (!has_transparent_hugepage() &&
3840 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3841 		return -EINVAL;
3842 
3843 	shmem_huge = huge;
3844 	if (shmem_huge < SHMEM_HUGE_DENY)
3845 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3846 	return count;
3847 }
3848 
3849 struct kobj_attribute shmem_enabled_attr =
3850 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3851 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3852 
3853 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3854 bool shmem_huge_enabled(struct vm_area_struct *vma)
3855 {
3856 	struct inode *inode = file_inode(vma->vm_file);
3857 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3858 	loff_t i_size;
3859 	pgoff_t off;
3860 
3861 	if (shmem_huge == SHMEM_HUGE_FORCE)
3862 		return true;
3863 	if (shmem_huge == SHMEM_HUGE_DENY)
3864 		return false;
3865 	switch (sbinfo->huge) {
3866 		case SHMEM_HUGE_NEVER:
3867 			return false;
3868 		case SHMEM_HUGE_ALWAYS:
3869 			return true;
3870 		case SHMEM_HUGE_WITHIN_SIZE:
3871 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3872 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3873 			if (i_size >= HPAGE_PMD_SIZE &&
3874 					i_size >> PAGE_SHIFT >= off)
3875 				return true;
3876 		case SHMEM_HUGE_ADVISE:
3877 			/* TODO: implement fadvise() hints */
3878 			return (vma->vm_flags & VM_HUGEPAGE);
3879 		default:
3880 			VM_BUG_ON(1);
3881 			return false;
3882 	}
3883 }
3884 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3885 
3886 #else /* !CONFIG_SHMEM */
3887 
3888 /*
3889  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3890  *
3891  * This is intended for small system where the benefits of the full
3892  * shmem code (swap-backed and resource-limited) are outweighed by
3893  * their complexity. On systems without swap this code should be
3894  * effectively equivalent, but much lighter weight.
3895  */
3896 
3897 static struct file_system_type shmem_fs_type = {
3898 	.name		= "tmpfs",
3899 	.mount		= ramfs_mount,
3900 	.kill_sb	= kill_litter_super,
3901 	.fs_flags	= FS_USERNS_MOUNT,
3902 };
3903 
3904 int __init shmem_init(void)
3905 {
3906 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3907 
3908 	shm_mnt = kern_mount(&shmem_fs_type);
3909 	BUG_ON(IS_ERR(shm_mnt));
3910 
3911 	return 0;
3912 }
3913 
3914 int shmem_unuse(swp_entry_t swap, struct page *page)
3915 {
3916 	return 0;
3917 }
3918 
3919 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3920 {
3921 	return 0;
3922 }
3923 
3924 void shmem_unlock_mapping(struct address_space *mapping)
3925 {
3926 }
3927 
3928 #ifdef CONFIG_MMU
3929 unsigned long shmem_get_unmapped_area(struct file *file,
3930 				      unsigned long addr, unsigned long len,
3931 				      unsigned long pgoff, unsigned long flags)
3932 {
3933 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3934 }
3935 #endif
3936 
3937 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3938 {
3939 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3940 }
3941 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3942 
3943 #define shmem_vm_ops				generic_file_vm_ops
3944 #define shmem_file_operations			ramfs_file_operations
3945 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3946 #define shmem_acct_size(flags, size)		0
3947 #define shmem_unacct_size(flags, size)		do {} while (0)
3948 
3949 #endif /* CONFIG_SHMEM */
3950 
3951 /* common code */
3952 
3953 static const struct dentry_operations anon_ops = {
3954 	.d_dname = simple_dname
3955 };
3956 
3957 static struct file *__shmem_file_setup(const char *name, loff_t size,
3958 				       unsigned long flags, unsigned int i_flags)
3959 {
3960 	struct file *res;
3961 	struct inode *inode;
3962 	struct path path;
3963 	struct super_block *sb;
3964 	struct qstr this;
3965 
3966 	if (IS_ERR(shm_mnt))
3967 		return ERR_CAST(shm_mnt);
3968 
3969 	if (size < 0 || size > MAX_LFS_FILESIZE)
3970 		return ERR_PTR(-EINVAL);
3971 
3972 	if (shmem_acct_size(flags, size))
3973 		return ERR_PTR(-ENOMEM);
3974 
3975 	res = ERR_PTR(-ENOMEM);
3976 	this.name = name;
3977 	this.len = strlen(name);
3978 	this.hash = 0; /* will go */
3979 	sb = shm_mnt->mnt_sb;
3980 	path.mnt = mntget(shm_mnt);
3981 	path.dentry = d_alloc_pseudo(sb, &this);
3982 	if (!path.dentry)
3983 		goto put_memory;
3984 	d_set_d_op(path.dentry, &anon_ops);
3985 
3986 	res = ERR_PTR(-ENOSPC);
3987 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3988 	if (!inode)
3989 		goto put_memory;
3990 
3991 	inode->i_flags |= i_flags;
3992 	d_instantiate(path.dentry, inode);
3993 	inode->i_size = size;
3994 	clear_nlink(inode);	/* It is unlinked */
3995 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3996 	if (IS_ERR(res))
3997 		goto put_path;
3998 
3999 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4000 		  &shmem_file_operations);
4001 	if (IS_ERR(res))
4002 		goto put_path;
4003 
4004 	return res;
4005 
4006 put_memory:
4007 	shmem_unacct_size(flags, size);
4008 put_path:
4009 	path_put(&path);
4010 	return res;
4011 }
4012 
4013 /**
4014  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4015  * 	kernel internal.  There will be NO LSM permission checks against the
4016  * 	underlying inode.  So users of this interface must do LSM checks at a
4017  *	higher layer.  The users are the big_key and shm implementations.  LSM
4018  *	checks are provided at the key or shm level rather than the inode.
4019  * @name: name for dentry (to be seen in /proc/<pid>/maps
4020  * @size: size to be set for the file
4021  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4022  */
4023 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4024 {
4025 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4026 }
4027 
4028 /**
4029  * shmem_file_setup - get an unlinked file living in tmpfs
4030  * @name: name for dentry (to be seen in /proc/<pid>/maps
4031  * @size: size to be set for the file
4032  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4033  */
4034 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4035 {
4036 	return __shmem_file_setup(name, size, flags, 0);
4037 }
4038 EXPORT_SYMBOL_GPL(shmem_file_setup);
4039 
4040 /**
4041  * shmem_zero_setup - setup a shared anonymous mapping
4042  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4043  */
4044 int shmem_zero_setup(struct vm_area_struct *vma)
4045 {
4046 	struct file *file;
4047 	loff_t size = vma->vm_end - vma->vm_start;
4048 
4049 	/*
4050 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4051 	 * between XFS directory reading and selinux: since this file is only
4052 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4053 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4054 	 */
4055 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4056 	if (IS_ERR(file))
4057 		return PTR_ERR(file);
4058 
4059 	if (vma->vm_file)
4060 		fput(vma->vm_file);
4061 	vma->vm_file = file;
4062 	vma->vm_ops = &shmem_vm_ops;
4063 
4064 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4065 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4066 			(vma->vm_end & HPAGE_PMD_MASK)) {
4067 		khugepaged_enter(vma, vma->vm_flags);
4068 	}
4069 
4070 	return 0;
4071 }
4072 
4073 /**
4074  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4075  * @mapping:	the page's address_space
4076  * @index:	the page index
4077  * @gfp:	the page allocator flags to use if allocating
4078  *
4079  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4080  * with any new page allocations done using the specified allocation flags.
4081  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4082  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4083  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4084  *
4085  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4086  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4087  */
4088 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4089 					 pgoff_t index, gfp_t gfp)
4090 {
4091 #ifdef CONFIG_SHMEM
4092 	struct inode *inode = mapping->host;
4093 	struct page *page;
4094 	int error;
4095 
4096 	BUG_ON(mapping->a_ops != &shmem_aops);
4097 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4098 				  gfp, NULL, NULL);
4099 	if (error)
4100 		page = ERR_PTR(error);
4101 	else
4102 		unlock_page(page);
4103 	return page;
4104 #else
4105 	/*
4106 	 * The tiny !SHMEM case uses ramfs without swap
4107 	 */
4108 	return read_cache_page_gfp(mapping, index, gfp);
4109 #endif
4110 }
4111 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4112