xref: /openbmc/linux/mm/shmem.c (revision f125e2d4)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86 
87 #include "internal.h"
88 
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94 
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97 
98 /*
99  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100  * inode->i_private (with i_mutex making sure that it has only one user at
101  * a time): we would prefer not to enlarge the shmem inode just for that.
102  */
103 struct shmem_falloc {
104 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 	pgoff_t start;		/* start of range currently being fallocated */
106 	pgoff_t next;		/* the next page offset to be fallocated */
107 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
108 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
109 };
110 
111 struct shmem_options {
112 	unsigned long long blocks;
113 	unsigned long long inodes;
114 	struct mempolicy *mpol;
115 	kuid_t uid;
116 	kgid_t gid;
117 	umode_t mode;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 				struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 			     struct page **pagep, enum sgp_type sgp,
144 			     gfp_t gfp, struct vm_area_struct *vma,
145 			     vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp,
148 		gfp_t gfp, struct vm_area_struct *vma,
149 		struct vm_fault *vmf, vm_fault_t *fault_type);
150 
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 		struct page **pagep, enum sgp_type sgp)
153 {
154 	return shmem_getpage_gfp(inode, index, pagep, sgp,
155 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157 
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160 	return sb->s_fs_info;
161 }
162 
163 /*
164  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165  * for shared memory and for shared anonymous (/dev/zero) mappings
166  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167  * consistent with the pre-accounting of private mappings ...
168  */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171 	return (flags & VM_NORESERVE) ?
172 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174 
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177 	if (!(flags & VM_NORESERVE))
178 		vm_unacct_memory(VM_ACCT(size));
179 }
180 
181 static inline int shmem_reacct_size(unsigned long flags,
182 		loff_t oldsize, loff_t newsize)
183 {
184 	if (!(flags & VM_NORESERVE)) {
185 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 			return security_vm_enough_memory_mm(current->mm,
187 					VM_ACCT(newsize) - VM_ACCT(oldsize));
188 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 	}
191 	return 0;
192 }
193 
194 /*
195  * ... whereas tmpfs objects are accounted incrementally as
196  * pages are allocated, in order to allow large sparse files.
197  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199  */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202 	if (!(flags & VM_NORESERVE))
203 		return 0;
204 
205 	return security_vm_enough_memory_mm(current->mm,
206 			pages * VM_ACCT(PAGE_SIZE));
207 }
208 
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 	if (flags & VM_NORESERVE)
212 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214 
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217 	struct shmem_inode_info *info = SHMEM_I(inode);
218 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 
220 	if (shmem_acct_block(info->flags, pages))
221 		return false;
222 
223 	if (sbinfo->max_blocks) {
224 		if (percpu_counter_compare(&sbinfo->used_blocks,
225 					   sbinfo->max_blocks - pages) > 0)
226 			goto unacct;
227 		percpu_counter_add(&sbinfo->used_blocks, pages);
228 	}
229 
230 	return true;
231 
232 unacct:
233 	shmem_unacct_blocks(info->flags, pages);
234 	return false;
235 }
236 
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239 	struct shmem_inode_info *info = SHMEM_I(inode);
240 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 
242 	if (sbinfo->max_blocks)
243 		percpu_counter_sub(&sbinfo->used_blocks, pages);
244 	shmem_unacct_blocks(info->flags, pages);
245 }
246 
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255 
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258 	return vma->vm_ops == &shmem_vm_ops;
259 }
260 
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263 
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 	if (sbinfo->max_inodes) {
268 		spin_lock(&sbinfo->stat_lock);
269 		if (!sbinfo->free_inodes) {
270 			spin_unlock(&sbinfo->stat_lock);
271 			return -ENOSPC;
272 		}
273 		sbinfo->free_inodes--;
274 		spin_unlock(&sbinfo->stat_lock);
275 	}
276 	return 0;
277 }
278 
279 static void shmem_free_inode(struct super_block *sb)
280 {
281 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 	if (sbinfo->max_inodes) {
283 		spin_lock(&sbinfo->stat_lock);
284 		sbinfo->free_inodes++;
285 		spin_unlock(&sbinfo->stat_lock);
286 	}
287 }
288 
289 /**
290  * shmem_recalc_inode - recalculate the block usage of an inode
291  * @inode: inode to recalc
292  *
293  * We have to calculate the free blocks since the mm can drop
294  * undirtied hole pages behind our back.
295  *
296  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
297  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298  *
299  * It has to be called with the spinlock held.
300  */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303 	struct shmem_inode_info *info = SHMEM_I(inode);
304 	long freed;
305 
306 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 	if (freed > 0) {
308 		info->alloced -= freed;
309 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 		shmem_inode_unacct_blocks(inode, freed);
311 	}
312 }
313 
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316 	struct shmem_inode_info *info = SHMEM_I(inode);
317 	unsigned long flags;
318 
319 	if (!shmem_inode_acct_block(inode, pages))
320 		return false;
321 
322 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 	inode->i_mapping->nrpages += pages;
324 
325 	spin_lock_irqsave(&info->lock, flags);
326 	info->alloced += pages;
327 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 	shmem_recalc_inode(inode);
329 	spin_unlock_irqrestore(&info->lock, flags);
330 
331 	return true;
332 }
333 
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336 	struct shmem_inode_info *info = SHMEM_I(inode);
337 	unsigned long flags;
338 
339 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
340 
341 	spin_lock_irqsave(&info->lock, flags);
342 	info->alloced -= pages;
343 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 	shmem_recalc_inode(inode);
345 	spin_unlock_irqrestore(&info->lock, flags);
346 
347 	shmem_inode_unacct_blocks(inode, pages);
348 }
349 
350 /*
351  * Replace item expected in xarray by a new item, while holding xa_lock.
352  */
353 static int shmem_replace_entry(struct address_space *mapping,
354 			pgoff_t index, void *expected, void *replacement)
355 {
356 	XA_STATE(xas, &mapping->i_pages, index);
357 	void *item;
358 
359 	VM_BUG_ON(!expected);
360 	VM_BUG_ON(!replacement);
361 	item = xas_load(&xas);
362 	if (item != expected)
363 		return -ENOENT;
364 	xas_store(&xas, replacement);
365 	return 0;
366 }
367 
368 /*
369  * Sometimes, before we decide whether to proceed or to fail, we must check
370  * that an entry was not already brought back from swap by a racing thread.
371  *
372  * Checking page is not enough: by the time a SwapCache page is locked, it
373  * might be reused, and again be SwapCache, using the same swap as before.
374  */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 			       pgoff_t index, swp_entry_t swap)
377 {
378 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380 
381 /*
382  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383  *
384  * SHMEM_HUGE_NEVER:
385  *	disables huge pages for the mount;
386  * SHMEM_HUGE_ALWAYS:
387  *	enables huge pages for the mount;
388  * SHMEM_HUGE_WITHIN_SIZE:
389  *	only allocate huge pages if the page will be fully within i_size,
390  *	also respect fadvise()/madvise() hints;
391  * SHMEM_HUGE_ADVISE:
392  *	only allocate huge pages if requested with fadvise()/madvise();
393  */
394 
395 #define SHMEM_HUGE_NEVER	0
396 #define SHMEM_HUGE_ALWAYS	1
397 #define SHMEM_HUGE_WITHIN_SIZE	2
398 #define SHMEM_HUGE_ADVISE	3
399 
400 /*
401  * Special values.
402  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403  *
404  * SHMEM_HUGE_DENY:
405  *	disables huge on shm_mnt and all mounts, for emergency use;
406  * SHMEM_HUGE_FORCE:
407  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408  *
409  */
410 #define SHMEM_HUGE_DENY		(-1)
411 #define SHMEM_HUGE_FORCE	(-2)
412 
413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415 
416 static int shmem_huge __read_mostly;
417 
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421 	if (!strcmp(str, "never"))
422 		return SHMEM_HUGE_NEVER;
423 	if (!strcmp(str, "always"))
424 		return SHMEM_HUGE_ALWAYS;
425 	if (!strcmp(str, "within_size"))
426 		return SHMEM_HUGE_WITHIN_SIZE;
427 	if (!strcmp(str, "advise"))
428 		return SHMEM_HUGE_ADVISE;
429 	if (!strcmp(str, "deny"))
430 		return SHMEM_HUGE_DENY;
431 	if (!strcmp(str, "force"))
432 		return SHMEM_HUGE_FORCE;
433 	return -EINVAL;
434 }
435 #endif
436 
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440 	switch (huge) {
441 	case SHMEM_HUGE_NEVER:
442 		return "never";
443 	case SHMEM_HUGE_ALWAYS:
444 		return "always";
445 	case SHMEM_HUGE_WITHIN_SIZE:
446 		return "within_size";
447 	case SHMEM_HUGE_ADVISE:
448 		return "advise";
449 	case SHMEM_HUGE_DENY:
450 		return "deny";
451 	case SHMEM_HUGE_FORCE:
452 		return "force";
453 	default:
454 		VM_BUG_ON(1);
455 		return "bad_val";
456 	}
457 }
458 #endif
459 
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 		struct shrink_control *sc, unsigned long nr_to_split)
462 {
463 	LIST_HEAD(list), *pos, *next;
464 	LIST_HEAD(to_remove);
465 	struct inode *inode;
466 	struct shmem_inode_info *info;
467 	struct page *page;
468 	unsigned long batch = sc ? sc->nr_to_scan : 128;
469 	int removed = 0, split = 0;
470 
471 	if (list_empty(&sbinfo->shrinklist))
472 		return SHRINK_STOP;
473 
474 	spin_lock(&sbinfo->shrinklist_lock);
475 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
477 
478 		/* pin the inode */
479 		inode = igrab(&info->vfs_inode);
480 
481 		/* inode is about to be evicted */
482 		if (!inode) {
483 			list_del_init(&info->shrinklist);
484 			removed++;
485 			goto next;
486 		}
487 
488 		/* Check if there's anything to gain */
489 		if (round_up(inode->i_size, PAGE_SIZE) ==
490 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 			list_move(&info->shrinklist, &to_remove);
492 			removed++;
493 			goto next;
494 		}
495 
496 		list_move(&info->shrinklist, &list);
497 next:
498 		if (!--batch)
499 			break;
500 	}
501 	spin_unlock(&sbinfo->shrinklist_lock);
502 
503 	list_for_each_safe(pos, next, &to_remove) {
504 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 		inode = &info->vfs_inode;
506 		list_del_init(&info->shrinklist);
507 		iput(inode);
508 	}
509 
510 	list_for_each_safe(pos, next, &list) {
511 		int ret;
512 
513 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 		inode = &info->vfs_inode;
515 
516 		if (nr_to_split && split >= nr_to_split)
517 			goto leave;
518 
519 		page = find_get_page(inode->i_mapping,
520 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 		if (!page)
522 			goto drop;
523 
524 		/* No huge page at the end of the file: nothing to split */
525 		if (!PageTransHuge(page)) {
526 			put_page(page);
527 			goto drop;
528 		}
529 
530 		/*
531 		 * Leave the inode on the list if we failed to lock
532 		 * the page at this time.
533 		 *
534 		 * Waiting for the lock may lead to deadlock in the
535 		 * reclaim path.
536 		 */
537 		if (!trylock_page(page)) {
538 			put_page(page);
539 			goto leave;
540 		}
541 
542 		ret = split_huge_page(page);
543 		unlock_page(page);
544 		put_page(page);
545 
546 		/* If split failed leave the inode on the list */
547 		if (ret)
548 			goto leave;
549 
550 		split++;
551 drop:
552 		list_del_init(&info->shrinklist);
553 		removed++;
554 leave:
555 		iput(inode);
556 	}
557 
558 	spin_lock(&sbinfo->shrinklist_lock);
559 	list_splice_tail(&list, &sbinfo->shrinklist);
560 	sbinfo->shrinklist_len -= removed;
561 	spin_unlock(&sbinfo->shrinklist_lock);
562 
563 	return split;
564 }
565 
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 		struct shrink_control *sc)
568 {
569 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570 
571 	if (!READ_ONCE(sbinfo->shrinklist_len))
572 		return SHRINK_STOP;
573 
574 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576 
577 static long shmem_unused_huge_count(struct super_block *sb,
578 		struct shrink_control *sc)
579 {
580 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 	return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
584 
585 #define shmem_huge SHMEM_HUGE_DENY
586 
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 		struct shrink_control *sc, unsigned long nr_to_split)
589 {
590 	return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
593 
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
597 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 	    shmem_huge != SHMEM_HUGE_DENY)
599 		return true;
600 	return false;
601 }
602 
603 /*
604  * Like add_to_page_cache_locked, but error if expected item has gone.
605  */
606 static int shmem_add_to_page_cache(struct page *page,
607 				   struct address_space *mapping,
608 				   pgoff_t index, void *expected, gfp_t gfp)
609 {
610 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 	unsigned long i = 0;
612 	unsigned long nr = compound_nr(page);
613 
614 	VM_BUG_ON_PAGE(PageTail(page), page);
615 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616 	VM_BUG_ON_PAGE(!PageLocked(page), page);
617 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618 	VM_BUG_ON(expected && PageTransHuge(page));
619 
620 	page_ref_add(page, nr);
621 	page->mapping = mapping;
622 	page->index = index;
623 
624 	do {
625 		void *entry;
626 		xas_lock_irq(&xas);
627 		entry = xas_find_conflict(&xas);
628 		if (entry != expected)
629 			xas_set_err(&xas, -EEXIST);
630 		xas_create_range(&xas);
631 		if (xas_error(&xas))
632 			goto unlock;
633 next:
634 		xas_store(&xas, page);
635 		if (++i < nr) {
636 			xas_next(&xas);
637 			goto next;
638 		}
639 		if (PageTransHuge(page)) {
640 			count_vm_event(THP_FILE_ALLOC);
641 			__inc_node_page_state(page, NR_SHMEM_THPS);
642 		}
643 		mapping->nrpages += nr;
644 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646 unlock:
647 		xas_unlock_irq(&xas);
648 	} while (xas_nomem(&xas, gfp));
649 
650 	if (xas_error(&xas)) {
651 		page->mapping = NULL;
652 		page_ref_sub(page, nr);
653 		return xas_error(&xas);
654 	}
655 
656 	return 0;
657 }
658 
659 /*
660  * Like delete_from_page_cache, but substitutes swap for page.
661  */
662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663 {
664 	struct address_space *mapping = page->mapping;
665 	int error;
666 
667 	VM_BUG_ON_PAGE(PageCompound(page), page);
668 
669 	xa_lock_irq(&mapping->i_pages);
670 	error = shmem_replace_entry(mapping, page->index, page, radswap);
671 	page->mapping = NULL;
672 	mapping->nrpages--;
673 	__dec_node_page_state(page, NR_FILE_PAGES);
674 	__dec_node_page_state(page, NR_SHMEM);
675 	xa_unlock_irq(&mapping->i_pages);
676 	put_page(page);
677 	BUG_ON(error);
678 }
679 
680 /*
681  * Remove swap entry from page cache, free the swap and its page cache.
682  */
683 static int shmem_free_swap(struct address_space *mapping,
684 			   pgoff_t index, void *radswap)
685 {
686 	void *old;
687 
688 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689 	if (old != radswap)
690 		return -ENOENT;
691 	free_swap_and_cache(radix_to_swp_entry(radswap));
692 	return 0;
693 }
694 
695 /*
696  * Determine (in bytes) how many of the shmem object's pages mapped by the
697  * given offsets are swapped out.
698  *
699  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700  * as long as the inode doesn't go away and racy results are not a problem.
701  */
702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 						pgoff_t start, pgoff_t end)
704 {
705 	XA_STATE(xas, &mapping->i_pages, start);
706 	struct page *page;
707 	unsigned long swapped = 0;
708 
709 	rcu_read_lock();
710 	xas_for_each(&xas, page, end - 1) {
711 		if (xas_retry(&xas, page))
712 			continue;
713 		if (xa_is_value(page))
714 			swapped++;
715 
716 		if (need_resched()) {
717 			xas_pause(&xas);
718 			cond_resched_rcu();
719 		}
720 	}
721 
722 	rcu_read_unlock();
723 
724 	return swapped << PAGE_SHIFT;
725 }
726 
727 /*
728  * Determine (in bytes) how many of the shmem object's pages mapped by the
729  * given vma is swapped out.
730  *
731  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732  * as long as the inode doesn't go away and racy results are not a problem.
733  */
734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735 {
736 	struct inode *inode = file_inode(vma->vm_file);
737 	struct shmem_inode_info *info = SHMEM_I(inode);
738 	struct address_space *mapping = inode->i_mapping;
739 	unsigned long swapped;
740 
741 	/* Be careful as we don't hold info->lock */
742 	swapped = READ_ONCE(info->swapped);
743 
744 	/*
745 	 * The easier cases are when the shmem object has nothing in swap, or
746 	 * the vma maps it whole. Then we can simply use the stats that we
747 	 * already track.
748 	 */
749 	if (!swapped)
750 		return 0;
751 
752 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 		return swapped << PAGE_SHIFT;
754 
755 	/* Here comes the more involved part */
756 	return shmem_partial_swap_usage(mapping,
757 			linear_page_index(vma, vma->vm_start),
758 			linear_page_index(vma, vma->vm_end));
759 }
760 
761 /*
762  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763  */
764 void shmem_unlock_mapping(struct address_space *mapping)
765 {
766 	struct pagevec pvec;
767 	pgoff_t indices[PAGEVEC_SIZE];
768 	pgoff_t index = 0;
769 
770 	pagevec_init(&pvec);
771 	/*
772 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 	 */
774 	while (!mapping_unevictable(mapping)) {
775 		/*
776 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 		 */
779 		pvec.nr = find_get_entries(mapping, index,
780 					   PAGEVEC_SIZE, pvec.pages, indices);
781 		if (!pvec.nr)
782 			break;
783 		index = indices[pvec.nr - 1] + 1;
784 		pagevec_remove_exceptionals(&pvec);
785 		check_move_unevictable_pages(&pvec);
786 		pagevec_release(&pvec);
787 		cond_resched();
788 	}
789 }
790 
791 /*
792  * Remove range of pages and swap entries from page cache, and free them.
793  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
794  */
795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
796 								 bool unfalloc)
797 {
798 	struct address_space *mapping = inode->i_mapping;
799 	struct shmem_inode_info *info = SHMEM_I(inode);
800 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
804 	struct pagevec pvec;
805 	pgoff_t indices[PAGEVEC_SIZE];
806 	long nr_swaps_freed = 0;
807 	pgoff_t index;
808 	int i;
809 
810 	if (lend == -1)
811 		end = -1;	/* unsigned, so actually very big */
812 
813 	pagevec_init(&pvec);
814 	index = start;
815 	while (index < end) {
816 		pvec.nr = find_get_entries(mapping, index,
817 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
818 			pvec.pages, indices);
819 		if (!pvec.nr)
820 			break;
821 		for (i = 0; i < pagevec_count(&pvec); i++) {
822 			struct page *page = pvec.pages[i];
823 
824 			index = indices[i];
825 			if (index >= end)
826 				break;
827 
828 			if (xa_is_value(page)) {
829 				if (unfalloc)
830 					continue;
831 				nr_swaps_freed += !shmem_free_swap(mapping,
832 								index, page);
833 				continue;
834 			}
835 
836 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
837 
838 			if (!trylock_page(page))
839 				continue;
840 
841 			if (PageTransTail(page)) {
842 				/* Middle of THP: zero out the page */
843 				clear_highpage(page);
844 				unlock_page(page);
845 				continue;
846 			} else if (PageTransHuge(page)) {
847 				if (index == round_down(end, HPAGE_PMD_NR)) {
848 					/*
849 					 * Range ends in the middle of THP:
850 					 * zero out the page
851 					 */
852 					clear_highpage(page);
853 					unlock_page(page);
854 					continue;
855 				}
856 				index += HPAGE_PMD_NR - 1;
857 				i += HPAGE_PMD_NR - 1;
858 			}
859 
860 			if (!unfalloc || !PageUptodate(page)) {
861 				VM_BUG_ON_PAGE(PageTail(page), page);
862 				if (page_mapping(page) == mapping) {
863 					VM_BUG_ON_PAGE(PageWriteback(page), page);
864 					truncate_inode_page(mapping, page);
865 				}
866 			}
867 			unlock_page(page);
868 		}
869 		pagevec_remove_exceptionals(&pvec);
870 		pagevec_release(&pvec);
871 		cond_resched();
872 		index++;
873 	}
874 
875 	if (partial_start) {
876 		struct page *page = NULL;
877 		shmem_getpage(inode, start - 1, &page, SGP_READ);
878 		if (page) {
879 			unsigned int top = PAGE_SIZE;
880 			if (start > end) {
881 				top = partial_end;
882 				partial_end = 0;
883 			}
884 			zero_user_segment(page, partial_start, top);
885 			set_page_dirty(page);
886 			unlock_page(page);
887 			put_page(page);
888 		}
889 	}
890 	if (partial_end) {
891 		struct page *page = NULL;
892 		shmem_getpage(inode, end, &page, SGP_READ);
893 		if (page) {
894 			zero_user_segment(page, 0, partial_end);
895 			set_page_dirty(page);
896 			unlock_page(page);
897 			put_page(page);
898 		}
899 	}
900 	if (start >= end)
901 		return;
902 
903 	index = start;
904 	while (index < end) {
905 		cond_resched();
906 
907 		pvec.nr = find_get_entries(mapping, index,
908 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
909 				pvec.pages, indices);
910 		if (!pvec.nr) {
911 			/* If all gone or hole-punch or unfalloc, we're done */
912 			if (index == start || end != -1)
913 				break;
914 			/* But if truncating, restart to make sure all gone */
915 			index = start;
916 			continue;
917 		}
918 		for (i = 0; i < pagevec_count(&pvec); i++) {
919 			struct page *page = pvec.pages[i];
920 
921 			index = indices[i];
922 			if (index >= end)
923 				break;
924 
925 			if (xa_is_value(page)) {
926 				if (unfalloc)
927 					continue;
928 				if (shmem_free_swap(mapping, index, page)) {
929 					/* Swap was replaced by page: retry */
930 					index--;
931 					break;
932 				}
933 				nr_swaps_freed++;
934 				continue;
935 			}
936 
937 			lock_page(page);
938 
939 			if (PageTransTail(page)) {
940 				/* Middle of THP: zero out the page */
941 				clear_highpage(page);
942 				unlock_page(page);
943 				/*
944 				 * Partial thp truncate due 'start' in middle
945 				 * of THP: don't need to look on these pages
946 				 * again on !pvec.nr restart.
947 				 */
948 				if (index != round_down(end, HPAGE_PMD_NR))
949 					start++;
950 				continue;
951 			} else if (PageTransHuge(page)) {
952 				if (index == round_down(end, HPAGE_PMD_NR)) {
953 					/*
954 					 * Range ends in the middle of THP:
955 					 * zero out the page
956 					 */
957 					clear_highpage(page);
958 					unlock_page(page);
959 					continue;
960 				}
961 				index += HPAGE_PMD_NR - 1;
962 				i += HPAGE_PMD_NR - 1;
963 			}
964 
965 			if (!unfalloc || !PageUptodate(page)) {
966 				VM_BUG_ON_PAGE(PageTail(page), page);
967 				if (page_mapping(page) == mapping) {
968 					VM_BUG_ON_PAGE(PageWriteback(page), page);
969 					truncate_inode_page(mapping, page);
970 				} else {
971 					/* Page was replaced by swap: retry */
972 					unlock_page(page);
973 					index--;
974 					break;
975 				}
976 			}
977 			unlock_page(page);
978 		}
979 		pagevec_remove_exceptionals(&pvec);
980 		pagevec_release(&pvec);
981 		index++;
982 	}
983 
984 	spin_lock_irq(&info->lock);
985 	info->swapped -= nr_swaps_freed;
986 	shmem_recalc_inode(inode);
987 	spin_unlock_irq(&info->lock);
988 }
989 
990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
991 {
992 	shmem_undo_range(inode, lstart, lend, false);
993 	inode->i_ctime = inode->i_mtime = current_time(inode);
994 }
995 EXPORT_SYMBOL_GPL(shmem_truncate_range);
996 
997 static int shmem_getattr(const struct path *path, struct kstat *stat,
998 			 u32 request_mask, unsigned int query_flags)
999 {
1000 	struct inode *inode = path->dentry->d_inode;
1001 	struct shmem_inode_info *info = SHMEM_I(inode);
1002 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1003 
1004 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005 		spin_lock_irq(&info->lock);
1006 		shmem_recalc_inode(inode);
1007 		spin_unlock_irq(&info->lock);
1008 	}
1009 	generic_fillattr(inode, stat);
1010 
1011 	if (is_huge_enabled(sb_info))
1012 		stat->blksize = HPAGE_PMD_SIZE;
1013 
1014 	return 0;
1015 }
1016 
1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1018 {
1019 	struct inode *inode = d_inode(dentry);
1020 	struct shmem_inode_info *info = SHMEM_I(inode);
1021 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022 	int error;
1023 
1024 	error = setattr_prepare(dentry, attr);
1025 	if (error)
1026 		return error;
1027 
1028 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029 		loff_t oldsize = inode->i_size;
1030 		loff_t newsize = attr->ia_size;
1031 
1032 		/* protected by i_mutex */
1033 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035 			return -EPERM;
1036 
1037 		if (newsize != oldsize) {
1038 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039 					oldsize, newsize);
1040 			if (error)
1041 				return error;
1042 			i_size_write(inode, newsize);
1043 			inode->i_ctime = inode->i_mtime = current_time(inode);
1044 		}
1045 		if (newsize <= oldsize) {
1046 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047 			if (oldsize > holebegin)
1048 				unmap_mapping_range(inode->i_mapping,
1049 							holebegin, 0, 1);
1050 			if (info->alloced)
1051 				shmem_truncate_range(inode,
1052 							newsize, (loff_t)-1);
1053 			/* unmap again to remove racily COWed private pages */
1054 			if (oldsize > holebegin)
1055 				unmap_mapping_range(inode->i_mapping,
1056 							holebegin, 0, 1);
1057 
1058 			/*
1059 			 * Part of the huge page can be beyond i_size: subject
1060 			 * to shrink under memory pressure.
1061 			 */
1062 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063 				spin_lock(&sbinfo->shrinklist_lock);
1064 				/*
1065 				 * _careful to defend against unlocked access to
1066 				 * ->shrink_list in shmem_unused_huge_shrink()
1067 				 */
1068 				if (list_empty_careful(&info->shrinklist)) {
1069 					list_add_tail(&info->shrinklist,
1070 							&sbinfo->shrinklist);
1071 					sbinfo->shrinklist_len++;
1072 				}
1073 				spin_unlock(&sbinfo->shrinklist_lock);
1074 			}
1075 		}
1076 	}
1077 
1078 	setattr_copy(inode, attr);
1079 	if (attr->ia_valid & ATTR_MODE)
1080 		error = posix_acl_chmod(inode, inode->i_mode);
1081 	return error;
1082 }
1083 
1084 static void shmem_evict_inode(struct inode *inode)
1085 {
1086 	struct shmem_inode_info *info = SHMEM_I(inode);
1087 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088 
1089 	if (inode->i_mapping->a_ops == &shmem_aops) {
1090 		shmem_unacct_size(info->flags, inode->i_size);
1091 		inode->i_size = 0;
1092 		shmem_truncate_range(inode, 0, (loff_t)-1);
1093 		if (!list_empty(&info->shrinklist)) {
1094 			spin_lock(&sbinfo->shrinklist_lock);
1095 			if (!list_empty(&info->shrinklist)) {
1096 				list_del_init(&info->shrinklist);
1097 				sbinfo->shrinklist_len--;
1098 			}
1099 			spin_unlock(&sbinfo->shrinklist_lock);
1100 		}
1101 		while (!list_empty(&info->swaplist)) {
1102 			/* Wait while shmem_unuse() is scanning this inode... */
1103 			wait_var_event(&info->stop_eviction,
1104 				       !atomic_read(&info->stop_eviction));
1105 			mutex_lock(&shmem_swaplist_mutex);
1106 			/* ...but beware of the race if we peeked too early */
1107 			if (!atomic_read(&info->stop_eviction))
1108 				list_del_init(&info->swaplist);
1109 			mutex_unlock(&shmem_swaplist_mutex);
1110 		}
1111 	}
1112 
1113 	simple_xattrs_free(&info->xattrs);
1114 	WARN_ON(inode->i_blocks);
1115 	shmem_free_inode(inode->i_sb);
1116 	clear_inode(inode);
1117 }
1118 
1119 extern struct swap_info_struct *swap_info[];
1120 
1121 static int shmem_find_swap_entries(struct address_space *mapping,
1122 				   pgoff_t start, unsigned int nr_entries,
1123 				   struct page **entries, pgoff_t *indices,
1124 				   unsigned int type, bool frontswap)
1125 {
1126 	XA_STATE(xas, &mapping->i_pages, start);
1127 	struct page *page;
1128 	swp_entry_t entry;
1129 	unsigned int ret = 0;
1130 
1131 	if (!nr_entries)
1132 		return 0;
1133 
1134 	rcu_read_lock();
1135 	xas_for_each(&xas, page, ULONG_MAX) {
1136 		if (xas_retry(&xas, page))
1137 			continue;
1138 
1139 		if (!xa_is_value(page))
1140 			continue;
1141 
1142 		entry = radix_to_swp_entry(page);
1143 		if (swp_type(entry) != type)
1144 			continue;
1145 		if (frontswap &&
1146 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1147 			continue;
1148 
1149 		indices[ret] = xas.xa_index;
1150 		entries[ret] = page;
1151 
1152 		if (need_resched()) {
1153 			xas_pause(&xas);
1154 			cond_resched_rcu();
1155 		}
1156 		if (++ret == nr_entries)
1157 			break;
1158 	}
1159 	rcu_read_unlock();
1160 
1161 	return ret;
1162 }
1163 
1164 /*
1165  * Move the swapped pages for an inode to page cache. Returns the count
1166  * of pages swapped in, or the error in case of failure.
1167  */
1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169 				    pgoff_t *indices)
1170 {
1171 	int i = 0;
1172 	int ret = 0;
1173 	int error = 0;
1174 	struct address_space *mapping = inode->i_mapping;
1175 
1176 	for (i = 0; i < pvec.nr; i++) {
1177 		struct page *page = pvec.pages[i];
1178 
1179 		if (!xa_is_value(page))
1180 			continue;
1181 		error = shmem_swapin_page(inode, indices[i],
1182 					  &page, SGP_CACHE,
1183 					  mapping_gfp_mask(mapping),
1184 					  NULL, NULL);
1185 		if (error == 0) {
1186 			unlock_page(page);
1187 			put_page(page);
1188 			ret++;
1189 		}
1190 		if (error == -ENOMEM)
1191 			break;
1192 		error = 0;
1193 	}
1194 	return error ? error : ret;
1195 }
1196 
1197 /*
1198  * If swap found in inode, free it and move page from swapcache to filecache.
1199  */
1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1202 {
1203 	struct address_space *mapping = inode->i_mapping;
1204 	pgoff_t start = 0;
1205 	struct pagevec pvec;
1206 	pgoff_t indices[PAGEVEC_SIZE];
1207 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208 	int ret = 0;
1209 
1210 	pagevec_init(&pvec);
1211 	do {
1212 		unsigned int nr_entries = PAGEVEC_SIZE;
1213 
1214 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215 			nr_entries = *fs_pages_to_unuse;
1216 
1217 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218 						  pvec.pages, indices,
1219 						  type, frontswap);
1220 		if (pvec.nr == 0) {
1221 			ret = 0;
1222 			break;
1223 		}
1224 
1225 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226 		if (ret < 0)
1227 			break;
1228 
1229 		if (frontswap_partial) {
1230 			*fs_pages_to_unuse -= ret;
1231 			if (*fs_pages_to_unuse == 0) {
1232 				ret = FRONTSWAP_PAGES_UNUSED;
1233 				break;
1234 			}
1235 		}
1236 
1237 		start = indices[pvec.nr - 1];
1238 	} while (true);
1239 
1240 	return ret;
1241 }
1242 
1243 /*
1244  * Read all the shared memory data that resides in the swap
1245  * device 'type' back into memory, so the swap device can be
1246  * unused.
1247  */
1248 int shmem_unuse(unsigned int type, bool frontswap,
1249 		unsigned long *fs_pages_to_unuse)
1250 {
1251 	struct shmem_inode_info *info, *next;
1252 	int error = 0;
1253 
1254 	if (list_empty(&shmem_swaplist))
1255 		return 0;
1256 
1257 	mutex_lock(&shmem_swaplist_mutex);
1258 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259 		if (!info->swapped) {
1260 			list_del_init(&info->swaplist);
1261 			continue;
1262 		}
1263 		/*
1264 		 * Drop the swaplist mutex while searching the inode for swap;
1265 		 * but before doing so, make sure shmem_evict_inode() will not
1266 		 * remove placeholder inode from swaplist, nor let it be freed
1267 		 * (igrab() would protect from unlink, but not from unmount).
1268 		 */
1269 		atomic_inc(&info->stop_eviction);
1270 		mutex_unlock(&shmem_swaplist_mutex);
1271 
1272 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273 					  fs_pages_to_unuse);
1274 		cond_resched();
1275 
1276 		mutex_lock(&shmem_swaplist_mutex);
1277 		next = list_next_entry(info, swaplist);
1278 		if (!info->swapped)
1279 			list_del_init(&info->swaplist);
1280 		if (atomic_dec_and_test(&info->stop_eviction))
1281 			wake_up_var(&info->stop_eviction);
1282 		if (error)
1283 			break;
1284 	}
1285 	mutex_unlock(&shmem_swaplist_mutex);
1286 
1287 	return error;
1288 }
1289 
1290 /*
1291  * Move the page from the page cache to the swap cache.
1292  */
1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294 {
1295 	struct shmem_inode_info *info;
1296 	struct address_space *mapping;
1297 	struct inode *inode;
1298 	swp_entry_t swap;
1299 	pgoff_t index;
1300 
1301 	VM_BUG_ON_PAGE(PageCompound(page), page);
1302 	BUG_ON(!PageLocked(page));
1303 	mapping = page->mapping;
1304 	index = page->index;
1305 	inode = mapping->host;
1306 	info = SHMEM_I(inode);
1307 	if (info->flags & VM_LOCKED)
1308 		goto redirty;
1309 	if (!total_swap_pages)
1310 		goto redirty;
1311 
1312 	/*
1313 	 * Our capabilities prevent regular writeback or sync from ever calling
1314 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315 	 * its underlying filesystem, in which case tmpfs should write out to
1316 	 * swap only in response to memory pressure, and not for the writeback
1317 	 * threads or sync.
1318 	 */
1319 	if (!wbc->for_reclaim) {
1320 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1321 		goto redirty;
1322 	}
1323 
1324 	/*
1325 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326 	 * value into swapfile.c, the only way we can correctly account for a
1327 	 * fallocated page arriving here is now to initialize it and write it.
1328 	 *
1329 	 * That's okay for a page already fallocated earlier, but if we have
1330 	 * not yet completed the fallocation, then (a) we want to keep track
1331 	 * of this page in case we have to undo it, and (b) it may not be a
1332 	 * good idea to continue anyway, once we're pushing into swap.  So
1333 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1334 	 */
1335 	if (!PageUptodate(page)) {
1336 		if (inode->i_private) {
1337 			struct shmem_falloc *shmem_falloc;
1338 			spin_lock(&inode->i_lock);
1339 			shmem_falloc = inode->i_private;
1340 			if (shmem_falloc &&
1341 			    !shmem_falloc->waitq &&
1342 			    index >= shmem_falloc->start &&
1343 			    index < shmem_falloc->next)
1344 				shmem_falloc->nr_unswapped++;
1345 			else
1346 				shmem_falloc = NULL;
1347 			spin_unlock(&inode->i_lock);
1348 			if (shmem_falloc)
1349 				goto redirty;
1350 		}
1351 		clear_highpage(page);
1352 		flush_dcache_page(page);
1353 		SetPageUptodate(page);
1354 	}
1355 
1356 	swap = get_swap_page(page);
1357 	if (!swap.val)
1358 		goto redirty;
1359 
1360 	/*
1361 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362 	 * if it's not already there.  Do it now before the page is
1363 	 * moved to swap cache, when its pagelock no longer protects
1364 	 * the inode from eviction.  But don't unlock the mutex until
1365 	 * we've incremented swapped, because shmem_unuse_inode() will
1366 	 * prune a !swapped inode from the swaplist under this mutex.
1367 	 */
1368 	mutex_lock(&shmem_swaplist_mutex);
1369 	if (list_empty(&info->swaplist))
1370 		list_add(&info->swaplist, &shmem_swaplist);
1371 
1372 	if (add_to_swap_cache(page, swap,
1373 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1374 		spin_lock_irq(&info->lock);
1375 		shmem_recalc_inode(inode);
1376 		info->swapped++;
1377 		spin_unlock_irq(&info->lock);
1378 
1379 		swap_shmem_alloc(swap);
1380 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1381 
1382 		mutex_unlock(&shmem_swaplist_mutex);
1383 		BUG_ON(page_mapped(page));
1384 		swap_writepage(page, wbc);
1385 		return 0;
1386 	}
1387 
1388 	mutex_unlock(&shmem_swaplist_mutex);
1389 	put_swap_page(page, swap);
1390 redirty:
1391 	set_page_dirty(page);
1392 	if (wbc->for_reclaim)
1393 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1394 	unlock_page(page);
1395 	return 0;
1396 }
1397 
1398 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1399 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1400 {
1401 	char buffer[64];
1402 
1403 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1404 		return;		/* show nothing */
1405 
1406 	mpol_to_str(buffer, sizeof(buffer), mpol);
1407 
1408 	seq_printf(seq, ",mpol=%s", buffer);
1409 }
1410 
1411 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 {
1413 	struct mempolicy *mpol = NULL;
1414 	if (sbinfo->mpol) {
1415 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1416 		mpol = sbinfo->mpol;
1417 		mpol_get(mpol);
1418 		spin_unlock(&sbinfo->stat_lock);
1419 	}
1420 	return mpol;
1421 }
1422 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1423 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1424 {
1425 }
1426 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1427 {
1428 	return NULL;
1429 }
1430 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1431 #ifndef CONFIG_NUMA
1432 #define vm_policy vm_private_data
1433 #endif
1434 
1435 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1436 		struct shmem_inode_info *info, pgoff_t index)
1437 {
1438 	/* Create a pseudo vma that just contains the policy */
1439 	vma_init(vma, NULL);
1440 	/* Bias interleave by inode number to distribute better across nodes */
1441 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1442 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1443 }
1444 
1445 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1446 {
1447 	/* Drop reference taken by mpol_shared_policy_lookup() */
1448 	mpol_cond_put(vma->vm_policy);
1449 }
1450 
1451 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1452 			struct shmem_inode_info *info, pgoff_t index)
1453 {
1454 	struct vm_area_struct pvma;
1455 	struct page *page;
1456 	struct vm_fault vmf;
1457 
1458 	shmem_pseudo_vma_init(&pvma, info, index);
1459 	vmf.vma = &pvma;
1460 	vmf.address = 0;
1461 	page = swap_cluster_readahead(swap, gfp, &vmf);
1462 	shmem_pseudo_vma_destroy(&pvma);
1463 
1464 	return page;
1465 }
1466 
1467 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1468 		struct shmem_inode_info *info, pgoff_t index)
1469 {
1470 	struct vm_area_struct pvma;
1471 	struct address_space *mapping = info->vfs_inode.i_mapping;
1472 	pgoff_t hindex;
1473 	struct page *page;
1474 
1475 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1476 		return NULL;
1477 
1478 	hindex = round_down(index, HPAGE_PMD_NR);
1479 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1480 								XA_PRESENT))
1481 		return NULL;
1482 
1483 	shmem_pseudo_vma_init(&pvma, info, hindex);
1484 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1485 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1486 	shmem_pseudo_vma_destroy(&pvma);
1487 	if (page)
1488 		prep_transhuge_page(page);
1489 	return page;
1490 }
1491 
1492 static struct page *shmem_alloc_page(gfp_t gfp,
1493 			struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 	struct vm_area_struct pvma;
1496 	struct page *page;
1497 
1498 	shmem_pseudo_vma_init(&pvma, info, index);
1499 	page = alloc_page_vma(gfp, &pvma, 0);
1500 	shmem_pseudo_vma_destroy(&pvma);
1501 
1502 	return page;
1503 }
1504 
1505 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1506 		struct inode *inode,
1507 		pgoff_t index, bool huge)
1508 {
1509 	struct shmem_inode_info *info = SHMEM_I(inode);
1510 	struct page *page;
1511 	int nr;
1512 	int err = -ENOSPC;
1513 
1514 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1515 		huge = false;
1516 	nr = huge ? HPAGE_PMD_NR : 1;
1517 
1518 	if (!shmem_inode_acct_block(inode, nr))
1519 		goto failed;
1520 
1521 	if (huge)
1522 		page = shmem_alloc_hugepage(gfp, info, index);
1523 	else
1524 		page = shmem_alloc_page(gfp, info, index);
1525 	if (page) {
1526 		__SetPageLocked(page);
1527 		__SetPageSwapBacked(page);
1528 		return page;
1529 	}
1530 
1531 	err = -ENOMEM;
1532 	shmem_inode_unacct_blocks(inode, nr);
1533 failed:
1534 	return ERR_PTR(err);
1535 }
1536 
1537 /*
1538  * When a page is moved from swapcache to shmem filecache (either by the
1539  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1540  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1541  * ignorance of the mapping it belongs to.  If that mapping has special
1542  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1543  * we may need to copy to a suitable page before moving to filecache.
1544  *
1545  * In a future release, this may well be extended to respect cpuset and
1546  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1547  * but for now it is a simple matter of zone.
1548  */
1549 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1550 {
1551 	return page_zonenum(page) > gfp_zone(gfp);
1552 }
1553 
1554 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1555 				struct shmem_inode_info *info, pgoff_t index)
1556 {
1557 	struct page *oldpage, *newpage;
1558 	struct address_space *swap_mapping;
1559 	swp_entry_t entry;
1560 	pgoff_t swap_index;
1561 	int error;
1562 
1563 	oldpage = *pagep;
1564 	entry.val = page_private(oldpage);
1565 	swap_index = swp_offset(entry);
1566 	swap_mapping = page_mapping(oldpage);
1567 
1568 	/*
1569 	 * We have arrived here because our zones are constrained, so don't
1570 	 * limit chance of success by further cpuset and node constraints.
1571 	 */
1572 	gfp &= ~GFP_CONSTRAINT_MASK;
1573 	newpage = shmem_alloc_page(gfp, info, index);
1574 	if (!newpage)
1575 		return -ENOMEM;
1576 
1577 	get_page(newpage);
1578 	copy_highpage(newpage, oldpage);
1579 	flush_dcache_page(newpage);
1580 
1581 	__SetPageLocked(newpage);
1582 	__SetPageSwapBacked(newpage);
1583 	SetPageUptodate(newpage);
1584 	set_page_private(newpage, entry.val);
1585 	SetPageSwapCache(newpage);
1586 
1587 	/*
1588 	 * Our caller will very soon move newpage out of swapcache, but it's
1589 	 * a nice clean interface for us to replace oldpage by newpage there.
1590 	 */
1591 	xa_lock_irq(&swap_mapping->i_pages);
1592 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1593 	if (!error) {
1594 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1595 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1596 	}
1597 	xa_unlock_irq(&swap_mapping->i_pages);
1598 
1599 	if (unlikely(error)) {
1600 		/*
1601 		 * Is this possible?  I think not, now that our callers check
1602 		 * both PageSwapCache and page_private after getting page lock;
1603 		 * but be defensive.  Reverse old to newpage for clear and free.
1604 		 */
1605 		oldpage = newpage;
1606 	} else {
1607 		mem_cgroup_migrate(oldpage, newpage);
1608 		lru_cache_add_anon(newpage);
1609 		*pagep = newpage;
1610 	}
1611 
1612 	ClearPageSwapCache(oldpage);
1613 	set_page_private(oldpage, 0);
1614 
1615 	unlock_page(oldpage);
1616 	put_page(oldpage);
1617 	put_page(oldpage);
1618 	return error;
1619 }
1620 
1621 /*
1622  * Swap in the page pointed to by *pagep.
1623  * Caller has to make sure that *pagep contains a valid swapped page.
1624  * Returns 0 and the page in pagep if success. On failure, returns the
1625  * the error code and NULL in *pagep.
1626  */
1627 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1628 			     struct page **pagep, enum sgp_type sgp,
1629 			     gfp_t gfp, struct vm_area_struct *vma,
1630 			     vm_fault_t *fault_type)
1631 {
1632 	struct address_space *mapping = inode->i_mapping;
1633 	struct shmem_inode_info *info = SHMEM_I(inode);
1634 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1635 	struct mem_cgroup *memcg;
1636 	struct page *page;
1637 	swp_entry_t swap;
1638 	int error;
1639 
1640 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1641 	swap = radix_to_swp_entry(*pagep);
1642 	*pagep = NULL;
1643 
1644 	/* Look it up and read it in.. */
1645 	page = lookup_swap_cache(swap, NULL, 0);
1646 	if (!page) {
1647 		/* Or update major stats only when swapin succeeds?? */
1648 		if (fault_type) {
1649 			*fault_type |= VM_FAULT_MAJOR;
1650 			count_vm_event(PGMAJFAULT);
1651 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1652 		}
1653 		/* Here we actually start the io */
1654 		page = shmem_swapin(swap, gfp, info, index);
1655 		if (!page) {
1656 			error = -ENOMEM;
1657 			goto failed;
1658 		}
1659 	}
1660 
1661 	/* We have to do this with page locked to prevent races */
1662 	lock_page(page);
1663 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1664 	    !shmem_confirm_swap(mapping, index, swap)) {
1665 		error = -EEXIST;
1666 		goto unlock;
1667 	}
1668 	if (!PageUptodate(page)) {
1669 		error = -EIO;
1670 		goto failed;
1671 	}
1672 	wait_on_page_writeback(page);
1673 
1674 	if (shmem_should_replace_page(page, gfp)) {
1675 		error = shmem_replace_page(&page, gfp, info, index);
1676 		if (error)
1677 			goto failed;
1678 	}
1679 
1680 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1681 					    false);
1682 	if (!error) {
1683 		error = shmem_add_to_page_cache(page, mapping, index,
1684 						swp_to_radix_entry(swap), gfp);
1685 		/*
1686 		 * We already confirmed swap under page lock, and make
1687 		 * no memory allocation here, so usually no possibility
1688 		 * of error; but free_swap_and_cache() only trylocks a
1689 		 * page, so it is just possible that the entry has been
1690 		 * truncated or holepunched since swap was confirmed.
1691 		 * shmem_undo_range() will have done some of the
1692 		 * unaccounting, now delete_from_swap_cache() will do
1693 		 * the rest.
1694 		 */
1695 		if (error) {
1696 			mem_cgroup_cancel_charge(page, memcg, false);
1697 			delete_from_swap_cache(page);
1698 		}
1699 	}
1700 	if (error)
1701 		goto failed;
1702 
1703 	mem_cgroup_commit_charge(page, memcg, true, false);
1704 
1705 	spin_lock_irq(&info->lock);
1706 	info->swapped--;
1707 	shmem_recalc_inode(inode);
1708 	spin_unlock_irq(&info->lock);
1709 
1710 	if (sgp == SGP_WRITE)
1711 		mark_page_accessed(page);
1712 
1713 	delete_from_swap_cache(page);
1714 	set_page_dirty(page);
1715 	swap_free(swap);
1716 
1717 	*pagep = page;
1718 	return 0;
1719 failed:
1720 	if (!shmem_confirm_swap(mapping, index, swap))
1721 		error = -EEXIST;
1722 unlock:
1723 	if (page) {
1724 		unlock_page(page);
1725 		put_page(page);
1726 	}
1727 
1728 	return error;
1729 }
1730 
1731 /*
1732  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1733  *
1734  * If we allocate a new one we do not mark it dirty. That's up to the
1735  * vm. If we swap it in we mark it dirty since we also free the swap
1736  * entry since a page cannot live in both the swap and page cache.
1737  *
1738  * vmf and fault_type are only supplied by shmem_fault:
1739  * otherwise they are NULL.
1740  */
1741 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1742 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1743 	struct vm_area_struct *vma, struct vm_fault *vmf,
1744 			vm_fault_t *fault_type)
1745 {
1746 	struct address_space *mapping = inode->i_mapping;
1747 	struct shmem_inode_info *info = SHMEM_I(inode);
1748 	struct shmem_sb_info *sbinfo;
1749 	struct mm_struct *charge_mm;
1750 	struct mem_cgroup *memcg;
1751 	struct page *page;
1752 	enum sgp_type sgp_huge = sgp;
1753 	pgoff_t hindex = index;
1754 	int error;
1755 	int once = 0;
1756 	int alloced = 0;
1757 
1758 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1759 		return -EFBIG;
1760 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1761 		sgp = SGP_CACHE;
1762 repeat:
1763 	if (sgp <= SGP_CACHE &&
1764 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1765 		return -EINVAL;
1766 	}
1767 
1768 	sbinfo = SHMEM_SB(inode->i_sb);
1769 	charge_mm = vma ? vma->vm_mm : current->mm;
1770 
1771 	page = find_lock_entry(mapping, index);
1772 	if (xa_is_value(page)) {
1773 		error = shmem_swapin_page(inode, index, &page,
1774 					  sgp, gfp, vma, fault_type);
1775 		if (error == -EEXIST)
1776 			goto repeat;
1777 
1778 		*pagep = page;
1779 		return error;
1780 	}
1781 
1782 	if (page && sgp == SGP_WRITE)
1783 		mark_page_accessed(page);
1784 
1785 	/* fallocated page? */
1786 	if (page && !PageUptodate(page)) {
1787 		if (sgp != SGP_READ)
1788 			goto clear;
1789 		unlock_page(page);
1790 		put_page(page);
1791 		page = NULL;
1792 	}
1793 	if (page || sgp == SGP_READ) {
1794 		*pagep = page;
1795 		return 0;
1796 	}
1797 
1798 	/*
1799 	 * Fast cache lookup did not find it:
1800 	 * bring it back from swap or allocate.
1801 	 */
1802 
1803 	if (vma && userfaultfd_missing(vma)) {
1804 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1805 		return 0;
1806 	}
1807 
1808 	/* shmem_symlink() */
1809 	if (mapping->a_ops != &shmem_aops)
1810 		goto alloc_nohuge;
1811 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1812 		goto alloc_nohuge;
1813 	if (shmem_huge == SHMEM_HUGE_FORCE)
1814 		goto alloc_huge;
1815 	switch (sbinfo->huge) {
1816 		loff_t i_size;
1817 		pgoff_t off;
1818 	case SHMEM_HUGE_NEVER:
1819 		goto alloc_nohuge;
1820 	case SHMEM_HUGE_WITHIN_SIZE:
1821 		off = round_up(index, HPAGE_PMD_NR);
1822 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1823 		if (i_size >= HPAGE_PMD_SIZE &&
1824 		    i_size >> PAGE_SHIFT >= off)
1825 			goto alloc_huge;
1826 		/* fallthrough */
1827 	case SHMEM_HUGE_ADVISE:
1828 		if (sgp_huge == SGP_HUGE)
1829 			goto alloc_huge;
1830 		/* TODO: implement fadvise() hints */
1831 		goto alloc_nohuge;
1832 	}
1833 
1834 alloc_huge:
1835 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1836 	if (IS_ERR(page)) {
1837 alloc_nohuge:
1838 		page = shmem_alloc_and_acct_page(gfp, inode,
1839 						 index, false);
1840 	}
1841 	if (IS_ERR(page)) {
1842 		int retry = 5;
1843 
1844 		error = PTR_ERR(page);
1845 		page = NULL;
1846 		if (error != -ENOSPC)
1847 			goto unlock;
1848 		/*
1849 		 * Try to reclaim some space by splitting a huge page
1850 		 * beyond i_size on the filesystem.
1851 		 */
1852 		while (retry--) {
1853 			int ret;
1854 
1855 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1856 			if (ret == SHRINK_STOP)
1857 				break;
1858 			if (ret)
1859 				goto alloc_nohuge;
1860 		}
1861 		goto unlock;
1862 	}
1863 
1864 	if (PageTransHuge(page))
1865 		hindex = round_down(index, HPAGE_PMD_NR);
1866 	else
1867 		hindex = index;
1868 
1869 	if (sgp == SGP_WRITE)
1870 		__SetPageReferenced(page);
1871 
1872 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1873 					    PageTransHuge(page));
1874 	if (error)
1875 		goto unacct;
1876 	error = shmem_add_to_page_cache(page, mapping, hindex,
1877 					NULL, gfp & GFP_RECLAIM_MASK);
1878 	if (error) {
1879 		mem_cgroup_cancel_charge(page, memcg,
1880 					 PageTransHuge(page));
1881 		goto unacct;
1882 	}
1883 	mem_cgroup_commit_charge(page, memcg, false,
1884 				 PageTransHuge(page));
1885 	lru_cache_add_anon(page);
1886 
1887 	spin_lock_irq(&info->lock);
1888 	info->alloced += compound_nr(page);
1889 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1890 	shmem_recalc_inode(inode);
1891 	spin_unlock_irq(&info->lock);
1892 	alloced = true;
1893 
1894 	if (PageTransHuge(page) &&
1895 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1896 			hindex + HPAGE_PMD_NR - 1) {
1897 		/*
1898 		 * Part of the huge page is beyond i_size: subject
1899 		 * to shrink under memory pressure.
1900 		 */
1901 		spin_lock(&sbinfo->shrinklist_lock);
1902 		/*
1903 		 * _careful to defend against unlocked access to
1904 		 * ->shrink_list in shmem_unused_huge_shrink()
1905 		 */
1906 		if (list_empty_careful(&info->shrinklist)) {
1907 			list_add_tail(&info->shrinklist,
1908 				      &sbinfo->shrinklist);
1909 			sbinfo->shrinklist_len++;
1910 		}
1911 		spin_unlock(&sbinfo->shrinklist_lock);
1912 	}
1913 
1914 	/*
1915 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1916 	 */
1917 	if (sgp == SGP_FALLOC)
1918 		sgp = SGP_WRITE;
1919 clear:
1920 	/*
1921 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1922 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1923 	 * it now, lest undo on failure cancel our earlier guarantee.
1924 	 */
1925 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1926 		struct page *head = compound_head(page);
1927 		int i;
1928 
1929 		for (i = 0; i < compound_nr(head); i++) {
1930 			clear_highpage(head + i);
1931 			flush_dcache_page(head + i);
1932 		}
1933 		SetPageUptodate(head);
1934 	}
1935 
1936 	/* Perhaps the file has been truncated since we checked */
1937 	if (sgp <= SGP_CACHE &&
1938 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1939 		if (alloced) {
1940 			ClearPageDirty(page);
1941 			delete_from_page_cache(page);
1942 			spin_lock_irq(&info->lock);
1943 			shmem_recalc_inode(inode);
1944 			spin_unlock_irq(&info->lock);
1945 		}
1946 		error = -EINVAL;
1947 		goto unlock;
1948 	}
1949 	*pagep = page + index - hindex;
1950 	return 0;
1951 
1952 	/*
1953 	 * Error recovery.
1954 	 */
1955 unacct:
1956 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1957 
1958 	if (PageTransHuge(page)) {
1959 		unlock_page(page);
1960 		put_page(page);
1961 		goto alloc_nohuge;
1962 	}
1963 unlock:
1964 	if (page) {
1965 		unlock_page(page);
1966 		put_page(page);
1967 	}
1968 	if (error == -ENOSPC && !once++) {
1969 		spin_lock_irq(&info->lock);
1970 		shmem_recalc_inode(inode);
1971 		spin_unlock_irq(&info->lock);
1972 		goto repeat;
1973 	}
1974 	if (error == -EEXIST)
1975 		goto repeat;
1976 	return error;
1977 }
1978 
1979 /*
1980  * This is like autoremove_wake_function, but it removes the wait queue
1981  * entry unconditionally - even if something else had already woken the
1982  * target.
1983  */
1984 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1985 {
1986 	int ret = default_wake_function(wait, mode, sync, key);
1987 	list_del_init(&wait->entry);
1988 	return ret;
1989 }
1990 
1991 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1992 {
1993 	struct vm_area_struct *vma = vmf->vma;
1994 	struct inode *inode = file_inode(vma->vm_file);
1995 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1996 	enum sgp_type sgp;
1997 	int err;
1998 	vm_fault_t ret = VM_FAULT_LOCKED;
1999 
2000 	/*
2001 	 * Trinity finds that probing a hole which tmpfs is punching can
2002 	 * prevent the hole-punch from ever completing: which in turn
2003 	 * locks writers out with its hold on i_mutex.  So refrain from
2004 	 * faulting pages into the hole while it's being punched.  Although
2005 	 * shmem_undo_range() does remove the additions, it may be unable to
2006 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2007 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2008 	 *
2009 	 * It does not matter if we sometimes reach this check just before the
2010 	 * hole-punch begins, so that one fault then races with the punch:
2011 	 * we just need to make racing faults a rare case.
2012 	 *
2013 	 * The implementation below would be much simpler if we just used a
2014 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2015 	 * and bloating every shmem inode for this unlikely case would be sad.
2016 	 */
2017 	if (unlikely(inode->i_private)) {
2018 		struct shmem_falloc *shmem_falloc;
2019 
2020 		spin_lock(&inode->i_lock);
2021 		shmem_falloc = inode->i_private;
2022 		if (shmem_falloc &&
2023 		    shmem_falloc->waitq &&
2024 		    vmf->pgoff >= shmem_falloc->start &&
2025 		    vmf->pgoff < shmem_falloc->next) {
2026 			struct file *fpin;
2027 			wait_queue_head_t *shmem_falloc_waitq;
2028 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2029 
2030 			ret = VM_FAULT_NOPAGE;
2031 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2032 			if (fpin)
2033 				ret = VM_FAULT_RETRY;
2034 
2035 			shmem_falloc_waitq = shmem_falloc->waitq;
2036 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2037 					TASK_UNINTERRUPTIBLE);
2038 			spin_unlock(&inode->i_lock);
2039 			schedule();
2040 
2041 			/*
2042 			 * shmem_falloc_waitq points into the shmem_fallocate()
2043 			 * stack of the hole-punching task: shmem_falloc_waitq
2044 			 * is usually invalid by the time we reach here, but
2045 			 * finish_wait() does not dereference it in that case;
2046 			 * though i_lock needed lest racing with wake_up_all().
2047 			 */
2048 			spin_lock(&inode->i_lock);
2049 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2050 			spin_unlock(&inode->i_lock);
2051 
2052 			if (fpin)
2053 				fput(fpin);
2054 			return ret;
2055 		}
2056 		spin_unlock(&inode->i_lock);
2057 	}
2058 
2059 	sgp = SGP_CACHE;
2060 
2061 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2062 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2063 		sgp = SGP_NOHUGE;
2064 	else if (vma->vm_flags & VM_HUGEPAGE)
2065 		sgp = SGP_HUGE;
2066 
2067 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2068 				  gfp, vma, vmf, &ret);
2069 	if (err)
2070 		return vmf_error(err);
2071 	return ret;
2072 }
2073 
2074 unsigned long shmem_get_unmapped_area(struct file *file,
2075 				      unsigned long uaddr, unsigned long len,
2076 				      unsigned long pgoff, unsigned long flags)
2077 {
2078 	unsigned long (*get_area)(struct file *,
2079 		unsigned long, unsigned long, unsigned long, unsigned long);
2080 	unsigned long addr;
2081 	unsigned long offset;
2082 	unsigned long inflated_len;
2083 	unsigned long inflated_addr;
2084 	unsigned long inflated_offset;
2085 
2086 	if (len > TASK_SIZE)
2087 		return -ENOMEM;
2088 
2089 	get_area = current->mm->get_unmapped_area;
2090 	addr = get_area(file, uaddr, len, pgoff, flags);
2091 
2092 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2093 		return addr;
2094 	if (IS_ERR_VALUE(addr))
2095 		return addr;
2096 	if (addr & ~PAGE_MASK)
2097 		return addr;
2098 	if (addr > TASK_SIZE - len)
2099 		return addr;
2100 
2101 	if (shmem_huge == SHMEM_HUGE_DENY)
2102 		return addr;
2103 	if (len < HPAGE_PMD_SIZE)
2104 		return addr;
2105 	if (flags & MAP_FIXED)
2106 		return addr;
2107 	/*
2108 	 * Our priority is to support MAP_SHARED mapped hugely;
2109 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2110 	 * But if caller specified an address hint and we allocated area there
2111 	 * successfully, respect that as before.
2112 	 */
2113 	if (uaddr == addr)
2114 		return addr;
2115 
2116 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2117 		struct super_block *sb;
2118 
2119 		if (file) {
2120 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2121 			sb = file_inode(file)->i_sb;
2122 		} else {
2123 			/*
2124 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2125 			 * for "/dev/zero", to create a shared anonymous object.
2126 			 */
2127 			if (IS_ERR(shm_mnt))
2128 				return addr;
2129 			sb = shm_mnt->mnt_sb;
2130 		}
2131 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2132 			return addr;
2133 	}
2134 
2135 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2136 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2137 		return addr;
2138 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2139 		return addr;
2140 
2141 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2142 	if (inflated_len > TASK_SIZE)
2143 		return addr;
2144 	if (inflated_len < len)
2145 		return addr;
2146 
2147 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2148 	if (IS_ERR_VALUE(inflated_addr))
2149 		return addr;
2150 	if (inflated_addr & ~PAGE_MASK)
2151 		return addr;
2152 
2153 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2154 	inflated_addr += offset - inflated_offset;
2155 	if (inflated_offset > offset)
2156 		inflated_addr += HPAGE_PMD_SIZE;
2157 
2158 	if (inflated_addr > TASK_SIZE - len)
2159 		return addr;
2160 	return inflated_addr;
2161 }
2162 
2163 #ifdef CONFIG_NUMA
2164 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2165 {
2166 	struct inode *inode = file_inode(vma->vm_file);
2167 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2168 }
2169 
2170 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2171 					  unsigned long addr)
2172 {
2173 	struct inode *inode = file_inode(vma->vm_file);
2174 	pgoff_t index;
2175 
2176 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2177 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2178 }
2179 #endif
2180 
2181 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2182 {
2183 	struct inode *inode = file_inode(file);
2184 	struct shmem_inode_info *info = SHMEM_I(inode);
2185 	int retval = -ENOMEM;
2186 
2187 	spin_lock_irq(&info->lock);
2188 	if (lock && !(info->flags & VM_LOCKED)) {
2189 		if (!user_shm_lock(inode->i_size, user))
2190 			goto out_nomem;
2191 		info->flags |= VM_LOCKED;
2192 		mapping_set_unevictable(file->f_mapping);
2193 	}
2194 	if (!lock && (info->flags & VM_LOCKED) && user) {
2195 		user_shm_unlock(inode->i_size, user);
2196 		info->flags &= ~VM_LOCKED;
2197 		mapping_clear_unevictable(file->f_mapping);
2198 	}
2199 	retval = 0;
2200 
2201 out_nomem:
2202 	spin_unlock_irq(&info->lock);
2203 	return retval;
2204 }
2205 
2206 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2207 {
2208 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2209 
2210 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2211 		/*
2212 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2213 		 * "future write" seal active.
2214 		 */
2215 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2216 			return -EPERM;
2217 
2218 		/*
2219 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2220 		 * MAP_SHARED and read-only, take care to not allow mprotect to
2221 		 * revert protections on such mappings. Do this only for shared
2222 		 * mappings. For private mappings, don't need to mask
2223 		 * VM_MAYWRITE as we still want them to be COW-writable.
2224 		 */
2225 		if (vma->vm_flags & VM_SHARED)
2226 			vma->vm_flags &= ~(VM_MAYWRITE);
2227 	}
2228 
2229 	file_accessed(file);
2230 	vma->vm_ops = &shmem_vm_ops;
2231 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2232 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2233 			(vma->vm_end & HPAGE_PMD_MASK)) {
2234 		khugepaged_enter(vma, vma->vm_flags);
2235 	}
2236 	return 0;
2237 }
2238 
2239 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2240 				     umode_t mode, dev_t dev, unsigned long flags)
2241 {
2242 	struct inode *inode;
2243 	struct shmem_inode_info *info;
2244 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2245 
2246 	if (shmem_reserve_inode(sb))
2247 		return NULL;
2248 
2249 	inode = new_inode(sb);
2250 	if (inode) {
2251 		inode->i_ino = get_next_ino();
2252 		inode_init_owner(inode, dir, mode);
2253 		inode->i_blocks = 0;
2254 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2255 		inode->i_generation = prandom_u32();
2256 		info = SHMEM_I(inode);
2257 		memset(info, 0, (char *)inode - (char *)info);
2258 		spin_lock_init(&info->lock);
2259 		atomic_set(&info->stop_eviction, 0);
2260 		info->seals = F_SEAL_SEAL;
2261 		info->flags = flags & VM_NORESERVE;
2262 		INIT_LIST_HEAD(&info->shrinklist);
2263 		INIT_LIST_HEAD(&info->swaplist);
2264 		simple_xattrs_init(&info->xattrs);
2265 		cache_no_acl(inode);
2266 
2267 		switch (mode & S_IFMT) {
2268 		default:
2269 			inode->i_op = &shmem_special_inode_operations;
2270 			init_special_inode(inode, mode, dev);
2271 			break;
2272 		case S_IFREG:
2273 			inode->i_mapping->a_ops = &shmem_aops;
2274 			inode->i_op = &shmem_inode_operations;
2275 			inode->i_fop = &shmem_file_operations;
2276 			mpol_shared_policy_init(&info->policy,
2277 						 shmem_get_sbmpol(sbinfo));
2278 			break;
2279 		case S_IFDIR:
2280 			inc_nlink(inode);
2281 			/* Some things misbehave if size == 0 on a directory */
2282 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2283 			inode->i_op = &shmem_dir_inode_operations;
2284 			inode->i_fop = &simple_dir_operations;
2285 			break;
2286 		case S_IFLNK:
2287 			/*
2288 			 * Must not load anything in the rbtree,
2289 			 * mpol_free_shared_policy will not be called.
2290 			 */
2291 			mpol_shared_policy_init(&info->policy, NULL);
2292 			break;
2293 		}
2294 
2295 		lockdep_annotate_inode_mutex_key(inode);
2296 	} else
2297 		shmem_free_inode(sb);
2298 	return inode;
2299 }
2300 
2301 bool shmem_mapping(struct address_space *mapping)
2302 {
2303 	return mapping->a_ops == &shmem_aops;
2304 }
2305 
2306 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2307 				  pmd_t *dst_pmd,
2308 				  struct vm_area_struct *dst_vma,
2309 				  unsigned long dst_addr,
2310 				  unsigned long src_addr,
2311 				  bool zeropage,
2312 				  struct page **pagep)
2313 {
2314 	struct inode *inode = file_inode(dst_vma->vm_file);
2315 	struct shmem_inode_info *info = SHMEM_I(inode);
2316 	struct address_space *mapping = inode->i_mapping;
2317 	gfp_t gfp = mapping_gfp_mask(mapping);
2318 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2319 	struct mem_cgroup *memcg;
2320 	spinlock_t *ptl;
2321 	void *page_kaddr;
2322 	struct page *page;
2323 	pte_t _dst_pte, *dst_pte;
2324 	int ret;
2325 	pgoff_t offset, max_off;
2326 
2327 	ret = -ENOMEM;
2328 	if (!shmem_inode_acct_block(inode, 1))
2329 		goto out;
2330 
2331 	if (!*pagep) {
2332 		page = shmem_alloc_page(gfp, info, pgoff);
2333 		if (!page)
2334 			goto out_unacct_blocks;
2335 
2336 		if (!zeropage) {	/* mcopy_atomic */
2337 			page_kaddr = kmap_atomic(page);
2338 			ret = copy_from_user(page_kaddr,
2339 					     (const void __user *)src_addr,
2340 					     PAGE_SIZE);
2341 			kunmap_atomic(page_kaddr);
2342 
2343 			/* fallback to copy_from_user outside mmap_sem */
2344 			if (unlikely(ret)) {
2345 				*pagep = page;
2346 				shmem_inode_unacct_blocks(inode, 1);
2347 				/* don't free the page */
2348 				return -ENOENT;
2349 			}
2350 		} else {		/* mfill_zeropage_atomic */
2351 			clear_highpage(page);
2352 		}
2353 	} else {
2354 		page = *pagep;
2355 		*pagep = NULL;
2356 	}
2357 
2358 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2359 	__SetPageLocked(page);
2360 	__SetPageSwapBacked(page);
2361 	__SetPageUptodate(page);
2362 
2363 	ret = -EFAULT;
2364 	offset = linear_page_index(dst_vma, dst_addr);
2365 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2366 	if (unlikely(offset >= max_off))
2367 		goto out_release;
2368 
2369 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2370 	if (ret)
2371 		goto out_release;
2372 
2373 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2374 						gfp & GFP_RECLAIM_MASK);
2375 	if (ret)
2376 		goto out_release_uncharge;
2377 
2378 	mem_cgroup_commit_charge(page, memcg, false, false);
2379 
2380 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2381 	if (dst_vma->vm_flags & VM_WRITE)
2382 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2383 	else {
2384 		/*
2385 		 * We don't set the pte dirty if the vma has no
2386 		 * VM_WRITE permission, so mark the page dirty or it
2387 		 * could be freed from under us. We could do it
2388 		 * unconditionally before unlock_page(), but doing it
2389 		 * only if VM_WRITE is not set is faster.
2390 		 */
2391 		set_page_dirty(page);
2392 	}
2393 
2394 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2395 
2396 	ret = -EFAULT;
2397 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2398 	if (unlikely(offset >= max_off))
2399 		goto out_release_uncharge_unlock;
2400 
2401 	ret = -EEXIST;
2402 	if (!pte_none(*dst_pte))
2403 		goto out_release_uncharge_unlock;
2404 
2405 	lru_cache_add_anon(page);
2406 
2407 	spin_lock(&info->lock);
2408 	info->alloced++;
2409 	inode->i_blocks += BLOCKS_PER_PAGE;
2410 	shmem_recalc_inode(inode);
2411 	spin_unlock(&info->lock);
2412 
2413 	inc_mm_counter(dst_mm, mm_counter_file(page));
2414 	page_add_file_rmap(page, false);
2415 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2416 
2417 	/* No need to invalidate - it was non-present before */
2418 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2419 	pte_unmap_unlock(dst_pte, ptl);
2420 	unlock_page(page);
2421 	ret = 0;
2422 out:
2423 	return ret;
2424 out_release_uncharge_unlock:
2425 	pte_unmap_unlock(dst_pte, ptl);
2426 	ClearPageDirty(page);
2427 	delete_from_page_cache(page);
2428 out_release_uncharge:
2429 	mem_cgroup_cancel_charge(page, memcg, false);
2430 out_release:
2431 	unlock_page(page);
2432 	put_page(page);
2433 out_unacct_blocks:
2434 	shmem_inode_unacct_blocks(inode, 1);
2435 	goto out;
2436 }
2437 
2438 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2439 			   pmd_t *dst_pmd,
2440 			   struct vm_area_struct *dst_vma,
2441 			   unsigned long dst_addr,
2442 			   unsigned long src_addr,
2443 			   struct page **pagep)
2444 {
2445 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2446 				      dst_addr, src_addr, false, pagep);
2447 }
2448 
2449 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2450 			     pmd_t *dst_pmd,
2451 			     struct vm_area_struct *dst_vma,
2452 			     unsigned long dst_addr)
2453 {
2454 	struct page *page = NULL;
2455 
2456 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2457 				      dst_addr, 0, true, &page);
2458 }
2459 
2460 #ifdef CONFIG_TMPFS
2461 static const struct inode_operations shmem_symlink_inode_operations;
2462 static const struct inode_operations shmem_short_symlink_operations;
2463 
2464 #ifdef CONFIG_TMPFS_XATTR
2465 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2466 #else
2467 #define shmem_initxattrs NULL
2468 #endif
2469 
2470 static int
2471 shmem_write_begin(struct file *file, struct address_space *mapping,
2472 			loff_t pos, unsigned len, unsigned flags,
2473 			struct page **pagep, void **fsdata)
2474 {
2475 	struct inode *inode = mapping->host;
2476 	struct shmem_inode_info *info = SHMEM_I(inode);
2477 	pgoff_t index = pos >> PAGE_SHIFT;
2478 
2479 	/* i_mutex is held by caller */
2480 	if (unlikely(info->seals & (F_SEAL_GROW |
2481 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2482 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2483 			return -EPERM;
2484 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2485 			return -EPERM;
2486 	}
2487 
2488 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2489 }
2490 
2491 static int
2492 shmem_write_end(struct file *file, struct address_space *mapping,
2493 			loff_t pos, unsigned len, unsigned copied,
2494 			struct page *page, void *fsdata)
2495 {
2496 	struct inode *inode = mapping->host;
2497 
2498 	if (pos + copied > inode->i_size)
2499 		i_size_write(inode, pos + copied);
2500 
2501 	if (!PageUptodate(page)) {
2502 		struct page *head = compound_head(page);
2503 		if (PageTransCompound(page)) {
2504 			int i;
2505 
2506 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2507 				if (head + i == page)
2508 					continue;
2509 				clear_highpage(head + i);
2510 				flush_dcache_page(head + i);
2511 			}
2512 		}
2513 		if (copied < PAGE_SIZE) {
2514 			unsigned from = pos & (PAGE_SIZE - 1);
2515 			zero_user_segments(page, 0, from,
2516 					from + copied, PAGE_SIZE);
2517 		}
2518 		SetPageUptodate(head);
2519 	}
2520 	set_page_dirty(page);
2521 	unlock_page(page);
2522 	put_page(page);
2523 
2524 	return copied;
2525 }
2526 
2527 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2528 {
2529 	struct file *file = iocb->ki_filp;
2530 	struct inode *inode = file_inode(file);
2531 	struct address_space *mapping = inode->i_mapping;
2532 	pgoff_t index;
2533 	unsigned long offset;
2534 	enum sgp_type sgp = SGP_READ;
2535 	int error = 0;
2536 	ssize_t retval = 0;
2537 	loff_t *ppos = &iocb->ki_pos;
2538 
2539 	/*
2540 	 * Might this read be for a stacking filesystem?  Then when reading
2541 	 * holes of a sparse file, we actually need to allocate those pages,
2542 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2543 	 */
2544 	if (!iter_is_iovec(to))
2545 		sgp = SGP_CACHE;
2546 
2547 	index = *ppos >> PAGE_SHIFT;
2548 	offset = *ppos & ~PAGE_MASK;
2549 
2550 	for (;;) {
2551 		struct page *page = NULL;
2552 		pgoff_t end_index;
2553 		unsigned long nr, ret;
2554 		loff_t i_size = i_size_read(inode);
2555 
2556 		end_index = i_size >> PAGE_SHIFT;
2557 		if (index > end_index)
2558 			break;
2559 		if (index == end_index) {
2560 			nr = i_size & ~PAGE_MASK;
2561 			if (nr <= offset)
2562 				break;
2563 		}
2564 
2565 		error = shmem_getpage(inode, index, &page, sgp);
2566 		if (error) {
2567 			if (error == -EINVAL)
2568 				error = 0;
2569 			break;
2570 		}
2571 		if (page) {
2572 			if (sgp == SGP_CACHE)
2573 				set_page_dirty(page);
2574 			unlock_page(page);
2575 		}
2576 
2577 		/*
2578 		 * We must evaluate after, since reads (unlike writes)
2579 		 * are called without i_mutex protection against truncate
2580 		 */
2581 		nr = PAGE_SIZE;
2582 		i_size = i_size_read(inode);
2583 		end_index = i_size >> PAGE_SHIFT;
2584 		if (index == end_index) {
2585 			nr = i_size & ~PAGE_MASK;
2586 			if (nr <= offset) {
2587 				if (page)
2588 					put_page(page);
2589 				break;
2590 			}
2591 		}
2592 		nr -= offset;
2593 
2594 		if (page) {
2595 			/*
2596 			 * If users can be writing to this page using arbitrary
2597 			 * virtual addresses, take care about potential aliasing
2598 			 * before reading the page on the kernel side.
2599 			 */
2600 			if (mapping_writably_mapped(mapping))
2601 				flush_dcache_page(page);
2602 			/*
2603 			 * Mark the page accessed if we read the beginning.
2604 			 */
2605 			if (!offset)
2606 				mark_page_accessed(page);
2607 		} else {
2608 			page = ZERO_PAGE(0);
2609 			get_page(page);
2610 		}
2611 
2612 		/*
2613 		 * Ok, we have the page, and it's up-to-date, so
2614 		 * now we can copy it to user space...
2615 		 */
2616 		ret = copy_page_to_iter(page, offset, nr, to);
2617 		retval += ret;
2618 		offset += ret;
2619 		index += offset >> PAGE_SHIFT;
2620 		offset &= ~PAGE_MASK;
2621 
2622 		put_page(page);
2623 		if (!iov_iter_count(to))
2624 			break;
2625 		if (ret < nr) {
2626 			error = -EFAULT;
2627 			break;
2628 		}
2629 		cond_resched();
2630 	}
2631 
2632 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2633 	file_accessed(file);
2634 	return retval ? retval : error;
2635 }
2636 
2637 /*
2638  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2639  */
2640 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2641 				    pgoff_t index, pgoff_t end, int whence)
2642 {
2643 	struct page *page;
2644 	struct pagevec pvec;
2645 	pgoff_t indices[PAGEVEC_SIZE];
2646 	bool done = false;
2647 	int i;
2648 
2649 	pagevec_init(&pvec);
2650 	pvec.nr = 1;		/* start small: we may be there already */
2651 	while (!done) {
2652 		pvec.nr = find_get_entries(mapping, index,
2653 					pvec.nr, pvec.pages, indices);
2654 		if (!pvec.nr) {
2655 			if (whence == SEEK_DATA)
2656 				index = end;
2657 			break;
2658 		}
2659 		for (i = 0; i < pvec.nr; i++, index++) {
2660 			if (index < indices[i]) {
2661 				if (whence == SEEK_HOLE) {
2662 					done = true;
2663 					break;
2664 				}
2665 				index = indices[i];
2666 			}
2667 			page = pvec.pages[i];
2668 			if (page && !xa_is_value(page)) {
2669 				if (!PageUptodate(page))
2670 					page = NULL;
2671 			}
2672 			if (index >= end ||
2673 			    (page && whence == SEEK_DATA) ||
2674 			    (!page && whence == SEEK_HOLE)) {
2675 				done = true;
2676 				break;
2677 			}
2678 		}
2679 		pagevec_remove_exceptionals(&pvec);
2680 		pagevec_release(&pvec);
2681 		pvec.nr = PAGEVEC_SIZE;
2682 		cond_resched();
2683 	}
2684 	return index;
2685 }
2686 
2687 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2688 {
2689 	struct address_space *mapping = file->f_mapping;
2690 	struct inode *inode = mapping->host;
2691 	pgoff_t start, end;
2692 	loff_t new_offset;
2693 
2694 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2695 		return generic_file_llseek_size(file, offset, whence,
2696 					MAX_LFS_FILESIZE, i_size_read(inode));
2697 	inode_lock(inode);
2698 	/* We're holding i_mutex so we can access i_size directly */
2699 
2700 	if (offset < 0 || offset >= inode->i_size)
2701 		offset = -ENXIO;
2702 	else {
2703 		start = offset >> PAGE_SHIFT;
2704 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2706 		new_offset <<= PAGE_SHIFT;
2707 		if (new_offset > offset) {
2708 			if (new_offset < inode->i_size)
2709 				offset = new_offset;
2710 			else if (whence == SEEK_DATA)
2711 				offset = -ENXIO;
2712 			else
2713 				offset = inode->i_size;
2714 		}
2715 	}
2716 
2717 	if (offset >= 0)
2718 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2719 	inode_unlock(inode);
2720 	return offset;
2721 }
2722 
2723 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2724 							 loff_t len)
2725 {
2726 	struct inode *inode = file_inode(file);
2727 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2728 	struct shmem_inode_info *info = SHMEM_I(inode);
2729 	struct shmem_falloc shmem_falloc;
2730 	pgoff_t start, index, end;
2731 	int error;
2732 
2733 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2734 		return -EOPNOTSUPP;
2735 
2736 	inode_lock(inode);
2737 
2738 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2739 		struct address_space *mapping = file->f_mapping;
2740 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2741 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2742 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2743 
2744 		/* protected by i_mutex */
2745 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2746 			error = -EPERM;
2747 			goto out;
2748 		}
2749 
2750 		shmem_falloc.waitq = &shmem_falloc_waitq;
2751 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2752 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2753 		spin_lock(&inode->i_lock);
2754 		inode->i_private = &shmem_falloc;
2755 		spin_unlock(&inode->i_lock);
2756 
2757 		if ((u64)unmap_end > (u64)unmap_start)
2758 			unmap_mapping_range(mapping, unmap_start,
2759 					    1 + unmap_end - unmap_start, 0);
2760 		shmem_truncate_range(inode, offset, offset + len - 1);
2761 		/* No need to unmap again: hole-punching leaves COWed pages */
2762 
2763 		spin_lock(&inode->i_lock);
2764 		inode->i_private = NULL;
2765 		wake_up_all(&shmem_falloc_waitq);
2766 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2767 		spin_unlock(&inode->i_lock);
2768 		error = 0;
2769 		goto out;
2770 	}
2771 
2772 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2773 	error = inode_newsize_ok(inode, offset + len);
2774 	if (error)
2775 		goto out;
2776 
2777 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2778 		error = -EPERM;
2779 		goto out;
2780 	}
2781 
2782 	start = offset >> PAGE_SHIFT;
2783 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2784 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2785 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2786 		error = -ENOSPC;
2787 		goto out;
2788 	}
2789 
2790 	shmem_falloc.waitq = NULL;
2791 	shmem_falloc.start = start;
2792 	shmem_falloc.next  = start;
2793 	shmem_falloc.nr_falloced = 0;
2794 	shmem_falloc.nr_unswapped = 0;
2795 	spin_lock(&inode->i_lock);
2796 	inode->i_private = &shmem_falloc;
2797 	spin_unlock(&inode->i_lock);
2798 
2799 	for (index = start; index < end; index++) {
2800 		struct page *page;
2801 
2802 		/*
2803 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2804 		 * been interrupted because we are using up too much memory.
2805 		 */
2806 		if (signal_pending(current))
2807 			error = -EINTR;
2808 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2809 			error = -ENOMEM;
2810 		else
2811 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2812 		if (error) {
2813 			/* Remove the !PageUptodate pages we added */
2814 			if (index > start) {
2815 				shmem_undo_range(inode,
2816 				    (loff_t)start << PAGE_SHIFT,
2817 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2818 			}
2819 			goto undone;
2820 		}
2821 
2822 		/*
2823 		 * Inform shmem_writepage() how far we have reached.
2824 		 * No need for lock or barrier: we have the page lock.
2825 		 */
2826 		shmem_falloc.next++;
2827 		if (!PageUptodate(page))
2828 			shmem_falloc.nr_falloced++;
2829 
2830 		/*
2831 		 * If !PageUptodate, leave it that way so that freeable pages
2832 		 * can be recognized if we need to rollback on error later.
2833 		 * But set_page_dirty so that memory pressure will swap rather
2834 		 * than free the pages we are allocating (and SGP_CACHE pages
2835 		 * might still be clean: we now need to mark those dirty too).
2836 		 */
2837 		set_page_dirty(page);
2838 		unlock_page(page);
2839 		put_page(page);
2840 		cond_resched();
2841 	}
2842 
2843 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2844 		i_size_write(inode, offset + len);
2845 	inode->i_ctime = current_time(inode);
2846 undone:
2847 	spin_lock(&inode->i_lock);
2848 	inode->i_private = NULL;
2849 	spin_unlock(&inode->i_lock);
2850 out:
2851 	inode_unlock(inode);
2852 	return error;
2853 }
2854 
2855 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2856 {
2857 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2858 
2859 	buf->f_type = TMPFS_MAGIC;
2860 	buf->f_bsize = PAGE_SIZE;
2861 	buf->f_namelen = NAME_MAX;
2862 	if (sbinfo->max_blocks) {
2863 		buf->f_blocks = sbinfo->max_blocks;
2864 		buf->f_bavail =
2865 		buf->f_bfree  = sbinfo->max_blocks -
2866 				percpu_counter_sum(&sbinfo->used_blocks);
2867 	}
2868 	if (sbinfo->max_inodes) {
2869 		buf->f_files = sbinfo->max_inodes;
2870 		buf->f_ffree = sbinfo->free_inodes;
2871 	}
2872 	/* else leave those fields 0 like simple_statfs */
2873 	return 0;
2874 }
2875 
2876 /*
2877  * File creation. Allocate an inode, and we're done..
2878  */
2879 static int
2880 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2881 {
2882 	struct inode *inode;
2883 	int error = -ENOSPC;
2884 
2885 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2886 	if (inode) {
2887 		error = simple_acl_create(dir, inode);
2888 		if (error)
2889 			goto out_iput;
2890 		error = security_inode_init_security(inode, dir,
2891 						     &dentry->d_name,
2892 						     shmem_initxattrs, NULL);
2893 		if (error && error != -EOPNOTSUPP)
2894 			goto out_iput;
2895 
2896 		error = 0;
2897 		dir->i_size += BOGO_DIRENT_SIZE;
2898 		dir->i_ctime = dir->i_mtime = current_time(dir);
2899 		d_instantiate(dentry, inode);
2900 		dget(dentry); /* Extra count - pin the dentry in core */
2901 	}
2902 	return error;
2903 out_iput:
2904 	iput(inode);
2905 	return error;
2906 }
2907 
2908 static int
2909 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2910 {
2911 	struct inode *inode;
2912 	int error = -ENOSPC;
2913 
2914 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2915 	if (inode) {
2916 		error = security_inode_init_security(inode, dir,
2917 						     NULL,
2918 						     shmem_initxattrs, NULL);
2919 		if (error && error != -EOPNOTSUPP)
2920 			goto out_iput;
2921 		error = simple_acl_create(dir, inode);
2922 		if (error)
2923 			goto out_iput;
2924 		d_tmpfile(dentry, inode);
2925 	}
2926 	return error;
2927 out_iput:
2928 	iput(inode);
2929 	return error;
2930 }
2931 
2932 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2933 {
2934 	int error;
2935 
2936 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2937 		return error;
2938 	inc_nlink(dir);
2939 	return 0;
2940 }
2941 
2942 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2943 		bool excl)
2944 {
2945 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2946 }
2947 
2948 /*
2949  * Link a file..
2950  */
2951 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2952 {
2953 	struct inode *inode = d_inode(old_dentry);
2954 	int ret = 0;
2955 
2956 	/*
2957 	 * No ordinary (disk based) filesystem counts links as inodes;
2958 	 * but each new link needs a new dentry, pinning lowmem, and
2959 	 * tmpfs dentries cannot be pruned until they are unlinked.
2960 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2961 	 * first link must skip that, to get the accounting right.
2962 	 */
2963 	if (inode->i_nlink) {
2964 		ret = shmem_reserve_inode(inode->i_sb);
2965 		if (ret)
2966 			goto out;
2967 	}
2968 
2969 	dir->i_size += BOGO_DIRENT_SIZE;
2970 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2971 	inc_nlink(inode);
2972 	ihold(inode);	/* New dentry reference */
2973 	dget(dentry);		/* Extra pinning count for the created dentry */
2974 	d_instantiate(dentry, inode);
2975 out:
2976 	return ret;
2977 }
2978 
2979 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2980 {
2981 	struct inode *inode = d_inode(dentry);
2982 
2983 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2984 		shmem_free_inode(inode->i_sb);
2985 
2986 	dir->i_size -= BOGO_DIRENT_SIZE;
2987 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2988 	drop_nlink(inode);
2989 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2990 	return 0;
2991 }
2992 
2993 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2994 {
2995 	if (!simple_empty(dentry))
2996 		return -ENOTEMPTY;
2997 
2998 	drop_nlink(d_inode(dentry));
2999 	drop_nlink(dir);
3000 	return shmem_unlink(dir, dentry);
3001 }
3002 
3003 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3004 {
3005 	bool old_is_dir = d_is_dir(old_dentry);
3006 	bool new_is_dir = d_is_dir(new_dentry);
3007 
3008 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3009 		if (old_is_dir) {
3010 			drop_nlink(old_dir);
3011 			inc_nlink(new_dir);
3012 		} else {
3013 			drop_nlink(new_dir);
3014 			inc_nlink(old_dir);
3015 		}
3016 	}
3017 	old_dir->i_ctime = old_dir->i_mtime =
3018 	new_dir->i_ctime = new_dir->i_mtime =
3019 	d_inode(old_dentry)->i_ctime =
3020 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3021 
3022 	return 0;
3023 }
3024 
3025 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3026 {
3027 	struct dentry *whiteout;
3028 	int error;
3029 
3030 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3031 	if (!whiteout)
3032 		return -ENOMEM;
3033 
3034 	error = shmem_mknod(old_dir, whiteout,
3035 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3036 	dput(whiteout);
3037 	if (error)
3038 		return error;
3039 
3040 	/*
3041 	 * Cheat and hash the whiteout while the old dentry is still in
3042 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3043 	 *
3044 	 * d_lookup() will consistently find one of them at this point,
3045 	 * not sure which one, but that isn't even important.
3046 	 */
3047 	d_rehash(whiteout);
3048 	return 0;
3049 }
3050 
3051 /*
3052  * The VFS layer already does all the dentry stuff for rename,
3053  * we just have to decrement the usage count for the target if
3054  * it exists so that the VFS layer correctly free's it when it
3055  * gets overwritten.
3056  */
3057 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3058 {
3059 	struct inode *inode = d_inode(old_dentry);
3060 	int they_are_dirs = S_ISDIR(inode->i_mode);
3061 
3062 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3063 		return -EINVAL;
3064 
3065 	if (flags & RENAME_EXCHANGE)
3066 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3067 
3068 	if (!simple_empty(new_dentry))
3069 		return -ENOTEMPTY;
3070 
3071 	if (flags & RENAME_WHITEOUT) {
3072 		int error;
3073 
3074 		error = shmem_whiteout(old_dir, old_dentry);
3075 		if (error)
3076 			return error;
3077 	}
3078 
3079 	if (d_really_is_positive(new_dentry)) {
3080 		(void) shmem_unlink(new_dir, new_dentry);
3081 		if (they_are_dirs) {
3082 			drop_nlink(d_inode(new_dentry));
3083 			drop_nlink(old_dir);
3084 		}
3085 	} else if (they_are_dirs) {
3086 		drop_nlink(old_dir);
3087 		inc_nlink(new_dir);
3088 	}
3089 
3090 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3091 	new_dir->i_size += BOGO_DIRENT_SIZE;
3092 	old_dir->i_ctime = old_dir->i_mtime =
3093 	new_dir->i_ctime = new_dir->i_mtime =
3094 	inode->i_ctime = current_time(old_dir);
3095 	return 0;
3096 }
3097 
3098 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3099 {
3100 	int error;
3101 	int len;
3102 	struct inode *inode;
3103 	struct page *page;
3104 
3105 	len = strlen(symname) + 1;
3106 	if (len > PAGE_SIZE)
3107 		return -ENAMETOOLONG;
3108 
3109 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3110 				VM_NORESERVE);
3111 	if (!inode)
3112 		return -ENOSPC;
3113 
3114 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3115 					     shmem_initxattrs, NULL);
3116 	if (error) {
3117 		if (error != -EOPNOTSUPP) {
3118 			iput(inode);
3119 			return error;
3120 		}
3121 		error = 0;
3122 	}
3123 
3124 	inode->i_size = len-1;
3125 	if (len <= SHORT_SYMLINK_LEN) {
3126 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3127 		if (!inode->i_link) {
3128 			iput(inode);
3129 			return -ENOMEM;
3130 		}
3131 		inode->i_op = &shmem_short_symlink_operations;
3132 	} else {
3133 		inode_nohighmem(inode);
3134 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3135 		if (error) {
3136 			iput(inode);
3137 			return error;
3138 		}
3139 		inode->i_mapping->a_ops = &shmem_aops;
3140 		inode->i_op = &shmem_symlink_inode_operations;
3141 		memcpy(page_address(page), symname, len);
3142 		SetPageUptodate(page);
3143 		set_page_dirty(page);
3144 		unlock_page(page);
3145 		put_page(page);
3146 	}
3147 	dir->i_size += BOGO_DIRENT_SIZE;
3148 	dir->i_ctime = dir->i_mtime = current_time(dir);
3149 	d_instantiate(dentry, inode);
3150 	dget(dentry);
3151 	return 0;
3152 }
3153 
3154 static void shmem_put_link(void *arg)
3155 {
3156 	mark_page_accessed(arg);
3157 	put_page(arg);
3158 }
3159 
3160 static const char *shmem_get_link(struct dentry *dentry,
3161 				  struct inode *inode,
3162 				  struct delayed_call *done)
3163 {
3164 	struct page *page = NULL;
3165 	int error;
3166 	if (!dentry) {
3167 		page = find_get_page(inode->i_mapping, 0);
3168 		if (!page)
3169 			return ERR_PTR(-ECHILD);
3170 		if (!PageUptodate(page)) {
3171 			put_page(page);
3172 			return ERR_PTR(-ECHILD);
3173 		}
3174 	} else {
3175 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3176 		if (error)
3177 			return ERR_PTR(error);
3178 		unlock_page(page);
3179 	}
3180 	set_delayed_call(done, shmem_put_link, page);
3181 	return page_address(page);
3182 }
3183 
3184 #ifdef CONFIG_TMPFS_XATTR
3185 /*
3186  * Superblocks without xattr inode operations may get some security.* xattr
3187  * support from the LSM "for free". As soon as we have any other xattrs
3188  * like ACLs, we also need to implement the security.* handlers at
3189  * filesystem level, though.
3190  */
3191 
3192 /*
3193  * Callback for security_inode_init_security() for acquiring xattrs.
3194  */
3195 static int shmem_initxattrs(struct inode *inode,
3196 			    const struct xattr *xattr_array,
3197 			    void *fs_info)
3198 {
3199 	struct shmem_inode_info *info = SHMEM_I(inode);
3200 	const struct xattr *xattr;
3201 	struct simple_xattr *new_xattr;
3202 	size_t len;
3203 
3204 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3205 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3206 		if (!new_xattr)
3207 			return -ENOMEM;
3208 
3209 		len = strlen(xattr->name) + 1;
3210 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3211 					  GFP_KERNEL);
3212 		if (!new_xattr->name) {
3213 			kfree(new_xattr);
3214 			return -ENOMEM;
3215 		}
3216 
3217 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3218 		       XATTR_SECURITY_PREFIX_LEN);
3219 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3220 		       xattr->name, len);
3221 
3222 		simple_xattr_list_add(&info->xattrs, new_xattr);
3223 	}
3224 
3225 	return 0;
3226 }
3227 
3228 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3229 				   struct dentry *unused, struct inode *inode,
3230 				   const char *name, void *buffer, size_t size)
3231 {
3232 	struct shmem_inode_info *info = SHMEM_I(inode);
3233 
3234 	name = xattr_full_name(handler, name);
3235 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3236 }
3237 
3238 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3239 				   struct dentry *unused, struct inode *inode,
3240 				   const char *name, const void *value,
3241 				   size_t size, int flags)
3242 {
3243 	struct shmem_inode_info *info = SHMEM_I(inode);
3244 
3245 	name = xattr_full_name(handler, name);
3246 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3247 }
3248 
3249 static const struct xattr_handler shmem_security_xattr_handler = {
3250 	.prefix = XATTR_SECURITY_PREFIX,
3251 	.get = shmem_xattr_handler_get,
3252 	.set = shmem_xattr_handler_set,
3253 };
3254 
3255 static const struct xattr_handler shmem_trusted_xattr_handler = {
3256 	.prefix = XATTR_TRUSTED_PREFIX,
3257 	.get = shmem_xattr_handler_get,
3258 	.set = shmem_xattr_handler_set,
3259 };
3260 
3261 static const struct xattr_handler *shmem_xattr_handlers[] = {
3262 #ifdef CONFIG_TMPFS_POSIX_ACL
3263 	&posix_acl_access_xattr_handler,
3264 	&posix_acl_default_xattr_handler,
3265 #endif
3266 	&shmem_security_xattr_handler,
3267 	&shmem_trusted_xattr_handler,
3268 	NULL
3269 };
3270 
3271 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3272 {
3273 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3274 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3275 }
3276 #endif /* CONFIG_TMPFS_XATTR */
3277 
3278 static const struct inode_operations shmem_short_symlink_operations = {
3279 	.get_link	= simple_get_link,
3280 #ifdef CONFIG_TMPFS_XATTR
3281 	.listxattr	= shmem_listxattr,
3282 #endif
3283 };
3284 
3285 static const struct inode_operations shmem_symlink_inode_operations = {
3286 	.get_link	= shmem_get_link,
3287 #ifdef CONFIG_TMPFS_XATTR
3288 	.listxattr	= shmem_listxattr,
3289 #endif
3290 };
3291 
3292 static struct dentry *shmem_get_parent(struct dentry *child)
3293 {
3294 	return ERR_PTR(-ESTALE);
3295 }
3296 
3297 static int shmem_match(struct inode *ino, void *vfh)
3298 {
3299 	__u32 *fh = vfh;
3300 	__u64 inum = fh[2];
3301 	inum = (inum << 32) | fh[1];
3302 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3303 }
3304 
3305 /* Find any alias of inode, but prefer a hashed alias */
3306 static struct dentry *shmem_find_alias(struct inode *inode)
3307 {
3308 	struct dentry *alias = d_find_alias(inode);
3309 
3310 	return alias ?: d_find_any_alias(inode);
3311 }
3312 
3313 
3314 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3315 		struct fid *fid, int fh_len, int fh_type)
3316 {
3317 	struct inode *inode;
3318 	struct dentry *dentry = NULL;
3319 	u64 inum;
3320 
3321 	if (fh_len < 3)
3322 		return NULL;
3323 
3324 	inum = fid->raw[2];
3325 	inum = (inum << 32) | fid->raw[1];
3326 
3327 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3328 			shmem_match, fid->raw);
3329 	if (inode) {
3330 		dentry = shmem_find_alias(inode);
3331 		iput(inode);
3332 	}
3333 
3334 	return dentry;
3335 }
3336 
3337 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3338 				struct inode *parent)
3339 {
3340 	if (*len < 3) {
3341 		*len = 3;
3342 		return FILEID_INVALID;
3343 	}
3344 
3345 	if (inode_unhashed(inode)) {
3346 		/* Unfortunately insert_inode_hash is not idempotent,
3347 		 * so as we hash inodes here rather than at creation
3348 		 * time, we need a lock to ensure we only try
3349 		 * to do it once
3350 		 */
3351 		static DEFINE_SPINLOCK(lock);
3352 		spin_lock(&lock);
3353 		if (inode_unhashed(inode))
3354 			__insert_inode_hash(inode,
3355 					    inode->i_ino + inode->i_generation);
3356 		spin_unlock(&lock);
3357 	}
3358 
3359 	fh[0] = inode->i_generation;
3360 	fh[1] = inode->i_ino;
3361 	fh[2] = ((__u64)inode->i_ino) >> 32;
3362 
3363 	*len = 3;
3364 	return 1;
3365 }
3366 
3367 static const struct export_operations shmem_export_ops = {
3368 	.get_parent     = shmem_get_parent,
3369 	.encode_fh      = shmem_encode_fh,
3370 	.fh_to_dentry	= shmem_fh_to_dentry,
3371 };
3372 
3373 enum shmem_param {
3374 	Opt_gid,
3375 	Opt_huge,
3376 	Opt_mode,
3377 	Opt_mpol,
3378 	Opt_nr_blocks,
3379 	Opt_nr_inodes,
3380 	Opt_size,
3381 	Opt_uid,
3382 };
3383 
3384 static const struct constant_table shmem_param_enums_huge[] = {
3385 	{"never",	SHMEM_HUGE_NEVER },
3386 	{"always",	SHMEM_HUGE_ALWAYS },
3387 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3388 	{"advise",	SHMEM_HUGE_ADVISE },
3389 	{}
3390 };
3391 
3392 const struct fs_parameter_spec shmem_fs_parameters[] = {
3393 	fsparam_u32   ("gid",		Opt_gid),
3394 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3395 	fsparam_u32oct("mode",		Opt_mode),
3396 	fsparam_string("mpol",		Opt_mpol),
3397 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3398 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3399 	fsparam_string("size",		Opt_size),
3400 	fsparam_u32   ("uid",		Opt_uid),
3401 	{}
3402 };
3403 
3404 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3405 {
3406 	struct shmem_options *ctx = fc->fs_private;
3407 	struct fs_parse_result result;
3408 	unsigned long long size;
3409 	char *rest;
3410 	int opt;
3411 
3412 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3413 	if (opt < 0)
3414 		return opt;
3415 
3416 	switch (opt) {
3417 	case Opt_size:
3418 		size = memparse(param->string, &rest);
3419 		if (*rest == '%') {
3420 			size <<= PAGE_SHIFT;
3421 			size *= totalram_pages();
3422 			do_div(size, 100);
3423 			rest++;
3424 		}
3425 		if (*rest)
3426 			goto bad_value;
3427 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3428 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3429 		break;
3430 	case Opt_nr_blocks:
3431 		ctx->blocks = memparse(param->string, &rest);
3432 		if (*rest)
3433 			goto bad_value;
3434 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3435 		break;
3436 	case Opt_nr_inodes:
3437 		ctx->inodes = memparse(param->string, &rest);
3438 		if (*rest)
3439 			goto bad_value;
3440 		ctx->seen |= SHMEM_SEEN_INODES;
3441 		break;
3442 	case Opt_mode:
3443 		ctx->mode = result.uint_32 & 07777;
3444 		break;
3445 	case Opt_uid:
3446 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3447 		if (!uid_valid(ctx->uid))
3448 			goto bad_value;
3449 		break;
3450 	case Opt_gid:
3451 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3452 		if (!gid_valid(ctx->gid))
3453 			goto bad_value;
3454 		break;
3455 	case Opt_huge:
3456 		ctx->huge = result.uint_32;
3457 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3458 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3459 		      has_transparent_hugepage()))
3460 			goto unsupported_parameter;
3461 		ctx->seen |= SHMEM_SEEN_HUGE;
3462 		break;
3463 	case Opt_mpol:
3464 		if (IS_ENABLED(CONFIG_NUMA)) {
3465 			mpol_put(ctx->mpol);
3466 			ctx->mpol = NULL;
3467 			if (mpol_parse_str(param->string, &ctx->mpol))
3468 				goto bad_value;
3469 			break;
3470 		}
3471 		goto unsupported_parameter;
3472 	}
3473 	return 0;
3474 
3475 unsupported_parameter:
3476 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3477 bad_value:
3478 	return invalfc(fc, "Bad value for '%s'", param->key);
3479 }
3480 
3481 static int shmem_parse_options(struct fs_context *fc, void *data)
3482 {
3483 	char *options = data;
3484 
3485 	if (options) {
3486 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3487 		if (err)
3488 			return err;
3489 	}
3490 
3491 	while (options != NULL) {
3492 		char *this_char = options;
3493 		for (;;) {
3494 			/*
3495 			 * NUL-terminate this option: unfortunately,
3496 			 * mount options form a comma-separated list,
3497 			 * but mpol's nodelist may also contain commas.
3498 			 */
3499 			options = strchr(options, ',');
3500 			if (options == NULL)
3501 				break;
3502 			options++;
3503 			if (!isdigit(*options)) {
3504 				options[-1] = '\0';
3505 				break;
3506 			}
3507 		}
3508 		if (*this_char) {
3509 			char *value = strchr(this_char,'=');
3510 			size_t len = 0;
3511 			int err;
3512 
3513 			if (value) {
3514 				*value++ = '\0';
3515 				len = strlen(value);
3516 			}
3517 			err = vfs_parse_fs_string(fc, this_char, value, len);
3518 			if (err < 0)
3519 				return err;
3520 		}
3521 	}
3522 	return 0;
3523 }
3524 
3525 /*
3526  * Reconfigure a shmem filesystem.
3527  *
3528  * Note that we disallow change from limited->unlimited blocks/inodes while any
3529  * are in use; but we must separately disallow unlimited->limited, because in
3530  * that case we have no record of how much is already in use.
3531  */
3532 static int shmem_reconfigure(struct fs_context *fc)
3533 {
3534 	struct shmem_options *ctx = fc->fs_private;
3535 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3536 	unsigned long inodes;
3537 	const char *err;
3538 
3539 	spin_lock(&sbinfo->stat_lock);
3540 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3541 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3542 		if (!sbinfo->max_blocks) {
3543 			err = "Cannot retroactively limit size";
3544 			goto out;
3545 		}
3546 		if (percpu_counter_compare(&sbinfo->used_blocks,
3547 					   ctx->blocks) > 0) {
3548 			err = "Too small a size for current use";
3549 			goto out;
3550 		}
3551 	}
3552 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3553 		if (!sbinfo->max_inodes) {
3554 			err = "Cannot retroactively limit inodes";
3555 			goto out;
3556 		}
3557 		if (ctx->inodes < inodes) {
3558 			err = "Too few inodes for current use";
3559 			goto out;
3560 		}
3561 	}
3562 
3563 	if (ctx->seen & SHMEM_SEEN_HUGE)
3564 		sbinfo->huge = ctx->huge;
3565 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3566 		sbinfo->max_blocks  = ctx->blocks;
3567 	if (ctx->seen & SHMEM_SEEN_INODES) {
3568 		sbinfo->max_inodes  = ctx->inodes;
3569 		sbinfo->free_inodes = ctx->inodes - inodes;
3570 	}
3571 
3572 	/*
3573 	 * Preserve previous mempolicy unless mpol remount option was specified.
3574 	 */
3575 	if (ctx->mpol) {
3576 		mpol_put(sbinfo->mpol);
3577 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3578 		ctx->mpol = NULL;
3579 	}
3580 	spin_unlock(&sbinfo->stat_lock);
3581 	return 0;
3582 out:
3583 	spin_unlock(&sbinfo->stat_lock);
3584 	return invalfc(fc, "%s", err);
3585 }
3586 
3587 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3588 {
3589 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3590 
3591 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3592 		seq_printf(seq, ",size=%luk",
3593 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3594 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3595 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3596 	if (sbinfo->mode != (0777 | S_ISVTX))
3597 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3598 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3599 		seq_printf(seq, ",uid=%u",
3600 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3601 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3602 		seq_printf(seq, ",gid=%u",
3603 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3604 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3605 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3606 	if (sbinfo->huge)
3607 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3608 #endif
3609 	shmem_show_mpol(seq, sbinfo->mpol);
3610 	return 0;
3611 }
3612 
3613 #endif /* CONFIG_TMPFS */
3614 
3615 static void shmem_put_super(struct super_block *sb)
3616 {
3617 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3618 
3619 	percpu_counter_destroy(&sbinfo->used_blocks);
3620 	mpol_put(sbinfo->mpol);
3621 	kfree(sbinfo);
3622 	sb->s_fs_info = NULL;
3623 }
3624 
3625 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3626 {
3627 	struct shmem_options *ctx = fc->fs_private;
3628 	struct inode *inode;
3629 	struct shmem_sb_info *sbinfo;
3630 	int err = -ENOMEM;
3631 
3632 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3633 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3634 				L1_CACHE_BYTES), GFP_KERNEL);
3635 	if (!sbinfo)
3636 		return -ENOMEM;
3637 
3638 	sb->s_fs_info = sbinfo;
3639 
3640 #ifdef CONFIG_TMPFS
3641 	/*
3642 	 * Per default we only allow half of the physical ram per
3643 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3644 	 * but the internal instance is left unlimited.
3645 	 */
3646 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3647 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3648 			ctx->blocks = shmem_default_max_blocks();
3649 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3650 			ctx->inodes = shmem_default_max_inodes();
3651 	} else {
3652 		sb->s_flags |= SB_NOUSER;
3653 	}
3654 	sb->s_export_op = &shmem_export_ops;
3655 	sb->s_flags |= SB_NOSEC;
3656 #else
3657 	sb->s_flags |= SB_NOUSER;
3658 #endif
3659 	sbinfo->max_blocks = ctx->blocks;
3660 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3661 	sbinfo->uid = ctx->uid;
3662 	sbinfo->gid = ctx->gid;
3663 	sbinfo->mode = ctx->mode;
3664 	sbinfo->huge = ctx->huge;
3665 	sbinfo->mpol = ctx->mpol;
3666 	ctx->mpol = NULL;
3667 
3668 	spin_lock_init(&sbinfo->stat_lock);
3669 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3670 		goto failed;
3671 	spin_lock_init(&sbinfo->shrinklist_lock);
3672 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3673 
3674 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3675 	sb->s_blocksize = PAGE_SIZE;
3676 	sb->s_blocksize_bits = PAGE_SHIFT;
3677 	sb->s_magic = TMPFS_MAGIC;
3678 	sb->s_op = &shmem_ops;
3679 	sb->s_time_gran = 1;
3680 #ifdef CONFIG_TMPFS_XATTR
3681 	sb->s_xattr = shmem_xattr_handlers;
3682 #endif
3683 #ifdef CONFIG_TMPFS_POSIX_ACL
3684 	sb->s_flags |= SB_POSIXACL;
3685 #endif
3686 	uuid_gen(&sb->s_uuid);
3687 
3688 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3689 	if (!inode)
3690 		goto failed;
3691 	inode->i_uid = sbinfo->uid;
3692 	inode->i_gid = sbinfo->gid;
3693 	sb->s_root = d_make_root(inode);
3694 	if (!sb->s_root)
3695 		goto failed;
3696 	return 0;
3697 
3698 failed:
3699 	shmem_put_super(sb);
3700 	return err;
3701 }
3702 
3703 static int shmem_get_tree(struct fs_context *fc)
3704 {
3705 	return get_tree_nodev(fc, shmem_fill_super);
3706 }
3707 
3708 static void shmem_free_fc(struct fs_context *fc)
3709 {
3710 	struct shmem_options *ctx = fc->fs_private;
3711 
3712 	if (ctx) {
3713 		mpol_put(ctx->mpol);
3714 		kfree(ctx);
3715 	}
3716 }
3717 
3718 static const struct fs_context_operations shmem_fs_context_ops = {
3719 	.free			= shmem_free_fc,
3720 	.get_tree		= shmem_get_tree,
3721 #ifdef CONFIG_TMPFS
3722 	.parse_monolithic	= shmem_parse_options,
3723 	.parse_param		= shmem_parse_one,
3724 	.reconfigure		= shmem_reconfigure,
3725 #endif
3726 };
3727 
3728 static struct kmem_cache *shmem_inode_cachep;
3729 
3730 static struct inode *shmem_alloc_inode(struct super_block *sb)
3731 {
3732 	struct shmem_inode_info *info;
3733 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3734 	if (!info)
3735 		return NULL;
3736 	return &info->vfs_inode;
3737 }
3738 
3739 static void shmem_free_in_core_inode(struct inode *inode)
3740 {
3741 	if (S_ISLNK(inode->i_mode))
3742 		kfree(inode->i_link);
3743 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3744 }
3745 
3746 static void shmem_destroy_inode(struct inode *inode)
3747 {
3748 	if (S_ISREG(inode->i_mode))
3749 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3750 }
3751 
3752 static void shmem_init_inode(void *foo)
3753 {
3754 	struct shmem_inode_info *info = foo;
3755 	inode_init_once(&info->vfs_inode);
3756 }
3757 
3758 static void shmem_init_inodecache(void)
3759 {
3760 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3761 				sizeof(struct shmem_inode_info),
3762 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3763 }
3764 
3765 static void shmem_destroy_inodecache(void)
3766 {
3767 	kmem_cache_destroy(shmem_inode_cachep);
3768 }
3769 
3770 static const struct address_space_operations shmem_aops = {
3771 	.writepage	= shmem_writepage,
3772 	.set_page_dirty	= __set_page_dirty_no_writeback,
3773 #ifdef CONFIG_TMPFS
3774 	.write_begin	= shmem_write_begin,
3775 	.write_end	= shmem_write_end,
3776 #endif
3777 #ifdef CONFIG_MIGRATION
3778 	.migratepage	= migrate_page,
3779 #endif
3780 	.error_remove_page = generic_error_remove_page,
3781 };
3782 
3783 static const struct file_operations shmem_file_operations = {
3784 	.mmap		= shmem_mmap,
3785 	.get_unmapped_area = shmem_get_unmapped_area,
3786 #ifdef CONFIG_TMPFS
3787 	.llseek		= shmem_file_llseek,
3788 	.read_iter	= shmem_file_read_iter,
3789 	.write_iter	= generic_file_write_iter,
3790 	.fsync		= noop_fsync,
3791 	.splice_read	= generic_file_splice_read,
3792 	.splice_write	= iter_file_splice_write,
3793 	.fallocate	= shmem_fallocate,
3794 #endif
3795 };
3796 
3797 static const struct inode_operations shmem_inode_operations = {
3798 	.getattr	= shmem_getattr,
3799 	.setattr	= shmem_setattr,
3800 #ifdef CONFIG_TMPFS_XATTR
3801 	.listxattr	= shmem_listxattr,
3802 	.set_acl	= simple_set_acl,
3803 #endif
3804 };
3805 
3806 static const struct inode_operations shmem_dir_inode_operations = {
3807 #ifdef CONFIG_TMPFS
3808 	.create		= shmem_create,
3809 	.lookup		= simple_lookup,
3810 	.link		= shmem_link,
3811 	.unlink		= shmem_unlink,
3812 	.symlink	= shmem_symlink,
3813 	.mkdir		= shmem_mkdir,
3814 	.rmdir		= shmem_rmdir,
3815 	.mknod		= shmem_mknod,
3816 	.rename		= shmem_rename2,
3817 	.tmpfile	= shmem_tmpfile,
3818 #endif
3819 #ifdef CONFIG_TMPFS_XATTR
3820 	.listxattr	= shmem_listxattr,
3821 #endif
3822 #ifdef CONFIG_TMPFS_POSIX_ACL
3823 	.setattr	= shmem_setattr,
3824 	.set_acl	= simple_set_acl,
3825 #endif
3826 };
3827 
3828 static const struct inode_operations shmem_special_inode_operations = {
3829 #ifdef CONFIG_TMPFS_XATTR
3830 	.listxattr	= shmem_listxattr,
3831 #endif
3832 #ifdef CONFIG_TMPFS_POSIX_ACL
3833 	.setattr	= shmem_setattr,
3834 	.set_acl	= simple_set_acl,
3835 #endif
3836 };
3837 
3838 static const struct super_operations shmem_ops = {
3839 	.alloc_inode	= shmem_alloc_inode,
3840 	.free_inode	= shmem_free_in_core_inode,
3841 	.destroy_inode	= shmem_destroy_inode,
3842 #ifdef CONFIG_TMPFS
3843 	.statfs		= shmem_statfs,
3844 	.show_options	= shmem_show_options,
3845 #endif
3846 	.evict_inode	= shmem_evict_inode,
3847 	.drop_inode	= generic_delete_inode,
3848 	.put_super	= shmem_put_super,
3849 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3850 	.nr_cached_objects	= shmem_unused_huge_count,
3851 	.free_cached_objects	= shmem_unused_huge_scan,
3852 #endif
3853 };
3854 
3855 static const struct vm_operations_struct shmem_vm_ops = {
3856 	.fault		= shmem_fault,
3857 	.map_pages	= filemap_map_pages,
3858 #ifdef CONFIG_NUMA
3859 	.set_policy     = shmem_set_policy,
3860 	.get_policy     = shmem_get_policy,
3861 #endif
3862 };
3863 
3864 int shmem_init_fs_context(struct fs_context *fc)
3865 {
3866 	struct shmem_options *ctx;
3867 
3868 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3869 	if (!ctx)
3870 		return -ENOMEM;
3871 
3872 	ctx->mode = 0777 | S_ISVTX;
3873 	ctx->uid = current_fsuid();
3874 	ctx->gid = current_fsgid();
3875 
3876 	fc->fs_private = ctx;
3877 	fc->ops = &shmem_fs_context_ops;
3878 	return 0;
3879 }
3880 
3881 static struct file_system_type shmem_fs_type = {
3882 	.owner		= THIS_MODULE,
3883 	.name		= "tmpfs",
3884 	.init_fs_context = shmem_init_fs_context,
3885 #ifdef CONFIG_TMPFS
3886 	.parameters	= shmem_fs_parameters,
3887 #endif
3888 	.kill_sb	= kill_litter_super,
3889 	.fs_flags	= FS_USERNS_MOUNT,
3890 };
3891 
3892 int __init shmem_init(void)
3893 {
3894 	int error;
3895 
3896 	shmem_init_inodecache();
3897 
3898 	error = register_filesystem(&shmem_fs_type);
3899 	if (error) {
3900 		pr_err("Could not register tmpfs\n");
3901 		goto out2;
3902 	}
3903 
3904 	shm_mnt = kern_mount(&shmem_fs_type);
3905 	if (IS_ERR(shm_mnt)) {
3906 		error = PTR_ERR(shm_mnt);
3907 		pr_err("Could not kern_mount tmpfs\n");
3908 		goto out1;
3909 	}
3910 
3911 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3912 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3913 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3914 	else
3915 		shmem_huge = 0; /* just in case it was patched */
3916 #endif
3917 	return 0;
3918 
3919 out1:
3920 	unregister_filesystem(&shmem_fs_type);
3921 out2:
3922 	shmem_destroy_inodecache();
3923 	shm_mnt = ERR_PTR(error);
3924 	return error;
3925 }
3926 
3927 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3928 static ssize_t shmem_enabled_show(struct kobject *kobj,
3929 		struct kobj_attribute *attr, char *buf)
3930 {
3931 	static const int values[] = {
3932 		SHMEM_HUGE_ALWAYS,
3933 		SHMEM_HUGE_WITHIN_SIZE,
3934 		SHMEM_HUGE_ADVISE,
3935 		SHMEM_HUGE_NEVER,
3936 		SHMEM_HUGE_DENY,
3937 		SHMEM_HUGE_FORCE,
3938 	};
3939 	int i, count;
3940 
3941 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3942 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3943 
3944 		count += sprintf(buf + count, fmt,
3945 				shmem_format_huge(values[i]));
3946 	}
3947 	buf[count - 1] = '\n';
3948 	return count;
3949 }
3950 
3951 static ssize_t shmem_enabled_store(struct kobject *kobj,
3952 		struct kobj_attribute *attr, const char *buf, size_t count)
3953 {
3954 	char tmp[16];
3955 	int huge;
3956 
3957 	if (count + 1 > sizeof(tmp))
3958 		return -EINVAL;
3959 	memcpy(tmp, buf, count);
3960 	tmp[count] = '\0';
3961 	if (count && tmp[count - 1] == '\n')
3962 		tmp[count - 1] = '\0';
3963 
3964 	huge = shmem_parse_huge(tmp);
3965 	if (huge == -EINVAL)
3966 		return -EINVAL;
3967 	if (!has_transparent_hugepage() &&
3968 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3969 		return -EINVAL;
3970 
3971 	shmem_huge = huge;
3972 	if (shmem_huge > SHMEM_HUGE_DENY)
3973 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3974 	return count;
3975 }
3976 
3977 struct kobj_attribute shmem_enabled_attr =
3978 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3979 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3980 
3981 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3982 bool shmem_huge_enabled(struct vm_area_struct *vma)
3983 {
3984 	struct inode *inode = file_inode(vma->vm_file);
3985 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3986 	loff_t i_size;
3987 	pgoff_t off;
3988 
3989 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3990 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3991 		return false;
3992 	if (shmem_huge == SHMEM_HUGE_FORCE)
3993 		return true;
3994 	if (shmem_huge == SHMEM_HUGE_DENY)
3995 		return false;
3996 	switch (sbinfo->huge) {
3997 		case SHMEM_HUGE_NEVER:
3998 			return false;
3999 		case SHMEM_HUGE_ALWAYS:
4000 			return true;
4001 		case SHMEM_HUGE_WITHIN_SIZE:
4002 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4003 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4004 			if (i_size >= HPAGE_PMD_SIZE &&
4005 					i_size >> PAGE_SHIFT >= off)
4006 				return true;
4007 			/* fall through */
4008 		case SHMEM_HUGE_ADVISE:
4009 			/* TODO: implement fadvise() hints */
4010 			return (vma->vm_flags & VM_HUGEPAGE);
4011 		default:
4012 			VM_BUG_ON(1);
4013 			return false;
4014 	}
4015 }
4016 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4017 
4018 #else /* !CONFIG_SHMEM */
4019 
4020 /*
4021  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4022  *
4023  * This is intended for small system where the benefits of the full
4024  * shmem code (swap-backed and resource-limited) are outweighed by
4025  * their complexity. On systems without swap this code should be
4026  * effectively equivalent, but much lighter weight.
4027  */
4028 
4029 static struct file_system_type shmem_fs_type = {
4030 	.name		= "tmpfs",
4031 	.init_fs_context = ramfs_init_fs_context,
4032 	.parameters	= ramfs_fs_parameters,
4033 	.kill_sb	= kill_litter_super,
4034 	.fs_flags	= FS_USERNS_MOUNT,
4035 };
4036 
4037 int __init shmem_init(void)
4038 {
4039 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4040 
4041 	shm_mnt = kern_mount(&shmem_fs_type);
4042 	BUG_ON(IS_ERR(shm_mnt));
4043 
4044 	return 0;
4045 }
4046 
4047 int shmem_unuse(unsigned int type, bool frontswap,
4048 		unsigned long *fs_pages_to_unuse)
4049 {
4050 	return 0;
4051 }
4052 
4053 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4054 {
4055 	return 0;
4056 }
4057 
4058 void shmem_unlock_mapping(struct address_space *mapping)
4059 {
4060 }
4061 
4062 #ifdef CONFIG_MMU
4063 unsigned long shmem_get_unmapped_area(struct file *file,
4064 				      unsigned long addr, unsigned long len,
4065 				      unsigned long pgoff, unsigned long flags)
4066 {
4067 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4068 }
4069 #endif
4070 
4071 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4072 {
4073 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4074 }
4075 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4076 
4077 #define shmem_vm_ops				generic_file_vm_ops
4078 #define shmem_file_operations			ramfs_file_operations
4079 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4080 #define shmem_acct_size(flags, size)		0
4081 #define shmem_unacct_size(flags, size)		do {} while (0)
4082 
4083 #endif /* CONFIG_SHMEM */
4084 
4085 /* common code */
4086 
4087 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4088 				       unsigned long flags, unsigned int i_flags)
4089 {
4090 	struct inode *inode;
4091 	struct file *res;
4092 
4093 	if (IS_ERR(mnt))
4094 		return ERR_CAST(mnt);
4095 
4096 	if (size < 0 || size > MAX_LFS_FILESIZE)
4097 		return ERR_PTR(-EINVAL);
4098 
4099 	if (shmem_acct_size(flags, size))
4100 		return ERR_PTR(-ENOMEM);
4101 
4102 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4103 				flags);
4104 	if (unlikely(!inode)) {
4105 		shmem_unacct_size(flags, size);
4106 		return ERR_PTR(-ENOSPC);
4107 	}
4108 	inode->i_flags |= i_flags;
4109 	inode->i_size = size;
4110 	clear_nlink(inode);	/* It is unlinked */
4111 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4112 	if (!IS_ERR(res))
4113 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4114 				&shmem_file_operations);
4115 	if (IS_ERR(res))
4116 		iput(inode);
4117 	return res;
4118 }
4119 
4120 /**
4121  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4122  * 	kernel internal.  There will be NO LSM permission checks against the
4123  * 	underlying inode.  So users of this interface must do LSM checks at a
4124  *	higher layer.  The users are the big_key and shm implementations.  LSM
4125  *	checks are provided at the key or shm level rather than the inode.
4126  * @name: name for dentry (to be seen in /proc/<pid>/maps
4127  * @size: size to be set for the file
4128  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4129  */
4130 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4131 {
4132 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4133 }
4134 
4135 /**
4136  * shmem_file_setup - get an unlinked file living in tmpfs
4137  * @name: name for dentry (to be seen in /proc/<pid>/maps
4138  * @size: size to be set for the file
4139  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4140  */
4141 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4142 {
4143 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4144 }
4145 EXPORT_SYMBOL_GPL(shmem_file_setup);
4146 
4147 /**
4148  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4149  * @mnt: the tmpfs mount where the file will be created
4150  * @name: name for dentry (to be seen in /proc/<pid>/maps
4151  * @size: size to be set for the file
4152  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4153  */
4154 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4155 				       loff_t size, unsigned long flags)
4156 {
4157 	return __shmem_file_setup(mnt, name, size, flags, 0);
4158 }
4159 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4160 
4161 /**
4162  * shmem_zero_setup - setup a shared anonymous mapping
4163  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4164  */
4165 int shmem_zero_setup(struct vm_area_struct *vma)
4166 {
4167 	struct file *file;
4168 	loff_t size = vma->vm_end - vma->vm_start;
4169 
4170 	/*
4171 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4172 	 * between XFS directory reading and selinux: since this file is only
4173 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4174 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4175 	 */
4176 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4177 	if (IS_ERR(file))
4178 		return PTR_ERR(file);
4179 
4180 	if (vma->vm_file)
4181 		fput(vma->vm_file);
4182 	vma->vm_file = file;
4183 	vma->vm_ops = &shmem_vm_ops;
4184 
4185 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4186 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4187 			(vma->vm_end & HPAGE_PMD_MASK)) {
4188 		khugepaged_enter(vma, vma->vm_flags);
4189 	}
4190 
4191 	return 0;
4192 }
4193 
4194 /**
4195  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4196  * @mapping:	the page's address_space
4197  * @index:	the page index
4198  * @gfp:	the page allocator flags to use if allocating
4199  *
4200  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4201  * with any new page allocations done using the specified allocation flags.
4202  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4203  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4204  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4205  *
4206  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4207  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4208  */
4209 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4210 					 pgoff_t index, gfp_t gfp)
4211 {
4212 #ifdef CONFIG_SHMEM
4213 	struct inode *inode = mapping->host;
4214 	struct page *page;
4215 	int error;
4216 
4217 	BUG_ON(mapping->a_ops != &shmem_aops);
4218 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4219 				  gfp, NULL, NULL, NULL);
4220 	if (error)
4221 		page = ERR_PTR(error);
4222 	else
4223 		unlock_page(page);
4224 	return page;
4225 #else
4226 	/*
4227 	 * The tiny !SHMEM case uses ramfs without swap
4228 	 */
4229 	return read_cache_page_gfp(mapping, index, gfp);
4230 #endif
4231 }
4232 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4233