xref: /openbmc/linux/mm/shmem.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78 
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
81 
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
84 
85 /*
86  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87  * inode->i_private (with i_mutex making sure that it has only one user at
88  * a time): we would prefer not to enlarge the shmem inode just for that.
89  */
90 struct shmem_falloc {
91 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92 	pgoff_t start;		/* start of range currently being fallocated */
93 	pgoff_t next;		/* the next page offset to be fallocated */
94 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
95 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
96 };
97 
98 /* Flag allocation requirements to shmem_getpage */
99 enum sgp_type {
100 	SGP_READ,	/* don't exceed i_size, don't allocate page */
101 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
102 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
103 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
104 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
105 };
106 
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 	return totalram_pages / 2;
111 }
112 
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118 
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 				struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124 
125 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 	struct page **pagep, enum sgp_type sgp, int *fault_type)
127 {
128 	return shmem_getpage_gfp(inode, index, pagep, sgp,
129 			mapping_gfp_mask(inode->i_mapping), fault_type);
130 }
131 
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134 	return sb->s_fs_info;
135 }
136 
137 /*
138  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139  * for shared memory and for shared anonymous (/dev/zero) mappings
140  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141  * consistent with the pre-accounting of private mappings ...
142  */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145 	return (flags & VM_NORESERVE) ?
146 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148 
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151 	if (!(flags & VM_NORESERVE))
152 		vm_unacct_memory(VM_ACCT(size));
153 }
154 
155 static inline int shmem_reacct_size(unsigned long flags,
156 		loff_t oldsize, loff_t newsize)
157 {
158 	if (!(flags & VM_NORESERVE)) {
159 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 			return security_vm_enough_memory_mm(current->mm,
161 					VM_ACCT(newsize) - VM_ACCT(oldsize));
162 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 	}
165 	return 0;
166 }
167 
168 /*
169  * ... whereas tmpfs objects are accounted incrementally as
170  * pages are allocated, in order to allow huge sparse files.
171  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173  */
174 static inline int shmem_acct_block(unsigned long flags)
175 {
176 	return (flags & VM_NORESERVE) ?
177 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178 }
179 
180 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181 {
182 	if (flags & VM_NORESERVE)
183 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184 }
185 
186 static const struct super_operations shmem_ops;
187 static const struct address_space_operations shmem_aops;
188 static const struct file_operations shmem_file_operations;
189 static const struct inode_operations shmem_inode_operations;
190 static const struct inode_operations shmem_dir_inode_operations;
191 static const struct inode_operations shmem_special_inode_operations;
192 static const struct vm_operations_struct shmem_vm_ops;
193 
194 static LIST_HEAD(shmem_swaplist);
195 static DEFINE_MUTEX(shmem_swaplist_mutex);
196 
197 static int shmem_reserve_inode(struct super_block *sb)
198 {
199 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
200 	if (sbinfo->max_inodes) {
201 		spin_lock(&sbinfo->stat_lock);
202 		if (!sbinfo->free_inodes) {
203 			spin_unlock(&sbinfo->stat_lock);
204 			return -ENOSPC;
205 		}
206 		sbinfo->free_inodes--;
207 		spin_unlock(&sbinfo->stat_lock);
208 	}
209 	return 0;
210 }
211 
212 static void shmem_free_inode(struct super_block *sb)
213 {
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
215 	if (sbinfo->max_inodes) {
216 		spin_lock(&sbinfo->stat_lock);
217 		sbinfo->free_inodes++;
218 		spin_unlock(&sbinfo->stat_lock);
219 	}
220 }
221 
222 /**
223  * shmem_recalc_inode - recalculate the block usage of an inode
224  * @inode: inode to recalc
225  *
226  * We have to calculate the free blocks since the mm can drop
227  * undirtied hole pages behind our back.
228  *
229  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
230  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231  *
232  * It has to be called with the spinlock held.
233  */
234 static void shmem_recalc_inode(struct inode *inode)
235 {
236 	struct shmem_inode_info *info = SHMEM_I(inode);
237 	long freed;
238 
239 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
240 	if (freed > 0) {
241 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 		if (sbinfo->max_blocks)
243 			percpu_counter_add(&sbinfo->used_blocks, -freed);
244 		info->alloced -= freed;
245 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
246 		shmem_unacct_blocks(info->flags, freed);
247 	}
248 }
249 
250 /*
251  * Replace item expected in radix tree by a new item, while holding tree lock.
252  */
253 static int shmem_radix_tree_replace(struct address_space *mapping,
254 			pgoff_t index, void *expected, void *replacement)
255 {
256 	void **pslot;
257 	void *item;
258 
259 	VM_BUG_ON(!expected);
260 	VM_BUG_ON(!replacement);
261 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
262 	if (!pslot)
263 		return -ENOENT;
264 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
265 	if (item != expected)
266 		return -ENOENT;
267 	radix_tree_replace_slot(pslot, replacement);
268 	return 0;
269 }
270 
271 /*
272  * Sometimes, before we decide whether to proceed or to fail, we must check
273  * that an entry was not already brought back from swap by a racing thread.
274  *
275  * Checking page is not enough: by the time a SwapCache page is locked, it
276  * might be reused, and again be SwapCache, using the same swap as before.
277  */
278 static bool shmem_confirm_swap(struct address_space *mapping,
279 			       pgoff_t index, swp_entry_t swap)
280 {
281 	void *item;
282 
283 	rcu_read_lock();
284 	item = radix_tree_lookup(&mapping->page_tree, index);
285 	rcu_read_unlock();
286 	return item == swp_to_radix_entry(swap);
287 }
288 
289 /*
290  * Like add_to_page_cache_locked, but error if expected item has gone.
291  */
292 static int shmem_add_to_page_cache(struct page *page,
293 				   struct address_space *mapping,
294 				   pgoff_t index, void *expected)
295 {
296 	int error;
297 
298 	VM_BUG_ON_PAGE(!PageLocked(page), page);
299 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
300 
301 	page_cache_get(page);
302 	page->mapping = mapping;
303 	page->index = index;
304 
305 	spin_lock_irq(&mapping->tree_lock);
306 	if (!expected)
307 		error = radix_tree_insert(&mapping->page_tree, index, page);
308 	else
309 		error = shmem_radix_tree_replace(mapping, index, expected,
310 								 page);
311 	if (!error) {
312 		mapping->nrpages++;
313 		__inc_zone_page_state(page, NR_FILE_PAGES);
314 		__inc_zone_page_state(page, NR_SHMEM);
315 		spin_unlock_irq(&mapping->tree_lock);
316 	} else {
317 		page->mapping = NULL;
318 		spin_unlock_irq(&mapping->tree_lock);
319 		page_cache_release(page);
320 	}
321 	return error;
322 }
323 
324 /*
325  * Like delete_from_page_cache, but substitutes swap for page.
326  */
327 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
328 {
329 	struct address_space *mapping = page->mapping;
330 	int error;
331 
332 	spin_lock_irq(&mapping->tree_lock);
333 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
334 	page->mapping = NULL;
335 	mapping->nrpages--;
336 	__dec_zone_page_state(page, NR_FILE_PAGES);
337 	__dec_zone_page_state(page, NR_SHMEM);
338 	spin_unlock_irq(&mapping->tree_lock);
339 	page_cache_release(page);
340 	BUG_ON(error);
341 }
342 
343 /*
344  * Remove swap entry from radix tree, free the swap and its page cache.
345  */
346 static int shmem_free_swap(struct address_space *mapping,
347 			   pgoff_t index, void *radswap)
348 {
349 	void *old;
350 
351 	spin_lock_irq(&mapping->tree_lock);
352 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
353 	spin_unlock_irq(&mapping->tree_lock);
354 	if (old != radswap)
355 		return -ENOENT;
356 	free_swap_and_cache(radix_to_swp_entry(radswap));
357 	return 0;
358 }
359 
360 /*
361  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
362  */
363 void shmem_unlock_mapping(struct address_space *mapping)
364 {
365 	struct pagevec pvec;
366 	pgoff_t indices[PAGEVEC_SIZE];
367 	pgoff_t index = 0;
368 
369 	pagevec_init(&pvec, 0);
370 	/*
371 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
372 	 */
373 	while (!mapping_unevictable(mapping)) {
374 		/*
375 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
377 		 */
378 		pvec.nr = find_get_entries(mapping, index,
379 					   PAGEVEC_SIZE, pvec.pages, indices);
380 		if (!pvec.nr)
381 			break;
382 		index = indices[pvec.nr - 1] + 1;
383 		pagevec_remove_exceptionals(&pvec);
384 		check_move_unevictable_pages(pvec.pages, pvec.nr);
385 		pagevec_release(&pvec);
386 		cond_resched();
387 	}
388 }
389 
390 /*
391  * Remove range of pages and swap entries from radix tree, and free them.
392  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
393  */
394 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
395 								 bool unfalloc)
396 {
397 	struct address_space *mapping = inode->i_mapping;
398 	struct shmem_inode_info *info = SHMEM_I(inode);
399 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
400 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
401 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
402 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
403 	struct pagevec pvec;
404 	pgoff_t indices[PAGEVEC_SIZE];
405 	long nr_swaps_freed = 0;
406 	pgoff_t index;
407 	int i;
408 
409 	if (lend == -1)
410 		end = -1;	/* unsigned, so actually very big */
411 
412 	pagevec_init(&pvec, 0);
413 	index = start;
414 	while (index < end) {
415 		pvec.nr = find_get_entries(mapping, index,
416 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
417 			pvec.pages, indices);
418 		if (!pvec.nr)
419 			break;
420 		for (i = 0; i < pagevec_count(&pvec); i++) {
421 			struct page *page = pvec.pages[i];
422 
423 			index = indices[i];
424 			if (index >= end)
425 				break;
426 
427 			if (radix_tree_exceptional_entry(page)) {
428 				if (unfalloc)
429 					continue;
430 				nr_swaps_freed += !shmem_free_swap(mapping,
431 								index, page);
432 				continue;
433 			}
434 
435 			if (!trylock_page(page))
436 				continue;
437 			if (!unfalloc || !PageUptodate(page)) {
438 				if (page->mapping == mapping) {
439 					VM_BUG_ON_PAGE(PageWriteback(page), page);
440 					truncate_inode_page(mapping, page);
441 				}
442 			}
443 			unlock_page(page);
444 		}
445 		pagevec_remove_exceptionals(&pvec);
446 		pagevec_release(&pvec);
447 		cond_resched();
448 		index++;
449 	}
450 
451 	if (partial_start) {
452 		struct page *page = NULL;
453 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
454 		if (page) {
455 			unsigned int top = PAGE_CACHE_SIZE;
456 			if (start > end) {
457 				top = partial_end;
458 				partial_end = 0;
459 			}
460 			zero_user_segment(page, partial_start, top);
461 			set_page_dirty(page);
462 			unlock_page(page);
463 			page_cache_release(page);
464 		}
465 	}
466 	if (partial_end) {
467 		struct page *page = NULL;
468 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
469 		if (page) {
470 			zero_user_segment(page, 0, partial_end);
471 			set_page_dirty(page);
472 			unlock_page(page);
473 			page_cache_release(page);
474 		}
475 	}
476 	if (start >= end)
477 		return;
478 
479 	index = start;
480 	while (index < end) {
481 		cond_resched();
482 
483 		pvec.nr = find_get_entries(mapping, index,
484 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
485 				pvec.pages, indices);
486 		if (!pvec.nr) {
487 			/* If all gone or hole-punch or unfalloc, we're done */
488 			if (index == start || end != -1)
489 				break;
490 			/* But if truncating, restart to make sure all gone */
491 			index = start;
492 			continue;
493 		}
494 		for (i = 0; i < pagevec_count(&pvec); i++) {
495 			struct page *page = pvec.pages[i];
496 
497 			index = indices[i];
498 			if (index >= end)
499 				break;
500 
501 			if (radix_tree_exceptional_entry(page)) {
502 				if (unfalloc)
503 					continue;
504 				if (shmem_free_swap(mapping, index, page)) {
505 					/* Swap was replaced by page: retry */
506 					index--;
507 					break;
508 				}
509 				nr_swaps_freed++;
510 				continue;
511 			}
512 
513 			lock_page(page);
514 			if (!unfalloc || !PageUptodate(page)) {
515 				if (page->mapping == mapping) {
516 					VM_BUG_ON_PAGE(PageWriteback(page), page);
517 					truncate_inode_page(mapping, page);
518 				} else {
519 					/* Page was replaced by swap: retry */
520 					unlock_page(page);
521 					index--;
522 					break;
523 				}
524 			}
525 			unlock_page(page);
526 		}
527 		pagevec_remove_exceptionals(&pvec);
528 		pagevec_release(&pvec);
529 		index++;
530 	}
531 
532 	spin_lock(&info->lock);
533 	info->swapped -= nr_swaps_freed;
534 	shmem_recalc_inode(inode);
535 	spin_unlock(&info->lock);
536 }
537 
538 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
539 {
540 	shmem_undo_range(inode, lstart, lend, false);
541 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
542 }
543 EXPORT_SYMBOL_GPL(shmem_truncate_range);
544 
545 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
546 			 struct kstat *stat)
547 {
548 	struct inode *inode = dentry->d_inode;
549 	struct shmem_inode_info *info = SHMEM_I(inode);
550 
551 	spin_lock(&info->lock);
552 	shmem_recalc_inode(inode);
553 	spin_unlock(&info->lock);
554 
555 	generic_fillattr(inode, stat);
556 
557 	return 0;
558 }
559 
560 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
561 {
562 	struct inode *inode = d_inode(dentry);
563 	struct shmem_inode_info *info = SHMEM_I(inode);
564 	int error;
565 
566 	error = inode_change_ok(inode, attr);
567 	if (error)
568 		return error;
569 
570 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
571 		loff_t oldsize = inode->i_size;
572 		loff_t newsize = attr->ia_size;
573 
574 		/* protected by i_mutex */
575 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
576 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
577 			return -EPERM;
578 
579 		if (newsize != oldsize) {
580 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
581 					oldsize, newsize);
582 			if (error)
583 				return error;
584 			i_size_write(inode, newsize);
585 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
586 		}
587 		if (newsize <= oldsize) {
588 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
589 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
590 			shmem_truncate_range(inode, newsize, (loff_t)-1);
591 			/* unmap again to remove racily COWed private pages */
592 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
593 		}
594 	}
595 
596 	setattr_copy(inode, attr);
597 	if (attr->ia_valid & ATTR_MODE)
598 		error = posix_acl_chmod(inode, inode->i_mode);
599 	return error;
600 }
601 
602 static void shmem_evict_inode(struct inode *inode)
603 {
604 	struct shmem_inode_info *info = SHMEM_I(inode);
605 
606 	if (inode->i_mapping->a_ops == &shmem_aops) {
607 		shmem_unacct_size(info->flags, inode->i_size);
608 		inode->i_size = 0;
609 		shmem_truncate_range(inode, 0, (loff_t)-1);
610 		if (!list_empty(&info->swaplist)) {
611 			mutex_lock(&shmem_swaplist_mutex);
612 			list_del_init(&info->swaplist);
613 			mutex_unlock(&shmem_swaplist_mutex);
614 		}
615 	} else
616 		kfree(info->symlink);
617 
618 	simple_xattrs_free(&info->xattrs);
619 	WARN_ON(inode->i_blocks);
620 	shmem_free_inode(inode->i_sb);
621 	clear_inode(inode);
622 }
623 
624 /*
625  * If swap found in inode, free it and move page from swapcache to filecache.
626  */
627 static int shmem_unuse_inode(struct shmem_inode_info *info,
628 			     swp_entry_t swap, struct page **pagep)
629 {
630 	struct address_space *mapping = info->vfs_inode.i_mapping;
631 	void *radswap;
632 	pgoff_t index;
633 	gfp_t gfp;
634 	int error = 0;
635 
636 	radswap = swp_to_radix_entry(swap);
637 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
638 	if (index == -1)
639 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
640 
641 	/*
642 	 * Move _head_ to start search for next from here.
643 	 * But be careful: shmem_evict_inode checks list_empty without taking
644 	 * mutex, and there's an instant in list_move_tail when info->swaplist
645 	 * would appear empty, if it were the only one on shmem_swaplist.
646 	 */
647 	if (shmem_swaplist.next != &info->swaplist)
648 		list_move_tail(&shmem_swaplist, &info->swaplist);
649 
650 	gfp = mapping_gfp_mask(mapping);
651 	if (shmem_should_replace_page(*pagep, gfp)) {
652 		mutex_unlock(&shmem_swaplist_mutex);
653 		error = shmem_replace_page(pagep, gfp, info, index);
654 		mutex_lock(&shmem_swaplist_mutex);
655 		/*
656 		 * We needed to drop mutex to make that restrictive page
657 		 * allocation, but the inode might have been freed while we
658 		 * dropped it: although a racing shmem_evict_inode() cannot
659 		 * complete without emptying the radix_tree, our page lock
660 		 * on this swapcache page is not enough to prevent that -
661 		 * free_swap_and_cache() of our swap entry will only
662 		 * trylock_page(), removing swap from radix_tree whatever.
663 		 *
664 		 * We must not proceed to shmem_add_to_page_cache() if the
665 		 * inode has been freed, but of course we cannot rely on
666 		 * inode or mapping or info to check that.  However, we can
667 		 * safely check if our swap entry is still in use (and here
668 		 * it can't have got reused for another page): if it's still
669 		 * in use, then the inode cannot have been freed yet, and we
670 		 * can safely proceed (if it's no longer in use, that tells
671 		 * nothing about the inode, but we don't need to unuse swap).
672 		 */
673 		if (!page_swapcount(*pagep))
674 			error = -ENOENT;
675 	}
676 
677 	/*
678 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
679 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
680 	 * beneath us (pagelock doesn't help until the page is in pagecache).
681 	 */
682 	if (!error)
683 		error = shmem_add_to_page_cache(*pagep, mapping, index,
684 						radswap);
685 	if (error != -ENOMEM) {
686 		/*
687 		 * Truncation and eviction use free_swap_and_cache(), which
688 		 * only does trylock page: if we raced, best clean up here.
689 		 */
690 		delete_from_swap_cache(*pagep);
691 		set_page_dirty(*pagep);
692 		if (!error) {
693 			spin_lock(&info->lock);
694 			info->swapped--;
695 			spin_unlock(&info->lock);
696 			swap_free(swap);
697 		}
698 	}
699 	return error;
700 }
701 
702 /*
703  * Search through swapped inodes to find and replace swap by page.
704  */
705 int shmem_unuse(swp_entry_t swap, struct page *page)
706 {
707 	struct list_head *this, *next;
708 	struct shmem_inode_info *info;
709 	struct mem_cgroup *memcg;
710 	int error = 0;
711 
712 	/*
713 	 * There's a faint possibility that swap page was replaced before
714 	 * caller locked it: caller will come back later with the right page.
715 	 */
716 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
717 		goto out;
718 
719 	/*
720 	 * Charge page using GFP_KERNEL while we can wait, before taking
721 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
722 	 * Charged back to the user (not to caller) when swap account is used.
723 	 */
724 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
725 	if (error)
726 		goto out;
727 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
728 	error = -EAGAIN;
729 
730 	mutex_lock(&shmem_swaplist_mutex);
731 	list_for_each_safe(this, next, &shmem_swaplist) {
732 		info = list_entry(this, struct shmem_inode_info, swaplist);
733 		if (info->swapped)
734 			error = shmem_unuse_inode(info, swap, &page);
735 		else
736 			list_del_init(&info->swaplist);
737 		cond_resched();
738 		if (error != -EAGAIN)
739 			break;
740 		/* found nothing in this: move on to search the next */
741 	}
742 	mutex_unlock(&shmem_swaplist_mutex);
743 
744 	if (error) {
745 		if (error != -ENOMEM)
746 			error = 0;
747 		mem_cgroup_cancel_charge(page, memcg);
748 	} else
749 		mem_cgroup_commit_charge(page, memcg, true);
750 out:
751 	unlock_page(page);
752 	page_cache_release(page);
753 	return error;
754 }
755 
756 /*
757  * Move the page from the page cache to the swap cache.
758  */
759 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
760 {
761 	struct shmem_inode_info *info;
762 	struct address_space *mapping;
763 	struct inode *inode;
764 	swp_entry_t swap;
765 	pgoff_t index;
766 
767 	BUG_ON(!PageLocked(page));
768 	mapping = page->mapping;
769 	index = page->index;
770 	inode = mapping->host;
771 	info = SHMEM_I(inode);
772 	if (info->flags & VM_LOCKED)
773 		goto redirty;
774 	if (!total_swap_pages)
775 		goto redirty;
776 
777 	/*
778 	 * Our capabilities prevent regular writeback or sync from ever calling
779 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
780 	 * its underlying filesystem, in which case tmpfs should write out to
781 	 * swap only in response to memory pressure, and not for the writeback
782 	 * threads or sync.
783 	 */
784 	if (!wbc->for_reclaim) {
785 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
786 		goto redirty;
787 	}
788 
789 	/*
790 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
791 	 * value into swapfile.c, the only way we can correctly account for a
792 	 * fallocated page arriving here is now to initialize it and write it.
793 	 *
794 	 * That's okay for a page already fallocated earlier, but if we have
795 	 * not yet completed the fallocation, then (a) we want to keep track
796 	 * of this page in case we have to undo it, and (b) it may not be a
797 	 * good idea to continue anyway, once we're pushing into swap.  So
798 	 * reactivate the page, and let shmem_fallocate() quit when too many.
799 	 */
800 	if (!PageUptodate(page)) {
801 		if (inode->i_private) {
802 			struct shmem_falloc *shmem_falloc;
803 			spin_lock(&inode->i_lock);
804 			shmem_falloc = inode->i_private;
805 			if (shmem_falloc &&
806 			    !shmem_falloc->waitq &&
807 			    index >= shmem_falloc->start &&
808 			    index < shmem_falloc->next)
809 				shmem_falloc->nr_unswapped++;
810 			else
811 				shmem_falloc = NULL;
812 			spin_unlock(&inode->i_lock);
813 			if (shmem_falloc)
814 				goto redirty;
815 		}
816 		clear_highpage(page);
817 		flush_dcache_page(page);
818 		SetPageUptodate(page);
819 	}
820 
821 	swap = get_swap_page();
822 	if (!swap.val)
823 		goto redirty;
824 
825 	/*
826 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
827 	 * if it's not already there.  Do it now before the page is
828 	 * moved to swap cache, when its pagelock no longer protects
829 	 * the inode from eviction.  But don't unlock the mutex until
830 	 * we've incremented swapped, because shmem_unuse_inode() will
831 	 * prune a !swapped inode from the swaplist under this mutex.
832 	 */
833 	mutex_lock(&shmem_swaplist_mutex);
834 	if (list_empty(&info->swaplist))
835 		list_add_tail(&info->swaplist, &shmem_swaplist);
836 
837 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
838 		swap_shmem_alloc(swap);
839 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
840 
841 		spin_lock(&info->lock);
842 		info->swapped++;
843 		shmem_recalc_inode(inode);
844 		spin_unlock(&info->lock);
845 
846 		mutex_unlock(&shmem_swaplist_mutex);
847 		BUG_ON(page_mapped(page));
848 		swap_writepage(page, wbc);
849 		return 0;
850 	}
851 
852 	mutex_unlock(&shmem_swaplist_mutex);
853 	swapcache_free(swap);
854 redirty:
855 	set_page_dirty(page);
856 	if (wbc->for_reclaim)
857 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
858 	unlock_page(page);
859 	return 0;
860 }
861 
862 #ifdef CONFIG_NUMA
863 #ifdef CONFIG_TMPFS
864 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
865 {
866 	char buffer[64];
867 
868 	if (!mpol || mpol->mode == MPOL_DEFAULT)
869 		return;		/* show nothing */
870 
871 	mpol_to_str(buffer, sizeof(buffer), mpol);
872 
873 	seq_printf(seq, ",mpol=%s", buffer);
874 }
875 
876 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
877 {
878 	struct mempolicy *mpol = NULL;
879 	if (sbinfo->mpol) {
880 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
881 		mpol = sbinfo->mpol;
882 		mpol_get(mpol);
883 		spin_unlock(&sbinfo->stat_lock);
884 	}
885 	return mpol;
886 }
887 #endif /* CONFIG_TMPFS */
888 
889 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
890 			struct shmem_inode_info *info, pgoff_t index)
891 {
892 	struct vm_area_struct pvma;
893 	struct page *page;
894 
895 	/* Create a pseudo vma that just contains the policy */
896 	pvma.vm_start = 0;
897 	/* Bias interleave by inode number to distribute better across nodes */
898 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
899 	pvma.vm_ops = NULL;
900 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
901 
902 	page = swapin_readahead(swap, gfp, &pvma, 0);
903 
904 	/* Drop reference taken by mpol_shared_policy_lookup() */
905 	mpol_cond_put(pvma.vm_policy);
906 
907 	return page;
908 }
909 
910 static struct page *shmem_alloc_page(gfp_t gfp,
911 			struct shmem_inode_info *info, pgoff_t index)
912 {
913 	struct vm_area_struct pvma;
914 	struct page *page;
915 
916 	/* Create a pseudo vma that just contains the policy */
917 	pvma.vm_start = 0;
918 	/* Bias interleave by inode number to distribute better across nodes */
919 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
920 	pvma.vm_ops = NULL;
921 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
922 
923 	page = alloc_page_vma(gfp, &pvma, 0);
924 
925 	/* Drop reference taken by mpol_shared_policy_lookup() */
926 	mpol_cond_put(pvma.vm_policy);
927 
928 	return page;
929 }
930 #else /* !CONFIG_NUMA */
931 #ifdef CONFIG_TMPFS
932 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
933 {
934 }
935 #endif /* CONFIG_TMPFS */
936 
937 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
938 			struct shmem_inode_info *info, pgoff_t index)
939 {
940 	return swapin_readahead(swap, gfp, NULL, 0);
941 }
942 
943 static inline struct page *shmem_alloc_page(gfp_t gfp,
944 			struct shmem_inode_info *info, pgoff_t index)
945 {
946 	return alloc_page(gfp);
947 }
948 #endif /* CONFIG_NUMA */
949 
950 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
951 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
952 {
953 	return NULL;
954 }
955 #endif
956 
957 /*
958  * When a page is moved from swapcache to shmem filecache (either by the
959  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
960  * shmem_unuse_inode()), it may have been read in earlier from swap, in
961  * ignorance of the mapping it belongs to.  If that mapping has special
962  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
963  * we may need to copy to a suitable page before moving to filecache.
964  *
965  * In a future release, this may well be extended to respect cpuset and
966  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
967  * but for now it is a simple matter of zone.
968  */
969 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
970 {
971 	return page_zonenum(page) > gfp_zone(gfp);
972 }
973 
974 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
975 				struct shmem_inode_info *info, pgoff_t index)
976 {
977 	struct page *oldpage, *newpage;
978 	struct address_space *swap_mapping;
979 	pgoff_t swap_index;
980 	int error;
981 
982 	oldpage = *pagep;
983 	swap_index = page_private(oldpage);
984 	swap_mapping = page_mapping(oldpage);
985 
986 	/*
987 	 * We have arrived here because our zones are constrained, so don't
988 	 * limit chance of success by further cpuset and node constraints.
989 	 */
990 	gfp &= ~GFP_CONSTRAINT_MASK;
991 	newpage = shmem_alloc_page(gfp, info, index);
992 	if (!newpage)
993 		return -ENOMEM;
994 
995 	page_cache_get(newpage);
996 	copy_highpage(newpage, oldpage);
997 	flush_dcache_page(newpage);
998 
999 	__set_page_locked(newpage);
1000 	SetPageUptodate(newpage);
1001 	SetPageSwapBacked(newpage);
1002 	set_page_private(newpage, swap_index);
1003 	SetPageSwapCache(newpage);
1004 
1005 	/*
1006 	 * Our caller will very soon move newpage out of swapcache, but it's
1007 	 * a nice clean interface for us to replace oldpage by newpage there.
1008 	 */
1009 	spin_lock_irq(&swap_mapping->tree_lock);
1010 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1011 								   newpage);
1012 	if (!error) {
1013 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1014 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1015 	}
1016 	spin_unlock_irq(&swap_mapping->tree_lock);
1017 
1018 	if (unlikely(error)) {
1019 		/*
1020 		 * Is this possible?  I think not, now that our callers check
1021 		 * both PageSwapCache and page_private after getting page lock;
1022 		 * but be defensive.  Reverse old to newpage for clear and free.
1023 		 */
1024 		oldpage = newpage;
1025 	} else {
1026 		mem_cgroup_migrate(oldpage, newpage, true);
1027 		lru_cache_add_anon(newpage);
1028 		*pagep = newpage;
1029 	}
1030 
1031 	ClearPageSwapCache(oldpage);
1032 	set_page_private(oldpage, 0);
1033 
1034 	unlock_page(oldpage);
1035 	page_cache_release(oldpage);
1036 	page_cache_release(oldpage);
1037 	return error;
1038 }
1039 
1040 /*
1041  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1042  *
1043  * If we allocate a new one we do not mark it dirty. That's up to the
1044  * vm. If we swap it in we mark it dirty since we also free the swap
1045  * entry since a page cannot live in both the swap and page cache
1046  */
1047 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1048 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1049 {
1050 	struct address_space *mapping = inode->i_mapping;
1051 	struct shmem_inode_info *info;
1052 	struct shmem_sb_info *sbinfo;
1053 	struct mem_cgroup *memcg;
1054 	struct page *page;
1055 	swp_entry_t swap;
1056 	int error;
1057 	int once = 0;
1058 	int alloced = 0;
1059 
1060 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1061 		return -EFBIG;
1062 repeat:
1063 	swap.val = 0;
1064 	page = find_lock_entry(mapping, index);
1065 	if (radix_tree_exceptional_entry(page)) {
1066 		swap = radix_to_swp_entry(page);
1067 		page = NULL;
1068 	}
1069 
1070 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1071 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1072 		error = -EINVAL;
1073 		goto failed;
1074 	}
1075 
1076 	if (page && sgp == SGP_WRITE)
1077 		mark_page_accessed(page);
1078 
1079 	/* fallocated page? */
1080 	if (page && !PageUptodate(page)) {
1081 		if (sgp != SGP_READ)
1082 			goto clear;
1083 		unlock_page(page);
1084 		page_cache_release(page);
1085 		page = NULL;
1086 	}
1087 	if (page || (sgp == SGP_READ && !swap.val)) {
1088 		*pagep = page;
1089 		return 0;
1090 	}
1091 
1092 	/*
1093 	 * Fast cache lookup did not find it:
1094 	 * bring it back from swap or allocate.
1095 	 */
1096 	info = SHMEM_I(inode);
1097 	sbinfo = SHMEM_SB(inode->i_sb);
1098 
1099 	if (swap.val) {
1100 		/* Look it up and read it in.. */
1101 		page = lookup_swap_cache(swap);
1102 		if (!page) {
1103 			/* here we actually do the io */
1104 			if (fault_type)
1105 				*fault_type |= VM_FAULT_MAJOR;
1106 			page = shmem_swapin(swap, gfp, info, index);
1107 			if (!page) {
1108 				error = -ENOMEM;
1109 				goto failed;
1110 			}
1111 		}
1112 
1113 		/* We have to do this with page locked to prevent races */
1114 		lock_page(page);
1115 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1116 		    !shmem_confirm_swap(mapping, index, swap)) {
1117 			error = -EEXIST;	/* try again */
1118 			goto unlock;
1119 		}
1120 		if (!PageUptodate(page)) {
1121 			error = -EIO;
1122 			goto failed;
1123 		}
1124 		wait_on_page_writeback(page);
1125 
1126 		if (shmem_should_replace_page(page, gfp)) {
1127 			error = shmem_replace_page(&page, gfp, info, index);
1128 			if (error)
1129 				goto failed;
1130 		}
1131 
1132 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1133 		if (!error) {
1134 			error = shmem_add_to_page_cache(page, mapping, index,
1135 						swp_to_radix_entry(swap));
1136 			/*
1137 			 * We already confirmed swap under page lock, and make
1138 			 * no memory allocation here, so usually no possibility
1139 			 * of error; but free_swap_and_cache() only trylocks a
1140 			 * page, so it is just possible that the entry has been
1141 			 * truncated or holepunched since swap was confirmed.
1142 			 * shmem_undo_range() will have done some of the
1143 			 * unaccounting, now delete_from_swap_cache() will do
1144 			 * the rest.
1145 			 * Reset swap.val? No, leave it so "failed" goes back to
1146 			 * "repeat": reading a hole and writing should succeed.
1147 			 */
1148 			if (error) {
1149 				mem_cgroup_cancel_charge(page, memcg);
1150 				delete_from_swap_cache(page);
1151 			}
1152 		}
1153 		if (error)
1154 			goto failed;
1155 
1156 		mem_cgroup_commit_charge(page, memcg, true);
1157 
1158 		spin_lock(&info->lock);
1159 		info->swapped--;
1160 		shmem_recalc_inode(inode);
1161 		spin_unlock(&info->lock);
1162 
1163 		if (sgp == SGP_WRITE)
1164 			mark_page_accessed(page);
1165 
1166 		delete_from_swap_cache(page);
1167 		set_page_dirty(page);
1168 		swap_free(swap);
1169 
1170 	} else {
1171 		if (shmem_acct_block(info->flags)) {
1172 			error = -ENOSPC;
1173 			goto failed;
1174 		}
1175 		if (sbinfo->max_blocks) {
1176 			if (percpu_counter_compare(&sbinfo->used_blocks,
1177 						sbinfo->max_blocks) >= 0) {
1178 				error = -ENOSPC;
1179 				goto unacct;
1180 			}
1181 			percpu_counter_inc(&sbinfo->used_blocks);
1182 		}
1183 
1184 		page = shmem_alloc_page(gfp, info, index);
1185 		if (!page) {
1186 			error = -ENOMEM;
1187 			goto decused;
1188 		}
1189 
1190 		__SetPageSwapBacked(page);
1191 		__set_page_locked(page);
1192 		if (sgp == SGP_WRITE)
1193 			__SetPageReferenced(page);
1194 
1195 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1196 		if (error)
1197 			goto decused;
1198 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1199 		if (!error) {
1200 			error = shmem_add_to_page_cache(page, mapping, index,
1201 							NULL);
1202 			radix_tree_preload_end();
1203 		}
1204 		if (error) {
1205 			mem_cgroup_cancel_charge(page, memcg);
1206 			goto decused;
1207 		}
1208 		mem_cgroup_commit_charge(page, memcg, false);
1209 		lru_cache_add_anon(page);
1210 
1211 		spin_lock(&info->lock);
1212 		info->alloced++;
1213 		inode->i_blocks += BLOCKS_PER_PAGE;
1214 		shmem_recalc_inode(inode);
1215 		spin_unlock(&info->lock);
1216 		alloced = true;
1217 
1218 		/*
1219 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1220 		 */
1221 		if (sgp == SGP_FALLOC)
1222 			sgp = SGP_WRITE;
1223 clear:
1224 		/*
1225 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1226 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1227 		 * it now, lest undo on failure cancel our earlier guarantee.
1228 		 */
1229 		if (sgp != SGP_WRITE) {
1230 			clear_highpage(page);
1231 			flush_dcache_page(page);
1232 			SetPageUptodate(page);
1233 		}
1234 		if (sgp == SGP_DIRTY)
1235 			set_page_dirty(page);
1236 	}
1237 
1238 	/* Perhaps the file has been truncated since we checked */
1239 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1240 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1241 		error = -EINVAL;
1242 		if (alloced)
1243 			goto trunc;
1244 		else
1245 			goto failed;
1246 	}
1247 	*pagep = page;
1248 	return 0;
1249 
1250 	/*
1251 	 * Error recovery.
1252 	 */
1253 trunc:
1254 	info = SHMEM_I(inode);
1255 	ClearPageDirty(page);
1256 	delete_from_page_cache(page);
1257 	spin_lock(&info->lock);
1258 	info->alloced--;
1259 	inode->i_blocks -= BLOCKS_PER_PAGE;
1260 	spin_unlock(&info->lock);
1261 decused:
1262 	sbinfo = SHMEM_SB(inode->i_sb);
1263 	if (sbinfo->max_blocks)
1264 		percpu_counter_add(&sbinfo->used_blocks, -1);
1265 unacct:
1266 	shmem_unacct_blocks(info->flags, 1);
1267 failed:
1268 	if (swap.val && error != -EINVAL &&
1269 	    !shmem_confirm_swap(mapping, index, swap))
1270 		error = -EEXIST;
1271 unlock:
1272 	if (page) {
1273 		unlock_page(page);
1274 		page_cache_release(page);
1275 	}
1276 	if (error == -ENOSPC && !once++) {
1277 		info = SHMEM_I(inode);
1278 		spin_lock(&info->lock);
1279 		shmem_recalc_inode(inode);
1280 		spin_unlock(&info->lock);
1281 		goto repeat;
1282 	}
1283 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1284 		goto repeat;
1285 	return error;
1286 }
1287 
1288 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1289 {
1290 	struct inode *inode = file_inode(vma->vm_file);
1291 	int error;
1292 	int ret = VM_FAULT_LOCKED;
1293 
1294 	/*
1295 	 * Trinity finds that probing a hole which tmpfs is punching can
1296 	 * prevent the hole-punch from ever completing: which in turn
1297 	 * locks writers out with its hold on i_mutex.  So refrain from
1298 	 * faulting pages into the hole while it's being punched.  Although
1299 	 * shmem_undo_range() does remove the additions, it may be unable to
1300 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1301 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1302 	 *
1303 	 * It does not matter if we sometimes reach this check just before the
1304 	 * hole-punch begins, so that one fault then races with the punch:
1305 	 * we just need to make racing faults a rare case.
1306 	 *
1307 	 * The implementation below would be much simpler if we just used a
1308 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1309 	 * and bloating every shmem inode for this unlikely case would be sad.
1310 	 */
1311 	if (unlikely(inode->i_private)) {
1312 		struct shmem_falloc *shmem_falloc;
1313 
1314 		spin_lock(&inode->i_lock);
1315 		shmem_falloc = inode->i_private;
1316 		if (shmem_falloc &&
1317 		    shmem_falloc->waitq &&
1318 		    vmf->pgoff >= shmem_falloc->start &&
1319 		    vmf->pgoff < shmem_falloc->next) {
1320 			wait_queue_head_t *shmem_falloc_waitq;
1321 			DEFINE_WAIT(shmem_fault_wait);
1322 
1323 			ret = VM_FAULT_NOPAGE;
1324 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1325 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1326 				/* It's polite to up mmap_sem if we can */
1327 				up_read(&vma->vm_mm->mmap_sem);
1328 				ret = VM_FAULT_RETRY;
1329 			}
1330 
1331 			shmem_falloc_waitq = shmem_falloc->waitq;
1332 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1333 					TASK_UNINTERRUPTIBLE);
1334 			spin_unlock(&inode->i_lock);
1335 			schedule();
1336 
1337 			/*
1338 			 * shmem_falloc_waitq points into the shmem_fallocate()
1339 			 * stack of the hole-punching task: shmem_falloc_waitq
1340 			 * is usually invalid by the time we reach here, but
1341 			 * finish_wait() does not dereference it in that case;
1342 			 * though i_lock needed lest racing with wake_up_all().
1343 			 */
1344 			spin_lock(&inode->i_lock);
1345 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1346 			spin_unlock(&inode->i_lock);
1347 			return ret;
1348 		}
1349 		spin_unlock(&inode->i_lock);
1350 	}
1351 
1352 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1353 	if (error)
1354 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1355 
1356 	if (ret & VM_FAULT_MAJOR) {
1357 		count_vm_event(PGMAJFAULT);
1358 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1359 	}
1360 	return ret;
1361 }
1362 
1363 #ifdef CONFIG_NUMA
1364 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1365 {
1366 	struct inode *inode = file_inode(vma->vm_file);
1367 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1368 }
1369 
1370 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1371 					  unsigned long addr)
1372 {
1373 	struct inode *inode = file_inode(vma->vm_file);
1374 	pgoff_t index;
1375 
1376 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1377 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1378 }
1379 #endif
1380 
1381 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1382 {
1383 	struct inode *inode = file_inode(file);
1384 	struct shmem_inode_info *info = SHMEM_I(inode);
1385 	int retval = -ENOMEM;
1386 
1387 	spin_lock(&info->lock);
1388 	if (lock && !(info->flags & VM_LOCKED)) {
1389 		if (!user_shm_lock(inode->i_size, user))
1390 			goto out_nomem;
1391 		info->flags |= VM_LOCKED;
1392 		mapping_set_unevictable(file->f_mapping);
1393 	}
1394 	if (!lock && (info->flags & VM_LOCKED) && user) {
1395 		user_shm_unlock(inode->i_size, user);
1396 		info->flags &= ~VM_LOCKED;
1397 		mapping_clear_unevictable(file->f_mapping);
1398 	}
1399 	retval = 0;
1400 
1401 out_nomem:
1402 	spin_unlock(&info->lock);
1403 	return retval;
1404 }
1405 
1406 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1407 {
1408 	file_accessed(file);
1409 	vma->vm_ops = &shmem_vm_ops;
1410 	return 0;
1411 }
1412 
1413 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1414 				     umode_t mode, dev_t dev, unsigned long flags)
1415 {
1416 	struct inode *inode;
1417 	struct shmem_inode_info *info;
1418 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1419 
1420 	if (shmem_reserve_inode(sb))
1421 		return NULL;
1422 
1423 	inode = new_inode(sb);
1424 	if (inode) {
1425 		inode->i_ino = get_next_ino();
1426 		inode_init_owner(inode, dir, mode);
1427 		inode->i_blocks = 0;
1428 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1429 		inode->i_generation = get_seconds();
1430 		info = SHMEM_I(inode);
1431 		memset(info, 0, (char *)inode - (char *)info);
1432 		spin_lock_init(&info->lock);
1433 		info->seals = F_SEAL_SEAL;
1434 		info->flags = flags & VM_NORESERVE;
1435 		INIT_LIST_HEAD(&info->swaplist);
1436 		simple_xattrs_init(&info->xattrs);
1437 		cache_no_acl(inode);
1438 
1439 		switch (mode & S_IFMT) {
1440 		default:
1441 			inode->i_op = &shmem_special_inode_operations;
1442 			init_special_inode(inode, mode, dev);
1443 			break;
1444 		case S_IFREG:
1445 			inode->i_mapping->a_ops = &shmem_aops;
1446 			inode->i_op = &shmem_inode_operations;
1447 			inode->i_fop = &shmem_file_operations;
1448 			mpol_shared_policy_init(&info->policy,
1449 						 shmem_get_sbmpol(sbinfo));
1450 			break;
1451 		case S_IFDIR:
1452 			inc_nlink(inode);
1453 			/* Some things misbehave if size == 0 on a directory */
1454 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1455 			inode->i_op = &shmem_dir_inode_operations;
1456 			inode->i_fop = &simple_dir_operations;
1457 			break;
1458 		case S_IFLNK:
1459 			/*
1460 			 * Must not load anything in the rbtree,
1461 			 * mpol_free_shared_policy will not be called.
1462 			 */
1463 			mpol_shared_policy_init(&info->policy, NULL);
1464 			break;
1465 		}
1466 	} else
1467 		shmem_free_inode(sb);
1468 	return inode;
1469 }
1470 
1471 bool shmem_mapping(struct address_space *mapping)
1472 {
1473 	if (!mapping->host)
1474 		return false;
1475 
1476 	return mapping->host->i_sb->s_op == &shmem_ops;
1477 }
1478 
1479 #ifdef CONFIG_TMPFS
1480 static const struct inode_operations shmem_symlink_inode_operations;
1481 static const struct inode_operations shmem_short_symlink_operations;
1482 
1483 #ifdef CONFIG_TMPFS_XATTR
1484 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1485 #else
1486 #define shmem_initxattrs NULL
1487 #endif
1488 
1489 static int
1490 shmem_write_begin(struct file *file, struct address_space *mapping,
1491 			loff_t pos, unsigned len, unsigned flags,
1492 			struct page **pagep, void **fsdata)
1493 {
1494 	struct inode *inode = mapping->host;
1495 	struct shmem_inode_info *info = SHMEM_I(inode);
1496 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1497 
1498 	/* i_mutex is held by caller */
1499 	if (unlikely(info->seals)) {
1500 		if (info->seals & F_SEAL_WRITE)
1501 			return -EPERM;
1502 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1503 			return -EPERM;
1504 	}
1505 
1506 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1507 }
1508 
1509 static int
1510 shmem_write_end(struct file *file, struct address_space *mapping,
1511 			loff_t pos, unsigned len, unsigned copied,
1512 			struct page *page, void *fsdata)
1513 {
1514 	struct inode *inode = mapping->host;
1515 
1516 	if (pos + copied > inode->i_size)
1517 		i_size_write(inode, pos + copied);
1518 
1519 	if (!PageUptodate(page)) {
1520 		if (copied < PAGE_CACHE_SIZE) {
1521 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1522 			zero_user_segments(page, 0, from,
1523 					from + copied, PAGE_CACHE_SIZE);
1524 		}
1525 		SetPageUptodate(page);
1526 	}
1527 	set_page_dirty(page);
1528 	unlock_page(page);
1529 	page_cache_release(page);
1530 
1531 	return copied;
1532 }
1533 
1534 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1535 {
1536 	struct file *file = iocb->ki_filp;
1537 	struct inode *inode = file_inode(file);
1538 	struct address_space *mapping = inode->i_mapping;
1539 	pgoff_t index;
1540 	unsigned long offset;
1541 	enum sgp_type sgp = SGP_READ;
1542 	int error = 0;
1543 	ssize_t retval = 0;
1544 	loff_t *ppos = &iocb->ki_pos;
1545 
1546 	/*
1547 	 * Might this read be for a stacking filesystem?  Then when reading
1548 	 * holes of a sparse file, we actually need to allocate those pages,
1549 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1550 	 */
1551 	if (!iter_is_iovec(to))
1552 		sgp = SGP_DIRTY;
1553 
1554 	index = *ppos >> PAGE_CACHE_SHIFT;
1555 	offset = *ppos & ~PAGE_CACHE_MASK;
1556 
1557 	for (;;) {
1558 		struct page *page = NULL;
1559 		pgoff_t end_index;
1560 		unsigned long nr, ret;
1561 		loff_t i_size = i_size_read(inode);
1562 
1563 		end_index = i_size >> PAGE_CACHE_SHIFT;
1564 		if (index > end_index)
1565 			break;
1566 		if (index == end_index) {
1567 			nr = i_size & ~PAGE_CACHE_MASK;
1568 			if (nr <= offset)
1569 				break;
1570 		}
1571 
1572 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1573 		if (error) {
1574 			if (error == -EINVAL)
1575 				error = 0;
1576 			break;
1577 		}
1578 		if (page)
1579 			unlock_page(page);
1580 
1581 		/*
1582 		 * We must evaluate after, since reads (unlike writes)
1583 		 * are called without i_mutex protection against truncate
1584 		 */
1585 		nr = PAGE_CACHE_SIZE;
1586 		i_size = i_size_read(inode);
1587 		end_index = i_size >> PAGE_CACHE_SHIFT;
1588 		if (index == end_index) {
1589 			nr = i_size & ~PAGE_CACHE_MASK;
1590 			if (nr <= offset) {
1591 				if (page)
1592 					page_cache_release(page);
1593 				break;
1594 			}
1595 		}
1596 		nr -= offset;
1597 
1598 		if (page) {
1599 			/*
1600 			 * If users can be writing to this page using arbitrary
1601 			 * virtual addresses, take care about potential aliasing
1602 			 * before reading the page on the kernel side.
1603 			 */
1604 			if (mapping_writably_mapped(mapping))
1605 				flush_dcache_page(page);
1606 			/*
1607 			 * Mark the page accessed if we read the beginning.
1608 			 */
1609 			if (!offset)
1610 				mark_page_accessed(page);
1611 		} else {
1612 			page = ZERO_PAGE(0);
1613 			page_cache_get(page);
1614 		}
1615 
1616 		/*
1617 		 * Ok, we have the page, and it's up-to-date, so
1618 		 * now we can copy it to user space...
1619 		 */
1620 		ret = copy_page_to_iter(page, offset, nr, to);
1621 		retval += ret;
1622 		offset += ret;
1623 		index += offset >> PAGE_CACHE_SHIFT;
1624 		offset &= ~PAGE_CACHE_MASK;
1625 
1626 		page_cache_release(page);
1627 		if (!iov_iter_count(to))
1628 			break;
1629 		if (ret < nr) {
1630 			error = -EFAULT;
1631 			break;
1632 		}
1633 		cond_resched();
1634 	}
1635 
1636 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1637 	file_accessed(file);
1638 	return retval ? retval : error;
1639 }
1640 
1641 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1642 				struct pipe_inode_info *pipe, size_t len,
1643 				unsigned int flags)
1644 {
1645 	struct address_space *mapping = in->f_mapping;
1646 	struct inode *inode = mapping->host;
1647 	unsigned int loff, nr_pages, req_pages;
1648 	struct page *pages[PIPE_DEF_BUFFERS];
1649 	struct partial_page partial[PIPE_DEF_BUFFERS];
1650 	struct page *page;
1651 	pgoff_t index, end_index;
1652 	loff_t isize, left;
1653 	int error, page_nr;
1654 	struct splice_pipe_desc spd = {
1655 		.pages = pages,
1656 		.partial = partial,
1657 		.nr_pages_max = PIPE_DEF_BUFFERS,
1658 		.flags = flags,
1659 		.ops = &page_cache_pipe_buf_ops,
1660 		.spd_release = spd_release_page,
1661 	};
1662 
1663 	isize = i_size_read(inode);
1664 	if (unlikely(*ppos >= isize))
1665 		return 0;
1666 
1667 	left = isize - *ppos;
1668 	if (unlikely(left < len))
1669 		len = left;
1670 
1671 	if (splice_grow_spd(pipe, &spd))
1672 		return -ENOMEM;
1673 
1674 	index = *ppos >> PAGE_CACHE_SHIFT;
1675 	loff = *ppos & ~PAGE_CACHE_MASK;
1676 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1677 	nr_pages = min(req_pages, spd.nr_pages_max);
1678 
1679 	spd.nr_pages = find_get_pages_contig(mapping, index,
1680 						nr_pages, spd.pages);
1681 	index += spd.nr_pages;
1682 	error = 0;
1683 
1684 	while (spd.nr_pages < nr_pages) {
1685 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1686 		if (error)
1687 			break;
1688 		unlock_page(page);
1689 		spd.pages[spd.nr_pages++] = page;
1690 		index++;
1691 	}
1692 
1693 	index = *ppos >> PAGE_CACHE_SHIFT;
1694 	nr_pages = spd.nr_pages;
1695 	spd.nr_pages = 0;
1696 
1697 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1698 		unsigned int this_len;
1699 
1700 		if (!len)
1701 			break;
1702 
1703 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1704 		page = spd.pages[page_nr];
1705 
1706 		if (!PageUptodate(page) || page->mapping != mapping) {
1707 			error = shmem_getpage(inode, index, &page,
1708 							SGP_CACHE, NULL);
1709 			if (error)
1710 				break;
1711 			unlock_page(page);
1712 			page_cache_release(spd.pages[page_nr]);
1713 			spd.pages[page_nr] = page;
1714 		}
1715 
1716 		isize = i_size_read(inode);
1717 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1718 		if (unlikely(!isize || index > end_index))
1719 			break;
1720 
1721 		if (end_index == index) {
1722 			unsigned int plen;
1723 
1724 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1725 			if (plen <= loff)
1726 				break;
1727 
1728 			this_len = min(this_len, plen - loff);
1729 			len = this_len;
1730 		}
1731 
1732 		spd.partial[page_nr].offset = loff;
1733 		spd.partial[page_nr].len = this_len;
1734 		len -= this_len;
1735 		loff = 0;
1736 		spd.nr_pages++;
1737 		index++;
1738 	}
1739 
1740 	while (page_nr < nr_pages)
1741 		page_cache_release(spd.pages[page_nr++]);
1742 
1743 	if (spd.nr_pages)
1744 		error = splice_to_pipe(pipe, &spd);
1745 
1746 	splice_shrink_spd(&spd);
1747 
1748 	if (error > 0) {
1749 		*ppos += error;
1750 		file_accessed(in);
1751 	}
1752 	return error;
1753 }
1754 
1755 /*
1756  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1757  */
1758 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1759 				    pgoff_t index, pgoff_t end, int whence)
1760 {
1761 	struct page *page;
1762 	struct pagevec pvec;
1763 	pgoff_t indices[PAGEVEC_SIZE];
1764 	bool done = false;
1765 	int i;
1766 
1767 	pagevec_init(&pvec, 0);
1768 	pvec.nr = 1;		/* start small: we may be there already */
1769 	while (!done) {
1770 		pvec.nr = find_get_entries(mapping, index,
1771 					pvec.nr, pvec.pages, indices);
1772 		if (!pvec.nr) {
1773 			if (whence == SEEK_DATA)
1774 				index = end;
1775 			break;
1776 		}
1777 		for (i = 0; i < pvec.nr; i++, index++) {
1778 			if (index < indices[i]) {
1779 				if (whence == SEEK_HOLE) {
1780 					done = true;
1781 					break;
1782 				}
1783 				index = indices[i];
1784 			}
1785 			page = pvec.pages[i];
1786 			if (page && !radix_tree_exceptional_entry(page)) {
1787 				if (!PageUptodate(page))
1788 					page = NULL;
1789 			}
1790 			if (index >= end ||
1791 			    (page && whence == SEEK_DATA) ||
1792 			    (!page && whence == SEEK_HOLE)) {
1793 				done = true;
1794 				break;
1795 			}
1796 		}
1797 		pagevec_remove_exceptionals(&pvec);
1798 		pagevec_release(&pvec);
1799 		pvec.nr = PAGEVEC_SIZE;
1800 		cond_resched();
1801 	}
1802 	return index;
1803 }
1804 
1805 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1806 {
1807 	struct address_space *mapping = file->f_mapping;
1808 	struct inode *inode = mapping->host;
1809 	pgoff_t start, end;
1810 	loff_t new_offset;
1811 
1812 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1813 		return generic_file_llseek_size(file, offset, whence,
1814 					MAX_LFS_FILESIZE, i_size_read(inode));
1815 	mutex_lock(&inode->i_mutex);
1816 	/* We're holding i_mutex so we can access i_size directly */
1817 
1818 	if (offset < 0)
1819 		offset = -EINVAL;
1820 	else if (offset >= inode->i_size)
1821 		offset = -ENXIO;
1822 	else {
1823 		start = offset >> PAGE_CACHE_SHIFT;
1824 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1825 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1826 		new_offset <<= PAGE_CACHE_SHIFT;
1827 		if (new_offset > offset) {
1828 			if (new_offset < inode->i_size)
1829 				offset = new_offset;
1830 			else if (whence == SEEK_DATA)
1831 				offset = -ENXIO;
1832 			else
1833 				offset = inode->i_size;
1834 		}
1835 	}
1836 
1837 	if (offset >= 0)
1838 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1839 	mutex_unlock(&inode->i_mutex);
1840 	return offset;
1841 }
1842 
1843 /*
1844  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1845  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1846  */
1847 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1848 #define LAST_SCAN               4       /* about 150ms max */
1849 
1850 static void shmem_tag_pins(struct address_space *mapping)
1851 {
1852 	struct radix_tree_iter iter;
1853 	void **slot;
1854 	pgoff_t start;
1855 	struct page *page;
1856 
1857 	lru_add_drain();
1858 	start = 0;
1859 	rcu_read_lock();
1860 
1861 restart:
1862 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1863 		page = radix_tree_deref_slot(slot);
1864 		if (!page || radix_tree_exception(page)) {
1865 			if (radix_tree_deref_retry(page))
1866 				goto restart;
1867 		} else if (page_count(page) - page_mapcount(page) > 1) {
1868 			spin_lock_irq(&mapping->tree_lock);
1869 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1870 					   SHMEM_TAG_PINNED);
1871 			spin_unlock_irq(&mapping->tree_lock);
1872 		}
1873 
1874 		if (need_resched()) {
1875 			cond_resched_rcu();
1876 			start = iter.index + 1;
1877 			goto restart;
1878 		}
1879 	}
1880 	rcu_read_unlock();
1881 }
1882 
1883 /*
1884  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1885  * via get_user_pages(), drivers might have some pending I/O without any active
1886  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1887  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1888  * them to be dropped.
1889  * The caller must guarantee that no new user will acquire writable references
1890  * to those pages to avoid races.
1891  */
1892 static int shmem_wait_for_pins(struct address_space *mapping)
1893 {
1894 	struct radix_tree_iter iter;
1895 	void **slot;
1896 	pgoff_t start;
1897 	struct page *page;
1898 	int error, scan;
1899 
1900 	shmem_tag_pins(mapping);
1901 
1902 	error = 0;
1903 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1904 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1905 			break;
1906 
1907 		if (!scan)
1908 			lru_add_drain_all();
1909 		else if (schedule_timeout_killable((HZ << scan) / 200))
1910 			scan = LAST_SCAN;
1911 
1912 		start = 0;
1913 		rcu_read_lock();
1914 restart:
1915 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1916 					   start, SHMEM_TAG_PINNED) {
1917 
1918 			page = radix_tree_deref_slot(slot);
1919 			if (radix_tree_exception(page)) {
1920 				if (radix_tree_deref_retry(page))
1921 					goto restart;
1922 
1923 				page = NULL;
1924 			}
1925 
1926 			if (page &&
1927 			    page_count(page) - page_mapcount(page) != 1) {
1928 				if (scan < LAST_SCAN)
1929 					goto continue_resched;
1930 
1931 				/*
1932 				 * On the last scan, we clean up all those tags
1933 				 * we inserted; but make a note that we still
1934 				 * found pages pinned.
1935 				 */
1936 				error = -EBUSY;
1937 			}
1938 
1939 			spin_lock_irq(&mapping->tree_lock);
1940 			radix_tree_tag_clear(&mapping->page_tree,
1941 					     iter.index, SHMEM_TAG_PINNED);
1942 			spin_unlock_irq(&mapping->tree_lock);
1943 continue_resched:
1944 			if (need_resched()) {
1945 				cond_resched_rcu();
1946 				start = iter.index + 1;
1947 				goto restart;
1948 			}
1949 		}
1950 		rcu_read_unlock();
1951 	}
1952 
1953 	return error;
1954 }
1955 
1956 #define F_ALL_SEALS (F_SEAL_SEAL | \
1957 		     F_SEAL_SHRINK | \
1958 		     F_SEAL_GROW | \
1959 		     F_SEAL_WRITE)
1960 
1961 int shmem_add_seals(struct file *file, unsigned int seals)
1962 {
1963 	struct inode *inode = file_inode(file);
1964 	struct shmem_inode_info *info = SHMEM_I(inode);
1965 	int error;
1966 
1967 	/*
1968 	 * SEALING
1969 	 * Sealing allows multiple parties to share a shmem-file but restrict
1970 	 * access to a specific subset of file operations. Seals can only be
1971 	 * added, but never removed. This way, mutually untrusted parties can
1972 	 * share common memory regions with a well-defined policy. A malicious
1973 	 * peer can thus never perform unwanted operations on a shared object.
1974 	 *
1975 	 * Seals are only supported on special shmem-files and always affect
1976 	 * the whole underlying inode. Once a seal is set, it may prevent some
1977 	 * kinds of access to the file. Currently, the following seals are
1978 	 * defined:
1979 	 *   SEAL_SEAL: Prevent further seals from being set on this file
1980 	 *   SEAL_SHRINK: Prevent the file from shrinking
1981 	 *   SEAL_GROW: Prevent the file from growing
1982 	 *   SEAL_WRITE: Prevent write access to the file
1983 	 *
1984 	 * As we don't require any trust relationship between two parties, we
1985 	 * must prevent seals from being removed. Therefore, sealing a file
1986 	 * only adds a given set of seals to the file, it never touches
1987 	 * existing seals. Furthermore, the "setting seals"-operation can be
1988 	 * sealed itself, which basically prevents any further seal from being
1989 	 * added.
1990 	 *
1991 	 * Semantics of sealing are only defined on volatile files. Only
1992 	 * anonymous shmem files support sealing. More importantly, seals are
1993 	 * never written to disk. Therefore, there's no plan to support it on
1994 	 * other file types.
1995 	 */
1996 
1997 	if (file->f_op != &shmem_file_operations)
1998 		return -EINVAL;
1999 	if (!(file->f_mode & FMODE_WRITE))
2000 		return -EPERM;
2001 	if (seals & ~(unsigned int)F_ALL_SEALS)
2002 		return -EINVAL;
2003 
2004 	mutex_lock(&inode->i_mutex);
2005 
2006 	if (info->seals & F_SEAL_SEAL) {
2007 		error = -EPERM;
2008 		goto unlock;
2009 	}
2010 
2011 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2012 		error = mapping_deny_writable(file->f_mapping);
2013 		if (error)
2014 			goto unlock;
2015 
2016 		error = shmem_wait_for_pins(file->f_mapping);
2017 		if (error) {
2018 			mapping_allow_writable(file->f_mapping);
2019 			goto unlock;
2020 		}
2021 	}
2022 
2023 	info->seals |= seals;
2024 	error = 0;
2025 
2026 unlock:
2027 	mutex_unlock(&inode->i_mutex);
2028 	return error;
2029 }
2030 EXPORT_SYMBOL_GPL(shmem_add_seals);
2031 
2032 int shmem_get_seals(struct file *file)
2033 {
2034 	if (file->f_op != &shmem_file_operations)
2035 		return -EINVAL;
2036 
2037 	return SHMEM_I(file_inode(file))->seals;
2038 }
2039 EXPORT_SYMBOL_GPL(shmem_get_seals);
2040 
2041 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2042 {
2043 	long error;
2044 
2045 	switch (cmd) {
2046 	case F_ADD_SEALS:
2047 		/* disallow upper 32bit */
2048 		if (arg > UINT_MAX)
2049 			return -EINVAL;
2050 
2051 		error = shmem_add_seals(file, arg);
2052 		break;
2053 	case F_GET_SEALS:
2054 		error = shmem_get_seals(file);
2055 		break;
2056 	default:
2057 		error = -EINVAL;
2058 		break;
2059 	}
2060 
2061 	return error;
2062 }
2063 
2064 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2065 							 loff_t len)
2066 {
2067 	struct inode *inode = file_inode(file);
2068 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2069 	struct shmem_inode_info *info = SHMEM_I(inode);
2070 	struct shmem_falloc shmem_falloc;
2071 	pgoff_t start, index, end;
2072 	int error;
2073 
2074 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2075 		return -EOPNOTSUPP;
2076 
2077 	mutex_lock(&inode->i_mutex);
2078 
2079 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2080 		struct address_space *mapping = file->f_mapping;
2081 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2082 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2083 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2084 
2085 		/* protected by i_mutex */
2086 		if (info->seals & F_SEAL_WRITE) {
2087 			error = -EPERM;
2088 			goto out;
2089 		}
2090 
2091 		shmem_falloc.waitq = &shmem_falloc_waitq;
2092 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2093 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2094 		spin_lock(&inode->i_lock);
2095 		inode->i_private = &shmem_falloc;
2096 		spin_unlock(&inode->i_lock);
2097 
2098 		if ((u64)unmap_end > (u64)unmap_start)
2099 			unmap_mapping_range(mapping, unmap_start,
2100 					    1 + unmap_end - unmap_start, 0);
2101 		shmem_truncate_range(inode, offset, offset + len - 1);
2102 		/* No need to unmap again: hole-punching leaves COWed pages */
2103 
2104 		spin_lock(&inode->i_lock);
2105 		inode->i_private = NULL;
2106 		wake_up_all(&shmem_falloc_waitq);
2107 		spin_unlock(&inode->i_lock);
2108 		error = 0;
2109 		goto out;
2110 	}
2111 
2112 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2113 	error = inode_newsize_ok(inode, offset + len);
2114 	if (error)
2115 		goto out;
2116 
2117 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2118 		error = -EPERM;
2119 		goto out;
2120 	}
2121 
2122 	start = offset >> PAGE_CACHE_SHIFT;
2123 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2124 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2125 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2126 		error = -ENOSPC;
2127 		goto out;
2128 	}
2129 
2130 	shmem_falloc.waitq = NULL;
2131 	shmem_falloc.start = start;
2132 	shmem_falloc.next  = start;
2133 	shmem_falloc.nr_falloced = 0;
2134 	shmem_falloc.nr_unswapped = 0;
2135 	spin_lock(&inode->i_lock);
2136 	inode->i_private = &shmem_falloc;
2137 	spin_unlock(&inode->i_lock);
2138 
2139 	for (index = start; index < end; index++) {
2140 		struct page *page;
2141 
2142 		/*
2143 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2144 		 * been interrupted because we are using up too much memory.
2145 		 */
2146 		if (signal_pending(current))
2147 			error = -EINTR;
2148 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2149 			error = -ENOMEM;
2150 		else
2151 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2152 									NULL);
2153 		if (error) {
2154 			/* Remove the !PageUptodate pages we added */
2155 			shmem_undo_range(inode,
2156 				(loff_t)start << PAGE_CACHE_SHIFT,
2157 				(loff_t)index << PAGE_CACHE_SHIFT, true);
2158 			goto undone;
2159 		}
2160 
2161 		/*
2162 		 * Inform shmem_writepage() how far we have reached.
2163 		 * No need for lock or barrier: we have the page lock.
2164 		 */
2165 		shmem_falloc.next++;
2166 		if (!PageUptodate(page))
2167 			shmem_falloc.nr_falloced++;
2168 
2169 		/*
2170 		 * If !PageUptodate, leave it that way so that freeable pages
2171 		 * can be recognized if we need to rollback on error later.
2172 		 * But set_page_dirty so that memory pressure will swap rather
2173 		 * than free the pages we are allocating (and SGP_CACHE pages
2174 		 * might still be clean: we now need to mark those dirty too).
2175 		 */
2176 		set_page_dirty(page);
2177 		unlock_page(page);
2178 		page_cache_release(page);
2179 		cond_resched();
2180 	}
2181 
2182 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2183 		i_size_write(inode, offset + len);
2184 	inode->i_ctime = CURRENT_TIME;
2185 undone:
2186 	spin_lock(&inode->i_lock);
2187 	inode->i_private = NULL;
2188 	spin_unlock(&inode->i_lock);
2189 out:
2190 	mutex_unlock(&inode->i_mutex);
2191 	return error;
2192 }
2193 
2194 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2195 {
2196 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2197 
2198 	buf->f_type = TMPFS_MAGIC;
2199 	buf->f_bsize = PAGE_CACHE_SIZE;
2200 	buf->f_namelen = NAME_MAX;
2201 	if (sbinfo->max_blocks) {
2202 		buf->f_blocks = sbinfo->max_blocks;
2203 		buf->f_bavail =
2204 		buf->f_bfree  = sbinfo->max_blocks -
2205 				percpu_counter_sum(&sbinfo->used_blocks);
2206 	}
2207 	if (sbinfo->max_inodes) {
2208 		buf->f_files = sbinfo->max_inodes;
2209 		buf->f_ffree = sbinfo->free_inodes;
2210 	}
2211 	/* else leave those fields 0 like simple_statfs */
2212 	return 0;
2213 }
2214 
2215 /*
2216  * File creation. Allocate an inode, and we're done..
2217  */
2218 static int
2219 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2220 {
2221 	struct inode *inode;
2222 	int error = -ENOSPC;
2223 
2224 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2225 	if (inode) {
2226 		error = simple_acl_create(dir, inode);
2227 		if (error)
2228 			goto out_iput;
2229 		error = security_inode_init_security(inode, dir,
2230 						     &dentry->d_name,
2231 						     shmem_initxattrs, NULL);
2232 		if (error && error != -EOPNOTSUPP)
2233 			goto out_iput;
2234 
2235 		error = 0;
2236 		dir->i_size += BOGO_DIRENT_SIZE;
2237 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2238 		d_instantiate(dentry, inode);
2239 		dget(dentry); /* Extra count - pin the dentry in core */
2240 	}
2241 	return error;
2242 out_iput:
2243 	iput(inode);
2244 	return error;
2245 }
2246 
2247 static int
2248 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2249 {
2250 	struct inode *inode;
2251 	int error = -ENOSPC;
2252 
2253 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2254 	if (inode) {
2255 		error = security_inode_init_security(inode, dir,
2256 						     NULL,
2257 						     shmem_initxattrs, NULL);
2258 		if (error && error != -EOPNOTSUPP)
2259 			goto out_iput;
2260 		error = simple_acl_create(dir, inode);
2261 		if (error)
2262 			goto out_iput;
2263 		d_tmpfile(dentry, inode);
2264 	}
2265 	return error;
2266 out_iput:
2267 	iput(inode);
2268 	return error;
2269 }
2270 
2271 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2272 {
2273 	int error;
2274 
2275 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2276 		return error;
2277 	inc_nlink(dir);
2278 	return 0;
2279 }
2280 
2281 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2282 		bool excl)
2283 {
2284 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2285 }
2286 
2287 /*
2288  * Link a file..
2289  */
2290 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2291 {
2292 	struct inode *inode = d_inode(old_dentry);
2293 	int ret;
2294 
2295 	/*
2296 	 * No ordinary (disk based) filesystem counts links as inodes;
2297 	 * but each new link needs a new dentry, pinning lowmem, and
2298 	 * tmpfs dentries cannot be pruned until they are unlinked.
2299 	 */
2300 	ret = shmem_reserve_inode(inode->i_sb);
2301 	if (ret)
2302 		goto out;
2303 
2304 	dir->i_size += BOGO_DIRENT_SIZE;
2305 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2306 	inc_nlink(inode);
2307 	ihold(inode);	/* New dentry reference */
2308 	dget(dentry);		/* Extra pinning count for the created dentry */
2309 	d_instantiate(dentry, inode);
2310 out:
2311 	return ret;
2312 }
2313 
2314 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2315 {
2316 	struct inode *inode = d_inode(dentry);
2317 
2318 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2319 		shmem_free_inode(inode->i_sb);
2320 
2321 	dir->i_size -= BOGO_DIRENT_SIZE;
2322 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2323 	drop_nlink(inode);
2324 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2325 	return 0;
2326 }
2327 
2328 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2329 {
2330 	if (!simple_empty(dentry))
2331 		return -ENOTEMPTY;
2332 
2333 	drop_nlink(d_inode(dentry));
2334 	drop_nlink(dir);
2335 	return shmem_unlink(dir, dentry);
2336 }
2337 
2338 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2339 {
2340 	bool old_is_dir = d_is_dir(old_dentry);
2341 	bool new_is_dir = d_is_dir(new_dentry);
2342 
2343 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2344 		if (old_is_dir) {
2345 			drop_nlink(old_dir);
2346 			inc_nlink(new_dir);
2347 		} else {
2348 			drop_nlink(new_dir);
2349 			inc_nlink(old_dir);
2350 		}
2351 	}
2352 	old_dir->i_ctime = old_dir->i_mtime =
2353 	new_dir->i_ctime = new_dir->i_mtime =
2354 	d_inode(old_dentry)->i_ctime =
2355 	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2356 
2357 	return 0;
2358 }
2359 
2360 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2361 {
2362 	struct dentry *whiteout;
2363 	int error;
2364 
2365 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2366 	if (!whiteout)
2367 		return -ENOMEM;
2368 
2369 	error = shmem_mknod(old_dir, whiteout,
2370 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2371 	dput(whiteout);
2372 	if (error)
2373 		return error;
2374 
2375 	/*
2376 	 * Cheat and hash the whiteout while the old dentry is still in
2377 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2378 	 *
2379 	 * d_lookup() will consistently find one of them at this point,
2380 	 * not sure which one, but that isn't even important.
2381 	 */
2382 	d_rehash(whiteout);
2383 	return 0;
2384 }
2385 
2386 /*
2387  * The VFS layer already does all the dentry stuff for rename,
2388  * we just have to decrement the usage count for the target if
2389  * it exists so that the VFS layer correctly free's it when it
2390  * gets overwritten.
2391  */
2392 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2393 {
2394 	struct inode *inode = d_inode(old_dentry);
2395 	int they_are_dirs = S_ISDIR(inode->i_mode);
2396 
2397 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2398 		return -EINVAL;
2399 
2400 	if (flags & RENAME_EXCHANGE)
2401 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2402 
2403 	if (!simple_empty(new_dentry))
2404 		return -ENOTEMPTY;
2405 
2406 	if (flags & RENAME_WHITEOUT) {
2407 		int error;
2408 
2409 		error = shmem_whiteout(old_dir, old_dentry);
2410 		if (error)
2411 			return error;
2412 	}
2413 
2414 	if (d_really_is_positive(new_dentry)) {
2415 		(void) shmem_unlink(new_dir, new_dentry);
2416 		if (they_are_dirs) {
2417 			drop_nlink(d_inode(new_dentry));
2418 			drop_nlink(old_dir);
2419 		}
2420 	} else if (they_are_dirs) {
2421 		drop_nlink(old_dir);
2422 		inc_nlink(new_dir);
2423 	}
2424 
2425 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2426 	new_dir->i_size += BOGO_DIRENT_SIZE;
2427 	old_dir->i_ctime = old_dir->i_mtime =
2428 	new_dir->i_ctime = new_dir->i_mtime =
2429 	inode->i_ctime = CURRENT_TIME;
2430 	return 0;
2431 }
2432 
2433 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2434 {
2435 	int error;
2436 	int len;
2437 	struct inode *inode;
2438 	struct page *page;
2439 	char *kaddr;
2440 	struct shmem_inode_info *info;
2441 
2442 	len = strlen(symname) + 1;
2443 	if (len > PAGE_CACHE_SIZE)
2444 		return -ENAMETOOLONG;
2445 
2446 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2447 	if (!inode)
2448 		return -ENOSPC;
2449 
2450 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2451 					     shmem_initxattrs, NULL);
2452 	if (error) {
2453 		if (error != -EOPNOTSUPP) {
2454 			iput(inode);
2455 			return error;
2456 		}
2457 		error = 0;
2458 	}
2459 
2460 	info = SHMEM_I(inode);
2461 	inode->i_size = len-1;
2462 	if (len <= SHORT_SYMLINK_LEN) {
2463 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2464 		if (!info->symlink) {
2465 			iput(inode);
2466 			return -ENOMEM;
2467 		}
2468 		inode->i_op = &shmem_short_symlink_operations;
2469 		inode->i_link = info->symlink;
2470 	} else {
2471 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2472 		if (error) {
2473 			iput(inode);
2474 			return error;
2475 		}
2476 		inode->i_mapping->a_ops = &shmem_aops;
2477 		inode->i_op = &shmem_symlink_inode_operations;
2478 		kaddr = kmap_atomic(page);
2479 		memcpy(kaddr, symname, len);
2480 		kunmap_atomic(kaddr);
2481 		SetPageUptodate(page);
2482 		set_page_dirty(page);
2483 		unlock_page(page);
2484 		page_cache_release(page);
2485 	}
2486 	dir->i_size += BOGO_DIRENT_SIZE;
2487 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2488 	d_instantiate(dentry, inode);
2489 	dget(dentry);
2490 	return 0;
2491 }
2492 
2493 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2494 {
2495 	struct page *page = NULL;
2496 	int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2497 	if (error)
2498 		return ERR_PTR(error);
2499 	unlock_page(page);
2500 	*cookie = page;
2501 	return kmap(page);
2502 }
2503 
2504 static void shmem_put_link(struct inode *unused, void *cookie)
2505 {
2506 	struct page *page = cookie;
2507 	kunmap(page);
2508 	mark_page_accessed(page);
2509 	page_cache_release(page);
2510 }
2511 
2512 #ifdef CONFIG_TMPFS_XATTR
2513 /*
2514  * Superblocks without xattr inode operations may get some security.* xattr
2515  * support from the LSM "for free". As soon as we have any other xattrs
2516  * like ACLs, we also need to implement the security.* handlers at
2517  * filesystem level, though.
2518  */
2519 
2520 /*
2521  * Callback for security_inode_init_security() for acquiring xattrs.
2522  */
2523 static int shmem_initxattrs(struct inode *inode,
2524 			    const struct xattr *xattr_array,
2525 			    void *fs_info)
2526 {
2527 	struct shmem_inode_info *info = SHMEM_I(inode);
2528 	const struct xattr *xattr;
2529 	struct simple_xattr *new_xattr;
2530 	size_t len;
2531 
2532 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2533 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2534 		if (!new_xattr)
2535 			return -ENOMEM;
2536 
2537 		len = strlen(xattr->name) + 1;
2538 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2539 					  GFP_KERNEL);
2540 		if (!new_xattr->name) {
2541 			kfree(new_xattr);
2542 			return -ENOMEM;
2543 		}
2544 
2545 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2546 		       XATTR_SECURITY_PREFIX_LEN);
2547 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2548 		       xattr->name, len);
2549 
2550 		simple_xattr_list_add(&info->xattrs, new_xattr);
2551 	}
2552 
2553 	return 0;
2554 }
2555 
2556 static const struct xattr_handler *shmem_xattr_handlers[] = {
2557 #ifdef CONFIG_TMPFS_POSIX_ACL
2558 	&posix_acl_access_xattr_handler,
2559 	&posix_acl_default_xattr_handler,
2560 #endif
2561 	NULL
2562 };
2563 
2564 static int shmem_xattr_validate(const char *name)
2565 {
2566 	struct { const char *prefix; size_t len; } arr[] = {
2567 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2568 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2569 	};
2570 	int i;
2571 
2572 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2573 		size_t preflen = arr[i].len;
2574 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2575 			if (!name[preflen])
2576 				return -EINVAL;
2577 			return 0;
2578 		}
2579 	}
2580 	return -EOPNOTSUPP;
2581 }
2582 
2583 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2584 			      void *buffer, size_t size)
2585 {
2586 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2587 	int err;
2588 
2589 	/*
2590 	 * If this is a request for a synthetic attribute in the system.*
2591 	 * namespace use the generic infrastructure to resolve a handler
2592 	 * for it via sb->s_xattr.
2593 	 */
2594 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2595 		return generic_getxattr(dentry, name, buffer, size);
2596 
2597 	err = shmem_xattr_validate(name);
2598 	if (err)
2599 		return err;
2600 
2601 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2602 }
2603 
2604 static int shmem_setxattr(struct dentry *dentry, const char *name,
2605 			  const void *value, size_t size, int flags)
2606 {
2607 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2608 	int err;
2609 
2610 	/*
2611 	 * If this is a request for a synthetic attribute in the system.*
2612 	 * namespace use the generic infrastructure to resolve a handler
2613 	 * for it via sb->s_xattr.
2614 	 */
2615 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2616 		return generic_setxattr(dentry, name, value, size, flags);
2617 
2618 	err = shmem_xattr_validate(name);
2619 	if (err)
2620 		return err;
2621 
2622 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2623 }
2624 
2625 static int shmem_removexattr(struct dentry *dentry, const char *name)
2626 {
2627 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2628 	int err;
2629 
2630 	/*
2631 	 * If this is a request for a synthetic attribute in the system.*
2632 	 * namespace use the generic infrastructure to resolve a handler
2633 	 * for it via sb->s_xattr.
2634 	 */
2635 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2636 		return generic_removexattr(dentry, name);
2637 
2638 	err = shmem_xattr_validate(name);
2639 	if (err)
2640 		return err;
2641 
2642 	return simple_xattr_remove(&info->xattrs, name);
2643 }
2644 
2645 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2646 {
2647 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2648 	return simple_xattr_list(&info->xattrs, buffer, size);
2649 }
2650 #endif /* CONFIG_TMPFS_XATTR */
2651 
2652 static const struct inode_operations shmem_short_symlink_operations = {
2653 	.readlink	= generic_readlink,
2654 	.follow_link	= simple_follow_link,
2655 #ifdef CONFIG_TMPFS_XATTR
2656 	.setxattr	= shmem_setxattr,
2657 	.getxattr	= shmem_getxattr,
2658 	.listxattr	= shmem_listxattr,
2659 	.removexattr	= shmem_removexattr,
2660 #endif
2661 };
2662 
2663 static const struct inode_operations shmem_symlink_inode_operations = {
2664 	.readlink	= generic_readlink,
2665 	.follow_link	= shmem_follow_link,
2666 	.put_link	= shmem_put_link,
2667 #ifdef CONFIG_TMPFS_XATTR
2668 	.setxattr	= shmem_setxattr,
2669 	.getxattr	= shmem_getxattr,
2670 	.listxattr	= shmem_listxattr,
2671 	.removexattr	= shmem_removexattr,
2672 #endif
2673 };
2674 
2675 static struct dentry *shmem_get_parent(struct dentry *child)
2676 {
2677 	return ERR_PTR(-ESTALE);
2678 }
2679 
2680 static int shmem_match(struct inode *ino, void *vfh)
2681 {
2682 	__u32 *fh = vfh;
2683 	__u64 inum = fh[2];
2684 	inum = (inum << 32) | fh[1];
2685 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2686 }
2687 
2688 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2689 		struct fid *fid, int fh_len, int fh_type)
2690 {
2691 	struct inode *inode;
2692 	struct dentry *dentry = NULL;
2693 	u64 inum;
2694 
2695 	if (fh_len < 3)
2696 		return NULL;
2697 
2698 	inum = fid->raw[2];
2699 	inum = (inum << 32) | fid->raw[1];
2700 
2701 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2702 			shmem_match, fid->raw);
2703 	if (inode) {
2704 		dentry = d_find_alias(inode);
2705 		iput(inode);
2706 	}
2707 
2708 	return dentry;
2709 }
2710 
2711 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2712 				struct inode *parent)
2713 {
2714 	if (*len < 3) {
2715 		*len = 3;
2716 		return FILEID_INVALID;
2717 	}
2718 
2719 	if (inode_unhashed(inode)) {
2720 		/* Unfortunately insert_inode_hash is not idempotent,
2721 		 * so as we hash inodes here rather than at creation
2722 		 * time, we need a lock to ensure we only try
2723 		 * to do it once
2724 		 */
2725 		static DEFINE_SPINLOCK(lock);
2726 		spin_lock(&lock);
2727 		if (inode_unhashed(inode))
2728 			__insert_inode_hash(inode,
2729 					    inode->i_ino + inode->i_generation);
2730 		spin_unlock(&lock);
2731 	}
2732 
2733 	fh[0] = inode->i_generation;
2734 	fh[1] = inode->i_ino;
2735 	fh[2] = ((__u64)inode->i_ino) >> 32;
2736 
2737 	*len = 3;
2738 	return 1;
2739 }
2740 
2741 static const struct export_operations shmem_export_ops = {
2742 	.get_parent     = shmem_get_parent,
2743 	.encode_fh      = shmem_encode_fh,
2744 	.fh_to_dentry	= shmem_fh_to_dentry,
2745 };
2746 
2747 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2748 			       bool remount)
2749 {
2750 	char *this_char, *value, *rest;
2751 	struct mempolicy *mpol = NULL;
2752 	uid_t uid;
2753 	gid_t gid;
2754 
2755 	while (options != NULL) {
2756 		this_char = options;
2757 		for (;;) {
2758 			/*
2759 			 * NUL-terminate this option: unfortunately,
2760 			 * mount options form a comma-separated list,
2761 			 * but mpol's nodelist may also contain commas.
2762 			 */
2763 			options = strchr(options, ',');
2764 			if (options == NULL)
2765 				break;
2766 			options++;
2767 			if (!isdigit(*options)) {
2768 				options[-1] = '\0';
2769 				break;
2770 			}
2771 		}
2772 		if (!*this_char)
2773 			continue;
2774 		if ((value = strchr(this_char,'=')) != NULL) {
2775 			*value++ = 0;
2776 		} else {
2777 			printk(KERN_ERR
2778 			    "tmpfs: No value for mount option '%s'\n",
2779 			    this_char);
2780 			goto error;
2781 		}
2782 
2783 		if (!strcmp(this_char,"size")) {
2784 			unsigned long long size;
2785 			size = memparse(value,&rest);
2786 			if (*rest == '%') {
2787 				size <<= PAGE_SHIFT;
2788 				size *= totalram_pages;
2789 				do_div(size, 100);
2790 				rest++;
2791 			}
2792 			if (*rest)
2793 				goto bad_val;
2794 			sbinfo->max_blocks =
2795 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2796 		} else if (!strcmp(this_char,"nr_blocks")) {
2797 			sbinfo->max_blocks = memparse(value, &rest);
2798 			if (*rest)
2799 				goto bad_val;
2800 		} else if (!strcmp(this_char,"nr_inodes")) {
2801 			sbinfo->max_inodes = memparse(value, &rest);
2802 			if (*rest)
2803 				goto bad_val;
2804 		} else if (!strcmp(this_char,"mode")) {
2805 			if (remount)
2806 				continue;
2807 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2808 			if (*rest)
2809 				goto bad_val;
2810 		} else if (!strcmp(this_char,"uid")) {
2811 			if (remount)
2812 				continue;
2813 			uid = simple_strtoul(value, &rest, 0);
2814 			if (*rest)
2815 				goto bad_val;
2816 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2817 			if (!uid_valid(sbinfo->uid))
2818 				goto bad_val;
2819 		} else if (!strcmp(this_char,"gid")) {
2820 			if (remount)
2821 				continue;
2822 			gid = simple_strtoul(value, &rest, 0);
2823 			if (*rest)
2824 				goto bad_val;
2825 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2826 			if (!gid_valid(sbinfo->gid))
2827 				goto bad_val;
2828 		} else if (!strcmp(this_char,"mpol")) {
2829 			mpol_put(mpol);
2830 			mpol = NULL;
2831 			if (mpol_parse_str(value, &mpol))
2832 				goto bad_val;
2833 		} else {
2834 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2835 			       this_char);
2836 			goto error;
2837 		}
2838 	}
2839 	sbinfo->mpol = mpol;
2840 	return 0;
2841 
2842 bad_val:
2843 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2844 	       value, this_char);
2845 error:
2846 	mpol_put(mpol);
2847 	return 1;
2848 
2849 }
2850 
2851 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2852 {
2853 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2854 	struct shmem_sb_info config = *sbinfo;
2855 	unsigned long inodes;
2856 	int error = -EINVAL;
2857 
2858 	config.mpol = NULL;
2859 	if (shmem_parse_options(data, &config, true))
2860 		return error;
2861 
2862 	spin_lock(&sbinfo->stat_lock);
2863 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2864 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2865 		goto out;
2866 	if (config.max_inodes < inodes)
2867 		goto out;
2868 	/*
2869 	 * Those tests disallow limited->unlimited while any are in use;
2870 	 * but we must separately disallow unlimited->limited, because
2871 	 * in that case we have no record of how much is already in use.
2872 	 */
2873 	if (config.max_blocks && !sbinfo->max_blocks)
2874 		goto out;
2875 	if (config.max_inodes && !sbinfo->max_inodes)
2876 		goto out;
2877 
2878 	error = 0;
2879 	sbinfo->max_blocks  = config.max_blocks;
2880 	sbinfo->max_inodes  = config.max_inodes;
2881 	sbinfo->free_inodes = config.max_inodes - inodes;
2882 
2883 	/*
2884 	 * Preserve previous mempolicy unless mpol remount option was specified.
2885 	 */
2886 	if (config.mpol) {
2887 		mpol_put(sbinfo->mpol);
2888 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2889 	}
2890 out:
2891 	spin_unlock(&sbinfo->stat_lock);
2892 	return error;
2893 }
2894 
2895 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2896 {
2897 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2898 
2899 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2900 		seq_printf(seq, ",size=%luk",
2901 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2902 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2903 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2904 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2905 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2906 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2907 		seq_printf(seq, ",uid=%u",
2908 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2909 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2910 		seq_printf(seq, ",gid=%u",
2911 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2912 	shmem_show_mpol(seq, sbinfo->mpol);
2913 	return 0;
2914 }
2915 
2916 #define MFD_NAME_PREFIX "memfd:"
2917 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2918 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2919 
2920 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2921 
2922 SYSCALL_DEFINE2(memfd_create,
2923 		const char __user *, uname,
2924 		unsigned int, flags)
2925 {
2926 	struct shmem_inode_info *info;
2927 	struct file *file;
2928 	int fd, error;
2929 	char *name;
2930 	long len;
2931 
2932 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2933 		return -EINVAL;
2934 
2935 	/* length includes terminating zero */
2936 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2937 	if (len <= 0)
2938 		return -EFAULT;
2939 	if (len > MFD_NAME_MAX_LEN + 1)
2940 		return -EINVAL;
2941 
2942 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2943 	if (!name)
2944 		return -ENOMEM;
2945 
2946 	strcpy(name, MFD_NAME_PREFIX);
2947 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2948 		error = -EFAULT;
2949 		goto err_name;
2950 	}
2951 
2952 	/* terminating-zero may have changed after strnlen_user() returned */
2953 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2954 		error = -EFAULT;
2955 		goto err_name;
2956 	}
2957 
2958 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2959 	if (fd < 0) {
2960 		error = fd;
2961 		goto err_name;
2962 	}
2963 
2964 	file = shmem_file_setup(name, 0, VM_NORESERVE);
2965 	if (IS_ERR(file)) {
2966 		error = PTR_ERR(file);
2967 		goto err_fd;
2968 	}
2969 	info = SHMEM_I(file_inode(file));
2970 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2971 	file->f_flags |= O_RDWR | O_LARGEFILE;
2972 	if (flags & MFD_ALLOW_SEALING)
2973 		info->seals &= ~F_SEAL_SEAL;
2974 
2975 	fd_install(fd, file);
2976 	kfree(name);
2977 	return fd;
2978 
2979 err_fd:
2980 	put_unused_fd(fd);
2981 err_name:
2982 	kfree(name);
2983 	return error;
2984 }
2985 
2986 #endif /* CONFIG_TMPFS */
2987 
2988 static void shmem_put_super(struct super_block *sb)
2989 {
2990 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2991 
2992 	percpu_counter_destroy(&sbinfo->used_blocks);
2993 	mpol_put(sbinfo->mpol);
2994 	kfree(sbinfo);
2995 	sb->s_fs_info = NULL;
2996 }
2997 
2998 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2999 {
3000 	struct inode *inode;
3001 	struct shmem_sb_info *sbinfo;
3002 	int err = -ENOMEM;
3003 
3004 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3005 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3006 				L1_CACHE_BYTES), GFP_KERNEL);
3007 	if (!sbinfo)
3008 		return -ENOMEM;
3009 
3010 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3011 	sbinfo->uid = current_fsuid();
3012 	sbinfo->gid = current_fsgid();
3013 	sb->s_fs_info = sbinfo;
3014 
3015 #ifdef CONFIG_TMPFS
3016 	/*
3017 	 * Per default we only allow half of the physical ram per
3018 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3019 	 * but the internal instance is left unlimited.
3020 	 */
3021 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3022 		sbinfo->max_blocks = shmem_default_max_blocks();
3023 		sbinfo->max_inodes = shmem_default_max_inodes();
3024 		if (shmem_parse_options(data, sbinfo, false)) {
3025 			err = -EINVAL;
3026 			goto failed;
3027 		}
3028 	} else {
3029 		sb->s_flags |= MS_NOUSER;
3030 	}
3031 	sb->s_export_op = &shmem_export_ops;
3032 	sb->s_flags |= MS_NOSEC;
3033 #else
3034 	sb->s_flags |= MS_NOUSER;
3035 #endif
3036 
3037 	spin_lock_init(&sbinfo->stat_lock);
3038 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3039 		goto failed;
3040 	sbinfo->free_inodes = sbinfo->max_inodes;
3041 
3042 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3043 	sb->s_blocksize = PAGE_CACHE_SIZE;
3044 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3045 	sb->s_magic = TMPFS_MAGIC;
3046 	sb->s_op = &shmem_ops;
3047 	sb->s_time_gran = 1;
3048 #ifdef CONFIG_TMPFS_XATTR
3049 	sb->s_xattr = shmem_xattr_handlers;
3050 #endif
3051 #ifdef CONFIG_TMPFS_POSIX_ACL
3052 	sb->s_flags |= MS_POSIXACL;
3053 #endif
3054 
3055 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3056 	if (!inode)
3057 		goto failed;
3058 	inode->i_uid = sbinfo->uid;
3059 	inode->i_gid = sbinfo->gid;
3060 	sb->s_root = d_make_root(inode);
3061 	if (!sb->s_root)
3062 		goto failed;
3063 	return 0;
3064 
3065 failed:
3066 	shmem_put_super(sb);
3067 	return err;
3068 }
3069 
3070 static struct kmem_cache *shmem_inode_cachep;
3071 
3072 static struct inode *shmem_alloc_inode(struct super_block *sb)
3073 {
3074 	struct shmem_inode_info *info;
3075 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3076 	if (!info)
3077 		return NULL;
3078 	return &info->vfs_inode;
3079 }
3080 
3081 static void shmem_destroy_callback(struct rcu_head *head)
3082 {
3083 	struct inode *inode = container_of(head, struct inode, i_rcu);
3084 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3085 }
3086 
3087 static void shmem_destroy_inode(struct inode *inode)
3088 {
3089 	if (S_ISREG(inode->i_mode))
3090 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3091 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3092 }
3093 
3094 static void shmem_init_inode(void *foo)
3095 {
3096 	struct shmem_inode_info *info = foo;
3097 	inode_init_once(&info->vfs_inode);
3098 }
3099 
3100 static int shmem_init_inodecache(void)
3101 {
3102 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3103 				sizeof(struct shmem_inode_info),
3104 				0, SLAB_PANIC, shmem_init_inode);
3105 	return 0;
3106 }
3107 
3108 static void shmem_destroy_inodecache(void)
3109 {
3110 	kmem_cache_destroy(shmem_inode_cachep);
3111 }
3112 
3113 static const struct address_space_operations shmem_aops = {
3114 	.writepage	= shmem_writepage,
3115 	.set_page_dirty	= __set_page_dirty_no_writeback,
3116 #ifdef CONFIG_TMPFS
3117 	.write_begin	= shmem_write_begin,
3118 	.write_end	= shmem_write_end,
3119 #endif
3120 #ifdef CONFIG_MIGRATION
3121 	.migratepage	= migrate_page,
3122 #endif
3123 	.error_remove_page = generic_error_remove_page,
3124 };
3125 
3126 static const struct file_operations shmem_file_operations = {
3127 	.mmap		= shmem_mmap,
3128 #ifdef CONFIG_TMPFS
3129 	.llseek		= shmem_file_llseek,
3130 	.read_iter	= shmem_file_read_iter,
3131 	.write_iter	= generic_file_write_iter,
3132 	.fsync		= noop_fsync,
3133 	.splice_read	= shmem_file_splice_read,
3134 	.splice_write	= iter_file_splice_write,
3135 	.fallocate	= shmem_fallocate,
3136 #endif
3137 };
3138 
3139 static const struct inode_operations shmem_inode_operations = {
3140 	.getattr	= shmem_getattr,
3141 	.setattr	= shmem_setattr,
3142 #ifdef CONFIG_TMPFS_XATTR
3143 	.setxattr	= shmem_setxattr,
3144 	.getxattr	= shmem_getxattr,
3145 	.listxattr	= shmem_listxattr,
3146 	.removexattr	= shmem_removexattr,
3147 	.set_acl	= simple_set_acl,
3148 #endif
3149 };
3150 
3151 static const struct inode_operations shmem_dir_inode_operations = {
3152 #ifdef CONFIG_TMPFS
3153 	.create		= shmem_create,
3154 	.lookup		= simple_lookup,
3155 	.link		= shmem_link,
3156 	.unlink		= shmem_unlink,
3157 	.symlink	= shmem_symlink,
3158 	.mkdir		= shmem_mkdir,
3159 	.rmdir		= shmem_rmdir,
3160 	.mknod		= shmem_mknod,
3161 	.rename2	= shmem_rename2,
3162 	.tmpfile	= shmem_tmpfile,
3163 #endif
3164 #ifdef CONFIG_TMPFS_XATTR
3165 	.setxattr	= shmem_setxattr,
3166 	.getxattr	= shmem_getxattr,
3167 	.listxattr	= shmem_listxattr,
3168 	.removexattr	= shmem_removexattr,
3169 #endif
3170 #ifdef CONFIG_TMPFS_POSIX_ACL
3171 	.setattr	= shmem_setattr,
3172 	.set_acl	= simple_set_acl,
3173 #endif
3174 };
3175 
3176 static const struct inode_operations shmem_special_inode_operations = {
3177 #ifdef CONFIG_TMPFS_XATTR
3178 	.setxattr	= shmem_setxattr,
3179 	.getxattr	= shmem_getxattr,
3180 	.listxattr	= shmem_listxattr,
3181 	.removexattr	= shmem_removexattr,
3182 #endif
3183 #ifdef CONFIG_TMPFS_POSIX_ACL
3184 	.setattr	= shmem_setattr,
3185 	.set_acl	= simple_set_acl,
3186 #endif
3187 };
3188 
3189 static const struct super_operations shmem_ops = {
3190 	.alloc_inode	= shmem_alloc_inode,
3191 	.destroy_inode	= shmem_destroy_inode,
3192 #ifdef CONFIG_TMPFS
3193 	.statfs		= shmem_statfs,
3194 	.remount_fs	= shmem_remount_fs,
3195 	.show_options	= shmem_show_options,
3196 #endif
3197 	.evict_inode	= shmem_evict_inode,
3198 	.drop_inode	= generic_delete_inode,
3199 	.put_super	= shmem_put_super,
3200 };
3201 
3202 static const struct vm_operations_struct shmem_vm_ops = {
3203 	.fault		= shmem_fault,
3204 	.map_pages	= filemap_map_pages,
3205 #ifdef CONFIG_NUMA
3206 	.set_policy     = shmem_set_policy,
3207 	.get_policy     = shmem_get_policy,
3208 #endif
3209 };
3210 
3211 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3212 	int flags, const char *dev_name, void *data)
3213 {
3214 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3215 }
3216 
3217 static struct file_system_type shmem_fs_type = {
3218 	.owner		= THIS_MODULE,
3219 	.name		= "tmpfs",
3220 	.mount		= shmem_mount,
3221 	.kill_sb	= kill_litter_super,
3222 	.fs_flags	= FS_USERNS_MOUNT,
3223 };
3224 
3225 int __init shmem_init(void)
3226 {
3227 	int error;
3228 
3229 	/* If rootfs called this, don't re-init */
3230 	if (shmem_inode_cachep)
3231 		return 0;
3232 
3233 	error = shmem_init_inodecache();
3234 	if (error)
3235 		goto out3;
3236 
3237 	error = register_filesystem(&shmem_fs_type);
3238 	if (error) {
3239 		printk(KERN_ERR "Could not register tmpfs\n");
3240 		goto out2;
3241 	}
3242 
3243 	shm_mnt = kern_mount(&shmem_fs_type);
3244 	if (IS_ERR(shm_mnt)) {
3245 		error = PTR_ERR(shm_mnt);
3246 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3247 		goto out1;
3248 	}
3249 	return 0;
3250 
3251 out1:
3252 	unregister_filesystem(&shmem_fs_type);
3253 out2:
3254 	shmem_destroy_inodecache();
3255 out3:
3256 	shm_mnt = ERR_PTR(error);
3257 	return error;
3258 }
3259 
3260 #else /* !CONFIG_SHMEM */
3261 
3262 /*
3263  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3264  *
3265  * This is intended for small system where the benefits of the full
3266  * shmem code (swap-backed and resource-limited) are outweighed by
3267  * their complexity. On systems without swap this code should be
3268  * effectively equivalent, but much lighter weight.
3269  */
3270 
3271 static struct file_system_type shmem_fs_type = {
3272 	.name		= "tmpfs",
3273 	.mount		= ramfs_mount,
3274 	.kill_sb	= kill_litter_super,
3275 	.fs_flags	= FS_USERNS_MOUNT,
3276 };
3277 
3278 int __init shmem_init(void)
3279 {
3280 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3281 
3282 	shm_mnt = kern_mount(&shmem_fs_type);
3283 	BUG_ON(IS_ERR(shm_mnt));
3284 
3285 	return 0;
3286 }
3287 
3288 int shmem_unuse(swp_entry_t swap, struct page *page)
3289 {
3290 	return 0;
3291 }
3292 
3293 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3294 {
3295 	return 0;
3296 }
3297 
3298 void shmem_unlock_mapping(struct address_space *mapping)
3299 {
3300 }
3301 
3302 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3303 {
3304 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3305 }
3306 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3307 
3308 #define shmem_vm_ops				generic_file_vm_ops
3309 #define shmem_file_operations			ramfs_file_operations
3310 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3311 #define shmem_acct_size(flags, size)		0
3312 #define shmem_unacct_size(flags, size)		do {} while (0)
3313 
3314 #endif /* CONFIG_SHMEM */
3315 
3316 /* common code */
3317 
3318 static struct dentry_operations anon_ops = {
3319 	.d_dname = simple_dname
3320 };
3321 
3322 static struct file *__shmem_file_setup(const char *name, loff_t size,
3323 				       unsigned long flags, unsigned int i_flags)
3324 {
3325 	struct file *res;
3326 	struct inode *inode;
3327 	struct path path;
3328 	struct super_block *sb;
3329 	struct qstr this;
3330 
3331 	if (IS_ERR(shm_mnt))
3332 		return ERR_CAST(shm_mnt);
3333 
3334 	if (size < 0 || size > MAX_LFS_FILESIZE)
3335 		return ERR_PTR(-EINVAL);
3336 
3337 	if (shmem_acct_size(flags, size))
3338 		return ERR_PTR(-ENOMEM);
3339 
3340 	res = ERR_PTR(-ENOMEM);
3341 	this.name = name;
3342 	this.len = strlen(name);
3343 	this.hash = 0; /* will go */
3344 	sb = shm_mnt->mnt_sb;
3345 	path.mnt = mntget(shm_mnt);
3346 	path.dentry = d_alloc_pseudo(sb, &this);
3347 	if (!path.dentry)
3348 		goto put_memory;
3349 	d_set_d_op(path.dentry, &anon_ops);
3350 
3351 	res = ERR_PTR(-ENOSPC);
3352 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3353 	if (!inode)
3354 		goto put_memory;
3355 
3356 	inode->i_flags |= i_flags;
3357 	d_instantiate(path.dentry, inode);
3358 	inode->i_size = size;
3359 	clear_nlink(inode);	/* It is unlinked */
3360 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3361 	if (IS_ERR(res))
3362 		goto put_path;
3363 
3364 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3365 		  &shmem_file_operations);
3366 	if (IS_ERR(res))
3367 		goto put_path;
3368 
3369 	return res;
3370 
3371 put_memory:
3372 	shmem_unacct_size(flags, size);
3373 put_path:
3374 	path_put(&path);
3375 	return res;
3376 }
3377 
3378 /**
3379  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3380  * 	kernel internal.  There will be NO LSM permission checks against the
3381  * 	underlying inode.  So users of this interface must do LSM checks at a
3382  *	higher layer.  The users are the big_key and shm implementations.  LSM
3383  *	checks are provided at the key or shm level rather than the inode.
3384  * @name: name for dentry (to be seen in /proc/<pid>/maps
3385  * @size: size to be set for the file
3386  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3387  */
3388 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3389 {
3390 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3391 }
3392 
3393 /**
3394  * shmem_file_setup - get an unlinked file living in tmpfs
3395  * @name: name for dentry (to be seen in /proc/<pid>/maps
3396  * @size: size to be set for the file
3397  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3398  */
3399 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3400 {
3401 	return __shmem_file_setup(name, size, flags, 0);
3402 }
3403 EXPORT_SYMBOL_GPL(shmem_file_setup);
3404 
3405 /**
3406  * shmem_zero_setup - setup a shared anonymous mapping
3407  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3408  */
3409 int shmem_zero_setup(struct vm_area_struct *vma)
3410 {
3411 	struct file *file;
3412 	loff_t size = vma->vm_end - vma->vm_start;
3413 
3414 	/*
3415 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3416 	 * between XFS directory reading and selinux: since this file is only
3417 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3418 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3419 	 */
3420 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3421 	if (IS_ERR(file))
3422 		return PTR_ERR(file);
3423 
3424 	if (vma->vm_file)
3425 		fput(vma->vm_file);
3426 	vma->vm_file = file;
3427 	vma->vm_ops = &shmem_vm_ops;
3428 	return 0;
3429 }
3430 
3431 /**
3432  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3433  * @mapping:	the page's address_space
3434  * @index:	the page index
3435  * @gfp:	the page allocator flags to use if allocating
3436  *
3437  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3438  * with any new page allocations done using the specified allocation flags.
3439  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3440  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3441  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3442  *
3443  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3444  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3445  */
3446 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3447 					 pgoff_t index, gfp_t gfp)
3448 {
3449 #ifdef CONFIG_SHMEM
3450 	struct inode *inode = mapping->host;
3451 	struct page *page;
3452 	int error;
3453 
3454 	BUG_ON(mapping->a_ops != &shmem_aops);
3455 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3456 	if (error)
3457 		page = ERR_PTR(error);
3458 	else
3459 		unlock_page(page);
3460 	return page;
3461 #else
3462 	/*
3463 	 * The tiny !SHMEM case uses ramfs without swap
3464 	 */
3465 	return read_cache_page_gfp(mapping, index, gfp);
3466 #endif
3467 }
3468 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3469