xref: /openbmc/linux/mm/shmem.c (revision ec2da07c)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 
41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 #include <asm/pgtable.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
112 {
113 	return totalram_pages() / 2;
114 }
115 
116 static unsigned long shmem_default_max_inodes(void)
117 {
118 	unsigned long nr_pages = totalram_pages();
119 
120 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
121 }
122 #endif
123 
124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 				struct shmem_inode_info *info, pgoff_t index);
127 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
128 			     struct page **pagep, enum sgp_type sgp,
129 			     gfp_t gfp, struct vm_area_struct *vma,
130 			     vm_fault_t *fault_type);
131 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
132 		struct page **pagep, enum sgp_type sgp,
133 		gfp_t gfp, struct vm_area_struct *vma,
134 		struct vm_fault *vmf, vm_fault_t *fault_type);
135 
136 int shmem_getpage(struct inode *inode, pgoff_t index,
137 		struct page **pagep, enum sgp_type sgp)
138 {
139 	return shmem_getpage_gfp(inode, index, pagep, sgp,
140 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
141 }
142 
143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
144 {
145 	return sb->s_fs_info;
146 }
147 
148 /*
149  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150  * for shared memory and for shared anonymous (/dev/zero) mappings
151  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152  * consistent with the pre-accounting of private mappings ...
153  */
154 static inline int shmem_acct_size(unsigned long flags, loff_t size)
155 {
156 	return (flags & VM_NORESERVE) ?
157 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
158 }
159 
160 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
161 {
162 	if (!(flags & VM_NORESERVE))
163 		vm_unacct_memory(VM_ACCT(size));
164 }
165 
166 static inline int shmem_reacct_size(unsigned long flags,
167 		loff_t oldsize, loff_t newsize)
168 {
169 	if (!(flags & VM_NORESERVE)) {
170 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
171 			return security_vm_enough_memory_mm(current->mm,
172 					VM_ACCT(newsize) - VM_ACCT(oldsize));
173 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
174 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
175 	}
176 	return 0;
177 }
178 
179 /*
180  * ... whereas tmpfs objects are accounted incrementally as
181  * pages are allocated, in order to allow large sparse files.
182  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
184  */
185 static inline int shmem_acct_block(unsigned long flags, long pages)
186 {
187 	if (!(flags & VM_NORESERVE))
188 		return 0;
189 
190 	return security_vm_enough_memory_mm(current->mm,
191 			pages * VM_ACCT(PAGE_SIZE));
192 }
193 
194 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
195 {
196 	if (flags & VM_NORESERVE)
197 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
198 }
199 
200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
201 {
202 	struct shmem_inode_info *info = SHMEM_I(inode);
203 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
204 
205 	if (shmem_acct_block(info->flags, pages))
206 		return false;
207 
208 	if (sbinfo->max_blocks) {
209 		if (percpu_counter_compare(&sbinfo->used_blocks,
210 					   sbinfo->max_blocks - pages) > 0)
211 			goto unacct;
212 		percpu_counter_add(&sbinfo->used_blocks, pages);
213 	}
214 
215 	return true;
216 
217 unacct:
218 	shmem_unacct_blocks(info->flags, pages);
219 	return false;
220 }
221 
222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
223 {
224 	struct shmem_inode_info *info = SHMEM_I(inode);
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 
227 	if (sbinfo->max_blocks)
228 		percpu_counter_sub(&sbinfo->used_blocks, pages);
229 	shmem_unacct_blocks(info->flags, pages);
230 }
231 
232 static const struct super_operations shmem_ops;
233 static const struct address_space_operations shmem_aops;
234 static const struct file_operations shmem_file_operations;
235 static const struct inode_operations shmem_inode_operations;
236 static const struct inode_operations shmem_dir_inode_operations;
237 static const struct inode_operations shmem_special_inode_operations;
238 static const struct vm_operations_struct shmem_vm_ops;
239 static struct file_system_type shmem_fs_type;
240 
241 bool vma_is_shmem(struct vm_area_struct *vma)
242 {
243 	return vma->vm_ops == &shmem_vm_ops;
244 }
245 
246 static LIST_HEAD(shmem_swaplist);
247 static DEFINE_MUTEX(shmem_swaplist_mutex);
248 
249 static int shmem_reserve_inode(struct super_block *sb)
250 {
251 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
252 	if (sbinfo->max_inodes) {
253 		spin_lock(&sbinfo->stat_lock);
254 		if (!sbinfo->free_inodes) {
255 			spin_unlock(&sbinfo->stat_lock);
256 			return -ENOSPC;
257 		}
258 		sbinfo->free_inodes--;
259 		spin_unlock(&sbinfo->stat_lock);
260 	}
261 	return 0;
262 }
263 
264 static void shmem_free_inode(struct super_block *sb)
265 {
266 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 	if (sbinfo->max_inodes) {
268 		spin_lock(&sbinfo->stat_lock);
269 		sbinfo->free_inodes++;
270 		spin_unlock(&sbinfo->stat_lock);
271 	}
272 }
273 
274 /**
275  * shmem_recalc_inode - recalculate the block usage of an inode
276  * @inode: inode to recalc
277  *
278  * We have to calculate the free blocks since the mm can drop
279  * undirtied hole pages behind our back.
280  *
281  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
282  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
283  *
284  * It has to be called with the spinlock held.
285  */
286 static void shmem_recalc_inode(struct inode *inode)
287 {
288 	struct shmem_inode_info *info = SHMEM_I(inode);
289 	long freed;
290 
291 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
292 	if (freed > 0) {
293 		info->alloced -= freed;
294 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
295 		shmem_inode_unacct_blocks(inode, freed);
296 	}
297 }
298 
299 bool shmem_charge(struct inode *inode, long pages)
300 {
301 	struct shmem_inode_info *info = SHMEM_I(inode);
302 	unsigned long flags;
303 
304 	if (!shmem_inode_acct_block(inode, pages))
305 		return false;
306 
307 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
308 	inode->i_mapping->nrpages += pages;
309 
310 	spin_lock_irqsave(&info->lock, flags);
311 	info->alloced += pages;
312 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
313 	shmem_recalc_inode(inode);
314 	spin_unlock_irqrestore(&info->lock, flags);
315 
316 	return true;
317 }
318 
319 void shmem_uncharge(struct inode *inode, long pages)
320 {
321 	struct shmem_inode_info *info = SHMEM_I(inode);
322 	unsigned long flags;
323 
324 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
325 
326 	spin_lock_irqsave(&info->lock, flags);
327 	info->alloced -= pages;
328 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
329 	shmem_recalc_inode(inode);
330 	spin_unlock_irqrestore(&info->lock, flags);
331 
332 	shmem_inode_unacct_blocks(inode, pages);
333 }
334 
335 /*
336  * Replace item expected in xarray by a new item, while holding xa_lock.
337  */
338 static int shmem_replace_entry(struct address_space *mapping,
339 			pgoff_t index, void *expected, void *replacement)
340 {
341 	XA_STATE(xas, &mapping->i_pages, index);
342 	void *item;
343 
344 	VM_BUG_ON(!expected);
345 	VM_BUG_ON(!replacement);
346 	item = xas_load(&xas);
347 	if (item != expected)
348 		return -ENOENT;
349 	xas_store(&xas, replacement);
350 	return 0;
351 }
352 
353 /*
354  * Sometimes, before we decide whether to proceed or to fail, we must check
355  * that an entry was not already brought back from swap by a racing thread.
356  *
357  * Checking page is not enough: by the time a SwapCache page is locked, it
358  * might be reused, and again be SwapCache, using the same swap as before.
359  */
360 static bool shmem_confirm_swap(struct address_space *mapping,
361 			       pgoff_t index, swp_entry_t swap)
362 {
363 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
364 }
365 
366 /*
367  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
368  *
369  * SHMEM_HUGE_NEVER:
370  *	disables huge pages for the mount;
371  * SHMEM_HUGE_ALWAYS:
372  *	enables huge pages for the mount;
373  * SHMEM_HUGE_WITHIN_SIZE:
374  *	only allocate huge pages if the page will be fully within i_size,
375  *	also respect fadvise()/madvise() hints;
376  * SHMEM_HUGE_ADVISE:
377  *	only allocate huge pages if requested with fadvise()/madvise();
378  */
379 
380 #define SHMEM_HUGE_NEVER	0
381 #define SHMEM_HUGE_ALWAYS	1
382 #define SHMEM_HUGE_WITHIN_SIZE	2
383 #define SHMEM_HUGE_ADVISE	3
384 
385 /*
386  * Special values.
387  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
388  *
389  * SHMEM_HUGE_DENY:
390  *	disables huge on shm_mnt and all mounts, for emergency use;
391  * SHMEM_HUGE_FORCE:
392  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
393  *
394  */
395 #define SHMEM_HUGE_DENY		(-1)
396 #define SHMEM_HUGE_FORCE	(-2)
397 
398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
399 /* ifdef here to avoid bloating shmem.o when not necessary */
400 
401 static int shmem_huge __read_mostly;
402 
403 #if defined(CONFIG_SYSFS)
404 static int shmem_parse_huge(const char *str)
405 {
406 	if (!strcmp(str, "never"))
407 		return SHMEM_HUGE_NEVER;
408 	if (!strcmp(str, "always"))
409 		return SHMEM_HUGE_ALWAYS;
410 	if (!strcmp(str, "within_size"))
411 		return SHMEM_HUGE_WITHIN_SIZE;
412 	if (!strcmp(str, "advise"))
413 		return SHMEM_HUGE_ADVISE;
414 	if (!strcmp(str, "deny"))
415 		return SHMEM_HUGE_DENY;
416 	if (!strcmp(str, "force"))
417 		return SHMEM_HUGE_FORCE;
418 	return -EINVAL;
419 }
420 #endif
421 
422 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
423 static const char *shmem_format_huge(int huge)
424 {
425 	switch (huge) {
426 	case SHMEM_HUGE_NEVER:
427 		return "never";
428 	case SHMEM_HUGE_ALWAYS:
429 		return "always";
430 	case SHMEM_HUGE_WITHIN_SIZE:
431 		return "within_size";
432 	case SHMEM_HUGE_ADVISE:
433 		return "advise";
434 	case SHMEM_HUGE_DENY:
435 		return "deny";
436 	case SHMEM_HUGE_FORCE:
437 		return "force";
438 	default:
439 		VM_BUG_ON(1);
440 		return "bad_val";
441 	}
442 }
443 #endif
444 
445 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
446 		struct shrink_control *sc, unsigned long nr_to_split)
447 {
448 	LIST_HEAD(list), *pos, *next;
449 	LIST_HEAD(to_remove);
450 	struct inode *inode;
451 	struct shmem_inode_info *info;
452 	struct page *page;
453 	unsigned long batch = sc ? sc->nr_to_scan : 128;
454 	int removed = 0, split = 0;
455 
456 	if (list_empty(&sbinfo->shrinklist))
457 		return SHRINK_STOP;
458 
459 	spin_lock(&sbinfo->shrinklist_lock);
460 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
461 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
462 
463 		/* pin the inode */
464 		inode = igrab(&info->vfs_inode);
465 
466 		/* inode is about to be evicted */
467 		if (!inode) {
468 			list_del_init(&info->shrinklist);
469 			removed++;
470 			goto next;
471 		}
472 
473 		/* Check if there's anything to gain */
474 		if (round_up(inode->i_size, PAGE_SIZE) ==
475 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
476 			list_move(&info->shrinklist, &to_remove);
477 			removed++;
478 			goto next;
479 		}
480 
481 		list_move(&info->shrinklist, &list);
482 next:
483 		if (!--batch)
484 			break;
485 	}
486 	spin_unlock(&sbinfo->shrinklist_lock);
487 
488 	list_for_each_safe(pos, next, &to_remove) {
489 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
490 		inode = &info->vfs_inode;
491 		list_del_init(&info->shrinklist);
492 		iput(inode);
493 	}
494 
495 	list_for_each_safe(pos, next, &list) {
496 		int ret;
497 
498 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
499 		inode = &info->vfs_inode;
500 
501 		if (nr_to_split && split >= nr_to_split)
502 			goto leave;
503 
504 		page = find_get_page(inode->i_mapping,
505 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
506 		if (!page)
507 			goto drop;
508 
509 		/* No huge page at the end of the file: nothing to split */
510 		if (!PageTransHuge(page)) {
511 			put_page(page);
512 			goto drop;
513 		}
514 
515 		/*
516 		 * Leave the inode on the list if we failed to lock
517 		 * the page at this time.
518 		 *
519 		 * Waiting for the lock may lead to deadlock in the
520 		 * reclaim path.
521 		 */
522 		if (!trylock_page(page)) {
523 			put_page(page);
524 			goto leave;
525 		}
526 
527 		ret = split_huge_page(page);
528 		unlock_page(page);
529 		put_page(page);
530 
531 		/* If split failed leave the inode on the list */
532 		if (ret)
533 			goto leave;
534 
535 		split++;
536 drop:
537 		list_del_init(&info->shrinklist);
538 		removed++;
539 leave:
540 		iput(inode);
541 	}
542 
543 	spin_lock(&sbinfo->shrinklist_lock);
544 	list_splice_tail(&list, &sbinfo->shrinklist);
545 	sbinfo->shrinklist_len -= removed;
546 	spin_unlock(&sbinfo->shrinklist_lock);
547 
548 	return split;
549 }
550 
551 static long shmem_unused_huge_scan(struct super_block *sb,
552 		struct shrink_control *sc)
553 {
554 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
555 
556 	if (!READ_ONCE(sbinfo->shrinklist_len))
557 		return SHRINK_STOP;
558 
559 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
560 }
561 
562 static long shmem_unused_huge_count(struct super_block *sb,
563 		struct shrink_control *sc)
564 {
565 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
566 	return READ_ONCE(sbinfo->shrinklist_len);
567 }
568 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
569 
570 #define shmem_huge SHMEM_HUGE_DENY
571 
572 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
573 		struct shrink_control *sc, unsigned long nr_to_split)
574 {
575 	return 0;
576 }
577 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
578 
579 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
580 {
581 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
582 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
583 	    shmem_huge != SHMEM_HUGE_DENY)
584 		return true;
585 	return false;
586 }
587 
588 /*
589  * Like add_to_page_cache_locked, but error if expected item has gone.
590  */
591 static int shmem_add_to_page_cache(struct page *page,
592 				   struct address_space *mapping,
593 				   pgoff_t index, void *expected, gfp_t gfp)
594 {
595 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
596 	unsigned long i = 0;
597 	unsigned long nr = 1UL << compound_order(page);
598 
599 	VM_BUG_ON_PAGE(PageTail(page), page);
600 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
601 	VM_BUG_ON_PAGE(!PageLocked(page), page);
602 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
603 	VM_BUG_ON(expected && PageTransHuge(page));
604 
605 	page_ref_add(page, nr);
606 	page->mapping = mapping;
607 	page->index = index;
608 
609 	do {
610 		void *entry;
611 		xas_lock_irq(&xas);
612 		entry = xas_find_conflict(&xas);
613 		if (entry != expected)
614 			xas_set_err(&xas, -EEXIST);
615 		xas_create_range(&xas);
616 		if (xas_error(&xas))
617 			goto unlock;
618 next:
619 		xas_store(&xas, page + i);
620 		if (++i < nr) {
621 			xas_next(&xas);
622 			goto next;
623 		}
624 		if (PageTransHuge(page)) {
625 			count_vm_event(THP_FILE_ALLOC);
626 			__inc_node_page_state(page, NR_SHMEM_THPS);
627 		}
628 		mapping->nrpages += nr;
629 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
631 unlock:
632 		xas_unlock_irq(&xas);
633 	} while (xas_nomem(&xas, gfp));
634 
635 	if (xas_error(&xas)) {
636 		page->mapping = NULL;
637 		page_ref_sub(page, nr);
638 		return xas_error(&xas);
639 	}
640 
641 	return 0;
642 }
643 
644 /*
645  * Like delete_from_page_cache, but substitutes swap for page.
646  */
647 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
648 {
649 	struct address_space *mapping = page->mapping;
650 	int error;
651 
652 	VM_BUG_ON_PAGE(PageCompound(page), page);
653 
654 	xa_lock_irq(&mapping->i_pages);
655 	error = shmem_replace_entry(mapping, page->index, page, radswap);
656 	page->mapping = NULL;
657 	mapping->nrpages--;
658 	__dec_node_page_state(page, NR_FILE_PAGES);
659 	__dec_node_page_state(page, NR_SHMEM);
660 	xa_unlock_irq(&mapping->i_pages);
661 	put_page(page);
662 	BUG_ON(error);
663 }
664 
665 /*
666  * Remove swap entry from page cache, free the swap and its page cache.
667  */
668 static int shmem_free_swap(struct address_space *mapping,
669 			   pgoff_t index, void *radswap)
670 {
671 	void *old;
672 
673 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
674 	if (old != radswap)
675 		return -ENOENT;
676 	free_swap_and_cache(radix_to_swp_entry(radswap));
677 	return 0;
678 }
679 
680 /*
681  * Determine (in bytes) how many of the shmem object's pages mapped by the
682  * given offsets are swapped out.
683  *
684  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
685  * as long as the inode doesn't go away and racy results are not a problem.
686  */
687 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
688 						pgoff_t start, pgoff_t end)
689 {
690 	XA_STATE(xas, &mapping->i_pages, start);
691 	struct page *page;
692 	unsigned long swapped = 0;
693 
694 	rcu_read_lock();
695 	xas_for_each(&xas, page, end - 1) {
696 		if (xas_retry(&xas, page))
697 			continue;
698 		if (xa_is_value(page))
699 			swapped++;
700 
701 		if (need_resched()) {
702 			xas_pause(&xas);
703 			cond_resched_rcu();
704 		}
705 	}
706 
707 	rcu_read_unlock();
708 
709 	return swapped << PAGE_SHIFT;
710 }
711 
712 /*
713  * Determine (in bytes) how many of the shmem object's pages mapped by the
714  * given vma is swapped out.
715  *
716  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
717  * as long as the inode doesn't go away and racy results are not a problem.
718  */
719 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
720 {
721 	struct inode *inode = file_inode(vma->vm_file);
722 	struct shmem_inode_info *info = SHMEM_I(inode);
723 	struct address_space *mapping = inode->i_mapping;
724 	unsigned long swapped;
725 
726 	/* Be careful as we don't hold info->lock */
727 	swapped = READ_ONCE(info->swapped);
728 
729 	/*
730 	 * The easier cases are when the shmem object has nothing in swap, or
731 	 * the vma maps it whole. Then we can simply use the stats that we
732 	 * already track.
733 	 */
734 	if (!swapped)
735 		return 0;
736 
737 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
738 		return swapped << PAGE_SHIFT;
739 
740 	/* Here comes the more involved part */
741 	return shmem_partial_swap_usage(mapping,
742 			linear_page_index(vma, vma->vm_start),
743 			linear_page_index(vma, vma->vm_end));
744 }
745 
746 /*
747  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
748  */
749 void shmem_unlock_mapping(struct address_space *mapping)
750 {
751 	struct pagevec pvec;
752 	pgoff_t indices[PAGEVEC_SIZE];
753 	pgoff_t index = 0;
754 
755 	pagevec_init(&pvec);
756 	/*
757 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
758 	 */
759 	while (!mapping_unevictable(mapping)) {
760 		/*
761 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
762 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
763 		 */
764 		pvec.nr = find_get_entries(mapping, index,
765 					   PAGEVEC_SIZE, pvec.pages, indices);
766 		if (!pvec.nr)
767 			break;
768 		index = indices[pvec.nr - 1] + 1;
769 		pagevec_remove_exceptionals(&pvec);
770 		check_move_unevictable_pages(&pvec);
771 		pagevec_release(&pvec);
772 		cond_resched();
773 	}
774 }
775 
776 /*
777  * Remove range of pages and swap entries from page cache, and free them.
778  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
779  */
780 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
781 								 bool unfalloc)
782 {
783 	struct address_space *mapping = inode->i_mapping;
784 	struct shmem_inode_info *info = SHMEM_I(inode);
785 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
786 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
787 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
788 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
789 	struct pagevec pvec;
790 	pgoff_t indices[PAGEVEC_SIZE];
791 	long nr_swaps_freed = 0;
792 	pgoff_t index;
793 	int i;
794 
795 	if (lend == -1)
796 		end = -1;	/* unsigned, so actually very big */
797 
798 	pagevec_init(&pvec);
799 	index = start;
800 	while (index < end) {
801 		pvec.nr = find_get_entries(mapping, index,
802 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
803 			pvec.pages, indices);
804 		if (!pvec.nr)
805 			break;
806 		for (i = 0; i < pagevec_count(&pvec); i++) {
807 			struct page *page = pvec.pages[i];
808 
809 			index = indices[i];
810 			if (index >= end)
811 				break;
812 
813 			if (xa_is_value(page)) {
814 				if (unfalloc)
815 					continue;
816 				nr_swaps_freed += !shmem_free_swap(mapping,
817 								index, page);
818 				continue;
819 			}
820 
821 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
822 
823 			if (!trylock_page(page))
824 				continue;
825 
826 			if (PageTransTail(page)) {
827 				/* Middle of THP: zero out the page */
828 				clear_highpage(page);
829 				unlock_page(page);
830 				continue;
831 			} else if (PageTransHuge(page)) {
832 				if (index == round_down(end, HPAGE_PMD_NR)) {
833 					/*
834 					 * Range ends in the middle of THP:
835 					 * zero out the page
836 					 */
837 					clear_highpage(page);
838 					unlock_page(page);
839 					continue;
840 				}
841 				index += HPAGE_PMD_NR - 1;
842 				i += HPAGE_PMD_NR - 1;
843 			}
844 
845 			if (!unfalloc || !PageUptodate(page)) {
846 				VM_BUG_ON_PAGE(PageTail(page), page);
847 				if (page_mapping(page) == mapping) {
848 					VM_BUG_ON_PAGE(PageWriteback(page), page);
849 					truncate_inode_page(mapping, page);
850 				}
851 			}
852 			unlock_page(page);
853 		}
854 		pagevec_remove_exceptionals(&pvec);
855 		pagevec_release(&pvec);
856 		cond_resched();
857 		index++;
858 	}
859 
860 	if (partial_start) {
861 		struct page *page = NULL;
862 		shmem_getpage(inode, start - 1, &page, SGP_READ);
863 		if (page) {
864 			unsigned int top = PAGE_SIZE;
865 			if (start > end) {
866 				top = partial_end;
867 				partial_end = 0;
868 			}
869 			zero_user_segment(page, partial_start, top);
870 			set_page_dirty(page);
871 			unlock_page(page);
872 			put_page(page);
873 		}
874 	}
875 	if (partial_end) {
876 		struct page *page = NULL;
877 		shmem_getpage(inode, end, &page, SGP_READ);
878 		if (page) {
879 			zero_user_segment(page, 0, partial_end);
880 			set_page_dirty(page);
881 			unlock_page(page);
882 			put_page(page);
883 		}
884 	}
885 	if (start >= end)
886 		return;
887 
888 	index = start;
889 	while (index < end) {
890 		cond_resched();
891 
892 		pvec.nr = find_get_entries(mapping, index,
893 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
894 				pvec.pages, indices);
895 		if (!pvec.nr) {
896 			/* If all gone or hole-punch or unfalloc, we're done */
897 			if (index == start || end != -1)
898 				break;
899 			/* But if truncating, restart to make sure all gone */
900 			index = start;
901 			continue;
902 		}
903 		for (i = 0; i < pagevec_count(&pvec); i++) {
904 			struct page *page = pvec.pages[i];
905 
906 			index = indices[i];
907 			if (index >= end)
908 				break;
909 
910 			if (xa_is_value(page)) {
911 				if (unfalloc)
912 					continue;
913 				if (shmem_free_swap(mapping, index, page)) {
914 					/* Swap was replaced by page: retry */
915 					index--;
916 					break;
917 				}
918 				nr_swaps_freed++;
919 				continue;
920 			}
921 
922 			lock_page(page);
923 
924 			if (PageTransTail(page)) {
925 				/* Middle of THP: zero out the page */
926 				clear_highpage(page);
927 				unlock_page(page);
928 				/*
929 				 * Partial thp truncate due 'start' in middle
930 				 * of THP: don't need to look on these pages
931 				 * again on !pvec.nr restart.
932 				 */
933 				if (index != round_down(end, HPAGE_PMD_NR))
934 					start++;
935 				continue;
936 			} else if (PageTransHuge(page)) {
937 				if (index == round_down(end, HPAGE_PMD_NR)) {
938 					/*
939 					 * Range ends in the middle of THP:
940 					 * zero out the page
941 					 */
942 					clear_highpage(page);
943 					unlock_page(page);
944 					continue;
945 				}
946 				index += HPAGE_PMD_NR - 1;
947 				i += HPAGE_PMD_NR - 1;
948 			}
949 
950 			if (!unfalloc || !PageUptodate(page)) {
951 				VM_BUG_ON_PAGE(PageTail(page), page);
952 				if (page_mapping(page) == mapping) {
953 					VM_BUG_ON_PAGE(PageWriteback(page), page);
954 					truncate_inode_page(mapping, page);
955 				} else {
956 					/* Page was replaced by swap: retry */
957 					unlock_page(page);
958 					index--;
959 					break;
960 				}
961 			}
962 			unlock_page(page);
963 		}
964 		pagevec_remove_exceptionals(&pvec);
965 		pagevec_release(&pvec);
966 		index++;
967 	}
968 
969 	spin_lock_irq(&info->lock);
970 	info->swapped -= nr_swaps_freed;
971 	shmem_recalc_inode(inode);
972 	spin_unlock_irq(&info->lock);
973 }
974 
975 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
976 {
977 	shmem_undo_range(inode, lstart, lend, false);
978 	inode->i_ctime = inode->i_mtime = current_time(inode);
979 }
980 EXPORT_SYMBOL_GPL(shmem_truncate_range);
981 
982 static int shmem_getattr(const struct path *path, struct kstat *stat,
983 			 u32 request_mask, unsigned int query_flags)
984 {
985 	struct inode *inode = path->dentry->d_inode;
986 	struct shmem_inode_info *info = SHMEM_I(inode);
987 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
988 
989 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
990 		spin_lock_irq(&info->lock);
991 		shmem_recalc_inode(inode);
992 		spin_unlock_irq(&info->lock);
993 	}
994 	generic_fillattr(inode, stat);
995 
996 	if (is_huge_enabled(sb_info))
997 		stat->blksize = HPAGE_PMD_SIZE;
998 
999 	return 0;
1000 }
1001 
1002 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1003 {
1004 	struct inode *inode = d_inode(dentry);
1005 	struct shmem_inode_info *info = SHMEM_I(inode);
1006 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1007 	int error;
1008 
1009 	error = setattr_prepare(dentry, attr);
1010 	if (error)
1011 		return error;
1012 
1013 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1014 		loff_t oldsize = inode->i_size;
1015 		loff_t newsize = attr->ia_size;
1016 
1017 		/* protected by i_mutex */
1018 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1019 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1020 			return -EPERM;
1021 
1022 		if (newsize != oldsize) {
1023 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1024 					oldsize, newsize);
1025 			if (error)
1026 				return error;
1027 			i_size_write(inode, newsize);
1028 			inode->i_ctime = inode->i_mtime = current_time(inode);
1029 		}
1030 		if (newsize <= oldsize) {
1031 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1032 			if (oldsize > holebegin)
1033 				unmap_mapping_range(inode->i_mapping,
1034 							holebegin, 0, 1);
1035 			if (info->alloced)
1036 				shmem_truncate_range(inode,
1037 							newsize, (loff_t)-1);
1038 			/* unmap again to remove racily COWed private pages */
1039 			if (oldsize > holebegin)
1040 				unmap_mapping_range(inode->i_mapping,
1041 							holebegin, 0, 1);
1042 
1043 			/*
1044 			 * Part of the huge page can be beyond i_size: subject
1045 			 * to shrink under memory pressure.
1046 			 */
1047 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1048 				spin_lock(&sbinfo->shrinklist_lock);
1049 				/*
1050 				 * _careful to defend against unlocked access to
1051 				 * ->shrink_list in shmem_unused_huge_shrink()
1052 				 */
1053 				if (list_empty_careful(&info->shrinklist)) {
1054 					list_add_tail(&info->shrinklist,
1055 							&sbinfo->shrinklist);
1056 					sbinfo->shrinklist_len++;
1057 				}
1058 				spin_unlock(&sbinfo->shrinklist_lock);
1059 			}
1060 		}
1061 	}
1062 
1063 	setattr_copy(inode, attr);
1064 	if (attr->ia_valid & ATTR_MODE)
1065 		error = posix_acl_chmod(inode, inode->i_mode);
1066 	return error;
1067 }
1068 
1069 static void shmem_evict_inode(struct inode *inode)
1070 {
1071 	struct shmem_inode_info *info = SHMEM_I(inode);
1072 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1073 
1074 	if (inode->i_mapping->a_ops == &shmem_aops) {
1075 		shmem_unacct_size(info->flags, inode->i_size);
1076 		inode->i_size = 0;
1077 		shmem_truncate_range(inode, 0, (loff_t)-1);
1078 		if (!list_empty(&info->shrinklist)) {
1079 			spin_lock(&sbinfo->shrinklist_lock);
1080 			if (!list_empty(&info->shrinklist)) {
1081 				list_del_init(&info->shrinklist);
1082 				sbinfo->shrinklist_len--;
1083 			}
1084 			spin_unlock(&sbinfo->shrinklist_lock);
1085 		}
1086 		while (!list_empty(&info->swaplist)) {
1087 			/* Wait while shmem_unuse() is scanning this inode... */
1088 			wait_var_event(&info->stop_eviction,
1089 				       !atomic_read(&info->stop_eviction));
1090 			mutex_lock(&shmem_swaplist_mutex);
1091 			/* ...but beware of the race if we peeked too early */
1092 			if (!atomic_read(&info->stop_eviction))
1093 				list_del_init(&info->swaplist);
1094 			mutex_unlock(&shmem_swaplist_mutex);
1095 		}
1096 	}
1097 
1098 	simple_xattrs_free(&info->xattrs);
1099 	WARN_ON(inode->i_blocks);
1100 	shmem_free_inode(inode->i_sb);
1101 	clear_inode(inode);
1102 }
1103 
1104 extern struct swap_info_struct *swap_info[];
1105 
1106 static int shmem_find_swap_entries(struct address_space *mapping,
1107 				   pgoff_t start, unsigned int nr_entries,
1108 				   struct page **entries, pgoff_t *indices,
1109 				   unsigned int type, bool frontswap)
1110 {
1111 	XA_STATE(xas, &mapping->i_pages, start);
1112 	struct page *page;
1113 	swp_entry_t entry;
1114 	unsigned int ret = 0;
1115 
1116 	if (!nr_entries)
1117 		return 0;
1118 
1119 	rcu_read_lock();
1120 	xas_for_each(&xas, page, ULONG_MAX) {
1121 		if (xas_retry(&xas, page))
1122 			continue;
1123 
1124 		if (!xa_is_value(page))
1125 			continue;
1126 
1127 		entry = radix_to_swp_entry(page);
1128 		if (swp_type(entry) != type)
1129 			continue;
1130 		if (frontswap &&
1131 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1132 			continue;
1133 
1134 		indices[ret] = xas.xa_index;
1135 		entries[ret] = page;
1136 
1137 		if (need_resched()) {
1138 			xas_pause(&xas);
1139 			cond_resched_rcu();
1140 		}
1141 		if (++ret == nr_entries)
1142 			break;
1143 	}
1144 	rcu_read_unlock();
1145 
1146 	return ret;
1147 }
1148 
1149 /*
1150  * Move the swapped pages for an inode to page cache. Returns the count
1151  * of pages swapped in, or the error in case of failure.
1152  */
1153 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1154 				    pgoff_t *indices)
1155 {
1156 	int i = 0;
1157 	int ret = 0;
1158 	int error = 0;
1159 	struct address_space *mapping = inode->i_mapping;
1160 
1161 	for (i = 0; i < pvec.nr; i++) {
1162 		struct page *page = pvec.pages[i];
1163 
1164 		if (!xa_is_value(page))
1165 			continue;
1166 		error = shmem_swapin_page(inode, indices[i],
1167 					  &page, SGP_CACHE,
1168 					  mapping_gfp_mask(mapping),
1169 					  NULL, NULL);
1170 		if (error == 0) {
1171 			unlock_page(page);
1172 			put_page(page);
1173 			ret++;
1174 		}
1175 		if (error == -ENOMEM)
1176 			break;
1177 		error = 0;
1178 	}
1179 	return error ? error : ret;
1180 }
1181 
1182 /*
1183  * If swap found in inode, free it and move page from swapcache to filecache.
1184  */
1185 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1186 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1187 {
1188 	struct address_space *mapping = inode->i_mapping;
1189 	pgoff_t start = 0;
1190 	struct pagevec pvec;
1191 	pgoff_t indices[PAGEVEC_SIZE];
1192 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1193 	int ret = 0;
1194 
1195 	pagevec_init(&pvec);
1196 	do {
1197 		unsigned int nr_entries = PAGEVEC_SIZE;
1198 
1199 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1200 			nr_entries = *fs_pages_to_unuse;
1201 
1202 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1203 						  pvec.pages, indices,
1204 						  type, frontswap);
1205 		if (pvec.nr == 0) {
1206 			ret = 0;
1207 			break;
1208 		}
1209 
1210 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1211 		if (ret < 0)
1212 			break;
1213 
1214 		if (frontswap_partial) {
1215 			*fs_pages_to_unuse -= ret;
1216 			if (*fs_pages_to_unuse == 0) {
1217 				ret = FRONTSWAP_PAGES_UNUSED;
1218 				break;
1219 			}
1220 		}
1221 
1222 		start = indices[pvec.nr - 1];
1223 	} while (true);
1224 
1225 	return ret;
1226 }
1227 
1228 /*
1229  * Read all the shared memory data that resides in the swap
1230  * device 'type' back into memory, so the swap device can be
1231  * unused.
1232  */
1233 int shmem_unuse(unsigned int type, bool frontswap,
1234 		unsigned long *fs_pages_to_unuse)
1235 {
1236 	struct shmem_inode_info *info, *next;
1237 	int error = 0;
1238 
1239 	if (list_empty(&shmem_swaplist))
1240 		return 0;
1241 
1242 	mutex_lock(&shmem_swaplist_mutex);
1243 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1244 		if (!info->swapped) {
1245 			list_del_init(&info->swaplist);
1246 			continue;
1247 		}
1248 		/*
1249 		 * Drop the swaplist mutex while searching the inode for swap;
1250 		 * but before doing so, make sure shmem_evict_inode() will not
1251 		 * remove placeholder inode from swaplist, nor let it be freed
1252 		 * (igrab() would protect from unlink, but not from unmount).
1253 		 */
1254 		atomic_inc(&info->stop_eviction);
1255 		mutex_unlock(&shmem_swaplist_mutex);
1256 
1257 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1258 					  fs_pages_to_unuse);
1259 		cond_resched();
1260 
1261 		mutex_lock(&shmem_swaplist_mutex);
1262 		next = list_next_entry(info, swaplist);
1263 		if (!info->swapped)
1264 			list_del_init(&info->swaplist);
1265 		if (atomic_dec_and_test(&info->stop_eviction))
1266 			wake_up_var(&info->stop_eviction);
1267 		if (error)
1268 			break;
1269 	}
1270 	mutex_unlock(&shmem_swaplist_mutex);
1271 
1272 	return error;
1273 }
1274 
1275 /*
1276  * Move the page from the page cache to the swap cache.
1277  */
1278 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1279 {
1280 	struct shmem_inode_info *info;
1281 	struct address_space *mapping;
1282 	struct inode *inode;
1283 	swp_entry_t swap;
1284 	pgoff_t index;
1285 
1286 	VM_BUG_ON_PAGE(PageCompound(page), page);
1287 	BUG_ON(!PageLocked(page));
1288 	mapping = page->mapping;
1289 	index = page->index;
1290 	inode = mapping->host;
1291 	info = SHMEM_I(inode);
1292 	if (info->flags & VM_LOCKED)
1293 		goto redirty;
1294 	if (!total_swap_pages)
1295 		goto redirty;
1296 
1297 	/*
1298 	 * Our capabilities prevent regular writeback or sync from ever calling
1299 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 	 * its underlying filesystem, in which case tmpfs should write out to
1301 	 * swap only in response to memory pressure, and not for the writeback
1302 	 * threads or sync.
1303 	 */
1304 	if (!wbc->for_reclaim) {
1305 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1306 		goto redirty;
1307 	}
1308 
1309 	/*
1310 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 	 * value into swapfile.c, the only way we can correctly account for a
1312 	 * fallocated page arriving here is now to initialize it and write it.
1313 	 *
1314 	 * That's okay for a page already fallocated earlier, but if we have
1315 	 * not yet completed the fallocation, then (a) we want to keep track
1316 	 * of this page in case we have to undo it, and (b) it may not be a
1317 	 * good idea to continue anyway, once we're pushing into swap.  So
1318 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1319 	 */
1320 	if (!PageUptodate(page)) {
1321 		if (inode->i_private) {
1322 			struct shmem_falloc *shmem_falloc;
1323 			spin_lock(&inode->i_lock);
1324 			shmem_falloc = inode->i_private;
1325 			if (shmem_falloc &&
1326 			    !shmem_falloc->waitq &&
1327 			    index >= shmem_falloc->start &&
1328 			    index < shmem_falloc->next)
1329 				shmem_falloc->nr_unswapped++;
1330 			else
1331 				shmem_falloc = NULL;
1332 			spin_unlock(&inode->i_lock);
1333 			if (shmem_falloc)
1334 				goto redirty;
1335 		}
1336 		clear_highpage(page);
1337 		flush_dcache_page(page);
1338 		SetPageUptodate(page);
1339 	}
1340 
1341 	swap = get_swap_page(page);
1342 	if (!swap.val)
1343 		goto redirty;
1344 
1345 	/*
1346 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1347 	 * if it's not already there.  Do it now before the page is
1348 	 * moved to swap cache, when its pagelock no longer protects
1349 	 * the inode from eviction.  But don't unlock the mutex until
1350 	 * we've incremented swapped, because shmem_unuse_inode() will
1351 	 * prune a !swapped inode from the swaplist under this mutex.
1352 	 */
1353 	mutex_lock(&shmem_swaplist_mutex);
1354 	if (list_empty(&info->swaplist))
1355 		list_add(&info->swaplist, &shmem_swaplist);
1356 
1357 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1358 		spin_lock_irq(&info->lock);
1359 		shmem_recalc_inode(inode);
1360 		info->swapped++;
1361 		spin_unlock_irq(&info->lock);
1362 
1363 		swap_shmem_alloc(swap);
1364 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1365 
1366 		mutex_unlock(&shmem_swaplist_mutex);
1367 		BUG_ON(page_mapped(page));
1368 		swap_writepage(page, wbc);
1369 		return 0;
1370 	}
1371 
1372 	mutex_unlock(&shmem_swaplist_mutex);
1373 	put_swap_page(page, swap);
1374 redirty:
1375 	set_page_dirty(page);
1376 	if (wbc->for_reclaim)
1377 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1378 	unlock_page(page);
1379 	return 0;
1380 }
1381 
1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1383 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1384 {
1385 	char buffer[64];
1386 
1387 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1388 		return;		/* show nothing */
1389 
1390 	mpol_to_str(buffer, sizeof(buffer), mpol);
1391 
1392 	seq_printf(seq, ",mpol=%s", buffer);
1393 }
1394 
1395 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1396 {
1397 	struct mempolicy *mpol = NULL;
1398 	if (sbinfo->mpol) {
1399 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1400 		mpol = sbinfo->mpol;
1401 		mpol_get(mpol);
1402 		spin_unlock(&sbinfo->stat_lock);
1403 	}
1404 	return mpol;
1405 }
1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1408 {
1409 }
1410 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411 {
1412 	return NULL;
1413 }
1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1415 #ifndef CONFIG_NUMA
1416 #define vm_policy vm_private_data
1417 #endif
1418 
1419 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1420 		struct shmem_inode_info *info, pgoff_t index)
1421 {
1422 	/* Create a pseudo vma that just contains the policy */
1423 	vma_init(vma, NULL);
1424 	/* Bias interleave by inode number to distribute better across nodes */
1425 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1426 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1427 }
1428 
1429 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1430 {
1431 	/* Drop reference taken by mpol_shared_policy_lookup() */
1432 	mpol_cond_put(vma->vm_policy);
1433 }
1434 
1435 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1436 			struct shmem_inode_info *info, pgoff_t index)
1437 {
1438 	struct vm_area_struct pvma;
1439 	struct page *page;
1440 	struct vm_fault vmf;
1441 
1442 	shmem_pseudo_vma_init(&pvma, info, index);
1443 	vmf.vma = &pvma;
1444 	vmf.address = 0;
1445 	page = swap_cluster_readahead(swap, gfp, &vmf);
1446 	shmem_pseudo_vma_destroy(&pvma);
1447 
1448 	return page;
1449 }
1450 
1451 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1452 		struct shmem_inode_info *info, pgoff_t index)
1453 {
1454 	struct vm_area_struct pvma;
1455 	struct address_space *mapping = info->vfs_inode.i_mapping;
1456 	pgoff_t hindex;
1457 	struct page *page;
1458 
1459 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1460 		return NULL;
1461 
1462 	hindex = round_down(index, HPAGE_PMD_NR);
1463 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1464 								XA_PRESENT))
1465 		return NULL;
1466 
1467 	shmem_pseudo_vma_init(&pvma, info, hindex);
1468 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1469 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id());
1470 	shmem_pseudo_vma_destroy(&pvma);
1471 	if (page)
1472 		prep_transhuge_page(page);
1473 	return page;
1474 }
1475 
1476 static struct page *shmem_alloc_page(gfp_t gfp,
1477 			struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 	struct vm_area_struct pvma;
1480 	struct page *page;
1481 
1482 	shmem_pseudo_vma_init(&pvma, info, index);
1483 	page = alloc_page_vma(gfp, &pvma, 0);
1484 	shmem_pseudo_vma_destroy(&pvma);
1485 
1486 	return page;
1487 }
1488 
1489 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1490 		struct inode *inode,
1491 		pgoff_t index, bool huge)
1492 {
1493 	struct shmem_inode_info *info = SHMEM_I(inode);
1494 	struct page *page;
1495 	int nr;
1496 	int err = -ENOSPC;
1497 
1498 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1499 		huge = false;
1500 	nr = huge ? HPAGE_PMD_NR : 1;
1501 
1502 	if (!shmem_inode_acct_block(inode, nr))
1503 		goto failed;
1504 
1505 	if (huge)
1506 		page = shmem_alloc_hugepage(gfp, info, index);
1507 	else
1508 		page = shmem_alloc_page(gfp, info, index);
1509 	if (page) {
1510 		__SetPageLocked(page);
1511 		__SetPageSwapBacked(page);
1512 		return page;
1513 	}
1514 
1515 	err = -ENOMEM;
1516 	shmem_inode_unacct_blocks(inode, nr);
1517 failed:
1518 	return ERR_PTR(err);
1519 }
1520 
1521 /*
1522  * When a page is moved from swapcache to shmem filecache (either by the
1523  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1524  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1525  * ignorance of the mapping it belongs to.  If that mapping has special
1526  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1527  * we may need to copy to a suitable page before moving to filecache.
1528  *
1529  * In a future release, this may well be extended to respect cpuset and
1530  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1531  * but for now it is a simple matter of zone.
1532  */
1533 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1534 {
1535 	return page_zonenum(page) > gfp_zone(gfp);
1536 }
1537 
1538 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1539 				struct shmem_inode_info *info, pgoff_t index)
1540 {
1541 	struct page *oldpage, *newpage;
1542 	struct address_space *swap_mapping;
1543 	swp_entry_t entry;
1544 	pgoff_t swap_index;
1545 	int error;
1546 
1547 	oldpage = *pagep;
1548 	entry.val = page_private(oldpage);
1549 	swap_index = swp_offset(entry);
1550 	swap_mapping = page_mapping(oldpage);
1551 
1552 	/*
1553 	 * We have arrived here because our zones are constrained, so don't
1554 	 * limit chance of success by further cpuset and node constraints.
1555 	 */
1556 	gfp &= ~GFP_CONSTRAINT_MASK;
1557 	newpage = shmem_alloc_page(gfp, info, index);
1558 	if (!newpage)
1559 		return -ENOMEM;
1560 
1561 	get_page(newpage);
1562 	copy_highpage(newpage, oldpage);
1563 	flush_dcache_page(newpage);
1564 
1565 	__SetPageLocked(newpage);
1566 	__SetPageSwapBacked(newpage);
1567 	SetPageUptodate(newpage);
1568 	set_page_private(newpage, entry.val);
1569 	SetPageSwapCache(newpage);
1570 
1571 	/*
1572 	 * Our caller will very soon move newpage out of swapcache, but it's
1573 	 * a nice clean interface for us to replace oldpage by newpage there.
1574 	 */
1575 	xa_lock_irq(&swap_mapping->i_pages);
1576 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1577 	if (!error) {
1578 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1579 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1580 	}
1581 	xa_unlock_irq(&swap_mapping->i_pages);
1582 
1583 	if (unlikely(error)) {
1584 		/*
1585 		 * Is this possible?  I think not, now that our callers check
1586 		 * both PageSwapCache and page_private after getting page lock;
1587 		 * but be defensive.  Reverse old to newpage for clear and free.
1588 		 */
1589 		oldpage = newpage;
1590 	} else {
1591 		mem_cgroup_migrate(oldpage, newpage);
1592 		lru_cache_add_anon(newpage);
1593 		*pagep = newpage;
1594 	}
1595 
1596 	ClearPageSwapCache(oldpage);
1597 	set_page_private(oldpage, 0);
1598 
1599 	unlock_page(oldpage);
1600 	put_page(oldpage);
1601 	put_page(oldpage);
1602 	return error;
1603 }
1604 
1605 /*
1606  * Swap in the page pointed to by *pagep.
1607  * Caller has to make sure that *pagep contains a valid swapped page.
1608  * Returns 0 and the page in pagep if success. On failure, returns the
1609  * the error code and NULL in *pagep.
1610  */
1611 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1612 			     struct page **pagep, enum sgp_type sgp,
1613 			     gfp_t gfp, struct vm_area_struct *vma,
1614 			     vm_fault_t *fault_type)
1615 {
1616 	struct address_space *mapping = inode->i_mapping;
1617 	struct shmem_inode_info *info = SHMEM_I(inode);
1618 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1619 	struct mem_cgroup *memcg;
1620 	struct page *page;
1621 	swp_entry_t swap;
1622 	int error;
1623 
1624 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1625 	swap = radix_to_swp_entry(*pagep);
1626 	*pagep = NULL;
1627 
1628 	/* Look it up and read it in.. */
1629 	page = lookup_swap_cache(swap, NULL, 0);
1630 	if (!page) {
1631 		/* Or update major stats only when swapin succeeds?? */
1632 		if (fault_type) {
1633 			*fault_type |= VM_FAULT_MAJOR;
1634 			count_vm_event(PGMAJFAULT);
1635 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1636 		}
1637 		/* Here we actually start the io */
1638 		page = shmem_swapin(swap, gfp, info, index);
1639 		if (!page) {
1640 			error = -ENOMEM;
1641 			goto failed;
1642 		}
1643 	}
1644 
1645 	/* We have to do this with page locked to prevent races */
1646 	lock_page(page);
1647 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1648 	    !shmem_confirm_swap(mapping, index, swap)) {
1649 		error = -EEXIST;
1650 		goto unlock;
1651 	}
1652 	if (!PageUptodate(page)) {
1653 		error = -EIO;
1654 		goto failed;
1655 	}
1656 	wait_on_page_writeback(page);
1657 
1658 	if (shmem_should_replace_page(page, gfp)) {
1659 		error = shmem_replace_page(&page, gfp, info, index);
1660 		if (error)
1661 			goto failed;
1662 	}
1663 
1664 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1665 					    false);
1666 	if (!error) {
1667 		error = shmem_add_to_page_cache(page, mapping, index,
1668 						swp_to_radix_entry(swap), gfp);
1669 		/*
1670 		 * We already confirmed swap under page lock, and make
1671 		 * no memory allocation here, so usually no possibility
1672 		 * of error; but free_swap_and_cache() only trylocks a
1673 		 * page, so it is just possible that the entry has been
1674 		 * truncated or holepunched since swap was confirmed.
1675 		 * shmem_undo_range() will have done some of the
1676 		 * unaccounting, now delete_from_swap_cache() will do
1677 		 * the rest.
1678 		 */
1679 		if (error) {
1680 			mem_cgroup_cancel_charge(page, memcg, false);
1681 			delete_from_swap_cache(page);
1682 		}
1683 	}
1684 	if (error)
1685 		goto failed;
1686 
1687 	mem_cgroup_commit_charge(page, memcg, true, false);
1688 
1689 	spin_lock_irq(&info->lock);
1690 	info->swapped--;
1691 	shmem_recalc_inode(inode);
1692 	spin_unlock_irq(&info->lock);
1693 
1694 	if (sgp == SGP_WRITE)
1695 		mark_page_accessed(page);
1696 
1697 	delete_from_swap_cache(page);
1698 	set_page_dirty(page);
1699 	swap_free(swap);
1700 
1701 	*pagep = page;
1702 	return 0;
1703 failed:
1704 	if (!shmem_confirm_swap(mapping, index, swap))
1705 		error = -EEXIST;
1706 unlock:
1707 	if (page) {
1708 		unlock_page(page);
1709 		put_page(page);
1710 	}
1711 
1712 	return error;
1713 }
1714 
1715 /*
1716  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1717  *
1718  * If we allocate a new one we do not mark it dirty. That's up to the
1719  * vm. If we swap it in we mark it dirty since we also free the swap
1720  * entry since a page cannot live in both the swap and page cache.
1721  *
1722  * fault_mm and fault_type are only supplied by shmem_fault:
1723  * otherwise they are NULL.
1724  */
1725 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1726 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1727 	struct vm_area_struct *vma, struct vm_fault *vmf,
1728 			vm_fault_t *fault_type)
1729 {
1730 	struct address_space *mapping = inode->i_mapping;
1731 	struct shmem_inode_info *info = SHMEM_I(inode);
1732 	struct shmem_sb_info *sbinfo;
1733 	struct mm_struct *charge_mm;
1734 	struct mem_cgroup *memcg;
1735 	struct page *page;
1736 	enum sgp_type sgp_huge = sgp;
1737 	pgoff_t hindex = index;
1738 	int error;
1739 	int once = 0;
1740 	int alloced = 0;
1741 
1742 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1743 		return -EFBIG;
1744 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1745 		sgp = SGP_CACHE;
1746 repeat:
1747 	if (sgp <= SGP_CACHE &&
1748 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1749 		return -EINVAL;
1750 	}
1751 
1752 	sbinfo = SHMEM_SB(inode->i_sb);
1753 	charge_mm = vma ? vma->vm_mm : current->mm;
1754 
1755 	page = find_lock_entry(mapping, index);
1756 	if (xa_is_value(page)) {
1757 		error = shmem_swapin_page(inode, index, &page,
1758 					  sgp, gfp, vma, fault_type);
1759 		if (error == -EEXIST)
1760 			goto repeat;
1761 
1762 		*pagep = page;
1763 		return error;
1764 	}
1765 
1766 	if (page && sgp == SGP_WRITE)
1767 		mark_page_accessed(page);
1768 
1769 	/* fallocated page? */
1770 	if (page && !PageUptodate(page)) {
1771 		if (sgp != SGP_READ)
1772 			goto clear;
1773 		unlock_page(page);
1774 		put_page(page);
1775 		page = NULL;
1776 	}
1777 	if (page || sgp == SGP_READ) {
1778 		*pagep = page;
1779 		return 0;
1780 	}
1781 
1782 	/*
1783 	 * Fast cache lookup did not find it:
1784 	 * bring it back from swap or allocate.
1785 	 */
1786 
1787 	if (vma && userfaultfd_missing(vma)) {
1788 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1789 		return 0;
1790 	}
1791 
1792 	/* shmem_symlink() */
1793 	if (mapping->a_ops != &shmem_aops)
1794 		goto alloc_nohuge;
1795 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1796 		goto alloc_nohuge;
1797 	if (shmem_huge == SHMEM_HUGE_FORCE)
1798 		goto alloc_huge;
1799 	switch (sbinfo->huge) {
1800 		loff_t i_size;
1801 		pgoff_t off;
1802 	case SHMEM_HUGE_NEVER:
1803 		goto alloc_nohuge;
1804 	case SHMEM_HUGE_WITHIN_SIZE:
1805 		off = round_up(index, HPAGE_PMD_NR);
1806 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1807 		if (i_size >= HPAGE_PMD_SIZE &&
1808 		    i_size >> PAGE_SHIFT >= off)
1809 			goto alloc_huge;
1810 		/* fallthrough */
1811 	case SHMEM_HUGE_ADVISE:
1812 		if (sgp_huge == SGP_HUGE)
1813 			goto alloc_huge;
1814 		/* TODO: implement fadvise() hints */
1815 		goto alloc_nohuge;
1816 	}
1817 
1818 alloc_huge:
1819 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1820 	if (IS_ERR(page)) {
1821 alloc_nohuge:
1822 		page = shmem_alloc_and_acct_page(gfp, inode,
1823 						 index, false);
1824 	}
1825 	if (IS_ERR(page)) {
1826 		int retry = 5;
1827 
1828 		error = PTR_ERR(page);
1829 		page = NULL;
1830 		if (error != -ENOSPC)
1831 			goto unlock;
1832 		/*
1833 		 * Try to reclaim some space by splitting a huge page
1834 		 * beyond i_size on the filesystem.
1835 		 */
1836 		while (retry--) {
1837 			int ret;
1838 
1839 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1840 			if (ret == SHRINK_STOP)
1841 				break;
1842 			if (ret)
1843 				goto alloc_nohuge;
1844 		}
1845 		goto unlock;
1846 	}
1847 
1848 	if (PageTransHuge(page))
1849 		hindex = round_down(index, HPAGE_PMD_NR);
1850 	else
1851 		hindex = index;
1852 
1853 	if (sgp == SGP_WRITE)
1854 		__SetPageReferenced(page);
1855 
1856 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1857 					    PageTransHuge(page));
1858 	if (error)
1859 		goto unacct;
1860 	error = shmem_add_to_page_cache(page, mapping, hindex,
1861 					NULL, gfp & GFP_RECLAIM_MASK);
1862 	if (error) {
1863 		mem_cgroup_cancel_charge(page, memcg,
1864 					 PageTransHuge(page));
1865 		goto unacct;
1866 	}
1867 	mem_cgroup_commit_charge(page, memcg, false,
1868 				 PageTransHuge(page));
1869 	lru_cache_add_anon(page);
1870 
1871 	spin_lock_irq(&info->lock);
1872 	info->alloced += 1 << compound_order(page);
1873 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1874 	shmem_recalc_inode(inode);
1875 	spin_unlock_irq(&info->lock);
1876 	alloced = true;
1877 
1878 	if (PageTransHuge(page) &&
1879 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1880 			hindex + HPAGE_PMD_NR - 1) {
1881 		/*
1882 		 * Part of the huge page is beyond i_size: subject
1883 		 * to shrink under memory pressure.
1884 		 */
1885 		spin_lock(&sbinfo->shrinklist_lock);
1886 		/*
1887 		 * _careful to defend against unlocked access to
1888 		 * ->shrink_list in shmem_unused_huge_shrink()
1889 		 */
1890 		if (list_empty_careful(&info->shrinklist)) {
1891 			list_add_tail(&info->shrinklist,
1892 				      &sbinfo->shrinklist);
1893 			sbinfo->shrinklist_len++;
1894 		}
1895 		spin_unlock(&sbinfo->shrinklist_lock);
1896 	}
1897 
1898 	/*
1899 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1900 	 */
1901 	if (sgp == SGP_FALLOC)
1902 		sgp = SGP_WRITE;
1903 clear:
1904 	/*
1905 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1906 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1907 	 * it now, lest undo on failure cancel our earlier guarantee.
1908 	 */
1909 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1910 		struct page *head = compound_head(page);
1911 		int i;
1912 
1913 		for (i = 0; i < (1 << compound_order(head)); i++) {
1914 			clear_highpage(head + i);
1915 			flush_dcache_page(head + i);
1916 		}
1917 		SetPageUptodate(head);
1918 	}
1919 
1920 	/* Perhaps the file has been truncated since we checked */
1921 	if (sgp <= SGP_CACHE &&
1922 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1923 		if (alloced) {
1924 			ClearPageDirty(page);
1925 			delete_from_page_cache(page);
1926 			spin_lock_irq(&info->lock);
1927 			shmem_recalc_inode(inode);
1928 			spin_unlock_irq(&info->lock);
1929 		}
1930 		error = -EINVAL;
1931 		goto unlock;
1932 	}
1933 	*pagep = page + index - hindex;
1934 	return 0;
1935 
1936 	/*
1937 	 * Error recovery.
1938 	 */
1939 unacct:
1940 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1941 
1942 	if (PageTransHuge(page)) {
1943 		unlock_page(page);
1944 		put_page(page);
1945 		goto alloc_nohuge;
1946 	}
1947 unlock:
1948 	if (page) {
1949 		unlock_page(page);
1950 		put_page(page);
1951 	}
1952 	if (error == -ENOSPC && !once++) {
1953 		spin_lock_irq(&info->lock);
1954 		shmem_recalc_inode(inode);
1955 		spin_unlock_irq(&info->lock);
1956 		goto repeat;
1957 	}
1958 	if (error == -EEXIST)
1959 		goto repeat;
1960 	return error;
1961 }
1962 
1963 /*
1964  * This is like autoremove_wake_function, but it removes the wait queue
1965  * entry unconditionally - even if something else had already woken the
1966  * target.
1967  */
1968 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1969 {
1970 	int ret = default_wake_function(wait, mode, sync, key);
1971 	list_del_init(&wait->entry);
1972 	return ret;
1973 }
1974 
1975 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1976 {
1977 	struct vm_area_struct *vma = vmf->vma;
1978 	struct inode *inode = file_inode(vma->vm_file);
1979 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1980 	enum sgp_type sgp;
1981 	int err;
1982 	vm_fault_t ret = VM_FAULT_LOCKED;
1983 
1984 	/*
1985 	 * Trinity finds that probing a hole which tmpfs is punching can
1986 	 * prevent the hole-punch from ever completing: which in turn
1987 	 * locks writers out with its hold on i_mutex.  So refrain from
1988 	 * faulting pages into the hole while it's being punched.  Although
1989 	 * shmem_undo_range() does remove the additions, it may be unable to
1990 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1991 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1992 	 *
1993 	 * It does not matter if we sometimes reach this check just before the
1994 	 * hole-punch begins, so that one fault then races with the punch:
1995 	 * we just need to make racing faults a rare case.
1996 	 *
1997 	 * The implementation below would be much simpler if we just used a
1998 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1999 	 * and bloating every shmem inode for this unlikely case would be sad.
2000 	 */
2001 	if (unlikely(inode->i_private)) {
2002 		struct shmem_falloc *shmem_falloc;
2003 
2004 		spin_lock(&inode->i_lock);
2005 		shmem_falloc = inode->i_private;
2006 		if (shmem_falloc &&
2007 		    shmem_falloc->waitq &&
2008 		    vmf->pgoff >= shmem_falloc->start &&
2009 		    vmf->pgoff < shmem_falloc->next) {
2010 			wait_queue_head_t *shmem_falloc_waitq;
2011 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2012 
2013 			ret = VM_FAULT_NOPAGE;
2014 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2015 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
2016 				/* It's polite to up mmap_sem if we can */
2017 				up_read(&vma->vm_mm->mmap_sem);
2018 				ret = VM_FAULT_RETRY;
2019 			}
2020 
2021 			shmem_falloc_waitq = shmem_falloc->waitq;
2022 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2023 					TASK_UNINTERRUPTIBLE);
2024 			spin_unlock(&inode->i_lock);
2025 			schedule();
2026 
2027 			/*
2028 			 * shmem_falloc_waitq points into the shmem_fallocate()
2029 			 * stack of the hole-punching task: shmem_falloc_waitq
2030 			 * is usually invalid by the time we reach here, but
2031 			 * finish_wait() does not dereference it in that case;
2032 			 * though i_lock needed lest racing with wake_up_all().
2033 			 */
2034 			spin_lock(&inode->i_lock);
2035 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2036 			spin_unlock(&inode->i_lock);
2037 			return ret;
2038 		}
2039 		spin_unlock(&inode->i_lock);
2040 	}
2041 
2042 	sgp = SGP_CACHE;
2043 
2044 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2045 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2046 		sgp = SGP_NOHUGE;
2047 	else if (vma->vm_flags & VM_HUGEPAGE)
2048 		sgp = SGP_HUGE;
2049 
2050 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2051 				  gfp, vma, vmf, &ret);
2052 	if (err)
2053 		return vmf_error(err);
2054 	return ret;
2055 }
2056 
2057 unsigned long shmem_get_unmapped_area(struct file *file,
2058 				      unsigned long uaddr, unsigned long len,
2059 				      unsigned long pgoff, unsigned long flags)
2060 {
2061 	unsigned long (*get_area)(struct file *,
2062 		unsigned long, unsigned long, unsigned long, unsigned long);
2063 	unsigned long addr;
2064 	unsigned long offset;
2065 	unsigned long inflated_len;
2066 	unsigned long inflated_addr;
2067 	unsigned long inflated_offset;
2068 
2069 	if (len > TASK_SIZE)
2070 		return -ENOMEM;
2071 
2072 	get_area = current->mm->get_unmapped_area;
2073 	addr = get_area(file, uaddr, len, pgoff, flags);
2074 
2075 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2076 		return addr;
2077 	if (IS_ERR_VALUE(addr))
2078 		return addr;
2079 	if (addr & ~PAGE_MASK)
2080 		return addr;
2081 	if (addr > TASK_SIZE - len)
2082 		return addr;
2083 
2084 	if (shmem_huge == SHMEM_HUGE_DENY)
2085 		return addr;
2086 	if (len < HPAGE_PMD_SIZE)
2087 		return addr;
2088 	if (flags & MAP_FIXED)
2089 		return addr;
2090 	/*
2091 	 * Our priority is to support MAP_SHARED mapped hugely;
2092 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2093 	 * But if caller specified an address hint, respect that as before.
2094 	 */
2095 	if (uaddr)
2096 		return addr;
2097 
2098 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2099 		struct super_block *sb;
2100 
2101 		if (file) {
2102 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2103 			sb = file_inode(file)->i_sb;
2104 		} else {
2105 			/*
2106 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2107 			 * for "/dev/zero", to create a shared anonymous object.
2108 			 */
2109 			if (IS_ERR(shm_mnt))
2110 				return addr;
2111 			sb = shm_mnt->mnt_sb;
2112 		}
2113 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2114 			return addr;
2115 	}
2116 
2117 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2118 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2119 		return addr;
2120 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2121 		return addr;
2122 
2123 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2124 	if (inflated_len > TASK_SIZE)
2125 		return addr;
2126 	if (inflated_len < len)
2127 		return addr;
2128 
2129 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2130 	if (IS_ERR_VALUE(inflated_addr))
2131 		return addr;
2132 	if (inflated_addr & ~PAGE_MASK)
2133 		return addr;
2134 
2135 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2136 	inflated_addr += offset - inflated_offset;
2137 	if (inflated_offset > offset)
2138 		inflated_addr += HPAGE_PMD_SIZE;
2139 
2140 	if (inflated_addr > TASK_SIZE - len)
2141 		return addr;
2142 	return inflated_addr;
2143 }
2144 
2145 #ifdef CONFIG_NUMA
2146 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2147 {
2148 	struct inode *inode = file_inode(vma->vm_file);
2149 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2150 }
2151 
2152 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2153 					  unsigned long addr)
2154 {
2155 	struct inode *inode = file_inode(vma->vm_file);
2156 	pgoff_t index;
2157 
2158 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2159 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2160 }
2161 #endif
2162 
2163 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2164 {
2165 	struct inode *inode = file_inode(file);
2166 	struct shmem_inode_info *info = SHMEM_I(inode);
2167 	int retval = -ENOMEM;
2168 
2169 	spin_lock_irq(&info->lock);
2170 	if (lock && !(info->flags & VM_LOCKED)) {
2171 		if (!user_shm_lock(inode->i_size, user))
2172 			goto out_nomem;
2173 		info->flags |= VM_LOCKED;
2174 		mapping_set_unevictable(file->f_mapping);
2175 	}
2176 	if (!lock && (info->flags & VM_LOCKED) && user) {
2177 		user_shm_unlock(inode->i_size, user);
2178 		info->flags &= ~VM_LOCKED;
2179 		mapping_clear_unevictable(file->f_mapping);
2180 	}
2181 	retval = 0;
2182 
2183 out_nomem:
2184 	spin_unlock_irq(&info->lock);
2185 	return retval;
2186 }
2187 
2188 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2189 {
2190 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2191 
2192 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2193 		/*
2194 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2195 		 * "future write" seal active.
2196 		 */
2197 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2198 			return -EPERM;
2199 
2200 		/*
2201 		 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2202 		 * read-only mapping, take care to not allow mprotect to revert
2203 		 * protections.
2204 		 */
2205 		vma->vm_flags &= ~(VM_MAYWRITE);
2206 	}
2207 
2208 	file_accessed(file);
2209 	vma->vm_ops = &shmem_vm_ops;
2210 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2211 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2212 			(vma->vm_end & HPAGE_PMD_MASK)) {
2213 		khugepaged_enter(vma, vma->vm_flags);
2214 	}
2215 	return 0;
2216 }
2217 
2218 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2219 				     umode_t mode, dev_t dev, unsigned long flags)
2220 {
2221 	struct inode *inode;
2222 	struct shmem_inode_info *info;
2223 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2224 
2225 	if (shmem_reserve_inode(sb))
2226 		return NULL;
2227 
2228 	inode = new_inode(sb);
2229 	if (inode) {
2230 		inode->i_ino = get_next_ino();
2231 		inode_init_owner(inode, dir, mode);
2232 		inode->i_blocks = 0;
2233 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2234 		inode->i_generation = prandom_u32();
2235 		info = SHMEM_I(inode);
2236 		memset(info, 0, (char *)inode - (char *)info);
2237 		spin_lock_init(&info->lock);
2238 		atomic_set(&info->stop_eviction, 0);
2239 		info->seals = F_SEAL_SEAL;
2240 		info->flags = flags & VM_NORESERVE;
2241 		INIT_LIST_HEAD(&info->shrinklist);
2242 		INIT_LIST_HEAD(&info->swaplist);
2243 		simple_xattrs_init(&info->xattrs);
2244 		cache_no_acl(inode);
2245 
2246 		switch (mode & S_IFMT) {
2247 		default:
2248 			inode->i_op = &shmem_special_inode_operations;
2249 			init_special_inode(inode, mode, dev);
2250 			break;
2251 		case S_IFREG:
2252 			inode->i_mapping->a_ops = &shmem_aops;
2253 			inode->i_op = &shmem_inode_operations;
2254 			inode->i_fop = &shmem_file_operations;
2255 			mpol_shared_policy_init(&info->policy,
2256 						 shmem_get_sbmpol(sbinfo));
2257 			break;
2258 		case S_IFDIR:
2259 			inc_nlink(inode);
2260 			/* Some things misbehave if size == 0 on a directory */
2261 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2262 			inode->i_op = &shmem_dir_inode_operations;
2263 			inode->i_fop = &simple_dir_operations;
2264 			break;
2265 		case S_IFLNK:
2266 			/*
2267 			 * Must not load anything in the rbtree,
2268 			 * mpol_free_shared_policy will not be called.
2269 			 */
2270 			mpol_shared_policy_init(&info->policy, NULL);
2271 			break;
2272 		}
2273 
2274 		lockdep_annotate_inode_mutex_key(inode);
2275 	} else
2276 		shmem_free_inode(sb);
2277 	return inode;
2278 }
2279 
2280 bool shmem_mapping(struct address_space *mapping)
2281 {
2282 	return mapping->a_ops == &shmem_aops;
2283 }
2284 
2285 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2286 				  pmd_t *dst_pmd,
2287 				  struct vm_area_struct *dst_vma,
2288 				  unsigned long dst_addr,
2289 				  unsigned long src_addr,
2290 				  bool zeropage,
2291 				  struct page **pagep)
2292 {
2293 	struct inode *inode = file_inode(dst_vma->vm_file);
2294 	struct shmem_inode_info *info = SHMEM_I(inode);
2295 	struct address_space *mapping = inode->i_mapping;
2296 	gfp_t gfp = mapping_gfp_mask(mapping);
2297 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2298 	struct mem_cgroup *memcg;
2299 	spinlock_t *ptl;
2300 	void *page_kaddr;
2301 	struct page *page;
2302 	pte_t _dst_pte, *dst_pte;
2303 	int ret;
2304 	pgoff_t offset, max_off;
2305 
2306 	ret = -ENOMEM;
2307 	if (!shmem_inode_acct_block(inode, 1))
2308 		goto out;
2309 
2310 	if (!*pagep) {
2311 		page = shmem_alloc_page(gfp, info, pgoff);
2312 		if (!page)
2313 			goto out_unacct_blocks;
2314 
2315 		if (!zeropage) {	/* mcopy_atomic */
2316 			page_kaddr = kmap_atomic(page);
2317 			ret = copy_from_user(page_kaddr,
2318 					     (const void __user *)src_addr,
2319 					     PAGE_SIZE);
2320 			kunmap_atomic(page_kaddr);
2321 
2322 			/* fallback to copy_from_user outside mmap_sem */
2323 			if (unlikely(ret)) {
2324 				*pagep = page;
2325 				shmem_inode_unacct_blocks(inode, 1);
2326 				/* don't free the page */
2327 				return -ENOENT;
2328 			}
2329 		} else {		/* mfill_zeropage_atomic */
2330 			clear_highpage(page);
2331 		}
2332 	} else {
2333 		page = *pagep;
2334 		*pagep = NULL;
2335 	}
2336 
2337 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2338 	__SetPageLocked(page);
2339 	__SetPageSwapBacked(page);
2340 	__SetPageUptodate(page);
2341 
2342 	ret = -EFAULT;
2343 	offset = linear_page_index(dst_vma, dst_addr);
2344 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2345 	if (unlikely(offset >= max_off))
2346 		goto out_release;
2347 
2348 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2349 	if (ret)
2350 		goto out_release;
2351 
2352 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2353 						gfp & GFP_RECLAIM_MASK);
2354 	if (ret)
2355 		goto out_release_uncharge;
2356 
2357 	mem_cgroup_commit_charge(page, memcg, false, false);
2358 
2359 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2360 	if (dst_vma->vm_flags & VM_WRITE)
2361 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2362 	else {
2363 		/*
2364 		 * We don't set the pte dirty if the vma has no
2365 		 * VM_WRITE permission, so mark the page dirty or it
2366 		 * could be freed from under us. We could do it
2367 		 * unconditionally before unlock_page(), but doing it
2368 		 * only if VM_WRITE is not set is faster.
2369 		 */
2370 		set_page_dirty(page);
2371 	}
2372 
2373 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2374 
2375 	ret = -EFAULT;
2376 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2377 	if (unlikely(offset >= max_off))
2378 		goto out_release_uncharge_unlock;
2379 
2380 	ret = -EEXIST;
2381 	if (!pte_none(*dst_pte))
2382 		goto out_release_uncharge_unlock;
2383 
2384 	lru_cache_add_anon(page);
2385 
2386 	spin_lock(&info->lock);
2387 	info->alloced++;
2388 	inode->i_blocks += BLOCKS_PER_PAGE;
2389 	shmem_recalc_inode(inode);
2390 	spin_unlock(&info->lock);
2391 
2392 	inc_mm_counter(dst_mm, mm_counter_file(page));
2393 	page_add_file_rmap(page, false);
2394 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2395 
2396 	/* No need to invalidate - it was non-present before */
2397 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2398 	pte_unmap_unlock(dst_pte, ptl);
2399 	unlock_page(page);
2400 	ret = 0;
2401 out:
2402 	return ret;
2403 out_release_uncharge_unlock:
2404 	pte_unmap_unlock(dst_pte, ptl);
2405 	ClearPageDirty(page);
2406 	delete_from_page_cache(page);
2407 out_release_uncharge:
2408 	mem_cgroup_cancel_charge(page, memcg, false);
2409 out_release:
2410 	unlock_page(page);
2411 	put_page(page);
2412 out_unacct_blocks:
2413 	shmem_inode_unacct_blocks(inode, 1);
2414 	goto out;
2415 }
2416 
2417 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2418 			   pmd_t *dst_pmd,
2419 			   struct vm_area_struct *dst_vma,
2420 			   unsigned long dst_addr,
2421 			   unsigned long src_addr,
2422 			   struct page **pagep)
2423 {
2424 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2425 				      dst_addr, src_addr, false, pagep);
2426 }
2427 
2428 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2429 			     pmd_t *dst_pmd,
2430 			     struct vm_area_struct *dst_vma,
2431 			     unsigned long dst_addr)
2432 {
2433 	struct page *page = NULL;
2434 
2435 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2436 				      dst_addr, 0, true, &page);
2437 }
2438 
2439 #ifdef CONFIG_TMPFS
2440 static const struct inode_operations shmem_symlink_inode_operations;
2441 static const struct inode_operations shmem_short_symlink_operations;
2442 
2443 #ifdef CONFIG_TMPFS_XATTR
2444 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2445 #else
2446 #define shmem_initxattrs NULL
2447 #endif
2448 
2449 static int
2450 shmem_write_begin(struct file *file, struct address_space *mapping,
2451 			loff_t pos, unsigned len, unsigned flags,
2452 			struct page **pagep, void **fsdata)
2453 {
2454 	struct inode *inode = mapping->host;
2455 	struct shmem_inode_info *info = SHMEM_I(inode);
2456 	pgoff_t index = pos >> PAGE_SHIFT;
2457 
2458 	/* i_mutex is held by caller */
2459 	if (unlikely(info->seals & (F_SEAL_GROW |
2460 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2461 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2462 			return -EPERM;
2463 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2464 			return -EPERM;
2465 	}
2466 
2467 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2468 }
2469 
2470 static int
2471 shmem_write_end(struct file *file, struct address_space *mapping,
2472 			loff_t pos, unsigned len, unsigned copied,
2473 			struct page *page, void *fsdata)
2474 {
2475 	struct inode *inode = mapping->host;
2476 
2477 	if (pos + copied > inode->i_size)
2478 		i_size_write(inode, pos + copied);
2479 
2480 	if (!PageUptodate(page)) {
2481 		struct page *head = compound_head(page);
2482 		if (PageTransCompound(page)) {
2483 			int i;
2484 
2485 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2486 				if (head + i == page)
2487 					continue;
2488 				clear_highpage(head + i);
2489 				flush_dcache_page(head + i);
2490 			}
2491 		}
2492 		if (copied < PAGE_SIZE) {
2493 			unsigned from = pos & (PAGE_SIZE - 1);
2494 			zero_user_segments(page, 0, from,
2495 					from + copied, PAGE_SIZE);
2496 		}
2497 		SetPageUptodate(head);
2498 	}
2499 	set_page_dirty(page);
2500 	unlock_page(page);
2501 	put_page(page);
2502 
2503 	return copied;
2504 }
2505 
2506 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2507 {
2508 	struct file *file = iocb->ki_filp;
2509 	struct inode *inode = file_inode(file);
2510 	struct address_space *mapping = inode->i_mapping;
2511 	pgoff_t index;
2512 	unsigned long offset;
2513 	enum sgp_type sgp = SGP_READ;
2514 	int error = 0;
2515 	ssize_t retval = 0;
2516 	loff_t *ppos = &iocb->ki_pos;
2517 
2518 	/*
2519 	 * Might this read be for a stacking filesystem?  Then when reading
2520 	 * holes of a sparse file, we actually need to allocate those pages,
2521 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2522 	 */
2523 	if (!iter_is_iovec(to))
2524 		sgp = SGP_CACHE;
2525 
2526 	index = *ppos >> PAGE_SHIFT;
2527 	offset = *ppos & ~PAGE_MASK;
2528 
2529 	for (;;) {
2530 		struct page *page = NULL;
2531 		pgoff_t end_index;
2532 		unsigned long nr, ret;
2533 		loff_t i_size = i_size_read(inode);
2534 
2535 		end_index = i_size >> PAGE_SHIFT;
2536 		if (index > end_index)
2537 			break;
2538 		if (index == end_index) {
2539 			nr = i_size & ~PAGE_MASK;
2540 			if (nr <= offset)
2541 				break;
2542 		}
2543 
2544 		error = shmem_getpage(inode, index, &page, sgp);
2545 		if (error) {
2546 			if (error == -EINVAL)
2547 				error = 0;
2548 			break;
2549 		}
2550 		if (page) {
2551 			if (sgp == SGP_CACHE)
2552 				set_page_dirty(page);
2553 			unlock_page(page);
2554 		}
2555 
2556 		/*
2557 		 * We must evaluate after, since reads (unlike writes)
2558 		 * are called without i_mutex protection against truncate
2559 		 */
2560 		nr = PAGE_SIZE;
2561 		i_size = i_size_read(inode);
2562 		end_index = i_size >> PAGE_SHIFT;
2563 		if (index == end_index) {
2564 			nr = i_size & ~PAGE_MASK;
2565 			if (nr <= offset) {
2566 				if (page)
2567 					put_page(page);
2568 				break;
2569 			}
2570 		}
2571 		nr -= offset;
2572 
2573 		if (page) {
2574 			/*
2575 			 * If users can be writing to this page using arbitrary
2576 			 * virtual addresses, take care about potential aliasing
2577 			 * before reading the page on the kernel side.
2578 			 */
2579 			if (mapping_writably_mapped(mapping))
2580 				flush_dcache_page(page);
2581 			/*
2582 			 * Mark the page accessed if we read the beginning.
2583 			 */
2584 			if (!offset)
2585 				mark_page_accessed(page);
2586 		} else {
2587 			page = ZERO_PAGE(0);
2588 			get_page(page);
2589 		}
2590 
2591 		/*
2592 		 * Ok, we have the page, and it's up-to-date, so
2593 		 * now we can copy it to user space...
2594 		 */
2595 		ret = copy_page_to_iter(page, offset, nr, to);
2596 		retval += ret;
2597 		offset += ret;
2598 		index += offset >> PAGE_SHIFT;
2599 		offset &= ~PAGE_MASK;
2600 
2601 		put_page(page);
2602 		if (!iov_iter_count(to))
2603 			break;
2604 		if (ret < nr) {
2605 			error = -EFAULT;
2606 			break;
2607 		}
2608 		cond_resched();
2609 	}
2610 
2611 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2612 	file_accessed(file);
2613 	return retval ? retval : error;
2614 }
2615 
2616 /*
2617  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2618  */
2619 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2620 				    pgoff_t index, pgoff_t end, int whence)
2621 {
2622 	struct page *page;
2623 	struct pagevec pvec;
2624 	pgoff_t indices[PAGEVEC_SIZE];
2625 	bool done = false;
2626 	int i;
2627 
2628 	pagevec_init(&pvec);
2629 	pvec.nr = 1;		/* start small: we may be there already */
2630 	while (!done) {
2631 		pvec.nr = find_get_entries(mapping, index,
2632 					pvec.nr, pvec.pages, indices);
2633 		if (!pvec.nr) {
2634 			if (whence == SEEK_DATA)
2635 				index = end;
2636 			break;
2637 		}
2638 		for (i = 0; i < pvec.nr; i++, index++) {
2639 			if (index < indices[i]) {
2640 				if (whence == SEEK_HOLE) {
2641 					done = true;
2642 					break;
2643 				}
2644 				index = indices[i];
2645 			}
2646 			page = pvec.pages[i];
2647 			if (page && !xa_is_value(page)) {
2648 				if (!PageUptodate(page))
2649 					page = NULL;
2650 			}
2651 			if (index >= end ||
2652 			    (page && whence == SEEK_DATA) ||
2653 			    (!page && whence == SEEK_HOLE)) {
2654 				done = true;
2655 				break;
2656 			}
2657 		}
2658 		pagevec_remove_exceptionals(&pvec);
2659 		pagevec_release(&pvec);
2660 		pvec.nr = PAGEVEC_SIZE;
2661 		cond_resched();
2662 	}
2663 	return index;
2664 }
2665 
2666 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2667 {
2668 	struct address_space *mapping = file->f_mapping;
2669 	struct inode *inode = mapping->host;
2670 	pgoff_t start, end;
2671 	loff_t new_offset;
2672 
2673 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2674 		return generic_file_llseek_size(file, offset, whence,
2675 					MAX_LFS_FILESIZE, i_size_read(inode));
2676 	inode_lock(inode);
2677 	/* We're holding i_mutex so we can access i_size directly */
2678 
2679 	if (offset < 0 || offset >= inode->i_size)
2680 		offset = -ENXIO;
2681 	else {
2682 		start = offset >> PAGE_SHIFT;
2683 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2684 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2685 		new_offset <<= PAGE_SHIFT;
2686 		if (new_offset > offset) {
2687 			if (new_offset < inode->i_size)
2688 				offset = new_offset;
2689 			else if (whence == SEEK_DATA)
2690 				offset = -ENXIO;
2691 			else
2692 				offset = inode->i_size;
2693 		}
2694 	}
2695 
2696 	if (offset >= 0)
2697 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2698 	inode_unlock(inode);
2699 	return offset;
2700 }
2701 
2702 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2703 							 loff_t len)
2704 {
2705 	struct inode *inode = file_inode(file);
2706 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2707 	struct shmem_inode_info *info = SHMEM_I(inode);
2708 	struct shmem_falloc shmem_falloc;
2709 	pgoff_t start, index, end;
2710 	int error;
2711 
2712 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2713 		return -EOPNOTSUPP;
2714 
2715 	inode_lock(inode);
2716 
2717 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2718 		struct address_space *mapping = file->f_mapping;
2719 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2720 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2721 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2722 
2723 		/* protected by i_mutex */
2724 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2725 			error = -EPERM;
2726 			goto out;
2727 		}
2728 
2729 		shmem_falloc.waitq = &shmem_falloc_waitq;
2730 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2731 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2732 		spin_lock(&inode->i_lock);
2733 		inode->i_private = &shmem_falloc;
2734 		spin_unlock(&inode->i_lock);
2735 
2736 		if ((u64)unmap_end > (u64)unmap_start)
2737 			unmap_mapping_range(mapping, unmap_start,
2738 					    1 + unmap_end - unmap_start, 0);
2739 		shmem_truncate_range(inode, offset, offset + len - 1);
2740 		/* No need to unmap again: hole-punching leaves COWed pages */
2741 
2742 		spin_lock(&inode->i_lock);
2743 		inode->i_private = NULL;
2744 		wake_up_all(&shmem_falloc_waitq);
2745 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2746 		spin_unlock(&inode->i_lock);
2747 		error = 0;
2748 		goto out;
2749 	}
2750 
2751 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2752 	error = inode_newsize_ok(inode, offset + len);
2753 	if (error)
2754 		goto out;
2755 
2756 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2757 		error = -EPERM;
2758 		goto out;
2759 	}
2760 
2761 	start = offset >> PAGE_SHIFT;
2762 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2763 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2764 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2765 		error = -ENOSPC;
2766 		goto out;
2767 	}
2768 
2769 	shmem_falloc.waitq = NULL;
2770 	shmem_falloc.start = start;
2771 	shmem_falloc.next  = start;
2772 	shmem_falloc.nr_falloced = 0;
2773 	shmem_falloc.nr_unswapped = 0;
2774 	spin_lock(&inode->i_lock);
2775 	inode->i_private = &shmem_falloc;
2776 	spin_unlock(&inode->i_lock);
2777 
2778 	for (index = start; index < end; index++) {
2779 		struct page *page;
2780 
2781 		/*
2782 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2783 		 * been interrupted because we are using up too much memory.
2784 		 */
2785 		if (signal_pending(current))
2786 			error = -EINTR;
2787 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2788 			error = -ENOMEM;
2789 		else
2790 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2791 		if (error) {
2792 			/* Remove the !PageUptodate pages we added */
2793 			if (index > start) {
2794 				shmem_undo_range(inode,
2795 				    (loff_t)start << PAGE_SHIFT,
2796 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2797 			}
2798 			goto undone;
2799 		}
2800 
2801 		/*
2802 		 * Inform shmem_writepage() how far we have reached.
2803 		 * No need for lock or barrier: we have the page lock.
2804 		 */
2805 		shmem_falloc.next++;
2806 		if (!PageUptodate(page))
2807 			shmem_falloc.nr_falloced++;
2808 
2809 		/*
2810 		 * If !PageUptodate, leave it that way so that freeable pages
2811 		 * can be recognized if we need to rollback on error later.
2812 		 * But set_page_dirty so that memory pressure will swap rather
2813 		 * than free the pages we are allocating (and SGP_CACHE pages
2814 		 * might still be clean: we now need to mark those dirty too).
2815 		 */
2816 		set_page_dirty(page);
2817 		unlock_page(page);
2818 		put_page(page);
2819 		cond_resched();
2820 	}
2821 
2822 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2823 		i_size_write(inode, offset + len);
2824 	inode->i_ctime = current_time(inode);
2825 undone:
2826 	spin_lock(&inode->i_lock);
2827 	inode->i_private = NULL;
2828 	spin_unlock(&inode->i_lock);
2829 out:
2830 	inode_unlock(inode);
2831 	return error;
2832 }
2833 
2834 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2835 {
2836 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2837 
2838 	buf->f_type = TMPFS_MAGIC;
2839 	buf->f_bsize = PAGE_SIZE;
2840 	buf->f_namelen = NAME_MAX;
2841 	if (sbinfo->max_blocks) {
2842 		buf->f_blocks = sbinfo->max_blocks;
2843 		buf->f_bavail =
2844 		buf->f_bfree  = sbinfo->max_blocks -
2845 				percpu_counter_sum(&sbinfo->used_blocks);
2846 	}
2847 	if (sbinfo->max_inodes) {
2848 		buf->f_files = sbinfo->max_inodes;
2849 		buf->f_ffree = sbinfo->free_inodes;
2850 	}
2851 	/* else leave those fields 0 like simple_statfs */
2852 	return 0;
2853 }
2854 
2855 /*
2856  * File creation. Allocate an inode, and we're done..
2857  */
2858 static int
2859 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2860 {
2861 	struct inode *inode;
2862 	int error = -ENOSPC;
2863 
2864 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2865 	if (inode) {
2866 		error = simple_acl_create(dir, inode);
2867 		if (error)
2868 			goto out_iput;
2869 		error = security_inode_init_security(inode, dir,
2870 						     &dentry->d_name,
2871 						     shmem_initxattrs, NULL);
2872 		if (error && error != -EOPNOTSUPP)
2873 			goto out_iput;
2874 
2875 		error = 0;
2876 		dir->i_size += BOGO_DIRENT_SIZE;
2877 		dir->i_ctime = dir->i_mtime = current_time(dir);
2878 		d_instantiate(dentry, inode);
2879 		dget(dentry); /* Extra count - pin the dentry in core */
2880 	}
2881 	return error;
2882 out_iput:
2883 	iput(inode);
2884 	return error;
2885 }
2886 
2887 static int
2888 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2889 {
2890 	struct inode *inode;
2891 	int error = -ENOSPC;
2892 
2893 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2894 	if (inode) {
2895 		error = security_inode_init_security(inode, dir,
2896 						     NULL,
2897 						     shmem_initxattrs, NULL);
2898 		if (error && error != -EOPNOTSUPP)
2899 			goto out_iput;
2900 		error = simple_acl_create(dir, inode);
2901 		if (error)
2902 			goto out_iput;
2903 		d_tmpfile(dentry, inode);
2904 	}
2905 	return error;
2906 out_iput:
2907 	iput(inode);
2908 	return error;
2909 }
2910 
2911 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2912 {
2913 	int error;
2914 
2915 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2916 		return error;
2917 	inc_nlink(dir);
2918 	return 0;
2919 }
2920 
2921 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2922 		bool excl)
2923 {
2924 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2925 }
2926 
2927 /*
2928  * Link a file..
2929  */
2930 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2931 {
2932 	struct inode *inode = d_inode(old_dentry);
2933 	int ret = 0;
2934 
2935 	/*
2936 	 * No ordinary (disk based) filesystem counts links as inodes;
2937 	 * but each new link needs a new dentry, pinning lowmem, and
2938 	 * tmpfs dentries cannot be pruned until they are unlinked.
2939 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2940 	 * first link must skip that, to get the accounting right.
2941 	 */
2942 	if (inode->i_nlink) {
2943 		ret = shmem_reserve_inode(inode->i_sb);
2944 		if (ret)
2945 			goto out;
2946 	}
2947 
2948 	dir->i_size += BOGO_DIRENT_SIZE;
2949 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2950 	inc_nlink(inode);
2951 	ihold(inode);	/* New dentry reference */
2952 	dget(dentry);		/* Extra pinning count for the created dentry */
2953 	d_instantiate(dentry, inode);
2954 out:
2955 	return ret;
2956 }
2957 
2958 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2959 {
2960 	struct inode *inode = d_inode(dentry);
2961 
2962 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2963 		shmem_free_inode(inode->i_sb);
2964 
2965 	dir->i_size -= BOGO_DIRENT_SIZE;
2966 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2967 	drop_nlink(inode);
2968 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2969 	return 0;
2970 }
2971 
2972 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2973 {
2974 	if (!simple_empty(dentry))
2975 		return -ENOTEMPTY;
2976 
2977 	drop_nlink(d_inode(dentry));
2978 	drop_nlink(dir);
2979 	return shmem_unlink(dir, dentry);
2980 }
2981 
2982 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2983 {
2984 	bool old_is_dir = d_is_dir(old_dentry);
2985 	bool new_is_dir = d_is_dir(new_dentry);
2986 
2987 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2988 		if (old_is_dir) {
2989 			drop_nlink(old_dir);
2990 			inc_nlink(new_dir);
2991 		} else {
2992 			drop_nlink(new_dir);
2993 			inc_nlink(old_dir);
2994 		}
2995 	}
2996 	old_dir->i_ctime = old_dir->i_mtime =
2997 	new_dir->i_ctime = new_dir->i_mtime =
2998 	d_inode(old_dentry)->i_ctime =
2999 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3000 
3001 	return 0;
3002 }
3003 
3004 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3005 {
3006 	struct dentry *whiteout;
3007 	int error;
3008 
3009 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3010 	if (!whiteout)
3011 		return -ENOMEM;
3012 
3013 	error = shmem_mknod(old_dir, whiteout,
3014 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3015 	dput(whiteout);
3016 	if (error)
3017 		return error;
3018 
3019 	/*
3020 	 * Cheat and hash the whiteout while the old dentry is still in
3021 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3022 	 *
3023 	 * d_lookup() will consistently find one of them at this point,
3024 	 * not sure which one, but that isn't even important.
3025 	 */
3026 	d_rehash(whiteout);
3027 	return 0;
3028 }
3029 
3030 /*
3031  * The VFS layer already does all the dentry stuff for rename,
3032  * we just have to decrement the usage count for the target if
3033  * it exists so that the VFS layer correctly free's it when it
3034  * gets overwritten.
3035  */
3036 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3037 {
3038 	struct inode *inode = d_inode(old_dentry);
3039 	int they_are_dirs = S_ISDIR(inode->i_mode);
3040 
3041 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3042 		return -EINVAL;
3043 
3044 	if (flags & RENAME_EXCHANGE)
3045 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3046 
3047 	if (!simple_empty(new_dentry))
3048 		return -ENOTEMPTY;
3049 
3050 	if (flags & RENAME_WHITEOUT) {
3051 		int error;
3052 
3053 		error = shmem_whiteout(old_dir, old_dentry);
3054 		if (error)
3055 			return error;
3056 	}
3057 
3058 	if (d_really_is_positive(new_dentry)) {
3059 		(void) shmem_unlink(new_dir, new_dentry);
3060 		if (they_are_dirs) {
3061 			drop_nlink(d_inode(new_dentry));
3062 			drop_nlink(old_dir);
3063 		}
3064 	} else if (they_are_dirs) {
3065 		drop_nlink(old_dir);
3066 		inc_nlink(new_dir);
3067 	}
3068 
3069 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3070 	new_dir->i_size += BOGO_DIRENT_SIZE;
3071 	old_dir->i_ctime = old_dir->i_mtime =
3072 	new_dir->i_ctime = new_dir->i_mtime =
3073 	inode->i_ctime = current_time(old_dir);
3074 	return 0;
3075 }
3076 
3077 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3078 {
3079 	int error;
3080 	int len;
3081 	struct inode *inode;
3082 	struct page *page;
3083 
3084 	len = strlen(symname) + 1;
3085 	if (len > PAGE_SIZE)
3086 		return -ENAMETOOLONG;
3087 
3088 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3089 				VM_NORESERVE);
3090 	if (!inode)
3091 		return -ENOSPC;
3092 
3093 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3094 					     shmem_initxattrs, NULL);
3095 	if (error) {
3096 		if (error != -EOPNOTSUPP) {
3097 			iput(inode);
3098 			return error;
3099 		}
3100 		error = 0;
3101 	}
3102 
3103 	inode->i_size = len-1;
3104 	if (len <= SHORT_SYMLINK_LEN) {
3105 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3106 		if (!inode->i_link) {
3107 			iput(inode);
3108 			return -ENOMEM;
3109 		}
3110 		inode->i_op = &shmem_short_symlink_operations;
3111 	} else {
3112 		inode_nohighmem(inode);
3113 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3114 		if (error) {
3115 			iput(inode);
3116 			return error;
3117 		}
3118 		inode->i_mapping->a_ops = &shmem_aops;
3119 		inode->i_op = &shmem_symlink_inode_operations;
3120 		memcpy(page_address(page), symname, len);
3121 		SetPageUptodate(page);
3122 		set_page_dirty(page);
3123 		unlock_page(page);
3124 		put_page(page);
3125 	}
3126 	dir->i_size += BOGO_DIRENT_SIZE;
3127 	dir->i_ctime = dir->i_mtime = current_time(dir);
3128 	d_instantiate(dentry, inode);
3129 	dget(dentry);
3130 	return 0;
3131 }
3132 
3133 static void shmem_put_link(void *arg)
3134 {
3135 	mark_page_accessed(arg);
3136 	put_page(arg);
3137 }
3138 
3139 static const char *shmem_get_link(struct dentry *dentry,
3140 				  struct inode *inode,
3141 				  struct delayed_call *done)
3142 {
3143 	struct page *page = NULL;
3144 	int error;
3145 	if (!dentry) {
3146 		page = find_get_page(inode->i_mapping, 0);
3147 		if (!page)
3148 			return ERR_PTR(-ECHILD);
3149 		if (!PageUptodate(page)) {
3150 			put_page(page);
3151 			return ERR_PTR(-ECHILD);
3152 		}
3153 	} else {
3154 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3155 		if (error)
3156 			return ERR_PTR(error);
3157 		unlock_page(page);
3158 	}
3159 	set_delayed_call(done, shmem_put_link, page);
3160 	return page_address(page);
3161 }
3162 
3163 #ifdef CONFIG_TMPFS_XATTR
3164 /*
3165  * Superblocks without xattr inode operations may get some security.* xattr
3166  * support from the LSM "for free". As soon as we have any other xattrs
3167  * like ACLs, we also need to implement the security.* handlers at
3168  * filesystem level, though.
3169  */
3170 
3171 /*
3172  * Callback for security_inode_init_security() for acquiring xattrs.
3173  */
3174 static int shmem_initxattrs(struct inode *inode,
3175 			    const struct xattr *xattr_array,
3176 			    void *fs_info)
3177 {
3178 	struct shmem_inode_info *info = SHMEM_I(inode);
3179 	const struct xattr *xattr;
3180 	struct simple_xattr *new_xattr;
3181 	size_t len;
3182 
3183 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3184 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3185 		if (!new_xattr)
3186 			return -ENOMEM;
3187 
3188 		len = strlen(xattr->name) + 1;
3189 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3190 					  GFP_KERNEL);
3191 		if (!new_xattr->name) {
3192 			kfree(new_xattr);
3193 			return -ENOMEM;
3194 		}
3195 
3196 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3197 		       XATTR_SECURITY_PREFIX_LEN);
3198 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3199 		       xattr->name, len);
3200 
3201 		simple_xattr_list_add(&info->xattrs, new_xattr);
3202 	}
3203 
3204 	return 0;
3205 }
3206 
3207 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3208 				   struct dentry *unused, struct inode *inode,
3209 				   const char *name, void *buffer, size_t size)
3210 {
3211 	struct shmem_inode_info *info = SHMEM_I(inode);
3212 
3213 	name = xattr_full_name(handler, name);
3214 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3215 }
3216 
3217 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3218 				   struct dentry *unused, struct inode *inode,
3219 				   const char *name, const void *value,
3220 				   size_t size, int flags)
3221 {
3222 	struct shmem_inode_info *info = SHMEM_I(inode);
3223 
3224 	name = xattr_full_name(handler, name);
3225 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3226 }
3227 
3228 static const struct xattr_handler shmem_security_xattr_handler = {
3229 	.prefix = XATTR_SECURITY_PREFIX,
3230 	.get = shmem_xattr_handler_get,
3231 	.set = shmem_xattr_handler_set,
3232 };
3233 
3234 static const struct xattr_handler shmem_trusted_xattr_handler = {
3235 	.prefix = XATTR_TRUSTED_PREFIX,
3236 	.get = shmem_xattr_handler_get,
3237 	.set = shmem_xattr_handler_set,
3238 };
3239 
3240 static const struct xattr_handler *shmem_xattr_handlers[] = {
3241 #ifdef CONFIG_TMPFS_POSIX_ACL
3242 	&posix_acl_access_xattr_handler,
3243 	&posix_acl_default_xattr_handler,
3244 #endif
3245 	&shmem_security_xattr_handler,
3246 	&shmem_trusted_xattr_handler,
3247 	NULL
3248 };
3249 
3250 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3251 {
3252 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3253 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3254 }
3255 #endif /* CONFIG_TMPFS_XATTR */
3256 
3257 static const struct inode_operations shmem_short_symlink_operations = {
3258 	.get_link	= simple_get_link,
3259 #ifdef CONFIG_TMPFS_XATTR
3260 	.listxattr	= shmem_listxattr,
3261 #endif
3262 };
3263 
3264 static const struct inode_operations shmem_symlink_inode_operations = {
3265 	.get_link	= shmem_get_link,
3266 #ifdef CONFIG_TMPFS_XATTR
3267 	.listxattr	= shmem_listxattr,
3268 #endif
3269 };
3270 
3271 static struct dentry *shmem_get_parent(struct dentry *child)
3272 {
3273 	return ERR_PTR(-ESTALE);
3274 }
3275 
3276 static int shmem_match(struct inode *ino, void *vfh)
3277 {
3278 	__u32 *fh = vfh;
3279 	__u64 inum = fh[2];
3280 	inum = (inum << 32) | fh[1];
3281 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3282 }
3283 
3284 /* Find any alias of inode, but prefer a hashed alias */
3285 static struct dentry *shmem_find_alias(struct inode *inode)
3286 {
3287 	struct dentry *alias = d_find_alias(inode);
3288 
3289 	return alias ?: d_find_any_alias(inode);
3290 }
3291 
3292 
3293 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3294 		struct fid *fid, int fh_len, int fh_type)
3295 {
3296 	struct inode *inode;
3297 	struct dentry *dentry = NULL;
3298 	u64 inum;
3299 
3300 	if (fh_len < 3)
3301 		return NULL;
3302 
3303 	inum = fid->raw[2];
3304 	inum = (inum << 32) | fid->raw[1];
3305 
3306 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3307 			shmem_match, fid->raw);
3308 	if (inode) {
3309 		dentry = shmem_find_alias(inode);
3310 		iput(inode);
3311 	}
3312 
3313 	return dentry;
3314 }
3315 
3316 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3317 				struct inode *parent)
3318 {
3319 	if (*len < 3) {
3320 		*len = 3;
3321 		return FILEID_INVALID;
3322 	}
3323 
3324 	if (inode_unhashed(inode)) {
3325 		/* Unfortunately insert_inode_hash is not idempotent,
3326 		 * so as we hash inodes here rather than at creation
3327 		 * time, we need a lock to ensure we only try
3328 		 * to do it once
3329 		 */
3330 		static DEFINE_SPINLOCK(lock);
3331 		spin_lock(&lock);
3332 		if (inode_unhashed(inode))
3333 			__insert_inode_hash(inode,
3334 					    inode->i_ino + inode->i_generation);
3335 		spin_unlock(&lock);
3336 	}
3337 
3338 	fh[0] = inode->i_generation;
3339 	fh[1] = inode->i_ino;
3340 	fh[2] = ((__u64)inode->i_ino) >> 32;
3341 
3342 	*len = 3;
3343 	return 1;
3344 }
3345 
3346 static const struct export_operations shmem_export_ops = {
3347 	.get_parent     = shmem_get_parent,
3348 	.encode_fh      = shmem_encode_fh,
3349 	.fh_to_dentry	= shmem_fh_to_dentry,
3350 };
3351 
3352 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3353 			       bool remount)
3354 {
3355 	char *this_char, *value, *rest;
3356 	struct mempolicy *mpol = NULL;
3357 	uid_t uid;
3358 	gid_t gid;
3359 
3360 	while (options != NULL) {
3361 		this_char = options;
3362 		for (;;) {
3363 			/*
3364 			 * NUL-terminate this option: unfortunately,
3365 			 * mount options form a comma-separated list,
3366 			 * but mpol's nodelist may also contain commas.
3367 			 */
3368 			options = strchr(options, ',');
3369 			if (options == NULL)
3370 				break;
3371 			options++;
3372 			if (!isdigit(*options)) {
3373 				options[-1] = '\0';
3374 				break;
3375 			}
3376 		}
3377 		if (!*this_char)
3378 			continue;
3379 		if ((value = strchr(this_char,'=')) != NULL) {
3380 			*value++ = 0;
3381 		} else {
3382 			pr_err("tmpfs: No value for mount option '%s'\n",
3383 			       this_char);
3384 			goto error;
3385 		}
3386 
3387 		if (!strcmp(this_char,"size")) {
3388 			unsigned long long size;
3389 			size = memparse(value,&rest);
3390 			if (*rest == '%') {
3391 				size <<= PAGE_SHIFT;
3392 				size *= totalram_pages();
3393 				do_div(size, 100);
3394 				rest++;
3395 			}
3396 			if (*rest)
3397 				goto bad_val;
3398 			sbinfo->max_blocks =
3399 				DIV_ROUND_UP(size, PAGE_SIZE);
3400 		} else if (!strcmp(this_char,"nr_blocks")) {
3401 			sbinfo->max_blocks = memparse(value, &rest);
3402 			if (*rest)
3403 				goto bad_val;
3404 		} else if (!strcmp(this_char,"nr_inodes")) {
3405 			sbinfo->max_inodes = memparse(value, &rest);
3406 			if (*rest)
3407 				goto bad_val;
3408 		} else if (!strcmp(this_char,"mode")) {
3409 			if (remount)
3410 				continue;
3411 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3412 			if (*rest)
3413 				goto bad_val;
3414 		} else if (!strcmp(this_char,"uid")) {
3415 			if (remount)
3416 				continue;
3417 			uid = simple_strtoul(value, &rest, 0);
3418 			if (*rest)
3419 				goto bad_val;
3420 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3421 			if (!uid_valid(sbinfo->uid))
3422 				goto bad_val;
3423 		} else if (!strcmp(this_char,"gid")) {
3424 			if (remount)
3425 				continue;
3426 			gid = simple_strtoul(value, &rest, 0);
3427 			if (*rest)
3428 				goto bad_val;
3429 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3430 			if (!gid_valid(sbinfo->gid))
3431 				goto bad_val;
3432 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3433 		} else if (!strcmp(this_char, "huge")) {
3434 			int huge;
3435 			huge = shmem_parse_huge(value);
3436 			if (huge < 0)
3437 				goto bad_val;
3438 			if (!has_transparent_hugepage() &&
3439 					huge != SHMEM_HUGE_NEVER)
3440 				goto bad_val;
3441 			sbinfo->huge = huge;
3442 #endif
3443 #ifdef CONFIG_NUMA
3444 		} else if (!strcmp(this_char,"mpol")) {
3445 			mpol_put(mpol);
3446 			mpol = NULL;
3447 			if (mpol_parse_str(value, &mpol))
3448 				goto bad_val;
3449 #endif
3450 		} else {
3451 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3452 			goto error;
3453 		}
3454 	}
3455 	sbinfo->mpol = mpol;
3456 	return 0;
3457 
3458 bad_val:
3459 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3460 	       value, this_char);
3461 error:
3462 	mpol_put(mpol);
3463 	return 1;
3464 
3465 }
3466 
3467 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3468 {
3469 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3470 	struct shmem_sb_info config = *sbinfo;
3471 	unsigned long inodes;
3472 	int error = -EINVAL;
3473 
3474 	config.mpol = NULL;
3475 	if (shmem_parse_options(data, &config, true))
3476 		return error;
3477 
3478 	spin_lock(&sbinfo->stat_lock);
3479 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3480 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3481 		goto out;
3482 	if (config.max_inodes < inodes)
3483 		goto out;
3484 	/*
3485 	 * Those tests disallow limited->unlimited while any are in use;
3486 	 * but we must separately disallow unlimited->limited, because
3487 	 * in that case we have no record of how much is already in use.
3488 	 */
3489 	if (config.max_blocks && !sbinfo->max_blocks)
3490 		goto out;
3491 	if (config.max_inodes && !sbinfo->max_inodes)
3492 		goto out;
3493 
3494 	error = 0;
3495 	sbinfo->huge = config.huge;
3496 	sbinfo->max_blocks  = config.max_blocks;
3497 	sbinfo->max_inodes  = config.max_inodes;
3498 	sbinfo->free_inodes = config.max_inodes - inodes;
3499 
3500 	/*
3501 	 * Preserve previous mempolicy unless mpol remount option was specified.
3502 	 */
3503 	if (config.mpol) {
3504 		mpol_put(sbinfo->mpol);
3505 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3506 	}
3507 out:
3508 	spin_unlock(&sbinfo->stat_lock);
3509 	return error;
3510 }
3511 
3512 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3513 {
3514 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3515 
3516 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3517 		seq_printf(seq, ",size=%luk",
3518 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3519 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3520 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3521 	if (sbinfo->mode != (0777 | S_ISVTX))
3522 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3523 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3524 		seq_printf(seq, ",uid=%u",
3525 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3526 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3527 		seq_printf(seq, ",gid=%u",
3528 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3529 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3530 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3531 	if (sbinfo->huge)
3532 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3533 #endif
3534 	shmem_show_mpol(seq, sbinfo->mpol);
3535 	return 0;
3536 }
3537 
3538 #endif /* CONFIG_TMPFS */
3539 
3540 static void shmem_put_super(struct super_block *sb)
3541 {
3542 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3543 
3544 	percpu_counter_destroy(&sbinfo->used_blocks);
3545 	mpol_put(sbinfo->mpol);
3546 	kfree(sbinfo);
3547 	sb->s_fs_info = NULL;
3548 }
3549 
3550 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3551 {
3552 	struct inode *inode;
3553 	struct shmem_sb_info *sbinfo;
3554 	int err = -ENOMEM;
3555 
3556 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3557 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3558 				L1_CACHE_BYTES), GFP_KERNEL);
3559 	if (!sbinfo)
3560 		return -ENOMEM;
3561 
3562 	sbinfo->mode = 0777 | S_ISVTX;
3563 	sbinfo->uid = current_fsuid();
3564 	sbinfo->gid = current_fsgid();
3565 	sb->s_fs_info = sbinfo;
3566 
3567 #ifdef CONFIG_TMPFS
3568 	/*
3569 	 * Per default we only allow half of the physical ram per
3570 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3571 	 * but the internal instance is left unlimited.
3572 	 */
3573 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3574 		sbinfo->max_blocks = shmem_default_max_blocks();
3575 		sbinfo->max_inodes = shmem_default_max_inodes();
3576 		if (shmem_parse_options(data, sbinfo, false)) {
3577 			err = -EINVAL;
3578 			goto failed;
3579 		}
3580 	} else {
3581 		sb->s_flags |= SB_NOUSER;
3582 	}
3583 	sb->s_export_op = &shmem_export_ops;
3584 	sb->s_flags |= SB_NOSEC;
3585 #else
3586 	sb->s_flags |= SB_NOUSER;
3587 #endif
3588 
3589 	spin_lock_init(&sbinfo->stat_lock);
3590 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3591 		goto failed;
3592 	sbinfo->free_inodes = sbinfo->max_inodes;
3593 	spin_lock_init(&sbinfo->shrinklist_lock);
3594 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3595 
3596 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3597 	sb->s_blocksize = PAGE_SIZE;
3598 	sb->s_blocksize_bits = PAGE_SHIFT;
3599 	sb->s_magic = TMPFS_MAGIC;
3600 	sb->s_op = &shmem_ops;
3601 	sb->s_time_gran = 1;
3602 #ifdef CONFIG_TMPFS_XATTR
3603 	sb->s_xattr = shmem_xattr_handlers;
3604 #endif
3605 #ifdef CONFIG_TMPFS_POSIX_ACL
3606 	sb->s_flags |= SB_POSIXACL;
3607 #endif
3608 	uuid_gen(&sb->s_uuid);
3609 
3610 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3611 	if (!inode)
3612 		goto failed;
3613 	inode->i_uid = sbinfo->uid;
3614 	inode->i_gid = sbinfo->gid;
3615 	sb->s_root = d_make_root(inode);
3616 	if (!sb->s_root)
3617 		goto failed;
3618 	return 0;
3619 
3620 failed:
3621 	shmem_put_super(sb);
3622 	return err;
3623 }
3624 
3625 static struct kmem_cache *shmem_inode_cachep;
3626 
3627 static struct inode *shmem_alloc_inode(struct super_block *sb)
3628 {
3629 	struct shmem_inode_info *info;
3630 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3631 	if (!info)
3632 		return NULL;
3633 	return &info->vfs_inode;
3634 }
3635 
3636 static void shmem_free_in_core_inode(struct inode *inode)
3637 {
3638 	if (S_ISLNK(inode->i_mode))
3639 		kfree(inode->i_link);
3640 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3641 }
3642 
3643 static void shmem_destroy_inode(struct inode *inode)
3644 {
3645 	if (S_ISREG(inode->i_mode))
3646 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3647 }
3648 
3649 static void shmem_init_inode(void *foo)
3650 {
3651 	struct shmem_inode_info *info = foo;
3652 	inode_init_once(&info->vfs_inode);
3653 }
3654 
3655 static void shmem_init_inodecache(void)
3656 {
3657 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3658 				sizeof(struct shmem_inode_info),
3659 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3660 }
3661 
3662 static void shmem_destroy_inodecache(void)
3663 {
3664 	kmem_cache_destroy(shmem_inode_cachep);
3665 }
3666 
3667 static const struct address_space_operations shmem_aops = {
3668 	.writepage	= shmem_writepage,
3669 	.set_page_dirty	= __set_page_dirty_no_writeback,
3670 #ifdef CONFIG_TMPFS
3671 	.write_begin	= shmem_write_begin,
3672 	.write_end	= shmem_write_end,
3673 #endif
3674 #ifdef CONFIG_MIGRATION
3675 	.migratepage	= migrate_page,
3676 #endif
3677 	.error_remove_page = generic_error_remove_page,
3678 };
3679 
3680 static const struct file_operations shmem_file_operations = {
3681 	.mmap		= shmem_mmap,
3682 	.get_unmapped_area = shmem_get_unmapped_area,
3683 #ifdef CONFIG_TMPFS
3684 	.llseek		= shmem_file_llseek,
3685 	.read_iter	= shmem_file_read_iter,
3686 	.write_iter	= generic_file_write_iter,
3687 	.fsync		= noop_fsync,
3688 	.splice_read	= generic_file_splice_read,
3689 	.splice_write	= iter_file_splice_write,
3690 	.fallocate	= shmem_fallocate,
3691 #endif
3692 };
3693 
3694 static const struct inode_operations shmem_inode_operations = {
3695 	.getattr	= shmem_getattr,
3696 	.setattr	= shmem_setattr,
3697 #ifdef CONFIG_TMPFS_XATTR
3698 	.listxattr	= shmem_listxattr,
3699 	.set_acl	= simple_set_acl,
3700 #endif
3701 };
3702 
3703 static const struct inode_operations shmem_dir_inode_operations = {
3704 #ifdef CONFIG_TMPFS
3705 	.create		= shmem_create,
3706 	.lookup		= simple_lookup,
3707 	.link		= shmem_link,
3708 	.unlink		= shmem_unlink,
3709 	.symlink	= shmem_symlink,
3710 	.mkdir		= shmem_mkdir,
3711 	.rmdir		= shmem_rmdir,
3712 	.mknod		= shmem_mknod,
3713 	.rename		= shmem_rename2,
3714 	.tmpfile	= shmem_tmpfile,
3715 #endif
3716 #ifdef CONFIG_TMPFS_XATTR
3717 	.listxattr	= shmem_listxattr,
3718 #endif
3719 #ifdef CONFIG_TMPFS_POSIX_ACL
3720 	.setattr	= shmem_setattr,
3721 	.set_acl	= simple_set_acl,
3722 #endif
3723 };
3724 
3725 static const struct inode_operations shmem_special_inode_operations = {
3726 #ifdef CONFIG_TMPFS_XATTR
3727 	.listxattr	= shmem_listxattr,
3728 #endif
3729 #ifdef CONFIG_TMPFS_POSIX_ACL
3730 	.setattr	= shmem_setattr,
3731 	.set_acl	= simple_set_acl,
3732 #endif
3733 };
3734 
3735 static const struct super_operations shmem_ops = {
3736 	.alloc_inode	= shmem_alloc_inode,
3737 	.free_inode	= shmem_free_in_core_inode,
3738 	.destroy_inode	= shmem_destroy_inode,
3739 #ifdef CONFIG_TMPFS
3740 	.statfs		= shmem_statfs,
3741 	.remount_fs	= shmem_remount_fs,
3742 	.show_options	= shmem_show_options,
3743 #endif
3744 	.evict_inode	= shmem_evict_inode,
3745 	.drop_inode	= generic_delete_inode,
3746 	.put_super	= shmem_put_super,
3747 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3748 	.nr_cached_objects	= shmem_unused_huge_count,
3749 	.free_cached_objects	= shmem_unused_huge_scan,
3750 #endif
3751 };
3752 
3753 static const struct vm_operations_struct shmem_vm_ops = {
3754 	.fault		= shmem_fault,
3755 	.map_pages	= filemap_map_pages,
3756 #ifdef CONFIG_NUMA
3757 	.set_policy     = shmem_set_policy,
3758 	.get_policy     = shmem_get_policy,
3759 #endif
3760 };
3761 
3762 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3763 	int flags, const char *dev_name, void *data)
3764 {
3765 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3766 }
3767 
3768 static struct file_system_type shmem_fs_type = {
3769 	.owner		= THIS_MODULE,
3770 	.name		= "tmpfs",
3771 	.mount		= shmem_mount,
3772 	.kill_sb	= kill_litter_super,
3773 	.fs_flags	= FS_USERNS_MOUNT,
3774 };
3775 
3776 int __init shmem_init(void)
3777 {
3778 	int error;
3779 
3780 	shmem_init_inodecache();
3781 
3782 	error = register_filesystem(&shmem_fs_type);
3783 	if (error) {
3784 		pr_err("Could not register tmpfs\n");
3785 		goto out2;
3786 	}
3787 
3788 	shm_mnt = kern_mount(&shmem_fs_type);
3789 	if (IS_ERR(shm_mnt)) {
3790 		error = PTR_ERR(shm_mnt);
3791 		pr_err("Could not kern_mount tmpfs\n");
3792 		goto out1;
3793 	}
3794 
3795 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3796 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3797 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3798 	else
3799 		shmem_huge = 0; /* just in case it was patched */
3800 #endif
3801 	return 0;
3802 
3803 out1:
3804 	unregister_filesystem(&shmem_fs_type);
3805 out2:
3806 	shmem_destroy_inodecache();
3807 	shm_mnt = ERR_PTR(error);
3808 	return error;
3809 }
3810 
3811 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3812 static ssize_t shmem_enabled_show(struct kobject *kobj,
3813 		struct kobj_attribute *attr, char *buf)
3814 {
3815 	int values[] = {
3816 		SHMEM_HUGE_ALWAYS,
3817 		SHMEM_HUGE_WITHIN_SIZE,
3818 		SHMEM_HUGE_ADVISE,
3819 		SHMEM_HUGE_NEVER,
3820 		SHMEM_HUGE_DENY,
3821 		SHMEM_HUGE_FORCE,
3822 	};
3823 	int i, count;
3824 
3825 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3826 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3827 
3828 		count += sprintf(buf + count, fmt,
3829 				shmem_format_huge(values[i]));
3830 	}
3831 	buf[count - 1] = '\n';
3832 	return count;
3833 }
3834 
3835 static ssize_t shmem_enabled_store(struct kobject *kobj,
3836 		struct kobj_attribute *attr, const char *buf, size_t count)
3837 {
3838 	char tmp[16];
3839 	int huge;
3840 
3841 	if (count + 1 > sizeof(tmp))
3842 		return -EINVAL;
3843 	memcpy(tmp, buf, count);
3844 	tmp[count] = '\0';
3845 	if (count && tmp[count - 1] == '\n')
3846 		tmp[count - 1] = '\0';
3847 
3848 	huge = shmem_parse_huge(tmp);
3849 	if (huge == -EINVAL)
3850 		return -EINVAL;
3851 	if (!has_transparent_hugepage() &&
3852 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3853 		return -EINVAL;
3854 
3855 	shmem_huge = huge;
3856 	if (shmem_huge > SHMEM_HUGE_DENY)
3857 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3858 	return count;
3859 }
3860 
3861 struct kobj_attribute shmem_enabled_attr =
3862 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3863 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3864 
3865 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3866 bool shmem_huge_enabled(struct vm_area_struct *vma)
3867 {
3868 	struct inode *inode = file_inode(vma->vm_file);
3869 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3870 	loff_t i_size;
3871 	pgoff_t off;
3872 
3873 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3874 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3875 		return false;
3876 	if (shmem_huge == SHMEM_HUGE_FORCE)
3877 		return true;
3878 	if (shmem_huge == SHMEM_HUGE_DENY)
3879 		return false;
3880 	switch (sbinfo->huge) {
3881 		case SHMEM_HUGE_NEVER:
3882 			return false;
3883 		case SHMEM_HUGE_ALWAYS:
3884 			return true;
3885 		case SHMEM_HUGE_WITHIN_SIZE:
3886 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3887 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3888 			if (i_size >= HPAGE_PMD_SIZE &&
3889 					i_size >> PAGE_SHIFT >= off)
3890 				return true;
3891 			/* fall through */
3892 		case SHMEM_HUGE_ADVISE:
3893 			/* TODO: implement fadvise() hints */
3894 			return (vma->vm_flags & VM_HUGEPAGE);
3895 		default:
3896 			VM_BUG_ON(1);
3897 			return false;
3898 	}
3899 }
3900 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3901 
3902 #else /* !CONFIG_SHMEM */
3903 
3904 /*
3905  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3906  *
3907  * This is intended for small system where the benefits of the full
3908  * shmem code (swap-backed and resource-limited) are outweighed by
3909  * their complexity. On systems without swap this code should be
3910  * effectively equivalent, but much lighter weight.
3911  */
3912 
3913 static struct file_system_type shmem_fs_type = {
3914 	.name		= "tmpfs",
3915 	.mount		= ramfs_mount,
3916 	.kill_sb	= kill_litter_super,
3917 	.fs_flags	= FS_USERNS_MOUNT,
3918 };
3919 
3920 int __init shmem_init(void)
3921 {
3922 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3923 
3924 	shm_mnt = kern_mount(&shmem_fs_type);
3925 	BUG_ON(IS_ERR(shm_mnt));
3926 
3927 	return 0;
3928 }
3929 
3930 int shmem_unuse(unsigned int type, bool frontswap,
3931 		unsigned long *fs_pages_to_unuse)
3932 {
3933 	return 0;
3934 }
3935 
3936 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3937 {
3938 	return 0;
3939 }
3940 
3941 void shmem_unlock_mapping(struct address_space *mapping)
3942 {
3943 }
3944 
3945 #ifdef CONFIG_MMU
3946 unsigned long shmem_get_unmapped_area(struct file *file,
3947 				      unsigned long addr, unsigned long len,
3948 				      unsigned long pgoff, unsigned long flags)
3949 {
3950 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3951 }
3952 #endif
3953 
3954 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3955 {
3956 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3957 }
3958 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3959 
3960 #define shmem_vm_ops				generic_file_vm_ops
3961 #define shmem_file_operations			ramfs_file_operations
3962 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3963 #define shmem_acct_size(flags, size)		0
3964 #define shmem_unacct_size(flags, size)		do {} while (0)
3965 
3966 #endif /* CONFIG_SHMEM */
3967 
3968 /* common code */
3969 
3970 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3971 				       unsigned long flags, unsigned int i_flags)
3972 {
3973 	struct inode *inode;
3974 	struct file *res;
3975 
3976 	if (IS_ERR(mnt))
3977 		return ERR_CAST(mnt);
3978 
3979 	if (size < 0 || size > MAX_LFS_FILESIZE)
3980 		return ERR_PTR(-EINVAL);
3981 
3982 	if (shmem_acct_size(flags, size))
3983 		return ERR_PTR(-ENOMEM);
3984 
3985 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3986 				flags);
3987 	if (unlikely(!inode)) {
3988 		shmem_unacct_size(flags, size);
3989 		return ERR_PTR(-ENOSPC);
3990 	}
3991 	inode->i_flags |= i_flags;
3992 	inode->i_size = size;
3993 	clear_nlink(inode);	/* It is unlinked */
3994 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3995 	if (!IS_ERR(res))
3996 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3997 				&shmem_file_operations);
3998 	if (IS_ERR(res))
3999 		iput(inode);
4000 	return res;
4001 }
4002 
4003 /**
4004  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4005  * 	kernel internal.  There will be NO LSM permission checks against the
4006  * 	underlying inode.  So users of this interface must do LSM checks at a
4007  *	higher layer.  The users are the big_key and shm implementations.  LSM
4008  *	checks are provided at the key or shm level rather than the inode.
4009  * @name: name for dentry (to be seen in /proc/<pid>/maps
4010  * @size: size to be set for the file
4011  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4012  */
4013 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4014 {
4015 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4016 }
4017 
4018 /**
4019  * shmem_file_setup - get an unlinked file living in tmpfs
4020  * @name: name for dentry (to be seen in /proc/<pid>/maps
4021  * @size: size to be set for the file
4022  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4023  */
4024 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4025 {
4026 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4027 }
4028 EXPORT_SYMBOL_GPL(shmem_file_setup);
4029 
4030 /**
4031  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4032  * @mnt: the tmpfs mount where the file will be created
4033  * @name: name for dentry (to be seen in /proc/<pid>/maps
4034  * @size: size to be set for the file
4035  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4036  */
4037 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4038 				       loff_t size, unsigned long flags)
4039 {
4040 	return __shmem_file_setup(mnt, name, size, flags, 0);
4041 }
4042 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4043 
4044 /**
4045  * shmem_zero_setup - setup a shared anonymous mapping
4046  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4047  */
4048 int shmem_zero_setup(struct vm_area_struct *vma)
4049 {
4050 	struct file *file;
4051 	loff_t size = vma->vm_end - vma->vm_start;
4052 
4053 	/*
4054 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4055 	 * between XFS directory reading and selinux: since this file is only
4056 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4057 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4058 	 */
4059 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4060 	if (IS_ERR(file))
4061 		return PTR_ERR(file);
4062 
4063 	if (vma->vm_file)
4064 		fput(vma->vm_file);
4065 	vma->vm_file = file;
4066 	vma->vm_ops = &shmem_vm_ops;
4067 
4068 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4069 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4070 			(vma->vm_end & HPAGE_PMD_MASK)) {
4071 		khugepaged_enter(vma, vma->vm_flags);
4072 	}
4073 
4074 	return 0;
4075 }
4076 
4077 /**
4078  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4079  * @mapping:	the page's address_space
4080  * @index:	the page index
4081  * @gfp:	the page allocator flags to use if allocating
4082  *
4083  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4084  * with any new page allocations done using the specified allocation flags.
4085  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4086  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4087  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4088  *
4089  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4090  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4091  */
4092 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4093 					 pgoff_t index, gfp_t gfp)
4094 {
4095 #ifdef CONFIG_SHMEM
4096 	struct inode *inode = mapping->host;
4097 	struct page *page;
4098 	int error;
4099 
4100 	BUG_ON(mapping->a_ops != &shmem_aops);
4101 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4102 				  gfp, NULL, NULL, NULL);
4103 	if (error)
4104 		page = ERR_PTR(error);
4105 	else
4106 		unlock_page(page);
4107 	return page;
4108 #else
4109 	/*
4110 	 * The tiny !SHMEM case uses ramfs without swap
4111 	 */
4112 	return read_cache_page_gfp(mapping, index, gfp);
4113 #endif
4114 }
4115 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4116