xref: /openbmc/linux/mm/shmem.c (revision eb9fe179)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 	bool noswap;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 #define SHMEM_SEEN_NOSWAP 16
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
141 			     struct folio **foliop, enum sgp_type sgp,
142 			     gfp_t gfp, struct vm_area_struct *vma,
143 			     vm_fault_t *fault_type);
144 
145 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
146 {
147 	return sb->s_fs_info;
148 }
149 
150 /*
151  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
152  * for shared memory and for shared anonymous (/dev/zero) mappings
153  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
154  * consistent with the pre-accounting of private mappings ...
155  */
156 static inline int shmem_acct_size(unsigned long flags, loff_t size)
157 {
158 	return (flags & VM_NORESERVE) ?
159 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
160 }
161 
162 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
163 {
164 	if (!(flags & VM_NORESERVE))
165 		vm_unacct_memory(VM_ACCT(size));
166 }
167 
168 static inline int shmem_reacct_size(unsigned long flags,
169 		loff_t oldsize, loff_t newsize)
170 {
171 	if (!(flags & VM_NORESERVE)) {
172 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
173 			return security_vm_enough_memory_mm(current->mm,
174 					VM_ACCT(newsize) - VM_ACCT(oldsize));
175 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
176 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
177 	}
178 	return 0;
179 }
180 
181 /*
182  * ... whereas tmpfs objects are accounted incrementally as
183  * pages are allocated, in order to allow large sparse files.
184  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
185  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
186  */
187 static inline int shmem_acct_block(unsigned long flags, long pages)
188 {
189 	if (!(flags & VM_NORESERVE))
190 		return 0;
191 
192 	return security_vm_enough_memory_mm(current->mm,
193 			pages * VM_ACCT(PAGE_SIZE));
194 }
195 
196 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
197 {
198 	if (flags & VM_NORESERVE)
199 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
200 }
201 
202 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
203 {
204 	struct shmem_inode_info *info = SHMEM_I(inode);
205 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
206 
207 	if (shmem_acct_block(info->flags, pages))
208 		return false;
209 
210 	if (sbinfo->max_blocks) {
211 		if (percpu_counter_compare(&sbinfo->used_blocks,
212 					   sbinfo->max_blocks - pages) > 0)
213 			goto unacct;
214 		percpu_counter_add(&sbinfo->used_blocks, pages);
215 	}
216 
217 	return true;
218 
219 unacct:
220 	shmem_unacct_blocks(info->flags, pages);
221 	return false;
222 }
223 
224 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
225 {
226 	struct shmem_inode_info *info = SHMEM_I(inode);
227 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228 
229 	if (sbinfo->max_blocks)
230 		percpu_counter_sub(&sbinfo->used_blocks, pages);
231 	shmem_unacct_blocks(info->flags, pages);
232 }
233 
234 static const struct super_operations shmem_ops;
235 const struct address_space_operations shmem_aops;
236 static const struct file_operations shmem_file_operations;
237 static const struct inode_operations shmem_inode_operations;
238 static const struct inode_operations shmem_dir_inode_operations;
239 static const struct inode_operations shmem_special_inode_operations;
240 static const struct vm_operations_struct shmem_vm_ops;
241 static const struct vm_operations_struct shmem_anon_vm_ops;
242 static struct file_system_type shmem_fs_type;
243 
244 bool vma_is_anon_shmem(struct vm_area_struct *vma)
245 {
246 	return vma->vm_ops == &shmem_anon_vm_ops;
247 }
248 
249 bool vma_is_shmem(struct vm_area_struct *vma)
250 {
251 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
252 }
253 
254 static LIST_HEAD(shmem_swaplist);
255 static DEFINE_MUTEX(shmem_swaplist_mutex);
256 
257 /*
258  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
259  * produces a novel ino for the newly allocated inode.
260  *
261  * It may also be called when making a hard link to permit the space needed by
262  * each dentry. However, in that case, no new inode number is needed since that
263  * internally draws from another pool of inode numbers (currently global
264  * get_next_ino()). This case is indicated by passing NULL as inop.
265  */
266 #define SHMEM_INO_BATCH 1024
267 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
268 {
269 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
270 	ino_t ino;
271 
272 	if (!(sb->s_flags & SB_KERNMOUNT)) {
273 		raw_spin_lock(&sbinfo->stat_lock);
274 		if (sbinfo->max_inodes) {
275 			if (!sbinfo->free_inodes) {
276 				raw_spin_unlock(&sbinfo->stat_lock);
277 				return -ENOSPC;
278 			}
279 			sbinfo->free_inodes--;
280 		}
281 		if (inop) {
282 			ino = sbinfo->next_ino++;
283 			if (unlikely(is_zero_ino(ino)))
284 				ino = sbinfo->next_ino++;
285 			if (unlikely(!sbinfo->full_inums &&
286 				     ino > UINT_MAX)) {
287 				/*
288 				 * Emulate get_next_ino uint wraparound for
289 				 * compatibility
290 				 */
291 				if (IS_ENABLED(CONFIG_64BIT))
292 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
293 						__func__, MINOR(sb->s_dev));
294 				sbinfo->next_ino = 1;
295 				ino = sbinfo->next_ino++;
296 			}
297 			*inop = ino;
298 		}
299 		raw_spin_unlock(&sbinfo->stat_lock);
300 	} else if (inop) {
301 		/*
302 		 * __shmem_file_setup, one of our callers, is lock-free: it
303 		 * doesn't hold stat_lock in shmem_reserve_inode since
304 		 * max_inodes is always 0, and is called from potentially
305 		 * unknown contexts. As such, use a per-cpu batched allocator
306 		 * which doesn't require the per-sb stat_lock unless we are at
307 		 * the batch boundary.
308 		 *
309 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
310 		 * shmem mounts are not exposed to userspace, so we don't need
311 		 * to worry about things like glibc compatibility.
312 		 */
313 		ino_t *next_ino;
314 
315 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
316 		ino = *next_ino;
317 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
318 			raw_spin_lock(&sbinfo->stat_lock);
319 			ino = sbinfo->next_ino;
320 			sbinfo->next_ino += SHMEM_INO_BATCH;
321 			raw_spin_unlock(&sbinfo->stat_lock);
322 			if (unlikely(is_zero_ino(ino)))
323 				ino++;
324 		}
325 		*inop = ino;
326 		*next_ino = ++ino;
327 		put_cpu();
328 	}
329 
330 	return 0;
331 }
332 
333 static void shmem_free_inode(struct super_block *sb)
334 {
335 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
336 	if (sbinfo->max_inodes) {
337 		raw_spin_lock(&sbinfo->stat_lock);
338 		sbinfo->free_inodes++;
339 		raw_spin_unlock(&sbinfo->stat_lock);
340 	}
341 }
342 
343 /**
344  * shmem_recalc_inode - recalculate the block usage of an inode
345  * @inode: inode to recalc
346  *
347  * We have to calculate the free blocks since the mm can drop
348  * undirtied hole pages behind our back.
349  *
350  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
351  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
352  *
353  * It has to be called with the spinlock held.
354  */
355 static void shmem_recalc_inode(struct inode *inode)
356 {
357 	struct shmem_inode_info *info = SHMEM_I(inode);
358 	long freed;
359 
360 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
361 	if (freed > 0) {
362 		info->alloced -= freed;
363 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
364 		shmem_inode_unacct_blocks(inode, freed);
365 	}
366 }
367 
368 bool shmem_charge(struct inode *inode, long pages)
369 {
370 	struct shmem_inode_info *info = SHMEM_I(inode);
371 	unsigned long flags;
372 
373 	if (!shmem_inode_acct_block(inode, pages))
374 		return false;
375 
376 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
377 	inode->i_mapping->nrpages += pages;
378 
379 	spin_lock_irqsave(&info->lock, flags);
380 	info->alloced += pages;
381 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
382 	shmem_recalc_inode(inode);
383 	spin_unlock_irqrestore(&info->lock, flags);
384 
385 	return true;
386 }
387 
388 void shmem_uncharge(struct inode *inode, long pages)
389 {
390 	struct shmem_inode_info *info = SHMEM_I(inode);
391 	unsigned long flags;
392 
393 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
394 
395 	spin_lock_irqsave(&info->lock, flags);
396 	info->alloced -= pages;
397 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
398 	shmem_recalc_inode(inode);
399 	spin_unlock_irqrestore(&info->lock, flags);
400 
401 	shmem_inode_unacct_blocks(inode, pages);
402 }
403 
404 /*
405  * Replace item expected in xarray by a new item, while holding xa_lock.
406  */
407 static int shmem_replace_entry(struct address_space *mapping,
408 			pgoff_t index, void *expected, void *replacement)
409 {
410 	XA_STATE(xas, &mapping->i_pages, index);
411 	void *item;
412 
413 	VM_BUG_ON(!expected);
414 	VM_BUG_ON(!replacement);
415 	item = xas_load(&xas);
416 	if (item != expected)
417 		return -ENOENT;
418 	xas_store(&xas, replacement);
419 	return 0;
420 }
421 
422 /*
423  * Sometimes, before we decide whether to proceed or to fail, we must check
424  * that an entry was not already brought back from swap by a racing thread.
425  *
426  * Checking page is not enough: by the time a SwapCache page is locked, it
427  * might be reused, and again be SwapCache, using the same swap as before.
428  */
429 static bool shmem_confirm_swap(struct address_space *mapping,
430 			       pgoff_t index, swp_entry_t swap)
431 {
432 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
433 }
434 
435 /*
436  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
437  *
438  * SHMEM_HUGE_NEVER:
439  *	disables huge pages for the mount;
440  * SHMEM_HUGE_ALWAYS:
441  *	enables huge pages for the mount;
442  * SHMEM_HUGE_WITHIN_SIZE:
443  *	only allocate huge pages if the page will be fully within i_size,
444  *	also respect fadvise()/madvise() hints;
445  * SHMEM_HUGE_ADVISE:
446  *	only allocate huge pages if requested with fadvise()/madvise();
447  */
448 
449 #define SHMEM_HUGE_NEVER	0
450 #define SHMEM_HUGE_ALWAYS	1
451 #define SHMEM_HUGE_WITHIN_SIZE	2
452 #define SHMEM_HUGE_ADVISE	3
453 
454 /*
455  * Special values.
456  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
457  *
458  * SHMEM_HUGE_DENY:
459  *	disables huge on shm_mnt and all mounts, for emergency use;
460  * SHMEM_HUGE_FORCE:
461  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
462  *
463  */
464 #define SHMEM_HUGE_DENY		(-1)
465 #define SHMEM_HUGE_FORCE	(-2)
466 
467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
468 /* ifdef here to avoid bloating shmem.o when not necessary */
469 
470 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
471 
472 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
473 		   struct mm_struct *mm, unsigned long vm_flags)
474 {
475 	loff_t i_size;
476 
477 	if (!S_ISREG(inode->i_mode))
478 		return false;
479 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
480 		return false;
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
484 		return true;
485 
486 	switch (SHMEM_SB(inode->i_sb)->huge) {
487 	case SHMEM_HUGE_ALWAYS:
488 		return true;
489 	case SHMEM_HUGE_WITHIN_SIZE:
490 		index = round_up(index + 1, HPAGE_PMD_NR);
491 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
492 		if (i_size >> PAGE_SHIFT >= index)
493 			return true;
494 		fallthrough;
495 	case SHMEM_HUGE_ADVISE:
496 		if (mm && (vm_flags & VM_HUGEPAGE))
497 			return true;
498 		fallthrough;
499 	default:
500 		return false;
501 	}
502 }
503 
504 #if defined(CONFIG_SYSFS)
505 static int shmem_parse_huge(const char *str)
506 {
507 	if (!strcmp(str, "never"))
508 		return SHMEM_HUGE_NEVER;
509 	if (!strcmp(str, "always"))
510 		return SHMEM_HUGE_ALWAYS;
511 	if (!strcmp(str, "within_size"))
512 		return SHMEM_HUGE_WITHIN_SIZE;
513 	if (!strcmp(str, "advise"))
514 		return SHMEM_HUGE_ADVISE;
515 	if (!strcmp(str, "deny"))
516 		return SHMEM_HUGE_DENY;
517 	if (!strcmp(str, "force"))
518 		return SHMEM_HUGE_FORCE;
519 	return -EINVAL;
520 }
521 #endif
522 
523 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
524 static const char *shmem_format_huge(int huge)
525 {
526 	switch (huge) {
527 	case SHMEM_HUGE_NEVER:
528 		return "never";
529 	case SHMEM_HUGE_ALWAYS:
530 		return "always";
531 	case SHMEM_HUGE_WITHIN_SIZE:
532 		return "within_size";
533 	case SHMEM_HUGE_ADVISE:
534 		return "advise";
535 	case SHMEM_HUGE_DENY:
536 		return "deny";
537 	case SHMEM_HUGE_FORCE:
538 		return "force";
539 	default:
540 		VM_BUG_ON(1);
541 		return "bad_val";
542 	}
543 }
544 #endif
545 
546 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
547 		struct shrink_control *sc, unsigned long nr_to_split)
548 {
549 	LIST_HEAD(list), *pos, *next;
550 	LIST_HEAD(to_remove);
551 	struct inode *inode;
552 	struct shmem_inode_info *info;
553 	struct folio *folio;
554 	unsigned long batch = sc ? sc->nr_to_scan : 128;
555 	int split = 0;
556 
557 	if (list_empty(&sbinfo->shrinklist))
558 		return SHRINK_STOP;
559 
560 	spin_lock(&sbinfo->shrinklist_lock);
561 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
562 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
563 
564 		/* pin the inode */
565 		inode = igrab(&info->vfs_inode);
566 
567 		/* inode is about to be evicted */
568 		if (!inode) {
569 			list_del_init(&info->shrinklist);
570 			goto next;
571 		}
572 
573 		/* Check if there's anything to gain */
574 		if (round_up(inode->i_size, PAGE_SIZE) ==
575 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
576 			list_move(&info->shrinklist, &to_remove);
577 			goto next;
578 		}
579 
580 		list_move(&info->shrinklist, &list);
581 next:
582 		sbinfo->shrinklist_len--;
583 		if (!--batch)
584 			break;
585 	}
586 	spin_unlock(&sbinfo->shrinklist_lock);
587 
588 	list_for_each_safe(pos, next, &to_remove) {
589 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
590 		inode = &info->vfs_inode;
591 		list_del_init(&info->shrinklist);
592 		iput(inode);
593 	}
594 
595 	list_for_each_safe(pos, next, &list) {
596 		int ret;
597 		pgoff_t index;
598 
599 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
600 		inode = &info->vfs_inode;
601 
602 		if (nr_to_split && split >= nr_to_split)
603 			goto move_back;
604 
605 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
606 		folio = filemap_get_folio(inode->i_mapping, index);
607 		if (IS_ERR(folio))
608 			goto drop;
609 
610 		/* No huge page at the end of the file: nothing to split */
611 		if (!folio_test_large(folio)) {
612 			folio_put(folio);
613 			goto drop;
614 		}
615 
616 		/*
617 		 * Move the inode on the list back to shrinklist if we failed
618 		 * to lock the page at this time.
619 		 *
620 		 * Waiting for the lock may lead to deadlock in the
621 		 * reclaim path.
622 		 */
623 		if (!folio_trylock(folio)) {
624 			folio_put(folio);
625 			goto move_back;
626 		}
627 
628 		ret = split_folio(folio);
629 		folio_unlock(folio);
630 		folio_put(folio);
631 
632 		/* If split failed move the inode on the list back to shrinklist */
633 		if (ret)
634 			goto move_back;
635 
636 		split++;
637 drop:
638 		list_del_init(&info->shrinklist);
639 		goto put;
640 move_back:
641 		/*
642 		 * Make sure the inode is either on the global list or deleted
643 		 * from any local list before iput() since it could be deleted
644 		 * in another thread once we put the inode (then the local list
645 		 * is corrupted).
646 		 */
647 		spin_lock(&sbinfo->shrinklist_lock);
648 		list_move(&info->shrinklist, &sbinfo->shrinklist);
649 		sbinfo->shrinklist_len++;
650 		spin_unlock(&sbinfo->shrinklist_lock);
651 put:
652 		iput(inode);
653 	}
654 
655 	return split;
656 }
657 
658 static long shmem_unused_huge_scan(struct super_block *sb,
659 		struct shrink_control *sc)
660 {
661 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
662 
663 	if (!READ_ONCE(sbinfo->shrinklist_len))
664 		return SHRINK_STOP;
665 
666 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
667 }
668 
669 static long shmem_unused_huge_count(struct super_block *sb,
670 		struct shrink_control *sc)
671 {
672 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
673 	return READ_ONCE(sbinfo->shrinklist_len);
674 }
675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
676 
677 #define shmem_huge SHMEM_HUGE_DENY
678 
679 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
680 		   struct mm_struct *mm, unsigned long vm_flags)
681 {
682 	return false;
683 }
684 
685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
686 		struct shrink_control *sc, unsigned long nr_to_split)
687 {
688 	return 0;
689 }
690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
691 
692 /*
693  * Like filemap_add_folio, but error if expected item has gone.
694  */
695 static int shmem_add_to_page_cache(struct folio *folio,
696 				   struct address_space *mapping,
697 				   pgoff_t index, void *expected, gfp_t gfp,
698 				   struct mm_struct *charge_mm)
699 {
700 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
701 	long nr = folio_nr_pages(folio);
702 	int error;
703 
704 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
705 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
706 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
707 	VM_BUG_ON(expected && folio_test_large(folio));
708 
709 	folio_ref_add(folio, nr);
710 	folio->mapping = mapping;
711 	folio->index = index;
712 
713 	if (!folio_test_swapcache(folio)) {
714 		error = mem_cgroup_charge(folio, charge_mm, gfp);
715 		if (error) {
716 			if (folio_test_pmd_mappable(folio)) {
717 				count_vm_event(THP_FILE_FALLBACK);
718 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
719 			}
720 			goto error;
721 		}
722 	}
723 	folio_throttle_swaprate(folio, gfp);
724 
725 	do {
726 		xas_lock_irq(&xas);
727 		if (expected != xas_find_conflict(&xas)) {
728 			xas_set_err(&xas, -EEXIST);
729 			goto unlock;
730 		}
731 		if (expected && xas_find_conflict(&xas)) {
732 			xas_set_err(&xas, -EEXIST);
733 			goto unlock;
734 		}
735 		xas_store(&xas, folio);
736 		if (xas_error(&xas))
737 			goto unlock;
738 		if (folio_test_pmd_mappable(folio)) {
739 			count_vm_event(THP_FILE_ALLOC);
740 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
741 		}
742 		mapping->nrpages += nr;
743 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
744 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
745 unlock:
746 		xas_unlock_irq(&xas);
747 	} while (xas_nomem(&xas, gfp));
748 
749 	if (xas_error(&xas)) {
750 		error = xas_error(&xas);
751 		goto error;
752 	}
753 
754 	return 0;
755 error:
756 	folio->mapping = NULL;
757 	folio_ref_sub(folio, nr);
758 	return error;
759 }
760 
761 /*
762  * Like delete_from_page_cache, but substitutes swap for @folio.
763  */
764 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
765 {
766 	struct address_space *mapping = folio->mapping;
767 	long nr = folio_nr_pages(folio);
768 	int error;
769 
770 	xa_lock_irq(&mapping->i_pages);
771 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
772 	folio->mapping = NULL;
773 	mapping->nrpages -= nr;
774 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
775 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
776 	xa_unlock_irq(&mapping->i_pages);
777 	folio_put(folio);
778 	BUG_ON(error);
779 }
780 
781 /*
782  * Remove swap entry from page cache, free the swap and its page cache.
783  */
784 static int shmem_free_swap(struct address_space *mapping,
785 			   pgoff_t index, void *radswap)
786 {
787 	void *old;
788 
789 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
790 	if (old != radswap)
791 		return -ENOENT;
792 	free_swap_and_cache(radix_to_swp_entry(radswap));
793 	return 0;
794 }
795 
796 /*
797  * Determine (in bytes) how many of the shmem object's pages mapped by the
798  * given offsets are swapped out.
799  *
800  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
801  * as long as the inode doesn't go away and racy results are not a problem.
802  */
803 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
804 						pgoff_t start, pgoff_t end)
805 {
806 	XA_STATE(xas, &mapping->i_pages, start);
807 	struct page *page;
808 	unsigned long swapped = 0;
809 
810 	rcu_read_lock();
811 	xas_for_each(&xas, page, end - 1) {
812 		if (xas_retry(&xas, page))
813 			continue;
814 		if (xa_is_value(page))
815 			swapped++;
816 
817 		if (need_resched()) {
818 			xas_pause(&xas);
819 			cond_resched_rcu();
820 		}
821 	}
822 
823 	rcu_read_unlock();
824 
825 	return swapped << PAGE_SHIFT;
826 }
827 
828 /*
829  * Determine (in bytes) how many of the shmem object's pages mapped by the
830  * given vma is swapped out.
831  *
832  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
833  * as long as the inode doesn't go away and racy results are not a problem.
834  */
835 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
836 {
837 	struct inode *inode = file_inode(vma->vm_file);
838 	struct shmem_inode_info *info = SHMEM_I(inode);
839 	struct address_space *mapping = inode->i_mapping;
840 	unsigned long swapped;
841 
842 	/* Be careful as we don't hold info->lock */
843 	swapped = READ_ONCE(info->swapped);
844 
845 	/*
846 	 * The easier cases are when the shmem object has nothing in swap, or
847 	 * the vma maps it whole. Then we can simply use the stats that we
848 	 * already track.
849 	 */
850 	if (!swapped)
851 		return 0;
852 
853 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
854 		return swapped << PAGE_SHIFT;
855 
856 	/* Here comes the more involved part */
857 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
858 					vma->vm_pgoff + vma_pages(vma));
859 }
860 
861 /*
862  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
863  */
864 void shmem_unlock_mapping(struct address_space *mapping)
865 {
866 	struct folio_batch fbatch;
867 	pgoff_t index = 0;
868 
869 	folio_batch_init(&fbatch);
870 	/*
871 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
872 	 */
873 	while (!mapping_unevictable(mapping) &&
874 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
875 		check_move_unevictable_folios(&fbatch);
876 		folio_batch_release(&fbatch);
877 		cond_resched();
878 	}
879 }
880 
881 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
882 {
883 	struct folio *folio;
884 
885 	/*
886 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
887 	 * beyond i_size, and reports fallocated folios as holes.
888 	 */
889 	folio = filemap_get_entry(inode->i_mapping, index);
890 	if (!folio)
891 		return folio;
892 	if (!xa_is_value(folio)) {
893 		folio_lock(folio);
894 		if (folio->mapping == inode->i_mapping)
895 			return folio;
896 		/* The folio has been swapped out */
897 		folio_unlock(folio);
898 		folio_put(folio);
899 	}
900 	/*
901 	 * But read a folio back from swap if any of it is within i_size
902 	 * (although in some cases this is just a waste of time).
903 	 */
904 	folio = NULL;
905 	shmem_get_folio(inode, index, &folio, SGP_READ);
906 	return folio;
907 }
908 
909 /*
910  * Remove range of pages and swap entries from page cache, and free them.
911  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
912  */
913 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
914 								 bool unfalloc)
915 {
916 	struct address_space *mapping = inode->i_mapping;
917 	struct shmem_inode_info *info = SHMEM_I(inode);
918 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
920 	struct folio_batch fbatch;
921 	pgoff_t indices[PAGEVEC_SIZE];
922 	struct folio *folio;
923 	bool same_folio;
924 	long nr_swaps_freed = 0;
925 	pgoff_t index;
926 	int i;
927 
928 	if (lend == -1)
929 		end = -1;	/* unsigned, so actually very big */
930 
931 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932 		info->fallocend = start;
933 
934 	folio_batch_init(&fbatch);
935 	index = start;
936 	while (index < end && find_lock_entries(mapping, &index, end - 1,
937 			&fbatch, indices)) {
938 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
939 			folio = fbatch.folios[i];
940 
941 			if (xa_is_value(folio)) {
942 				if (unfalloc)
943 					continue;
944 				nr_swaps_freed += !shmem_free_swap(mapping,
945 							indices[i], folio);
946 				continue;
947 			}
948 
949 			if (!unfalloc || !folio_test_uptodate(folio))
950 				truncate_inode_folio(mapping, folio);
951 			folio_unlock(folio);
952 		}
953 		folio_batch_remove_exceptionals(&fbatch);
954 		folio_batch_release(&fbatch);
955 		cond_resched();
956 	}
957 
958 	/*
959 	 * When undoing a failed fallocate, we want none of the partial folio
960 	 * zeroing and splitting below, but shall want to truncate the whole
961 	 * folio when !uptodate indicates that it was added by this fallocate,
962 	 * even when [lstart, lend] covers only a part of the folio.
963 	 */
964 	if (unfalloc)
965 		goto whole_folios;
966 
967 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
968 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
969 	if (folio) {
970 		same_folio = lend < folio_pos(folio) + folio_size(folio);
971 		folio_mark_dirty(folio);
972 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
973 			start = folio->index + folio_nr_pages(folio);
974 			if (same_folio)
975 				end = folio->index;
976 		}
977 		folio_unlock(folio);
978 		folio_put(folio);
979 		folio = NULL;
980 	}
981 
982 	if (!same_folio)
983 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
984 	if (folio) {
985 		folio_mark_dirty(folio);
986 		if (!truncate_inode_partial_folio(folio, lstart, lend))
987 			end = folio->index;
988 		folio_unlock(folio);
989 		folio_put(folio);
990 	}
991 
992 whole_folios:
993 
994 	index = start;
995 	while (index < end) {
996 		cond_resched();
997 
998 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
999 				indices)) {
1000 			/* If all gone or hole-punch or unfalloc, we're done */
1001 			if (index == start || end != -1)
1002 				break;
1003 			/* But if truncating, restart to make sure all gone */
1004 			index = start;
1005 			continue;
1006 		}
1007 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1008 			folio = fbatch.folios[i];
1009 
1010 			if (xa_is_value(folio)) {
1011 				if (unfalloc)
1012 					continue;
1013 				if (shmem_free_swap(mapping, indices[i], folio)) {
1014 					/* Swap was replaced by page: retry */
1015 					index = indices[i];
1016 					break;
1017 				}
1018 				nr_swaps_freed++;
1019 				continue;
1020 			}
1021 
1022 			folio_lock(folio);
1023 
1024 			if (!unfalloc || !folio_test_uptodate(folio)) {
1025 				if (folio_mapping(folio) != mapping) {
1026 					/* Page was replaced by swap: retry */
1027 					folio_unlock(folio);
1028 					index = indices[i];
1029 					break;
1030 				}
1031 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1032 						folio);
1033 				truncate_inode_folio(mapping, folio);
1034 			}
1035 			folio_unlock(folio);
1036 		}
1037 		folio_batch_remove_exceptionals(&fbatch);
1038 		folio_batch_release(&fbatch);
1039 	}
1040 
1041 	spin_lock_irq(&info->lock);
1042 	info->swapped -= nr_swaps_freed;
1043 	shmem_recalc_inode(inode);
1044 	spin_unlock_irq(&info->lock);
1045 }
1046 
1047 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1048 {
1049 	shmem_undo_range(inode, lstart, lend, false);
1050 	inode->i_ctime = inode->i_mtime = current_time(inode);
1051 	inode_inc_iversion(inode);
1052 }
1053 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1054 
1055 static int shmem_getattr(struct mnt_idmap *idmap,
1056 			 const struct path *path, struct kstat *stat,
1057 			 u32 request_mask, unsigned int query_flags)
1058 {
1059 	struct inode *inode = path->dentry->d_inode;
1060 	struct shmem_inode_info *info = SHMEM_I(inode);
1061 
1062 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1063 		spin_lock_irq(&info->lock);
1064 		shmem_recalc_inode(inode);
1065 		spin_unlock_irq(&info->lock);
1066 	}
1067 	if (info->fsflags & FS_APPEND_FL)
1068 		stat->attributes |= STATX_ATTR_APPEND;
1069 	if (info->fsflags & FS_IMMUTABLE_FL)
1070 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1071 	if (info->fsflags & FS_NODUMP_FL)
1072 		stat->attributes |= STATX_ATTR_NODUMP;
1073 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1074 			STATX_ATTR_IMMUTABLE |
1075 			STATX_ATTR_NODUMP);
1076 	generic_fillattr(idmap, inode, stat);
1077 
1078 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1079 		stat->blksize = HPAGE_PMD_SIZE;
1080 
1081 	if (request_mask & STATX_BTIME) {
1082 		stat->result_mask |= STATX_BTIME;
1083 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1084 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 static int shmem_setattr(struct mnt_idmap *idmap,
1091 			 struct dentry *dentry, struct iattr *attr)
1092 {
1093 	struct inode *inode = d_inode(dentry);
1094 	struct shmem_inode_info *info = SHMEM_I(inode);
1095 	int error;
1096 	bool update_mtime = false;
1097 	bool update_ctime = true;
1098 
1099 	error = setattr_prepare(idmap, dentry, attr);
1100 	if (error)
1101 		return error;
1102 
1103 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1104 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1105 			return -EPERM;
1106 		}
1107 	}
1108 
1109 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1110 		loff_t oldsize = inode->i_size;
1111 		loff_t newsize = attr->ia_size;
1112 
1113 		/* protected by i_rwsem */
1114 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1115 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1116 			return -EPERM;
1117 
1118 		if (newsize != oldsize) {
1119 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1120 					oldsize, newsize);
1121 			if (error)
1122 				return error;
1123 			i_size_write(inode, newsize);
1124 			update_mtime = true;
1125 		} else {
1126 			update_ctime = false;
1127 		}
1128 		if (newsize <= oldsize) {
1129 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1130 			if (oldsize > holebegin)
1131 				unmap_mapping_range(inode->i_mapping,
1132 							holebegin, 0, 1);
1133 			if (info->alloced)
1134 				shmem_truncate_range(inode,
1135 							newsize, (loff_t)-1);
1136 			/* unmap again to remove racily COWed private pages */
1137 			if (oldsize > holebegin)
1138 				unmap_mapping_range(inode->i_mapping,
1139 							holebegin, 0, 1);
1140 		}
1141 	}
1142 
1143 	setattr_copy(idmap, inode, attr);
1144 	if (attr->ia_valid & ATTR_MODE)
1145 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1146 	if (!error && update_ctime) {
1147 		inode->i_ctime = current_time(inode);
1148 		if (update_mtime)
1149 			inode->i_mtime = inode->i_ctime;
1150 		inode_inc_iversion(inode);
1151 	}
1152 	return error;
1153 }
1154 
1155 static void shmem_evict_inode(struct inode *inode)
1156 {
1157 	struct shmem_inode_info *info = SHMEM_I(inode);
1158 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1159 
1160 	if (shmem_mapping(inode->i_mapping)) {
1161 		shmem_unacct_size(info->flags, inode->i_size);
1162 		inode->i_size = 0;
1163 		mapping_set_exiting(inode->i_mapping);
1164 		shmem_truncate_range(inode, 0, (loff_t)-1);
1165 		if (!list_empty(&info->shrinklist)) {
1166 			spin_lock(&sbinfo->shrinklist_lock);
1167 			if (!list_empty(&info->shrinklist)) {
1168 				list_del_init(&info->shrinklist);
1169 				sbinfo->shrinklist_len--;
1170 			}
1171 			spin_unlock(&sbinfo->shrinklist_lock);
1172 		}
1173 		while (!list_empty(&info->swaplist)) {
1174 			/* Wait while shmem_unuse() is scanning this inode... */
1175 			wait_var_event(&info->stop_eviction,
1176 				       !atomic_read(&info->stop_eviction));
1177 			mutex_lock(&shmem_swaplist_mutex);
1178 			/* ...but beware of the race if we peeked too early */
1179 			if (!atomic_read(&info->stop_eviction))
1180 				list_del_init(&info->swaplist);
1181 			mutex_unlock(&shmem_swaplist_mutex);
1182 		}
1183 	}
1184 
1185 	simple_xattrs_free(&info->xattrs);
1186 	WARN_ON(inode->i_blocks);
1187 	shmem_free_inode(inode->i_sb);
1188 	clear_inode(inode);
1189 }
1190 
1191 static int shmem_find_swap_entries(struct address_space *mapping,
1192 				   pgoff_t start, struct folio_batch *fbatch,
1193 				   pgoff_t *indices, unsigned int type)
1194 {
1195 	XA_STATE(xas, &mapping->i_pages, start);
1196 	struct folio *folio;
1197 	swp_entry_t entry;
1198 
1199 	rcu_read_lock();
1200 	xas_for_each(&xas, folio, ULONG_MAX) {
1201 		if (xas_retry(&xas, folio))
1202 			continue;
1203 
1204 		if (!xa_is_value(folio))
1205 			continue;
1206 
1207 		entry = radix_to_swp_entry(folio);
1208 		/*
1209 		 * swapin error entries can be found in the mapping. But they're
1210 		 * deliberately ignored here as we've done everything we can do.
1211 		 */
1212 		if (swp_type(entry) != type)
1213 			continue;
1214 
1215 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1216 		if (!folio_batch_add(fbatch, folio))
1217 			break;
1218 
1219 		if (need_resched()) {
1220 			xas_pause(&xas);
1221 			cond_resched_rcu();
1222 		}
1223 	}
1224 	rcu_read_unlock();
1225 
1226 	return xas.xa_index;
1227 }
1228 
1229 /*
1230  * Move the swapped pages for an inode to page cache. Returns the count
1231  * of pages swapped in, or the error in case of failure.
1232  */
1233 static int shmem_unuse_swap_entries(struct inode *inode,
1234 		struct folio_batch *fbatch, pgoff_t *indices)
1235 {
1236 	int i = 0;
1237 	int ret = 0;
1238 	int error = 0;
1239 	struct address_space *mapping = inode->i_mapping;
1240 
1241 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1242 		struct folio *folio = fbatch->folios[i];
1243 
1244 		if (!xa_is_value(folio))
1245 			continue;
1246 		error = shmem_swapin_folio(inode, indices[i],
1247 					  &folio, SGP_CACHE,
1248 					  mapping_gfp_mask(mapping),
1249 					  NULL, NULL);
1250 		if (error == 0) {
1251 			folio_unlock(folio);
1252 			folio_put(folio);
1253 			ret++;
1254 		}
1255 		if (error == -ENOMEM)
1256 			break;
1257 		error = 0;
1258 	}
1259 	return error ? error : ret;
1260 }
1261 
1262 /*
1263  * If swap found in inode, free it and move page from swapcache to filecache.
1264  */
1265 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1266 {
1267 	struct address_space *mapping = inode->i_mapping;
1268 	pgoff_t start = 0;
1269 	struct folio_batch fbatch;
1270 	pgoff_t indices[PAGEVEC_SIZE];
1271 	int ret = 0;
1272 
1273 	do {
1274 		folio_batch_init(&fbatch);
1275 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1276 		if (folio_batch_count(&fbatch) == 0) {
1277 			ret = 0;
1278 			break;
1279 		}
1280 
1281 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1282 		if (ret < 0)
1283 			break;
1284 
1285 		start = indices[folio_batch_count(&fbatch) - 1];
1286 	} while (true);
1287 
1288 	return ret;
1289 }
1290 
1291 /*
1292  * Read all the shared memory data that resides in the swap
1293  * device 'type' back into memory, so the swap device can be
1294  * unused.
1295  */
1296 int shmem_unuse(unsigned int type)
1297 {
1298 	struct shmem_inode_info *info, *next;
1299 	int error = 0;
1300 
1301 	if (list_empty(&shmem_swaplist))
1302 		return 0;
1303 
1304 	mutex_lock(&shmem_swaplist_mutex);
1305 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1306 		if (!info->swapped) {
1307 			list_del_init(&info->swaplist);
1308 			continue;
1309 		}
1310 		/*
1311 		 * Drop the swaplist mutex while searching the inode for swap;
1312 		 * but before doing so, make sure shmem_evict_inode() will not
1313 		 * remove placeholder inode from swaplist, nor let it be freed
1314 		 * (igrab() would protect from unlink, but not from unmount).
1315 		 */
1316 		atomic_inc(&info->stop_eviction);
1317 		mutex_unlock(&shmem_swaplist_mutex);
1318 
1319 		error = shmem_unuse_inode(&info->vfs_inode, type);
1320 		cond_resched();
1321 
1322 		mutex_lock(&shmem_swaplist_mutex);
1323 		next = list_next_entry(info, swaplist);
1324 		if (!info->swapped)
1325 			list_del_init(&info->swaplist);
1326 		if (atomic_dec_and_test(&info->stop_eviction))
1327 			wake_up_var(&info->stop_eviction);
1328 		if (error)
1329 			break;
1330 	}
1331 	mutex_unlock(&shmem_swaplist_mutex);
1332 
1333 	return error;
1334 }
1335 
1336 /*
1337  * Move the page from the page cache to the swap cache.
1338  */
1339 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1340 {
1341 	struct folio *folio = page_folio(page);
1342 	struct address_space *mapping = folio->mapping;
1343 	struct inode *inode = mapping->host;
1344 	struct shmem_inode_info *info = SHMEM_I(inode);
1345 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1346 	swp_entry_t swap;
1347 	pgoff_t index;
1348 
1349 	/*
1350 	 * Our capabilities prevent regular writeback or sync from ever calling
1351 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1352 	 * its underlying filesystem, in which case tmpfs should write out to
1353 	 * swap only in response to memory pressure, and not for the writeback
1354 	 * threads or sync.
1355 	 */
1356 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1357 		goto redirty;
1358 
1359 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1360 		goto redirty;
1361 
1362 	if (!total_swap_pages)
1363 		goto redirty;
1364 
1365 	/*
1366 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1367 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1368 	 * and its shmem_writeback() needs them to be split when swapping.
1369 	 */
1370 	if (folio_test_large(folio)) {
1371 		/* Ensure the subpages are still dirty */
1372 		folio_test_set_dirty(folio);
1373 		if (split_huge_page(page) < 0)
1374 			goto redirty;
1375 		folio = page_folio(page);
1376 		folio_clear_dirty(folio);
1377 	}
1378 
1379 	index = folio->index;
1380 
1381 	/*
1382 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383 	 * value into swapfile.c, the only way we can correctly account for a
1384 	 * fallocated folio arriving here is now to initialize it and write it.
1385 	 *
1386 	 * That's okay for a folio already fallocated earlier, but if we have
1387 	 * not yet completed the fallocation, then (a) we want to keep track
1388 	 * of this folio in case we have to undo it, and (b) it may not be a
1389 	 * good idea to continue anyway, once we're pushing into swap.  So
1390 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1391 	 */
1392 	if (!folio_test_uptodate(folio)) {
1393 		if (inode->i_private) {
1394 			struct shmem_falloc *shmem_falloc;
1395 			spin_lock(&inode->i_lock);
1396 			shmem_falloc = inode->i_private;
1397 			if (shmem_falloc &&
1398 			    !shmem_falloc->waitq &&
1399 			    index >= shmem_falloc->start &&
1400 			    index < shmem_falloc->next)
1401 				shmem_falloc->nr_unswapped++;
1402 			else
1403 				shmem_falloc = NULL;
1404 			spin_unlock(&inode->i_lock);
1405 			if (shmem_falloc)
1406 				goto redirty;
1407 		}
1408 		folio_zero_range(folio, 0, folio_size(folio));
1409 		flush_dcache_folio(folio);
1410 		folio_mark_uptodate(folio);
1411 	}
1412 
1413 	swap = folio_alloc_swap(folio);
1414 	if (!swap.val)
1415 		goto redirty;
1416 
1417 	/*
1418 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1419 	 * if it's not already there.  Do it now before the folio is
1420 	 * moved to swap cache, when its pagelock no longer protects
1421 	 * the inode from eviction.  But don't unlock the mutex until
1422 	 * we've incremented swapped, because shmem_unuse_inode() will
1423 	 * prune a !swapped inode from the swaplist under this mutex.
1424 	 */
1425 	mutex_lock(&shmem_swaplist_mutex);
1426 	if (list_empty(&info->swaplist))
1427 		list_add(&info->swaplist, &shmem_swaplist);
1428 
1429 	if (add_to_swap_cache(folio, swap,
1430 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431 			NULL) == 0) {
1432 		spin_lock_irq(&info->lock);
1433 		shmem_recalc_inode(inode);
1434 		info->swapped++;
1435 		spin_unlock_irq(&info->lock);
1436 
1437 		swap_shmem_alloc(swap);
1438 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1439 
1440 		mutex_unlock(&shmem_swaplist_mutex);
1441 		BUG_ON(folio_mapped(folio));
1442 		swap_writepage(&folio->page, wbc);
1443 		return 0;
1444 	}
1445 
1446 	mutex_unlock(&shmem_swaplist_mutex);
1447 	put_swap_folio(folio, swap);
1448 redirty:
1449 	folio_mark_dirty(folio);
1450 	if (wbc->for_reclaim)
1451 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1452 	folio_unlock(folio);
1453 	return 0;
1454 }
1455 
1456 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1457 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1458 {
1459 	char buffer[64];
1460 
1461 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1462 		return;		/* show nothing */
1463 
1464 	mpol_to_str(buffer, sizeof(buffer), mpol);
1465 
1466 	seq_printf(seq, ",mpol=%s", buffer);
1467 }
1468 
1469 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470 {
1471 	struct mempolicy *mpol = NULL;
1472 	if (sbinfo->mpol) {
1473 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1474 		mpol = sbinfo->mpol;
1475 		mpol_get(mpol);
1476 		raw_spin_unlock(&sbinfo->stat_lock);
1477 	}
1478 	return mpol;
1479 }
1480 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1482 {
1483 }
1484 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1485 {
1486 	return NULL;
1487 }
1488 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489 #ifndef CONFIG_NUMA
1490 #define vm_policy vm_private_data
1491 #endif
1492 
1493 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494 		struct shmem_inode_info *info, pgoff_t index)
1495 {
1496 	/* Create a pseudo vma that just contains the policy */
1497 	vma_init(vma, NULL);
1498 	/* Bias interleave by inode number to distribute better across nodes */
1499 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1500 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1501 }
1502 
1503 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504 {
1505 	/* Drop reference taken by mpol_shared_policy_lookup() */
1506 	mpol_cond_put(vma->vm_policy);
1507 }
1508 
1509 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510 			struct shmem_inode_info *info, pgoff_t index)
1511 {
1512 	struct vm_area_struct pvma;
1513 	struct page *page;
1514 	struct vm_fault vmf = {
1515 		.vma = &pvma,
1516 	};
1517 
1518 	shmem_pseudo_vma_init(&pvma, info, index);
1519 	page = swap_cluster_readahead(swap, gfp, &vmf);
1520 	shmem_pseudo_vma_destroy(&pvma);
1521 
1522 	if (!page)
1523 		return NULL;
1524 	return page_folio(page);
1525 }
1526 
1527 /*
1528  * Make sure huge_gfp is always more limited than limit_gfp.
1529  * Some of the flags set permissions, while others set limitations.
1530  */
1531 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1532 {
1533 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1534 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1535 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1536 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1537 
1538 	/* Allow allocations only from the originally specified zones. */
1539 	result |= zoneflags;
1540 
1541 	/*
1542 	 * Minimize the result gfp by taking the union with the deny flags,
1543 	 * and the intersection of the allow flags.
1544 	 */
1545 	result |= (limit_gfp & denyflags);
1546 	result |= (huge_gfp & limit_gfp) & allowflags;
1547 
1548 	return result;
1549 }
1550 
1551 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1552 		struct shmem_inode_info *info, pgoff_t index)
1553 {
1554 	struct vm_area_struct pvma;
1555 	struct address_space *mapping = info->vfs_inode.i_mapping;
1556 	pgoff_t hindex;
1557 	struct folio *folio;
1558 
1559 	hindex = round_down(index, HPAGE_PMD_NR);
1560 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1561 								XA_PRESENT))
1562 		return NULL;
1563 
1564 	shmem_pseudo_vma_init(&pvma, info, hindex);
1565 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1566 	shmem_pseudo_vma_destroy(&pvma);
1567 	if (!folio)
1568 		count_vm_event(THP_FILE_FALLBACK);
1569 	return folio;
1570 }
1571 
1572 static struct folio *shmem_alloc_folio(gfp_t gfp,
1573 			struct shmem_inode_info *info, pgoff_t index)
1574 {
1575 	struct vm_area_struct pvma;
1576 	struct folio *folio;
1577 
1578 	shmem_pseudo_vma_init(&pvma, info, index);
1579 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1580 	shmem_pseudo_vma_destroy(&pvma);
1581 
1582 	return folio;
1583 }
1584 
1585 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1586 		pgoff_t index, bool huge)
1587 {
1588 	struct shmem_inode_info *info = SHMEM_I(inode);
1589 	struct folio *folio;
1590 	int nr;
1591 	int err = -ENOSPC;
1592 
1593 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1594 		huge = false;
1595 	nr = huge ? HPAGE_PMD_NR : 1;
1596 
1597 	if (!shmem_inode_acct_block(inode, nr))
1598 		goto failed;
1599 
1600 	if (huge)
1601 		folio = shmem_alloc_hugefolio(gfp, info, index);
1602 	else
1603 		folio = shmem_alloc_folio(gfp, info, index);
1604 	if (folio) {
1605 		__folio_set_locked(folio);
1606 		__folio_set_swapbacked(folio);
1607 		return folio;
1608 	}
1609 
1610 	err = -ENOMEM;
1611 	shmem_inode_unacct_blocks(inode, nr);
1612 failed:
1613 	return ERR_PTR(err);
1614 }
1615 
1616 /*
1617  * When a page is moved from swapcache to shmem filecache (either by the
1618  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1619  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1620  * ignorance of the mapping it belongs to.  If that mapping has special
1621  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1622  * we may need to copy to a suitable page before moving to filecache.
1623  *
1624  * In a future release, this may well be extended to respect cpuset and
1625  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1626  * but for now it is a simple matter of zone.
1627  */
1628 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1629 {
1630 	return folio_zonenum(folio) > gfp_zone(gfp);
1631 }
1632 
1633 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1634 				struct shmem_inode_info *info, pgoff_t index)
1635 {
1636 	struct folio *old, *new;
1637 	struct address_space *swap_mapping;
1638 	swp_entry_t entry;
1639 	pgoff_t swap_index;
1640 	int error;
1641 
1642 	old = *foliop;
1643 	entry = folio_swap_entry(old);
1644 	swap_index = swp_offset(entry);
1645 	swap_mapping = swap_address_space(entry);
1646 
1647 	/*
1648 	 * We have arrived here because our zones are constrained, so don't
1649 	 * limit chance of success by further cpuset and node constraints.
1650 	 */
1651 	gfp &= ~GFP_CONSTRAINT_MASK;
1652 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1653 	new = shmem_alloc_folio(gfp, info, index);
1654 	if (!new)
1655 		return -ENOMEM;
1656 
1657 	folio_get(new);
1658 	folio_copy(new, old);
1659 	flush_dcache_folio(new);
1660 
1661 	__folio_set_locked(new);
1662 	__folio_set_swapbacked(new);
1663 	folio_mark_uptodate(new);
1664 	folio_set_swap_entry(new, entry);
1665 	folio_set_swapcache(new);
1666 
1667 	/*
1668 	 * Our caller will very soon move newpage out of swapcache, but it's
1669 	 * a nice clean interface for us to replace oldpage by newpage there.
1670 	 */
1671 	xa_lock_irq(&swap_mapping->i_pages);
1672 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1673 	if (!error) {
1674 		mem_cgroup_migrate(old, new);
1675 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1676 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1677 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1678 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1679 	}
1680 	xa_unlock_irq(&swap_mapping->i_pages);
1681 
1682 	if (unlikely(error)) {
1683 		/*
1684 		 * Is this possible?  I think not, now that our callers check
1685 		 * both PageSwapCache and page_private after getting page lock;
1686 		 * but be defensive.  Reverse old to newpage for clear and free.
1687 		 */
1688 		old = new;
1689 	} else {
1690 		folio_add_lru(new);
1691 		*foliop = new;
1692 	}
1693 
1694 	folio_clear_swapcache(old);
1695 	old->private = NULL;
1696 
1697 	folio_unlock(old);
1698 	folio_put_refs(old, 2);
1699 	return error;
1700 }
1701 
1702 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1703 					 struct folio *folio, swp_entry_t swap)
1704 {
1705 	struct address_space *mapping = inode->i_mapping;
1706 	struct shmem_inode_info *info = SHMEM_I(inode);
1707 	swp_entry_t swapin_error;
1708 	void *old;
1709 
1710 	swapin_error = make_swapin_error_entry();
1711 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1712 			     swp_to_radix_entry(swap),
1713 			     swp_to_radix_entry(swapin_error), 0);
1714 	if (old != swp_to_radix_entry(swap))
1715 		return;
1716 
1717 	folio_wait_writeback(folio);
1718 	delete_from_swap_cache(folio);
1719 	spin_lock_irq(&info->lock);
1720 	/*
1721 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1722 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1723 	 * shmem_evict_inode.
1724 	 */
1725 	info->alloced--;
1726 	info->swapped--;
1727 	shmem_recalc_inode(inode);
1728 	spin_unlock_irq(&info->lock);
1729 	swap_free(swap);
1730 }
1731 
1732 /*
1733  * Swap in the folio pointed to by *foliop.
1734  * Caller has to make sure that *foliop contains a valid swapped folio.
1735  * Returns 0 and the folio in foliop if success. On failure, returns the
1736  * error code and NULL in *foliop.
1737  */
1738 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1739 			     struct folio **foliop, enum sgp_type sgp,
1740 			     gfp_t gfp, struct vm_area_struct *vma,
1741 			     vm_fault_t *fault_type)
1742 {
1743 	struct address_space *mapping = inode->i_mapping;
1744 	struct shmem_inode_info *info = SHMEM_I(inode);
1745 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1746 	struct swap_info_struct *si;
1747 	struct folio *folio = NULL;
1748 	swp_entry_t swap;
1749 	int error;
1750 
1751 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1752 	swap = radix_to_swp_entry(*foliop);
1753 	*foliop = NULL;
1754 
1755 	if (is_swapin_error_entry(swap))
1756 		return -EIO;
1757 
1758 	si = get_swap_device(swap);
1759 	if (!si) {
1760 		if (!shmem_confirm_swap(mapping, index, swap))
1761 			return -EEXIST;
1762 		else
1763 			return -EINVAL;
1764 	}
1765 
1766 	/* Look it up and read it in.. */
1767 	folio = swap_cache_get_folio(swap, NULL, 0);
1768 	if (!folio) {
1769 		/* Or update major stats only when swapin succeeds?? */
1770 		if (fault_type) {
1771 			*fault_type |= VM_FAULT_MAJOR;
1772 			count_vm_event(PGMAJFAULT);
1773 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1774 		}
1775 		/* Here we actually start the io */
1776 		folio = shmem_swapin(swap, gfp, info, index);
1777 		if (!folio) {
1778 			error = -ENOMEM;
1779 			goto failed;
1780 		}
1781 	}
1782 
1783 	/* We have to do this with folio locked to prevent races */
1784 	folio_lock(folio);
1785 	if (!folio_test_swapcache(folio) ||
1786 	    folio_swap_entry(folio).val != swap.val ||
1787 	    !shmem_confirm_swap(mapping, index, swap)) {
1788 		error = -EEXIST;
1789 		goto unlock;
1790 	}
1791 	if (!folio_test_uptodate(folio)) {
1792 		error = -EIO;
1793 		goto failed;
1794 	}
1795 	folio_wait_writeback(folio);
1796 
1797 	/*
1798 	 * Some architectures may have to restore extra metadata to the
1799 	 * folio after reading from swap.
1800 	 */
1801 	arch_swap_restore(swap, folio);
1802 
1803 	if (shmem_should_replace_folio(folio, gfp)) {
1804 		error = shmem_replace_folio(&folio, gfp, info, index);
1805 		if (error)
1806 			goto failed;
1807 	}
1808 
1809 	error = shmem_add_to_page_cache(folio, mapping, index,
1810 					swp_to_radix_entry(swap), gfp,
1811 					charge_mm);
1812 	if (error)
1813 		goto failed;
1814 
1815 	spin_lock_irq(&info->lock);
1816 	info->swapped--;
1817 	shmem_recalc_inode(inode);
1818 	spin_unlock_irq(&info->lock);
1819 
1820 	if (sgp == SGP_WRITE)
1821 		folio_mark_accessed(folio);
1822 
1823 	delete_from_swap_cache(folio);
1824 	folio_mark_dirty(folio);
1825 	swap_free(swap);
1826 	put_swap_device(si);
1827 
1828 	*foliop = folio;
1829 	return 0;
1830 failed:
1831 	if (!shmem_confirm_swap(mapping, index, swap))
1832 		error = -EEXIST;
1833 	if (error == -EIO)
1834 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1835 unlock:
1836 	if (folio) {
1837 		folio_unlock(folio);
1838 		folio_put(folio);
1839 	}
1840 	put_swap_device(si);
1841 
1842 	return error;
1843 }
1844 
1845 /*
1846  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1847  *
1848  * If we allocate a new one we do not mark it dirty. That's up to the
1849  * vm. If we swap it in we mark it dirty since we also free the swap
1850  * entry since a page cannot live in both the swap and page cache.
1851  *
1852  * vma, vmf, and fault_type are only supplied by shmem_fault:
1853  * otherwise they are NULL.
1854  */
1855 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1856 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1857 		struct vm_area_struct *vma, struct vm_fault *vmf,
1858 		vm_fault_t *fault_type)
1859 {
1860 	struct address_space *mapping = inode->i_mapping;
1861 	struct shmem_inode_info *info = SHMEM_I(inode);
1862 	struct shmem_sb_info *sbinfo;
1863 	struct mm_struct *charge_mm;
1864 	struct folio *folio;
1865 	pgoff_t hindex;
1866 	gfp_t huge_gfp;
1867 	int error;
1868 	int once = 0;
1869 	int alloced = 0;
1870 
1871 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1872 		return -EFBIG;
1873 repeat:
1874 	if (sgp <= SGP_CACHE &&
1875 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1876 		return -EINVAL;
1877 	}
1878 
1879 	sbinfo = SHMEM_SB(inode->i_sb);
1880 	charge_mm = vma ? vma->vm_mm : NULL;
1881 
1882 	folio = filemap_get_entry(mapping, index);
1883 	if (folio && vma && userfaultfd_minor(vma)) {
1884 		if (!xa_is_value(folio))
1885 			folio_put(folio);
1886 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1887 		return 0;
1888 	}
1889 
1890 	if (xa_is_value(folio)) {
1891 		error = shmem_swapin_folio(inode, index, &folio,
1892 					  sgp, gfp, vma, fault_type);
1893 		if (error == -EEXIST)
1894 			goto repeat;
1895 
1896 		*foliop = folio;
1897 		return error;
1898 	}
1899 
1900 	if (folio) {
1901 		folio_lock(folio);
1902 
1903 		/* Has the folio been truncated or swapped out? */
1904 		if (unlikely(folio->mapping != mapping)) {
1905 			folio_unlock(folio);
1906 			folio_put(folio);
1907 			goto repeat;
1908 		}
1909 		if (sgp == SGP_WRITE)
1910 			folio_mark_accessed(folio);
1911 		if (folio_test_uptodate(folio))
1912 			goto out;
1913 		/* fallocated folio */
1914 		if (sgp != SGP_READ)
1915 			goto clear;
1916 		folio_unlock(folio);
1917 		folio_put(folio);
1918 	}
1919 
1920 	/*
1921 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1922 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1923 	 */
1924 	*foliop = NULL;
1925 	if (sgp == SGP_READ)
1926 		return 0;
1927 	if (sgp == SGP_NOALLOC)
1928 		return -ENOENT;
1929 
1930 	/*
1931 	 * Fast cache lookup and swap lookup did not find it: allocate.
1932 	 */
1933 
1934 	if (vma && userfaultfd_missing(vma)) {
1935 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1936 		return 0;
1937 	}
1938 
1939 	if (!shmem_is_huge(inode, index, false,
1940 			   vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
1941 		goto alloc_nohuge;
1942 
1943 	huge_gfp = vma_thp_gfp_mask(vma);
1944 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1945 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1946 	if (IS_ERR(folio)) {
1947 alloc_nohuge:
1948 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1949 	}
1950 	if (IS_ERR(folio)) {
1951 		int retry = 5;
1952 
1953 		error = PTR_ERR(folio);
1954 		folio = NULL;
1955 		if (error != -ENOSPC)
1956 			goto unlock;
1957 		/*
1958 		 * Try to reclaim some space by splitting a large folio
1959 		 * beyond i_size on the filesystem.
1960 		 */
1961 		while (retry--) {
1962 			int ret;
1963 
1964 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1965 			if (ret == SHRINK_STOP)
1966 				break;
1967 			if (ret)
1968 				goto alloc_nohuge;
1969 		}
1970 		goto unlock;
1971 	}
1972 
1973 	hindex = round_down(index, folio_nr_pages(folio));
1974 
1975 	if (sgp == SGP_WRITE)
1976 		__folio_set_referenced(folio);
1977 
1978 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1979 					NULL, gfp & GFP_RECLAIM_MASK,
1980 					charge_mm);
1981 	if (error)
1982 		goto unacct;
1983 	folio_add_lru(folio);
1984 
1985 	spin_lock_irq(&info->lock);
1986 	info->alloced += folio_nr_pages(folio);
1987 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1988 	shmem_recalc_inode(inode);
1989 	spin_unlock_irq(&info->lock);
1990 	alloced = true;
1991 
1992 	if (folio_test_pmd_mappable(folio) &&
1993 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1994 					folio_next_index(folio) - 1) {
1995 		/*
1996 		 * Part of the large folio is beyond i_size: subject
1997 		 * to shrink under memory pressure.
1998 		 */
1999 		spin_lock(&sbinfo->shrinklist_lock);
2000 		/*
2001 		 * _careful to defend against unlocked access to
2002 		 * ->shrink_list in shmem_unused_huge_shrink()
2003 		 */
2004 		if (list_empty_careful(&info->shrinklist)) {
2005 			list_add_tail(&info->shrinklist,
2006 				      &sbinfo->shrinklist);
2007 			sbinfo->shrinklist_len++;
2008 		}
2009 		spin_unlock(&sbinfo->shrinklist_lock);
2010 	}
2011 
2012 	/*
2013 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2014 	 */
2015 	if (sgp == SGP_FALLOC)
2016 		sgp = SGP_WRITE;
2017 clear:
2018 	/*
2019 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2020 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2021 	 * it now, lest undo on failure cancel our earlier guarantee.
2022 	 */
2023 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2024 		long i, n = folio_nr_pages(folio);
2025 
2026 		for (i = 0; i < n; i++)
2027 			clear_highpage(folio_page(folio, i));
2028 		flush_dcache_folio(folio);
2029 		folio_mark_uptodate(folio);
2030 	}
2031 
2032 	/* Perhaps the file has been truncated since we checked */
2033 	if (sgp <= SGP_CACHE &&
2034 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2035 		if (alloced) {
2036 			folio_clear_dirty(folio);
2037 			filemap_remove_folio(folio);
2038 			spin_lock_irq(&info->lock);
2039 			shmem_recalc_inode(inode);
2040 			spin_unlock_irq(&info->lock);
2041 		}
2042 		error = -EINVAL;
2043 		goto unlock;
2044 	}
2045 out:
2046 	*foliop = folio;
2047 	return 0;
2048 
2049 	/*
2050 	 * Error recovery.
2051 	 */
2052 unacct:
2053 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2054 
2055 	if (folio_test_large(folio)) {
2056 		folio_unlock(folio);
2057 		folio_put(folio);
2058 		goto alloc_nohuge;
2059 	}
2060 unlock:
2061 	if (folio) {
2062 		folio_unlock(folio);
2063 		folio_put(folio);
2064 	}
2065 	if (error == -ENOSPC && !once++) {
2066 		spin_lock_irq(&info->lock);
2067 		shmem_recalc_inode(inode);
2068 		spin_unlock_irq(&info->lock);
2069 		goto repeat;
2070 	}
2071 	if (error == -EEXIST)
2072 		goto repeat;
2073 	return error;
2074 }
2075 
2076 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2077 		enum sgp_type sgp)
2078 {
2079 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2080 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2081 }
2082 
2083 /*
2084  * This is like autoremove_wake_function, but it removes the wait queue
2085  * entry unconditionally - even if something else had already woken the
2086  * target.
2087  */
2088 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2089 {
2090 	int ret = default_wake_function(wait, mode, sync, key);
2091 	list_del_init(&wait->entry);
2092 	return ret;
2093 }
2094 
2095 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2096 {
2097 	struct vm_area_struct *vma = vmf->vma;
2098 	struct inode *inode = file_inode(vma->vm_file);
2099 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2100 	struct folio *folio = NULL;
2101 	int err;
2102 	vm_fault_t ret = VM_FAULT_LOCKED;
2103 
2104 	/*
2105 	 * Trinity finds that probing a hole which tmpfs is punching can
2106 	 * prevent the hole-punch from ever completing: which in turn
2107 	 * locks writers out with its hold on i_rwsem.  So refrain from
2108 	 * faulting pages into the hole while it's being punched.  Although
2109 	 * shmem_undo_range() does remove the additions, it may be unable to
2110 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2111 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2112 	 *
2113 	 * It does not matter if we sometimes reach this check just before the
2114 	 * hole-punch begins, so that one fault then races with the punch:
2115 	 * we just need to make racing faults a rare case.
2116 	 *
2117 	 * The implementation below would be much simpler if we just used a
2118 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2119 	 * and bloating every shmem inode for this unlikely case would be sad.
2120 	 */
2121 	if (unlikely(inode->i_private)) {
2122 		struct shmem_falloc *shmem_falloc;
2123 
2124 		spin_lock(&inode->i_lock);
2125 		shmem_falloc = inode->i_private;
2126 		if (shmem_falloc &&
2127 		    shmem_falloc->waitq &&
2128 		    vmf->pgoff >= shmem_falloc->start &&
2129 		    vmf->pgoff < shmem_falloc->next) {
2130 			struct file *fpin;
2131 			wait_queue_head_t *shmem_falloc_waitq;
2132 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2133 
2134 			ret = VM_FAULT_NOPAGE;
2135 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2136 			if (fpin)
2137 				ret = VM_FAULT_RETRY;
2138 
2139 			shmem_falloc_waitq = shmem_falloc->waitq;
2140 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2141 					TASK_UNINTERRUPTIBLE);
2142 			spin_unlock(&inode->i_lock);
2143 			schedule();
2144 
2145 			/*
2146 			 * shmem_falloc_waitq points into the shmem_fallocate()
2147 			 * stack of the hole-punching task: shmem_falloc_waitq
2148 			 * is usually invalid by the time we reach here, but
2149 			 * finish_wait() does not dereference it in that case;
2150 			 * though i_lock needed lest racing with wake_up_all().
2151 			 */
2152 			spin_lock(&inode->i_lock);
2153 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2154 			spin_unlock(&inode->i_lock);
2155 
2156 			if (fpin)
2157 				fput(fpin);
2158 			return ret;
2159 		}
2160 		spin_unlock(&inode->i_lock);
2161 	}
2162 
2163 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2164 				  gfp, vma, vmf, &ret);
2165 	if (err)
2166 		return vmf_error(err);
2167 	if (folio)
2168 		vmf->page = folio_file_page(folio, vmf->pgoff);
2169 	return ret;
2170 }
2171 
2172 unsigned long shmem_get_unmapped_area(struct file *file,
2173 				      unsigned long uaddr, unsigned long len,
2174 				      unsigned long pgoff, unsigned long flags)
2175 {
2176 	unsigned long (*get_area)(struct file *,
2177 		unsigned long, unsigned long, unsigned long, unsigned long);
2178 	unsigned long addr;
2179 	unsigned long offset;
2180 	unsigned long inflated_len;
2181 	unsigned long inflated_addr;
2182 	unsigned long inflated_offset;
2183 
2184 	if (len > TASK_SIZE)
2185 		return -ENOMEM;
2186 
2187 	get_area = current->mm->get_unmapped_area;
2188 	addr = get_area(file, uaddr, len, pgoff, flags);
2189 
2190 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2191 		return addr;
2192 	if (IS_ERR_VALUE(addr))
2193 		return addr;
2194 	if (addr & ~PAGE_MASK)
2195 		return addr;
2196 	if (addr > TASK_SIZE - len)
2197 		return addr;
2198 
2199 	if (shmem_huge == SHMEM_HUGE_DENY)
2200 		return addr;
2201 	if (len < HPAGE_PMD_SIZE)
2202 		return addr;
2203 	if (flags & MAP_FIXED)
2204 		return addr;
2205 	/*
2206 	 * Our priority is to support MAP_SHARED mapped hugely;
2207 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2208 	 * But if caller specified an address hint and we allocated area there
2209 	 * successfully, respect that as before.
2210 	 */
2211 	if (uaddr == addr)
2212 		return addr;
2213 
2214 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2215 		struct super_block *sb;
2216 
2217 		if (file) {
2218 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2219 			sb = file_inode(file)->i_sb;
2220 		} else {
2221 			/*
2222 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2223 			 * for "/dev/zero", to create a shared anonymous object.
2224 			 */
2225 			if (IS_ERR(shm_mnt))
2226 				return addr;
2227 			sb = shm_mnt->mnt_sb;
2228 		}
2229 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2230 			return addr;
2231 	}
2232 
2233 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2234 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2235 		return addr;
2236 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2237 		return addr;
2238 
2239 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2240 	if (inflated_len > TASK_SIZE)
2241 		return addr;
2242 	if (inflated_len < len)
2243 		return addr;
2244 
2245 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2246 	if (IS_ERR_VALUE(inflated_addr))
2247 		return addr;
2248 	if (inflated_addr & ~PAGE_MASK)
2249 		return addr;
2250 
2251 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2252 	inflated_addr += offset - inflated_offset;
2253 	if (inflated_offset > offset)
2254 		inflated_addr += HPAGE_PMD_SIZE;
2255 
2256 	if (inflated_addr > TASK_SIZE - len)
2257 		return addr;
2258 	return inflated_addr;
2259 }
2260 
2261 #ifdef CONFIG_NUMA
2262 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2263 {
2264 	struct inode *inode = file_inode(vma->vm_file);
2265 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2266 }
2267 
2268 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2269 					  unsigned long addr)
2270 {
2271 	struct inode *inode = file_inode(vma->vm_file);
2272 	pgoff_t index;
2273 
2274 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2275 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2276 }
2277 #endif
2278 
2279 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2280 {
2281 	struct inode *inode = file_inode(file);
2282 	struct shmem_inode_info *info = SHMEM_I(inode);
2283 	int retval = -ENOMEM;
2284 
2285 	/*
2286 	 * What serializes the accesses to info->flags?
2287 	 * ipc_lock_object() when called from shmctl_do_lock(),
2288 	 * no serialization needed when called from shm_destroy().
2289 	 */
2290 	if (lock && !(info->flags & VM_LOCKED)) {
2291 		if (!user_shm_lock(inode->i_size, ucounts))
2292 			goto out_nomem;
2293 		info->flags |= VM_LOCKED;
2294 		mapping_set_unevictable(file->f_mapping);
2295 	}
2296 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2297 		user_shm_unlock(inode->i_size, ucounts);
2298 		info->flags &= ~VM_LOCKED;
2299 		mapping_clear_unevictable(file->f_mapping);
2300 	}
2301 	retval = 0;
2302 
2303 out_nomem:
2304 	return retval;
2305 }
2306 
2307 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2308 {
2309 	struct inode *inode = file_inode(file);
2310 	struct shmem_inode_info *info = SHMEM_I(inode);
2311 	int ret;
2312 
2313 	ret = seal_check_future_write(info->seals, vma);
2314 	if (ret)
2315 		return ret;
2316 
2317 	/* arm64 - allow memory tagging on RAM-based files */
2318 	vm_flags_set(vma, VM_MTE_ALLOWED);
2319 
2320 	file_accessed(file);
2321 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2322 	if (inode->i_nlink)
2323 		vma->vm_ops = &shmem_vm_ops;
2324 	else
2325 		vma->vm_ops = &shmem_anon_vm_ops;
2326 	return 0;
2327 }
2328 
2329 #ifdef CONFIG_TMPFS_XATTR
2330 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2331 
2332 /*
2333  * chattr's fsflags are unrelated to extended attributes,
2334  * but tmpfs has chosen to enable them under the same config option.
2335  */
2336 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2337 {
2338 	unsigned int i_flags = 0;
2339 
2340 	if (fsflags & FS_NOATIME_FL)
2341 		i_flags |= S_NOATIME;
2342 	if (fsflags & FS_APPEND_FL)
2343 		i_flags |= S_APPEND;
2344 	if (fsflags & FS_IMMUTABLE_FL)
2345 		i_flags |= S_IMMUTABLE;
2346 	/*
2347 	 * But FS_NODUMP_FL does not require any action in i_flags.
2348 	 */
2349 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2350 }
2351 #else
2352 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2353 {
2354 }
2355 #define shmem_initxattrs NULL
2356 #endif
2357 
2358 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb,
2359 				     struct inode *dir, umode_t mode, dev_t dev,
2360 				     unsigned long flags)
2361 {
2362 	struct inode *inode;
2363 	struct shmem_inode_info *info;
2364 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2365 	ino_t ino;
2366 
2367 	if (shmem_reserve_inode(sb, &ino))
2368 		return NULL;
2369 
2370 	inode = new_inode(sb);
2371 	if (inode) {
2372 		inode->i_ino = ino;
2373 		inode_init_owner(idmap, inode, dir, mode);
2374 		inode->i_blocks = 0;
2375 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2376 		inode->i_generation = get_random_u32();
2377 		info = SHMEM_I(inode);
2378 		memset(info, 0, (char *)inode - (char *)info);
2379 		spin_lock_init(&info->lock);
2380 		atomic_set(&info->stop_eviction, 0);
2381 		info->seals = F_SEAL_SEAL;
2382 		info->flags = flags & VM_NORESERVE;
2383 		info->i_crtime = inode->i_mtime;
2384 		info->fsflags = (dir == NULL) ? 0 :
2385 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2386 		if (info->fsflags)
2387 			shmem_set_inode_flags(inode, info->fsflags);
2388 		INIT_LIST_HEAD(&info->shrinklist);
2389 		INIT_LIST_HEAD(&info->swaplist);
2390 		if (sbinfo->noswap)
2391 			mapping_set_unevictable(inode->i_mapping);
2392 		simple_xattrs_init(&info->xattrs);
2393 		cache_no_acl(inode);
2394 		mapping_set_large_folios(inode->i_mapping);
2395 
2396 		switch (mode & S_IFMT) {
2397 		default:
2398 			inode->i_op = &shmem_special_inode_operations;
2399 			init_special_inode(inode, mode, dev);
2400 			break;
2401 		case S_IFREG:
2402 			inode->i_mapping->a_ops = &shmem_aops;
2403 			inode->i_op = &shmem_inode_operations;
2404 			inode->i_fop = &shmem_file_operations;
2405 			mpol_shared_policy_init(&info->policy,
2406 						 shmem_get_sbmpol(sbinfo));
2407 			break;
2408 		case S_IFDIR:
2409 			inc_nlink(inode);
2410 			/* Some things misbehave if size == 0 on a directory */
2411 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2412 			inode->i_op = &shmem_dir_inode_operations;
2413 			inode->i_fop = &simple_dir_operations;
2414 			break;
2415 		case S_IFLNK:
2416 			/*
2417 			 * Must not load anything in the rbtree,
2418 			 * mpol_free_shared_policy will not be called.
2419 			 */
2420 			mpol_shared_policy_init(&info->policy, NULL);
2421 			break;
2422 		}
2423 
2424 		lockdep_annotate_inode_mutex_key(inode);
2425 	} else
2426 		shmem_free_inode(sb);
2427 	return inode;
2428 }
2429 
2430 #ifdef CONFIG_USERFAULTFD
2431 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2432 			   struct vm_area_struct *dst_vma,
2433 			   unsigned long dst_addr,
2434 			   unsigned long src_addr,
2435 			   uffd_flags_t flags,
2436 			   struct folio **foliop)
2437 {
2438 	struct inode *inode = file_inode(dst_vma->vm_file);
2439 	struct shmem_inode_info *info = SHMEM_I(inode);
2440 	struct address_space *mapping = inode->i_mapping;
2441 	gfp_t gfp = mapping_gfp_mask(mapping);
2442 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2443 	void *page_kaddr;
2444 	struct folio *folio;
2445 	int ret;
2446 	pgoff_t max_off;
2447 
2448 	if (!shmem_inode_acct_block(inode, 1)) {
2449 		/*
2450 		 * We may have got a page, returned -ENOENT triggering a retry,
2451 		 * and now we find ourselves with -ENOMEM. Release the page, to
2452 		 * avoid a BUG_ON in our caller.
2453 		 */
2454 		if (unlikely(*foliop)) {
2455 			folio_put(*foliop);
2456 			*foliop = NULL;
2457 		}
2458 		return -ENOMEM;
2459 	}
2460 
2461 	if (!*foliop) {
2462 		ret = -ENOMEM;
2463 		folio = shmem_alloc_folio(gfp, info, pgoff);
2464 		if (!folio)
2465 			goto out_unacct_blocks;
2466 
2467 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2468 			page_kaddr = kmap_local_folio(folio, 0);
2469 			/*
2470 			 * The read mmap_lock is held here.  Despite the
2471 			 * mmap_lock being read recursive a deadlock is still
2472 			 * possible if a writer has taken a lock.  For example:
2473 			 *
2474 			 * process A thread 1 takes read lock on own mmap_lock
2475 			 * process A thread 2 calls mmap, blocks taking write lock
2476 			 * process B thread 1 takes page fault, read lock on own mmap lock
2477 			 * process B thread 2 calls mmap, blocks taking write lock
2478 			 * process A thread 1 blocks taking read lock on process B
2479 			 * process B thread 1 blocks taking read lock on process A
2480 			 *
2481 			 * Disable page faults to prevent potential deadlock
2482 			 * and retry the copy outside the mmap_lock.
2483 			 */
2484 			pagefault_disable();
2485 			ret = copy_from_user(page_kaddr,
2486 					     (const void __user *)src_addr,
2487 					     PAGE_SIZE);
2488 			pagefault_enable();
2489 			kunmap_local(page_kaddr);
2490 
2491 			/* fallback to copy_from_user outside mmap_lock */
2492 			if (unlikely(ret)) {
2493 				*foliop = folio;
2494 				ret = -ENOENT;
2495 				/* don't free the page */
2496 				goto out_unacct_blocks;
2497 			}
2498 
2499 			flush_dcache_folio(folio);
2500 		} else {		/* ZEROPAGE */
2501 			clear_user_highpage(&folio->page, dst_addr);
2502 		}
2503 	} else {
2504 		folio = *foliop;
2505 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2506 		*foliop = NULL;
2507 	}
2508 
2509 	VM_BUG_ON(folio_test_locked(folio));
2510 	VM_BUG_ON(folio_test_swapbacked(folio));
2511 	__folio_set_locked(folio);
2512 	__folio_set_swapbacked(folio);
2513 	__folio_mark_uptodate(folio);
2514 
2515 	ret = -EFAULT;
2516 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2517 	if (unlikely(pgoff >= max_off))
2518 		goto out_release;
2519 
2520 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2521 				      gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2522 	if (ret)
2523 		goto out_release;
2524 
2525 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2526 				       &folio->page, true, flags);
2527 	if (ret)
2528 		goto out_delete_from_cache;
2529 
2530 	spin_lock_irq(&info->lock);
2531 	info->alloced++;
2532 	inode->i_blocks += BLOCKS_PER_PAGE;
2533 	shmem_recalc_inode(inode);
2534 	spin_unlock_irq(&info->lock);
2535 
2536 	folio_unlock(folio);
2537 	return 0;
2538 out_delete_from_cache:
2539 	filemap_remove_folio(folio);
2540 out_release:
2541 	folio_unlock(folio);
2542 	folio_put(folio);
2543 out_unacct_blocks:
2544 	shmem_inode_unacct_blocks(inode, 1);
2545 	return ret;
2546 }
2547 #endif /* CONFIG_USERFAULTFD */
2548 
2549 #ifdef CONFIG_TMPFS
2550 static const struct inode_operations shmem_symlink_inode_operations;
2551 static const struct inode_operations shmem_short_symlink_operations;
2552 
2553 static int
2554 shmem_write_begin(struct file *file, struct address_space *mapping,
2555 			loff_t pos, unsigned len,
2556 			struct page **pagep, void **fsdata)
2557 {
2558 	struct inode *inode = mapping->host;
2559 	struct shmem_inode_info *info = SHMEM_I(inode);
2560 	pgoff_t index = pos >> PAGE_SHIFT;
2561 	struct folio *folio;
2562 	int ret = 0;
2563 
2564 	/* i_rwsem is held by caller */
2565 	if (unlikely(info->seals & (F_SEAL_GROW |
2566 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2567 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2568 			return -EPERM;
2569 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2570 			return -EPERM;
2571 	}
2572 
2573 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2574 
2575 	if (ret)
2576 		return ret;
2577 
2578 	*pagep = folio_file_page(folio, index);
2579 	if (PageHWPoison(*pagep)) {
2580 		folio_unlock(folio);
2581 		folio_put(folio);
2582 		*pagep = NULL;
2583 		return -EIO;
2584 	}
2585 
2586 	return 0;
2587 }
2588 
2589 static int
2590 shmem_write_end(struct file *file, struct address_space *mapping,
2591 			loff_t pos, unsigned len, unsigned copied,
2592 			struct page *page, void *fsdata)
2593 {
2594 	struct folio *folio = page_folio(page);
2595 	struct inode *inode = mapping->host;
2596 
2597 	if (pos + copied > inode->i_size)
2598 		i_size_write(inode, pos + copied);
2599 
2600 	if (!folio_test_uptodate(folio)) {
2601 		if (copied < folio_size(folio)) {
2602 			size_t from = offset_in_folio(folio, pos);
2603 			folio_zero_segments(folio, 0, from,
2604 					from + copied, folio_size(folio));
2605 		}
2606 		folio_mark_uptodate(folio);
2607 	}
2608 	folio_mark_dirty(folio);
2609 	folio_unlock(folio);
2610 	folio_put(folio);
2611 
2612 	return copied;
2613 }
2614 
2615 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2616 {
2617 	struct file *file = iocb->ki_filp;
2618 	struct inode *inode = file_inode(file);
2619 	struct address_space *mapping = inode->i_mapping;
2620 	pgoff_t index;
2621 	unsigned long offset;
2622 	int error = 0;
2623 	ssize_t retval = 0;
2624 	loff_t *ppos = &iocb->ki_pos;
2625 
2626 	index = *ppos >> PAGE_SHIFT;
2627 	offset = *ppos & ~PAGE_MASK;
2628 
2629 	for (;;) {
2630 		struct folio *folio = NULL;
2631 		struct page *page = NULL;
2632 		pgoff_t end_index;
2633 		unsigned long nr, ret;
2634 		loff_t i_size = i_size_read(inode);
2635 
2636 		end_index = i_size >> PAGE_SHIFT;
2637 		if (index > end_index)
2638 			break;
2639 		if (index == end_index) {
2640 			nr = i_size & ~PAGE_MASK;
2641 			if (nr <= offset)
2642 				break;
2643 		}
2644 
2645 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2646 		if (error) {
2647 			if (error == -EINVAL)
2648 				error = 0;
2649 			break;
2650 		}
2651 		if (folio) {
2652 			folio_unlock(folio);
2653 
2654 			page = folio_file_page(folio, index);
2655 			if (PageHWPoison(page)) {
2656 				folio_put(folio);
2657 				error = -EIO;
2658 				break;
2659 			}
2660 		}
2661 
2662 		/*
2663 		 * We must evaluate after, since reads (unlike writes)
2664 		 * are called without i_rwsem protection against truncate
2665 		 */
2666 		nr = PAGE_SIZE;
2667 		i_size = i_size_read(inode);
2668 		end_index = i_size >> PAGE_SHIFT;
2669 		if (index == end_index) {
2670 			nr = i_size & ~PAGE_MASK;
2671 			if (nr <= offset) {
2672 				if (folio)
2673 					folio_put(folio);
2674 				break;
2675 			}
2676 		}
2677 		nr -= offset;
2678 
2679 		if (folio) {
2680 			/*
2681 			 * If users can be writing to this page using arbitrary
2682 			 * virtual addresses, take care about potential aliasing
2683 			 * before reading the page on the kernel side.
2684 			 */
2685 			if (mapping_writably_mapped(mapping))
2686 				flush_dcache_page(page);
2687 			/*
2688 			 * Mark the page accessed if we read the beginning.
2689 			 */
2690 			if (!offset)
2691 				folio_mark_accessed(folio);
2692 			/*
2693 			 * Ok, we have the page, and it's up-to-date, so
2694 			 * now we can copy it to user space...
2695 			 */
2696 			ret = copy_page_to_iter(page, offset, nr, to);
2697 			folio_put(folio);
2698 
2699 		} else if (user_backed_iter(to)) {
2700 			/*
2701 			 * Copy to user tends to be so well optimized, but
2702 			 * clear_user() not so much, that it is noticeably
2703 			 * faster to copy the zero page instead of clearing.
2704 			 */
2705 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2706 		} else {
2707 			/*
2708 			 * But submitting the same page twice in a row to
2709 			 * splice() - or others? - can result in confusion:
2710 			 * so don't attempt that optimization on pipes etc.
2711 			 */
2712 			ret = iov_iter_zero(nr, to);
2713 		}
2714 
2715 		retval += ret;
2716 		offset += ret;
2717 		index += offset >> PAGE_SHIFT;
2718 		offset &= ~PAGE_MASK;
2719 
2720 		if (!iov_iter_count(to))
2721 			break;
2722 		if (ret < nr) {
2723 			error = -EFAULT;
2724 			break;
2725 		}
2726 		cond_resched();
2727 	}
2728 
2729 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2730 	file_accessed(file);
2731 	return retval ? retval : error;
2732 }
2733 
2734 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2735 			      struct pipe_buffer *buf)
2736 {
2737 	return true;
2738 }
2739 
2740 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2741 				  struct pipe_buffer *buf)
2742 {
2743 }
2744 
2745 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2746 				    struct pipe_buffer *buf)
2747 {
2748 	return false;
2749 }
2750 
2751 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2752 	.release	= zero_pipe_buf_release,
2753 	.try_steal	= zero_pipe_buf_try_steal,
2754 	.get		= zero_pipe_buf_get,
2755 };
2756 
2757 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2758 					loff_t fpos, size_t size)
2759 {
2760 	size_t offset = fpos & ~PAGE_MASK;
2761 
2762 	size = min_t(size_t, size, PAGE_SIZE - offset);
2763 
2764 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2765 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2766 
2767 		*buf = (struct pipe_buffer) {
2768 			.ops	= &zero_pipe_buf_ops,
2769 			.page	= ZERO_PAGE(0),
2770 			.offset	= offset,
2771 			.len	= size,
2772 		};
2773 		pipe->head++;
2774 	}
2775 
2776 	return size;
2777 }
2778 
2779 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2780 				      struct pipe_inode_info *pipe,
2781 				      size_t len, unsigned int flags)
2782 {
2783 	struct inode *inode = file_inode(in);
2784 	struct address_space *mapping = inode->i_mapping;
2785 	struct folio *folio = NULL;
2786 	size_t total_spliced = 0, used, npages, n, part;
2787 	loff_t isize;
2788 	int error = 0;
2789 
2790 	/* Work out how much data we can actually add into the pipe */
2791 	used = pipe_occupancy(pipe->head, pipe->tail);
2792 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2793 	len = min_t(size_t, len, npages * PAGE_SIZE);
2794 
2795 	do {
2796 		if (*ppos >= i_size_read(inode))
2797 			break;
2798 
2799 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2800 					SGP_READ);
2801 		if (error) {
2802 			if (error == -EINVAL)
2803 				error = 0;
2804 			break;
2805 		}
2806 		if (folio) {
2807 			folio_unlock(folio);
2808 
2809 			if (folio_test_hwpoison(folio) ||
2810 			    (folio_test_large(folio) &&
2811 			     folio_test_has_hwpoisoned(folio))) {
2812 				error = -EIO;
2813 				break;
2814 			}
2815 		}
2816 
2817 		/*
2818 		 * i_size must be checked after we know the pages are Uptodate.
2819 		 *
2820 		 * Checking i_size after the check allows us to calculate
2821 		 * the correct value for "nr", which means the zero-filled
2822 		 * part of the page is not copied back to userspace (unless
2823 		 * another truncate extends the file - this is desired though).
2824 		 */
2825 		isize = i_size_read(inode);
2826 		if (unlikely(*ppos >= isize))
2827 			break;
2828 		part = min_t(loff_t, isize - *ppos, len);
2829 
2830 		if (folio) {
2831 			/*
2832 			 * If users can be writing to this page using arbitrary
2833 			 * virtual addresses, take care about potential aliasing
2834 			 * before reading the page on the kernel side.
2835 			 */
2836 			if (mapping_writably_mapped(mapping))
2837 				flush_dcache_folio(folio);
2838 			folio_mark_accessed(folio);
2839 			/*
2840 			 * Ok, we have the page, and it's up-to-date, so we can
2841 			 * now splice it into the pipe.
2842 			 */
2843 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
2844 			folio_put(folio);
2845 			folio = NULL;
2846 		} else {
2847 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
2848 		}
2849 
2850 		if (!n)
2851 			break;
2852 		len -= n;
2853 		total_spliced += n;
2854 		*ppos += n;
2855 		in->f_ra.prev_pos = *ppos;
2856 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2857 			break;
2858 
2859 		cond_resched();
2860 	} while (len);
2861 
2862 	if (folio)
2863 		folio_put(folio);
2864 
2865 	file_accessed(in);
2866 	return total_spliced ? total_spliced : error;
2867 }
2868 
2869 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2870 {
2871 	struct address_space *mapping = file->f_mapping;
2872 	struct inode *inode = mapping->host;
2873 
2874 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2875 		return generic_file_llseek_size(file, offset, whence,
2876 					MAX_LFS_FILESIZE, i_size_read(inode));
2877 	if (offset < 0)
2878 		return -ENXIO;
2879 
2880 	inode_lock(inode);
2881 	/* We're holding i_rwsem so we can access i_size directly */
2882 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2883 	if (offset >= 0)
2884 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2885 	inode_unlock(inode);
2886 	return offset;
2887 }
2888 
2889 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2890 							 loff_t len)
2891 {
2892 	struct inode *inode = file_inode(file);
2893 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2894 	struct shmem_inode_info *info = SHMEM_I(inode);
2895 	struct shmem_falloc shmem_falloc;
2896 	pgoff_t start, index, end, undo_fallocend;
2897 	int error;
2898 
2899 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2900 		return -EOPNOTSUPP;
2901 
2902 	inode_lock(inode);
2903 
2904 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2905 		struct address_space *mapping = file->f_mapping;
2906 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2907 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2908 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2909 
2910 		/* protected by i_rwsem */
2911 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2912 			error = -EPERM;
2913 			goto out;
2914 		}
2915 
2916 		shmem_falloc.waitq = &shmem_falloc_waitq;
2917 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2918 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2919 		spin_lock(&inode->i_lock);
2920 		inode->i_private = &shmem_falloc;
2921 		spin_unlock(&inode->i_lock);
2922 
2923 		if ((u64)unmap_end > (u64)unmap_start)
2924 			unmap_mapping_range(mapping, unmap_start,
2925 					    1 + unmap_end - unmap_start, 0);
2926 		shmem_truncate_range(inode, offset, offset + len - 1);
2927 		/* No need to unmap again: hole-punching leaves COWed pages */
2928 
2929 		spin_lock(&inode->i_lock);
2930 		inode->i_private = NULL;
2931 		wake_up_all(&shmem_falloc_waitq);
2932 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2933 		spin_unlock(&inode->i_lock);
2934 		error = 0;
2935 		goto out;
2936 	}
2937 
2938 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2939 	error = inode_newsize_ok(inode, offset + len);
2940 	if (error)
2941 		goto out;
2942 
2943 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2944 		error = -EPERM;
2945 		goto out;
2946 	}
2947 
2948 	start = offset >> PAGE_SHIFT;
2949 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2950 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2951 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2952 		error = -ENOSPC;
2953 		goto out;
2954 	}
2955 
2956 	shmem_falloc.waitq = NULL;
2957 	shmem_falloc.start = start;
2958 	shmem_falloc.next  = start;
2959 	shmem_falloc.nr_falloced = 0;
2960 	shmem_falloc.nr_unswapped = 0;
2961 	spin_lock(&inode->i_lock);
2962 	inode->i_private = &shmem_falloc;
2963 	spin_unlock(&inode->i_lock);
2964 
2965 	/*
2966 	 * info->fallocend is only relevant when huge pages might be
2967 	 * involved: to prevent split_huge_page() freeing fallocated
2968 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2969 	 */
2970 	undo_fallocend = info->fallocend;
2971 	if (info->fallocend < end)
2972 		info->fallocend = end;
2973 
2974 	for (index = start; index < end; ) {
2975 		struct folio *folio;
2976 
2977 		/*
2978 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2979 		 * been interrupted because we are using up too much memory.
2980 		 */
2981 		if (signal_pending(current))
2982 			error = -EINTR;
2983 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2984 			error = -ENOMEM;
2985 		else
2986 			error = shmem_get_folio(inode, index, &folio,
2987 						SGP_FALLOC);
2988 		if (error) {
2989 			info->fallocend = undo_fallocend;
2990 			/* Remove the !uptodate folios we added */
2991 			if (index > start) {
2992 				shmem_undo_range(inode,
2993 				    (loff_t)start << PAGE_SHIFT,
2994 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2995 			}
2996 			goto undone;
2997 		}
2998 
2999 		/*
3000 		 * Here is a more important optimization than it appears:
3001 		 * a second SGP_FALLOC on the same large folio will clear it,
3002 		 * making it uptodate and un-undoable if we fail later.
3003 		 */
3004 		index = folio_next_index(folio);
3005 		/* Beware 32-bit wraparound */
3006 		if (!index)
3007 			index--;
3008 
3009 		/*
3010 		 * Inform shmem_writepage() how far we have reached.
3011 		 * No need for lock or barrier: we have the page lock.
3012 		 */
3013 		if (!folio_test_uptodate(folio))
3014 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3015 		shmem_falloc.next = index;
3016 
3017 		/*
3018 		 * If !uptodate, leave it that way so that freeable folios
3019 		 * can be recognized if we need to rollback on error later.
3020 		 * But mark it dirty so that memory pressure will swap rather
3021 		 * than free the folios we are allocating (and SGP_CACHE folios
3022 		 * might still be clean: we now need to mark those dirty too).
3023 		 */
3024 		folio_mark_dirty(folio);
3025 		folio_unlock(folio);
3026 		folio_put(folio);
3027 		cond_resched();
3028 	}
3029 
3030 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3031 		i_size_write(inode, offset + len);
3032 undone:
3033 	spin_lock(&inode->i_lock);
3034 	inode->i_private = NULL;
3035 	spin_unlock(&inode->i_lock);
3036 out:
3037 	if (!error)
3038 		file_modified(file);
3039 	inode_unlock(inode);
3040 	return error;
3041 }
3042 
3043 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3044 {
3045 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3046 
3047 	buf->f_type = TMPFS_MAGIC;
3048 	buf->f_bsize = PAGE_SIZE;
3049 	buf->f_namelen = NAME_MAX;
3050 	if (sbinfo->max_blocks) {
3051 		buf->f_blocks = sbinfo->max_blocks;
3052 		buf->f_bavail =
3053 		buf->f_bfree  = sbinfo->max_blocks -
3054 				percpu_counter_sum(&sbinfo->used_blocks);
3055 	}
3056 	if (sbinfo->max_inodes) {
3057 		buf->f_files = sbinfo->max_inodes;
3058 		buf->f_ffree = sbinfo->free_inodes;
3059 	}
3060 	/* else leave those fields 0 like simple_statfs */
3061 
3062 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3063 
3064 	return 0;
3065 }
3066 
3067 /*
3068  * File creation. Allocate an inode, and we're done..
3069  */
3070 static int
3071 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3072 	    struct dentry *dentry, umode_t mode, dev_t dev)
3073 {
3074 	struct inode *inode;
3075 	int error = -ENOSPC;
3076 
3077 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3078 	if (inode) {
3079 		error = simple_acl_create(dir, inode);
3080 		if (error)
3081 			goto out_iput;
3082 		error = security_inode_init_security(inode, dir,
3083 						     &dentry->d_name,
3084 						     shmem_initxattrs, NULL);
3085 		if (error && error != -EOPNOTSUPP)
3086 			goto out_iput;
3087 
3088 		error = 0;
3089 		dir->i_size += BOGO_DIRENT_SIZE;
3090 		dir->i_ctime = dir->i_mtime = current_time(dir);
3091 		inode_inc_iversion(dir);
3092 		d_instantiate(dentry, inode);
3093 		dget(dentry); /* Extra count - pin the dentry in core */
3094 	}
3095 	return error;
3096 out_iput:
3097 	iput(inode);
3098 	return error;
3099 }
3100 
3101 static int
3102 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3103 	      struct file *file, umode_t mode)
3104 {
3105 	struct inode *inode;
3106 	int error = -ENOSPC;
3107 
3108 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3109 	if (inode) {
3110 		error = security_inode_init_security(inode, dir,
3111 						     NULL,
3112 						     shmem_initxattrs, NULL);
3113 		if (error && error != -EOPNOTSUPP)
3114 			goto out_iput;
3115 		error = simple_acl_create(dir, inode);
3116 		if (error)
3117 			goto out_iput;
3118 		d_tmpfile(file, inode);
3119 	}
3120 	return finish_open_simple(file, error);
3121 out_iput:
3122 	iput(inode);
3123 	return error;
3124 }
3125 
3126 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3127 		       struct dentry *dentry, umode_t mode)
3128 {
3129 	int error;
3130 
3131 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3132 	if (error)
3133 		return error;
3134 	inc_nlink(dir);
3135 	return 0;
3136 }
3137 
3138 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3139 			struct dentry *dentry, umode_t mode, bool excl)
3140 {
3141 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3142 }
3143 
3144 /*
3145  * Link a file..
3146  */
3147 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3148 {
3149 	struct inode *inode = d_inode(old_dentry);
3150 	int ret = 0;
3151 
3152 	/*
3153 	 * No ordinary (disk based) filesystem counts links as inodes;
3154 	 * but each new link needs a new dentry, pinning lowmem, and
3155 	 * tmpfs dentries cannot be pruned until they are unlinked.
3156 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3157 	 * first link must skip that, to get the accounting right.
3158 	 */
3159 	if (inode->i_nlink) {
3160 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3161 		if (ret)
3162 			goto out;
3163 	}
3164 
3165 	dir->i_size += BOGO_DIRENT_SIZE;
3166 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3167 	inode_inc_iversion(dir);
3168 	inc_nlink(inode);
3169 	ihold(inode);	/* New dentry reference */
3170 	dget(dentry);		/* Extra pinning count for the created dentry */
3171 	d_instantiate(dentry, inode);
3172 out:
3173 	return ret;
3174 }
3175 
3176 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3177 {
3178 	struct inode *inode = d_inode(dentry);
3179 
3180 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3181 		shmem_free_inode(inode->i_sb);
3182 
3183 	dir->i_size -= BOGO_DIRENT_SIZE;
3184 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3185 	inode_inc_iversion(dir);
3186 	drop_nlink(inode);
3187 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3188 	return 0;
3189 }
3190 
3191 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3192 {
3193 	if (!simple_empty(dentry))
3194 		return -ENOTEMPTY;
3195 
3196 	drop_nlink(d_inode(dentry));
3197 	drop_nlink(dir);
3198 	return shmem_unlink(dir, dentry);
3199 }
3200 
3201 static int shmem_whiteout(struct mnt_idmap *idmap,
3202 			  struct inode *old_dir, struct dentry *old_dentry)
3203 {
3204 	struct dentry *whiteout;
3205 	int error;
3206 
3207 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3208 	if (!whiteout)
3209 		return -ENOMEM;
3210 
3211 	error = shmem_mknod(idmap, old_dir, whiteout,
3212 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3213 	dput(whiteout);
3214 	if (error)
3215 		return error;
3216 
3217 	/*
3218 	 * Cheat and hash the whiteout while the old dentry is still in
3219 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3220 	 *
3221 	 * d_lookup() will consistently find one of them at this point,
3222 	 * not sure which one, but that isn't even important.
3223 	 */
3224 	d_rehash(whiteout);
3225 	return 0;
3226 }
3227 
3228 /*
3229  * The VFS layer already does all the dentry stuff for rename,
3230  * we just have to decrement the usage count for the target if
3231  * it exists so that the VFS layer correctly free's it when it
3232  * gets overwritten.
3233  */
3234 static int shmem_rename2(struct mnt_idmap *idmap,
3235 			 struct inode *old_dir, struct dentry *old_dentry,
3236 			 struct inode *new_dir, struct dentry *new_dentry,
3237 			 unsigned int flags)
3238 {
3239 	struct inode *inode = d_inode(old_dentry);
3240 	int they_are_dirs = S_ISDIR(inode->i_mode);
3241 
3242 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3243 		return -EINVAL;
3244 
3245 	if (flags & RENAME_EXCHANGE)
3246 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3247 
3248 	if (!simple_empty(new_dentry))
3249 		return -ENOTEMPTY;
3250 
3251 	if (flags & RENAME_WHITEOUT) {
3252 		int error;
3253 
3254 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3255 		if (error)
3256 			return error;
3257 	}
3258 
3259 	if (d_really_is_positive(new_dentry)) {
3260 		(void) shmem_unlink(new_dir, new_dentry);
3261 		if (they_are_dirs) {
3262 			drop_nlink(d_inode(new_dentry));
3263 			drop_nlink(old_dir);
3264 		}
3265 	} else if (they_are_dirs) {
3266 		drop_nlink(old_dir);
3267 		inc_nlink(new_dir);
3268 	}
3269 
3270 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3271 	new_dir->i_size += BOGO_DIRENT_SIZE;
3272 	old_dir->i_ctime = old_dir->i_mtime =
3273 	new_dir->i_ctime = new_dir->i_mtime =
3274 	inode->i_ctime = current_time(old_dir);
3275 	inode_inc_iversion(old_dir);
3276 	inode_inc_iversion(new_dir);
3277 	return 0;
3278 }
3279 
3280 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3281 			 struct dentry *dentry, const char *symname)
3282 {
3283 	int error;
3284 	int len;
3285 	struct inode *inode;
3286 	struct folio *folio;
3287 
3288 	len = strlen(symname) + 1;
3289 	if (len > PAGE_SIZE)
3290 		return -ENAMETOOLONG;
3291 
3292 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3293 				VM_NORESERVE);
3294 	if (!inode)
3295 		return -ENOSPC;
3296 
3297 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3298 					     shmem_initxattrs, NULL);
3299 	if (error && error != -EOPNOTSUPP) {
3300 		iput(inode);
3301 		return error;
3302 	}
3303 
3304 	inode->i_size = len-1;
3305 	if (len <= SHORT_SYMLINK_LEN) {
3306 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3307 		if (!inode->i_link) {
3308 			iput(inode);
3309 			return -ENOMEM;
3310 		}
3311 		inode->i_op = &shmem_short_symlink_operations;
3312 	} else {
3313 		inode_nohighmem(inode);
3314 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3315 		if (error) {
3316 			iput(inode);
3317 			return error;
3318 		}
3319 		inode->i_mapping->a_ops = &shmem_aops;
3320 		inode->i_op = &shmem_symlink_inode_operations;
3321 		memcpy(folio_address(folio), symname, len);
3322 		folio_mark_uptodate(folio);
3323 		folio_mark_dirty(folio);
3324 		folio_unlock(folio);
3325 		folio_put(folio);
3326 	}
3327 	dir->i_size += BOGO_DIRENT_SIZE;
3328 	dir->i_ctime = dir->i_mtime = current_time(dir);
3329 	inode_inc_iversion(dir);
3330 	d_instantiate(dentry, inode);
3331 	dget(dentry);
3332 	return 0;
3333 }
3334 
3335 static void shmem_put_link(void *arg)
3336 {
3337 	folio_mark_accessed(arg);
3338 	folio_put(arg);
3339 }
3340 
3341 static const char *shmem_get_link(struct dentry *dentry,
3342 				  struct inode *inode,
3343 				  struct delayed_call *done)
3344 {
3345 	struct folio *folio = NULL;
3346 	int error;
3347 
3348 	if (!dentry) {
3349 		folio = filemap_get_folio(inode->i_mapping, 0);
3350 		if (IS_ERR(folio))
3351 			return ERR_PTR(-ECHILD);
3352 		if (PageHWPoison(folio_page(folio, 0)) ||
3353 		    !folio_test_uptodate(folio)) {
3354 			folio_put(folio);
3355 			return ERR_PTR(-ECHILD);
3356 		}
3357 	} else {
3358 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3359 		if (error)
3360 			return ERR_PTR(error);
3361 		if (!folio)
3362 			return ERR_PTR(-ECHILD);
3363 		if (PageHWPoison(folio_page(folio, 0))) {
3364 			folio_unlock(folio);
3365 			folio_put(folio);
3366 			return ERR_PTR(-ECHILD);
3367 		}
3368 		folio_unlock(folio);
3369 	}
3370 	set_delayed_call(done, shmem_put_link, folio);
3371 	return folio_address(folio);
3372 }
3373 
3374 #ifdef CONFIG_TMPFS_XATTR
3375 
3376 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3377 {
3378 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3379 
3380 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3381 
3382 	return 0;
3383 }
3384 
3385 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3386 			      struct dentry *dentry, struct fileattr *fa)
3387 {
3388 	struct inode *inode = d_inode(dentry);
3389 	struct shmem_inode_info *info = SHMEM_I(inode);
3390 
3391 	if (fileattr_has_fsx(fa))
3392 		return -EOPNOTSUPP;
3393 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3394 		return -EOPNOTSUPP;
3395 
3396 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3397 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3398 
3399 	shmem_set_inode_flags(inode, info->fsflags);
3400 	inode->i_ctime = current_time(inode);
3401 	inode_inc_iversion(inode);
3402 	return 0;
3403 }
3404 
3405 /*
3406  * Superblocks without xattr inode operations may get some security.* xattr
3407  * support from the LSM "for free". As soon as we have any other xattrs
3408  * like ACLs, we also need to implement the security.* handlers at
3409  * filesystem level, though.
3410  */
3411 
3412 /*
3413  * Callback for security_inode_init_security() for acquiring xattrs.
3414  */
3415 static int shmem_initxattrs(struct inode *inode,
3416 			    const struct xattr *xattr_array,
3417 			    void *fs_info)
3418 {
3419 	struct shmem_inode_info *info = SHMEM_I(inode);
3420 	const struct xattr *xattr;
3421 	struct simple_xattr *new_xattr;
3422 	size_t len;
3423 
3424 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3425 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3426 		if (!new_xattr)
3427 			return -ENOMEM;
3428 
3429 		len = strlen(xattr->name) + 1;
3430 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3431 					  GFP_KERNEL);
3432 		if (!new_xattr->name) {
3433 			kvfree(new_xattr);
3434 			return -ENOMEM;
3435 		}
3436 
3437 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3438 		       XATTR_SECURITY_PREFIX_LEN);
3439 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3440 		       xattr->name, len);
3441 
3442 		simple_xattr_add(&info->xattrs, new_xattr);
3443 	}
3444 
3445 	return 0;
3446 }
3447 
3448 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3449 				   struct dentry *unused, struct inode *inode,
3450 				   const char *name, void *buffer, size_t size)
3451 {
3452 	struct shmem_inode_info *info = SHMEM_I(inode);
3453 
3454 	name = xattr_full_name(handler, name);
3455 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3456 }
3457 
3458 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3459 				   struct mnt_idmap *idmap,
3460 				   struct dentry *unused, struct inode *inode,
3461 				   const char *name, const void *value,
3462 				   size_t size, int flags)
3463 {
3464 	struct shmem_inode_info *info = SHMEM_I(inode);
3465 	int err;
3466 
3467 	name = xattr_full_name(handler, name);
3468 	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3469 	if (!err) {
3470 		inode->i_ctime = current_time(inode);
3471 		inode_inc_iversion(inode);
3472 	}
3473 	return err;
3474 }
3475 
3476 static const struct xattr_handler shmem_security_xattr_handler = {
3477 	.prefix = XATTR_SECURITY_PREFIX,
3478 	.get = shmem_xattr_handler_get,
3479 	.set = shmem_xattr_handler_set,
3480 };
3481 
3482 static const struct xattr_handler shmem_trusted_xattr_handler = {
3483 	.prefix = XATTR_TRUSTED_PREFIX,
3484 	.get = shmem_xattr_handler_get,
3485 	.set = shmem_xattr_handler_set,
3486 };
3487 
3488 static const struct xattr_handler *shmem_xattr_handlers[] = {
3489 	&shmem_security_xattr_handler,
3490 	&shmem_trusted_xattr_handler,
3491 	NULL
3492 };
3493 
3494 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3495 {
3496 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3497 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3498 }
3499 #endif /* CONFIG_TMPFS_XATTR */
3500 
3501 static const struct inode_operations shmem_short_symlink_operations = {
3502 	.getattr	= shmem_getattr,
3503 	.get_link	= simple_get_link,
3504 #ifdef CONFIG_TMPFS_XATTR
3505 	.listxattr	= shmem_listxattr,
3506 #endif
3507 };
3508 
3509 static const struct inode_operations shmem_symlink_inode_operations = {
3510 	.getattr	= shmem_getattr,
3511 	.get_link	= shmem_get_link,
3512 #ifdef CONFIG_TMPFS_XATTR
3513 	.listxattr	= shmem_listxattr,
3514 #endif
3515 };
3516 
3517 static struct dentry *shmem_get_parent(struct dentry *child)
3518 {
3519 	return ERR_PTR(-ESTALE);
3520 }
3521 
3522 static int shmem_match(struct inode *ino, void *vfh)
3523 {
3524 	__u32 *fh = vfh;
3525 	__u64 inum = fh[2];
3526 	inum = (inum << 32) | fh[1];
3527 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3528 }
3529 
3530 /* Find any alias of inode, but prefer a hashed alias */
3531 static struct dentry *shmem_find_alias(struct inode *inode)
3532 {
3533 	struct dentry *alias = d_find_alias(inode);
3534 
3535 	return alias ?: d_find_any_alias(inode);
3536 }
3537 
3538 
3539 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3540 		struct fid *fid, int fh_len, int fh_type)
3541 {
3542 	struct inode *inode;
3543 	struct dentry *dentry = NULL;
3544 	u64 inum;
3545 
3546 	if (fh_len < 3)
3547 		return NULL;
3548 
3549 	inum = fid->raw[2];
3550 	inum = (inum << 32) | fid->raw[1];
3551 
3552 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3553 			shmem_match, fid->raw);
3554 	if (inode) {
3555 		dentry = shmem_find_alias(inode);
3556 		iput(inode);
3557 	}
3558 
3559 	return dentry;
3560 }
3561 
3562 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3563 				struct inode *parent)
3564 {
3565 	if (*len < 3) {
3566 		*len = 3;
3567 		return FILEID_INVALID;
3568 	}
3569 
3570 	if (inode_unhashed(inode)) {
3571 		/* Unfortunately insert_inode_hash is not idempotent,
3572 		 * so as we hash inodes here rather than at creation
3573 		 * time, we need a lock to ensure we only try
3574 		 * to do it once
3575 		 */
3576 		static DEFINE_SPINLOCK(lock);
3577 		spin_lock(&lock);
3578 		if (inode_unhashed(inode))
3579 			__insert_inode_hash(inode,
3580 					    inode->i_ino + inode->i_generation);
3581 		spin_unlock(&lock);
3582 	}
3583 
3584 	fh[0] = inode->i_generation;
3585 	fh[1] = inode->i_ino;
3586 	fh[2] = ((__u64)inode->i_ino) >> 32;
3587 
3588 	*len = 3;
3589 	return 1;
3590 }
3591 
3592 static const struct export_operations shmem_export_ops = {
3593 	.get_parent     = shmem_get_parent,
3594 	.encode_fh      = shmem_encode_fh,
3595 	.fh_to_dentry	= shmem_fh_to_dentry,
3596 };
3597 
3598 enum shmem_param {
3599 	Opt_gid,
3600 	Opt_huge,
3601 	Opt_mode,
3602 	Opt_mpol,
3603 	Opt_nr_blocks,
3604 	Opt_nr_inodes,
3605 	Opt_size,
3606 	Opt_uid,
3607 	Opt_inode32,
3608 	Opt_inode64,
3609 	Opt_noswap,
3610 };
3611 
3612 static const struct constant_table shmem_param_enums_huge[] = {
3613 	{"never",	SHMEM_HUGE_NEVER },
3614 	{"always",	SHMEM_HUGE_ALWAYS },
3615 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3616 	{"advise",	SHMEM_HUGE_ADVISE },
3617 	{}
3618 };
3619 
3620 const struct fs_parameter_spec shmem_fs_parameters[] = {
3621 	fsparam_u32   ("gid",		Opt_gid),
3622 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3623 	fsparam_u32oct("mode",		Opt_mode),
3624 	fsparam_string("mpol",		Opt_mpol),
3625 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3626 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3627 	fsparam_string("size",		Opt_size),
3628 	fsparam_u32   ("uid",		Opt_uid),
3629 	fsparam_flag  ("inode32",	Opt_inode32),
3630 	fsparam_flag  ("inode64",	Opt_inode64),
3631 	fsparam_flag  ("noswap",	Opt_noswap),
3632 	{}
3633 };
3634 
3635 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3636 {
3637 	struct shmem_options *ctx = fc->fs_private;
3638 	struct fs_parse_result result;
3639 	unsigned long long size;
3640 	char *rest;
3641 	int opt;
3642 
3643 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3644 	if (opt < 0)
3645 		return opt;
3646 
3647 	switch (opt) {
3648 	case Opt_size:
3649 		size = memparse(param->string, &rest);
3650 		if (*rest == '%') {
3651 			size <<= PAGE_SHIFT;
3652 			size *= totalram_pages();
3653 			do_div(size, 100);
3654 			rest++;
3655 		}
3656 		if (*rest)
3657 			goto bad_value;
3658 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3659 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3660 		break;
3661 	case Opt_nr_blocks:
3662 		ctx->blocks = memparse(param->string, &rest);
3663 		if (*rest || ctx->blocks > S64_MAX)
3664 			goto bad_value;
3665 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3666 		break;
3667 	case Opt_nr_inodes:
3668 		ctx->inodes = memparse(param->string, &rest);
3669 		if (*rest)
3670 			goto bad_value;
3671 		ctx->seen |= SHMEM_SEEN_INODES;
3672 		break;
3673 	case Opt_mode:
3674 		ctx->mode = result.uint_32 & 07777;
3675 		break;
3676 	case Opt_uid:
3677 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3678 		if (!uid_valid(ctx->uid))
3679 			goto bad_value;
3680 		break;
3681 	case Opt_gid:
3682 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3683 		if (!gid_valid(ctx->gid))
3684 			goto bad_value;
3685 		break;
3686 	case Opt_huge:
3687 		ctx->huge = result.uint_32;
3688 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3689 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3690 		      has_transparent_hugepage()))
3691 			goto unsupported_parameter;
3692 		ctx->seen |= SHMEM_SEEN_HUGE;
3693 		break;
3694 	case Opt_mpol:
3695 		if (IS_ENABLED(CONFIG_NUMA)) {
3696 			mpol_put(ctx->mpol);
3697 			ctx->mpol = NULL;
3698 			if (mpol_parse_str(param->string, &ctx->mpol))
3699 				goto bad_value;
3700 			break;
3701 		}
3702 		goto unsupported_parameter;
3703 	case Opt_inode32:
3704 		ctx->full_inums = false;
3705 		ctx->seen |= SHMEM_SEEN_INUMS;
3706 		break;
3707 	case Opt_inode64:
3708 		if (sizeof(ino_t) < 8) {
3709 			return invalfc(fc,
3710 				       "Cannot use inode64 with <64bit inums in kernel\n");
3711 		}
3712 		ctx->full_inums = true;
3713 		ctx->seen |= SHMEM_SEEN_INUMS;
3714 		break;
3715 	case Opt_noswap:
3716 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
3717 			return invalfc(fc,
3718 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
3719 		}
3720 		ctx->noswap = true;
3721 		ctx->seen |= SHMEM_SEEN_NOSWAP;
3722 		break;
3723 	}
3724 	return 0;
3725 
3726 unsupported_parameter:
3727 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3728 bad_value:
3729 	return invalfc(fc, "Bad value for '%s'", param->key);
3730 }
3731 
3732 static int shmem_parse_options(struct fs_context *fc, void *data)
3733 {
3734 	char *options = data;
3735 
3736 	if (options) {
3737 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3738 		if (err)
3739 			return err;
3740 	}
3741 
3742 	while (options != NULL) {
3743 		char *this_char = options;
3744 		for (;;) {
3745 			/*
3746 			 * NUL-terminate this option: unfortunately,
3747 			 * mount options form a comma-separated list,
3748 			 * but mpol's nodelist may also contain commas.
3749 			 */
3750 			options = strchr(options, ',');
3751 			if (options == NULL)
3752 				break;
3753 			options++;
3754 			if (!isdigit(*options)) {
3755 				options[-1] = '\0';
3756 				break;
3757 			}
3758 		}
3759 		if (*this_char) {
3760 			char *value = strchr(this_char, '=');
3761 			size_t len = 0;
3762 			int err;
3763 
3764 			if (value) {
3765 				*value++ = '\0';
3766 				len = strlen(value);
3767 			}
3768 			err = vfs_parse_fs_string(fc, this_char, value, len);
3769 			if (err < 0)
3770 				return err;
3771 		}
3772 	}
3773 	return 0;
3774 }
3775 
3776 /*
3777  * Reconfigure a shmem filesystem.
3778  *
3779  * Note that we disallow change from limited->unlimited blocks/inodes while any
3780  * are in use; but we must separately disallow unlimited->limited, because in
3781  * that case we have no record of how much is already in use.
3782  */
3783 static int shmem_reconfigure(struct fs_context *fc)
3784 {
3785 	struct shmem_options *ctx = fc->fs_private;
3786 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3787 	unsigned long inodes;
3788 	struct mempolicy *mpol = NULL;
3789 	const char *err;
3790 
3791 	raw_spin_lock(&sbinfo->stat_lock);
3792 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3793 
3794 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3795 		if (!sbinfo->max_blocks) {
3796 			err = "Cannot retroactively limit size";
3797 			goto out;
3798 		}
3799 		if (percpu_counter_compare(&sbinfo->used_blocks,
3800 					   ctx->blocks) > 0) {
3801 			err = "Too small a size for current use";
3802 			goto out;
3803 		}
3804 	}
3805 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3806 		if (!sbinfo->max_inodes) {
3807 			err = "Cannot retroactively limit inodes";
3808 			goto out;
3809 		}
3810 		if (ctx->inodes < inodes) {
3811 			err = "Too few inodes for current use";
3812 			goto out;
3813 		}
3814 	}
3815 
3816 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3817 	    sbinfo->next_ino > UINT_MAX) {
3818 		err = "Current inum too high to switch to 32-bit inums";
3819 		goto out;
3820 	}
3821 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
3822 		err = "Cannot disable swap on remount";
3823 		goto out;
3824 	}
3825 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
3826 		err = "Cannot enable swap on remount if it was disabled on first mount";
3827 		goto out;
3828 	}
3829 
3830 	if (ctx->seen & SHMEM_SEEN_HUGE)
3831 		sbinfo->huge = ctx->huge;
3832 	if (ctx->seen & SHMEM_SEEN_INUMS)
3833 		sbinfo->full_inums = ctx->full_inums;
3834 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3835 		sbinfo->max_blocks  = ctx->blocks;
3836 	if (ctx->seen & SHMEM_SEEN_INODES) {
3837 		sbinfo->max_inodes  = ctx->inodes;
3838 		sbinfo->free_inodes = ctx->inodes - inodes;
3839 	}
3840 
3841 	/*
3842 	 * Preserve previous mempolicy unless mpol remount option was specified.
3843 	 */
3844 	if (ctx->mpol) {
3845 		mpol = sbinfo->mpol;
3846 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3847 		ctx->mpol = NULL;
3848 	}
3849 
3850 	if (ctx->noswap)
3851 		sbinfo->noswap = true;
3852 
3853 	raw_spin_unlock(&sbinfo->stat_lock);
3854 	mpol_put(mpol);
3855 	return 0;
3856 out:
3857 	raw_spin_unlock(&sbinfo->stat_lock);
3858 	return invalfc(fc, "%s", err);
3859 }
3860 
3861 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3862 {
3863 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3864 	struct mempolicy *mpol;
3865 
3866 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3867 		seq_printf(seq, ",size=%luk",
3868 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3869 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3870 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3871 	if (sbinfo->mode != (0777 | S_ISVTX))
3872 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3873 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3874 		seq_printf(seq, ",uid=%u",
3875 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3876 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3877 		seq_printf(seq, ",gid=%u",
3878 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3879 
3880 	/*
3881 	 * Showing inode{64,32} might be useful even if it's the system default,
3882 	 * since then people don't have to resort to checking both here and
3883 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3884 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3885 	 *
3886 	 * We hide it when inode64 isn't the default and we are using 32-bit
3887 	 * inodes, since that probably just means the feature isn't even under
3888 	 * consideration.
3889 	 *
3890 	 * As such:
3891 	 *
3892 	 *                     +-----------------+-----------------+
3893 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3894 	 *  +------------------+-----------------+-----------------+
3895 	 *  | full_inums=true  | show            | show            |
3896 	 *  | full_inums=false | show            | hide            |
3897 	 *  +------------------+-----------------+-----------------+
3898 	 *
3899 	 */
3900 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3901 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3904 	if (sbinfo->huge)
3905 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3906 #endif
3907 	mpol = shmem_get_sbmpol(sbinfo);
3908 	shmem_show_mpol(seq, mpol);
3909 	mpol_put(mpol);
3910 	if (sbinfo->noswap)
3911 		seq_printf(seq, ",noswap");
3912 	return 0;
3913 }
3914 
3915 #endif /* CONFIG_TMPFS */
3916 
3917 static void shmem_put_super(struct super_block *sb)
3918 {
3919 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3920 
3921 	free_percpu(sbinfo->ino_batch);
3922 	percpu_counter_destroy(&sbinfo->used_blocks);
3923 	mpol_put(sbinfo->mpol);
3924 	kfree(sbinfo);
3925 	sb->s_fs_info = NULL;
3926 }
3927 
3928 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3929 {
3930 	struct shmem_options *ctx = fc->fs_private;
3931 	struct inode *inode;
3932 	struct shmem_sb_info *sbinfo;
3933 
3934 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3935 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3936 				L1_CACHE_BYTES), GFP_KERNEL);
3937 	if (!sbinfo)
3938 		return -ENOMEM;
3939 
3940 	sb->s_fs_info = sbinfo;
3941 
3942 #ifdef CONFIG_TMPFS
3943 	/*
3944 	 * Per default we only allow half of the physical ram per
3945 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3946 	 * but the internal instance is left unlimited.
3947 	 */
3948 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3949 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3950 			ctx->blocks = shmem_default_max_blocks();
3951 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3952 			ctx->inodes = shmem_default_max_inodes();
3953 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3954 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3955 		sbinfo->noswap = ctx->noswap;
3956 	} else {
3957 		sb->s_flags |= SB_NOUSER;
3958 	}
3959 	sb->s_export_op = &shmem_export_ops;
3960 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3961 #else
3962 	sb->s_flags |= SB_NOUSER;
3963 #endif
3964 	sbinfo->max_blocks = ctx->blocks;
3965 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3966 	if (sb->s_flags & SB_KERNMOUNT) {
3967 		sbinfo->ino_batch = alloc_percpu(ino_t);
3968 		if (!sbinfo->ino_batch)
3969 			goto failed;
3970 	}
3971 	sbinfo->uid = ctx->uid;
3972 	sbinfo->gid = ctx->gid;
3973 	sbinfo->full_inums = ctx->full_inums;
3974 	sbinfo->mode = ctx->mode;
3975 	sbinfo->huge = ctx->huge;
3976 	sbinfo->mpol = ctx->mpol;
3977 	ctx->mpol = NULL;
3978 
3979 	raw_spin_lock_init(&sbinfo->stat_lock);
3980 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3981 		goto failed;
3982 	spin_lock_init(&sbinfo->shrinklist_lock);
3983 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3984 
3985 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3986 	sb->s_blocksize = PAGE_SIZE;
3987 	sb->s_blocksize_bits = PAGE_SHIFT;
3988 	sb->s_magic = TMPFS_MAGIC;
3989 	sb->s_op = &shmem_ops;
3990 	sb->s_time_gran = 1;
3991 #ifdef CONFIG_TMPFS_XATTR
3992 	sb->s_xattr = shmem_xattr_handlers;
3993 #endif
3994 #ifdef CONFIG_TMPFS_POSIX_ACL
3995 	sb->s_flags |= SB_POSIXACL;
3996 #endif
3997 	uuid_gen(&sb->s_uuid);
3998 
3999 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4000 				VM_NORESERVE);
4001 	if (!inode)
4002 		goto failed;
4003 	inode->i_uid = sbinfo->uid;
4004 	inode->i_gid = sbinfo->gid;
4005 	sb->s_root = d_make_root(inode);
4006 	if (!sb->s_root)
4007 		goto failed;
4008 	return 0;
4009 
4010 failed:
4011 	shmem_put_super(sb);
4012 	return -ENOMEM;
4013 }
4014 
4015 static int shmem_get_tree(struct fs_context *fc)
4016 {
4017 	return get_tree_nodev(fc, shmem_fill_super);
4018 }
4019 
4020 static void shmem_free_fc(struct fs_context *fc)
4021 {
4022 	struct shmem_options *ctx = fc->fs_private;
4023 
4024 	if (ctx) {
4025 		mpol_put(ctx->mpol);
4026 		kfree(ctx);
4027 	}
4028 }
4029 
4030 static const struct fs_context_operations shmem_fs_context_ops = {
4031 	.free			= shmem_free_fc,
4032 	.get_tree		= shmem_get_tree,
4033 #ifdef CONFIG_TMPFS
4034 	.parse_monolithic	= shmem_parse_options,
4035 	.parse_param		= shmem_parse_one,
4036 	.reconfigure		= shmem_reconfigure,
4037 #endif
4038 };
4039 
4040 static struct kmem_cache *shmem_inode_cachep;
4041 
4042 static struct inode *shmem_alloc_inode(struct super_block *sb)
4043 {
4044 	struct shmem_inode_info *info;
4045 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4046 	if (!info)
4047 		return NULL;
4048 	return &info->vfs_inode;
4049 }
4050 
4051 static void shmem_free_in_core_inode(struct inode *inode)
4052 {
4053 	if (S_ISLNK(inode->i_mode))
4054 		kfree(inode->i_link);
4055 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4056 }
4057 
4058 static void shmem_destroy_inode(struct inode *inode)
4059 {
4060 	if (S_ISREG(inode->i_mode))
4061 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4062 }
4063 
4064 static void shmem_init_inode(void *foo)
4065 {
4066 	struct shmem_inode_info *info = foo;
4067 	inode_init_once(&info->vfs_inode);
4068 }
4069 
4070 static void shmem_init_inodecache(void)
4071 {
4072 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4073 				sizeof(struct shmem_inode_info),
4074 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4075 }
4076 
4077 static void shmem_destroy_inodecache(void)
4078 {
4079 	kmem_cache_destroy(shmem_inode_cachep);
4080 }
4081 
4082 /* Keep the page in page cache instead of truncating it */
4083 static int shmem_error_remove_page(struct address_space *mapping,
4084 				   struct page *page)
4085 {
4086 	return 0;
4087 }
4088 
4089 const struct address_space_operations shmem_aops = {
4090 	.writepage	= shmem_writepage,
4091 	.dirty_folio	= noop_dirty_folio,
4092 #ifdef CONFIG_TMPFS
4093 	.write_begin	= shmem_write_begin,
4094 	.write_end	= shmem_write_end,
4095 #endif
4096 #ifdef CONFIG_MIGRATION
4097 	.migrate_folio	= migrate_folio,
4098 #endif
4099 	.error_remove_page = shmem_error_remove_page,
4100 };
4101 EXPORT_SYMBOL(shmem_aops);
4102 
4103 static const struct file_operations shmem_file_operations = {
4104 	.mmap		= shmem_mmap,
4105 	.open		= generic_file_open,
4106 	.get_unmapped_area = shmem_get_unmapped_area,
4107 #ifdef CONFIG_TMPFS
4108 	.llseek		= shmem_file_llseek,
4109 	.read_iter	= shmem_file_read_iter,
4110 	.write_iter	= generic_file_write_iter,
4111 	.fsync		= noop_fsync,
4112 	.splice_read	= shmem_file_splice_read,
4113 	.splice_write	= iter_file_splice_write,
4114 	.fallocate	= shmem_fallocate,
4115 #endif
4116 };
4117 
4118 static const struct inode_operations shmem_inode_operations = {
4119 	.getattr	= shmem_getattr,
4120 	.setattr	= shmem_setattr,
4121 #ifdef CONFIG_TMPFS_XATTR
4122 	.listxattr	= shmem_listxattr,
4123 	.set_acl	= simple_set_acl,
4124 	.fileattr_get	= shmem_fileattr_get,
4125 	.fileattr_set	= shmem_fileattr_set,
4126 #endif
4127 };
4128 
4129 static const struct inode_operations shmem_dir_inode_operations = {
4130 #ifdef CONFIG_TMPFS
4131 	.getattr	= shmem_getattr,
4132 	.create		= shmem_create,
4133 	.lookup		= simple_lookup,
4134 	.link		= shmem_link,
4135 	.unlink		= shmem_unlink,
4136 	.symlink	= shmem_symlink,
4137 	.mkdir		= shmem_mkdir,
4138 	.rmdir		= shmem_rmdir,
4139 	.mknod		= shmem_mknod,
4140 	.rename		= shmem_rename2,
4141 	.tmpfile	= shmem_tmpfile,
4142 #endif
4143 #ifdef CONFIG_TMPFS_XATTR
4144 	.listxattr	= shmem_listxattr,
4145 	.fileattr_get	= shmem_fileattr_get,
4146 	.fileattr_set	= shmem_fileattr_set,
4147 #endif
4148 #ifdef CONFIG_TMPFS_POSIX_ACL
4149 	.setattr	= shmem_setattr,
4150 	.set_acl	= simple_set_acl,
4151 #endif
4152 };
4153 
4154 static const struct inode_operations shmem_special_inode_operations = {
4155 	.getattr	= shmem_getattr,
4156 #ifdef CONFIG_TMPFS_XATTR
4157 	.listxattr	= shmem_listxattr,
4158 #endif
4159 #ifdef CONFIG_TMPFS_POSIX_ACL
4160 	.setattr	= shmem_setattr,
4161 	.set_acl	= simple_set_acl,
4162 #endif
4163 };
4164 
4165 static const struct super_operations shmem_ops = {
4166 	.alloc_inode	= shmem_alloc_inode,
4167 	.free_inode	= shmem_free_in_core_inode,
4168 	.destroy_inode	= shmem_destroy_inode,
4169 #ifdef CONFIG_TMPFS
4170 	.statfs		= shmem_statfs,
4171 	.show_options	= shmem_show_options,
4172 #endif
4173 	.evict_inode	= shmem_evict_inode,
4174 	.drop_inode	= generic_delete_inode,
4175 	.put_super	= shmem_put_super,
4176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4177 	.nr_cached_objects	= shmem_unused_huge_count,
4178 	.free_cached_objects	= shmem_unused_huge_scan,
4179 #endif
4180 };
4181 
4182 static const struct vm_operations_struct shmem_vm_ops = {
4183 	.fault		= shmem_fault,
4184 	.map_pages	= filemap_map_pages,
4185 #ifdef CONFIG_NUMA
4186 	.set_policy     = shmem_set_policy,
4187 	.get_policy     = shmem_get_policy,
4188 #endif
4189 };
4190 
4191 static const struct vm_operations_struct shmem_anon_vm_ops = {
4192 	.fault		= shmem_fault,
4193 	.map_pages	= filemap_map_pages,
4194 #ifdef CONFIG_NUMA
4195 	.set_policy     = shmem_set_policy,
4196 	.get_policy     = shmem_get_policy,
4197 #endif
4198 };
4199 
4200 int shmem_init_fs_context(struct fs_context *fc)
4201 {
4202 	struct shmem_options *ctx;
4203 
4204 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4205 	if (!ctx)
4206 		return -ENOMEM;
4207 
4208 	ctx->mode = 0777 | S_ISVTX;
4209 	ctx->uid = current_fsuid();
4210 	ctx->gid = current_fsgid();
4211 
4212 	fc->fs_private = ctx;
4213 	fc->ops = &shmem_fs_context_ops;
4214 	return 0;
4215 }
4216 
4217 static struct file_system_type shmem_fs_type = {
4218 	.owner		= THIS_MODULE,
4219 	.name		= "tmpfs",
4220 	.init_fs_context = shmem_init_fs_context,
4221 #ifdef CONFIG_TMPFS
4222 	.parameters	= shmem_fs_parameters,
4223 #endif
4224 	.kill_sb	= kill_litter_super,
4225 #ifdef CONFIG_SHMEM
4226 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4227 #else
4228 	.fs_flags	= FS_USERNS_MOUNT,
4229 #endif
4230 };
4231 
4232 void __init shmem_init(void)
4233 {
4234 	int error;
4235 
4236 	shmem_init_inodecache();
4237 
4238 	error = register_filesystem(&shmem_fs_type);
4239 	if (error) {
4240 		pr_err("Could not register tmpfs\n");
4241 		goto out2;
4242 	}
4243 
4244 	shm_mnt = kern_mount(&shmem_fs_type);
4245 	if (IS_ERR(shm_mnt)) {
4246 		error = PTR_ERR(shm_mnt);
4247 		pr_err("Could not kern_mount tmpfs\n");
4248 		goto out1;
4249 	}
4250 
4251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4252 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4253 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4254 	else
4255 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4256 #endif
4257 	return;
4258 
4259 out1:
4260 	unregister_filesystem(&shmem_fs_type);
4261 out2:
4262 	shmem_destroy_inodecache();
4263 	shm_mnt = ERR_PTR(error);
4264 }
4265 
4266 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4267 static ssize_t shmem_enabled_show(struct kobject *kobj,
4268 				  struct kobj_attribute *attr, char *buf)
4269 {
4270 	static const int values[] = {
4271 		SHMEM_HUGE_ALWAYS,
4272 		SHMEM_HUGE_WITHIN_SIZE,
4273 		SHMEM_HUGE_ADVISE,
4274 		SHMEM_HUGE_NEVER,
4275 		SHMEM_HUGE_DENY,
4276 		SHMEM_HUGE_FORCE,
4277 	};
4278 	int len = 0;
4279 	int i;
4280 
4281 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4282 		len += sysfs_emit_at(buf, len,
4283 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4284 				     i ? " " : "",
4285 				     shmem_format_huge(values[i]));
4286 	}
4287 
4288 	len += sysfs_emit_at(buf, len, "\n");
4289 
4290 	return len;
4291 }
4292 
4293 static ssize_t shmem_enabled_store(struct kobject *kobj,
4294 		struct kobj_attribute *attr, const char *buf, size_t count)
4295 {
4296 	char tmp[16];
4297 	int huge;
4298 
4299 	if (count + 1 > sizeof(tmp))
4300 		return -EINVAL;
4301 	memcpy(tmp, buf, count);
4302 	tmp[count] = '\0';
4303 	if (count && tmp[count - 1] == '\n')
4304 		tmp[count - 1] = '\0';
4305 
4306 	huge = shmem_parse_huge(tmp);
4307 	if (huge == -EINVAL)
4308 		return -EINVAL;
4309 	if (!has_transparent_hugepage() &&
4310 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4311 		return -EINVAL;
4312 
4313 	shmem_huge = huge;
4314 	if (shmem_huge > SHMEM_HUGE_DENY)
4315 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4316 	return count;
4317 }
4318 
4319 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4320 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4321 
4322 #else /* !CONFIG_SHMEM */
4323 
4324 /*
4325  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4326  *
4327  * This is intended for small system where the benefits of the full
4328  * shmem code (swap-backed and resource-limited) are outweighed by
4329  * their complexity. On systems without swap this code should be
4330  * effectively equivalent, but much lighter weight.
4331  */
4332 
4333 static struct file_system_type shmem_fs_type = {
4334 	.name		= "tmpfs",
4335 	.init_fs_context = ramfs_init_fs_context,
4336 	.parameters	= ramfs_fs_parameters,
4337 	.kill_sb	= ramfs_kill_sb,
4338 	.fs_flags	= FS_USERNS_MOUNT,
4339 };
4340 
4341 void __init shmem_init(void)
4342 {
4343 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4344 
4345 	shm_mnt = kern_mount(&shmem_fs_type);
4346 	BUG_ON(IS_ERR(shm_mnt));
4347 }
4348 
4349 int shmem_unuse(unsigned int type)
4350 {
4351 	return 0;
4352 }
4353 
4354 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4355 {
4356 	return 0;
4357 }
4358 
4359 void shmem_unlock_mapping(struct address_space *mapping)
4360 {
4361 }
4362 
4363 #ifdef CONFIG_MMU
4364 unsigned long shmem_get_unmapped_area(struct file *file,
4365 				      unsigned long addr, unsigned long len,
4366 				      unsigned long pgoff, unsigned long flags)
4367 {
4368 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4369 }
4370 #endif
4371 
4372 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4373 {
4374 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4375 }
4376 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4377 
4378 #define shmem_vm_ops				generic_file_vm_ops
4379 #define shmem_anon_vm_ops			generic_file_vm_ops
4380 #define shmem_file_operations			ramfs_file_operations
4381 #define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4382 #define shmem_acct_size(flags, size)		0
4383 #define shmem_unacct_size(flags, size)		do {} while (0)
4384 
4385 #endif /* CONFIG_SHMEM */
4386 
4387 /* common code */
4388 
4389 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4390 				       unsigned long flags, unsigned int i_flags)
4391 {
4392 	struct inode *inode;
4393 	struct file *res;
4394 
4395 	if (IS_ERR(mnt))
4396 		return ERR_CAST(mnt);
4397 
4398 	if (size < 0 || size > MAX_LFS_FILESIZE)
4399 		return ERR_PTR(-EINVAL);
4400 
4401 	if (shmem_acct_size(flags, size))
4402 		return ERR_PTR(-ENOMEM);
4403 
4404 	if (is_idmapped_mnt(mnt))
4405 		return ERR_PTR(-EINVAL);
4406 
4407 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4408 				S_IFREG | S_IRWXUGO, 0, flags);
4409 	if (unlikely(!inode)) {
4410 		shmem_unacct_size(flags, size);
4411 		return ERR_PTR(-ENOSPC);
4412 	}
4413 	inode->i_flags |= i_flags;
4414 	inode->i_size = size;
4415 	clear_nlink(inode);	/* It is unlinked */
4416 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4417 	if (!IS_ERR(res))
4418 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4419 				&shmem_file_operations);
4420 	if (IS_ERR(res))
4421 		iput(inode);
4422 	return res;
4423 }
4424 
4425 /**
4426  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4427  * 	kernel internal.  There will be NO LSM permission checks against the
4428  * 	underlying inode.  So users of this interface must do LSM checks at a
4429  *	higher layer.  The users are the big_key and shm implementations.  LSM
4430  *	checks are provided at the key or shm level rather than the inode.
4431  * @name: name for dentry (to be seen in /proc/<pid>/maps
4432  * @size: size to be set for the file
4433  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4434  */
4435 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4436 {
4437 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4438 }
4439 
4440 /**
4441  * shmem_file_setup - get an unlinked file living in tmpfs
4442  * @name: name for dentry (to be seen in /proc/<pid>/maps
4443  * @size: size to be set for the file
4444  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4445  */
4446 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4447 {
4448 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4449 }
4450 EXPORT_SYMBOL_GPL(shmem_file_setup);
4451 
4452 /**
4453  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4454  * @mnt: the tmpfs mount where the file will be created
4455  * @name: name for dentry (to be seen in /proc/<pid>/maps
4456  * @size: size to be set for the file
4457  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4458  */
4459 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4460 				       loff_t size, unsigned long flags)
4461 {
4462 	return __shmem_file_setup(mnt, name, size, flags, 0);
4463 }
4464 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4465 
4466 /**
4467  * shmem_zero_setup - setup a shared anonymous mapping
4468  * @vma: the vma to be mmapped is prepared by do_mmap
4469  */
4470 int shmem_zero_setup(struct vm_area_struct *vma)
4471 {
4472 	struct file *file;
4473 	loff_t size = vma->vm_end - vma->vm_start;
4474 
4475 	/*
4476 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4477 	 * between XFS directory reading and selinux: since this file is only
4478 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4479 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4480 	 */
4481 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4482 	if (IS_ERR(file))
4483 		return PTR_ERR(file);
4484 
4485 	if (vma->vm_file)
4486 		fput(vma->vm_file);
4487 	vma->vm_file = file;
4488 	vma->vm_ops = &shmem_anon_vm_ops;
4489 
4490 	return 0;
4491 }
4492 
4493 /**
4494  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4495  * @mapping:	the folio's address_space
4496  * @index:	the folio index
4497  * @gfp:	the page allocator flags to use if allocating
4498  *
4499  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4500  * with any new page allocations done using the specified allocation flags.
4501  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4502  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4503  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4504  *
4505  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4506  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4507  */
4508 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4509 		pgoff_t index, gfp_t gfp)
4510 {
4511 #ifdef CONFIG_SHMEM
4512 	struct inode *inode = mapping->host;
4513 	struct folio *folio;
4514 	int error;
4515 
4516 	BUG_ON(!shmem_mapping(mapping));
4517 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4518 				  gfp, NULL, NULL, NULL);
4519 	if (error)
4520 		return ERR_PTR(error);
4521 
4522 	folio_unlock(folio);
4523 	return folio;
4524 #else
4525 	/*
4526 	 * The tiny !SHMEM case uses ramfs without swap
4527 	 */
4528 	return mapping_read_folio_gfp(mapping, index, gfp);
4529 #endif
4530 }
4531 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4532 
4533 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4534 					 pgoff_t index, gfp_t gfp)
4535 {
4536 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4537 	struct page *page;
4538 
4539 	if (IS_ERR(folio))
4540 		return &folio->page;
4541 
4542 	page = folio_file_page(folio, index);
4543 	if (PageHWPoison(page)) {
4544 		folio_put(folio);
4545 		return ERR_PTR(-EIO);
4546 	}
4547 
4548 	return page;
4549 }
4550 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4551