1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 #include <linux/syscalls.h> 70 #include <linux/fcntl.h> 71 #include <uapi/linux/memfd.h> 72 73 #include <asm/uaccess.h> 74 #include <asm/pgtable.h> 75 76 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 77 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 78 79 /* Pretend that each entry is of this size in directory's i_size */ 80 #define BOGO_DIRENT_SIZE 20 81 82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 83 #define SHORT_SYMLINK_LEN 128 84 85 /* 86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 87 * inode->i_private (with i_mutex making sure that it has only one user at 88 * a time): we would prefer not to enlarge the shmem inode just for that. 89 */ 90 struct shmem_falloc { 91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 92 pgoff_t start; /* start of range currently being fallocated */ 93 pgoff_t next; /* the next page offset to be fallocated */ 94 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 96 }; 97 98 /* Flag allocation requirements to shmem_getpage */ 99 enum sgp_type { 100 SGP_READ, /* don't exceed i_size, don't allocate page */ 101 SGP_CACHE, /* don't exceed i_size, may allocate page */ 102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 105 }; 106 107 #ifdef CONFIG_TMPFS 108 static unsigned long shmem_default_max_blocks(void) 109 { 110 return totalram_pages / 2; 111 } 112 113 static unsigned long shmem_default_max_inodes(void) 114 { 115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 116 } 117 #endif 118 119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 120 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 121 struct shmem_inode_info *info, pgoff_t index); 122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 124 125 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 126 struct page **pagep, enum sgp_type sgp, int *fault_type) 127 { 128 return shmem_getpage_gfp(inode, index, pagep, sgp, 129 mapping_gfp_mask(inode->i_mapping), fault_type); 130 } 131 132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 133 { 134 return sb->s_fs_info; 135 } 136 137 /* 138 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 139 * for shared memory and for shared anonymous (/dev/zero) mappings 140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 141 * consistent with the pre-accounting of private mappings ... 142 */ 143 static inline int shmem_acct_size(unsigned long flags, loff_t size) 144 { 145 return (flags & VM_NORESERVE) ? 146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 147 } 148 149 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 150 { 151 if (!(flags & VM_NORESERVE)) 152 vm_unacct_memory(VM_ACCT(size)); 153 } 154 155 static inline int shmem_reacct_size(unsigned long flags, 156 loff_t oldsize, loff_t newsize) 157 { 158 if (!(flags & VM_NORESERVE)) { 159 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 160 return security_vm_enough_memory_mm(current->mm, 161 VM_ACCT(newsize) - VM_ACCT(oldsize)); 162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 164 } 165 return 0; 166 } 167 168 /* 169 * ... whereas tmpfs objects are accounted incrementally as 170 * pages are allocated, in order to allow huge sparse files. 171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 173 */ 174 static inline int shmem_acct_block(unsigned long flags) 175 { 176 return (flags & VM_NORESERVE) ? 177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 178 } 179 180 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 181 { 182 if (flags & VM_NORESERVE) 183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 184 } 185 186 static const struct super_operations shmem_ops; 187 static const struct address_space_operations shmem_aops; 188 static const struct file_operations shmem_file_operations; 189 static const struct inode_operations shmem_inode_operations; 190 static const struct inode_operations shmem_dir_inode_operations; 191 static const struct inode_operations shmem_special_inode_operations; 192 static const struct vm_operations_struct shmem_vm_ops; 193 194 static LIST_HEAD(shmem_swaplist); 195 static DEFINE_MUTEX(shmem_swaplist_mutex); 196 197 static int shmem_reserve_inode(struct super_block *sb) 198 { 199 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 200 if (sbinfo->max_inodes) { 201 spin_lock(&sbinfo->stat_lock); 202 if (!sbinfo->free_inodes) { 203 spin_unlock(&sbinfo->stat_lock); 204 return -ENOSPC; 205 } 206 sbinfo->free_inodes--; 207 spin_unlock(&sbinfo->stat_lock); 208 } 209 return 0; 210 } 211 212 static void shmem_free_inode(struct super_block *sb) 213 { 214 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 215 if (sbinfo->max_inodes) { 216 spin_lock(&sbinfo->stat_lock); 217 sbinfo->free_inodes++; 218 spin_unlock(&sbinfo->stat_lock); 219 } 220 } 221 222 /** 223 * shmem_recalc_inode - recalculate the block usage of an inode 224 * @inode: inode to recalc 225 * 226 * We have to calculate the free blocks since the mm can drop 227 * undirtied hole pages behind our back. 228 * 229 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 230 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 231 * 232 * It has to be called with the spinlock held. 233 */ 234 static void shmem_recalc_inode(struct inode *inode) 235 { 236 struct shmem_inode_info *info = SHMEM_I(inode); 237 long freed; 238 239 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 240 if (freed > 0) { 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 if (sbinfo->max_blocks) 243 percpu_counter_add(&sbinfo->used_blocks, -freed); 244 info->alloced -= freed; 245 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 246 shmem_unacct_blocks(info->flags, freed); 247 } 248 } 249 250 /* 251 * Replace item expected in radix tree by a new item, while holding tree lock. 252 */ 253 static int shmem_radix_tree_replace(struct address_space *mapping, 254 pgoff_t index, void *expected, void *replacement) 255 { 256 void **pslot; 257 void *item; 258 259 VM_BUG_ON(!expected); 260 VM_BUG_ON(!replacement); 261 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 262 if (!pslot) 263 return -ENOENT; 264 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 265 if (item != expected) 266 return -ENOENT; 267 radix_tree_replace_slot(pslot, replacement); 268 return 0; 269 } 270 271 /* 272 * Sometimes, before we decide whether to proceed or to fail, we must check 273 * that an entry was not already brought back from swap by a racing thread. 274 * 275 * Checking page is not enough: by the time a SwapCache page is locked, it 276 * might be reused, and again be SwapCache, using the same swap as before. 277 */ 278 static bool shmem_confirm_swap(struct address_space *mapping, 279 pgoff_t index, swp_entry_t swap) 280 { 281 void *item; 282 283 rcu_read_lock(); 284 item = radix_tree_lookup(&mapping->page_tree, index); 285 rcu_read_unlock(); 286 return item == swp_to_radix_entry(swap); 287 } 288 289 /* 290 * Like add_to_page_cache_locked, but error if expected item has gone. 291 */ 292 static int shmem_add_to_page_cache(struct page *page, 293 struct address_space *mapping, 294 pgoff_t index, void *expected) 295 { 296 int error; 297 298 VM_BUG_ON_PAGE(!PageLocked(page), page); 299 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 300 301 page_cache_get(page); 302 page->mapping = mapping; 303 page->index = index; 304 305 spin_lock_irq(&mapping->tree_lock); 306 if (!expected) 307 error = radix_tree_insert(&mapping->page_tree, index, page); 308 else 309 error = shmem_radix_tree_replace(mapping, index, expected, 310 page); 311 if (!error) { 312 mapping->nrpages++; 313 __inc_zone_page_state(page, NR_FILE_PAGES); 314 __inc_zone_page_state(page, NR_SHMEM); 315 spin_unlock_irq(&mapping->tree_lock); 316 } else { 317 page->mapping = NULL; 318 spin_unlock_irq(&mapping->tree_lock); 319 page_cache_release(page); 320 } 321 return error; 322 } 323 324 /* 325 * Like delete_from_page_cache, but substitutes swap for page. 326 */ 327 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 328 { 329 struct address_space *mapping = page->mapping; 330 int error; 331 332 spin_lock_irq(&mapping->tree_lock); 333 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 334 page->mapping = NULL; 335 mapping->nrpages--; 336 __dec_zone_page_state(page, NR_FILE_PAGES); 337 __dec_zone_page_state(page, NR_SHMEM); 338 spin_unlock_irq(&mapping->tree_lock); 339 page_cache_release(page); 340 BUG_ON(error); 341 } 342 343 /* 344 * Remove swap entry from radix tree, free the swap and its page cache. 345 */ 346 static int shmem_free_swap(struct address_space *mapping, 347 pgoff_t index, void *radswap) 348 { 349 void *old; 350 351 spin_lock_irq(&mapping->tree_lock); 352 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 353 spin_unlock_irq(&mapping->tree_lock); 354 if (old != radswap) 355 return -ENOENT; 356 free_swap_and_cache(radix_to_swp_entry(radswap)); 357 return 0; 358 } 359 360 /* 361 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 362 */ 363 void shmem_unlock_mapping(struct address_space *mapping) 364 { 365 struct pagevec pvec; 366 pgoff_t indices[PAGEVEC_SIZE]; 367 pgoff_t index = 0; 368 369 pagevec_init(&pvec, 0); 370 /* 371 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 372 */ 373 while (!mapping_unevictable(mapping)) { 374 /* 375 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 376 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 377 */ 378 pvec.nr = find_get_entries(mapping, index, 379 PAGEVEC_SIZE, pvec.pages, indices); 380 if (!pvec.nr) 381 break; 382 index = indices[pvec.nr - 1] + 1; 383 pagevec_remove_exceptionals(&pvec); 384 check_move_unevictable_pages(pvec.pages, pvec.nr); 385 pagevec_release(&pvec); 386 cond_resched(); 387 } 388 } 389 390 /* 391 * Remove range of pages and swap entries from radix tree, and free them. 392 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 393 */ 394 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 395 bool unfalloc) 396 { 397 struct address_space *mapping = inode->i_mapping; 398 struct shmem_inode_info *info = SHMEM_I(inode); 399 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 400 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 401 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 402 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 403 struct pagevec pvec; 404 pgoff_t indices[PAGEVEC_SIZE]; 405 long nr_swaps_freed = 0; 406 pgoff_t index; 407 int i; 408 409 if (lend == -1) 410 end = -1; /* unsigned, so actually very big */ 411 412 pagevec_init(&pvec, 0); 413 index = start; 414 while (index < end) { 415 pvec.nr = find_get_entries(mapping, index, 416 min(end - index, (pgoff_t)PAGEVEC_SIZE), 417 pvec.pages, indices); 418 if (!pvec.nr) 419 break; 420 for (i = 0; i < pagevec_count(&pvec); i++) { 421 struct page *page = pvec.pages[i]; 422 423 index = indices[i]; 424 if (index >= end) 425 break; 426 427 if (radix_tree_exceptional_entry(page)) { 428 if (unfalloc) 429 continue; 430 nr_swaps_freed += !shmem_free_swap(mapping, 431 index, page); 432 continue; 433 } 434 435 if (!trylock_page(page)) 436 continue; 437 if (!unfalloc || !PageUptodate(page)) { 438 if (page->mapping == mapping) { 439 VM_BUG_ON_PAGE(PageWriteback(page), page); 440 truncate_inode_page(mapping, page); 441 } 442 } 443 unlock_page(page); 444 } 445 pagevec_remove_exceptionals(&pvec); 446 pagevec_release(&pvec); 447 cond_resched(); 448 index++; 449 } 450 451 if (partial_start) { 452 struct page *page = NULL; 453 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 454 if (page) { 455 unsigned int top = PAGE_CACHE_SIZE; 456 if (start > end) { 457 top = partial_end; 458 partial_end = 0; 459 } 460 zero_user_segment(page, partial_start, top); 461 set_page_dirty(page); 462 unlock_page(page); 463 page_cache_release(page); 464 } 465 } 466 if (partial_end) { 467 struct page *page = NULL; 468 shmem_getpage(inode, end, &page, SGP_READ, NULL); 469 if (page) { 470 zero_user_segment(page, 0, partial_end); 471 set_page_dirty(page); 472 unlock_page(page); 473 page_cache_release(page); 474 } 475 } 476 if (start >= end) 477 return; 478 479 index = start; 480 while (index < end) { 481 cond_resched(); 482 483 pvec.nr = find_get_entries(mapping, index, 484 min(end - index, (pgoff_t)PAGEVEC_SIZE), 485 pvec.pages, indices); 486 if (!pvec.nr) { 487 /* If all gone or hole-punch or unfalloc, we're done */ 488 if (index == start || end != -1) 489 break; 490 /* But if truncating, restart to make sure all gone */ 491 index = start; 492 continue; 493 } 494 for (i = 0; i < pagevec_count(&pvec); i++) { 495 struct page *page = pvec.pages[i]; 496 497 index = indices[i]; 498 if (index >= end) 499 break; 500 501 if (radix_tree_exceptional_entry(page)) { 502 if (unfalloc) 503 continue; 504 if (shmem_free_swap(mapping, index, page)) { 505 /* Swap was replaced by page: retry */ 506 index--; 507 break; 508 } 509 nr_swaps_freed++; 510 continue; 511 } 512 513 lock_page(page); 514 if (!unfalloc || !PageUptodate(page)) { 515 if (page->mapping == mapping) { 516 VM_BUG_ON_PAGE(PageWriteback(page), page); 517 truncate_inode_page(mapping, page); 518 } else { 519 /* Page was replaced by swap: retry */ 520 unlock_page(page); 521 index--; 522 break; 523 } 524 } 525 unlock_page(page); 526 } 527 pagevec_remove_exceptionals(&pvec); 528 pagevec_release(&pvec); 529 index++; 530 } 531 532 spin_lock(&info->lock); 533 info->swapped -= nr_swaps_freed; 534 shmem_recalc_inode(inode); 535 spin_unlock(&info->lock); 536 } 537 538 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 539 { 540 shmem_undo_range(inode, lstart, lend, false); 541 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 542 } 543 EXPORT_SYMBOL_GPL(shmem_truncate_range); 544 545 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 546 struct kstat *stat) 547 { 548 struct inode *inode = dentry->d_inode; 549 struct shmem_inode_info *info = SHMEM_I(inode); 550 551 spin_lock(&info->lock); 552 shmem_recalc_inode(inode); 553 spin_unlock(&info->lock); 554 555 generic_fillattr(inode, stat); 556 557 return 0; 558 } 559 560 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 561 { 562 struct inode *inode = d_inode(dentry); 563 struct shmem_inode_info *info = SHMEM_I(inode); 564 int error; 565 566 error = inode_change_ok(inode, attr); 567 if (error) 568 return error; 569 570 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 571 loff_t oldsize = inode->i_size; 572 loff_t newsize = attr->ia_size; 573 574 /* protected by i_mutex */ 575 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 576 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 577 return -EPERM; 578 579 if (newsize != oldsize) { 580 error = shmem_reacct_size(SHMEM_I(inode)->flags, 581 oldsize, newsize); 582 if (error) 583 return error; 584 i_size_write(inode, newsize); 585 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 586 } 587 if (newsize <= oldsize) { 588 loff_t holebegin = round_up(newsize, PAGE_SIZE); 589 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 590 shmem_truncate_range(inode, newsize, (loff_t)-1); 591 /* unmap again to remove racily COWed private pages */ 592 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 593 } 594 } 595 596 setattr_copy(inode, attr); 597 if (attr->ia_valid & ATTR_MODE) 598 error = posix_acl_chmod(inode, inode->i_mode); 599 return error; 600 } 601 602 static void shmem_evict_inode(struct inode *inode) 603 { 604 struct shmem_inode_info *info = SHMEM_I(inode); 605 606 if (inode->i_mapping->a_ops == &shmem_aops) { 607 shmem_unacct_size(info->flags, inode->i_size); 608 inode->i_size = 0; 609 shmem_truncate_range(inode, 0, (loff_t)-1); 610 if (!list_empty(&info->swaplist)) { 611 mutex_lock(&shmem_swaplist_mutex); 612 list_del_init(&info->swaplist); 613 mutex_unlock(&shmem_swaplist_mutex); 614 } 615 } else 616 kfree(info->symlink); 617 618 simple_xattrs_free(&info->xattrs); 619 WARN_ON(inode->i_blocks); 620 shmem_free_inode(inode->i_sb); 621 clear_inode(inode); 622 } 623 624 /* 625 * If swap found in inode, free it and move page from swapcache to filecache. 626 */ 627 static int shmem_unuse_inode(struct shmem_inode_info *info, 628 swp_entry_t swap, struct page **pagep) 629 { 630 struct address_space *mapping = info->vfs_inode.i_mapping; 631 void *radswap; 632 pgoff_t index; 633 gfp_t gfp; 634 int error = 0; 635 636 radswap = swp_to_radix_entry(swap); 637 index = radix_tree_locate_item(&mapping->page_tree, radswap); 638 if (index == -1) 639 return -EAGAIN; /* tell shmem_unuse we found nothing */ 640 641 /* 642 * Move _head_ to start search for next from here. 643 * But be careful: shmem_evict_inode checks list_empty without taking 644 * mutex, and there's an instant in list_move_tail when info->swaplist 645 * would appear empty, if it were the only one on shmem_swaplist. 646 */ 647 if (shmem_swaplist.next != &info->swaplist) 648 list_move_tail(&shmem_swaplist, &info->swaplist); 649 650 gfp = mapping_gfp_mask(mapping); 651 if (shmem_should_replace_page(*pagep, gfp)) { 652 mutex_unlock(&shmem_swaplist_mutex); 653 error = shmem_replace_page(pagep, gfp, info, index); 654 mutex_lock(&shmem_swaplist_mutex); 655 /* 656 * We needed to drop mutex to make that restrictive page 657 * allocation, but the inode might have been freed while we 658 * dropped it: although a racing shmem_evict_inode() cannot 659 * complete without emptying the radix_tree, our page lock 660 * on this swapcache page is not enough to prevent that - 661 * free_swap_and_cache() of our swap entry will only 662 * trylock_page(), removing swap from radix_tree whatever. 663 * 664 * We must not proceed to shmem_add_to_page_cache() if the 665 * inode has been freed, but of course we cannot rely on 666 * inode or mapping or info to check that. However, we can 667 * safely check if our swap entry is still in use (and here 668 * it can't have got reused for another page): if it's still 669 * in use, then the inode cannot have been freed yet, and we 670 * can safely proceed (if it's no longer in use, that tells 671 * nothing about the inode, but we don't need to unuse swap). 672 */ 673 if (!page_swapcount(*pagep)) 674 error = -ENOENT; 675 } 676 677 /* 678 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 679 * but also to hold up shmem_evict_inode(): so inode cannot be freed 680 * beneath us (pagelock doesn't help until the page is in pagecache). 681 */ 682 if (!error) 683 error = shmem_add_to_page_cache(*pagep, mapping, index, 684 radswap); 685 if (error != -ENOMEM) { 686 /* 687 * Truncation and eviction use free_swap_and_cache(), which 688 * only does trylock page: if we raced, best clean up here. 689 */ 690 delete_from_swap_cache(*pagep); 691 set_page_dirty(*pagep); 692 if (!error) { 693 spin_lock(&info->lock); 694 info->swapped--; 695 spin_unlock(&info->lock); 696 swap_free(swap); 697 } 698 } 699 return error; 700 } 701 702 /* 703 * Search through swapped inodes to find and replace swap by page. 704 */ 705 int shmem_unuse(swp_entry_t swap, struct page *page) 706 { 707 struct list_head *this, *next; 708 struct shmem_inode_info *info; 709 struct mem_cgroup *memcg; 710 int error = 0; 711 712 /* 713 * There's a faint possibility that swap page was replaced before 714 * caller locked it: caller will come back later with the right page. 715 */ 716 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 717 goto out; 718 719 /* 720 * Charge page using GFP_KERNEL while we can wait, before taking 721 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 722 * Charged back to the user (not to caller) when swap account is used. 723 */ 724 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg); 725 if (error) 726 goto out; 727 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 728 error = -EAGAIN; 729 730 mutex_lock(&shmem_swaplist_mutex); 731 list_for_each_safe(this, next, &shmem_swaplist) { 732 info = list_entry(this, struct shmem_inode_info, swaplist); 733 if (info->swapped) 734 error = shmem_unuse_inode(info, swap, &page); 735 else 736 list_del_init(&info->swaplist); 737 cond_resched(); 738 if (error != -EAGAIN) 739 break; 740 /* found nothing in this: move on to search the next */ 741 } 742 mutex_unlock(&shmem_swaplist_mutex); 743 744 if (error) { 745 if (error != -ENOMEM) 746 error = 0; 747 mem_cgroup_cancel_charge(page, memcg); 748 } else 749 mem_cgroup_commit_charge(page, memcg, true); 750 out: 751 unlock_page(page); 752 page_cache_release(page); 753 return error; 754 } 755 756 /* 757 * Move the page from the page cache to the swap cache. 758 */ 759 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 760 { 761 struct shmem_inode_info *info; 762 struct address_space *mapping; 763 struct inode *inode; 764 swp_entry_t swap; 765 pgoff_t index; 766 767 BUG_ON(!PageLocked(page)); 768 mapping = page->mapping; 769 index = page->index; 770 inode = mapping->host; 771 info = SHMEM_I(inode); 772 if (info->flags & VM_LOCKED) 773 goto redirty; 774 if (!total_swap_pages) 775 goto redirty; 776 777 /* 778 * Our capabilities prevent regular writeback or sync from ever calling 779 * shmem_writepage; but a stacking filesystem might use ->writepage of 780 * its underlying filesystem, in which case tmpfs should write out to 781 * swap only in response to memory pressure, and not for the writeback 782 * threads or sync. 783 */ 784 if (!wbc->for_reclaim) { 785 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 786 goto redirty; 787 } 788 789 /* 790 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 791 * value into swapfile.c, the only way we can correctly account for a 792 * fallocated page arriving here is now to initialize it and write it. 793 * 794 * That's okay for a page already fallocated earlier, but if we have 795 * not yet completed the fallocation, then (a) we want to keep track 796 * of this page in case we have to undo it, and (b) it may not be a 797 * good idea to continue anyway, once we're pushing into swap. So 798 * reactivate the page, and let shmem_fallocate() quit when too many. 799 */ 800 if (!PageUptodate(page)) { 801 if (inode->i_private) { 802 struct shmem_falloc *shmem_falloc; 803 spin_lock(&inode->i_lock); 804 shmem_falloc = inode->i_private; 805 if (shmem_falloc && 806 !shmem_falloc->waitq && 807 index >= shmem_falloc->start && 808 index < shmem_falloc->next) 809 shmem_falloc->nr_unswapped++; 810 else 811 shmem_falloc = NULL; 812 spin_unlock(&inode->i_lock); 813 if (shmem_falloc) 814 goto redirty; 815 } 816 clear_highpage(page); 817 flush_dcache_page(page); 818 SetPageUptodate(page); 819 } 820 821 swap = get_swap_page(); 822 if (!swap.val) 823 goto redirty; 824 825 /* 826 * Add inode to shmem_unuse()'s list of swapped-out inodes, 827 * if it's not already there. Do it now before the page is 828 * moved to swap cache, when its pagelock no longer protects 829 * the inode from eviction. But don't unlock the mutex until 830 * we've incremented swapped, because shmem_unuse_inode() will 831 * prune a !swapped inode from the swaplist under this mutex. 832 */ 833 mutex_lock(&shmem_swaplist_mutex); 834 if (list_empty(&info->swaplist)) 835 list_add_tail(&info->swaplist, &shmem_swaplist); 836 837 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 838 swap_shmem_alloc(swap); 839 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 840 841 spin_lock(&info->lock); 842 info->swapped++; 843 shmem_recalc_inode(inode); 844 spin_unlock(&info->lock); 845 846 mutex_unlock(&shmem_swaplist_mutex); 847 BUG_ON(page_mapped(page)); 848 swap_writepage(page, wbc); 849 return 0; 850 } 851 852 mutex_unlock(&shmem_swaplist_mutex); 853 swapcache_free(swap); 854 redirty: 855 set_page_dirty(page); 856 if (wbc->for_reclaim) 857 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 858 unlock_page(page); 859 return 0; 860 } 861 862 #ifdef CONFIG_NUMA 863 #ifdef CONFIG_TMPFS 864 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 865 { 866 char buffer[64]; 867 868 if (!mpol || mpol->mode == MPOL_DEFAULT) 869 return; /* show nothing */ 870 871 mpol_to_str(buffer, sizeof(buffer), mpol); 872 873 seq_printf(seq, ",mpol=%s", buffer); 874 } 875 876 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 877 { 878 struct mempolicy *mpol = NULL; 879 if (sbinfo->mpol) { 880 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 881 mpol = sbinfo->mpol; 882 mpol_get(mpol); 883 spin_unlock(&sbinfo->stat_lock); 884 } 885 return mpol; 886 } 887 #endif /* CONFIG_TMPFS */ 888 889 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 890 struct shmem_inode_info *info, pgoff_t index) 891 { 892 struct vm_area_struct pvma; 893 struct page *page; 894 895 /* Create a pseudo vma that just contains the policy */ 896 pvma.vm_start = 0; 897 /* Bias interleave by inode number to distribute better across nodes */ 898 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 899 pvma.vm_ops = NULL; 900 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 901 902 page = swapin_readahead(swap, gfp, &pvma, 0); 903 904 /* Drop reference taken by mpol_shared_policy_lookup() */ 905 mpol_cond_put(pvma.vm_policy); 906 907 return page; 908 } 909 910 static struct page *shmem_alloc_page(gfp_t gfp, 911 struct shmem_inode_info *info, pgoff_t index) 912 { 913 struct vm_area_struct pvma; 914 struct page *page; 915 916 /* Create a pseudo vma that just contains the policy */ 917 pvma.vm_start = 0; 918 /* Bias interleave by inode number to distribute better across nodes */ 919 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 920 pvma.vm_ops = NULL; 921 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 922 923 page = alloc_page_vma(gfp, &pvma, 0); 924 925 /* Drop reference taken by mpol_shared_policy_lookup() */ 926 mpol_cond_put(pvma.vm_policy); 927 928 return page; 929 } 930 #else /* !CONFIG_NUMA */ 931 #ifdef CONFIG_TMPFS 932 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 933 { 934 } 935 #endif /* CONFIG_TMPFS */ 936 937 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 938 struct shmem_inode_info *info, pgoff_t index) 939 { 940 return swapin_readahead(swap, gfp, NULL, 0); 941 } 942 943 static inline struct page *shmem_alloc_page(gfp_t gfp, 944 struct shmem_inode_info *info, pgoff_t index) 945 { 946 return alloc_page(gfp); 947 } 948 #endif /* CONFIG_NUMA */ 949 950 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 951 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 952 { 953 return NULL; 954 } 955 #endif 956 957 /* 958 * When a page is moved from swapcache to shmem filecache (either by the 959 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 960 * shmem_unuse_inode()), it may have been read in earlier from swap, in 961 * ignorance of the mapping it belongs to. If that mapping has special 962 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 963 * we may need to copy to a suitable page before moving to filecache. 964 * 965 * In a future release, this may well be extended to respect cpuset and 966 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 967 * but for now it is a simple matter of zone. 968 */ 969 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 970 { 971 return page_zonenum(page) > gfp_zone(gfp); 972 } 973 974 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 975 struct shmem_inode_info *info, pgoff_t index) 976 { 977 struct page *oldpage, *newpage; 978 struct address_space *swap_mapping; 979 pgoff_t swap_index; 980 int error; 981 982 oldpage = *pagep; 983 swap_index = page_private(oldpage); 984 swap_mapping = page_mapping(oldpage); 985 986 /* 987 * We have arrived here because our zones are constrained, so don't 988 * limit chance of success by further cpuset and node constraints. 989 */ 990 gfp &= ~GFP_CONSTRAINT_MASK; 991 newpage = shmem_alloc_page(gfp, info, index); 992 if (!newpage) 993 return -ENOMEM; 994 995 page_cache_get(newpage); 996 copy_highpage(newpage, oldpage); 997 flush_dcache_page(newpage); 998 999 __set_page_locked(newpage); 1000 SetPageUptodate(newpage); 1001 SetPageSwapBacked(newpage); 1002 set_page_private(newpage, swap_index); 1003 SetPageSwapCache(newpage); 1004 1005 /* 1006 * Our caller will very soon move newpage out of swapcache, but it's 1007 * a nice clean interface for us to replace oldpage by newpage there. 1008 */ 1009 spin_lock_irq(&swap_mapping->tree_lock); 1010 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1011 newpage); 1012 if (!error) { 1013 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1014 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1015 } 1016 spin_unlock_irq(&swap_mapping->tree_lock); 1017 1018 if (unlikely(error)) { 1019 /* 1020 * Is this possible? I think not, now that our callers check 1021 * both PageSwapCache and page_private after getting page lock; 1022 * but be defensive. Reverse old to newpage for clear and free. 1023 */ 1024 oldpage = newpage; 1025 } else { 1026 mem_cgroup_migrate(oldpage, newpage, true); 1027 lru_cache_add_anon(newpage); 1028 *pagep = newpage; 1029 } 1030 1031 ClearPageSwapCache(oldpage); 1032 set_page_private(oldpage, 0); 1033 1034 unlock_page(oldpage); 1035 page_cache_release(oldpage); 1036 page_cache_release(oldpage); 1037 return error; 1038 } 1039 1040 /* 1041 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1042 * 1043 * If we allocate a new one we do not mark it dirty. That's up to the 1044 * vm. If we swap it in we mark it dirty since we also free the swap 1045 * entry since a page cannot live in both the swap and page cache 1046 */ 1047 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1048 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1049 { 1050 struct address_space *mapping = inode->i_mapping; 1051 struct shmem_inode_info *info; 1052 struct shmem_sb_info *sbinfo; 1053 struct mem_cgroup *memcg; 1054 struct page *page; 1055 swp_entry_t swap; 1056 int error; 1057 int once = 0; 1058 int alloced = 0; 1059 1060 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1061 return -EFBIG; 1062 repeat: 1063 swap.val = 0; 1064 page = find_lock_entry(mapping, index); 1065 if (radix_tree_exceptional_entry(page)) { 1066 swap = radix_to_swp_entry(page); 1067 page = NULL; 1068 } 1069 1070 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1071 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1072 error = -EINVAL; 1073 goto failed; 1074 } 1075 1076 if (page && sgp == SGP_WRITE) 1077 mark_page_accessed(page); 1078 1079 /* fallocated page? */ 1080 if (page && !PageUptodate(page)) { 1081 if (sgp != SGP_READ) 1082 goto clear; 1083 unlock_page(page); 1084 page_cache_release(page); 1085 page = NULL; 1086 } 1087 if (page || (sgp == SGP_READ && !swap.val)) { 1088 *pagep = page; 1089 return 0; 1090 } 1091 1092 /* 1093 * Fast cache lookup did not find it: 1094 * bring it back from swap or allocate. 1095 */ 1096 info = SHMEM_I(inode); 1097 sbinfo = SHMEM_SB(inode->i_sb); 1098 1099 if (swap.val) { 1100 /* Look it up and read it in.. */ 1101 page = lookup_swap_cache(swap); 1102 if (!page) { 1103 /* here we actually do the io */ 1104 if (fault_type) 1105 *fault_type |= VM_FAULT_MAJOR; 1106 page = shmem_swapin(swap, gfp, info, index); 1107 if (!page) { 1108 error = -ENOMEM; 1109 goto failed; 1110 } 1111 } 1112 1113 /* We have to do this with page locked to prevent races */ 1114 lock_page(page); 1115 if (!PageSwapCache(page) || page_private(page) != swap.val || 1116 !shmem_confirm_swap(mapping, index, swap)) { 1117 error = -EEXIST; /* try again */ 1118 goto unlock; 1119 } 1120 if (!PageUptodate(page)) { 1121 error = -EIO; 1122 goto failed; 1123 } 1124 wait_on_page_writeback(page); 1125 1126 if (shmem_should_replace_page(page, gfp)) { 1127 error = shmem_replace_page(&page, gfp, info, index); 1128 if (error) 1129 goto failed; 1130 } 1131 1132 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1133 if (!error) { 1134 error = shmem_add_to_page_cache(page, mapping, index, 1135 swp_to_radix_entry(swap)); 1136 /* 1137 * We already confirmed swap under page lock, and make 1138 * no memory allocation here, so usually no possibility 1139 * of error; but free_swap_and_cache() only trylocks a 1140 * page, so it is just possible that the entry has been 1141 * truncated or holepunched since swap was confirmed. 1142 * shmem_undo_range() will have done some of the 1143 * unaccounting, now delete_from_swap_cache() will do 1144 * the rest. 1145 * Reset swap.val? No, leave it so "failed" goes back to 1146 * "repeat": reading a hole and writing should succeed. 1147 */ 1148 if (error) { 1149 mem_cgroup_cancel_charge(page, memcg); 1150 delete_from_swap_cache(page); 1151 } 1152 } 1153 if (error) 1154 goto failed; 1155 1156 mem_cgroup_commit_charge(page, memcg, true); 1157 1158 spin_lock(&info->lock); 1159 info->swapped--; 1160 shmem_recalc_inode(inode); 1161 spin_unlock(&info->lock); 1162 1163 if (sgp == SGP_WRITE) 1164 mark_page_accessed(page); 1165 1166 delete_from_swap_cache(page); 1167 set_page_dirty(page); 1168 swap_free(swap); 1169 1170 } else { 1171 if (shmem_acct_block(info->flags)) { 1172 error = -ENOSPC; 1173 goto failed; 1174 } 1175 if (sbinfo->max_blocks) { 1176 if (percpu_counter_compare(&sbinfo->used_blocks, 1177 sbinfo->max_blocks) >= 0) { 1178 error = -ENOSPC; 1179 goto unacct; 1180 } 1181 percpu_counter_inc(&sbinfo->used_blocks); 1182 } 1183 1184 page = shmem_alloc_page(gfp, info, index); 1185 if (!page) { 1186 error = -ENOMEM; 1187 goto decused; 1188 } 1189 1190 __SetPageSwapBacked(page); 1191 __set_page_locked(page); 1192 if (sgp == SGP_WRITE) 1193 __SetPageReferenced(page); 1194 1195 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1196 if (error) 1197 goto decused; 1198 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1199 if (!error) { 1200 error = shmem_add_to_page_cache(page, mapping, index, 1201 NULL); 1202 radix_tree_preload_end(); 1203 } 1204 if (error) { 1205 mem_cgroup_cancel_charge(page, memcg); 1206 goto decused; 1207 } 1208 mem_cgroup_commit_charge(page, memcg, false); 1209 lru_cache_add_anon(page); 1210 1211 spin_lock(&info->lock); 1212 info->alloced++; 1213 inode->i_blocks += BLOCKS_PER_PAGE; 1214 shmem_recalc_inode(inode); 1215 spin_unlock(&info->lock); 1216 alloced = true; 1217 1218 /* 1219 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1220 */ 1221 if (sgp == SGP_FALLOC) 1222 sgp = SGP_WRITE; 1223 clear: 1224 /* 1225 * Let SGP_WRITE caller clear ends if write does not fill page; 1226 * but SGP_FALLOC on a page fallocated earlier must initialize 1227 * it now, lest undo on failure cancel our earlier guarantee. 1228 */ 1229 if (sgp != SGP_WRITE) { 1230 clear_highpage(page); 1231 flush_dcache_page(page); 1232 SetPageUptodate(page); 1233 } 1234 if (sgp == SGP_DIRTY) 1235 set_page_dirty(page); 1236 } 1237 1238 /* Perhaps the file has been truncated since we checked */ 1239 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1240 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1241 error = -EINVAL; 1242 if (alloced) 1243 goto trunc; 1244 else 1245 goto failed; 1246 } 1247 *pagep = page; 1248 return 0; 1249 1250 /* 1251 * Error recovery. 1252 */ 1253 trunc: 1254 info = SHMEM_I(inode); 1255 ClearPageDirty(page); 1256 delete_from_page_cache(page); 1257 spin_lock(&info->lock); 1258 info->alloced--; 1259 inode->i_blocks -= BLOCKS_PER_PAGE; 1260 spin_unlock(&info->lock); 1261 decused: 1262 sbinfo = SHMEM_SB(inode->i_sb); 1263 if (sbinfo->max_blocks) 1264 percpu_counter_add(&sbinfo->used_blocks, -1); 1265 unacct: 1266 shmem_unacct_blocks(info->flags, 1); 1267 failed: 1268 if (swap.val && error != -EINVAL && 1269 !shmem_confirm_swap(mapping, index, swap)) 1270 error = -EEXIST; 1271 unlock: 1272 if (page) { 1273 unlock_page(page); 1274 page_cache_release(page); 1275 } 1276 if (error == -ENOSPC && !once++) { 1277 info = SHMEM_I(inode); 1278 spin_lock(&info->lock); 1279 shmem_recalc_inode(inode); 1280 spin_unlock(&info->lock); 1281 goto repeat; 1282 } 1283 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1284 goto repeat; 1285 return error; 1286 } 1287 1288 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1289 { 1290 struct inode *inode = file_inode(vma->vm_file); 1291 int error; 1292 int ret = VM_FAULT_LOCKED; 1293 1294 /* 1295 * Trinity finds that probing a hole which tmpfs is punching can 1296 * prevent the hole-punch from ever completing: which in turn 1297 * locks writers out with its hold on i_mutex. So refrain from 1298 * faulting pages into the hole while it's being punched. Although 1299 * shmem_undo_range() does remove the additions, it may be unable to 1300 * keep up, as each new page needs its own unmap_mapping_range() call, 1301 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1302 * 1303 * It does not matter if we sometimes reach this check just before the 1304 * hole-punch begins, so that one fault then races with the punch: 1305 * we just need to make racing faults a rare case. 1306 * 1307 * The implementation below would be much simpler if we just used a 1308 * standard mutex or completion: but we cannot take i_mutex in fault, 1309 * and bloating every shmem inode for this unlikely case would be sad. 1310 */ 1311 if (unlikely(inode->i_private)) { 1312 struct shmem_falloc *shmem_falloc; 1313 1314 spin_lock(&inode->i_lock); 1315 shmem_falloc = inode->i_private; 1316 if (shmem_falloc && 1317 shmem_falloc->waitq && 1318 vmf->pgoff >= shmem_falloc->start && 1319 vmf->pgoff < shmem_falloc->next) { 1320 wait_queue_head_t *shmem_falloc_waitq; 1321 DEFINE_WAIT(shmem_fault_wait); 1322 1323 ret = VM_FAULT_NOPAGE; 1324 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1325 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1326 /* It's polite to up mmap_sem if we can */ 1327 up_read(&vma->vm_mm->mmap_sem); 1328 ret = VM_FAULT_RETRY; 1329 } 1330 1331 shmem_falloc_waitq = shmem_falloc->waitq; 1332 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1333 TASK_UNINTERRUPTIBLE); 1334 spin_unlock(&inode->i_lock); 1335 schedule(); 1336 1337 /* 1338 * shmem_falloc_waitq points into the shmem_fallocate() 1339 * stack of the hole-punching task: shmem_falloc_waitq 1340 * is usually invalid by the time we reach here, but 1341 * finish_wait() does not dereference it in that case; 1342 * though i_lock needed lest racing with wake_up_all(). 1343 */ 1344 spin_lock(&inode->i_lock); 1345 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1346 spin_unlock(&inode->i_lock); 1347 return ret; 1348 } 1349 spin_unlock(&inode->i_lock); 1350 } 1351 1352 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1353 if (error) 1354 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1355 1356 if (ret & VM_FAULT_MAJOR) { 1357 count_vm_event(PGMAJFAULT); 1358 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1359 } 1360 return ret; 1361 } 1362 1363 #ifdef CONFIG_NUMA 1364 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1365 { 1366 struct inode *inode = file_inode(vma->vm_file); 1367 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1368 } 1369 1370 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1371 unsigned long addr) 1372 { 1373 struct inode *inode = file_inode(vma->vm_file); 1374 pgoff_t index; 1375 1376 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1377 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1378 } 1379 #endif 1380 1381 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1382 { 1383 struct inode *inode = file_inode(file); 1384 struct shmem_inode_info *info = SHMEM_I(inode); 1385 int retval = -ENOMEM; 1386 1387 spin_lock(&info->lock); 1388 if (lock && !(info->flags & VM_LOCKED)) { 1389 if (!user_shm_lock(inode->i_size, user)) 1390 goto out_nomem; 1391 info->flags |= VM_LOCKED; 1392 mapping_set_unevictable(file->f_mapping); 1393 } 1394 if (!lock && (info->flags & VM_LOCKED) && user) { 1395 user_shm_unlock(inode->i_size, user); 1396 info->flags &= ~VM_LOCKED; 1397 mapping_clear_unevictable(file->f_mapping); 1398 } 1399 retval = 0; 1400 1401 out_nomem: 1402 spin_unlock(&info->lock); 1403 return retval; 1404 } 1405 1406 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1407 { 1408 file_accessed(file); 1409 vma->vm_ops = &shmem_vm_ops; 1410 return 0; 1411 } 1412 1413 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1414 umode_t mode, dev_t dev, unsigned long flags) 1415 { 1416 struct inode *inode; 1417 struct shmem_inode_info *info; 1418 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1419 1420 if (shmem_reserve_inode(sb)) 1421 return NULL; 1422 1423 inode = new_inode(sb); 1424 if (inode) { 1425 inode->i_ino = get_next_ino(); 1426 inode_init_owner(inode, dir, mode); 1427 inode->i_blocks = 0; 1428 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1429 inode->i_generation = get_seconds(); 1430 info = SHMEM_I(inode); 1431 memset(info, 0, (char *)inode - (char *)info); 1432 spin_lock_init(&info->lock); 1433 info->seals = F_SEAL_SEAL; 1434 info->flags = flags & VM_NORESERVE; 1435 INIT_LIST_HEAD(&info->swaplist); 1436 simple_xattrs_init(&info->xattrs); 1437 cache_no_acl(inode); 1438 1439 switch (mode & S_IFMT) { 1440 default: 1441 inode->i_op = &shmem_special_inode_operations; 1442 init_special_inode(inode, mode, dev); 1443 break; 1444 case S_IFREG: 1445 inode->i_mapping->a_ops = &shmem_aops; 1446 inode->i_op = &shmem_inode_operations; 1447 inode->i_fop = &shmem_file_operations; 1448 mpol_shared_policy_init(&info->policy, 1449 shmem_get_sbmpol(sbinfo)); 1450 break; 1451 case S_IFDIR: 1452 inc_nlink(inode); 1453 /* Some things misbehave if size == 0 on a directory */ 1454 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1455 inode->i_op = &shmem_dir_inode_operations; 1456 inode->i_fop = &simple_dir_operations; 1457 break; 1458 case S_IFLNK: 1459 /* 1460 * Must not load anything in the rbtree, 1461 * mpol_free_shared_policy will not be called. 1462 */ 1463 mpol_shared_policy_init(&info->policy, NULL); 1464 break; 1465 } 1466 } else 1467 shmem_free_inode(sb); 1468 return inode; 1469 } 1470 1471 bool shmem_mapping(struct address_space *mapping) 1472 { 1473 if (!mapping->host) 1474 return false; 1475 1476 return mapping->host->i_sb->s_op == &shmem_ops; 1477 } 1478 1479 #ifdef CONFIG_TMPFS 1480 static const struct inode_operations shmem_symlink_inode_operations; 1481 static const struct inode_operations shmem_short_symlink_operations; 1482 1483 #ifdef CONFIG_TMPFS_XATTR 1484 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1485 #else 1486 #define shmem_initxattrs NULL 1487 #endif 1488 1489 static int 1490 shmem_write_begin(struct file *file, struct address_space *mapping, 1491 loff_t pos, unsigned len, unsigned flags, 1492 struct page **pagep, void **fsdata) 1493 { 1494 struct inode *inode = mapping->host; 1495 struct shmem_inode_info *info = SHMEM_I(inode); 1496 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1497 1498 /* i_mutex is held by caller */ 1499 if (unlikely(info->seals)) { 1500 if (info->seals & F_SEAL_WRITE) 1501 return -EPERM; 1502 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1503 return -EPERM; 1504 } 1505 1506 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1507 } 1508 1509 static int 1510 shmem_write_end(struct file *file, struct address_space *mapping, 1511 loff_t pos, unsigned len, unsigned copied, 1512 struct page *page, void *fsdata) 1513 { 1514 struct inode *inode = mapping->host; 1515 1516 if (pos + copied > inode->i_size) 1517 i_size_write(inode, pos + copied); 1518 1519 if (!PageUptodate(page)) { 1520 if (copied < PAGE_CACHE_SIZE) { 1521 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1522 zero_user_segments(page, 0, from, 1523 from + copied, PAGE_CACHE_SIZE); 1524 } 1525 SetPageUptodate(page); 1526 } 1527 set_page_dirty(page); 1528 unlock_page(page); 1529 page_cache_release(page); 1530 1531 return copied; 1532 } 1533 1534 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1535 { 1536 struct file *file = iocb->ki_filp; 1537 struct inode *inode = file_inode(file); 1538 struct address_space *mapping = inode->i_mapping; 1539 pgoff_t index; 1540 unsigned long offset; 1541 enum sgp_type sgp = SGP_READ; 1542 int error = 0; 1543 ssize_t retval = 0; 1544 loff_t *ppos = &iocb->ki_pos; 1545 1546 /* 1547 * Might this read be for a stacking filesystem? Then when reading 1548 * holes of a sparse file, we actually need to allocate those pages, 1549 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1550 */ 1551 if (!iter_is_iovec(to)) 1552 sgp = SGP_DIRTY; 1553 1554 index = *ppos >> PAGE_CACHE_SHIFT; 1555 offset = *ppos & ~PAGE_CACHE_MASK; 1556 1557 for (;;) { 1558 struct page *page = NULL; 1559 pgoff_t end_index; 1560 unsigned long nr, ret; 1561 loff_t i_size = i_size_read(inode); 1562 1563 end_index = i_size >> PAGE_CACHE_SHIFT; 1564 if (index > end_index) 1565 break; 1566 if (index == end_index) { 1567 nr = i_size & ~PAGE_CACHE_MASK; 1568 if (nr <= offset) 1569 break; 1570 } 1571 1572 error = shmem_getpage(inode, index, &page, sgp, NULL); 1573 if (error) { 1574 if (error == -EINVAL) 1575 error = 0; 1576 break; 1577 } 1578 if (page) 1579 unlock_page(page); 1580 1581 /* 1582 * We must evaluate after, since reads (unlike writes) 1583 * are called without i_mutex protection against truncate 1584 */ 1585 nr = PAGE_CACHE_SIZE; 1586 i_size = i_size_read(inode); 1587 end_index = i_size >> PAGE_CACHE_SHIFT; 1588 if (index == end_index) { 1589 nr = i_size & ~PAGE_CACHE_MASK; 1590 if (nr <= offset) { 1591 if (page) 1592 page_cache_release(page); 1593 break; 1594 } 1595 } 1596 nr -= offset; 1597 1598 if (page) { 1599 /* 1600 * If users can be writing to this page using arbitrary 1601 * virtual addresses, take care about potential aliasing 1602 * before reading the page on the kernel side. 1603 */ 1604 if (mapping_writably_mapped(mapping)) 1605 flush_dcache_page(page); 1606 /* 1607 * Mark the page accessed if we read the beginning. 1608 */ 1609 if (!offset) 1610 mark_page_accessed(page); 1611 } else { 1612 page = ZERO_PAGE(0); 1613 page_cache_get(page); 1614 } 1615 1616 /* 1617 * Ok, we have the page, and it's up-to-date, so 1618 * now we can copy it to user space... 1619 */ 1620 ret = copy_page_to_iter(page, offset, nr, to); 1621 retval += ret; 1622 offset += ret; 1623 index += offset >> PAGE_CACHE_SHIFT; 1624 offset &= ~PAGE_CACHE_MASK; 1625 1626 page_cache_release(page); 1627 if (!iov_iter_count(to)) 1628 break; 1629 if (ret < nr) { 1630 error = -EFAULT; 1631 break; 1632 } 1633 cond_resched(); 1634 } 1635 1636 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1637 file_accessed(file); 1638 return retval ? retval : error; 1639 } 1640 1641 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1642 struct pipe_inode_info *pipe, size_t len, 1643 unsigned int flags) 1644 { 1645 struct address_space *mapping = in->f_mapping; 1646 struct inode *inode = mapping->host; 1647 unsigned int loff, nr_pages, req_pages; 1648 struct page *pages[PIPE_DEF_BUFFERS]; 1649 struct partial_page partial[PIPE_DEF_BUFFERS]; 1650 struct page *page; 1651 pgoff_t index, end_index; 1652 loff_t isize, left; 1653 int error, page_nr; 1654 struct splice_pipe_desc spd = { 1655 .pages = pages, 1656 .partial = partial, 1657 .nr_pages_max = PIPE_DEF_BUFFERS, 1658 .flags = flags, 1659 .ops = &page_cache_pipe_buf_ops, 1660 .spd_release = spd_release_page, 1661 }; 1662 1663 isize = i_size_read(inode); 1664 if (unlikely(*ppos >= isize)) 1665 return 0; 1666 1667 left = isize - *ppos; 1668 if (unlikely(left < len)) 1669 len = left; 1670 1671 if (splice_grow_spd(pipe, &spd)) 1672 return -ENOMEM; 1673 1674 index = *ppos >> PAGE_CACHE_SHIFT; 1675 loff = *ppos & ~PAGE_CACHE_MASK; 1676 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1677 nr_pages = min(req_pages, spd.nr_pages_max); 1678 1679 spd.nr_pages = find_get_pages_contig(mapping, index, 1680 nr_pages, spd.pages); 1681 index += spd.nr_pages; 1682 error = 0; 1683 1684 while (spd.nr_pages < nr_pages) { 1685 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1686 if (error) 1687 break; 1688 unlock_page(page); 1689 spd.pages[spd.nr_pages++] = page; 1690 index++; 1691 } 1692 1693 index = *ppos >> PAGE_CACHE_SHIFT; 1694 nr_pages = spd.nr_pages; 1695 spd.nr_pages = 0; 1696 1697 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1698 unsigned int this_len; 1699 1700 if (!len) 1701 break; 1702 1703 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1704 page = spd.pages[page_nr]; 1705 1706 if (!PageUptodate(page) || page->mapping != mapping) { 1707 error = shmem_getpage(inode, index, &page, 1708 SGP_CACHE, NULL); 1709 if (error) 1710 break; 1711 unlock_page(page); 1712 page_cache_release(spd.pages[page_nr]); 1713 spd.pages[page_nr] = page; 1714 } 1715 1716 isize = i_size_read(inode); 1717 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1718 if (unlikely(!isize || index > end_index)) 1719 break; 1720 1721 if (end_index == index) { 1722 unsigned int plen; 1723 1724 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1725 if (plen <= loff) 1726 break; 1727 1728 this_len = min(this_len, plen - loff); 1729 len = this_len; 1730 } 1731 1732 spd.partial[page_nr].offset = loff; 1733 spd.partial[page_nr].len = this_len; 1734 len -= this_len; 1735 loff = 0; 1736 spd.nr_pages++; 1737 index++; 1738 } 1739 1740 while (page_nr < nr_pages) 1741 page_cache_release(spd.pages[page_nr++]); 1742 1743 if (spd.nr_pages) 1744 error = splice_to_pipe(pipe, &spd); 1745 1746 splice_shrink_spd(&spd); 1747 1748 if (error > 0) { 1749 *ppos += error; 1750 file_accessed(in); 1751 } 1752 return error; 1753 } 1754 1755 /* 1756 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1757 */ 1758 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1759 pgoff_t index, pgoff_t end, int whence) 1760 { 1761 struct page *page; 1762 struct pagevec pvec; 1763 pgoff_t indices[PAGEVEC_SIZE]; 1764 bool done = false; 1765 int i; 1766 1767 pagevec_init(&pvec, 0); 1768 pvec.nr = 1; /* start small: we may be there already */ 1769 while (!done) { 1770 pvec.nr = find_get_entries(mapping, index, 1771 pvec.nr, pvec.pages, indices); 1772 if (!pvec.nr) { 1773 if (whence == SEEK_DATA) 1774 index = end; 1775 break; 1776 } 1777 for (i = 0; i < pvec.nr; i++, index++) { 1778 if (index < indices[i]) { 1779 if (whence == SEEK_HOLE) { 1780 done = true; 1781 break; 1782 } 1783 index = indices[i]; 1784 } 1785 page = pvec.pages[i]; 1786 if (page && !radix_tree_exceptional_entry(page)) { 1787 if (!PageUptodate(page)) 1788 page = NULL; 1789 } 1790 if (index >= end || 1791 (page && whence == SEEK_DATA) || 1792 (!page && whence == SEEK_HOLE)) { 1793 done = true; 1794 break; 1795 } 1796 } 1797 pagevec_remove_exceptionals(&pvec); 1798 pagevec_release(&pvec); 1799 pvec.nr = PAGEVEC_SIZE; 1800 cond_resched(); 1801 } 1802 return index; 1803 } 1804 1805 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1806 { 1807 struct address_space *mapping = file->f_mapping; 1808 struct inode *inode = mapping->host; 1809 pgoff_t start, end; 1810 loff_t new_offset; 1811 1812 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1813 return generic_file_llseek_size(file, offset, whence, 1814 MAX_LFS_FILESIZE, i_size_read(inode)); 1815 mutex_lock(&inode->i_mutex); 1816 /* We're holding i_mutex so we can access i_size directly */ 1817 1818 if (offset < 0) 1819 offset = -EINVAL; 1820 else if (offset >= inode->i_size) 1821 offset = -ENXIO; 1822 else { 1823 start = offset >> PAGE_CACHE_SHIFT; 1824 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1825 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1826 new_offset <<= PAGE_CACHE_SHIFT; 1827 if (new_offset > offset) { 1828 if (new_offset < inode->i_size) 1829 offset = new_offset; 1830 else if (whence == SEEK_DATA) 1831 offset = -ENXIO; 1832 else 1833 offset = inode->i_size; 1834 } 1835 } 1836 1837 if (offset >= 0) 1838 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1839 mutex_unlock(&inode->i_mutex); 1840 return offset; 1841 } 1842 1843 /* 1844 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1845 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1846 */ 1847 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1848 #define LAST_SCAN 4 /* about 150ms max */ 1849 1850 static void shmem_tag_pins(struct address_space *mapping) 1851 { 1852 struct radix_tree_iter iter; 1853 void **slot; 1854 pgoff_t start; 1855 struct page *page; 1856 1857 lru_add_drain(); 1858 start = 0; 1859 rcu_read_lock(); 1860 1861 restart: 1862 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1863 page = radix_tree_deref_slot(slot); 1864 if (!page || radix_tree_exception(page)) { 1865 if (radix_tree_deref_retry(page)) 1866 goto restart; 1867 } else if (page_count(page) - page_mapcount(page) > 1) { 1868 spin_lock_irq(&mapping->tree_lock); 1869 radix_tree_tag_set(&mapping->page_tree, iter.index, 1870 SHMEM_TAG_PINNED); 1871 spin_unlock_irq(&mapping->tree_lock); 1872 } 1873 1874 if (need_resched()) { 1875 cond_resched_rcu(); 1876 start = iter.index + 1; 1877 goto restart; 1878 } 1879 } 1880 rcu_read_unlock(); 1881 } 1882 1883 /* 1884 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1885 * via get_user_pages(), drivers might have some pending I/O without any active 1886 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1887 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1888 * them to be dropped. 1889 * The caller must guarantee that no new user will acquire writable references 1890 * to those pages to avoid races. 1891 */ 1892 static int shmem_wait_for_pins(struct address_space *mapping) 1893 { 1894 struct radix_tree_iter iter; 1895 void **slot; 1896 pgoff_t start; 1897 struct page *page; 1898 int error, scan; 1899 1900 shmem_tag_pins(mapping); 1901 1902 error = 0; 1903 for (scan = 0; scan <= LAST_SCAN; scan++) { 1904 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1905 break; 1906 1907 if (!scan) 1908 lru_add_drain_all(); 1909 else if (schedule_timeout_killable((HZ << scan) / 200)) 1910 scan = LAST_SCAN; 1911 1912 start = 0; 1913 rcu_read_lock(); 1914 restart: 1915 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 1916 start, SHMEM_TAG_PINNED) { 1917 1918 page = radix_tree_deref_slot(slot); 1919 if (radix_tree_exception(page)) { 1920 if (radix_tree_deref_retry(page)) 1921 goto restart; 1922 1923 page = NULL; 1924 } 1925 1926 if (page && 1927 page_count(page) - page_mapcount(page) != 1) { 1928 if (scan < LAST_SCAN) 1929 goto continue_resched; 1930 1931 /* 1932 * On the last scan, we clean up all those tags 1933 * we inserted; but make a note that we still 1934 * found pages pinned. 1935 */ 1936 error = -EBUSY; 1937 } 1938 1939 spin_lock_irq(&mapping->tree_lock); 1940 radix_tree_tag_clear(&mapping->page_tree, 1941 iter.index, SHMEM_TAG_PINNED); 1942 spin_unlock_irq(&mapping->tree_lock); 1943 continue_resched: 1944 if (need_resched()) { 1945 cond_resched_rcu(); 1946 start = iter.index + 1; 1947 goto restart; 1948 } 1949 } 1950 rcu_read_unlock(); 1951 } 1952 1953 return error; 1954 } 1955 1956 #define F_ALL_SEALS (F_SEAL_SEAL | \ 1957 F_SEAL_SHRINK | \ 1958 F_SEAL_GROW | \ 1959 F_SEAL_WRITE) 1960 1961 int shmem_add_seals(struct file *file, unsigned int seals) 1962 { 1963 struct inode *inode = file_inode(file); 1964 struct shmem_inode_info *info = SHMEM_I(inode); 1965 int error; 1966 1967 /* 1968 * SEALING 1969 * Sealing allows multiple parties to share a shmem-file but restrict 1970 * access to a specific subset of file operations. Seals can only be 1971 * added, but never removed. This way, mutually untrusted parties can 1972 * share common memory regions with a well-defined policy. A malicious 1973 * peer can thus never perform unwanted operations on a shared object. 1974 * 1975 * Seals are only supported on special shmem-files and always affect 1976 * the whole underlying inode. Once a seal is set, it may prevent some 1977 * kinds of access to the file. Currently, the following seals are 1978 * defined: 1979 * SEAL_SEAL: Prevent further seals from being set on this file 1980 * SEAL_SHRINK: Prevent the file from shrinking 1981 * SEAL_GROW: Prevent the file from growing 1982 * SEAL_WRITE: Prevent write access to the file 1983 * 1984 * As we don't require any trust relationship between two parties, we 1985 * must prevent seals from being removed. Therefore, sealing a file 1986 * only adds a given set of seals to the file, it never touches 1987 * existing seals. Furthermore, the "setting seals"-operation can be 1988 * sealed itself, which basically prevents any further seal from being 1989 * added. 1990 * 1991 * Semantics of sealing are only defined on volatile files. Only 1992 * anonymous shmem files support sealing. More importantly, seals are 1993 * never written to disk. Therefore, there's no plan to support it on 1994 * other file types. 1995 */ 1996 1997 if (file->f_op != &shmem_file_operations) 1998 return -EINVAL; 1999 if (!(file->f_mode & FMODE_WRITE)) 2000 return -EPERM; 2001 if (seals & ~(unsigned int)F_ALL_SEALS) 2002 return -EINVAL; 2003 2004 mutex_lock(&inode->i_mutex); 2005 2006 if (info->seals & F_SEAL_SEAL) { 2007 error = -EPERM; 2008 goto unlock; 2009 } 2010 2011 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2012 error = mapping_deny_writable(file->f_mapping); 2013 if (error) 2014 goto unlock; 2015 2016 error = shmem_wait_for_pins(file->f_mapping); 2017 if (error) { 2018 mapping_allow_writable(file->f_mapping); 2019 goto unlock; 2020 } 2021 } 2022 2023 info->seals |= seals; 2024 error = 0; 2025 2026 unlock: 2027 mutex_unlock(&inode->i_mutex); 2028 return error; 2029 } 2030 EXPORT_SYMBOL_GPL(shmem_add_seals); 2031 2032 int shmem_get_seals(struct file *file) 2033 { 2034 if (file->f_op != &shmem_file_operations) 2035 return -EINVAL; 2036 2037 return SHMEM_I(file_inode(file))->seals; 2038 } 2039 EXPORT_SYMBOL_GPL(shmem_get_seals); 2040 2041 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2042 { 2043 long error; 2044 2045 switch (cmd) { 2046 case F_ADD_SEALS: 2047 /* disallow upper 32bit */ 2048 if (arg > UINT_MAX) 2049 return -EINVAL; 2050 2051 error = shmem_add_seals(file, arg); 2052 break; 2053 case F_GET_SEALS: 2054 error = shmem_get_seals(file); 2055 break; 2056 default: 2057 error = -EINVAL; 2058 break; 2059 } 2060 2061 return error; 2062 } 2063 2064 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2065 loff_t len) 2066 { 2067 struct inode *inode = file_inode(file); 2068 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2069 struct shmem_inode_info *info = SHMEM_I(inode); 2070 struct shmem_falloc shmem_falloc; 2071 pgoff_t start, index, end; 2072 int error; 2073 2074 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2075 return -EOPNOTSUPP; 2076 2077 mutex_lock(&inode->i_mutex); 2078 2079 if (mode & FALLOC_FL_PUNCH_HOLE) { 2080 struct address_space *mapping = file->f_mapping; 2081 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2082 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2083 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2084 2085 /* protected by i_mutex */ 2086 if (info->seals & F_SEAL_WRITE) { 2087 error = -EPERM; 2088 goto out; 2089 } 2090 2091 shmem_falloc.waitq = &shmem_falloc_waitq; 2092 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2093 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2094 spin_lock(&inode->i_lock); 2095 inode->i_private = &shmem_falloc; 2096 spin_unlock(&inode->i_lock); 2097 2098 if ((u64)unmap_end > (u64)unmap_start) 2099 unmap_mapping_range(mapping, unmap_start, 2100 1 + unmap_end - unmap_start, 0); 2101 shmem_truncate_range(inode, offset, offset + len - 1); 2102 /* No need to unmap again: hole-punching leaves COWed pages */ 2103 2104 spin_lock(&inode->i_lock); 2105 inode->i_private = NULL; 2106 wake_up_all(&shmem_falloc_waitq); 2107 spin_unlock(&inode->i_lock); 2108 error = 0; 2109 goto out; 2110 } 2111 2112 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2113 error = inode_newsize_ok(inode, offset + len); 2114 if (error) 2115 goto out; 2116 2117 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2118 error = -EPERM; 2119 goto out; 2120 } 2121 2122 start = offset >> PAGE_CACHE_SHIFT; 2123 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2124 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2125 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2126 error = -ENOSPC; 2127 goto out; 2128 } 2129 2130 shmem_falloc.waitq = NULL; 2131 shmem_falloc.start = start; 2132 shmem_falloc.next = start; 2133 shmem_falloc.nr_falloced = 0; 2134 shmem_falloc.nr_unswapped = 0; 2135 spin_lock(&inode->i_lock); 2136 inode->i_private = &shmem_falloc; 2137 spin_unlock(&inode->i_lock); 2138 2139 for (index = start; index < end; index++) { 2140 struct page *page; 2141 2142 /* 2143 * Good, the fallocate(2) manpage permits EINTR: we may have 2144 * been interrupted because we are using up too much memory. 2145 */ 2146 if (signal_pending(current)) 2147 error = -EINTR; 2148 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2149 error = -ENOMEM; 2150 else 2151 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 2152 NULL); 2153 if (error) { 2154 /* Remove the !PageUptodate pages we added */ 2155 shmem_undo_range(inode, 2156 (loff_t)start << PAGE_CACHE_SHIFT, 2157 (loff_t)index << PAGE_CACHE_SHIFT, true); 2158 goto undone; 2159 } 2160 2161 /* 2162 * Inform shmem_writepage() how far we have reached. 2163 * No need for lock or barrier: we have the page lock. 2164 */ 2165 shmem_falloc.next++; 2166 if (!PageUptodate(page)) 2167 shmem_falloc.nr_falloced++; 2168 2169 /* 2170 * If !PageUptodate, leave it that way so that freeable pages 2171 * can be recognized if we need to rollback on error later. 2172 * But set_page_dirty so that memory pressure will swap rather 2173 * than free the pages we are allocating (and SGP_CACHE pages 2174 * might still be clean: we now need to mark those dirty too). 2175 */ 2176 set_page_dirty(page); 2177 unlock_page(page); 2178 page_cache_release(page); 2179 cond_resched(); 2180 } 2181 2182 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2183 i_size_write(inode, offset + len); 2184 inode->i_ctime = CURRENT_TIME; 2185 undone: 2186 spin_lock(&inode->i_lock); 2187 inode->i_private = NULL; 2188 spin_unlock(&inode->i_lock); 2189 out: 2190 mutex_unlock(&inode->i_mutex); 2191 return error; 2192 } 2193 2194 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2195 { 2196 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2197 2198 buf->f_type = TMPFS_MAGIC; 2199 buf->f_bsize = PAGE_CACHE_SIZE; 2200 buf->f_namelen = NAME_MAX; 2201 if (sbinfo->max_blocks) { 2202 buf->f_blocks = sbinfo->max_blocks; 2203 buf->f_bavail = 2204 buf->f_bfree = sbinfo->max_blocks - 2205 percpu_counter_sum(&sbinfo->used_blocks); 2206 } 2207 if (sbinfo->max_inodes) { 2208 buf->f_files = sbinfo->max_inodes; 2209 buf->f_ffree = sbinfo->free_inodes; 2210 } 2211 /* else leave those fields 0 like simple_statfs */ 2212 return 0; 2213 } 2214 2215 /* 2216 * File creation. Allocate an inode, and we're done.. 2217 */ 2218 static int 2219 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2220 { 2221 struct inode *inode; 2222 int error = -ENOSPC; 2223 2224 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2225 if (inode) { 2226 error = simple_acl_create(dir, inode); 2227 if (error) 2228 goto out_iput; 2229 error = security_inode_init_security(inode, dir, 2230 &dentry->d_name, 2231 shmem_initxattrs, NULL); 2232 if (error && error != -EOPNOTSUPP) 2233 goto out_iput; 2234 2235 error = 0; 2236 dir->i_size += BOGO_DIRENT_SIZE; 2237 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2238 d_instantiate(dentry, inode); 2239 dget(dentry); /* Extra count - pin the dentry in core */ 2240 } 2241 return error; 2242 out_iput: 2243 iput(inode); 2244 return error; 2245 } 2246 2247 static int 2248 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2249 { 2250 struct inode *inode; 2251 int error = -ENOSPC; 2252 2253 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2254 if (inode) { 2255 error = security_inode_init_security(inode, dir, 2256 NULL, 2257 shmem_initxattrs, NULL); 2258 if (error && error != -EOPNOTSUPP) 2259 goto out_iput; 2260 error = simple_acl_create(dir, inode); 2261 if (error) 2262 goto out_iput; 2263 d_tmpfile(dentry, inode); 2264 } 2265 return error; 2266 out_iput: 2267 iput(inode); 2268 return error; 2269 } 2270 2271 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2272 { 2273 int error; 2274 2275 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2276 return error; 2277 inc_nlink(dir); 2278 return 0; 2279 } 2280 2281 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2282 bool excl) 2283 { 2284 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2285 } 2286 2287 /* 2288 * Link a file.. 2289 */ 2290 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2291 { 2292 struct inode *inode = d_inode(old_dentry); 2293 int ret; 2294 2295 /* 2296 * No ordinary (disk based) filesystem counts links as inodes; 2297 * but each new link needs a new dentry, pinning lowmem, and 2298 * tmpfs dentries cannot be pruned until they are unlinked. 2299 */ 2300 ret = shmem_reserve_inode(inode->i_sb); 2301 if (ret) 2302 goto out; 2303 2304 dir->i_size += BOGO_DIRENT_SIZE; 2305 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2306 inc_nlink(inode); 2307 ihold(inode); /* New dentry reference */ 2308 dget(dentry); /* Extra pinning count for the created dentry */ 2309 d_instantiate(dentry, inode); 2310 out: 2311 return ret; 2312 } 2313 2314 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2315 { 2316 struct inode *inode = d_inode(dentry); 2317 2318 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2319 shmem_free_inode(inode->i_sb); 2320 2321 dir->i_size -= BOGO_DIRENT_SIZE; 2322 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2323 drop_nlink(inode); 2324 dput(dentry); /* Undo the count from "create" - this does all the work */ 2325 return 0; 2326 } 2327 2328 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2329 { 2330 if (!simple_empty(dentry)) 2331 return -ENOTEMPTY; 2332 2333 drop_nlink(d_inode(dentry)); 2334 drop_nlink(dir); 2335 return shmem_unlink(dir, dentry); 2336 } 2337 2338 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2339 { 2340 bool old_is_dir = d_is_dir(old_dentry); 2341 bool new_is_dir = d_is_dir(new_dentry); 2342 2343 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2344 if (old_is_dir) { 2345 drop_nlink(old_dir); 2346 inc_nlink(new_dir); 2347 } else { 2348 drop_nlink(new_dir); 2349 inc_nlink(old_dir); 2350 } 2351 } 2352 old_dir->i_ctime = old_dir->i_mtime = 2353 new_dir->i_ctime = new_dir->i_mtime = 2354 d_inode(old_dentry)->i_ctime = 2355 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 2356 2357 return 0; 2358 } 2359 2360 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2361 { 2362 struct dentry *whiteout; 2363 int error; 2364 2365 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2366 if (!whiteout) 2367 return -ENOMEM; 2368 2369 error = shmem_mknod(old_dir, whiteout, 2370 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2371 dput(whiteout); 2372 if (error) 2373 return error; 2374 2375 /* 2376 * Cheat and hash the whiteout while the old dentry is still in 2377 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2378 * 2379 * d_lookup() will consistently find one of them at this point, 2380 * not sure which one, but that isn't even important. 2381 */ 2382 d_rehash(whiteout); 2383 return 0; 2384 } 2385 2386 /* 2387 * The VFS layer already does all the dentry stuff for rename, 2388 * we just have to decrement the usage count for the target if 2389 * it exists so that the VFS layer correctly free's it when it 2390 * gets overwritten. 2391 */ 2392 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2393 { 2394 struct inode *inode = d_inode(old_dentry); 2395 int they_are_dirs = S_ISDIR(inode->i_mode); 2396 2397 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2398 return -EINVAL; 2399 2400 if (flags & RENAME_EXCHANGE) 2401 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2402 2403 if (!simple_empty(new_dentry)) 2404 return -ENOTEMPTY; 2405 2406 if (flags & RENAME_WHITEOUT) { 2407 int error; 2408 2409 error = shmem_whiteout(old_dir, old_dentry); 2410 if (error) 2411 return error; 2412 } 2413 2414 if (d_really_is_positive(new_dentry)) { 2415 (void) shmem_unlink(new_dir, new_dentry); 2416 if (they_are_dirs) { 2417 drop_nlink(d_inode(new_dentry)); 2418 drop_nlink(old_dir); 2419 } 2420 } else if (they_are_dirs) { 2421 drop_nlink(old_dir); 2422 inc_nlink(new_dir); 2423 } 2424 2425 old_dir->i_size -= BOGO_DIRENT_SIZE; 2426 new_dir->i_size += BOGO_DIRENT_SIZE; 2427 old_dir->i_ctime = old_dir->i_mtime = 2428 new_dir->i_ctime = new_dir->i_mtime = 2429 inode->i_ctime = CURRENT_TIME; 2430 return 0; 2431 } 2432 2433 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2434 { 2435 int error; 2436 int len; 2437 struct inode *inode; 2438 struct page *page; 2439 char *kaddr; 2440 struct shmem_inode_info *info; 2441 2442 len = strlen(symname) + 1; 2443 if (len > PAGE_CACHE_SIZE) 2444 return -ENAMETOOLONG; 2445 2446 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2447 if (!inode) 2448 return -ENOSPC; 2449 2450 error = security_inode_init_security(inode, dir, &dentry->d_name, 2451 shmem_initxattrs, NULL); 2452 if (error) { 2453 if (error != -EOPNOTSUPP) { 2454 iput(inode); 2455 return error; 2456 } 2457 error = 0; 2458 } 2459 2460 info = SHMEM_I(inode); 2461 inode->i_size = len-1; 2462 if (len <= SHORT_SYMLINK_LEN) { 2463 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2464 if (!info->symlink) { 2465 iput(inode); 2466 return -ENOMEM; 2467 } 2468 inode->i_op = &shmem_short_symlink_operations; 2469 inode->i_link = info->symlink; 2470 } else { 2471 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2472 if (error) { 2473 iput(inode); 2474 return error; 2475 } 2476 inode->i_mapping->a_ops = &shmem_aops; 2477 inode->i_op = &shmem_symlink_inode_operations; 2478 kaddr = kmap_atomic(page); 2479 memcpy(kaddr, symname, len); 2480 kunmap_atomic(kaddr); 2481 SetPageUptodate(page); 2482 set_page_dirty(page); 2483 unlock_page(page); 2484 page_cache_release(page); 2485 } 2486 dir->i_size += BOGO_DIRENT_SIZE; 2487 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2488 d_instantiate(dentry, inode); 2489 dget(dentry); 2490 return 0; 2491 } 2492 2493 static const char *shmem_follow_link(struct dentry *dentry, void **cookie) 2494 { 2495 struct page *page = NULL; 2496 int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL); 2497 if (error) 2498 return ERR_PTR(error); 2499 unlock_page(page); 2500 *cookie = page; 2501 return kmap(page); 2502 } 2503 2504 static void shmem_put_link(struct inode *unused, void *cookie) 2505 { 2506 struct page *page = cookie; 2507 kunmap(page); 2508 mark_page_accessed(page); 2509 page_cache_release(page); 2510 } 2511 2512 #ifdef CONFIG_TMPFS_XATTR 2513 /* 2514 * Superblocks without xattr inode operations may get some security.* xattr 2515 * support from the LSM "for free". As soon as we have any other xattrs 2516 * like ACLs, we also need to implement the security.* handlers at 2517 * filesystem level, though. 2518 */ 2519 2520 /* 2521 * Callback for security_inode_init_security() for acquiring xattrs. 2522 */ 2523 static int shmem_initxattrs(struct inode *inode, 2524 const struct xattr *xattr_array, 2525 void *fs_info) 2526 { 2527 struct shmem_inode_info *info = SHMEM_I(inode); 2528 const struct xattr *xattr; 2529 struct simple_xattr *new_xattr; 2530 size_t len; 2531 2532 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2533 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2534 if (!new_xattr) 2535 return -ENOMEM; 2536 2537 len = strlen(xattr->name) + 1; 2538 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2539 GFP_KERNEL); 2540 if (!new_xattr->name) { 2541 kfree(new_xattr); 2542 return -ENOMEM; 2543 } 2544 2545 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2546 XATTR_SECURITY_PREFIX_LEN); 2547 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2548 xattr->name, len); 2549 2550 simple_xattr_list_add(&info->xattrs, new_xattr); 2551 } 2552 2553 return 0; 2554 } 2555 2556 static const struct xattr_handler *shmem_xattr_handlers[] = { 2557 #ifdef CONFIG_TMPFS_POSIX_ACL 2558 &posix_acl_access_xattr_handler, 2559 &posix_acl_default_xattr_handler, 2560 #endif 2561 NULL 2562 }; 2563 2564 static int shmem_xattr_validate(const char *name) 2565 { 2566 struct { const char *prefix; size_t len; } arr[] = { 2567 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2568 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2569 }; 2570 int i; 2571 2572 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2573 size_t preflen = arr[i].len; 2574 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2575 if (!name[preflen]) 2576 return -EINVAL; 2577 return 0; 2578 } 2579 } 2580 return -EOPNOTSUPP; 2581 } 2582 2583 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2584 void *buffer, size_t size) 2585 { 2586 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2587 int err; 2588 2589 /* 2590 * If this is a request for a synthetic attribute in the system.* 2591 * namespace use the generic infrastructure to resolve a handler 2592 * for it via sb->s_xattr. 2593 */ 2594 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2595 return generic_getxattr(dentry, name, buffer, size); 2596 2597 err = shmem_xattr_validate(name); 2598 if (err) 2599 return err; 2600 2601 return simple_xattr_get(&info->xattrs, name, buffer, size); 2602 } 2603 2604 static int shmem_setxattr(struct dentry *dentry, const char *name, 2605 const void *value, size_t size, int flags) 2606 { 2607 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2608 int err; 2609 2610 /* 2611 * If this is a request for a synthetic attribute in the system.* 2612 * namespace use the generic infrastructure to resolve a handler 2613 * for it via sb->s_xattr. 2614 */ 2615 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2616 return generic_setxattr(dentry, name, value, size, flags); 2617 2618 err = shmem_xattr_validate(name); 2619 if (err) 2620 return err; 2621 2622 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2623 } 2624 2625 static int shmem_removexattr(struct dentry *dentry, const char *name) 2626 { 2627 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2628 int err; 2629 2630 /* 2631 * If this is a request for a synthetic attribute in the system.* 2632 * namespace use the generic infrastructure to resolve a handler 2633 * for it via sb->s_xattr. 2634 */ 2635 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2636 return generic_removexattr(dentry, name); 2637 2638 err = shmem_xattr_validate(name); 2639 if (err) 2640 return err; 2641 2642 return simple_xattr_remove(&info->xattrs, name); 2643 } 2644 2645 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2646 { 2647 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2648 return simple_xattr_list(&info->xattrs, buffer, size); 2649 } 2650 #endif /* CONFIG_TMPFS_XATTR */ 2651 2652 static const struct inode_operations shmem_short_symlink_operations = { 2653 .readlink = generic_readlink, 2654 .follow_link = simple_follow_link, 2655 #ifdef CONFIG_TMPFS_XATTR 2656 .setxattr = shmem_setxattr, 2657 .getxattr = shmem_getxattr, 2658 .listxattr = shmem_listxattr, 2659 .removexattr = shmem_removexattr, 2660 #endif 2661 }; 2662 2663 static const struct inode_operations shmem_symlink_inode_operations = { 2664 .readlink = generic_readlink, 2665 .follow_link = shmem_follow_link, 2666 .put_link = shmem_put_link, 2667 #ifdef CONFIG_TMPFS_XATTR 2668 .setxattr = shmem_setxattr, 2669 .getxattr = shmem_getxattr, 2670 .listxattr = shmem_listxattr, 2671 .removexattr = shmem_removexattr, 2672 #endif 2673 }; 2674 2675 static struct dentry *shmem_get_parent(struct dentry *child) 2676 { 2677 return ERR_PTR(-ESTALE); 2678 } 2679 2680 static int shmem_match(struct inode *ino, void *vfh) 2681 { 2682 __u32 *fh = vfh; 2683 __u64 inum = fh[2]; 2684 inum = (inum << 32) | fh[1]; 2685 return ino->i_ino == inum && fh[0] == ino->i_generation; 2686 } 2687 2688 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2689 struct fid *fid, int fh_len, int fh_type) 2690 { 2691 struct inode *inode; 2692 struct dentry *dentry = NULL; 2693 u64 inum; 2694 2695 if (fh_len < 3) 2696 return NULL; 2697 2698 inum = fid->raw[2]; 2699 inum = (inum << 32) | fid->raw[1]; 2700 2701 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2702 shmem_match, fid->raw); 2703 if (inode) { 2704 dentry = d_find_alias(inode); 2705 iput(inode); 2706 } 2707 2708 return dentry; 2709 } 2710 2711 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2712 struct inode *parent) 2713 { 2714 if (*len < 3) { 2715 *len = 3; 2716 return FILEID_INVALID; 2717 } 2718 2719 if (inode_unhashed(inode)) { 2720 /* Unfortunately insert_inode_hash is not idempotent, 2721 * so as we hash inodes here rather than at creation 2722 * time, we need a lock to ensure we only try 2723 * to do it once 2724 */ 2725 static DEFINE_SPINLOCK(lock); 2726 spin_lock(&lock); 2727 if (inode_unhashed(inode)) 2728 __insert_inode_hash(inode, 2729 inode->i_ino + inode->i_generation); 2730 spin_unlock(&lock); 2731 } 2732 2733 fh[0] = inode->i_generation; 2734 fh[1] = inode->i_ino; 2735 fh[2] = ((__u64)inode->i_ino) >> 32; 2736 2737 *len = 3; 2738 return 1; 2739 } 2740 2741 static const struct export_operations shmem_export_ops = { 2742 .get_parent = shmem_get_parent, 2743 .encode_fh = shmem_encode_fh, 2744 .fh_to_dentry = shmem_fh_to_dentry, 2745 }; 2746 2747 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2748 bool remount) 2749 { 2750 char *this_char, *value, *rest; 2751 struct mempolicy *mpol = NULL; 2752 uid_t uid; 2753 gid_t gid; 2754 2755 while (options != NULL) { 2756 this_char = options; 2757 for (;;) { 2758 /* 2759 * NUL-terminate this option: unfortunately, 2760 * mount options form a comma-separated list, 2761 * but mpol's nodelist may also contain commas. 2762 */ 2763 options = strchr(options, ','); 2764 if (options == NULL) 2765 break; 2766 options++; 2767 if (!isdigit(*options)) { 2768 options[-1] = '\0'; 2769 break; 2770 } 2771 } 2772 if (!*this_char) 2773 continue; 2774 if ((value = strchr(this_char,'=')) != NULL) { 2775 *value++ = 0; 2776 } else { 2777 printk(KERN_ERR 2778 "tmpfs: No value for mount option '%s'\n", 2779 this_char); 2780 goto error; 2781 } 2782 2783 if (!strcmp(this_char,"size")) { 2784 unsigned long long size; 2785 size = memparse(value,&rest); 2786 if (*rest == '%') { 2787 size <<= PAGE_SHIFT; 2788 size *= totalram_pages; 2789 do_div(size, 100); 2790 rest++; 2791 } 2792 if (*rest) 2793 goto bad_val; 2794 sbinfo->max_blocks = 2795 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2796 } else if (!strcmp(this_char,"nr_blocks")) { 2797 sbinfo->max_blocks = memparse(value, &rest); 2798 if (*rest) 2799 goto bad_val; 2800 } else if (!strcmp(this_char,"nr_inodes")) { 2801 sbinfo->max_inodes = memparse(value, &rest); 2802 if (*rest) 2803 goto bad_val; 2804 } else if (!strcmp(this_char,"mode")) { 2805 if (remount) 2806 continue; 2807 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2808 if (*rest) 2809 goto bad_val; 2810 } else if (!strcmp(this_char,"uid")) { 2811 if (remount) 2812 continue; 2813 uid = simple_strtoul(value, &rest, 0); 2814 if (*rest) 2815 goto bad_val; 2816 sbinfo->uid = make_kuid(current_user_ns(), uid); 2817 if (!uid_valid(sbinfo->uid)) 2818 goto bad_val; 2819 } else if (!strcmp(this_char,"gid")) { 2820 if (remount) 2821 continue; 2822 gid = simple_strtoul(value, &rest, 0); 2823 if (*rest) 2824 goto bad_val; 2825 sbinfo->gid = make_kgid(current_user_ns(), gid); 2826 if (!gid_valid(sbinfo->gid)) 2827 goto bad_val; 2828 } else if (!strcmp(this_char,"mpol")) { 2829 mpol_put(mpol); 2830 mpol = NULL; 2831 if (mpol_parse_str(value, &mpol)) 2832 goto bad_val; 2833 } else { 2834 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2835 this_char); 2836 goto error; 2837 } 2838 } 2839 sbinfo->mpol = mpol; 2840 return 0; 2841 2842 bad_val: 2843 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2844 value, this_char); 2845 error: 2846 mpol_put(mpol); 2847 return 1; 2848 2849 } 2850 2851 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2852 { 2853 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2854 struct shmem_sb_info config = *sbinfo; 2855 unsigned long inodes; 2856 int error = -EINVAL; 2857 2858 config.mpol = NULL; 2859 if (shmem_parse_options(data, &config, true)) 2860 return error; 2861 2862 spin_lock(&sbinfo->stat_lock); 2863 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2864 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2865 goto out; 2866 if (config.max_inodes < inodes) 2867 goto out; 2868 /* 2869 * Those tests disallow limited->unlimited while any are in use; 2870 * but we must separately disallow unlimited->limited, because 2871 * in that case we have no record of how much is already in use. 2872 */ 2873 if (config.max_blocks && !sbinfo->max_blocks) 2874 goto out; 2875 if (config.max_inodes && !sbinfo->max_inodes) 2876 goto out; 2877 2878 error = 0; 2879 sbinfo->max_blocks = config.max_blocks; 2880 sbinfo->max_inodes = config.max_inodes; 2881 sbinfo->free_inodes = config.max_inodes - inodes; 2882 2883 /* 2884 * Preserve previous mempolicy unless mpol remount option was specified. 2885 */ 2886 if (config.mpol) { 2887 mpol_put(sbinfo->mpol); 2888 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2889 } 2890 out: 2891 spin_unlock(&sbinfo->stat_lock); 2892 return error; 2893 } 2894 2895 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2896 { 2897 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2898 2899 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2900 seq_printf(seq, ",size=%luk", 2901 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2902 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2903 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2904 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2905 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2906 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2907 seq_printf(seq, ",uid=%u", 2908 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2909 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2910 seq_printf(seq, ",gid=%u", 2911 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2912 shmem_show_mpol(seq, sbinfo->mpol); 2913 return 0; 2914 } 2915 2916 #define MFD_NAME_PREFIX "memfd:" 2917 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2918 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2919 2920 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2921 2922 SYSCALL_DEFINE2(memfd_create, 2923 const char __user *, uname, 2924 unsigned int, flags) 2925 { 2926 struct shmem_inode_info *info; 2927 struct file *file; 2928 int fd, error; 2929 char *name; 2930 long len; 2931 2932 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2933 return -EINVAL; 2934 2935 /* length includes terminating zero */ 2936 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2937 if (len <= 0) 2938 return -EFAULT; 2939 if (len > MFD_NAME_MAX_LEN + 1) 2940 return -EINVAL; 2941 2942 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2943 if (!name) 2944 return -ENOMEM; 2945 2946 strcpy(name, MFD_NAME_PREFIX); 2947 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2948 error = -EFAULT; 2949 goto err_name; 2950 } 2951 2952 /* terminating-zero may have changed after strnlen_user() returned */ 2953 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 2954 error = -EFAULT; 2955 goto err_name; 2956 } 2957 2958 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 2959 if (fd < 0) { 2960 error = fd; 2961 goto err_name; 2962 } 2963 2964 file = shmem_file_setup(name, 0, VM_NORESERVE); 2965 if (IS_ERR(file)) { 2966 error = PTR_ERR(file); 2967 goto err_fd; 2968 } 2969 info = SHMEM_I(file_inode(file)); 2970 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 2971 file->f_flags |= O_RDWR | O_LARGEFILE; 2972 if (flags & MFD_ALLOW_SEALING) 2973 info->seals &= ~F_SEAL_SEAL; 2974 2975 fd_install(fd, file); 2976 kfree(name); 2977 return fd; 2978 2979 err_fd: 2980 put_unused_fd(fd); 2981 err_name: 2982 kfree(name); 2983 return error; 2984 } 2985 2986 #endif /* CONFIG_TMPFS */ 2987 2988 static void shmem_put_super(struct super_block *sb) 2989 { 2990 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2991 2992 percpu_counter_destroy(&sbinfo->used_blocks); 2993 mpol_put(sbinfo->mpol); 2994 kfree(sbinfo); 2995 sb->s_fs_info = NULL; 2996 } 2997 2998 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2999 { 3000 struct inode *inode; 3001 struct shmem_sb_info *sbinfo; 3002 int err = -ENOMEM; 3003 3004 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3005 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3006 L1_CACHE_BYTES), GFP_KERNEL); 3007 if (!sbinfo) 3008 return -ENOMEM; 3009 3010 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3011 sbinfo->uid = current_fsuid(); 3012 sbinfo->gid = current_fsgid(); 3013 sb->s_fs_info = sbinfo; 3014 3015 #ifdef CONFIG_TMPFS 3016 /* 3017 * Per default we only allow half of the physical ram per 3018 * tmpfs instance, limiting inodes to one per page of lowmem; 3019 * but the internal instance is left unlimited. 3020 */ 3021 if (!(sb->s_flags & MS_KERNMOUNT)) { 3022 sbinfo->max_blocks = shmem_default_max_blocks(); 3023 sbinfo->max_inodes = shmem_default_max_inodes(); 3024 if (shmem_parse_options(data, sbinfo, false)) { 3025 err = -EINVAL; 3026 goto failed; 3027 } 3028 } else { 3029 sb->s_flags |= MS_NOUSER; 3030 } 3031 sb->s_export_op = &shmem_export_ops; 3032 sb->s_flags |= MS_NOSEC; 3033 #else 3034 sb->s_flags |= MS_NOUSER; 3035 #endif 3036 3037 spin_lock_init(&sbinfo->stat_lock); 3038 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3039 goto failed; 3040 sbinfo->free_inodes = sbinfo->max_inodes; 3041 3042 sb->s_maxbytes = MAX_LFS_FILESIZE; 3043 sb->s_blocksize = PAGE_CACHE_SIZE; 3044 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 3045 sb->s_magic = TMPFS_MAGIC; 3046 sb->s_op = &shmem_ops; 3047 sb->s_time_gran = 1; 3048 #ifdef CONFIG_TMPFS_XATTR 3049 sb->s_xattr = shmem_xattr_handlers; 3050 #endif 3051 #ifdef CONFIG_TMPFS_POSIX_ACL 3052 sb->s_flags |= MS_POSIXACL; 3053 #endif 3054 3055 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3056 if (!inode) 3057 goto failed; 3058 inode->i_uid = sbinfo->uid; 3059 inode->i_gid = sbinfo->gid; 3060 sb->s_root = d_make_root(inode); 3061 if (!sb->s_root) 3062 goto failed; 3063 return 0; 3064 3065 failed: 3066 shmem_put_super(sb); 3067 return err; 3068 } 3069 3070 static struct kmem_cache *shmem_inode_cachep; 3071 3072 static struct inode *shmem_alloc_inode(struct super_block *sb) 3073 { 3074 struct shmem_inode_info *info; 3075 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3076 if (!info) 3077 return NULL; 3078 return &info->vfs_inode; 3079 } 3080 3081 static void shmem_destroy_callback(struct rcu_head *head) 3082 { 3083 struct inode *inode = container_of(head, struct inode, i_rcu); 3084 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3085 } 3086 3087 static void shmem_destroy_inode(struct inode *inode) 3088 { 3089 if (S_ISREG(inode->i_mode)) 3090 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3091 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3092 } 3093 3094 static void shmem_init_inode(void *foo) 3095 { 3096 struct shmem_inode_info *info = foo; 3097 inode_init_once(&info->vfs_inode); 3098 } 3099 3100 static int shmem_init_inodecache(void) 3101 { 3102 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3103 sizeof(struct shmem_inode_info), 3104 0, SLAB_PANIC, shmem_init_inode); 3105 return 0; 3106 } 3107 3108 static void shmem_destroy_inodecache(void) 3109 { 3110 kmem_cache_destroy(shmem_inode_cachep); 3111 } 3112 3113 static const struct address_space_operations shmem_aops = { 3114 .writepage = shmem_writepage, 3115 .set_page_dirty = __set_page_dirty_no_writeback, 3116 #ifdef CONFIG_TMPFS 3117 .write_begin = shmem_write_begin, 3118 .write_end = shmem_write_end, 3119 #endif 3120 #ifdef CONFIG_MIGRATION 3121 .migratepage = migrate_page, 3122 #endif 3123 .error_remove_page = generic_error_remove_page, 3124 }; 3125 3126 static const struct file_operations shmem_file_operations = { 3127 .mmap = shmem_mmap, 3128 #ifdef CONFIG_TMPFS 3129 .llseek = shmem_file_llseek, 3130 .read_iter = shmem_file_read_iter, 3131 .write_iter = generic_file_write_iter, 3132 .fsync = noop_fsync, 3133 .splice_read = shmem_file_splice_read, 3134 .splice_write = iter_file_splice_write, 3135 .fallocate = shmem_fallocate, 3136 #endif 3137 }; 3138 3139 static const struct inode_operations shmem_inode_operations = { 3140 .getattr = shmem_getattr, 3141 .setattr = shmem_setattr, 3142 #ifdef CONFIG_TMPFS_XATTR 3143 .setxattr = shmem_setxattr, 3144 .getxattr = shmem_getxattr, 3145 .listxattr = shmem_listxattr, 3146 .removexattr = shmem_removexattr, 3147 .set_acl = simple_set_acl, 3148 #endif 3149 }; 3150 3151 static const struct inode_operations shmem_dir_inode_operations = { 3152 #ifdef CONFIG_TMPFS 3153 .create = shmem_create, 3154 .lookup = simple_lookup, 3155 .link = shmem_link, 3156 .unlink = shmem_unlink, 3157 .symlink = shmem_symlink, 3158 .mkdir = shmem_mkdir, 3159 .rmdir = shmem_rmdir, 3160 .mknod = shmem_mknod, 3161 .rename2 = shmem_rename2, 3162 .tmpfile = shmem_tmpfile, 3163 #endif 3164 #ifdef CONFIG_TMPFS_XATTR 3165 .setxattr = shmem_setxattr, 3166 .getxattr = shmem_getxattr, 3167 .listxattr = shmem_listxattr, 3168 .removexattr = shmem_removexattr, 3169 #endif 3170 #ifdef CONFIG_TMPFS_POSIX_ACL 3171 .setattr = shmem_setattr, 3172 .set_acl = simple_set_acl, 3173 #endif 3174 }; 3175 3176 static const struct inode_operations shmem_special_inode_operations = { 3177 #ifdef CONFIG_TMPFS_XATTR 3178 .setxattr = shmem_setxattr, 3179 .getxattr = shmem_getxattr, 3180 .listxattr = shmem_listxattr, 3181 .removexattr = shmem_removexattr, 3182 #endif 3183 #ifdef CONFIG_TMPFS_POSIX_ACL 3184 .setattr = shmem_setattr, 3185 .set_acl = simple_set_acl, 3186 #endif 3187 }; 3188 3189 static const struct super_operations shmem_ops = { 3190 .alloc_inode = shmem_alloc_inode, 3191 .destroy_inode = shmem_destroy_inode, 3192 #ifdef CONFIG_TMPFS 3193 .statfs = shmem_statfs, 3194 .remount_fs = shmem_remount_fs, 3195 .show_options = shmem_show_options, 3196 #endif 3197 .evict_inode = shmem_evict_inode, 3198 .drop_inode = generic_delete_inode, 3199 .put_super = shmem_put_super, 3200 }; 3201 3202 static const struct vm_operations_struct shmem_vm_ops = { 3203 .fault = shmem_fault, 3204 .map_pages = filemap_map_pages, 3205 #ifdef CONFIG_NUMA 3206 .set_policy = shmem_set_policy, 3207 .get_policy = shmem_get_policy, 3208 #endif 3209 }; 3210 3211 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3212 int flags, const char *dev_name, void *data) 3213 { 3214 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3215 } 3216 3217 static struct file_system_type shmem_fs_type = { 3218 .owner = THIS_MODULE, 3219 .name = "tmpfs", 3220 .mount = shmem_mount, 3221 .kill_sb = kill_litter_super, 3222 .fs_flags = FS_USERNS_MOUNT, 3223 }; 3224 3225 int __init shmem_init(void) 3226 { 3227 int error; 3228 3229 /* If rootfs called this, don't re-init */ 3230 if (shmem_inode_cachep) 3231 return 0; 3232 3233 error = shmem_init_inodecache(); 3234 if (error) 3235 goto out3; 3236 3237 error = register_filesystem(&shmem_fs_type); 3238 if (error) { 3239 printk(KERN_ERR "Could not register tmpfs\n"); 3240 goto out2; 3241 } 3242 3243 shm_mnt = kern_mount(&shmem_fs_type); 3244 if (IS_ERR(shm_mnt)) { 3245 error = PTR_ERR(shm_mnt); 3246 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 3247 goto out1; 3248 } 3249 return 0; 3250 3251 out1: 3252 unregister_filesystem(&shmem_fs_type); 3253 out2: 3254 shmem_destroy_inodecache(); 3255 out3: 3256 shm_mnt = ERR_PTR(error); 3257 return error; 3258 } 3259 3260 #else /* !CONFIG_SHMEM */ 3261 3262 /* 3263 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3264 * 3265 * This is intended for small system where the benefits of the full 3266 * shmem code (swap-backed and resource-limited) are outweighed by 3267 * their complexity. On systems without swap this code should be 3268 * effectively equivalent, but much lighter weight. 3269 */ 3270 3271 static struct file_system_type shmem_fs_type = { 3272 .name = "tmpfs", 3273 .mount = ramfs_mount, 3274 .kill_sb = kill_litter_super, 3275 .fs_flags = FS_USERNS_MOUNT, 3276 }; 3277 3278 int __init shmem_init(void) 3279 { 3280 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3281 3282 shm_mnt = kern_mount(&shmem_fs_type); 3283 BUG_ON(IS_ERR(shm_mnt)); 3284 3285 return 0; 3286 } 3287 3288 int shmem_unuse(swp_entry_t swap, struct page *page) 3289 { 3290 return 0; 3291 } 3292 3293 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3294 { 3295 return 0; 3296 } 3297 3298 void shmem_unlock_mapping(struct address_space *mapping) 3299 { 3300 } 3301 3302 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3303 { 3304 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3305 } 3306 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3307 3308 #define shmem_vm_ops generic_file_vm_ops 3309 #define shmem_file_operations ramfs_file_operations 3310 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3311 #define shmem_acct_size(flags, size) 0 3312 #define shmem_unacct_size(flags, size) do {} while (0) 3313 3314 #endif /* CONFIG_SHMEM */ 3315 3316 /* common code */ 3317 3318 static struct dentry_operations anon_ops = { 3319 .d_dname = simple_dname 3320 }; 3321 3322 static struct file *__shmem_file_setup(const char *name, loff_t size, 3323 unsigned long flags, unsigned int i_flags) 3324 { 3325 struct file *res; 3326 struct inode *inode; 3327 struct path path; 3328 struct super_block *sb; 3329 struct qstr this; 3330 3331 if (IS_ERR(shm_mnt)) 3332 return ERR_CAST(shm_mnt); 3333 3334 if (size < 0 || size > MAX_LFS_FILESIZE) 3335 return ERR_PTR(-EINVAL); 3336 3337 if (shmem_acct_size(flags, size)) 3338 return ERR_PTR(-ENOMEM); 3339 3340 res = ERR_PTR(-ENOMEM); 3341 this.name = name; 3342 this.len = strlen(name); 3343 this.hash = 0; /* will go */ 3344 sb = shm_mnt->mnt_sb; 3345 path.mnt = mntget(shm_mnt); 3346 path.dentry = d_alloc_pseudo(sb, &this); 3347 if (!path.dentry) 3348 goto put_memory; 3349 d_set_d_op(path.dentry, &anon_ops); 3350 3351 res = ERR_PTR(-ENOSPC); 3352 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3353 if (!inode) 3354 goto put_memory; 3355 3356 inode->i_flags |= i_flags; 3357 d_instantiate(path.dentry, inode); 3358 inode->i_size = size; 3359 clear_nlink(inode); /* It is unlinked */ 3360 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3361 if (IS_ERR(res)) 3362 goto put_path; 3363 3364 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3365 &shmem_file_operations); 3366 if (IS_ERR(res)) 3367 goto put_path; 3368 3369 return res; 3370 3371 put_memory: 3372 shmem_unacct_size(flags, size); 3373 put_path: 3374 path_put(&path); 3375 return res; 3376 } 3377 3378 /** 3379 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3380 * kernel internal. There will be NO LSM permission checks against the 3381 * underlying inode. So users of this interface must do LSM checks at a 3382 * higher layer. The users are the big_key and shm implementations. LSM 3383 * checks are provided at the key or shm level rather than the inode. 3384 * @name: name for dentry (to be seen in /proc/<pid>/maps 3385 * @size: size to be set for the file 3386 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3387 */ 3388 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3389 { 3390 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3391 } 3392 3393 /** 3394 * shmem_file_setup - get an unlinked file living in tmpfs 3395 * @name: name for dentry (to be seen in /proc/<pid>/maps 3396 * @size: size to be set for the file 3397 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3398 */ 3399 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3400 { 3401 return __shmem_file_setup(name, size, flags, 0); 3402 } 3403 EXPORT_SYMBOL_GPL(shmem_file_setup); 3404 3405 /** 3406 * shmem_zero_setup - setup a shared anonymous mapping 3407 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3408 */ 3409 int shmem_zero_setup(struct vm_area_struct *vma) 3410 { 3411 struct file *file; 3412 loff_t size = vma->vm_end - vma->vm_start; 3413 3414 /* 3415 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3416 * between XFS directory reading and selinux: since this file is only 3417 * accessible to the user through its mapping, use S_PRIVATE flag to 3418 * bypass file security, in the same way as shmem_kernel_file_setup(). 3419 */ 3420 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 3421 if (IS_ERR(file)) 3422 return PTR_ERR(file); 3423 3424 if (vma->vm_file) 3425 fput(vma->vm_file); 3426 vma->vm_file = file; 3427 vma->vm_ops = &shmem_vm_ops; 3428 return 0; 3429 } 3430 3431 /** 3432 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3433 * @mapping: the page's address_space 3434 * @index: the page index 3435 * @gfp: the page allocator flags to use if allocating 3436 * 3437 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3438 * with any new page allocations done using the specified allocation flags. 3439 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3440 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3441 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3442 * 3443 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3444 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3445 */ 3446 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3447 pgoff_t index, gfp_t gfp) 3448 { 3449 #ifdef CONFIG_SHMEM 3450 struct inode *inode = mapping->host; 3451 struct page *page; 3452 int error; 3453 3454 BUG_ON(mapping->a_ops != &shmem_aops); 3455 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3456 if (error) 3457 page = ERR_PTR(error); 3458 else 3459 unlock_page(page); 3460 return page; 3461 #else 3462 /* 3463 * The tiny !SHMEM case uses ramfs without swap 3464 */ 3465 return read_cache_page_gfp(mapping, index, gfp); 3466 #endif 3467 } 3468 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3469