xref: /openbmc/linux/mm/shmem.c (revision e9adcfec)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include <linux/iversion.h>
42 #include "swap.h"
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 struct shmem_options {
110 	unsigned long long blocks;
111 	unsigned long long inodes;
112 	struct mempolicy *mpol;
113 	kuid_t uid;
114 	kgid_t gid;
115 	umode_t mode;
116 	bool full_inums;
117 	int huge;
118 	int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
140 			     struct folio **foliop, enum sgp_type sgp,
141 			     gfp_t gfp, struct vm_area_struct *vma,
142 			     vm_fault_t *fault_type);
143 
144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
145 {
146 	return sb->s_fs_info;
147 }
148 
149 /*
150  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
151  * for shared memory and for shared anonymous (/dev/zero) mappings
152  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
153  * consistent with the pre-accounting of private mappings ...
154  */
155 static inline int shmem_acct_size(unsigned long flags, loff_t size)
156 {
157 	return (flags & VM_NORESERVE) ?
158 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
159 }
160 
161 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
162 {
163 	if (!(flags & VM_NORESERVE))
164 		vm_unacct_memory(VM_ACCT(size));
165 }
166 
167 static inline int shmem_reacct_size(unsigned long flags,
168 		loff_t oldsize, loff_t newsize)
169 {
170 	if (!(flags & VM_NORESERVE)) {
171 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
172 			return security_vm_enough_memory_mm(current->mm,
173 					VM_ACCT(newsize) - VM_ACCT(oldsize));
174 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
175 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
176 	}
177 	return 0;
178 }
179 
180 /*
181  * ... whereas tmpfs objects are accounted incrementally as
182  * pages are allocated, in order to allow large sparse files.
183  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
184  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185  */
186 static inline int shmem_acct_block(unsigned long flags, long pages)
187 {
188 	if (!(flags & VM_NORESERVE))
189 		return 0;
190 
191 	return security_vm_enough_memory_mm(current->mm,
192 			pages * VM_ACCT(PAGE_SIZE));
193 }
194 
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 {
197 	if (flags & VM_NORESERVE)
198 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
199 }
200 
201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
202 {
203 	struct shmem_inode_info *info = SHMEM_I(inode);
204 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
205 
206 	if (shmem_acct_block(info->flags, pages))
207 		return false;
208 
209 	if (sbinfo->max_blocks) {
210 		if (percpu_counter_compare(&sbinfo->used_blocks,
211 					   sbinfo->max_blocks - pages) > 0)
212 			goto unacct;
213 		percpu_counter_add(&sbinfo->used_blocks, pages);
214 	}
215 
216 	return true;
217 
218 unacct:
219 	shmem_unacct_blocks(info->flags, pages);
220 	return false;
221 }
222 
223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 
228 	if (sbinfo->max_blocks)
229 		percpu_counter_sub(&sbinfo->used_blocks, pages);
230 	shmem_unacct_blocks(info->flags, pages);
231 }
232 
233 static const struct super_operations shmem_ops;
234 const struct address_space_operations shmem_aops;
235 static const struct file_operations shmem_file_operations;
236 static const struct inode_operations shmem_inode_operations;
237 static const struct inode_operations shmem_dir_inode_operations;
238 static const struct inode_operations shmem_special_inode_operations;
239 static const struct vm_operations_struct shmem_vm_ops;
240 static const struct vm_operations_struct shmem_anon_vm_ops;
241 static struct file_system_type shmem_fs_type;
242 
243 bool vma_is_anon_shmem(struct vm_area_struct *vma)
244 {
245 	return vma->vm_ops == &shmem_anon_vm_ops;
246 }
247 
248 bool vma_is_shmem(struct vm_area_struct *vma)
249 {
250 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
251 }
252 
253 static LIST_HEAD(shmem_swaplist);
254 static DEFINE_MUTEX(shmem_swaplist_mutex);
255 
256 /*
257  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
258  * produces a novel ino for the newly allocated inode.
259  *
260  * It may also be called when making a hard link to permit the space needed by
261  * each dentry. However, in that case, no new inode number is needed since that
262  * internally draws from another pool of inode numbers (currently global
263  * get_next_ino()). This case is indicated by passing NULL as inop.
264  */
265 #define SHMEM_INO_BATCH 1024
266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
267 {
268 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
269 	ino_t ino;
270 
271 	if (!(sb->s_flags & SB_KERNMOUNT)) {
272 		raw_spin_lock(&sbinfo->stat_lock);
273 		if (sbinfo->max_inodes) {
274 			if (!sbinfo->free_inodes) {
275 				raw_spin_unlock(&sbinfo->stat_lock);
276 				return -ENOSPC;
277 			}
278 			sbinfo->free_inodes--;
279 		}
280 		if (inop) {
281 			ino = sbinfo->next_ino++;
282 			if (unlikely(is_zero_ino(ino)))
283 				ino = sbinfo->next_ino++;
284 			if (unlikely(!sbinfo->full_inums &&
285 				     ino > UINT_MAX)) {
286 				/*
287 				 * Emulate get_next_ino uint wraparound for
288 				 * compatibility
289 				 */
290 				if (IS_ENABLED(CONFIG_64BIT))
291 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
292 						__func__, MINOR(sb->s_dev));
293 				sbinfo->next_ino = 1;
294 				ino = sbinfo->next_ino++;
295 			}
296 			*inop = ino;
297 		}
298 		raw_spin_unlock(&sbinfo->stat_lock);
299 	} else if (inop) {
300 		/*
301 		 * __shmem_file_setup, one of our callers, is lock-free: it
302 		 * doesn't hold stat_lock in shmem_reserve_inode since
303 		 * max_inodes is always 0, and is called from potentially
304 		 * unknown contexts. As such, use a per-cpu batched allocator
305 		 * which doesn't require the per-sb stat_lock unless we are at
306 		 * the batch boundary.
307 		 *
308 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
309 		 * shmem mounts are not exposed to userspace, so we don't need
310 		 * to worry about things like glibc compatibility.
311 		 */
312 		ino_t *next_ino;
313 
314 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
315 		ino = *next_ino;
316 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
317 			raw_spin_lock(&sbinfo->stat_lock);
318 			ino = sbinfo->next_ino;
319 			sbinfo->next_ino += SHMEM_INO_BATCH;
320 			raw_spin_unlock(&sbinfo->stat_lock);
321 			if (unlikely(is_zero_ino(ino)))
322 				ino++;
323 		}
324 		*inop = ino;
325 		*next_ino = ++ino;
326 		put_cpu();
327 	}
328 
329 	return 0;
330 }
331 
332 static void shmem_free_inode(struct super_block *sb)
333 {
334 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
335 	if (sbinfo->max_inodes) {
336 		raw_spin_lock(&sbinfo->stat_lock);
337 		sbinfo->free_inodes++;
338 		raw_spin_unlock(&sbinfo->stat_lock);
339 	}
340 }
341 
342 /**
343  * shmem_recalc_inode - recalculate the block usage of an inode
344  * @inode: inode to recalc
345  *
346  * We have to calculate the free blocks since the mm can drop
347  * undirtied hole pages behind our back.
348  *
349  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
350  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
351  *
352  * It has to be called with the spinlock held.
353  */
354 static void shmem_recalc_inode(struct inode *inode)
355 {
356 	struct shmem_inode_info *info = SHMEM_I(inode);
357 	long freed;
358 
359 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
360 	if (freed > 0) {
361 		info->alloced -= freed;
362 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
363 		shmem_inode_unacct_blocks(inode, freed);
364 	}
365 }
366 
367 bool shmem_charge(struct inode *inode, long pages)
368 {
369 	struct shmem_inode_info *info = SHMEM_I(inode);
370 	unsigned long flags;
371 
372 	if (!shmem_inode_acct_block(inode, pages))
373 		return false;
374 
375 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
376 	inode->i_mapping->nrpages += pages;
377 
378 	spin_lock_irqsave(&info->lock, flags);
379 	info->alloced += pages;
380 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
381 	shmem_recalc_inode(inode);
382 	spin_unlock_irqrestore(&info->lock, flags);
383 
384 	return true;
385 }
386 
387 void shmem_uncharge(struct inode *inode, long pages)
388 {
389 	struct shmem_inode_info *info = SHMEM_I(inode);
390 	unsigned long flags;
391 
392 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
393 
394 	spin_lock_irqsave(&info->lock, flags);
395 	info->alloced -= pages;
396 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
397 	shmem_recalc_inode(inode);
398 	spin_unlock_irqrestore(&info->lock, flags);
399 
400 	shmem_inode_unacct_blocks(inode, pages);
401 }
402 
403 /*
404  * Replace item expected in xarray by a new item, while holding xa_lock.
405  */
406 static int shmem_replace_entry(struct address_space *mapping,
407 			pgoff_t index, void *expected, void *replacement)
408 {
409 	XA_STATE(xas, &mapping->i_pages, index);
410 	void *item;
411 
412 	VM_BUG_ON(!expected);
413 	VM_BUG_ON(!replacement);
414 	item = xas_load(&xas);
415 	if (item != expected)
416 		return -ENOENT;
417 	xas_store(&xas, replacement);
418 	return 0;
419 }
420 
421 /*
422  * Sometimes, before we decide whether to proceed or to fail, we must check
423  * that an entry was not already brought back from swap by a racing thread.
424  *
425  * Checking page is not enough: by the time a SwapCache page is locked, it
426  * might be reused, and again be SwapCache, using the same swap as before.
427  */
428 static bool shmem_confirm_swap(struct address_space *mapping,
429 			       pgoff_t index, swp_entry_t swap)
430 {
431 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
432 }
433 
434 /*
435  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
436  *
437  * SHMEM_HUGE_NEVER:
438  *	disables huge pages for the mount;
439  * SHMEM_HUGE_ALWAYS:
440  *	enables huge pages for the mount;
441  * SHMEM_HUGE_WITHIN_SIZE:
442  *	only allocate huge pages if the page will be fully within i_size,
443  *	also respect fadvise()/madvise() hints;
444  * SHMEM_HUGE_ADVISE:
445  *	only allocate huge pages if requested with fadvise()/madvise();
446  */
447 
448 #define SHMEM_HUGE_NEVER	0
449 #define SHMEM_HUGE_ALWAYS	1
450 #define SHMEM_HUGE_WITHIN_SIZE	2
451 #define SHMEM_HUGE_ADVISE	3
452 
453 /*
454  * Special values.
455  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
456  *
457  * SHMEM_HUGE_DENY:
458  *	disables huge on shm_mnt and all mounts, for emergency use;
459  * SHMEM_HUGE_FORCE:
460  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
461  *
462  */
463 #define SHMEM_HUGE_DENY		(-1)
464 #define SHMEM_HUGE_FORCE	(-2)
465 
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
467 /* ifdef here to avoid bloating shmem.o when not necessary */
468 
469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
470 
471 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
472 		   pgoff_t index, bool shmem_huge_force)
473 {
474 	loff_t i_size;
475 
476 	if (!S_ISREG(inode->i_mode))
477 		return false;
478 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
479 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
480 		return false;
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
484 		return true;
485 
486 	switch (SHMEM_SB(inode->i_sb)->huge) {
487 	case SHMEM_HUGE_ALWAYS:
488 		return true;
489 	case SHMEM_HUGE_WITHIN_SIZE:
490 		index = round_up(index + 1, HPAGE_PMD_NR);
491 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
492 		if (i_size >> PAGE_SHIFT >= index)
493 			return true;
494 		fallthrough;
495 	case SHMEM_HUGE_ADVISE:
496 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
497 			return true;
498 		fallthrough;
499 	default:
500 		return false;
501 	}
502 }
503 
504 #if defined(CONFIG_SYSFS)
505 static int shmem_parse_huge(const char *str)
506 {
507 	if (!strcmp(str, "never"))
508 		return SHMEM_HUGE_NEVER;
509 	if (!strcmp(str, "always"))
510 		return SHMEM_HUGE_ALWAYS;
511 	if (!strcmp(str, "within_size"))
512 		return SHMEM_HUGE_WITHIN_SIZE;
513 	if (!strcmp(str, "advise"))
514 		return SHMEM_HUGE_ADVISE;
515 	if (!strcmp(str, "deny"))
516 		return SHMEM_HUGE_DENY;
517 	if (!strcmp(str, "force"))
518 		return SHMEM_HUGE_FORCE;
519 	return -EINVAL;
520 }
521 #endif
522 
523 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
524 static const char *shmem_format_huge(int huge)
525 {
526 	switch (huge) {
527 	case SHMEM_HUGE_NEVER:
528 		return "never";
529 	case SHMEM_HUGE_ALWAYS:
530 		return "always";
531 	case SHMEM_HUGE_WITHIN_SIZE:
532 		return "within_size";
533 	case SHMEM_HUGE_ADVISE:
534 		return "advise";
535 	case SHMEM_HUGE_DENY:
536 		return "deny";
537 	case SHMEM_HUGE_FORCE:
538 		return "force";
539 	default:
540 		VM_BUG_ON(1);
541 		return "bad_val";
542 	}
543 }
544 #endif
545 
546 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
547 		struct shrink_control *sc, unsigned long nr_to_split)
548 {
549 	LIST_HEAD(list), *pos, *next;
550 	LIST_HEAD(to_remove);
551 	struct inode *inode;
552 	struct shmem_inode_info *info;
553 	struct folio *folio;
554 	unsigned long batch = sc ? sc->nr_to_scan : 128;
555 	int split = 0;
556 
557 	if (list_empty(&sbinfo->shrinklist))
558 		return SHRINK_STOP;
559 
560 	spin_lock(&sbinfo->shrinklist_lock);
561 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
562 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
563 
564 		/* pin the inode */
565 		inode = igrab(&info->vfs_inode);
566 
567 		/* inode is about to be evicted */
568 		if (!inode) {
569 			list_del_init(&info->shrinklist);
570 			goto next;
571 		}
572 
573 		/* Check if there's anything to gain */
574 		if (round_up(inode->i_size, PAGE_SIZE) ==
575 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
576 			list_move(&info->shrinklist, &to_remove);
577 			goto next;
578 		}
579 
580 		list_move(&info->shrinklist, &list);
581 next:
582 		sbinfo->shrinklist_len--;
583 		if (!--batch)
584 			break;
585 	}
586 	spin_unlock(&sbinfo->shrinklist_lock);
587 
588 	list_for_each_safe(pos, next, &to_remove) {
589 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
590 		inode = &info->vfs_inode;
591 		list_del_init(&info->shrinklist);
592 		iput(inode);
593 	}
594 
595 	list_for_each_safe(pos, next, &list) {
596 		int ret;
597 		pgoff_t index;
598 
599 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
600 		inode = &info->vfs_inode;
601 
602 		if (nr_to_split && split >= nr_to_split)
603 			goto move_back;
604 
605 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
606 		folio = filemap_get_folio(inode->i_mapping, index);
607 		if (!folio)
608 			goto drop;
609 
610 		/* No huge page at the end of the file: nothing to split */
611 		if (!folio_test_large(folio)) {
612 			folio_put(folio);
613 			goto drop;
614 		}
615 
616 		/*
617 		 * Move the inode on the list back to shrinklist if we failed
618 		 * to lock the page at this time.
619 		 *
620 		 * Waiting for the lock may lead to deadlock in the
621 		 * reclaim path.
622 		 */
623 		if (!folio_trylock(folio)) {
624 			folio_put(folio);
625 			goto move_back;
626 		}
627 
628 		ret = split_folio(folio);
629 		folio_unlock(folio);
630 		folio_put(folio);
631 
632 		/* If split failed move the inode on the list back to shrinklist */
633 		if (ret)
634 			goto move_back;
635 
636 		split++;
637 drop:
638 		list_del_init(&info->shrinklist);
639 		goto put;
640 move_back:
641 		/*
642 		 * Make sure the inode is either on the global list or deleted
643 		 * from any local list before iput() since it could be deleted
644 		 * in another thread once we put the inode (then the local list
645 		 * is corrupted).
646 		 */
647 		spin_lock(&sbinfo->shrinklist_lock);
648 		list_move(&info->shrinklist, &sbinfo->shrinklist);
649 		sbinfo->shrinklist_len++;
650 		spin_unlock(&sbinfo->shrinklist_lock);
651 put:
652 		iput(inode);
653 	}
654 
655 	return split;
656 }
657 
658 static long shmem_unused_huge_scan(struct super_block *sb,
659 		struct shrink_control *sc)
660 {
661 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
662 
663 	if (!READ_ONCE(sbinfo->shrinklist_len))
664 		return SHRINK_STOP;
665 
666 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
667 }
668 
669 static long shmem_unused_huge_count(struct super_block *sb,
670 		struct shrink_control *sc)
671 {
672 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
673 	return READ_ONCE(sbinfo->shrinklist_len);
674 }
675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
676 
677 #define shmem_huge SHMEM_HUGE_DENY
678 
679 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
680 		   pgoff_t index, bool shmem_huge_force)
681 {
682 	return false;
683 }
684 
685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
686 		struct shrink_control *sc, unsigned long nr_to_split)
687 {
688 	return 0;
689 }
690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
691 
692 /*
693  * Like filemap_add_folio, but error if expected item has gone.
694  */
695 static int shmem_add_to_page_cache(struct folio *folio,
696 				   struct address_space *mapping,
697 				   pgoff_t index, void *expected, gfp_t gfp,
698 				   struct mm_struct *charge_mm)
699 {
700 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
701 	long nr = folio_nr_pages(folio);
702 	int error;
703 
704 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
705 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
706 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
707 	VM_BUG_ON(expected && folio_test_large(folio));
708 
709 	folio_ref_add(folio, nr);
710 	folio->mapping = mapping;
711 	folio->index = index;
712 
713 	if (!folio_test_swapcache(folio)) {
714 		error = mem_cgroup_charge(folio, charge_mm, gfp);
715 		if (error) {
716 			if (folio_test_pmd_mappable(folio)) {
717 				count_vm_event(THP_FILE_FALLBACK);
718 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
719 			}
720 			goto error;
721 		}
722 	}
723 	folio_throttle_swaprate(folio, gfp);
724 
725 	do {
726 		xas_lock_irq(&xas);
727 		if (expected != xas_find_conflict(&xas)) {
728 			xas_set_err(&xas, -EEXIST);
729 			goto unlock;
730 		}
731 		if (expected && xas_find_conflict(&xas)) {
732 			xas_set_err(&xas, -EEXIST);
733 			goto unlock;
734 		}
735 		xas_store(&xas, folio);
736 		if (xas_error(&xas))
737 			goto unlock;
738 		if (folio_test_pmd_mappable(folio)) {
739 			count_vm_event(THP_FILE_ALLOC);
740 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
741 		}
742 		mapping->nrpages += nr;
743 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
744 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
745 unlock:
746 		xas_unlock_irq(&xas);
747 	} while (xas_nomem(&xas, gfp));
748 
749 	if (xas_error(&xas)) {
750 		error = xas_error(&xas);
751 		goto error;
752 	}
753 
754 	return 0;
755 error:
756 	folio->mapping = NULL;
757 	folio_ref_sub(folio, nr);
758 	return error;
759 }
760 
761 /*
762  * Like delete_from_page_cache, but substitutes swap for @folio.
763  */
764 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
765 {
766 	struct address_space *mapping = folio->mapping;
767 	long nr = folio_nr_pages(folio);
768 	int error;
769 
770 	xa_lock_irq(&mapping->i_pages);
771 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
772 	folio->mapping = NULL;
773 	mapping->nrpages -= nr;
774 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
775 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
776 	xa_unlock_irq(&mapping->i_pages);
777 	folio_put(folio);
778 	BUG_ON(error);
779 }
780 
781 /*
782  * Remove swap entry from page cache, free the swap and its page cache.
783  */
784 static int shmem_free_swap(struct address_space *mapping,
785 			   pgoff_t index, void *radswap)
786 {
787 	void *old;
788 
789 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
790 	if (old != radswap)
791 		return -ENOENT;
792 	free_swap_and_cache(radix_to_swp_entry(radswap));
793 	return 0;
794 }
795 
796 /*
797  * Determine (in bytes) how many of the shmem object's pages mapped by the
798  * given offsets are swapped out.
799  *
800  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
801  * as long as the inode doesn't go away and racy results are not a problem.
802  */
803 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
804 						pgoff_t start, pgoff_t end)
805 {
806 	XA_STATE(xas, &mapping->i_pages, start);
807 	struct page *page;
808 	unsigned long swapped = 0;
809 
810 	rcu_read_lock();
811 	xas_for_each(&xas, page, end - 1) {
812 		if (xas_retry(&xas, page))
813 			continue;
814 		if (xa_is_value(page))
815 			swapped++;
816 
817 		if (need_resched()) {
818 			xas_pause(&xas);
819 			cond_resched_rcu();
820 		}
821 	}
822 
823 	rcu_read_unlock();
824 
825 	return swapped << PAGE_SHIFT;
826 }
827 
828 /*
829  * Determine (in bytes) how many of the shmem object's pages mapped by the
830  * given vma is swapped out.
831  *
832  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
833  * as long as the inode doesn't go away and racy results are not a problem.
834  */
835 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
836 {
837 	struct inode *inode = file_inode(vma->vm_file);
838 	struct shmem_inode_info *info = SHMEM_I(inode);
839 	struct address_space *mapping = inode->i_mapping;
840 	unsigned long swapped;
841 
842 	/* Be careful as we don't hold info->lock */
843 	swapped = READ_ONCE(info->swapped);
844 
845 	/*
846 	 * The easier cases are when the shmem object has nothing in swap, or
847 	 * the vma maps it whole. Then we can simply use the stats that we
848 	 * already track.
849 	 */
850 	if (!swapped)
851 		return 0;
852 
853 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
854 		return swapped << PAGE_SHIFT;
855 
856 	/* Here comes the more involved part */
857 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
858 					vma->vm_pgoff + vma_pages(vma));
859 }
860 
861 /*
862  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
863  */
864 void shmem_unlock_mapping(struct address_space *mapping)
865 {
866 	struct folio_batch fbatch;
867 	pgoff_t index = 0;
868 
869 	folio_batch_init(&fbatch);
870 	/*
871 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
872 	 */
873 	while (!mapping_unevictable(mapping) &&
874 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
875 		check_move_unevictable_folios(&fbatch);
876 		folio_batch_release(&fbatch);
877 		cond_resched();
878 	}
879 }
880 
881 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
882 {
883 	struct folio *folio;
884 
885 	/*
886 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
887 	 * beyond i_size, and reports fallocated pages as holes.
888 	 */
889 	folio = __filemap_get_folio(inode->i_mapping, index,
890 					FGP_ENTRY | FGP_LOCK, 0);
891 	if (!xa_is_value(folio))
892 		return folio;
893 	/*
894 	 * But read a page back from swap if any of it is within i_size
895 	 * (although in some cases this is just a waste of time).
896 	 */
897 	folio = NULL;
898 	shmem_get_folio(inode, index, &folio, SGP_READ);
899 	return folio;
900 }
901 
902 /*
903  * Remove range of pages and swap entries from page cache, and free them.
904  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
905  */
906 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
907 								 bool unfalloc)
908 {
909 	struct address_space *mapping = inode->i_mapping;
910 	struct shmem_inode_info *info = SHMEM_I(inode);
911 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
912 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
913 	struct folio_batch fbatch;
914 	pgoff_t indices[PAGEVEC_SIZE];
915 	struct folio *folio;
916 	bool same_folio;
917 	long nr_swaps_freed = 0;
918 	pgoff_t index;
919 	int i;
920 
921 	if (lend == -1)
922 		end = -1;	/* unsigned, so actually very big */
923 
924 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
925 		info->fallocend = start;
926 
927 	folio_batch_init(&fbatch);
928 	index = start;
929 	while (index < end && find_lock_entries(mapping, &index, end - 1,
930 			&fbatch, indices)) {
931 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
932 			folio = fbatch.folios[i];
933 
934 			if (xa_is_value(folio)) {
935 				if (unfalloc)
936 					continue;
937 				nr_swaps_freed += !shmem_free_swap(mapping,
938 							indices[i], folio);
939 				continue;
940 			}
941 
942 			if (!unfalloc || !folio_test_uptodate(folio))
943 				truncate_inode_folio(mapping, folio);
944 			folio_unlock(folio);
945 		}
946 		folio_batch_remove_exceptionals(&fbatch);
947 		folio_batch_release(&fbatch);
948 		cond_resched();
949 	}
950 
951 	/*
952 	 * When undoing a failed fallocate, we want none of the partial folio
953 	 * zeroing and splitting below, but shall want to truncate the whole
954 	 * folio when !uptodate indicates that it was added by this fallocate,
955 	 * even when [lstart, lend] covers only a part of the folio.
956 	 */
957 	if (unfalloc)
958 		goto whole_folios;
959 
960 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
961 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
962 	if (folio) {
963 		same_folio = lend < folio_pos(folio) + folio_size(folio);
964 		folio_mark_dirty(folio);
965 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
966 			start = folio->index + folio_nr_pages(folio);
967 			if (same_folio)
968 				end = folio->index;
969 		}
970 		folio_unlock(folio);
971 		folio_put(folio);
972 		folio = NULL;
973 	}
974 
975 	if (!same_folio)
976 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
977 	if (folio) {
978 		folio_mark_dirty(folio);
979 		if (!truncate_inode_partial_folio(folio, lstart, lend))
980 			end = folio->index;
981 		folio_unlock(folio);
982 		folio_put(folio);
983 	}
984 
985 whole_folios:
986 
987 	index = start;
988 	while (index < end) {
989 		cond_resched();
990 
991 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
992 				indices)) {
993 			/* If all gone or hole-punch or unfalloc, we're done */
994 			if (index == start || end != -1)
995 				break;
996 			/* But if truncating, restart to make sure all gone */
997 			index = start;
998 			continue;
999 		}
1000 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1001 			folio = fbatch.folios[i];
1002 
1003 			if (xa_is_value(folio)) {
1004 				if (unfalloc)
1005 					continue;
1006 				if (shmem_free_swap(mapping, indices[i], folio)) {
1007 					/* Swap was replaced by page: retry */
1008 					index = indices[i];
1009 					break;
1010 				}
1011 				nr_swaps_freed++;
1012 				continue;
1013 			}
1014 
1015 			folio_lock(folio);
1016 
1017 			if (!unfalloc || !folio_test_uptodate(folio)) {
1018 				if (folio_mapping(folio) != mapping) {
1019 					/* Page was replaced by swap: retry */
1020 					folio_unlock(folio);
1021 					index = indices[i];
1022 					break;
1023 				}
1024 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 						folio);
1026 				truncate_inode_folio(mapping, folio);
1027 			}
1028 			folio_unlock(folio);
1029 		}
1030 		folio_batch_remove_exceptionals(&fbatch);
1031 		folio_batch_release(&fbatch);
1032 	}
1033 
1034 	spin_lock_irq(&info->lock);
1035 	info->swapped -= nr_swaps_freed;
1036 	shmem_recalc_inode(inode);
1037 	spin_unlock_irq(&info->lock);
1038 }
1039 
1040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1041 {
1042 	shmem_undo_range(inode, lstart, lend, false);
1043 	inode->i_ctime = inode->i_mtime = current_time(inode);
1044 	inode_inc_iversion(inode);
1045 }
1046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047 
1048 static int shmem_getattr(struct user_namespace *mnt_userns,
1049 			 const struct path *path, struct kstat *stat,
1050 			 u32 request_mask, unsigned int query_flags)
1051 {
1052 	struct inode *inode = path->dentry->d_inode;
1053 	struct shmem_inode_info *info = SHMEM_I(inode);
1054 
1055 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056 		spin_lock_irq(&info->lock);
1057 		shmem_recalc_inode(inode);
1058 		spin_unlock_irq(&info->lock);
1059 	}
1060 	if (info->fsflags & FS_APPEND_FL)
1061 		stat->attributes |= STATX_ATTR_APPEND;
1062 	if (info->fsflags & FS_IMMUTABLE_FL)
1063 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1064 	if (info->fsflags & FS_NODUMP_FL)
1065 		stat->attributes |= STATX_ATTR_NODUMP;
1066 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1067 			STATX_ATTR_IMMUTABLE |
1068 			STATX_ATTR_NODUMP);
1069 	generic_fillattr(&init_user_ns, inode, stat);
1070 
1071 	if (shmem_is_huge(NULL, inode, 0, false))
1072 		stat->blksize = HPAGE_PMD_SIZE;
1073 
1074 	if (request_mask & STATX_BTIME) {
1075 		stat->result_mask |= STATX_BTIME;
1076 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1077 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static int shmem_setattr(struct user_namespace *mnt_userns,
1084 			 struct dentry *dentry, struct iattr *attr)
1085 {
1086 	struct inode *inode = d_inode(dentry);
1087 	struct shmem_inode_info *info = SHMEM_I(inode);
1088 	int error;
1089 	bool update_mtime = false;
1090 	bool update_ctime = true;
1091 
1092 	error = setattr_prepare(&init_user_ns, dentry, attr);
1093 	if (error)
1094 		return error;
1095 
1096 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1097 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1098 			return -EPERM;
1099 		}
1100 	}
1101 
1102 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1103 		loff_t oldsize = inode->i_size;
1104 		loff_t newsize = attr->ia_size;
1105 
1106 		/* protected by i_rwsem */
1107 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1108 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1109 			return -EPERM;
1110 
1111 		if (newsize != oldsize) {
1112 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1113 					oldsize, newsize);
1114 			if (error)
1115 				return error;
1116 			i_size_write(inode, newsize);
1117 			update_mtime = true;
1118 		} else {
1119 			update_ctime = false;
1120 		}
1121 		if (newsize <= oldsize) {
1122 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1123 			if (oldsize > holebegin)
1124 				unmap_mapping_range(inode->i_mapping,
1125 							holebegin, 0, 1);
1126 			if (info->alloced)
1127 				shmem_truncate_range(inode,
1128 							newsize, (loff_t)-1);
1129 			/* unmap again to remove racily COWed private pages */
1130 			if (oldsize > holebegin)
1131 				unmap_mapping_range(inode->i_mapping,
1132 							holebegin, 0, 1);
1133 		}
1134 	}
1135 
1136 	setattr_copy(&init_user_ns, inode, attr);
1137 	if (attr->ia_valid & ATTR_MODE)
1138 		error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
1139 	if (!error && update_ctime) {
1140 		inode->i_ctime = current_time(inode);
1141 		if (update_mtime)
1142 			inode->i_mtime = inode->i_ctime;
1143 		inode_inc_iversion(inode);
1144 	}
1145 	return error;
1146 }
1147 
1148 static void shmem_evict_inode(struct inode *inode)
1149 {
1150 	struct shmem_inode_info *info = SHMEM_I(inode);
1151 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1152 
1153 	if (shmem_mapping(inode->i_mapping)) {
1154 		shmem_unacct_size(info->flags, inode->i_size);
1155 		inode->i_size = 0;
1156 		mapping_set_exiting(inode->i_mapping);
1157 		shmem_truncate_range(inode, 0, (loff_t)-1);
1158 		if (!list_empty(&info->shrinklist)) {
1159 			spin_lock(&sbinfo->shrinklist_lock);
1160 			if (!list_empty(&info->shrinklist)) {
1161 				list_del_init(&info->shrinklist);
1162 				sbinfo->shrinklist_len--;
1163 			}
1164 			spin_unlock(&sbinfo->shrinklist_lock);
1165 		}
1166 		while (!list_empty(&info->swaplist)) {
1167 			/* Wait while shmem_unuse() is scanning this inode... */
1168 			wait_var_event(&info->stop_eviction,
1169 				       !atomic_read(&info->stop_eviction));
1170 			mutex_lock(&shmem_swaplist_mutex);
1171 			/* ...but beware of the race if we peeked too early */
1172 			if (!atomic_read(&info->stop_eviction))
1173 				list_del_init(&info->swaplist);
1174 			mutex_unlock(&shmem_swaplist_mutex);
1175 		}
1176 	}
1177 
1178 	simple_xattrs_free(&info->xattrs);
1179 	WARN_ON(inode->i_blocks);
1180 	shmem_free_inode(inode->i_sb);
1181 	clear_inode(inode);
1182 }
1183 
1184 static int shmem_find_swap_entries(struct address_space *mapping,
1185 				   pgoff_t start, struct folio_batch *fbatch,
1186 				   pgoff_t *indices, unsigned int type)
1187 {
1188 	XA_STATE(xas, &mapping->i_pages, start);
1189 	struct folio *folio;
1190 	swp_entry_t entry;
1191 
1192 	rcu_read_lock();
1193 	xas_for_each(&xas, folio, ULONG_MAX) {
1194 		if (xas_retry(&xas, folio))
1195 			continue;
1196 
1197 		if (!xa_is_value(folio))
1198 			continue;
1199 
1200 		entry = radix_to_swp_entry(folio);
1201 		/*
1202 		 * swapin error entries can be found in the mapping. But they're
1203 		 * deliberately ignored here as we've done everything we can do.
1204 		 */
1205 		if (swp_type(entry) != type)
1206 			continue;
1207 
1208 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1209 		if (!folio_batch_add(fbatch, folio))
1210 			break;
1211 
1212 		if (need_resched()) {
1213 			xas_pause(&xas);
1214 			cond_resched_rcu();
1215 		}
1216 	}
1217 	rcu_read_unlock();
1218 
1219 	return xas.xa_index;
1220 }
1221 
1222 /*
1223  * Move the swapped pages for an inode to page cache. Returns the count
1224  * of pages swapped in, or the error in case of failure.
1225  */
1226 static int shmem_unuse_swap_entries(struct inode *inode,
1227 		struct folio_batch *fbatch, pgoff_t *indices)
1228 {
1229 	int i = 0;
1230 	int ret = 0;
1231 	int error = 0;
1232 	struct address_space *mapping = inode->i_mapping;
1233 
1234 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1235 		struct folio *folio = fbatch->folios[i];
1236 
1237 		if (!xa_is_value(folio))
1238 			continue;
1239 		error = shmem_swapin_folio(inode, indices[i],
1240 					  &folio, SGP_CACHE,
1241 					  mapping_gfp_mask(mapping),
1242 					  NULL, NULL);
1243 		if (error == 0) {
1244 			folio_unlock(folio);
1245 			folio_put(folio);
1246 			ret++;
1247 		}
1248 		if (error == -ENOMEM)
1249 			break;
1250 		error = 0;
1251 	}
1252 	return error ? error : ret;
1253 }
1254 
1255 /*
1256  * If swap found in inode, free it and move page from swapcache to filecache.
1257  */
1258 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1259 {
1260 	struct address_space *mapping = inode->i_mapping;
1261 	pgoff_t start = 0;
1262 	struct folio_batch fbatch;
1263 	pgoff_t indices[PAGEVEC_SIZE];
1264 	int ret = 0;
1265 
1266 	do {
1267 		folio_batch_init(&fbatch);
1268 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1269 		if (folio_batch_count(&fbatch) == 0) {
1270 			ret = 0;
1271 			break;
1272 		}
1273 
1274 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1275 		if (ret < 0)
1276 			break;
1277 
1278 		start = indices[folio_batch_count(&fbatch) - 1];
1279 	} while (true);
1280 
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Read all the shared memory data that resides in the swap
1286  * device 'type' back into memory, so the swap device can be
1287  * unused.
1288  */
1289 int shmem_unuse(unsigned int type)
1290 {
1291 	struct shmem_inode_info *info, *next;
1292 	int error = 0;
1293 
1294 	if (list_empty(&shmem_swaplist))
1295 		return 0;
1296 
1297 	mutex_lock(&shmem_swaplist_mutex);
1298 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 		if (!info->swapped) {
1300 			list_del_init(&info->swaplist);
1301 			continue;
1302 		}
1303 		/*
1304 		 * Drop the swaplist mutex while searching the inode for swap;
1305 		 * but before doing so, make sure shmem_evict_inode() will not
1306 		 * remove placeholder inode from swaplist, nor let it be freed
1307 		 * (igrab() would protect from unlink, but not from unmount).
1308 		 */
1309 		atomic_inc(&info->stop_eviction);
1310 		mutex_unlock(&shmem_swaplist_mutex);
1311 
1312 		error = shmem_unuse_inode(&info->vfs_inode, type);
1313 		cond_resched();
1314 
1315 		mutex_lock(&shmem_swaplist_mutex);
1316 		next = list_next_entry(info, swaplist);
1317 		if (!info->swapped)
1318 			list_del_init(&info->swaplist);
1319 		if (atomic_dec_and_test(&info->stop_eviction))
1320 			wake_up_var(&info->stop_eviction);
1321 		if (error)
1322 			break;
1323 	}
1324 	mutex_unlock(&shmem_swaplist_mutex);
1325 
1326 	return error;
1327 }
1328 
1329 /*
1330  * Move the page from the page cache to the swap cache.
1331  */
1332 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1333 {
1334 	struct folio *folio = page_folio(page);
1335 	struct shmem_inode_info *info;
1336 	struct address_space *mapping;
1337 	struct inode *inode;
1338 	swp_entry_t swap;
1339 	pgoff_t index;
1340 
1341 	/*
1342 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1343 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1344 	 * and its shmem_writeback() needs them to be split when swapping.
1345 	 */
1346 	if (folio_test_large(folio)) {
1347 		/* Ensure the subpages are still dirty */
1348 		folio_test_set_dirty(folio);
1349 		if (split_huge_page(page) < 0)
1350 			goto redirty;
1351 		folio = page_folio(page);
1352 		folio_clear_dirty(folio);
1353 	}
1354 
1355 	BUG_ON(!folio_test_locked(folio));
1356 	mapping = folio->mapping;
1357 	index = folio->index;
1358 	inode = mapping->host;
1359 	info = SHMEM_I(inode);
1360 	if (info->flags & VM_LOCKED)
1361 		goto redirty;
1362 	if (!total_swap_pages)
1363 		goto redirty;
1364 
1365 	/*
1366 	 * Our capabilities prevent regular writeback or sync from ever calling
1367 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1368 	 * its underlying filesystem, in which case tmpfs should write out to
1369 	 * swap only in response to memory pressure, and not for the writeback
1370 	 * threads or sync.
1371 	 */
1372 	if (!wbc->for_reclaim) {
1373 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1374 		goto redirty;
1375 	}
1376 
1377 	/*
1378 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1379 	 * value into swapfile.c, the only way we can correctly account for a
1380 	 * fallocated folio arriving here is now to initialize it and write it.
1381 	 *
1382 	 * That's okay for a folio already fallocated earlier, but if we have
1383 	 * not yet completed the fallocation, then (a) we want to keep track
1384 	 * of this folio in case we have to undo it, and (b) it may not be a
1385 	 * good idea to continue anyway, once we're pushing into swap.  So
1386 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1387 	 */
1388 	if (!folio_test_uptodate(folio)) {
1389 		if (inode->i_private) {
1390 			struct shmem_falloc *shmem_falloc;
1391 			spin_lock(&inode->i_lock);
1392 			shmem_falloc = inode->i_private;
1393 			if (shmem_falloc &&
1394 			    !shmem_falloc->waitq &&
1395 			    index >= shmem_falloc->start &&
1396 			    index < shmem_falloc->next)
1397 				shmem_falloc->nr_unswapped++;
1398 			else
1399 				shmem_falloc = NULL;
1400 			spin_unlock(&inode->i_lock);
1401 			if (shmem_falloc)
1402 				goto redirty;
1403 		}
1404 		folio_zero_range(folio, 0, folio_size(folio));
1405 		flush_dcache_folio(folio);
1406 		folio_mark_uptodate(folio);
1407 	}
1408 
1409 	swap = folio_alloc_swap(folio);
1410 	if (!swap.val)
1411 		goto redirty;
1412 
1413 	/*
1414 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1415 	 * if it's not already there.  Do it now before the folio is
1416 	 * moved to swap cache, when its pagelock no longer protects
1417 	 * the inode from eviction.  But don't unlock the mutex until
1418 	 * we've incremented swapped, because shmem_unuse_inode() will
1419 	 * prune a !swapped inode from the swaplist under this mutex.
1420 	 */
1421 	mutex_lock(&shmem_swaplist_mutex);
1422 	if (list_empty(&info->swaplist))
1423 		list_add(&info->swaplist, &shmem_swaplist);
1424 
1425 	if (add_to_swap_cache(folio, swap,
1426 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1427 			NULL) == 0) {
1428 		spin_lock_irq(&info->lock);
1429 		shmem_recalc_inode(inode);
1430 		info->swapped++;
1431 		spin_unlock_irq(&info->lock);
1432 
1433 		swap_shmem_alloc(swap);
1434 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1435 
1436 		mutex_unlock(&shmem_swaplist_mutex);
1437 		BUG_ON(folio_mapped(folio));
1438 		swap_writepage(&folio->page, wbc);
1439 		return 0;
1440 	}
1441 
1442 	mutex_unlock(&shmem_swaplist_mutex);
1443 	put_swap_folio(folio, swap);
1444 redirty:
1445 	folio_mark_dirty(folio);
1446 	if (wbc->for_reclaim)
1447 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1448 	folio_unlock(folio);
1449 	return 0;
1450 }
1451 
1452 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1453 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1454 {
1455 	char buffer[64];
1456 
1457 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1458 		return;		/* show nothing */
1459 
1460 	mpol_to_str(buffer, sizeof(buffer), mpol);
1461 
1462 	seq_printf(seq, ",mpol=%s", buffer);
1463 }
1464 
1465 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1466 {
1467 	struct mempolicy *mpol = NULL;
1468 	if (sbinfo->mpol) {
1469 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1470 		mpol = sbinfo->mpol;
1471 		mpol_get(mpol);
1472 		raw_spin_unlock(&sbinfo->stat_lock);
1473 	}
1474 	return mpol;
1475 }
1476 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1477 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1478 {
1479 }
1480 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1481 {
1482 	return NULL;
1483 }
1484 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1485 #ifndef CONFIG_NUMA
1486 #define vm_policy vm_private_data
1487 #endif
1488 
1489 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1490 		struct shmem_inode_info *info, pgoff_t index)
1491 {
1492 	/* Create a pseudo vma that just contains the policy */
1493 	vma_init(vma, NULL);
1494 	/* Bias interleave by inode number to distribute better across nodes */
1495 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1496 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1497 }
1498 
1499 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1500 {
1501 	/* Drop reference taken by mpol_shared_policy_lookup() */
1502 	mpol_cond_put(vma->vm_policy);
1503 }
1504 
1505 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1506 			struct shmem_inode_info *info, pgoff_t index)
1507 {
1508 	struct vm_area_struct pvma;
1509 	struct page *page;
1510 	struct vm_fault vmf = {
1511 		.vma = &pvma,
1512 	};
1513 
1514 	shmem_pseudo_vma_init(&pvma, info, index);
1515 	page = swap_cluster_readahead(swap, gfp, &vmf);
1516 	shmem_pseudo_vma_destroy(&pvma);
1517 
1518 	if (!page)
1519 		return NULL;
1520 	return page_folio(page);
1521 }
1522 
1523 /*
1524  * Make sure huge_gfp is always more limited than limit_gfp.
1525  * Some of the flags set permissions, while others set limitations.
1526  */
1527 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1528 {
1529 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1530 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1531 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1532 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1533 
1534 	/* Allow allocations only from the originally specified zones. */
1535 	result |= zoneflags;
1536 
1537 	/*
1538 	 * Minimize the result gfp by taking the union with the deny flags,
1539 	 * and the intersection of the allow flags.
1540 	 */
1541 	result |= (limit_gfp & denyflags);
1542 	result |= (huge_gfp & limit_gfp) & allowflags;
1543 
1544 	return result;
1545 }
1546 
1547 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1548 		struct shmem_inode_info *info, pgoff_t index)
1549 {
1550 	struct vm_area_struct pvma;
1551 	struct address_space *mapping = info->vfs_inode.i_mapping;
1552 	pgoff_t hindex;
1553 	struct folio *folio;
1554 
1555 	hindex = round_down(index, HPAGE_PMD_NR);
1556 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1557 								XA_PRESENT))
1558 		return NULL;
1559 
1560 	shmem_pseudo_vma_init(&pvma, info, hindex);
1561 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1562 	shmem_pseudo_vma_destroy(&pvma);
1563 	if (!folio)
1564 		count_vm_event(THP_FILE_FALLBACK);
1565 	return folio;
1566 }
1567 
1568 static struct folio *shmem_alloc_folio(gfp_t gfp,
1569 			struct shmem_inode_info *info, pgoff_t index)
1570 {
1571 	struct vm_area_struct pvma;
1572 	struct folio *folio;
1573 
1574 	shmem_pseudo_vma_init(&pvma, info, index);
1575 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1576 	shmem_pseudo_vma_destroy(&pvma);
1577 
1578 	return folio;
1579 }
1580 
1581 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1582 		pgoff_t index, bool huge)
1583 {
1584 	struct shmem_inode_info *info = SHMEM_I(inode);
1585 	struct folio *folio;
1586 	int nr;
1587 	int err = -ENOSPC;
1588 
1589 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1590 		huge = false;
1591 	nr = huge ? HPAGE_PMD_NR : 1;
1592 
1593 	if (!shmem_inode_acct_block(inode, nr))
1594 		goto failed;
1595 
1596 	if (huge)
1597 		folio = shmem_alloc_hugefolio(gfp, info, index);
1598 	else
1599 		folio = shmem_alloc_folio(gfp, info, index);
1600 	if (folio) {
1601 		__folio_set_locked(folio);
1602 		__folio_set_swapbacked(folio);
1603 		return folio;
1604 	}
1605 
1606 	err = -ENOMEM;
1607 	shmem_inode_unacct_blocks(inode, nr);
1608 failed:
1609 	return ERR_PTR(err);
1610 }
1611 
1612 /*
1613  * When a page is moved from swapcache to shmem filecache (either by the
1614  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1615  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1616  * ignorance of the mapping it belongs to.  If that mapping has special
1617  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1618  * we may need to copy to a suitable page before moving to filecache.
1619  *
1620  * In a future release, this may well be extended to respect cpuset and
1621  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1622  * but for now it is a simple matter of zone.
1623  */
1624 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1625 {
1626 	return folio_zonenum(folio) > gfp_zone(gfp);
1627 }
1628 
1629 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1630 				struct shmem_inode_info *info, pgoff_t index)
1631 {
1632 	struct folio *old, *new;
1633 	struct address_space *swap_mapping;
1634 	swp_entry_t entry;
1635 	pgoff_t swap_index;
1636 	int error;
1637 
1638 	old = *foliop;
1639 	entry = folio_swap_entry(old);
1640 	swap_index = swp_offset(entry);
1641 	swap_mapping = swap_address_space(entry);
1642 
1643 	/*
1644 	 * We have arrived here because our zones are constrained, so don't
1645 	 * limit chance of success by further cpuset and node constraints.
1646 	 */
1647 	gfp &= ~GFP_CONSTRAINT_MASK;
1648 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1649 	new = shmem_alloc_folio(gfp, info, index);
1650 	if (!new)
1651 		return -ENOMEM;
1652 
1653 	folio_get(new);
1654 	folio_copy(new, old);
1655 	flush_dcache_folio(new);
1656 
1657 	__folio_set_locked(new);
1658 	__folio_set_swapbacked(new);
1659 	folio_mark_uptodate(new);
1660 	folio_set_swap_entry(new, entry);
1661 	folio_set_swapcache(new);
1662 
1663 	/*
1664 	 * Our caller will very soon move newpage out of swapcache, but it's
1665 	 * a nice clean interface for us to replace oldpage by newpage there.
1666 	 */
1667 	xa_lock_irq(&swap_mapping->i_pages);
1668 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1669 	if (!error) {
1670 		mem_cgroup_migrate(old, new);
1671 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1672 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1673 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1674 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1675 	}
1676 	xa_unlock_irq(&swap_mapping->i_pages);
1677 
1678 	if (unlikely(error)) {
1679 		/*
1680 		 * Is this possible?  I think not, now that our callers check
1681 		 * both PageSwapCache and page_private after getting page lock;
1682 		 * but be defensive.  Reverse old to newpage for clear and free.
1683 		 */
1684 		old = new;
1685 	} else {
1686 		folio_add_lru(new);
1687 		*foliop = new;
1688 	}
1689 
1690 	folio_clear_swapcache(old);
1691 	old->private = NULL;
1692 
1693 	folio_unlock(old);
1694 	folio_put_refs(old, 2);
1695 	return error;
1696 }
1697 
1698 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1699 					 struct folio *folio, swp_entry_t swap)
1700 {
1701 	struct address_space *mapping = inode->i_mapping;
1702 	struct shmem_inode_info *info = SHMEM_I(inode);
1703 	swp_entry_t swapin_error;
1704 	void *old;
1705 
1706 	swapin_error = make_swapin_error_entry();
1707 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1708 			     swp_to_radix_entry(swap),
1709 			     swp_to_radix_entry(swapin_error), 0);
1710 	if (old != swp_to_radix_entry(swap))
1711 		return;
1712 
1713 	folio_wait_writeback(folio);
1714 	delete_from_swap_cache(folio);
1715 	spin_lock_irq(&info->lock);
1716 	/*
1717 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1718 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1719 	 * shmem_evict_inode.
1720 	 */
1721 	info->alloced--;
1722 	info->swapped--;
1723 	shmem_recalc_inode(inode);
1724 	spin_unlock_irq(&info->lock);
1725 	swap_free(swap);
1726 }
1727 
1728 /*
1729  * Swap in the folio pointed to by *foliop.
1730  * Caller has to make sure that *foliop contains a valid swapped folio.
1731  * Returns 0 and the folio in foliop if success. On failure, returns the
1732  * error code and NULL in *foliop.
1733  */
1734 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1735 			     struct folio **foliop, enum sgp_type sgp,
1736 			     gfp_t gfp, struct vm_area_struct *vma,
1737 			     vm_fault_t *fault_type)
1738 {
1739 	struct address_space *mapping = inode->i_mapping;
1740 	struct shmem_inode_info *info = SHMEM_I(inode);
1741 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1742 	struct swap_info_struct *si;
1743 	struct folio *folio = NULL;
1744 	swp_entry_t swap;
1745 	int error;
1746 
1747 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1748 	swap = radix_to_swp_entry(*foliop);
1749 	*foliop = NULL;
1750 
1751 	if (is_swapin_error_entry(swap))
1752 		return -EIO;
1753 
1754 	si = get_swap_device(swap);
1755 	if (!si) {
1756 		if (!shmem_confirm_swap(mapping, index, swap))
1757 			return -EEXIST;
1758 		else
1759 			return -EINVAL;
1760 	}
1761 
1762 	/* Look it up and read it in.. */
1763 	folio = swap_cache_get_folio(swap, NULL, 0);
1764 	if (!folio) {
1765 		/* Or update major stats only when swapin succeeds?? */
1766 		if (fault_type) {
1767 			*fault_type |= VM_FAULT_MAJOR;
1768 			count_vm_event(PGMAJFAULT);
1769 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1770 		}
1771 		/* Here we actually start the io */
1772 		folio = shmem_swapin(swap, gfp, info, index);
1773 		if (!folio) {
1774 			error = -ENOMEM;
1775 			goto failed;
1776 		}
1777 	}
1778 
1779 	/* We have to do this with folio locked to prevent races */
1780 	folio_lock(folio);
1781 	if (!folio_test_swapcache(folio) ||
1782 	    folio_swap_entry(folio).val != swap.val ||
1783 	    !shmem_confirm_swap(mapping, index, swap)) {
1784 		error = -EEXIST;
1785 		goto unlock;
1786 	}
1787 	if (!folio_test_uptodate(folio)) {
1788 		error = -EIO;
1789 		goto failed;
1790 	}
1791 	folio_wait_writeback(folio);
1792 
1793 	/*
1794 	 * Some architectures may have to restore extra metadata to the
1795 	 * folio after reading from swap.
1796 	 */
1797 	arch_swap_restore(swap, folio);
1798 
1799 	if (shmem_should_replace_folio(folio, gfp)) {
1800 		error = shmem_replace_folio(&folio, gfp, info, index);
1801 		if (error)
1802 			goto failed;
1803 	}
1804 
1805 	error = shmem_add_to_page_cache(folio, mapping, index,
1806 					swp_to_radix_entry(swap), gfp,
1807 					charge_mm);
1808 	if (error)
1809 		goto failed;
1810 
1811 	spin_lock_irq(&info->lock);
1812 	info->swapped--;
1813 	shmem_recalc_inode(inode);
1814 	spin_unlock_irq(&info->lock);
1815 
1816 	if (sgp == SGP_WRITE)
1817 		folio_mark_accessed(folio);
1818 
1819 	delete_from_swap_cache(folio);
1820 	folio_mark_dirty(folio);
1821 	swap_free(swap);
1822 	put_swap_device(si);
1823 
1824 	*foliop = folio;
1825 	return 0;
1826 failed:
1827 	if (!shmem_confirm_swap(mapping, index, swap))
1828 		error = -EEXIST;
1829 	if (error == -EIO)
1830 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1831 unlock:
1832 	if (folio) {
1833 		folio_unlock(folio);
1834 		folio_put(folio);
1835 	}
1836 	put_swap_device(si);
1837 
1838 	return error;
1839 }
1840 
1841 /*
1842  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1843  *
1844  * If we allocate a new one we do not mark it dirty. That's up to the
1845  * vm. If we swap it in we mark it dirty since we also free the swap
1846  * entry since a page cannot live in both the swap and page cache.
1847  *
1848  * vma, vmf, and fault_type are only supplied by shmem_fault:
1849  * otherwise they are NULL.
1850  */
1851 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1852 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1853 		struct vm_area_struct *vma, struct vm_fault *vmf,
1854 		vm_fault_t *fault_type)
1855 {
1856 	struct address_space *mapping = inode->i_mapping;
1857 	struct shmem_inode_info *info = SHMEM_I(inode);
1858 	struct shmem_sb_info *sbinfo;
1859 	struct mm_struct *charge_mm;
1860 	struct folio *folio;
1861 	pgoff_t hindex;
1862 	gfp_t huge_gfp;
1863 	int error;
1864 	int once = 0;
1865 	int alloced = 0;
1866 
1867 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1868 		return -EFBIG;
1869 repeat:
1870 	if (sgp <= SGP_CACHE &&
1871 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1872 		return -EINVAL;
1873 	}
1874 
1875 	sbinfo = SHMEM_SB(inode->i_sb);
1876 	charge_mm = vma ? vma->vm_mm : NULL;
1877 
1878 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1879 	if (folio && vma && userfaultfd_minor(vma)) {
1880 		if (!xa_is_value(folio)) {
1881 			folio_unlock(folio);
1882 			folio_put(folio);
1883 		}
1884 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1885 		return 0;
1886 	}
1887 
1888 	if (xa_is_value(folio)) {
1889 		error = shmem_swapin_folio(inode, index, &folio,
1890 					  sgp, gfp, vma, fault_type);
1891 		if (error == -EEXIST)
1892 			goto repeat;
1893 
1894 		*foliop = folio;
1895 		return error;
1896 	}
1897 
1898 	if (folio) {
1899 		if (sgp == SGP_WRITE)
1900 			folio_mark_accessed(folio);
1901 		if (folio_test_uptodate(folio))
1902 			goto out;
1903 		/* fallocated folio */
1904 		if (sgp != SGP_READ)
1905 			goto clear;
1906 		folio_unlock(folio);
1907 		folio_put(folio);
1908 	}
1909 
1910 	/*
1911 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1912 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1913 	 */
1914 	*foliop = NULL;
1915 	if (sgp == SGP_READ)
1916 		return 0;
1917 	if (sgp == SGP_NOALLOC)
1918 		return -ENOENT;
1919 
1920 	/*
1921 	 * Fast cache lookup and swap lookup did not find it: allocate.
1922 	 */
1923 
1924 	if (vma && userfaultfd_missing(vma)) {
1925 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1926 		return 0;
1927 	}
1928 
1929 	if (!shmem_is_huge(vma, inode, index, false))
1930 		goto alloc_nohuge;
1931 
1932 	huge_gfp = vma_thp_gfp_mask(vma);
1933 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1934 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1935 	if (IS_ERR(folio)) {
1936 alloc_nohuge:
1937 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1938 	}
1939 	if (IS_ERR(folio)) {
1940 		int retry = 5;
1941 
1942 		error = PTR_ERR(folio);
1943 		folio = NULL;
1944 		if (error != -ENOSPC)
1945 			goto unlock;
1946 		/*
1947 		 * Try to reclaim some space by splitting a large folio
1948 		 * beyond i_size on the filesystem.
1949 		 */
1950 		while (retry--) {
1951 			int ret;
1952 
1953 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1954 			if (ret == SHRINK_STOP)
1955 				break;
1956 			if (ret)
1957 				goto alloc_nohuge;
1958 		}
1959 		goto unlock;
1960 	}
1961 
1962 	hindex = round_down(index, folio_nr_pages(folio));
1963 
1964 	if (sgp == SGP_WRITE)
1965 		__folio_set_referenced(folio);
1966 
1967 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1968 					NULL, gfp & GFP_RECLAIM_MASK,
1969 					charge_mm);
1970 	if (error)
1971 		goto unacct;
1972 	folio_add_lru(folio);
1973 
1974 	spin_lock_irq(&info->lock);
1975 	info->alloced += folio_nr_pages(folio);
1976 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1977 	shmem_recalc_inode(inode);
1978 	spin_unlock_irq(&info->lock);
1979 	alloced = true;
1980 
1981 	if (folio_test_pmd_mappable(folio) &&
1982 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1983 					folio_next_index(folio) - 1) {
1984 		/*
1985 		 * Part of the large folio is beyond i_size: subject
1986 		 * to shrink under memory pressure.
1987 		 */
1988 		spin_lock(&sbinfo->shrinklist_lock);
1989 		/*
1990 		 * _careful to defend against unlocked access to
1991 		 * ->shrink_list in shmem_unused_huge_shrink()
1992 		 */
1993 		if (list_empty_careful(&info->shrinklist)) {
1994 			list_add_tail(&info->shrinklist,
1995 				      &sbinfo->shrinklist);
1996 			sbinfo->shrinklist_len++;
1997 		}
1998 		spin_unlock(&sbinfo->shrinklist_lock);
1999 	}
2000 
2001 	/*
2002 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2003 	 */
2004 	if (sgp == SGP_FALLOC)
2005 		sgp = SGP_WRITE;
2006 clear:
2007 	/*
2008 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2009 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2010 	 * it now, lest undo on failure cancel our earlier guarantee.
2011 	 */
2012 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2013 		long i, n = folio_nr_pages(folio);
2014 
2015 		for (i = 0; i < n; i++)
2016 			clear_highpage(folio_page(folio, i));
2017 		flush_dcache_folio(folio);
2018 		folio_mark_uptodate(folio);
2019 	}
2020 
2021 	/* Perhaps the file has been truncated since we checked */
2022 	if (sgp <= SGP_CACHE &&
2023 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2024 		if (alloced) {
2025 			folio_clear_dirty(folio);
2026 			filemap_remove_folio(folio);
2027 			spin_lock_irq(&info->lock);
2028 			shmem_recalc_inode(inode);
2029 			spin_unlock_irq(&info->lock);
2030 		}
2031 		error = -EINVAL;
2032 		goto unlock;
2033 	}
2034 out:
2035 	*foliop = folio;
2036 	return 0;
2037 
2038 	/*
2039 	 * Error recovery.
2040 	 */
2041 unacct:
2042 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2043 
2044 	if (folio_test_large(folio)) {
2045 		folio_unlock(folio);
2046 		folio_put(folio);
2047 		goto alloc_nohuge;
2048 	}
2049 unlock:
2050 	if (folio) {
2051 		folio_unlock(folio);
2052 		folio_put(folio);
2053 	}
2054 	if (error == -ENOSPC && !once++) {
2055 		spin_lock_irq(&info->lock);
2056 		shmem_recalc_inode(inode);
2057 		spin_unlock_irq(&info->lock);
2058 		goto repeat;
2059 	}
2060 	if (error == -EEXIST)
2061 		goto repeat;
2062 	return error;
2063 }
2064 
2065 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2066 		enum sgp_type sgp)
2067 {
2068 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2069 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2070 }
2071 
2072 /*
2073  * This is like autoremove_wake_function, but it removes the wait queue
2074  * entry unconditionally - even if something else had already woken the
2075  * target.
2076  */
2077 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2078 {
2079 	int ret = default_wake_function(wait, mode, sync, key);
2080 	list_del_init(&wait->entry);
2081 	return ret;
2082 }
2083 
2084 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2085 {
2086 	struct vm_area_struct *vma = vmf->vma;
2087 	struct inode *inode = file_inode(vma->vm_file);
2088 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2089 	struct folio *folio = NULL;
2090 	int err;
2091 	vm_fault_t ret = VM_FAULT_LOCKED;
2092 
2093 	/*
2094 	 * Trinity finds that probing a hole which tmpfs is punching can
2095 	 * prevent the hole-punch from ever completing: which in turn
2096 	 * locks writers out with its hold on i_rwsem.  So refrain from
2097 	 * faulting pages into the hole while it's being punched.  Although
2098 	 * shmem_undo_range() does remove the additions, it may be unable to
2099 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2100 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2101 	 *
2102 	 * It does not matter if we sometimes reach this check just before the
2103 	 * hole-punch begins, so that one fault then races with the punch:
2104 	 * we just need to make racing faults a rare case.
2105 	 *
2106 	 * The implementation below would be much simpler if we just used a
2107 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2108 	 * and bloating every shmem inode for this unlikely case would be sad.
2109 	 */
2110 	if (unlikely(inode->i_private)) {
2111 		struct shmem_falloc *shmem_falloc;
2112 
2113 		spin_lock(&inode->i_lock);
2114 		shmem_falloc = inode->i_private;
2115 		if (shmem_falloc &&
2116 		    shmem_falloc->waitq &&
2117 		    vmf->pgoff >= shmem_falloc->start &&
2118 		    vmf->pgoff < shmem_falloc->next) {
2119 			struct file *fpin;
2120 			wait_queue_head_t *shmem_falloc_waitq;
2121 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2122 
2123 			ret = VM_FAULT_NOPAGE;
2124 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2125 			if (fpin)
2126 				ret = VM_FAULT_RETRY;
2127 
2128 			shmem_falloc_waitq = shmem_falloc->waitq;
2129 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2130 					TASK_UNINTERRUPTIBLE);
2131 			spin_unlock(&inode->i_lock);
2132 			schedule();
2133 
2134 			/*
2135 			 * shmem_falloc_waitq points into the shmem_fallocate()
2136 			 * stack of the hole-punching task: shmem_falloc_waitq
2137 			 * is usually invalid by the time we reach here, but
2138 			 * finish_wait() does not dereference it in that case;
2139 			 * though i_lock needed lest racing with wake_up_all().
2140 			 */
2141 			spin_lock(&inode->i_lock);
2142 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2143 			spin_unlock(&inode->i_lock);
2144 
2145 			if (fpin)
2146 				fput(fpin);
2147 			return ret;
2148 		}
2149 		spin_unlock(&inode->i_lock);
2150 	}
2151 
2152 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2153 				  gfp, vma, vmf, &ret);
2154 	if (err)
2155 		return vmf_error(err);
2156 	if (folio)
2157 		vmf->page = folio_file_page(folio, vmf->pgoff);
2158 	return ret;
2159 }
2160 
2161 unsigned long shmem_get_unmapped_area(struct file *file,
2162 				      unsigned long uaddr, unsigned long len,
2163 				      unsigned long pgoff, unsigned long flags)
2164 {
2165 	unsigned long (*get_area)(struct file *,
2166 		unsigned long, unsigned long, unsigned long, unsigned long);
2167 	unsigned long addr;
2168 	unsigned long offset;
2169 	unsigned long inflated_len;
2170 	unsigned long inflated_addr;
2171 	unsigned long inflated_offset;
2172 
2173 	if (len > TASK_SIZE)
2174 		return -ENOMEM;
2175 
2176 	get_area = current->mm->get_unmapped_area;
2177 	addr = get_area(file, uaddr, len, pgoff, flags);
2178 
2179 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2180 		return addr;
2181 	if (IS_ERR_VALUE(addr))
2182 		return addr;
2183 	if (addr & ~PAGE_MASK)
2184 		return addr;
2185 	if (addr > TASK_SIZE - len)
2186 		return addr;
2187 
2188 	if (shmem_huge == SHMEM_HUGE_DENY)
2189 		return addr;
2190 	if (len < HPAGE_PMD_SIZE)
2191 		return addr;
2192 	if (flags & MAP_FIXED)
2193 		return addr;
2194 	/*
2195 	 * Our priority is to support MAP_SHARED mapped hugely;
2196 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2197 	 * But if caller specified an address hint and we allocated area there
2198 	 * successfully, respect that as before.
2199 	 */
2200 	if (uaddr == addr)
2201 		return addr;
2202 
2203 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2204 		struct super_block *sb;
2205 
2206 		if (file) {
2207 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2208 			sb = file_inode(file)->i_sb;
2209 		} else {
2210 			/*
2211 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2212 			 * for "/dev/zero", to create a shared anonymous object.
2213 			 */
2214 			if (IS_ERR(shm_mnt))
2215 				return addr;
2216 			sb = shm_mnt->mnt_sb;
2217 		}
2218 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2219 			return addr;
2220 	}
2221 
2222 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2223 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2224 		return addr;
2225 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2226 		return addr;
2227 
2228 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2229 	if (inflated_len > TASK_SIZE)
2230 		return addr;
2231 	if (inflated_len < len)
2232 		return addr;
2233 
2234 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2235 	if (IS_ERR_VALUE(inflated_addr))
2236 		return addr;
2237 	if (inflated_addr & ~PAGE_MASK)
2238 		return addr;
2239 
2240 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2241 	inflated_addr += offset - inflated_offset;
2242 	if (inflated_offset > offset)
2243 		inflated_addr += HPAGE_PMD_SIZE;
2244 
2245 	if (inflated_addr > TASK_SIZE - len)
2246 		return addr;
2247 	return inflated_addr;
2248 }
2249 
2250 #ifdef CONFIG_NUMA
2251 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2252 {
2253 	struct inode *inode = file_inode(vma->vm_file);
2254 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2255 }
2256 
2257 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2258 					  unsigned long addr)
2259 {
2260 	struct inode *inode = file_inode(vma->vm_file);
2261 	pgoff_t index;
2262 
2263 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2264 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2265 }
2266 #endif
2267 
2268 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2269 {
2270 	struct inode *inode = file_inode(file);
2271 	struct shmem_inode_info *info = SHMEM_I(inode);
2272 	int retval = -ENOMEM;
2273 
2274 	/*
2275 	 * What serializes the accesses to info->flags?
2276 	 * ipc_lock_object() when called from shmctl_do_lock(),
2277 	 * no serialization needed when called from shm_destroy().
2278 	 */
2279 	if (lock && !(info->flags & VM_LOCKED)) {
2280 		if (!user_shm_lock(inode->i_size, ucounts))
2281 			goto out_nomem;
2282 		info->flags |= VM_LOCKED;
2283 		mapping_set_unevictable(file->f_mapping);
2284 	}
2285 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2286 		user_shm_unlock(inode->i_size, ucounts);
2287 		info->flags &= ~VM_LOCKED;
2288 		mapping_clear_unevictable(file->f_mapping);
2289 	}
2290 	retval = 0;
2291 
2292 out_nomem:
2293 	return retval;
2294 }
2295 
2296 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2297 {
2298 	struct inode *inode = file_inode(file);
2299 	struct shmem_inode_info *info = SHMEM_I(inode);
2300 	int ret;
2301 
2302 	ret = seal_check_future_write(info->seals, vma);
2303 	if (ret)
2304 		return ret;
2305 
2306 	/* arm64 - allow memory tagging on RAM-based files */
2307 	vma->vm_flags |= VM_MTE_ALLOWED;
2308 
2309 	file_accessed(file);
2310 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2311 	if (inode->i_nlink)
2312 		vma->vm_ops = &shmem_vm_ops;
2313 	else
2314 		vma->vm_ops = &shmem_anon_vm_ops;
2315 	return 0;
2316 }
2317 
2318 #ifdef CONFIG_TMPFS_XATTR
2319 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2320 
2321 /*
2322  * chattr's fsflags are unrelated to extended attributes,
2323  * but tmpfs has chosen to enable them under the same config option.
2324  */
2325 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2326 {
2327 	unsigned int i_flags = 0;
2328 
2329 	if (fsflags & FS_NOATIME_FL)
2330 		i_flags |= S_NOATIME;
2331 	if (fsflags & FS_APPEND_FL)
2332 		i_flags |= S_APPEND;
2333 	if (fsflags & FS_IMMUTABLE_FL)
2334 		i_flags |= S_IMMUTABLE;
2335 	/*
2336 	 * But FS_NODUMP_FL does not require any action in i_flags.
2337 	 */
2338 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2339 }
2340 #else
2341 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2342 {
2343 }
2344 #define shmem_initxattrs NULL
2345 #endif
2346 
2347 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2348 				     umode_t mode, dev_t dev, unsigned long flags)
2349 {
2350 	struct inode *inode;
2351 	struct shmem_inode_info *info;
2352 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2353 	ino_t ino;
2354 
2355 	if (shmem_reserve_inode(sb, &ino))
2356 		return NULL;
2357 
2358 	inode = new_inode(sb);
2359 	if (inode) {
2360 		inode->i_ino = ino;
2361 		inode_init_owner(&init_user_ns, inode, dir, mode);
2362 		inode->i_blocks = 0;
2363 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2364 		inode->i_generation = get_random_u32();
2365 		info = SHMEM_I(inode);
2366 		memset(info, 0, (char *)inode - (char *)info);
2367 		spin_lock_init(&info->lock);
2368 		atomic_set(&info->stop_eviction, 0);
2369 		info->seals = F_SEAL_SEAL;
2370 		info->flags = flags & VM_NORESERVE;
2371 		info->i_crtime = inode->i_mtime;
2372 		info->fsflags = (dir == NULL) ? 0 :
2373 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2374 		if (info->fsflags)
2375 			shmem_set_inode_flags(inode, info->fsflags);
2376 		INIT_LIST_HEAD(&info->shrinklist);
2377 		INIT_LIST_HEAD(&info->swaplist);
2378 		simple_xattrs_init(&info->xattrs);
2379 		cache_no_acl(inode);
2380 		mapping_set_large_folios(inode->i_mapping);
2381 
2382 		switch (mode & S_IFMT) {
2383 		default:
2384 			inode->i_op = &shmem_special_inode_operations;
2385 			init_special_inode(inode, mode, dev);
2386 			break;
2387 		case S_IFREG:
2388 			inode->i_mapping->a_ops = &shmem_aops;
2389 			inode->i_op = &shmem_inode_operations;
2390 			inode->i_fop = &shmem_file_operations;
2391 			mpol_shared_policy_init(&info->policy,
2392 						 shmem_get_sbmpol(sbinfo));
2393 			break;
2394 		case S_IFDIR:
2395 			inc_nlink(inode);
2396 			/* Some things misbehave if size == 0 on a directory */
2397 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2398 			inode->i_op = &shmem_dir_inode_operations;
2399 			inode->i_fop = &simple_dir_operations;
2400 			break;
2401 		case S_IFLNK:
2402 			/*
2403 			 * Must not load anything in the rbtree,
2404 			 * mpol_free_shared_policy will not be called.
2405 			 */
2406 			mpol_shared_policy_init(&info->policy, NULL);
2407 			break;
2408 		}
2409 
2410 		lockdep_annotate_inode_mutex_key(inode);
2411 	} else
2412 		shmem_free_inode(sb);
2413 	return inode;
2414 }
2415 
2416 #ifdef CONFIG_USERFAULTFD
2417 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2418 			   pmd_t *dst_pmd,
2419 			   struct vm_area_struct *dst_vma,
2420 			   unsigned long dst_addr,
2421 			   unsigned long src_addr,
2422 			   bool zeropage, bool wp_copy,
2423 			   struct page **pagep)
2424 {
2425 	struct inode *inode = file_inode(dst_vma->vm_file);
2426 	struct shmem_inode_info *info = SHMEM_I(inode);
2427 	struct address_space *mapping = inode->i_mapping;
2428 	gfp_t gfp = mapping_gfp_mask(mapping);
2429 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2430 	void *page_kaddr;
2431 	struct folio *folio;
2432 	int ret;
2433 	pgoff_t max_off;
2434 
2435 	if (!shmem_inode_acct_block(inode, 1)) {
2436 		/*
2437 		 * We may have got a page, returned -ENOENT triggering a retry,
2438 		 * and now we find ourselves with -ENOMEM. Release the page, to
2439 		 * avoid a BUG_ON in our caller.
2440 		 */
2441 		if (unlikely(*pagep)) {
2442 			put_page(*pagep);
2443 			*pagep = NULL;
2444 		}
2445 		return -ENOMEM;
2446 	}
2447 
2448 	if (!*pagep) {
2449 		ret = -ENOMEM;
2450 		folio = shmem_alloc_folio(gfp, info, pgoff);
2451 		if (!folio)
2452 			goto out_unacct_blocks;
2453 
2454 		if (!zeropage) {	/* COPY */
2455 			page_kaddr = kmap_local_folio(folio, 0);
2456 			/*
2457 			 * The read mmap_lock is held here.  Despite the
2458 			 * mmap_lock being read recursive a deadlock is still
2459 			 * possible if a writer has taken a lock.  For example:
2460 			 *
2461 			 * process A thread 1 takes read lock on own mmap_lock
2462 			 * process A thread 2 calls mmap, blocks taking write lock
2463 			 * process B thread 1 takes page fault, read lock on own mmap lock
2464 			 * process B thread 2 calls mmap, blocks taking write lock
2465 			 * process A thread 1 blocks taking read lock on process B
2466 			 * process B thread 1 blocks taking read lock on process A
2467 			 *
2468 			 * Disable page faults to prevent potential deadlock
2469 			 * and retry the copy outside the mmap_lock.
2470 			 */
2471 			pagefault_disable();
2472 			ret = copy_from_user(page_kaddr,
2473 					     (const void __user *)src_addr,
2474 					     PAGE_SIZE);
2475 			pagefault_enable();
2476 			kunmap_local(page_kaddr);
2477 
2478 			/* fallback to copy_from_user outside mmap_lock */
2479 			if (unlikely(ret)) {
2480 				*pagep = &folio->page;
2481 				ret = -ENOENT;
2482 				/* don't free the page */
2483 				goto out_unacct_blocks;
2484 			}
2485 
2486 			flush_dcache_folio(folio);
2487 		} else {		/* ZEROPAGE */
2488 			clear_user_highpage(&folio->page, dst_addr);
2489 		}
2490 	} else {
2491 		folio = page_folio(*pagep);
2492 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2493 		*pagep = NULL;
2494 	}
2495 
2496 	VM_BUG_ON(folio_test_locked(folio));
2497 	VM_BUG_ON(folio_test_swapbacked(folio));
2498 	__folio_set_locked(folio);
2499 	__folio_set_swapbacked(folio);
2500 	__folio_mark_uptodate(folio);
2501 
2502 	ret = -EFAULT;
2503 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2504 	if (unlikely(pgoff >= max_off))
2505 		goto out_release;
2506 
2507 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2508 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2509 	if (ret)
2510 		goto out_release;
2511 
2512 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2513 				       &folio->page, true, wp_copy);
2514 	if (ret)
2515 		goto out_delete_from_cache;
2516 
2517 	spin_lock_irq(&info->lock);
2518 	info->alloced++;
2519 	inode->i_blocks += BLOCKS_PER_PAGE;
2520 	shmem_recalc_inode(inode);
2521 	spin_unlock_irq(&info->lock);
2522 
2523 	folio_unlock(folio);
2524 	return 0;
2525 out_delete_from_cache:
2526 	filemap_remove_folio(folio);
2527 out_release:
2528 	folio_unlock(folio);
2529 	folio_put(folio);
2530 out_unacct_blocks:
2531 	shmem_inode_unacct_blocks(inode, 1);
2532 	return ret;
2533 }
2534 #endif /* CONFIG_USERFAULTFD */
2535 
2536 #ifdef CONFIG_TMPFS
2537 static const struct inode_operations shmem_symlink_inode_operations;
2538 static const struct inode_operations shmem_short_symlink_operations;
2539 
2540 static int
2541 shmem_write_begin(struct file *file, struct address_space *mapping,
2542 			loff_t pos, unsigned len,
2543 			struct page **pagep, void **fsdata)
2544 {
2545 	struct inode *inode = mapping->host;
2546 	struct shmem_inode_info *info = SHMEM_I(inode);
2547 	pgoff_t index = pos >> PAGE_SHIFT;
2548 	struct folio *folio;
2549 	int ret = 0;
2550 
2551 	/* i_rwsem is held by caller */
2552 	if (unlikely(info->seals & (F_SEAL_GROW |
2553 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2554 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2555 			return -EPERM;
2556 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2557 			return -EPERM;
2558 	}
2559 
2560 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2561 
2562 	if (ret)
2563 		return ret;
2564 
2565 	*pagep = folio_file_page(folio, index);
2566 	if (PageHWPoison(*pagep)) {
2567 		folio_unlock(folio);
2568 		folio_put(folio);
2569 		*pagep = NULL;
2570 		return -EIO;
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 static int
2577 shmem_write_end(struct file *file, struct address_space *mapping,
2578 			loff_t pos, unsigned len, unsigned copied,
2579 			struct page *page, void *fsdata)
2580 {
2581 	struct inode *inode = mapping->host;
2582 
2583 	if (pos + copied > inode->i_size)
2584 		i_size_write(inode, pos + copied);
2585 
2586 	if (!PageUptodate(page)) {
2587 		struct page *head = compound_head(page);
2588 		if (PageTransCompound(page)) {
2589 			int i;
2590 
2591 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2592 				if (head + i == page)
2593 					continue;
2594 				clear_highpage(head + i);
2595 				flush_dcache_page(head + i);
2596 			}
2597 		}
2598 		if (copied < PAGE_SIZE) {
2599 			unsigned from = pos & (PAGE_SIZE - 1);
2600 			zero_user_segments(page, 0, from,
2601 					from + copied, PAGE_SIZE);
2602 		}
2603 		SetPageUptodate(head);
2604 	}
2605 	set_page_dirty(page);
2606 	unlock_page(page);
2607 	put_page(page);
2608 
2609 	return copied;
2610 }
2611 
2612 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2613 {
2614 	struct file *file = iocb->ki_filp;
2615 	struct inode *inode = file_inode(file);
2616 	struct address_space *mapping = inode->i_mapping;
2617 	pgoff_t index;
2618 	unsigned long offset;
2619 	int error = 0;
2620 	ssize_t retval = 0;
2621 	loff_t *ppos = &iocb->ki_pos;
2622 
2623 	index = *ppos >> PAGE_SHIFT;
2624 	offset = *ppos & ~PAGE_MASK;
2625 
2626 	for (;;) {
2627 		struct folio *folio = NULL;
2628 		struct page *page = NULL;
2629 		pgoff_t end_index;
2630 		unsigned long nr, ret;
2631 		loff_t i_size = i_size_read(inode);
2632 
2633 		end_index = i_size >> PAGE_SHIFT;
2634 		if (index > end_index)
2635 			break;
2636 		if (index == end_index) {
2637 			nr = i_size & ~PAGE_MASK;
2638 			if (nr <= offset)
2639 				break;
2640 		}
2641 
2642 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2643 		if (error) {
2644 			if (error == -EINVAL)
2645 				error = 0;
2646 			break;
2647 		}
2648 		if (folio) {
2649 			folio_unlock(folio);
2650 
2651 			page = folio_file_page(folio, index);
2652 			if (PageHWPoison(page)) {
2653 				folio_put(folio);
2654 				error = -EIO;
2655 				break;
2656 			}
2657 		}
2658 
2659 		/*
2660 		 * We must evaluate after, since reads (unlike writes)
2661 		 * are called without i_rwsem protection against truncate
2662 		 */
2663 		nr = PAGE_SIZE;
2664 		i_size = i_size_read(inode);
2665 		end_index = i_size >> PAGE_SHIFT;
2666 		if (index == end_index) {
2667 			nr = i_size & ~PAGE_MASK;
2668 			if (nr <= offset) {
2669 				if (folio)
2670 					folio_put(folio);
2671 				break;
2672 			}
2673 		}
2674 		nr -= offset;
2675 
2676 		if (folio) {
2677 			/*
2678 			 * If users can be writing to this page using arbitrary
2679 			 * virtual addresses, take care about potential aliasing
2680 			 * before reading the page on the kernel side.
2681 			 */
2682 			if (mapping_writably_mapped(mapping))
2683 				flush_dcache_page(page);
2684 			/*
2685 			 * Mark the page accessed if we read the beginning.
2686 			 */
2687 			if (!offset)
2688 				folio_mark_accessed(folio);
2689 			/*
2690 			 * Ok, we have the page, and it's up-to-date, so
2691 			 * now we can copy it to user space...
2692 			 */
2693 			ret = copy_page_to_iter(page, offset, nr, to);
2694 			folio_put(folio);
2695 
2696 		} else if (user_backed_iter(to)) {
2697 			/*
2698 			 * Copy to user tends to be so well optimized, but
2699 			 * clear_user() not so much, that it is noticeably
2700 			 * faster to copy the zero page instead of clearing.
2701 			 */
2702 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2703 		} else {
2704 			/*
2705 			 * But submitting the same page twice in a row to
2706 			 * splice() - or others? - can result in confusion:
2707 			 * so don't attempt that optimization on pipes etc.
2708 			 */
2709 			ret = iov_iter_zero(nr, to);
2710 		}
2711 
2712 		retval += ret;
2713 		offset += ret;
2714 		index += offset >> PAGE_SHIFT;
2715 		offset &= ~PAGE_MASK;
2716 
2717 		if (!iov_iter_count(to))
2718 			break;
2719 		if (ret < nr) {
2720 			error = -EFAULT;
2721 			break;
2722 		}
2723 		cond_resched();
2724 	}
2725 
2726 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2727 	file_accessed(file);
2728 	return retval ? retval : error;
2729 }
2730 
2731 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2732 {
2733 	struct address_space *mapping = file->f_mapping;
2734 	struct inode *inode = mapping->host;
2735 
2736 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2737 		return generic_file_llseek_size(file, offset, whence,
2738 					MAX_LFS_FILESIZE, i_size_read(inode));
2739 	if (offset < 0)
2740 		return -ENXIO;
2741 
2742 	inode_lock(inode);
2743 	/* We're holding i_rwsem so we can access i_size directly */
2744 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2745 	if (offset >= 0)
2746 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2747 	inode_unlock(inode);
2748 	return offset;
2749 }
2750 
2751 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2752 							 loff_t len)
2753 {
2754 	struct inode *inode = file_inode(file);
2755 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2756 	struct shmem_inode_info *info = SHMEM_I(inode);
2757 	struct shmem_falloc shmem_falloc;
2758 	pgoff_t start, index, end, undo_fallocend;
2759 	int error;
2760 
2761 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2762 		return -EOPNOTSUPP;
2763 
2764 	inode_lock(inode);
2765 
2766 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2767 		struct address_space *mapping = file->f_mapping;
2768 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2769 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2770 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2771 
2772 		/* protected by i_rwsem */
2773 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2774 			error = -EPERM;
2775 			goto out;
2776 		}
2777 
2778 		shmem_falloc.waitq = &shmem_falloc_waitq;
2779 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2780 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2781 		spin_lock(&inode->i_lock);
2782 		inode->i_private = &shmem_falloc;
2783 		spin_unlock(&inode->i_lock);
2784 
2785 		if ((u64)unmap_end > (u64)unmap_start)
2786 			unmap_mapping_range(mapping, unmap_start,
2787 					    1 + unmap_end - unmap_start, 0);
2788 		shmem_truncate_range(inode, offset, offset + len - 1);
2789 		/* No need to unmap again: hole-punching leaves COWed pages */
2790 
2791 		spin_lock(&inode->i_lock);
2792 		inode->i_private = NULL;
2793 		wake_up_all(&shmem_falloc_waitq);
2794 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2795 		spin_unlock(&inode->i_lock);
2796 		error = 0;
2797 		goto out;
2798 	}
2799 
2800 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2801 	error = inode_newsize_ok(inode, offset + len);
2802 	if (error)
2803 		goto out;
2804 
2805 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2806 		error = -EPERM;
2807 		goto out;
2808 	}
2809 
2810 	start = offset >> PAGE_SHIFT;
2811 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2812 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2813 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2814 		error = -ENOSPC;
2815 		goto out;
2816 	}
2817 
2818 	shmem_falloc.waitq = NULL;
2819 	shmem_falloc.start = start;
2820 	shmem_falloc.next  = start;
2821 	shmem_falloc.nr_falloced = 0;
2822 	shmem_falloc.nr_unswapped = 0;
2823 	spin_lock(&inode->i_lock);
2824 	inode->i_private = &shmem_falloc;
2825 	spin_unlock(&inode->i_lock);
2826 
2827 	/*
2828 	 * info->fallocend is only relevant when huge pages might be
2829 	 * involved: to prevent split_huge_page() freeing fallocated
2830 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2831 	 */
2832 	undo_fallocend = info->fallocend;
2833 	if (info->fallocend < end)
2834 		info->fallocend = end;
2835 
2836 	for (index = start; index < end; ) {
2837 		struct folio *folio;
2838 
2839 		/*
2840 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2841 		 * been interrupted because we are using up too much memory.
2842 		 */
2843 		if (signal_pending(current))
2844 			error = -EINTR;
2845 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2846 			error = -ENOMEM;
2847 		else
2848 			error = shmem_get_folio(inode, index, &folio,
2849 						SGP_FALLOC);
2850 		if (error) {
2851 			info->fallocend = undo_fallocend;
2852 			/* Remove the !uptodate folios we added */
2853 			if (index > start) {
2854 				shmem_undo_range(inode,
2855 				    (loff_t)start << PAGE_SHIFT,
2856 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2857 			}
2858 			goto undone;
2859 		}
2860 
2861 		/*
2862 		 * Here is a more important optimization than it appears:
2863 		 * a second SGP_FALLOC on the same large folio will clear it,
2864 		 * making it uptodate and un-undoable if we fail later.
2865 		 */
2866 		index = folio_next_index(folio);
2867 		/* Beware 32-bit wraparound */
2868 		if (!index)
2869 			index--;
2870 
2871 		/*
2872 		 * Inform shmem_writepage() how far we have reached.
2873 		 * No need for lock or barrier: we have the page lock.
2874 		 */
2875 		if (!folio_test_uptodate(folio))
2876 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2877 		shmem_falloc.next = index;
2878 
2879 		/*
2880 		 * If !uptodate, leave it that way so that freeable folios
2881 		 * can be recognized if we need to rollback on error later.
2882 		 * But mark it dirty so that memory pressure will swap rather
2883 		 * than free the folios we are allocating (and SGP_CACHE folios
2884 		 * might still be clean: we now need to mark those dirty too).
2885 		 */
2886 		folio_mark_dirty(folio);
2887 		folio_unlock(folio);
2888 		folio_put(folio);
2889 		cond_resched();
2890 	}
2891 
2892 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2893 		i_size_write(inode, offset + len);
2894 undone:
2895 	spin_lock(&inode->i_lock);
2896 	inode->i_private = NULL;
2897 	spin_unlock(&inode->i_lock);
2898 out:
2899 	if (!error)
2900 		file_modified(file);
2901 	inode_unlock(inode);
2902 	return error;
2903 }
2904 
2905 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2906 {
2907 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2908 
2909 	buf->f_type = TMPFS_MAGIC;
2910 	buf->f_bsize = PAGE_SIZE;
2911 	buf->f_namelen = NAME_MAX;
2912 	if (sbinfo->max_blocks) {
2913 		buf->f_blocks = sbinfo->max_blocks;
2914 		buf->f_bavail =
2915 		buf->f_bfree  = sbinfo->max_blocks -
2916 				percpu_counter_sum(&sbinfo->used_blocks);
2917 	}
2918 	if (sbinfo->max_inodes) {
2919 		buf->f_files = sbinfo->max_inodes;
2920 		buf->f_ffree = sbinfo->free_inodes;
2921 	}
2922 	/* else leave those fields 0 like simple_statfs */
2923 
2924 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2925 
2926 	return 0;
2927 }
2928 
2929 /*
2930  * File creation. Allocate an inode, and we're done..
2931  */
2932 static int
2933 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2934 	    struct dentry *dentry, umode_t mode, dev_t dev)
2935 {
2936 	struct inode *inode;
2937 	int error = -ENOSPC;
2938 
2939 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2940 	if (inode) {
2941 		error = simple_acl_create(dir, inode);
2942 		if (error)
2943 			goto out_iput;
2944 		error = security_inode_init_security(inode, dir,
2945 						     &dentry->d_name,
2946 						     shmem_initxattrs, NULL);
2947 		if (error && error != -EOPNOTSUPP)
2948 			goto out_iput;
2949 
2950 		error = 0;
2951 		dir->i_size += BOGO_DIRENT_SIZE;
2952 		dir->i_ctime = dir->i_mtime = current_time(dir);
2953 		inode_inc_iversion(dir);
2954 		d_instantiate(dentry, inode);
2955 		dget(dentry); /* Extra count - pin the dentry in core */
2956 	}
2957 	return error;
2958 out_iput:
2959 	iput(inode);
2960 	return error;
2961 }
2962 
2963 static int
2964 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2965 	      struct file *file, umode_t mode)
2966 {
2967 	struct inode *inode;
2968 	int error = -ENOSPC;
2969 
2970 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2971 	if (inode) {
2972 		error = security_inode_init_security(inode, dir,
2973 						     NULL,
2974 						     shmem_initxattrs, NULL);
2975 		if (error && error != -EOPNOTSUPP)
2976 			goto out_iput;
2977 		error = simple_acl_create(dir, inode);
2978 		if (error)
2979 			goto out_iput;
2980 		d_tmpfile(file, inode);
2981 	}
2982 	return finish_open_simple(file, error);
2983 out_iput:
2984 	iput(inode);
2985 	return error;
2986 }
2987 
2988 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2989 		       struct dentry *dentry, umode_t mode)
2990 {
2991 	int error;
2992 
2993 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2994 				 mode | S_IFDIR, 0)))
2995 		return error;
2996 	inc_nlink(dir);
2997 	return 0;
2998 }
2999 
3000 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
3001 			struct dentry *dentry, umode_t mode, bool excl)
3002 {
3003 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
3004 }
3005 
3006 /*
3007  * Link a file..
3008  */
3009 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3010 {
3011 	struct inode *inode = d_inode(old_dentry);
3012 	int ret = 0;
3013 
3014 	/*
3015 	 * No ordinary (disk based) filesystem counts links as inodes;
3016 	 * but each new link needs a new dentry, pinning lowmem, and
3017 	 * tmpfs dentries cannot be pruned until they are unlinked.
3018 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3019 	 * first link must skip that, to get the accounting right.
3020 	 */
3021 	if (inode->i_nlink) {
3022 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3023 		if (ret)
3024 			goto out;
3025 	}
3026 
3027 	dir->i_size += BOGO_DIRENT_SIZE;
3028 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3029 	inode_inc_iversion(dir);
3030 	inc_nlink(inode);
3031 	ihold(inode);	/* New dentry reference */
3032 	dget(dentry);		/* Extra pinning count for the created dentry */
3033 	d_instantiate(dentry, inode);
3034 out:
3035 	return ret;
3036 }
3037 
3038 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3039 {
3040 	struct inode *inode = d_inode(dentry);
3041 
3042 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3043 		shmem_free_inode(inode->i_sb);
3044 
3045 	dir->i_size -= BOGO_DIRENT_SIZE;
3046 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3047 	inode_inc_iversion(dir);
3048 	drop_nlink(inode);
3049 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3050 	return 0;
3051 }
3052 
3053 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3054 {
3055 	if (!simple_empty(dentry))
3056 		return -ENOTEMPTY;
3057 
3058 	drop_nlink(d_inode(dentry));
3059 	drop_nlink(dir);
3060 	return shmem_unlink(dir, dentry);
3061 }
3062 
3063 static int shmem_whiteout(struct user_namespace *mnt_userns,
3064 			  struct inode *old_dir, struct dentry *old_dentry)
3065 {
3066 	struct dentry *whiteout;
3067 	int error;
3068 
3069 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3070 	if (!whiteout)
3071 		return -ENOMEM;
3072 
3073 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3074 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3075 	dput(whiteout);
3076 	if (error)
3077 		return error;
3078 
3079 	/*
3080 	 * Cheat and hash the whiteout while the old dentry is still in
3081 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3082 	 *
3083 	 * d_lookup() will consistently find one of them at this point,
3084 	 * not sure which one, but that isn't even important.
3085 	 */
3086 	d_rehash(whiteout);
3087 	return 0;
3088 }
3089 
3090 /*
3091  * The VFS layer already does all the dentry stuff for rename,
3092  * we just have to decrement the usage count for the target if
3093  * it exists so that the VFS layer correctly free's it when it
3094  * gets overwritten.
3095  */
3096 static int shmem_rename2(struct user_namespace *mnt_userns,
3097 			 struct inode *old_dir, struct dentry *old_dentry,
3098 			 struct inode *new_dir, struct dentry *new_dentry,
3099 			 unsigned int flags)
3100 {
3101 	struct inode *inode = d_inode(old_dentry);
3102 	int they_are_dirs = S_ISDIR(inode->i_mode);
3103 
3104 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3105 		return -EINVAL;
3106 
3107 	if (flags & RENAME_EXCHANGE)
3108 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3109 
3110 	if (!simple_empty(new_dentry))
3111 		return -ENOTEMPTY;
3112 
3113 	if (flags & RENAME_WHITEOUT) {
3114 		int error;
3115 
3116 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3117 		if (error)
3118 			return error;
3119 	}
3120 
3121 	if (d_really_is_positive(new_dentry)) {
3122 		(void) shmem_unlink(new_dir, new_dentry);
3123 		if (they_are_dirs) {
3124 			drop_nlink(d_inode(new_dentry));
3125 			drop_nlink(old_dir);
3126 		}
3127 	} else if (they_are_dirs) {
3128 		drop_nlink(old_dir);
3129 		inc_nlink(new_dir);
3130 	}
3131 
3132 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3133 	new_dir->i_size += BOGO_DIRENT_SIZE;
3134 	old_dir->i_ctime = old_dir->i_mtime =
3135 	new_dir->i_ctime = new_dir->i_mtime =
3136 	inode->i_ctime = current_time(old_dir);
3137 	inode_inc_iversion(old_dir);
3138 	inode_inc_iversion(new_dir);
3139 	return 0;
3140 }
3141 
3142 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3143 			 struct dentry *dentry, const char *symname)
3144 {
3145 	int error;
3146 	int len;
3147 	struct inode *inode;
3148 	struct folio *folio;
3149 
3150 	len = strlen(symname) + 1;
3151 	if (len > PAGE_SIZE)
3152 		return -ENAMETOOLONG;
3153 
3154 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3155 				VM_NORESERVE);
3156 	if (!inode)
3157 		return -ENOSPC;
3158 
3159 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3160 					     shmem_initxattrs, NULL);
3161 	if (error && error != -EOPNOTSUPP) {
3162 		iput(inode);
3163 		return error;
3164 	}
3165 
3166 	inode->i_size = len-1;
3167 	if (len <= SHORT_SYMLINK_LEN) {
3168 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3169 		if (!inode->i_link) {
3170 			iput(inode);
3171 			return -ENOMEM;
3172 		}
3173 		inode->i_op = &shmem_short_symlink_operations;
3174 	} else {
3175 		inode_nohighmem(inode);
3176 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3177 		if (error) {
3178 			iput(inode);
3179 			return error;
3180 		}
3181 		inode->i_mapping->a_ops = &shmem_aops;
3182 		inode->i_op = &shmem_symlink_inode_operations;
3183 		memcpy(folio_address(folio), symname, len);
3184 		folio_mark_uptodate(folio);
3185 		folio_mark_dirty(folio);
3186 		folio_unlock(folio);
3187 		folio_put(folio);
3188 	}
3189 	dir->i_size += BOGO_DIRENT_SIZE;
3190 	dir->i_ctime = dir->i_mtime = current_time(dir);
3191 	inode_inc_iversion(dir);
3192 	d_instantiate(dentry, inode);
3193 	dget(dentry);
3194 	return 0;
3195 }
3196 
3197 static void shmem_put_link(void *arg)
3198 {
3199 	folio_mark_accessed(arg);
3200 	folio_put(arg);
3201 }
3202 
3203 static const char *shmem_get_link(struct dentry *dentry,
3204 				  struct inode *inode,
3205 				  struct delayed_call *done)
3206 {
3207 	struct folio *folio = NULL;
3208 	int error;
3209 
3210 	if (!dentry) {
3211 		folio = filemap_get_folio(inode->i_mapping, 0);
3212 		if (!folio)
3213 			return ERR_PTR(-ECHILD);
3214 		if (PageHWPoison(folio_page(folio, 0)) ||
3215 		    !folio_test_uptodate(folio)) {
3216 			folio_put(folio);
3217 			return ERR_PTR(-ECHILD);
3218 		}
3219 	} else {
3220 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3221 		if (error)
3222 			return ERR_PTR(error);
3223 		if (!folio)
3224 			return ERR_PTR(-ECHILD);
3225 		if (PageHWPoison(folio_page(folio, 0))) {
3226 			folio_unlock(folio);
3227 			folio_put(folio);
3228 			return ERR_PTR(-ECHILD);
3229 		}
3230 		folio_unlock(folio);
3231 	}
3232 	set_delayed_call(done, shmem_put_link, folio);
3233 	return folio_address(folio);
3234 }
3235 
3236 #ifdef CONFIG_TMPFS_XATTR
3237 
3238 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3239 {
3240 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3241 
3242 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3243 
3244 	return 0;
3245 }
3246 
3247 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3248 			      struct dentry *dentry, struct fileattr *fa)
3249 {
3250 	struct inode *inode = d_inode(dentry);
3251 	struct shmem_inode_info *info = SHMEM_I(inode);
3252 
3253 	if (fileattr_has_fsx(fa))
3254 		return -EOPNOTSUPP;
3255 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3256 		return -EOPNOTSUPP;
3257 
3258 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3259 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3260 
3261 	shmem_set_inode_flags(inode, info->fsflags);
3262 	inode->i_ctime = current_time(inode);
3263 	inode_inc_iversion(inode);
3264 	return 0;
3265 }
3266 
3267 /*
3268  * Superblocks without xattr inode operations may get some security.* xattr
3269  * support from the LSM "for free". As soon as we have any other xattrs
3270  * like ACLs, we also need to implement the security.* handlers at
3271  * filesystem level, though.
3272  */
3273 
3274 /*
3275  * Callback for security_inode_init_security() for acquiring xattrs.
3276  */
3277 static int shmem_initxattrs(struct inode *inode,
3278 			    const struct xattr *xattr_array,
3279 			    void *fs_info)
3280 {
3281 	struct shmem_inode_info *info = SHMEM_I(inode);
3282 	const struct xattr *xattr;
3283 	struct simple_xattr *new_xattr;
3284 	size_t len;
3285 
3286 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3287 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3288 		if (!new_xattr)
3289 			return -ENOMEM;
3290 
3291 		len = strlen(xattr->name) + 1;
3292 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3293 					  GFP_KERNEL);
3294 		if (!new_xattr->name) {
3295 			kvfree(new_xattr);
3296 			return -ENOMEM;
3297 		}
3298 
3299 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3300 		       XATTR_SECURITY_PREFIX_LEN);
3301 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3302 		       xattr->name, len);
3303 
3304 		simple_xattr_add(&info->xattrs, new_xattr);
3305 	}
3306 
3307 	return 0;
3308 }
3309 
3310 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3311 				   struct dentry *unused, struct inode *inode,
3312 				   const char *name, void *buffer, size_t size)
3313 {
3314 	struct shmem_inode_info *info = SHMEM_I(inode);
3315 
3316 	name = xattr_full_name(handler, name);
3317 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3318 }
3319 
3320 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3321 				   struct user_namespace *mnt_userns,
3322 				   struct dentry *unused, struct inode *inode,
3323 				   const char *name, const void *value,
3324 				   size_t size, int flags)
3325 {
3326 	struct shmem_inode_info *info = SHMEM_I(inode);
3327 	int err;
3328 
3329 	name = xattr_full_name(handler, name);
3330 	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3331 	if (!err) {
3332 		inode->i_ctime = current_time(inode);
3333 		inode_inc_iversion(inode);
3334 	}
3335 	return err;
3336 }
3337 
3338 static const struct xattr_handler shmem_security_xattr_handler = {
3339 	.prefix = XATTR_SECURITY_PREFIX,
3340 	.get = shmem_xattr_handler_get,
3341 	.set = shmem_xattr_handler_set,
3342 };
3343 
3344 static const struct xattr_handler shmem_trusted_xattr_handler = {
3345 	.prefix = XATTR_TRUSTED_PREFIX,
3346 	.get = shmem_xattr_handler_get,
3347 	.set = shmem_xattr_handler_set,
3348 };
3349 
3350 static const struct xattr_handler *shmem_xattr_handlers[] = {
3351 #ifdef CONFIG_TMPFS_POSIX_ACL
3352 	&posix_acl_access_xattr_handler,
3353 	&posix_acl_default_xattr_handler,
3354 #endif
3355 	&shmem_security_xattr_handler,
3356 	&shmem_trusted_xattr_handler,
3357 	NULL
3358 };
3359 
3360 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3361 {
3362 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3363 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3364 }
3365 #endif /* CONFIG_TMPFS_XATTR */
3366 
3367 static const struct inode_operations shmem_short_symlink_operations = {
3368 	.getattr	= shmem_getattr,
3369 	.get_link	= simple_get_link,
3370 #ifdef CONFIG_TMPFS_XATTR
3371 	.listxattr	= shmem_listxattr,
3372 #endif
3373 };
3374 
3375 static const struct inode_operations shmem_symlink_inode_operations = {
3376 	.getattr	= shmem_getattr,
3377 	.get_link	= shmem_get_link,
3378 #ifdef CONFIG_TMPFS_XATTR
3379 	.listxattr	= shmem_listxattr,
3380 #endif
3381 };
3382 
3383 static struct dentry *shmem_get_parent(struct dentry *child)
3384 {
3385 	return ERR_PTR(-ESTALE);
3386 }
3387 
3388 static int shmem_match(struct inode *ino, void *vfh)
3389 {
3390 	__u32 *fh = vfh;
3391 	__u64 inum = fh[2];
3392 	inum = (inum << 32) | fh[1];
3393 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3394 }
3395 
3396 /* Find any alias of inode, but prefer a hashed alias */
3397 static struct dentry *shmem_find_alias(struct inode *inode)
3398 {
3399 	struct dentry *alias = d_find_alias(inode);
3400 
3401 	return alias ?: d_find_any_alias(inode);
3402 }
3403 
3404 
3405 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3406 		struct fid *fid, int fh_len, int fh_type)
3407 {
3408 	struct inode *inode;
3409 	struct dentry *dentry = NULL;
3410 	u64 inum;
3411 
3412 	if (fh_len < 3)
3413 		return NULL;
3414 
3415 	inum = fid->raw[2];
3416 	inum = (inum << 32) | fid->raw[1];
3417 
3418 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3419 			shmem_match, fid->raw);
3420 	if (inode) {
3421 		dentry = shmem_find_alias(inode);
3422 		iput(inode);
3423 	}
3424 
3425 	return dentry;
3426 }
3427 
3428 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3429 				struct inode *parent)
3430 {
3431 	if (*len < 3) {
3432 		*len = 3;
3433 		return FILEID_INVALID;
3434 	}
3435 
3436 	if (inode_unhashed(inode)) {
3437 		/* Unfortunately insert_inode_hash is not idempotent,
3438 		 * so as we hash inodes here rather than at creation
3439 		 * time, we need a lock to ensure we only try
3440 		 * to do it once
3441 		 */
3442 		static DEFINE_SPINLOCK(lock);
3443 		spin_lock(&lock);
3444 		if (inode_unhashed(inode))
3445 			__insert_inode_hash(inode,
3446 					    inode->i_ino + inode->i_generation);
3447 		spin_unlock(&lock);
3448 	}
3449 
3450 	fh[0] = inode->i_generation;
3451 	fh[1] = inode->i_ino;
3452 	fh[2] = ((__u64)inode->i_ino) >> 32;
3453 
3454 	*len = 3;
3455 	return 1;
3456 }
3457 
3458 static const struct export_operations shmem_export_ops = {
3459 	.get_parent     = shmem_get_parent,
3460 	.encode_fh      = shmem_encode_fh,
3461 	.fh_to_dentry	= shmem_fh_to_dentry,
3462 };
3463 
3464 enum shmem_param {
3465 	Opt_gid,
3466 	Opt_huge,
3467 	Opt_mode,
3468 	Opt_mpol,
3469 	Opt_nr_blocks,
3470 	Opt_nr_inodes,
3471 	Opt_size,
3472 	Opt_uid,
3473 	Opt_inode32,
3474 	Opt_inode64,
3475 };
3476 
3477 static const struct constant_table shmem_param_enums_huge[] = {
3478 	{"never",	SHMEM_HUGE_NEVER },
3479 	{"always",	SHMEM_HUGE_ALWAYS },
3480 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3481 	{"advise",	SHMEM_HUGE_ADVISE },
3482 	{}
3483 };
3484 
3485 const struct fs_parameter_spec shmem_fs_parameters[] = {
3486 	fsparam_u32   ("gid",		Opt_gid),
3487 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3488 	fsparam_u32oct("mode",		Opt_mode),
3489 	fsparam_string("mpol",		Opt_mpol),
3490 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3491 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3492 	fsparam_string("size",		Opt_size),
3493 	fsparam_u32   ("uid",		Opt_uid),
3494 	fsparam_flag  ("inode32",	Opt_inode32),
3495 	fsparam_flag  ("inode64",	Opt_inode64),
3496 	{}
3497 };
3498 
3499 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3500 {
3501 	struct shmem_options *ctx = fc->fs_private;
3502 	struct fs_parse_result result;
3503 	unsigned long long size;
3504 	char *rest;
3505 	int opt;
3506 
3507 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3508 	if (opt < 0)
3509 		return opt;
3510 
3511 	switch (opt) {
3512 	case Opt_size:
3513 		size = memparse(param->string, &rest);
3514 		if (*rest == '%') {
3515 			size <<= PAGE_SHIFT;
3516 			size *= totalram_pages();
3517 			do_div(size, 100);
3518 			rest++;
3519 		}
3520 		if (*rest)
3521 			goto bad_value;
3522 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3523 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3524 		break;
3525 	case Opt_nr_blocks:
3526 		ctx->blocks = memparse(param->string, &rest);
3527 		if (*rest || ctx->blocks > S64_MAX)
3528 			goto bad_value;
3529 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3530 		break;
3531 	case Opt_nr_inodes:
3532 		ctx->inodes = memparse(param->string, &rest);
3533 		if (*rest)
3534 			goto bad_value;
3535 		ctx->seen |= SHMEM_SEEN_INODES;
3536 		break;
3537 	case Opt_mode:
3538 		ctx->mode = result.uint_32 & 07777;
3539 		break;
3540 	case Opt_uid:
3541 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3542 		if (!uid_valid(ctx->uid))
3543 			goto bad_value;
3544 		break;
3545 	case Opt_gid:
3546 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3547 		if (!gid_valid(ctx->gid))
3548 			goto bad_value;
3549 		break;
3550 	case Opt_huge:
3551 		ctx->huge = result.uint_32;
3552 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3553 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3554 		      has_transparent_hugepage()))
3555 			goto unsupported_parameter;
3556 		ctx->seen |= SHMEM_SEEN_HUGE;
3557 		break;
3558 	case Opt_mpol:
3559 		if (IS_ENABLED(CONFIG_NUMA)) {
3560 			mpol_put(ctx->mpol);
3561 			ctx->mpol = NULL;
3562 			if (mpol_parse_str(param->string, &ctx->mpol))
3563 				goto bad_value;
3564 			break;
3565 		}
3566 		goto unsupported_parameter;
3567 	case Opt_inode32:
3568 		ctx->full_inums = false;
3569 		ctx->seen |= SHMEM_SEEN_INUMS;
3570 		break;
3571 	case Opt_inode64:
3572 		if (sizeof(ino_t) < 8) {
3573 			return invalfc(fc,
3574 				       "Cannot use inode64 with <64bit inums in kernel\n");
3575 		}
3576 		ctx->full_inums = true;
3577 		ctx->seen |= SHMEM_SEEN_INUMS;
3578 		break;
3579 	}
3580 	return 0;
3581 
3582 unsupported_parameter:
3583 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3584 bad_value:
3585 	return invalfc(fc, "Bad value for '%s'", param->key);
3586 }
3587 
3588 static int shmem_parse_options(struct fs_context *fc, void *data)
3589 {
3590 	char *options = data;
3591 
3592 	if (options) {
3593 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3594 		if (err)
3595 			return err;
3596 	}
3597 
3598 	while (options != NULL) {
3599 		char *this_char = options;
3600 		for (;;) {
3601 			/*
3602 			 * NUL-terminate this option: unfortunately,
3603 			 * mount options form a comma-separated list,
3604 			 * but mpol's nodelist may also contain commas.
3605 			 */
3606 			options = strchr(options, ',');
3607 			if (options == NULL)
3608 				break;
3609 			options++;
3610 			if (!isdigit(*options)) {
3611 				options[-1] = '\0';
3612 				break;
3613 			}
3614 		}
3615 		if (*this_char) {
3616 			char *value = strchr(this_char, '=');
3617 			size_t len = 0;
3618 			int err;
3619 
3620 			if (value) {
3621 				*value++ = '\0';
3622 				len = strlen(value);
3623 			}
3624 			err = vfs_parse_fs_string(fc, this_char, value, len);
3625 			if (err < 0)
3626 				return err;
3627 		}
3628 	}
3629 	return 0;
3630 }
3631 
3632 /*
3633  * Reconfigure a shmem filesystem.
3634  *
3635  * Note that we disallow change from limited->unlimited blocks/inodes while any
3636  * are in use; but we must separately disallow unlimited->limited, because in
3637  * that case we have no record of how much is already in use.
3638  */
3639 static int shmem_reconfigure(struct fs_context *fc)
3640 {
3641 	struct shmem_options *ctx = fc->fs_private;
3642 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3643 	unsigned long inodes;
3644 	struct mempolicy *mpol = NULL;
3645 	const char *err;
3646 
3647 	raw_spin_lock(&sbinfo->stat_lock);
3648 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3649 
3650 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3651 		if (!sbinfo->max_blocks) {
3652 			err = "Cannot retroactively limit size";
3653 			goto out;
3654 		}
3655 		if (percpu_counter_compare(&sbinfo->used_blocks,
3656 					   ctx->blocks) > 0) {
3657 			err = "Too small a size for current use";
3658 			goto out;
3659 		}
3660 	}
3661 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3662 		if (!sbinfo->max_inodes) {
3663 			err = "Cannot retroactively limit inodes";
3664 			goto out;
3665 		}
3666 		if (ctx->inodes < inodes) {
3667 			err = "Too few inodes for current use";
3668 			goto out;
3669 		}
3670 	}
3671 
3672 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3673 	    sbinfo->next_ino > UINT_MAX) {
3674 		err = "Current inum too high to switch to 32-bit inums";
3675 		goto out;
3676 	}
3677 
3678 	if (ctx->seen & SHMEM_SEEN_HUGE)
3679 		sbinfo->huge = ctx->huge;
3680 	if (ctx->seen & SHMEM_SEEN_INUMS)
3681 		sbinfo->full_inums = ctx->full_inums;
3682 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3683 		sbinfo->max_blocks  = ctx->blocks;
3684 	if (ctx->seen & SHMEM_SEEN_INODES) {
3685 		sbinfo->max_inodes  = ctx->inodes;
3686 		sbinfo->free_inodes = ctx->inodes - inodes;
3687 	}
3688 
3689 	/*
3690 	 * Preserve previous mempolicy unless mpol remount option was specified.
3691 	 */
3692 	if (ctx->mpol) {
3693 		mpol = sbinfo->mpol;
3694 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3695 		ctx->mpol = NULL;
3696 	}
3697 	raw_spin_unlock(&sbinfo->stat_lock);
3698 	mpol_put(mpol);
3699 	return 0;
3700 out:
3701 	raw_spin_unlock(&sbinfo->stat_lock);
3702 	return invalfc(fc, "%s", err);
3703 }
3704 
3705 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3706 {
3707 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3708 
3709 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3710 		seq_printf(seq, ",size=%luk",
3711 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3712 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3713 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3714 	if (sbinfo->mode != (0777 | S_ISVTX))
3715 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3716 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3717 		seq_printf(seq, ",uid=%u",
3718 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3719 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3720 		seq_printf(seq, ",gid=%u",
3721 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3722 
3723 	/*
3724 	 * Showing inode{64,32} might be useful even if it's the system default,
3725 	 * since then people don't have to resort to checking both here and
3726 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3727 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3728 	 *
3729 	 * We hide it when inode64 isn't the default and we are using 32-bit
3730 	 * inodes, since that probably just means the feature isn't even under
3731 	 * consideration.
3732 	 *
3733 	 * As such:
3734 	 *
3735 	 *                     +-----------------+-----------------+
3736 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3737 	 *  +------------------+-----------------+-----------------+
3738 	 *  | full_inums=true  | show            | show            |
3739 	 *  | full_inums=false | show            | hide            |
3740 	 *  +------------------+-----------------+-----------------+
3741 	 *
3742 	 */
3743 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3744 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3746 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3747 	if (sbinfo->huge)
3748 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3749 #endif
3750 	shmem_show_mpol(seq, sbinfo->mpol);
3751 	return 0;
3752 }
3753 
3754 #endif /* CONFIG_TMPFS */
3755 
3756 static void shmem_put_super(struct super_block *sb)
3757 {
3758 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3759 
3760 	free_percpu(sbinfo->ino_batch);
3761 	percpu_counter_destroy(&sbinfo->used_blocks);
3762 	mpol_put(sbinfo->mpol);
3763 	kfree(sbinfo);
3764 	sb->s_fs_info = NULL;
3765 }
3766 
3767 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3768 {
3769 	struct shmem_options *ctx = fc->fs_private;
3770 	struct inode *inode;
3771 	struct shmem_sb_info *sbinfo;
3772 
3773 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3774 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3775 				L1_CACHE_BYTES), GFP_KERNEL);
3776 	if (!sbinfo)
3777 		return -ENOMEM;
3778 
3779 	sb->s_fs_info = sbinfo;
3780 
3781 #ifdef CONFIG_TMPFS
3782 	/*
3783 	 * Per default we only allow half of the physical ram per
3784 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3785 	 * but the internal instance is left unlimited.
3786 	 */
3787 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3788 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3789 			ctx->blocks = shmem_default_max_blocks();
3790 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3791 			ctx->inodes = shmem_default_max_inodes();
3792 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3793 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3794 	} else {
3795 		sb->s_flags |= SB_NOUSER;
3796 	}
3797 	sb->s_export_op = &shmem_export_ops;
3798 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3799 #else
3800 	sb->s_flags |= SB_NOUSER;
3801 #endif
3802 	sbinfo->max_blocks = ctx->blocks;
3803 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3804 	if (sb->s_flags & SB_KERNMOUNT) {
3805 		sbinfo->ino_batch = alloc_percpu(ino_t);
3806 		if (!sbinfo->ino_batch)
3807 			goto failed;
3808 	}
3809 	sbinfo->uid = ctx->uid;
3810 	sbinfo->gid = ctx->gid;
3811 	sbinfo->full_inums = ctx->full_inums;
3812 	sbinfo->mode = ctx->mode;
3813 	sbinfo->huge = ctx->huge;
3814 	sbinfo->mpol = ctx->mpol;
3815 	ctx->mpol = NULL;
3816 
3817 	raw_spin_lock_init(&sbinfo->stat_lock);
3818 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3819 		goto failed;
3820 	spin_lock_init(&sbinfo->shrinklist_lock);
3821 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3822 
3823 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3824 	sb->s_blocksize = PAGE_SIZE;
3825 	sb->s_blocksize_bits = PAGE_SHIFT;
3826 	sb->s_magic = TMPFS_MAGIC;
3827 	sb->s_op = &shmem_ops;
3828 	sb->s_time_gran = 1;
3829 #ifdef CONFIG_TMPFS_XATTR
3830 	sb->s_xattr = shmem_xattr_handlers;
3831 #endif
3832 #ifdef CONFIG_TMPFS_POSIX_ACL
3833 	sb->s_flags |= SB_POSIXACL;
3834 #endif
3835 	uuid_gen(&sb->s_uuid);
3836 
3837 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3838 	if (!inode)
3839 		goto failed;
3840 	inode->i_uid = sbinfo->uid;
3841 	inode->i_gid = sbinfo->gid;
3842 	sb->s_root = d_make_root(inode);
3843 	if (!sb->s_root)
3844 		goto failed;
3845 	return 0;
3846 
3847 failed:
3848 	shmem_put_super(sb);
3849 	return -ENOMEM;
3850 }
3851 
3852 static int shmem_get_tree(struct fs_context *fc)
3853 {
3854 	return get_tree_nodev(fc, shmem_fill_super);
3855 }
3856 
3857 static void shmem_free_fc(struct fs_context *fc)
3858 {
3859 	struct shmem_options *ctx = fc->fs_private;
3860 
3861 	if (ctx) {
3862 		mpol_put(ctx->mpol);
3863 		kfree(ctx);
3864 	}
3865 }
3866 
3867 static const struct fs_context_operations shmem_fs_context_ops = {
3868 	.free			= shmem_free_fc,
3869 	.get_tree		= shmem_get_tree,
3870 #ifdef CONFIG_TMPFS
3871 	.parse_monolithic	= shmem_parse_options,
3872 	.parse_param		= shmem_parse_one,
3873 	.reconfigure		= shmem_reconfigure,
3874 #endif
3875 };
3876 
3877 static struct kmem_cache *shmem_inode_cachep;
3878 
3879 static struct inode *shmem_alloc_inode(struct super_block *sb)
3880 {
3881 	struct shmem_inode_info *info;
3882 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3883 	if (!info)
3884 		return NULL;
3885 	return &info->vfs_inode;
3886 }
3887 
3888 static void shmem_free_in_core_inode(struct inode *inode)
3889 {
3890 	if (S_ISLNK(inode->i_mode))
3891 		kfree(inode->i_link);
3892 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3893 }
3894 
3895 static void shmem_destroy_inode(struct inode *inode)
3896 {
3897 	if (S_ISREG(inode->i_mode))
3898 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3899 }
3900 
3901 static void shmem_init_inode(void *foo)
3902 {
3903 	struct shmem_inode_info *info = foo;
3904 	inode_init_once(&info->vfs_inode);
3905 }
3906 
3907 static void shmem_init_inodecache(void)
3908 {
3909 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3910 				sizeof(struct shmem_inode_info),
3911 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3912 }
3913 
3914 static void shmem_destroy_inodecache(void)
3915 {
3916 	kmem_cache_destroy(shmem_inode_cachep);
3917 }
3918 
3919 /* Keep the page in page cache instead of truncating it */
3920 static int shmem_error_remove_page(struct address_space *mapping,
3921 				   struct page *page)
3922 {
3923 	return 0;
3924 }
3925 
3926 const struct address_space_operations shmem_aops = {
3927 	.writepage	= shmem_writepage,
3928 	.dirty_folio	= noop_dirty_folio,
3929 #ifdef CONFIG_TMPFS
3930 	.write_begin	= shmem_write_begin,
3931 	.write_end	= shmem_write_end,
3932 #endif
3933 #ifdef CONFIG_MIGRATION
3934 	.migrate_folio	= migrate_folio,
3935 #endif
3936 	.error_remove_page = shmem_error_remove_page,
3937 };
3938 EXPORT_SYMBOL(shmem_aops);
3939 
3940 static const struct file_operations shmem_file_operations = {
3941 	.mmap		= shmem_mmap,
3942 	.open		= generic_file_open,
3943 	.get_unmapped_area = shmem_get_unmapped_area,
3944 #ifdef CONFIG_TMPFS
3945 	.llseek		= shmem_file_llseek,
3946 	.read_iter	= shmem_file_read_iter,
3947 	.write_iter	= generic_file_write_iter,
3948 	.fsync		= noop_fsync,
3949 	.splice_read	= generic_file_splice_read,
3950 	.splice_write	= iter_file_splice_write,
3951 	.fallocate	= shmem_fallocate,
3952 #endif
3953 };
3954 
3955 static const struct inode_operations shmem_inode_operations = {
3956 	.getattr	= shmem_getattr,
3957 	.setattr	= shmem_setattr,
3958 #ifdef CONFIG_TMPFS_XATTR
3959 	.listxattr	= shmem_listxattr,
3960 	.set_acl	= simple_set_acl,
3961 	.fileattr_get	= shmem_fileattr_get,
3962 	.fileattr_set	= shmem_fileattr_set,
3963 #endif
3964 };
3965 
3966 static const struct inode_operations shmem_dir_inode_operations = {
3967 #ifdef CONFIG_TMPFS
3968 	.getattr	= shmem_getattr,
3969 	.create		= shmem_create,
3970 	.lookup		= simple_lookup,
3971 	.link		= shmem_link,
3972 	.unlink		= shmem_unlink,
3973 	.symlink	= shmem_symlink,
3974 	.mkdir		= shmem_mkdir,
3975 	.rmdir		= shmem_rmdir,
3976 	.mknod		= shmem_mknod,
3977 	.rename		= shmem_rename2,
3978 	.tmpfile	= shmem_tmpfile,
3979 #endif
3980 #ifdef CONFIG_TMPFS_XATTR
3981 	.listxattr	= shmem_listxattr,
3982 	.fileattr_get	= shmem_fileattr_get,
3983 	.fileattr_set	= shmem_fileattr_set,
3984 #endif
3985 #ifdef CONFIG_TMPFS_POSIX_ACL
3986 	.setattr	= shmem_setattr,
3987 	.set_acl	= simple_set_acl,
3988 #endif
3989 };
3990 
3991 static const struct inode_operations shmem_special_inode_operations = {
3992 	.getattr	= shmem_getattr,
3993 #ifdef CONFIG_TMPFS_XATTR
3994 	.listxattr	= shmem_listxattr,
3995 #endif
3996 #ifdef CONFIG_TMPFS_POSIX_ACL
3997 	.setattr	= shmem_setattr,
3998 	.set_acl	= simple_set_acl,
3999 #endif
4000 };
4001 
4002 static const struct super_operations shmem_ops = {
4003 	.alloc_inode	= shmem_alloc_inode,
4004 	.free_inode	= shmem_free_in_core_inode,
4005 	.destroy_inode	= shmem_destroy_inode,
4006 #ifdef CONFIG_TMPFS
4007 	.statfs		= shmem_statfs,
4008 	.show_options	= shmem_show_options,
4009 #endif
4010 	.evict_inode	= shmem_evict_inode,
4011 	.drop_inode	= generic_delete_inode,
4012 	.put_super	= shmem_put_super,
4013 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4014 	.nr_cached_objects	= shmem_unused_huge_count,
4015 	.free_cached_objects	= shmem_unused_huge_scan,
4016 #endif
4017 };
4018 
4019 static const struct vm_operations_struct shmem_vm_ops = {
4020 	.fault		= shmem_fault,
4021 	.map_pages	= filemap_map_pages,
4022 #ifdef CONFIG_NUMA
4023 	.set_policy     = shmem_set_policy,
4024 	.get_policy     = shmem_get_policy,
4025 #endif
4026 };
4027 
4028 static const struct vm_operations_struct shmem_anon_vm_ops = {
4029 	.fault		= shmem_fault,
4030 	.map_pages	= filemap_map_pages,
4031 #ifdef CONFIG_NUMA
4032 	.set_policy     = shmem_set_policy,
4033 	.get_policy     = shmem_get_policy,
4034 #endif
4035 };
4036 
4037 int shmem_init_fs_context(struct fs_context *fc)
4038 {
4039 	struct shmem_options *ctx;
4040 
4041 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4042 	if (!ctx)
4043 		return -ENOMEM;
4044 
4045 	ctx->mode = 0777 | S_ISVTX;
4046 	ctx->uid = current_fsuid();
4047 	ctx->gid = current_fsgid();
4048 
4049 	fc->fs_private = ctx;
4050 	fc->ops = &shmem_fs_context_ops;
4051 	return 0;
4052 }
4053 
4054 static struct file_system_type shmem_fs_type = {
4055 	.owner		= THIS_MODULE,
4056 	.name		= "tmpfs",
4057 	.init_fs_context = shmem_init_fs_context,
4058 #ifdef CONFIG_TMPFS
4059 	.parameters	= shmem_fs_parameters,
4060 #endif
4061 	.kill_sb	= kill_litter_super,
4062 	.fs_flags	= FS_USERNS_MOUNT,
4063 };
4064 
4065 void __init shmem_init(void)
4066 {
4067 	int error;
4068 
4069 	shmem_init_inodecache();
4070 
4071 	error = register_filesystem(&shmem_fs_type);
4072 	if (error) {
4073 		pr_err("Could not register tmpfs\n");
4074 		goto out2;
4075 	}
4076 
4077 	shm_mnt = kern_mount(&shmem_fs_type);
4078 	if (IS_ERR(shm_mnt)) {
4079 		error = PTR_ERR(shm_mnt);
4080 		pr_err("Could not kern_mount tmpfs\n");
4081 		goto out1;
4082 	}
4083 
4084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4085 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4086 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4087 	else
4088 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4089 #endif
4090 	return;
4091 
4092 out1:
4093 	unregister_filesystem(&shmem_fs_type);
4094 out2:
4095 	shmem_destroy_inodecache();
4096 	shm_mnt = ERR_PTR(error);
4097 }
4098 
4099 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4100 static ssize_t shmem_enabled_show(struct kobject *kobj,
4101 				  struct kobj_attribute *attr, char *buf)
4102 {
4103 	static const int values[] = {
4104 		SHMEM_HUGE_ALWAYS,
4105 		SHMEM_HUGE_WITHIN_SIZE,
4106 		SHMEM_HUGE_ADVISE,
4107 		SHMEM_HUGE_NEVER,
4108 		SHMEM_HUGE_DENY,
4109 		SHMEM_HUGE_FORCE,
4110 	};
4111 	int len = 0;
4112 	int i;
4113 
4114 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4115 		len += sysfs_emit_at(buf, len,
4116 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4117 				     i ? " " : "",
4118 				     shmem_format_huge(values[i]));
4119 	}
4120 
4121 	len += sysfs_emit_at(buf, len, "\n");
4122 
4123 	return len;
4124 }
4125 
4126 static ssize_t shmem_enabled_store(struct kobject *kobj,
4127 		struct kobj_attribute *attr, const char *buf, size_t count)
4128 {
4129 	char tmp[16];
4130 	int huge;
4131 
4132 	if (count + 1 > sizeof(tmp))
4133 		return -EINVAL;
4134 	memcpy(tmp, buf, count);
4135 	tmp[count] = '\0';
4136 	if (count && tmp[count - 1] == '\n')
4137 		tmp[count - 1] = '\0';
4138 
4139 	huge = shmem_parse_huge(tmp);
4140 	if (huge == -EINVAL)
4141 		return -EINVAL;
4142 	if (!has_transparent_hugepage() &&
4143 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4144 		return -EINVAL;
4145 
4146 	shmem_huge = huge;
4147 	if (shmem_huge > SHMEM_HUGE_DENY)
4148 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4149 	return count;
4150 }
4151 
4152 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4153 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4154 
4155 #else /* !CONFIG_SHMEM */
4156 
4157 /*
4158  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4159  *
4160  * This is intended for small system where the benefits of the full
4161  * shmem code (swap-backed and resource-limited) are outweighed by
4162  * their complexity. On systems without swap this code should be
4163  * effectively equivalent, but much lighter weight.
4164  */
4165 
4166 static struct file_system_type shmem_fs_type = {
4167 	.name		= "tmpfs",
4168 	.init_fs_context = ramfs_init_fs_context,
4169 	.parameters	= ramfs_fs_parameters,
4170 	.kill_sb	= kill_litter_super,
4171 	.fs_flags	= FS_USERNS_MOUNT,
4172 };
4173 
4174 void __init shmem_init(void)
4175 {
4176 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4177 
4178 	shm_mnt = kern_mount(&shmem_fs_type);
4179 	BUG_ON(IS_ERR(shm_mnt));
4180 }
4181 
4182 int shmem_unuse(unsigned int type)
4183 {
4184 	return 0;
4185 }
4186 
4187 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4188 {
4189 	return 0;
4190 }
4191 
4192 void shmem_unlock_mapping(struct address_space *mapping)
4193 {
4194 }
4195 
4196 #ifdef CONFIG_MMU
4197 unsigned long shmem_get_unmapped_area(struct file *file,
4198 				      unsigned long addr, unsigned long len,
4199 				      unsigned long pgoff, unsigned long flags)
4200 {
4201 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4202 }
4203 #endif
4204 
4205 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4206 {
4207 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4208 }
4209 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4210 
4211 #define shmem_vm_ops				generic_file_vm_ops
4212 #define shmem_anon_vm_ops			generic_file_vm_ops
4213 #define shmem_file_operations			ramfs_file_operations
4214 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4215 #define shmem_acct_size(flags, size)		0
4216 #define shmem_unacct_size(flags, size)		do {} while (0)
4217 
4218 #endif /* CONFIG_SHMEM */
4219 
4220 /* common code */
4221 
4222 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4223 				       unsigned long flags, unsigned int i_flags)
4224 {
4225 	struct inode *inode;
4226 	struct file *res;
4227 
4228 	if (IS_ERR(mnt))
4229 		return ERR_CAST(mnt);
4230 
4231 	if (size < 0 || size > MAX_LFS_FILESIZE)
4232 		return ERR_PTR(-EINVAL);
4233 
4234 	if (shmem_acct_size(flags, size))
4235 		return ERR_PTR(-ENOMEM);
4236 
4237 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4238 				flags);
4239 	if (unlikely(!inode)) {
4240 		shmem_unacct_size(flags, size);
4241 		return ERR_PTR(-ENOSPC);
4242 	}
4243 	inode->i_flags |= i_flags;
4244 	inode->i_size = size;
4245 	clear_nlink(inode);	/* It is unlinked */
4246 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4247 	if (!IS_ERR(res))
4248 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4249 				&shmem_file_operations);
4250 	if (IS_ERR(res))
4251 		iput(inode);
4252 	return res;
4253 }
4254 
4255 /**
4256  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4257  * 	kernel internal.  There will be NO LSM permission checks against the
4258  * 	underlying inode.  So users of this interface must do LSM checks at a
4259  *	higher layer.  The users are the big_key and shm implementations.  LSM
4260  *	checks are provided at the key or shm level rather than the inode.
4261  * @name: name for dentry (to be seen in /proc/<pid>/maps
4262  * @size: size to be set for the file
4263  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4264  */
4265 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4266 {
4267 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4268 }
4269 
4270 /**
4271  * shmem_file_setup - get an unlinked file living in tmpfs
4272  * @name: name for dentry (to be seen in /proc/<pid>/maps
4273  * @size: size to be set for the file
4274  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4275  */
4276 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4277 {
4278 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4279 }
4280 EXPORT_SYMBOL_GPL(shmem_file_setup);
4281 
4282 /**
4283  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4284  * @mnt: the tmpfs mount where the file will be created
4285  * @name: name for dentry (to be seen in /proc/<pid>/maps
4286  * @size: size to be set for the file
4287  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4288  */
4289 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4290 				       loff_t size, unsigned long flags)
4291 {
4292 	return __shmem_file_setup(mnt, name, size, flags, 0);
4293 }
4294 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4295 
4296 /**
4297  * shmem_zero_setup - setup a shared anonymous mapping
4298  * @vma: the vma to be mmapped is prepared by do_mmap
4299  */
4300 int shmem_zero_setup(struct vm_area_struct *vma)
4301 {
4302 	struct file *file;
4303 	loff_t size = vma->vm_end - vma->vm_start;
4304 
4305 	/*
4306 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4307 	 * between XFS directory reading and selinux: since this file is only
4308 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4309 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4310 	 */
4311 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4312 	if (IS_ERR(file))
4313 		return PTR_ERR(file);
4314 
4315 	if (vma->vm_file)
4316 		fput(vma->vm_file);
4317 	vma->vm_file = file;
4318 	vma->vm_ops = &shmem_anon_vm_ops;
4319 
4320 	return 0;
4321 }
4322 
4323 /**
4324  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4325  * @mapping:	the page's address_space
4326  * @index:	the page index
4327  * @gfp:	the page allocator flags to use if allocating
4328  *
4329  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4330  * with any new page allocations done using the specified allocation flags.
4331  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4332  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4333  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4334  *
4335  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4336  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4337  */
4338 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4339 					 pgoff_t index, gfp_t gfp)
4340 {
4341 #ifdef CONFIG_SHMEM
4342 	struct inode *inode = mapping->host;
4343 	struct folio *folio;
4344 	struct page *page;
4345 	int error;
4346 
4347 	BUG_ON(!shmem_mapping(mapping));
4348 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4349 				  gfp, NULL, NULL, NULL);
4350 	if (error)
4351 		return ERR_PTR(error);
4352 
4353 	folio_unlock(folio);
4354 	page = folio_file_page(folio, index);
4355 	if (PageHWPoison(page)) {
4356 		folio_put(folio);
4357 		return ERR_PTR(-EIO);
4358 	}
4359 
4360 	return page;
4361 #else
4362 	/*
4363 	 * The tiny !SHMEM case uses ramfs without swap
4364 	 */
4365 	return read_cache_page_gfp(mapping, index, gfp);
4366 #endif
4367 }
4368 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4369