xref: /openbmc/linux/mm/shmem.c (revision e953aeaa)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	bool full_inums;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 				struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 			     struct page **pagep, enum sgp_type sgp,
145 			     gfp_t gfp, struct vm_area_struct *vma,
146 			     vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp,
149 		gfp_t gfp, struct vm_area_struct *vma,
150 		struct vm_fault *vmf, vm_fault_t *fault_type);
151 
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 		struct page **pagep, enum sgp_type sgp)
154 {
155 	return shmem_getpage_gfp(inode, index, pagep, sgp,
156 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158 
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175 
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
182 static inline int shmem_reacct_size(unsigned long flags,
183 		loff_t oldsize, loff_t newsize)
184 {
185 	if (!(flags & VM_NORESERVE)) {
186 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 			return security_vm_enough_memory_mm(current->mm,
188 					VM_ACCT(newsize) - VM_ACCT(oldsize));
189 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 	}
192 	return 0;
193 }
194 
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 	if (!(flags & VM_NORESERVE))
204 		return 0;
205 
206 	return security_vm_enough_memory_mm(current->mm,
207 			pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 
221 	if (shmem_acct_block(info->flags, pages))
222 		return false;
223 
224 	if (sbinfo->max_blocks) {
225 		if (percpu_counter_compare(&sbinfo->used_blocks,
226 					   sbinfo->max_blocks - pages) > 0)
227 			goto unacct;
228 		percpu_counter_add(&sbinfo->used_blocks, pages);
229 	}
230 
231 	return true;
232 
233 unacct:
234 	shmem_unacct_blocks(info->flags, pages);
235 	return false;
236 }
237 
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 	struct shmem_inode_info *info = SHMEM_I(inode);
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 
243 	if (sbinfo->max_blocks)
244 		percpu_counter_sub(&sbinfo->used_blocks, pages);
245 	shmem_unacct_blocks(info->flags, pages);
246 }
247 
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256 
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 	return vma->vm_ops == &shmem_vm_ops;
260 }
261 
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 	ino_t ino;
279 
280 	if (!(sb->s_flags & SB_KERNMOUNT)) {
281 		spin_lock(&sbinfo->stat_lock);
282 		if (!sbinfo->free_inodes) {
283 			spin_unlock(&sbinfo->stat_lock);
284 			return -ENOSPC;
285 		}
286 		sbinfo->free_inodes--;
287 		if (inop) {
288 			ino = sbinfo->next_ino++;
289 			if (unlikely(is_zero_ino(ino)))
290 				ino = sbinfo->next_ino++;
291 			if (unlikely(!sbinfo->full_inums &&
292 				     ino > UINT_MAX)) {
293 				/*
294 				 * Emulate get_next_ino uint wraparound for
295 				 * compatibility
296 				 */
297 				if (IS_ENABLED(CONFIG_64BIT))
298 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
299 						__func__, MINOR(sb->s_dev));
300 				sbinfo->next_ino = 1;
301 				ino = sbinfo->next_ino++;
302 			}
303 			*inop = ino;
304 		}
305 		spin_unlock(&sbinfo->stat_lock);
306 	} else if (inop) {
307 		/*
308 		 * __shmem_file_setup, one of our callers, is lock-free: it
309 		 * doesn't hold stat_lock in shmem_reserve_inode since
310 		 * max_inodes is always 0, and is called from potentially
311 		 * unknown contexts. As such, use a per-cpu batched allocator
312 		 * which doesn't require the per-sb stat_lock unless we are at
313 		 * the batch boundary.
314 		 *
315 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
316 		 * shmem mounts are not exposed to userspace, so we don't need
317 		 * to worry about things like glibc compatibility.
318 		 */
319 		ino_t *next_ino;
320 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
321 		ino = *next_ino;
322 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
323 			spin_lock(&sbinfo->stat_lock);
324 			ino = sbinfo->next_ino;
325 			sbinfo->next_ino += SHMEM_INO_BATCH;
326 			spin_unlock(&sbinfo->stat_lock);
327 			if (unlikely(is_zero_ino(ino)))
328 				ino++;
329 		}
330 		*inop = ino;
331 		*next_ino = ++ino;
332 		put_cpu();
333 	}
334 
335 	return 0;
336 }
337 
338 static void shmem_free_inode(struct super_block *sb)
339 {
340 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
341 	if (sbinfo->max_inodes) {
342 		spin_lock(&sbinfo->stat_lock);
343 		sbinfo->free_inodes++;
344 		spin_unlock(&sbinfo->stat_lock);
345 	}
346 }
347 
348 /**
349  * shmem_recalc_inode - recalculate the block usage of an inode
350  * @inode: inode to recalc
351  *
352  * We have to calculate the free blocks since the mm can drop
353  * undirtied hole pages behind our back.
354  *
355  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
356  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
357  *
358  * It has to be called with the spinlock held.
359  */
360 static void shmem_recalc_inode(struct inode *inode)
361 {
362 	struct shmem_inode_info *info = SHMEM_I(inode);
363 	long freed;
364 
365 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
366 	if (freed > 0) {
367 		info->alloced -= freed;
368 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
369 		shmem_inode_unacct_blocks(inode, freed);
370 	}
371 }
372 
373 bool shmem_charge(struct inode *inode, long pages)
374 {
375 	struct shmem_inode_info *info = SHMEM_I(inode);
376 	unsigned long flags;
377 
378 	if (!shmem_inode_acct_block(inode, pages))
379 		return false;
380 
381 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
382 	inode->i_mapping->nrpages += pages;
383 
384 	spin_lock_irqsave(&info->lock, flags);
385 	info->alloced += pages;
386 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
387 	shmem_recalc_inode(inode);
388 	spin_unlock_irqrestore(&info->lock, flags);
389 
390 	return true;
391 }
392 
393 void shmem_uncharge(struct inode *inode, long pages)
394 {
395 	struct shmem_inode_info *info = SHMEM_I(inode);
396 	unsigned long flags;
397 
398 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
399 
400 	spin_lock_irqsave(&info->lock, flags);
401 	info->alloced -= pages;
402 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
403 	shmem_recalc_inode(inode);
404 	spin_unlock_irqrestore(&info->lock, flags);
405 
406 	shmem_inode_unacct_blocks(inode, pages);
407 }
408 
409 /*
410  * Replace item expected in xarray by a new item, while holding xa_lock.
411  */
412 static int shmem_replace_entry(struct address_space *mapping,
413 			pgoff_t index, void *expected, void *replacement)
414 {
415 	XA_STATE(xas, &mapping->i_pages, index);
416 	void *item;
417 
418 	VM_BUG_ON(!expected);
419 	VM_BUG_ON(!replacement);
420 	item = xas_load(&xas);
421 	if (item != expected)
422 		return -ENOENT;
423 	xas_store(&xas, replacement);
424 	return 0;
425 }
426 
427 /*
428  * Sometimes, before we decide whether to proceed or to fail, we must check
429  * that an entry was not already brought back from swap by a racing thread.
430  *
431  * Checking page is not enough: by the time a SwapCache page is locked, it
432  * might be reused, and again be SwapCache, using the same swap as before.
433  */
434 static bool shmem_confirm_swap(struct address_space *mapping,
435 			       pgoff_t index, swp_entry_t swap)
436 {
437 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
438 }
439 
440 /*
441  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
442  *
443  * SHMEM_HUGE_NEVER:
444  *	disables huge pages for the mount;
445  * SHMEM_HUGE_ALWAYS:
446  *	enables huge pages for the mount;
447  * SHMEM_HUGE_WITHIN_SIZE:
448  *	only allocate huge pages if the page will be fully within i_size,
449  *	also respect fadvise()/madvise() hints;
450  * SHMEM_HUGE_ADVISE:
451  *	only allocate huge pages if requested with fadvise()/madvise();
452  */
453 
454 #define SHMEM_HUGE_NEVER	0
455 #define SHMEM_HUGE_ALWAYS	1
456 #define SHMEM_HUGE_WITHIN_SIZE	2
457 #define SHMEM_HUGE_ADVISE	3
458 
459 /*
460  * Special values.
461  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
462  *
463  * SHMEM_HUGE_DENY:
464  *	disables huge on shm_mnt and all mounts, for emergency use;
465  * SHMEM_HUGE_FORCE:
466  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
467  *
468  */
469 #define SHMEM_HUGE_DENY		(-1)
470 #define SHMEM_HUGE_FORCE	(-2)
471 
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 /* ifdef here to avoid bloating shmem.o when not necessary */
474 
475 static int shmem_huge __read_mostly;
476 
477 #if defined(CONFIG_SYSFS)
478 static int shmem_parse_huge(const char *str)
479 {
480 	if (!strcmp(str, "never"))
481 		return SHMEM_HUGE_NEVER;
482 	if (!strcmp(str, "always"))
483 		return SHMEM_HUGE_ALWAYS;
484 	if (!strcmp(str, "within_size"))
485 		return SHMEM_HUGE_WITHIN_SIZE;
486 	if (!strcmp(str, "advise"))
487 		return SHMEM_HUGE_ADVISE;
488 	if (!strcmp(str, "deny"))
489 		return SHMEM_HUGE_DENY;
490 	if (!strcmp(str, "force"))
491 		return SHMEM_HUGE_FORCE;
492 	return -EINVAL;
493 }
494 #endif
495 
496 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
497 static const char *shmem_format_huge(int huge)
498 {
499 	switch (huge) {
500 	case SHMEM_HUGE_NEVER:
501 		return "never";
502 	case SHMEM_HUGE_ALWAYS:
503 		return "always";
504 	case SHMEM_HUGE_WITHIN_SIZE:
505 		return "within_size";
506 	case SHMEM_HUGE_ADVISE:
507 		return "advise";
508 	case SHMEM_HUGE_DENY:
509 		return "deny";
510 	case SHMEM_HUGE_FORCE:
511 		return "force";
512 	default:
513 		VM_BUG_ON(1);
514 		return "bad_val";
515 	}
516 }
517 #endif
518 
519 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
520 		struct shrink_control *sc, unsigned long nr_to_split)
521 {
522 	LIST_HEAD(list), *pos, *next;
523 	LIST_HEAD(to_remove);
524 	struct inode *inode;
525 	struct shmem_inode_info *info;
526 	struct page *page;
527 	unsigned long batch = sc ? sc->nr_to_scan : 128;
528 	int removed = 0, split = 0;
529 
530 	if (list_empty(&sbinfo->shrinklist))
531 		return SHRINK_STOP;
532 
533 	spin_lock(&sbinfo->shrinklist_lock);
534 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
535 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
536 
537 		/* pin the inode */
538 		inode = igrab(&info->vfs_inode);
539 
540 		/* inode is about to be evicted */
541 		if (!inode) {
542 			list_del_init(&info->shrinklist);
543 			removed++;
544 			goto next;
545 		}
546 
547 		/* Check if there's anything to gain */
548 		if (round_up(inode->i_size, PAGE_SIZE) ==
549 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
550 			list_move(&info->shrinklist, &to_remove);
551 			removed++;
552 			goto next;
553 		}
554 
555 		list_move(&info->shrinklist, &list);
556 next:
557 		if (!--batch)
558 			break;
559 	}
560 	spin_unlock(&sbinfo->shrinklist_lock);
561 
562 	list_for_each_safe(pos, next, &to_remove) {
563 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
564 		inode = &info->vfs_inode;
565 		list_del_init(&info->shrinklist);
566 		iput(inode);
567 	}
568 
569 	list_for_each_safe(pos, next, &list) {
570 		int ret;
571 
572 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
573 		inode = &info->vfs_inode;
574 
575 		if (nr_to_split && split >= nr_to_split)
576 			goto leave;
577 
578 		page = find_get_page(inode->i_mapping,
579 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
580 		if (!page)
581 			goto drop;
582 
583 		/* No huge page at the end of the file: nothing to split */
584 		if (!PageTransHuge(page)) {
585 			put_page(page);
586 			goto drop;
587 		}
588 
589 		/*
590 		 * Leave the inode on the list if we failed to lock
591 		 * the page at this time.
592 		 *
593 		 * Waiting for the lock may lead to deadlock in the
594 		 * reclaim path.
595 		 */
596 		if (!trylock_page(page)) {
597 			put_page(page);
598 			goto leave;
599 		}
600 
601 		ret = split_huge_page(page);
602 		unlock_page(page);
603 		put_page(page);
604 
605 		/* If split failed leave the inode on the list */
606 		if (ret)
607 			goto leave;
608 
609 		split++;
610 drop:
611 		list_del_init(&info->shrinklist);
612 		removed++;
613 leave:
614 		iput(inode);
615 	}
616 
617 	spin_lock(&sbinfo->shrinklist_lock);
618 	list_splice_tail(&list, &sbinfo->shrinklist);
619 	sbinfo->shrinklist_len -= removed;
620 	spin_unlock(&sbinfo->shrinklist_lock);
621 
622 	return split;
623 }
624 
625 static long shmem_unused_huge_scan(struct super_block *sb,
626 		struct shrink_control *sc)
627 {
628 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
629 
630 	if (!READ_ONCE(sbinfo->shrinklist_len))
631 		return SHRINK_STOP;
632 
633 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
634 }
635 
636 static long shmem_unused_huge_count(struct super_block *sb,
637 		struct shrink_control *sc)
638 {
639 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
640 	return READ_ONCE(sbinfo->shrinklist_len);
641 }
642 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
643 
644 #define shmem_huge SHMEM_HUGE_DENY
645 
646 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
647 		struct shrink_control *sc, unsigned long nr_to_split)
648 {
649 	return 0;
650 }
651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
652 
653 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
654 {
655 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
656 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
657 	    shmem_huge != SHMEM_HUGE_DENY)
658 		return true;
659 	return false;
660 }
661 
662 /*
663  * Like add_to_page_cache_locked, but error if expected item has gone.
664  */
665 static int shmem_add_to_page_cache(struct page *page,
666 				   struct address_space *mapping,
667 				   pgoff_t index, void *expected, gfp_t gfp,
668 				   struct mm_struct *charge_mm)
669 {
670 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
671 	unsigned long i = 0;
672 	unsigned long nr = compound_nr(page);
673 	int error;
674 
675 	VM_BUG_ON_PAGE(PageTail(page), page);
676 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
677 	VM_BUG_ON_PAGE(!PageLocked(page), page);
678 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
679 	VM_BUG_ON(expected && PageTransHuge(page));
680 
681 	page_ref_add(page, nr);
682 	page->mapping = mapping;
683 	page->index = index;
684 
685 	if (!PageSwapCache(page)) {
686 		error = mem_cgroup_charge(page, charge_mm, gfp);
687 		if (error) {
688 			if (PageTransHuge(page)) {
689 				count_vm_event(THP_FILE_FALLBACK);
690 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
691 			}
692 			goto error;
693 		}
694 	}
695 	cgroup_throttle_swaprate(page, gfp);
696 
697 	do {
698 		void *entry;
699 		xas_lock_irq(&xas);
700 		entry = xas_find_conflict(&xas);
701 		if (entry != expected)
702 			xas_set_err(&xas, -EEXIST);
703 		xas_create_range(&xas);
704 		if (xas_error(&xas))
705 			goto unlock;
706 next:
707 		xas_store(&xas, page);
708 		if (++i < nr) {
709 			xas_next(&xas);
710 			goto next;
711 		}
712 		if (PageTransHuge(page)) {
713 			count_vm_event(THP_FILE_ALLOC);
714 			__inc_node_page_state(page, NR_SHMEM_THPS);
715 		}
716 		mapping->nrpages += nr;
717 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
718 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
719 unlock:
720 		xas_unlock_irq(&xas);
721 	} while (xas_nomem(&xas, gfp));
722 
723 	if (xas_error(&xas)) {
724 		error = xas_error(&xas);
725 		goto error;
726 	}
727 
728 	return 0;
729 error:
730 	page->mapping = NULL;
731 	page_ref_sub(page, nr);
732 	return error;
733 }
734 
735 /*
736  * Like delete_from_page_cache, but substitutes swap for page.
737  */
738 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
739 {
740 	struct address_space *mapping = page->mapping;
741 	int error;
742 
743 	VM_BUG_ON_PAGE(PageCompound(page), page);
744 
745 	xa_lock_irq(&mapping->i_pages);
746 	error = shmem_replace_entry(mapping, page->index, page, radswap);
747 	page->mapping = NULL;
748 	mapping->nrpages--;
749 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
750 	__dec_lruvec_page_state(page, NR_SHMEM);
751 	xa_unlock_irq(&mapping->i_pages);
752 	put_page(page);
753 	BUG_ON(error);
754 }
755 
756 /*
757  * Remove swap entry from page cache, free the swap and its page cache.
758  */
759 static int shmem_free_swap(struct address_space *mapping,
760 			   pgoff_t index, void *radswap)
761 {
762 	void *old;
763 
764 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
765 	if (old != radswap)
766 		return -ENOENT;
767 	free_swap_and_cache(radix_to_swp_entry(radswap));
768 	return 0;
769 }
770 
771 /*
772  * Determine (in bytes) how many of the shmem object's pages mapped by the
773  * given offsets are swapped out.
774  *
775  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
776  * as long as the inode doesn't go away and racy results are not a problem.
777  */
778 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
779 						pgoff_t start, pgoff_t end)
780 {
781 	XA_STATE(xas, &mapping->i_pages, start);
782 	struct page *page;
783 	unsigned long swapped = 0;
784 
785 	rcu_read_lock();
786 	xas_for_each(&xas, page, end - 1) {
787 		if (xas_retry(&xas, page))
788 			continue;
789 		if (xa_is_value(page))
790 			swapped++;
791 
792 		if (need_resched()) {
793 			xas_pause(&xas);
794 			cond_resched_rcu();
795 		}
796 	}
797 
798 	rcu_read_unlock();
799 
800 	return swapped << PAGE_SHIFT;
801 }
802 
803 /*
804  * Determine (in bytes) how many of the shmem object's pages mapped by the
805  * given vma is swapped out.
806  *
807  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
808  * as long as the inode doesn't go away and racy results are not a problem.
809  */
810 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
811 {
812 	struct inode *inode = file_inode(vma->vm_file);
813 	struct shmem_inode_info *info = SHMEM_I(inode);
814 	struct address_space *mapping = inode->i_mapping;
815 	unsigned long swapped;
816 
817 	/* Be careful as we don't hold info->lock */
818 	swapped = READ_ONCE(info->swapped);
819 
820 	/*
821 	 * The easier cases are when the shmem object has nothing in swap, or
822 	 * the vma maps it whole. Then we can simply use the stats that we
823 	 * already track.
824 	 */
825 	if (!swapped)
826 		return 0;
827 
828 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
829 		return swapped << PAGE_SHIFT;
830 
831 	/* Here comes the more involved part */
832 	return shmem_partial_swap_usage(mapping,
833 			linear_page_index(vma, vma->vm_start),
834 			linear_page_index(vma, vma->vm_end));
835 }
836 
837 /*
838  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
839  */
840 void shmem_unlock_mapping(struct address_space *mapping)
841 {
842 	struct pagevec pvec;
843 	pgoff_t indices[PAGEVEC_SIZE];
844 	pgoff_t index = 0;
845 
846 	pagevec_init(&pvec);
847 	/*
848 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
849 	 */
850 	while (!mapping_unevictable(mapping)) {
851 		/*
852 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
853 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
854 		 */
855 		pvec.nr = find_get_entries(mapping, index,
856 					   PAGEVEC_SIZE, pvec.pages, indices);
857 		if (!pvec.nr)
858 			break;
859 		index = indices[pvec.nr - 1] + 1;
860 		pagevec_remove_exceptionals(&pvec);
861 		check_move_unevictable_pages(&pvec);
862 		pagevec_release(&pvec);
863 		cond_resched();
864 	}
865 }
866 
867 /*
868  * Check whether a hole-punch or truncation needs to split a huge page,
869  * returning true if no split was required, or the split has been successful.
870  *
871  * Eviction (or truncation to 0 size) should never need to split a huge page;
872  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
873  * head, and then succeeded to trylock on tail.
874  *
875  * A split can only succeed when there are no additional references on the
876  * huge page: so the split below relies upon find_get_entries() having stopped
877  * when it found a subpage of the huge page, without getting further references.
878  */
879 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
880 {
881 	if (!PageTransCompound(page))
882 		return true;
883 
884 	/* Just proceed to delete a huge page wholly within the range punched */
885 	if (PageHead(page) &&
886 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
887 		return true;
888 
889 	/* Try to split huge page, so we can truly punch the hole or truncate */
890 	return split_huge_page(page) >= 0;
891 }
892 
893 /*
894  * Remove range of pages and swap entries from page cache, and free them.
895  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
896  */
897 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
898 								 bool unfalloc)
899 {
900 	struct address_space *mapping = inode->i_mapping;
901 	struct shmem_inode_info *info = SHMEM_I(inode);
902 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
903 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
904 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
905 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
906 	struct pagevec pvec;
907 	pgoff_t indices[PAGEVEC_SIZE];
908 	long nr_swaps_freed = 0;
909 	pgoff_t index;
910 	int i;
911 
912 	if (lend == -1)
913 		end = -1;	/* unsigned, so actually very big */
914 
915 	pagevec_init(&pvec);
916 	index = start;
917 	while (index < end) {
918 		pvec.nr = find_get_entries(mapping, index,
919 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
920 			pvec.pages, indices);
921 		if (!pvec.nr)
922 			break;
923 		for (i = 0; i < pagevec_count(&pvec); i++) {
924 			struct page *page = pvec.pages[i];
925 
926 			index = indices[i];
927 			if (index >= end)
928 				break;
929 
930 			if (xa_is_value(page)) {
931 				if (unfalloc)
932 					continue;
933 				nr_swaps_freed += !shmem_free_swap(mapping,
934 								index, page);
935 				continue;
936 			}
937 
938 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
939 
940 			if (!trylock_page(page))
941 				continue;
942 
943 			if ((!unfalloc || !PageUptodate(page)) &&
944 			    page_mapping(page) == mapping) {
945 				VM_BUG_ON_PAGE(PageWriteback(page), page);
946 				if (shmem_punch_compound(page, start, end))
947 					truncate_inode_page(mapping, page);
948 			}
949 			unlock_page(page);
950 		}
951 		pagevec_remove_exceptionals(&pvec);
952 		pagevec_release(&pvec);
953 		cond_resched();
954 		index++;
955 	}
956 
957 	if (partial_start) {
958 		struct page *page = NULL;
959 		shmem_getpage(inode, start - 1, &page, SGP_READ);
960 		if (page) {
961 			unsigned int top = PAGE_SIZE;
962 			if (start > end) {
963 				top = partial_end;
964 				partial_end = 0;
965 			}
966 			zero_user_segment(page, partial_start, top);
967 			set_page_dirty(page);
968 			unlock_page(page);
969 			put_page(page);
970 		}
971 	}
972 	if (partial_end) {
973 		struct page *page = NULL;
974 		shmem_getpage(inode, end, &page, SGP_READ);
975 		if (page) {
976 			zero_user_segment(page, 0, partial_end);
977 			set_page_dirty(page);
978 			unlock_page(page);
979 			put_page(page);
980 		}
981 	}
982 	if (start >= end)
983 		return;
984 
985 	index = start;
986 	while (index < end) {
987 		cond_resched();
988 
989 		pvec.nr = find_get_entries(mapping, index,
990 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
991 				pvec.pages, indices);
992 		if (!pvec.nr) {
993 			/* If all gone or hole-punch or unfalloc, we're done */
994 			if (index == start || end != -1)
995 				break;
996 			/* But if truncating, restart to make sure all gone */
997 			index = start;
998 			continue;
999 		}
1000 		for (i = 0; i < pagevec_count(&pvec); i++) {
1001 			struct page *page = pvec.pages[i];
1002 
1003 			index = indices[i];
1004 			if (index >= end)
1005 				break;
1006 
1007 			if (xa_is_value(page)) {
1008 				if (unfalloc)
1009 					continue;
1010 				if (shmem_free_swap(mapping, index, page)) {
1011 					/* Swap was replaced by page: retry */
1012 					index--;
1013 					break;
1014 				}
1015 				nr_swaps_freed++;
1016 				continue;
1017 			}
1018 
1019 			lock_page(page);
1020 
1021 			if (!unfalloc || !PageUptodate(page)) {
1022 				if (page_mapping(page) != mapping) {
1023 					/* Page was replaced by swap: retry */
1024 					unlock_page(page);
1025 					index--;
1026 					break;
1027 				}
1028 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1029 				if (shmem_punch_compound(page, start, end))
1030 					truncate_inode_page(mapping, page);
1031 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1032 					/* Wipe the page and don't get stuck */
1033 					clear_highpage(page);
1034 					flush_dcache_page(page);
1035 					set_page_dirty(page);
1036 					if (index <
1037 					    round_up(start, HPAGE_PMD_NR))
1038 						start = index + 1;
1039 				}
1040 			}
1041 			unlock_page(page);
1042 		}
1043 		pagevec_remove_exceptionals(&pvec);
1044 		pagevec_release(&pvec);
1045 		index++;
1046 	}
1047 
1048 	spin_lock_irq(&info->lock);
1049 	info->swapped -= nr_swaps_freed;
1050 	shmem_recalc_inode(inode);
1051 	spin_unlock_irq(&info->lock);
1052 }
1053 
1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055 {
1056 	shmem_undo_range(inode, lstart, lend, false);
1057 	inode->i_ctime = inode->i_mtime = current_time(inode);
1058 }
1059 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1060 
1061 static int shmem_getattr(const struct path *path, struct kstat *stat,
1062 			 u32 request_mask, unsigned int query_flags)
1063 {
1064 	struct inode *inode = path->dentry->d_inode;
1065 	struct shmem_inode_info *info = SHMEM_I(inode);
1066 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1067 
1068 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1069 		spin_lock_irq(&info->lock);
1070 		shmem_recalc_inode(inode);
1071 		spin_unlock_irq(&info->lock);
1072 	}
1073 	generic_fillattr(inode, stat);
1074 
1075 	if (is_huge_enabled(sb_info))
1076 		stat->blksize = HPAGE_PMD_SIZE;
1077 
1078 	return 0;
1079 }
1080 
1081 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1082 {
1083 	struct inode *inode = d_inode(dentry);
1084 	struct shmem_inode_info *info = SHMEM_I(inode);
1085 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1086 	int error;
1087 
1088 	error = setattr_prepare(dentry, attr);
1089 	if (error)
1090 		return error;
1091 
1092 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093 		loff_t oldsize = inode->i_size;
1094 		loff_t newsize = attr->ia_size;
1095 
1096 		/* protected by i_mutex */
1097 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099 			return -EPERM;
1100 
1101 		if (newsize != oldsize) {
1102 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103 					oldsize, newsize);
1104 			if (error)
1105 				return error;
1106 			i_size_write(inode, newsize);
1107 			inode->i_ctime = inode->i_mtime = current_time(inode);
1108 		}
1109 		if (newsize <= oldsize) {
1110 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1111 			if (oldsize > holebegin)
1112 				unmap_mapping_range(inode->i_mapping,
1113 							holebegin, 0, 1);
1114 			if (info->alloced)
1115 				shmem_truncate_range(inode,
1116 							newsize, (loff_t)-1);
1117 			/* unmap again to remove racily COWed private pages */
1118 			if (oldsize > holebegin)
1119 				unmap_mapping_range(inode->i_mapping,
1120 							holebegin, 0, 1);
1121 
1122 			/*
1123 			 * Part of the huge page can be beyond i_size: subject
1124 			 * to shrink under memory pressure.
1125 			 */
1126 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1127 				spin_lock(&sbinfo->shrinklist_lock);
1128 				/*
1129 				 * _careful to defend against unlocked access to
1130 				 * ->shrink_list in shmem_unused_huge_shrink()
1131 				 */
1132 				if (list_empty_careful(&info->shrinklist)) {
1133 					list_add_tail(&info->shrinklist,
1134 							&sbinfo->shrinklist);
1135 					sbinfo->shrinklist_len++;
1136 				}
1137 				spin_unlock(&sbinfo->shrinklist_lock);
1138 			}
1139 		}
1140 	}
1141 
1142 	setattr_copy(inode, attr);
1143 	if (attr->ia_valid & ATTR_MODE)
1144 		error = posix_acl_chmod(inode, inode->i_mode);
1145 	return error;
1146 }
1147 
1148 static void shmem_evict_inode(struct inode *inode)
1149 {
1150 	struct shmem_inode_info *info = SHMEM_I(inode);
1151 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1152 
1153 	if (inode->i_mapping->a_ops == &shmem_aops) {
1154 		shmem_unacct_size(info->flags, inode->i_size);
1155 		inode->i_size = 0;
1156 		shmem_truncate_range(inode, 0, (loff_t)-1);
1157 		if (!list_empty(&info->shrinklist)) {
1158 			spin_lock(&sbinfo->shrinklist_lock);
1159 			if (!list_empty(&info->shrinklist)) {
1160 				list_del_init(&info->shrinklist);
1161 				sbinfo->shrinklist_len--;
1162 			}
1163 			spin_unlock(&sbinfo->shrinklist_lock);
1164 		}
1165 		while (!list_empty(&info->swaplist)) {
1166 			/* Wait while shmem_unuse() is scanning this inode... */
1167 			wait_var_event(&info->stop_eviction,
1168 				       !atomic_read(&info->stop_eviction));
1169 			mutex_lock(&shmem_swaplist_mutex);
1170 			/* ...but beware of the race if we peeked too early */
1171 			if (!atomic_read(&info->stop_eviction))
1172 				list_del_init(&info->swaplist);
1173 			mutex_unlock(&shmem_swaplist_mutex);
1174 		}
1175 	}
1176 
1177 	simple_xattrs_free(&info->xattrs);
1178 	WARN_ON(inode->i_blocks);
1179 	shmem_free_inode(inode->i_sb);
1180 	clear_inode(inode);
1181 }
1182 
1183 extern struct swap_info_struct *swap_info[];
1184 
1185 static int shmem_find_swap_entries(struct address_space *mapping,
1186 				   pgoff_t start, unsigned int nr_entries,
1187 				   struct page **entries, pgoff_t *indices,
1188 				   unsigned int type, bool frontswap)
1189 {
1190 	XA_STATE(xas, &mapping->i_pages, start);
1191 	struct page *page;
1192 	swp_entry_t entry;
1193 	unsigned int ret = 0;
1194 
1195 	if (!nr_entries)
1196 		return 0;
1197 
1198 	rcu_read_lock();
1199 	xas_for_each(&xas, page, ULONG_MAX) {
1200 		if (xas_retry(&xas, page))
1201 			continue;
1202 
1203 		if (!xa_is_value(page))
1204 			continue;
1205 
1206 		entry = radix_to_swp_entry(page);
1207 		if (swp_type(entry) != type)
1208 			continue;
1209 		if (frontswap &&
1210 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1211 			continue;
1212 
1213 		indices[ret] = xas.xa_index;
1214 		entries[ret] = page;
1215 
1216 		if (need_resched()) {
1217 			xas_pause(&xas);
1218 			cond_resched_rcu();
1219 		}
1220 		if (++ret == nr_entries)
1221 			break;
1222 	}
1223 	rcu_read_unlock();
1224 
1225 	return ret;
1226 }
1227 
1228 /*
1229  * Move the swapped pages for an inode to page cache. Returns the count
1230  * of pages swapped in, or the error in case of failure.
1231  */
1232 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1233 				    pgoff_t *indices)
1234 {
1235 	int i = 0;
1236 	int ret = 0;
1237 	int error = 0;
1238 	struct address_space *mapping = inode->i_mapping;
1239 
1240 	for (i = 0; i < pvec.nr; i++) {
1241 		struct page *page = pvec.pages[i];
1242 
1243 		if (!xa_is_value(page))
1244 			continue;
1245 		error = shmem_swapin_page(inode, indices[i],
1246 					  &page, SGP_CACHE,
1247 					  mapping_gfp_mask(mapping),
1248 					  NULL, NULL);
1249 		if (error == 0) {
1250 			unlock_page(page);
1251 			put_page(page);
1252 			ret++;
1253 		}
1254 		if (error == -ENOMEM)
1255 			break;
1256 		error = 0;
1257 	}
1258 	return error ? error : ret;
1259 }
1260 
1261 /*
1262  * If swap found in inode, free it and move page from swapcache to filecache.
1263  */
1264 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1265 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1266 {
1267 	struct address_space *mapping = inode->i_mapping;
1268 	pgoff_t start = 0;
1269 	struct pagevec pvec;
1270 	pgoff_t indices[PAGEVEC_SIZE];
1271 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1272 	int ret = 0;
1273 
1274 	pagevec_init(&pvec);
1275 	do {
1276 		unsigned int nr_entries = PAGEVEC_SIZE;
1277 
1278 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1279 			nr_entries = *fs_pages_to_unuse;
1280 
1281 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1282 						  pvec.pages, indices,
1283 						  type, frontswap);
1284 		if (pvec.nr == 0) {
1285 			ret = 0;
1286 			break;
1287 		}
1288 
1289 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1290 		if (ret < 0)
1291 			break;
1292 
1293 		if (frontswap_partial) {
1294 			*fs_pages_to_unuse -= ret;
1295 			if (*fs_pages_to_unuse == 0) {
1296 				ret = FRONTSWAP_PAGES_UNUSED;
1297 				break;
1298 			}
1299 		}
1300 
1301 		start = indices[pvec.nr - 1];
1302 	} while (true);
1303 
1304 	return ret;
1305 }
1306 
1307 /*
1308  * Read all the shared memory data that resides in the swap
1309  * device 'type' back into memory, so the swap device can be
1310  * unused.
1311  */
1312 int shmem_unuse(unsigned int type, bool frontswap,
1313 		unsigned long *fs_pages_to_unuse)
1314 {
1315 	struct shmem_inode_info *info, *next;
1316 	int error = 0;
1317 
1318 	if (list_empty(&shmem_swaplist))
1319 		return 0;
1320 
1321 	mutex_lock(&shmem_swaplist_mutex);
1322 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1323 		if (!info->swapped) {
1324 			list_del_init(&info->swaplist);
1325 			continue;
1326 		}
1327 		/*
1328 		 * Drop the swaplist mutex while searching the inode for swap;
1329 		 * but before doing so, make sure shmem_evict_inode() will not
1330 		 * remove placeholder inode from swaplist, nor let it be freed
1331 		 * (igrab() would protect from unlink, but not from unmount).
1332 		 */
1333 		atomic_inc(&info->stop_eviction);
1334 		mutex_unlock(&shmem_swaplist_mutex);
1335 
1336 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1337 					  fs_pages_to_unuse);
1338 		cond_resched();
1339 
1340 		mutex_lock(&shmem_swaplist_mutex);
1341 		next = list_next_entry(info, swaplist);
1342 		if (!info->swapped)
1343 			list_del_init(&info->swaplist);
1344 		if (atomic_dec_and_test(&info->stop_eviction))
1345 			wake_up_var(&info->stop_eviction);
1346 		if (error)
1347 			break;
1348 	}
1349 	mutex_unlock(&shmem_swaplist_mutex);
1350 
1351 	return error;
1352 }
1353 
1354 /*
1355  * Move the page from the page cache to the swap cache.
1356  */
1357 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1358 {
1359 	struct shmem_inode_info *info;
1360 	struct address_space *mapping;
1361 	struct inode *inode;
1362 	swp_entry_t swap;
1363 	pgoff_t index;
1364 
1365 	VM_BUG_ON_PAGE(PageCompound(page), page);
1366 	BUG_ON(!PageLocked(page));
1367 	mapping = page->mapping;
1368 	index = page->index;
1369 	inode = mapping->host;
1370 	info = SHMEM_I(inode);
1371 	if (info->flags & VM_LOCKED)
1372 		goto redirty;
1373 	if (!total_swap_pages)
1374 		goto redirty;
1375 
1376 	/*
1377 	 * Our capabilities prevent regular writeback or sync from ever calling
1378 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1379 	 * its underlying filesystem, in which case tmpfs should write out to
1380 	 * swap only in response to memory pressure, and not for the writeback
1381 	 * threads or sync.
1382 	 */
1383 	if (!wbc->for_reclaim) {
1384 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1385 		goto redirty;
1386 	}
1387 
1388 	/*
1389 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1390 	 * value into swapfile.c, the only way we can correctly account for a
1391 	 * fallocated page arriving here is now to initialize it and write it.
1392 	 *
1393 	 * That's okay for a page already fallocated earlier, but if we have
1394 	 * not yet completed the fallocation, then (a) we want to keep track
1395 	 * of this page in case we have to undo it, and (b) it may not be a
1396 	 * good idea to continue anyway, once we're pushing into swap.  So
1397 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1398 	 */
1399 	if (!PageUptodate(page)) {
1400 		if (inode->i_private) {
1401 			struct shmem_falloc *shmem_falloc;
1402 			spin_lock(&inode->i_lock);
1403 			shmem_falloc = inode->i_private;
1404 			if (shmem_falloc &&
1405 			    !shmem_falloc->waitq &&
1406 			    index >= shmem_falloc->start &&
1407 			    index < shmem_falloc->next)
1408 				shmem_falloc->nr_unswapped++;
1409 			else
1410 				shmem_falloc = NULL;
1411 			spin_unlock(&inode->i_lock);
1412 			if (shmem_falloc)
1413 				goto redirty;
1414 		}
1415 		clear_highpage(page);
1416 		flush_dcache_page(page);
1417 		SetPageUptodate(page);
1418 	}
1419 
1420 	swap = get_swap_page(page);
1421 	if (!swap.val)
1422 		goto redirty;
1423 
1424 	/*
1425 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1426 	 * if it's not already there.  Do it now before the page is
1427 	 * moved to swap cache, when its pagelock no longer protects
1428 	 * the inode from eviction.  But don't unlock the mutex until
1429 	 * we've incremented swapped, because shmem_unuse_inode() will
1430 	 * prune a !swapped inode from the swaplist under this mutex.
1431 	 */
1432 	mutex_lock(&shmem_swaplist_mutex);
1433 	if (list_empty(&info->swaplist))
1434 		list_add(&info->swaplist, &shmem_swaplist);
1435 
1436 	if (add_to_swap_cache(page, swap,
1437 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1438 			NULL) == 0) {
1439 		spin_lock_irq(&info->lock);
1440 		shmem_recalc_inode(inode);
1441 		info->swapped++;
1442 		spin_unlock_irq(&info->lock);
1443 
1444 		swap_shmem_alloc(swap);
1445 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1446 
1447 		mutex_unlock(&shmem_swaplist_mutex);
1448 		BUG_ON(page_mapped(page));
1449 		swap_writepage(page, wbc);
1450 		return 0;
1451 	}
1452 
1453 	mutex_unlock(&shmem_swaplist_mutex);
1454 	put_swap_page(page, swap);
1455 redirty:
1456 	set_page_dirty(page);
1457 	if (wbc->for_reclaim)
1458 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1459 	unlock_page(page);
1460 	return 0;
1461 }
1462 
1463 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1464 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 	char buffer[64];
1467 
1468 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1469 		return;		/* show nothing */
1470 
1471 	mpol_to_str(buffer, sizeof(buffer), mpol);
1472 
1473 	seq_printf(seq, ",mpol=%s", buffer);
1474 }
1475 
1476 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1477 {
1478 	struct mempolicy *mpol = NULL;
1479 	if (sbinfo->mpol) {
1480 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1481 		mpol = sbinfo->mpol;
1482 		mpol_get(mpol);
1483 		spin_unlock(&sbinfo->stat_lock);
1484 	}
1485 	return mpol;
1486 }
1487 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1488 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1489 {
1490 }
1491 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1492 {
1493 	return NULL;
1494 }
1495 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1496 #ifndef CONFIG_NUMA
1497 #define vm_policy vm_private_data
1498 #endif
1499 
1500 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1501 		struct shmem_inode_info *info, pgoff_t index)
1502 {
1503 	/* Create a pseudo vma that just contains the policy */
1504 	vma_init(vma, NULL);
1505 	/* Bias interleave by inode number to distribute better across nodes */
1506 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1507 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1508 }
1509 
1510 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1511 {
1512 	/* Drop reference taken by mpol_shared_policy_lookup() */
1513 	mpol_cond_put(vma->vm_policy);
1514 }
1515 
1516 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1517 			struct shmem_inode_info *info, pgoff_t index)
1518 {
1519 	struct vm_area_struct pvma;
1520 	struct page *page;
1521 	struct vm_fault vmf;
1522 
1523 	shmem_pseudo_vma_init(&pvma, info, index);
1524 	vmf.vma = &pvma;
1525 	vmf.address = 0;
1526 	page = swap_cluster_readahead(swap, gfp, &vmf);
1527 	shmem_pseudo_vma_destroy(&pvma);
1528 
1529 	return page;
1530 }
1531 
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 		struct shmem_inode_info *info, pgoff_t index)
1534 {
1535 	struct vm_area_struct pvma;
1536 	struct address_space *mapping = info->vfs_inode.i_mapping;
1537 	pgoff_t hindex;
1538 	struct page *page;
1539 
1540 	hindex = round_down(index, HPAGE_PMD_NR);
1541 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 								XA_PRESENT))
1543 		return NULL;
1544 
1545 	shmem_pseudo_vma_init(&pvma, info, hindex);
1546 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1547 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1548 	shmem_pseudo_vma_destroy(&pvma);
1549 	if (page)
1550 		prep_transhuge_page(page);
1551 	else
1552 		count_vm_event(THP_FILE_FALLBACK);
1553 	return page;
1554 }
1555 
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557 			struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 	struct vm_area_struct pvma;
1560 	struct page *page;
1561 
1562 	shmem_pseudo_vma_init(&pvma, info, index);
1563 	page = alloc_page_vma(gfp, &pvma, 0);
1564 	shmem_pseudo_vma_destroy(&pvma);
1565 
1566 	return page;
1567 }
1568 
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570 		struct inode *inode,
1571 		pgoff_t index, bool huge)
1572 {
1573 	struct shmem_inode_info *info = SHMEM_I(inode);
1574 	struct page *page;
1575 	int nr;
1576 	int err = -ENOSPC;
1577 
1578 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 		huge = false;
1580 	nr = huge ? HPAGE_PMD_NR : 1;
1581 
1582 	if (!shmem_inode_acct_block(inode, nr))
1583 		goto failed;
1584 
1585 	if (huge)
1586 		page = shmem_alloc_hugepage(gfp, info, index);
1587 	else
1588 		page = shmem_alloc_page(gfp, info, index);
1589 	if (page) {
1590 		__SetPageLocked(page);
1591 		__SetPageSwapBacked(page);
1592 		return page;
1593 	}
1594 
1595 	err = -ENOMEM;
1596 	shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 	return ERR_PTR(err);
1599 }
1600 
1601 /*
1602  * When a page is moved from swapcache to shmem filecache (either by the
1603  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605  * ignorance of the mapping it belongs to.  If that mapping has special
1606  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607  * we may need to copy to a suitable page before moving to filecache.
1608  *
1609  * In a future release, this may well be extended to respect cpuset and
1610  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611  * but for now it is a simple matter of zone.
1612  */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615 	return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617 
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 				struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 	struct page *oldpage, *newpage;
1622 	struct address_space *swap_mapping;
1623 	swp_entry_t entry;
1624 	pgoff_t swap_index;
1625 	int error;
1626 
1627 	oldpage = *pagep;
1628 	entry.val = page_private(oldpage);
1629 	swap_index = swp_offset(entry);
1630 	swap_mapping = page_mapping(oldpage);
1631 
1632 	/*
1633 	 * We have arrived here because our zones are constrained, so don't
1634 	 * limit chance of success by further cpuset and node constraints.
1635 	 */
1636 	gfp &= ~GFP_CONSTRAINT_MASK;
1637 	newpage = shmem_alloc_page(gfp, info, index);
1638 	if (!newpage)
1639 		return -ENOMEM;
1640 
1641 	get_page(newpage);
1642 	copy_highpage(newpage, oldpage);
1643 	flush_dcache_page(newpage);
1644 
1645 	__SetPageLocked(newpage);
1646 	__SetPageSwapBacked(newpage);
1647 	SetPageUptodate(newpage);
1648 	set_page_private(newpage, entry.val);
1649 	SetPageSwapCache(newpage);
1650 
1651 	/*
1652 	 * Our caller will very soon move newpage out of swapcache, but it's
1653 	 * a nice clean interface for us to replace oldpage by newpage there.
1654 	 */
1655 	xa_lock_irq(&swap_mapping->i_pages);
1656 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 	if (!error) {
1658 		mem_cgroup_migrate(oldpage, newpage);
1659 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661 	}
1662 	xa_unlock_irq(&swap_mapping->i_pages);
1663 
1664 	if (unlikely(error)) {
1665 		/*
1666 		 * Is this possible?  I think not, now that our callers check
1667 		 * both PageSwapCache and page_private after getting page lock;
1668 		 * but be defensive.  Reverse old to newpage for clear and free.
1669 		 */
1670 		oldpage = newpage;
1671 	} else {
1672 		lru_cache_add(newpage);
1673 		*pagep = newpage;
1674 	}
1675 
1676 	ClearPageSwapCache(oldpage);
1677 	set_page_private(oldpage, 0);
1678 
1679 	unlock_page(oldpage);
1680 	put_page(oldpage);
1681 	put_page(oldpage);
1682 	return error;
1683 }
1684 
1685 /*
1686  * Swap in the page pointed to by *pagep.
1687  * Caller has to make sure that *pagep contains a valid swapped page.
1688  * Returns 0 and the page in pagep if success. On failure, returns the
1689  * error code and NULL in *pagep.
1690  */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 			     struct page **pagep, enum sgp_type sgp,
1693 			     gfp_t gfp, struct vm_area_struct *vma,
1694 			     vm_fault_t *fault_type)
1695 {
1696 	struct address_space *mapping = inode->i_mapping;
1697 	struct shmem_inode_info *info = SHMEM_I(inode);
1698 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1699 	struct page *page;
1700 	swp_entry_t swap;
1701 	int error;
1702 
1703 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1704 	swap = radix_to_swp_entry(*pagep);
1705 	*pagep = NULL;
1706 
1707 	/* Look it up and read it in.. */
1708 	page = lookup_swap_cache(swap, NULL, 0);
1709 	if (!page) {
1710 		/* Or update major stats only when swapin succeeds?? */
1711 		if (fault_type) {
1712 			*fault_type |= VM_FAULT_MAJOR;
1713 			count_vm_event(PGMAJFAULT);
1714 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1715 		}
1716 		/* Here we actually start the io */
1717 		page = shmem_swapin(swap, gfp, info, index);
1718 		if (!page) {
1719 			error = -ENOMEM;
1720 			goto failed;
1721 		}
1722 	}
1723 
1724 	/* We have to do this with page locked to prevent races */
1725 	lock_page(page);
1726 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1727 	    !shmem_confirm_swap(mapping, index, swap)) {
1728 		error = -EEXIST;
1729 		goto unlock;
1730 	}
1731 	if (!PageUptodate(page)) {
1732 		error = -EIO;
1733 		goto failed;
1734 	}
1735 	wait_on_page_writeback(page);
1736 
1737 	if (shmem_should_replace_page(page, gfp)) {
1738 		error = shmem_replace_page(&page, gfp, info, index);
1739 		if (error)
1740 			goto failed;
1741 	}
1742 
1743 	error = shmem_add_to_page_cache(page, mapping, index,
1744 					swp_to_radix_entry(swap), gfp,
1745 					charge_mm);
1746 	if (error)
1747 		goto failed;
1748 
1749 	spin_lock_irq(&info->lock);
1750 	info->swapped--;
1751 	shmem_recalc_inode(inode);
1752 	spin_unlock_irq(&info->lock);
1753 
1754 	if (sgp == SGP_WRITE)
1755 		mark_page_accessed(page);
1756 
1757 	delete_from_swap_cache(page);
1758 	set_page_dirty(page);
1759 	swap_free(swap);
1760 
1761 	*pagep = page;
1762 	return 0;
1763 failed:
1764 	if (!shmem_confirm_swap(mapping, index, swap))
1765 		error = -EEXIST;
1766 unlock:
1767 	if (page) {
1768 		unlock_page(page);
1769 		put_page(page);
1770 	}
1771 
1772 	return error;
1773 }
1774 
1775 /*
1776  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1777  *
1778  * If we allocate a new one we do not mark it dirty. That's up to the
1779  * vm. If we swap it in we mark it dirty since we also free the swap
1780  * entry since a page cannot live in both the swap and page cache.
1781  *
1782  * vmf and fault_type are only supplied by shmem_fault:
1783  * otherwise they are NULL.
1784  */
1785 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1786 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1787 	struct vm_area_struct *vma, struct vm_fault *vmf,
1788 			vm_fault_t *fault_type)
1789 {
1790 	struct address_space *mapping = inode->i_mapping;
1791 	struct shmem_inode_info *info = SHMEM_I(inode);
1792 	struct shmem_sb_info *sbinfo;
1793 	struct mm_struct *charge_mm;
1794 	struct page *page;
1795 	enum sgp_type sgp_huge = sgp;
1796 	pgoff_t hindex = index;
1797 	int error;
1798 	int once = 0;
1799 	int alloced = 0;
1800 
1801 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1802 		return -EFBIG;
1803 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1804 		sgp = SGP_CACHE;
1805 repeat:
1806 	if (sgp <= SGP_CACHE &&
1807 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1808 		return -EINVAL;
1809 	}
1810 
1811 	sbinfo = SHMEM_SB(inode->i_sb);
1812 	charge_mm = vma ? vma->vm_mm : current->mm;
1813 
1814 	page = find_lock_entry(mapping, index);
1815 	if (xa_is_value(page)) {
1816 		error = shmem_swapin_page(inode, index, &page,
1817 					  sgp, gfp, vma, fault_type);
1818 		if (error == -EEXIST)
1819 			goto repeat;
1820 
1821 		*pagep = page;
1822 		return error;
1823 	}
1824 
1825 	if (page && sgp == SGP_WRITE)
1826 		mark_page_accessed(page);
1827 
1828 	/* fallocated page? */
1829 	if (page && !PageUptodate(page)) {
1830 		if (sgp != SGP_READ)
1831 			goto clear;
1832 		unlock_page(page);
1833 		put_page(page);
1834 		page = NULL;
1835 	}
1836 	if (page || sgp == SGP_READ) {
1837 		*pagep = page;
1838 		return 0;
1839 	}
1840 
1841 	/*
1842 	 * Fast cache lookup did not find it:
1843 	 * bring it back from swap or allocate.
1844 	 */
1845 
1846 	if (vma && userfaultfd_missing(vma)) {
1847 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1848 		return 0;
1849 	}
1850 
1851 	/* shmem_symlink() */
1852 	if (mapping->a_ops != &shmem_aops)
1853 		goto alloc_nohuge;
1854 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1855 		goto alloc_nohuge;
1856 	if (shmem_huge == SHMEM_HUGE_FORCE)
1857 		goto alloc_huge;
1858 	switch (sbinfo->huge) {
1859 	case SHMEM_HUGE_NEVER:
1860 		goto alloc_nohuge;
1861 	case SHMEM_HUGE_WITHIN_SIZE: {
1862 		loff_t i_size;
1863 		pgoff_t off;
1864 
1865 		off = round_up(index, HPAGE_PMD_NR);
1866 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1867 		if (i_size >= HPAGE_PMD_SIZE &&
1868 		    i_size >> PAGE_SHIFT >= off)
1869 			goto alloc_huge;
1870 
1871 		fallthrough;
1872 	}
1873 	case SHMEM_HUGE_ADVISE:
1874 		if (sgp_huge == SGP_HUGE)
1875 			goto alloc_huge;
1876 		/* TODO: implement fadvise() hints */
1877 		goto alloc_nohuge;
1878 	}
1879 
1880 alloc_huge:
1881 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1882 	if (IS_ERR(page)) {
1883 alloc_nohuge:
1884 		page = shmem_alloc_and_acct_page(gfp, inode,
1885 						 index, false);
1886 	}
1887 	if (IS_ERR(page)) {
1888 		int retry = 5;
1889 
1890 		error = PTR_ERR(page);
1891 		page = NULL;
1892 		if (error != -ENOSPC)
1893 			goto unlock;
1894 		/*
1895 		 * Try to reclaim some space by splitting a huge page
1896 		 * beyond i_size on the filesystem.
1897 		 */
1898 		while (retry--) {
1899 			int ret;
1900 
1901 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1902 			if (ret == SHRINK_STOP)
1903 				break;
1904 			if (ret)
1905 				goto alloc_nohuge;
1906 		}
1907 		goto unlock;
1908 	}
1909 
1910 	if (PageTransHuge(page))
1911 		hindex = round_down(index, HPAGE_PMD_NR);
1912 	else
1913 		hindex = index;
1914 
1915 	if (sgp == SGP_WRITE)
1916 		__SetPageReferenced(page);
1917 
1918 	error = shmem_add_to_page_cache(page, mapping, hindex,
1919 					NULL, gfp & GFP_RECLAIM_MASK,
1920 					charge_mm);
1921 	if (error)
1922 		goto unacct;
1923 	lru_cache_add(page);
1924 
1925 	spin_lock_irq(&info->lock);
1926 	info->alloced += compound_nr(page);
1927 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1928 	shmem_recalc_inode(inode);
1929 	spin_unlock_irq(&info->lock);
1930 	alloced = true;
1931 
1932 	if (PageTransHuge(page) &&
1933 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1934 			hindex + HPAGE_PMD_NR - 1) {
1935 		/*
1936 		 * Part of the huge page is beyond i_size: subject
1937 		 * to shrink under memory pressure.
1938 		 */
1939 		spin_lock(&sbinfo->shrinklist_lock);
1940 		/*
1941 		 * _careful to defend against unlocked access to
1942 		 * ->shrink_list in shmem_unused_huge_shrink()
1943 		 */
1944 		if (list_empty_careful(&info->shrinklist)) {
1945 			list_add_tail(&info->shrinklist,
1946 				      &sbinfo->shrinklist);
1947 			sbinfo->shrinklist_len++;
1948 		}
1949 		spin_unlock(&sbinfo->shrinklist_lock);
1950 	}
1951 
1952 	/*
1953 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1954 	 */
1955 	if (sgp == SGP_FALLOC)
1956 		sgp = SGP_WRITE;
1957 clear:
1958 	/*
1959 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1960 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1961 	 * it now, lest undo on failure cancel our earlier guarantee.
1962 	 */
1963 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1964 		struct page *head = compound_head(page);
1965 		int i;
1966 
1967 		for (i = 0; i < compound_nr(head); i++) {
1968 			clear_highpage(head + i);
1969 			flush_dcache_page(head + i);
1970 		}
1971 		SetPageUptodate(head);
1972 	}
1973 
1974 	/* Perhaps the file has been truncated since we checked */
1975 	if (sgp <= SGP_CACHE &&
1976 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1977 		if (alloced) {
1978 			ClearPageDirty(page);
1979 			delete_from_page_cache(page);
1980 			spin_lock_irq(&info->lock);
1981 			shmem_recalc_inode(inode);
1982 			spin_unlock_irq(&info->lock);
1983 		}
1984 		error = -EINVAL;
1985 		goto unlock;
1986 	}
1987 	*pagep = page + index - hindex;
1988 	return 0;
1989 
1990 	/*
1991 	 * Error recovery.
1992 	 */
1993 unacct:
1994 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1995 
1996 	if (PageTransHuge(page)) {
1997 		unlock_page(page);
1998 		put_page(page);
1999 		goto alloc_nohuge;
2000 	}
2001 unlock:
2002 	if (page) {
2003 		unlock_page(page);
2004 		put_page(page);
2005 	}
2006 	if (error == -ENOSPC && !once++) {
2007 		spin_lock_irq(&info->lock);
2008 		shmem_recalc_inode(inode);
2009 		spin_unlock_irq(&info->lock);
2010 		goto repeat;
2011 	}
2012 	if (error == -EEXIST)
2013 		goto repeat;
2014 	return error;
2015 }
2016 
2017 /*
2018  * This is like autoremove_wake_function, but it removes the wait queue
2019  * entry unconditionally - even if something else had already woken the
2020  * target.
2021  */
2022 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2023 {
2024 	int ret = default_wake_function(wait, mode, sync, key);
2025 	list_del_init(&wait->entry);
2026 	return ret;
2027 }
2028 
2029 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2030 {
2031 	struct vm_area_struct *vma = vmf->vma;
2032 	struct inode *inode = file_inode(vma->vm_file);
2033 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2034 	enum sgp_type sgp;
2035 	int err;
2036 	vm_fault_t ret = VM_FAULT_LOCKED;
2037 
2038 	/*
2039 	 * Trinity finds that probing a hole which tmpfs is punching can
2040 	 * prevent the hole-punch from ever completing: which in turn
2041 	 * locks writers out with its hold on i_mutex.  So refrain from
2042 	 * faulting pages into the hole while it's being punched.  Although
2043 	 * shmem_undo_range() does remove the additions, it may be unable to
2044 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2045 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2046 	 *
2047 	 * It does not matter if we sometimes reach this check just before the
2048 	 * hole-punch begins, so that one fault then races with the punch:
2049 	 * we just need to make racing faults a rare case.
2050 	 *
2051 	 * The implementation below would be much simpler if we just used a
2052 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2053 	 * and bloating every shmem inode for this unlikely case would be sad.
2054 	 */
2055 	if (unlikely(inode->i_private)) {
2056 		struct shmem_falloc *shmem_falloc;
2057 
2058 		spin_lock(&inode->i_lock);
2059 		shmem_falloc = inode->i_private;
2060 		if (shmem_falloc &&
2061 		    shmem_falloc->waitq &&
2062 		    vmf->pgoff >= shmem_falloc->start &&
2063 		    vmf->pgoff < shmem_falloc->next) {
2064 			struct file *fpin;
2065 			wait_queue_head_t *shmem_falloc_waitq;
2066 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2067 
2068 			ret = VM_FAULT_NOPAGE;
2069 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2070 			if (fpin)
2071 				ret = VM_FAULT_RETRY;
2072 
2073 			shmem_falloc_waitq = shmem_falloc->waitq;
2074 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2075 					TASK_UNINTERRUPTIBLE);
2076 			spin_unlock(&inode->i_lock);
2077 			schedule();
2078 
2079 			/*
2080 			 * shmem_falloc_waitq points into the shmem_fallocate()
2081 			 * stack of the hole-punching task: shmem_falloc_waitq
2082 			 * is usually invalid by the time we reach here, but
2083 			 * finish_wait() does not dereference it in that case;
2084 			 * though i_lock needed lest racing with wake_up_all().
2085 			 */
2086 			spin_lock(&inode->i_lock);
2087 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2088 			spin_unlock(&inode->i_lock);
2089 
2090 			if (fpin)
2091 				fput(fpin);
2092 			return ret;
2093 		}
2094 		spin_unlock(&inode->i_lock);
2095 	}
2096 
2097 	sgp = SGP_CACHE;
2098 
2099 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2100 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2101 		sgp = SGP_NOHUGE;
2102 	else if (vma->vm_flags & VM_HUGEPAGE)
2103 		sgp = SGP_HUGE;
2104 
2105 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2106 				  gfp, vma, vmf, &ret);
2107 	if (err)
2108 		return vmf_error(err);
2109 	return ret;
2110 }
2111 
2112 unsigned long shmem_get_unmapped_area(struct file *file,
2113 				      unsigned long uaddr, unsigned long len,
2114 				      unsigned long pgoff, unsigned long flags)
2115 {
2116 	unsigned long (*get_area)(struct file *,
2117 		unsigned long, unsigned long, unsigned long, unsigned long);
2118 	unsigned long addr;
2119 	unsigned long offset;
2120 	unsigned long inflated_len;
2121 	unsigned long inflated_addr;
2122 	unsigned long inflated_offset;
2123 
2124 	if (len > TASK_SIZE)
2125 		return -ENOMEM;
2126 
2127 	get_area = current->mm->get_unmapped_area;
2128 	addr = get_area(file, uaddr, len, pgoff, flags);
2129 
2130 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2131 		return addr;
2132 	if (IS_ERR_VALUE(addr))
2133 		return addr;
2134 	if (addr & ~PAGE_MASK)
2135 		return addr;
2136 	if (addr > TASK_SIZE - len)
2137 		return addr;
2138 
2139 	if (shmem_huge == SHMEM_HUGE_DENY)
2140 		return addr;
2141 	if (len < HPAGE_PMD_SIZE)
2142 		return addr;
2143 	if (flags & MAP_FIXED)
2144 		return addr;
2145 	/*
2146 	 * Our priority is to support MAP_SHARED mapped hugely;
2147 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2148 	 * But if caller specified an address hint and we allocated area there
2149 	 * successfully, respect that as before.
2150 	 */
2151 	if (uaddr == addr)
2152 		return addr;
2153 
2154 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2155 		struct super_block *sb;
2156 
2157 		if (file) {
2158 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2159 			sb = file_inode(file)->i_sb;
2160 		} else {
2161 			/*
2162 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2163 			 * for "/dev/zero", to create a shared anonymous object.
2164 			 */
2165 			if (IS_ERR(shm_mnt))
2166 				return addr;
2167 			sb = shm_mnt->mnt_sb;
2168 		}
2169 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2170 			return addr;
2171 	}
2172 
2173 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2174 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2175 		return addr;
2176 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2177 		return addr;
2178 
2179 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2180 	if (inflated_len > TASK_SIZE)
2181 		return addr;
2182 	if (inflated_len < len)
2183 		return addr;
2184 
2185 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2186 	if (IS_ERR_VALUE(inflated_addr))
2187 		return addr;
2188 	if (inflated_addr & ~PAGE_MASK)
2189 		return addr;
2190 
2191 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2192 	inflated_addr += offset - inflated_offset;
2193 	if (inflated_offset > offset)
2194 		inflated_addr += HPAGE_PMD_SIZE;
2195 
2196 	if (inflated_addr > TASK_SIZE - len)
2197 		return addr;
2198 	return inflated_addr;
2199 }
2200 
2201 #ifdef CONFIG_NUMA
2202 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2203 {
2204 	struct inode *inode = file_inode(vma->vm_file);
2205 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2206 }
2207 
2208 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2209 					  unsigned long addr)
2210 {
2211 	struct inode *inode = file_inode(vma->vm_file);
2212 	pgoff_t index;
2213 
2214 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2215 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2216 }
2217 #endif
2218 
2219 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2220 {
2221 	struct inode *inode = file_inode(file);
2222 	struct shmem_inode_info *info = SHMEM_I(inode);
2223 	int retval = -ENOMEM;
2224 
2225 	/*
2226 	 * What serializes the accesses to info->flags?
2227 	 * ipc_lock_object() when called from shmctl_do_lock(),
2228 	 * no serialization needed when called from shm_destroy().
2229 	 */
2230 	if (lock && !(info->flags & VM_LOCKED)) {
2231 		if (!user_shm_lock(inode->i_size, user))
2232 			goto out_nomem;
2233 		info->flags |= VM_LOCKED;
2234 		mapping_set_unevictable(file->f_mapping);
2235 	}
2236 	if (!lock && (info->flags & VM_LOCKED) && user) {
2237 		user_shm_unlock(inode->i_size, user);
2238 		info->flags &= ~VM_LOCKED;
2239 		mapping_clear_unevictable(file->f_mapping);
2240 	}
2241 	retval = 0;
2242 
2243 out_nomem:
2244 	return retval;
2245 }
2246 
2247 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2248 {
2249 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2250 
2251 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2252 		/*
2253 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2254 		 * "future write" seal active.
2255 		 */
2256 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2257 			return -EPERM;
2258 
2259 		/*
2260 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2261 		 * MAP_SHARED and read-only, take care to not allow mprotect to
2262 		 * revert protections on such mappings. Do this only for shared
2263 		 * mappings. For private mappings, don't need to mask
2264 		 * VM_MAYWRITE as we still want them to be COW-writable.
2265 		 */
2266 		if (vma->vm_flags & VM_SHARED)
2267 			vma->vm_flags &= ~(VM_MAYWRITE);
2268 	}
2269 
2270 	file_accessed(file);
2271 	vma->vm_ops = &shmem_vm_ops;
2272 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2273 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2274 			(vma->vm_end & HPAGE_PMD_MASK)) {
2275 		khugepaged_enter(vma, vma->vm_flags);
2276 	}
2277 	return 0;
2278 }
2279 
2280 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2281 				     umode_t mode, dev_t dev, unsigned long flags)
2282 {
2283 	struct inode *inode;
2284 	struct shmem_inode_info *info;
2285 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2286 	ino_t ino;
2287 
2288 	if (shmem_reserve_inode(sb, &ino))
2289 		return NULL;
2290 
2291 	inode = new_inode(sb);
2292 	if (inode) {
2293 		inode->i_ino = ino;
2294 		inode_init_owner(inode, dir, mode);
2295 		inode->i_blocks = 0;
2296 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2297 		inode->i_generation = prandom_u32();
2298 		info = SHMEM_I(inode);
2299 		memset(info, 0, (char *)inode - (char *)info);
2300 		spin_lock_init(&info->lock);
2301 		atomic_set(&info->stop_eviction, 0);
2302 		info->seals = F_SEAL_SEAL;
2303 		info->flags = flags & VM_NORESERVE;
2304 		INIT_LIST_HEAD(&info->shrinklist);
2305 		INIT_LIST_HEAD(&info->swaplist);
2306 		simple_xattrs_init(&info->xattrs);
2307 		cache_no_acl(inode);
2308 
2309 		switch (mode & S_IFMT) {
2310 		default:
2311 			inode->i_op = &shmem_special_inode_operations;
2312 			init_special_inode(inode, mode, dev);
2313 			break;
2314 		case S_IFREG:
2315 			inode->i_mapping->a_ops = &shmem_aops;
2316 			inode->i_op = &shmem_inode_operations;
2317 			inode->i_fop = &shmem_file_operations;
2318 			mpol_shared_policy_init(&info->policy,
2319 						 shmem_get_sbmpol(sbinfo));
2320 			break;
2321 		case S_IFDIR:
2322 			inc_nlink(inode);
2323 			/* Some things misbehave if size == 0 on a directory */
2324 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2325 			inode->i_op = &shmem_dir_inode_operations;
2326 			inode->i_fop = &simple_dir_operations;
2327 			break;
2328 		case S_IFLNK:
2329 			/*
2330 			 * Must not load anything in the rbtree,
2331 			 * mpol_free_shared_policy will not be called.
2332 			 */
2333 			mpol_shared_policy_init(&info->policy, NULL);
2334 			break;
2335 		}
2336 
2337 		lockdep_annotate_inode_mutex_key(inode);
2338 	} else
2339 		shmem_free_inode(sb);
2340 	return inode;
2341 }
2342 
2343 bool shmem_mapping(struct address_space *mapping)
2344 {
2345 	return mapping->a_ops == &shmem_aops;
2346 }
2347 
2348 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2349 				  pmd_t *dst_pmd,
2350 				  struct vm_area_struct *dst_vma,
2351 				  unsigned long dst_addr,
2352 				  unsigned long src_addr,
2353 				  bool zeropage,
2354 				  struct page **pagep)
2355 {
2356 	struct inode *inode = file_inode(dst_vma->vm_file);
2357 	struct shmem_inode_info *info = SHMEM_I(inode);
2358 	struct address_space *mapping = inode->i_mapping;
2359 	gfp_t gfp = mapping_gfp_mask(mapping);
2360 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2361 	spinlock_t *ptl;
2362 	void *page_kaddr;
2363 	struct page *page;
2364 	pte_t _dst_pte, *dst_pte;
2365 	int ret;
2366 	pgoff_t offset, max_off;
2367 
2368 	ret = -ENOMEM;
2369 	if (!shmem_inode_acct_block(inode, 1))
2370 		goto out;
2371 
2372 	if (!*pagep) {
2373 		page = shmem_alloc_page(gfp, info, pgoff);
2374 		if (!page)
2375 			goto out_unacct_blocks;
2376 
2377 		if (!zeropage) {	/* mcopy_atomic */
2378 			page_kaddr = kmap_atomic(page);
2379 			ret = copy_from_user(page_kaddr,
2380 					     (const void __user *)src_addr,
2381 					     PAGE_SIZE);
2382 			kunmap_atomic(page_kaddr);
2383 
2384 			/* fallback to copy_from_user outside mmap_lock */
2385 			if (unlikely(ret)) {
2386 				*pagep = page;
2387 				shmem_inode_unacct_blocks(inode, 1);
2388 				/* don't free the page */
2389 				return -ENOENT;
2390 			}
2391 		} else {		/* mfill_zeropage_atomic */
2392 			clear_highpage(page);
2393 		}
2394 	} else {
2395 		page = *pagep;
2396 		*pagep = NULL;
2397 	}
2398 
2399 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2400 	__SetPageLocked(page);
2401 	__SetPageSwapBacked(page);
2402 	__SetPageUptodate(page);
2403 
2404 	ret = -EFAULT;
2405 	offset = linear_page_index(dst_vma, dst_addr);
2406 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2407 	if (unlikely(offset >= max_off))
2408 		goto out_release;
2409 
2410 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2411 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2412 	if (ret)
2413 		goto out_release;
2414 
2415 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2416 	if (dst_vma->vm_flags & VM_WRITE)
2417 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2418 	else {
2419 		/*
2420 		 * We don't set the pte dirty if the vma has no
2421 		 * VM_WRITE permission, so mark the page dirty or it
2422 		 * could be freed from under us. We could do it
2423 		 * unconditionally before unlock_page(), but doing it
2424 		 * only if VM_WRITE is not set is faster.
2425 		 */
2426 		set_page_dirty(page);
2427 	}
2428 
2429 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2430 
2431 	ret = -EFAULT;
2432 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2433 	if (unlikely(offset >= max_off))
2434 		goto out_release_unlock;
2435 
2436 	ret = -EEXIST;
2437 	if (!pte_none(*dst_pte))
2438 		goto out_release_unlock;
2439 
2440 	lru_cache_add(page);
2441 
2442 	spin_lock_irq(&info->lock);
2443 	info->alloced++;
2444 	inode->i_blocks += BLOCKS_PER_PAGE;
2445 	shmem_recalc_inode(inode);
2446 	spin_unlock_irq(&info->lock);
2447 
2448 	inc_mm_counter(dst_mm, mm_counter_file(page));
2449 	page_add_file_rmap(page, false);
2450 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2451 
2452 	/* No need to invalidate - it was non-present before */
2453 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2454 	pte_unmap_unlock(dst_pte, ptl);
2455 	unlock_page(page);
2456 	ret = 0;
2457 out:
2458 	return ret;
2459 out_release_unlock:
2460 	pte_unmap_unlock(dst_pte, ptl);
2461 	ClearPageDirty(page);
2462 	delete_from_page_cache(page);
2463 out_release:
2464 	unlock_page(page);
2465 	put_page(page);
2466 out_unacct_blocks:
2467 	shmem_inode_unacct_blocks(inode, 1);
2468 	goto out;
2469 }
2470 
2471 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2472 			   pmd_t *dst_pmd,
2473 			   struct vm_area_struct *dst_vma,
2474 			   unsigned long dst_addr,
2475 			   unsigned long src_addr,
2476 			   struct page **pagep)
2477 {
2478 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2479 				      dst_addr, src_addr, false, pagep);
2480 }
2481 
2482 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2483 			     pmd_t *dst_pmd,
2484 			     struct vm_area_struct *dst_vma,
2485 			     unsigned long dst_addr)
2486 {
2487 	struct page *page = NULL;
2488 
2489 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2490 				      dst_addr, 0, true, &page);
2491 }
2492 
2493 #ifdef CONFIG_TMPFS
2494 static const struct inode_operations shmem_symlink_inode_operations;
2495 static const struct inode_operations shmem_short_symlink_operations;
2496 
2497 #ifdef CONFIG_TMPFS_XATTR
2498 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2499 #else
2500 #define shmem_initxattrs NULL
2501 #endif
2502 
2503 static int
2504 shmem_write_begin(struct file *file, struct address_space *mapping,
2505 			loff_t pos, unsigned len, unsigned flags,
2506 			struct page **pagep, void **fsdata)
2507 {
2508 	struct inode *inode = mapping->host;
2509 	struct shmem_inode_info *info = SHMEM_I(inode);
2510 	pgoff_t index = pos >> PAGE_SHIFT;
2511 
2512 	/* i_mutex is held by caller */
2513 	if (unlikely(info->seals & (F_SEAL_GROW |
2514 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2515 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2516 			return -EPERM;
2517 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2518 			return -EPERM;
2519 	}
2520 
2521 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2522 }
2523 
2524 static int
2525 shmem_write_end(struct file *file, struct address_space *mapping,
2526 			loff_t pos, unsigned len, unsigned copied,
2527 			struct page *page, void *fsdata)
2528 {
2529 	struct inode *inode = mapping->host;
2530 
2531 	if (pos + copied > inode->i_size)
2532 		i_size_write(inode, pos + copied);
2533 
2534 	if (!PageUptodate(page)) {
2535 		struct page *head = compound_head(page);
2536 		if (PageTransCompound(page)) {
2537 			int i;
2538 
2539 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2540 				if (head + i == page)
2541 					continue;
2542 				clear_highpage(head + i);
2543 				flush_dcache_page(head + i);
2544 			}
2545 		}
2546 		if (copied < PAGE_SIZE) {
2547 			unsigned from = pos & (PAGE_SIZE - 1);
2548 			zero_user_segments(page, 0, from,
2549 					from + copied, PAGE_SIZE);
2550 		}
2551 		SetPageUptodate(head);
2552 	}
2553 	set_page_dirty(page);
2554 	unlock_page(page);
2555 	put_page(page);
2556 
2557 	return copied;
2558 }
2559 
2560 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2561 {
2562 	struct file *file = iocb->ki_filp;
2563 	struct inode *inode = file_inode(file);
2564 	struct address_space *mapping = inode->i_mapping;
2565 	pgoff_t index;
2566 	unsigned long offset;
2567 	enum sgp_type sgp = SGP_READ;
2568 	int error = 0;
2569 	ssize_t retval = 0;
2570 	loff_t *ppos = &iocb->ki_pos;
2571 
2572 	/*
2573 	 * Might this read be for a stacking filesystem?  Then when reading
2574 	 * holes of a sparse file, we actually need to allocate those pages,
2575 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2576 	 */
2577 	if (!iter_is_iovec(to))
2578 		sgp = SGP_CACHE;
2579 
2580 	index = *ppos >> PAGE_SHIFT;
2581 	offset = *ppos & ~PAGE_MASK;
2582 
2583 	for (;;) {
2584 		struct page *page = NULL;
2585 		pgoff_t end_index;
2586 		unsigned long nr, ret;
2587 		loff_t i_size = i_size_read(inode);
2588 
2589 		end_index = i_size >> PAGE_SHIFT;
2590 		if (index > end_index)
2591 			break;
2592 		if (index == end_index) {
2593 			nr = i_size & ~PAGE_MASK;
2594 			if (nr <= offset)
2595 				break;
2596 		}
2597 
2598 		error = shmem_getpage(inode, index, &page, sgp);
2599 		if (error) {
2600 			if (error == -EINVAL)
2601 				error = 0;
2602 			break;
2603 		}
2604 		if (page) {
2605 			if (sgp == SGP_CACHE)
2606 				set_page_dirty(page);
2607 			unlock_page(page);
2608 		}
2609 
2610 		/*
2611 		 * We must evaluate after, since reads (unlike writes)
2612 		 * are called without i_mutex protection against truncate
2613 		 */
2614 		nr = PAGE_SIZE;
2615 		i_size = i_size_read(inode);
2616 		end_index = i_size >> PAGE_SHIFT;
2617 		if (index == end_index) {
2618 			nr = i_size & ~PAGE_MASK;
2619 			if (nr <= offset) {
2620 				if (page)
2621 					put_page(page);
2622 				break;
2623 			}
2624 		}
2625 		nr -= offset;
2626 
2627 		if (page) {
2628 			/*
2629 			 * If users can be writing to this page using arbitrary
2630 			 * virtual addresses, take care about potential aliasing
2631 			 * before reading the page on the kernel side.
2632 			 */
2633 			if (mapping_writably_mapped(mapping))
2634 				flush_dcache_page(page);
2635 			/*
2636 			 * Mark the page accessed if we read the beginning.
2637 			 */
2638 			if (!offset)
2639 				mark_page_accessed(page);
2640 		} else {
2641 			page = ZERO_PAGE(0);
2642 			get_page(page);
2643 		}
2644 
2645 		/*
2646 		 * Ok, we have the page, and it's up-to-date, so
2647 		 * now we can copy it to user space...
2648 		 */
2649 		ret = copy_page_to_iter(page, offset, nr, to);
2650 		retval += ret;
2651 		offset += ret;
2652 		index += offset >> PAGE_SHIFT;
2653 		offset &= ~PAGE_MASK;
2654 
2655 		put_page(page);
2656 		if (!iov_iter_count(to))
2657 			break;
2658 		if (ret < nr) {
2659 			error = -EFAULT;
2660 			break;
2661 		}
2662 		cond_resched();
2663 	}
2664 
2665 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2666 	file_accessed(file);
2667 	return retval ? retval : error;
2668 }
2669 
2670 /*
2671  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2672  */
2673 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2674 				    pgoff_t index, pgoff_t end, int whence)
2675 {
2676 	struct page *page;
2677 	struct pagevec pvec;
2678 	pgoff_t indices[PAGEVEC_SIZE];
2679 	bool done = false;
2680 	int i;
2681 
2682 	pagevec_init(&pvec);
2683 	pvec.nr = 1;		/* start small: we may be there already */
2684 	while (!done) {
2685 		pvec.nr = find_get_entries(mapping, index,
2686 					pvec.nr, pvec.pages, indices);
2687 		if (!pvec.nr) {
2688 			if (whence == SEEK_DATA)
2689 				index = end;
2690 			break;
2691 		}
2692 		for (i = 0; i < pvec.nr; i++, index++) {
2693 			if (index < indices[i]) {
2694 				if (whence == SEEK_HOLE) {
2695 					done = true;
2696 					break;
2697 				}
2698 				index = indices[i];
2699 			}
2700 			page = pvec.pages[i];
2701 			if (page && !xa_is_value(page)) {
2702 				if (!PageUptodate(page))
2703 					page = NULL;
2704 			}
2705 			if (index >= end ||
2706 			    (page && whence == SEEK_DATA) ||
2707 			    (!page && whence == SEEK_HOLE)) {
2708 				done = true;
2709 				break;
2710 			}
2711 		}
2712 		pagevec_remove_exceptionals(&pvec);
2713 		pagevec_release(&pvec);
2714 		pvec.nr = PAGEVEC_SIZE;
2715 		cond_resched();
2716 	}
2717 	return index;
2718 }
2719 
2720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2721 {
2722 	struct address_space *mapping = file->f_mapping;
2723 	struct inode *inode = mapping->host;
2724 	pgoff_t start, end;
2725 	loff_t new_offset;
2726 
2727 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2728 		return generic_file_llseek_size(file, offset, whence,
2729 					MAX_LFS_FILESIZE, i_size_read(inode));
2730 	inode_lock(inode);
2731 	/* We're holding i_mutex so we can access i_size directly */
2732 
2733 	if (offset < 0 || offset >= inode->i_size)
2734 		offset = -ENXIO;
2735 	else {
2736 		start = offset >> PAGE_SHIFT;
2737 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2738 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2739 		new_offset <<= PAGE_SHIFT;
2740 		if (new_offset > offset) {
2741 			if (new_offset < inode->i_size)
2742 				offset = new_offset;
2743 			else if (whence == SEEK_DATA)
2744 				offset = -ENXIO;
2745 			else
2746 				offset = inode->i_size;
2747 		}
2748 	}
2749 
2750 	if (offset >= 0)
2751 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2752 	inode_unlock(inode);
2753 	return offset;
2754 }
2755 
2756 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2757 							 loff_t len)
2758 {
2759 	struct inode *inode = file_inode(file);
2760 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2761 	struct shmem_inode_info *info = SHMEM_I(inode);
2762 	struct shmem_falloc shmem_falloc;
2763 	pgoff_t start, index, end;
2764 	int error;
2765 
2766 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2767 		return -EOPNOTSUPP;
2768 
2769 	inode_lock(inode);
2770 
2771 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2772 		struct address_space *mapping = file->f_mapping;
2773 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2774 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2775 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2776 
2777 		/* protected by i_mutex */
2778 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2779 			error = -EPERM;
2780 			goto out;
2781 		}
2782 
2783 		shmem_falloc.waitq = &shmem_falloc_waitq;
2784 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2785 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2786 		spin_lock(&inode->i_lock);
2787 		inode->i_private = &shmem_falloc;
2788 		spin_unlock(&inode->i_lock);
2789 
2790 		if ((u64)unmap_end > (u64)unmap_start)
2791 			unmap_mapping_range(mapping, unmap_start,
2792 					    1 + unmap_end - unmap_start, 0);
2793 		shmem_truncate_range(inode, offset, offset + len - 1);
2794 		/* No need to unmap again: hole-punching leaves COWed pages */
2795 
2796 		spin_lock(&inode->i_lock);
2797 		inode->i_private = NULL;
2798 		wake_up_all(&shmem_falloc_waitq);
2799 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2800 		spin_unlock(&inode->i_lock);
2801 		error = 0;
2802 		goto out;
2803 	}
2804 
2805 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2806 	error = inode_newsize_ok(inode, offset + len);
2807 	if (error)
2808 		goto out;
2809 
2810 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2811 		error = -EPERM;
2812 		goto out;
2813 	}
2814 
2815 	start = offset >> PAGE_SHIFT;
2816 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2817 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2818 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2819 		error = -ENOSPC;
2820 		goto out;
2821 	}
2822 
2823 	shmem_falloc.waitq = NULL;
2824 	shmem_falloc.start = start;
2825 	shmem_falloc.next  = start;
2826 	shmem_falloc.nr_falloced = 0;
2827 	shmem_falloc.nr_unswapped = 0;
2828 	spin_lock(&inode->i_lock);
2829 	inode->i_private = &shmem_falloc;
2830 	spin_unlock(&inode->i_lock);
2831 
2832 	for (index = start; index < end; index++) {
2833 		struct page *page;
2834 
2835 		/*
2836 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2837 		 * been interrupted because we are using up too much memory.
2838 		 */
2839 		if (signal_pending(current))
2840 			error = -EINTR;
2841 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2842 			error = -ENOMEM;
2843 		else
2844 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2845 		if (error) {
2846 			/* Remove the !PageUptodate pages we added */
2847 			if (index > start) {
2848 				shmem_undo_range(inode,
2849 				    (loff_t)start << PAGE_SHIFT,
2850 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2851 			}
2852 			goto undone;
2853 		}
2854 
2855 		/*
2856 		 * Inform shmem_writepage() how far we have reached.
2857 		 * No need for lock or barrier: we have the page lock.
2858 		 */
2859 		shmem_falloc.next++;
2860 		if (!PageUptodate(page))
2861 			shmem_falloc.nr_falloced++;
2862 
2863 		/*
2864 		 * If !PageUptodate, leave it that way so that freeable pages
2865 		 * can be recognized if we need to rollback on error later.
2866 		 * But set_page_dirty so that memory pressure will swap rather
2867 		 * than free the pages we are allocating (and SGP_CACHE pages
2868 		 * might still be clean: we now need to mark those dirty too).
2869 		 */
2870 		set_page_dirty(page);
2871 		unlock_page(page);
2872 		put_page(page);
2873 		cond_resched();
2874 	}
2875 
2876 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2877 		i_size_write(inode, offset + len);
2878 	inode->i_ctime = current_time(inode);
2879 undone:
2880 	spin_lock(&inode->i_lock);
2881 	inode->i_private = NULL;
2882 	spin_unlock(&inode->i_lock);
2883 out:
2884 	inode_unlock(inode);
2885 	return error;
2886 }
2887 
2888 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2889 {
2890 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2891 
2892 	buf->f_type = TMPFS_MAGIC;
2893 	buf->f_bsize = PAGE_SIZE;
2894 	buf->f_namelen = NAME_MAX;
2895 	if (sbinfo->max_blocks) {
2896 		buf->f_blocks = sbinfo->max_blocks;
2897 		buf->f_bavail =
2898 		buf->f_bfree  = sbinfo->max_blocks -
2899 				percpu_counter_sum(&sbinfo->used_blocks);
2900 	}
2901 	if (sbinfo->max_inodes) {
2902 		buf->f_files = sbinfo->max_inodes;
2903 		buf->f_ffree = sbinfo->free_inodes;
2904 	}
2905 	/* else leave those fields 0 like simple_statfs */
2906 	return 0;
2907 }
2908 
2909 /*
2910  * File creation. Allocate an inode, and we're done..
2911  */
2912 static int
2913 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2914 {
2915 	struct inode *inode;
2916 	int error = -ENOSPC;
2917 
2918 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2919 	if (inode) {
2920 		error = simple_acl_create(dir, inode);
2921 		if (error)
2922 			goto out_iput;
2923 		error = security_inode_init_security(inode, dir,
2924 						     &dentry->d_name,
2925 						     shmem_initxattrs, NULL);
2926 		if (error && error != -EOPNOTSUPP)
2927 			goto out_iput;
2928 
2929 		error = 0;
2930 		dir->i_size += BOGO_DIRENT_SIZE;
2931 		dir->i_ctime = dir->i_mtime = current_time(dir);
2932 		d_instantiate(dentry, inode);
2933 		dget(dentry); /* Extra count - pin the dentry in core */
2934 	}
2935 	return error;
2936 out_iput:
2937 	iput(inode);
2938 	return error;
2939 }
2940 
2941 static int
2942 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2943 {
2944 	struct inode *inode;
2945 	int error = -ENOSPC;
2946 
2947 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2948 	if (inode) {
2949 		error = security_inode_init_security(inode, dir,
2950 						     NULL,
2951 						     shmem_initxattrs, NULL);
2952 		if (error && error != -EOPNOTSUPP)
2953 			goto out_iput;
2954 		error = simple_acl_create(dir, inode);
2955 		if (error)
2956 			goto out_iput;
2957 		d_tmpfile(dentry, inode);
2958 	}
2959 	return error;
2960 out_iput:
2961 	iput(inode);
2962 	return error;
2963 }
2964 
2965 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2966 {
2967 	int error;
2968 
2969 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2970 		return error;
2971 	inc_nlink(dir);
2972 	return 0;
2973 }
2974 
2975 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2976 		bool excl)
2977 {
2978 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2979 }
2980 
2981 /*
2982  * Link a file..
2983  */
2984 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2985 {
2986 	struct inode *inode = d_inode(old_dentry);
2987 	int ret = 0;
2988 
2989 	/*
2990 	 * No ordinary (disk based) filesystem counts links as inodes;
2991 	 * but each new link needs a new dentry, pinning lowmem, and
2992 	 * tmpfs dentries cannot be pruned until they are unlinked.
2993 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2994 	 * first link must skip that, to get the accounting right.
2995 	 */
2996 	if (inode->i_nlink) {
2997 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2998 		if (ret)
2999 			goto out;
3000 	}
3001 
3002 	dir->i_size += BOGO_DIRENT_SIZE;
3003 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3004 	inc_nlink(inode);
3005 	ihold(inode);	/* New dentry reference */
3006 	dget(dentry);		/* Extra pinning count for the created dentry */
3007 	d_instantiate(dentry, inode);
3008 out:
3009 	return ret;
3010 }
3011 
3012 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3013 {
3014 	struct inode *inode = d_inode(dentry);
3015 
3016 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3017 		shmem_free_inode(inode->i_sb);
3018 
3019 	dir->i_size -= BOGO_DIRENT_SIZE;
3020 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3021 	drop_nlink(inode);
3022 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3023 	return 0;
3024 }
3025 
3026 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3027 {
3028 	if (!simple_empty(dentry))
3029 		return -ENOTEMPTY;
3030 
3031 	drop_nlink(d_inode(dentry));
3032 	drop_nlink(dir);
3033 	return shmem_unlink(dir, dentry);
3034 }
3035 
3036 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3037 {
3038 	bool old_is_dir = d_is_dir(old_dentry);
3039 	bool new_is_dir = d_is_dir(new_dentry);
3040 
3041 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3042 		if (old_is_dir) {
3043 			drop_nlink(old_dir);
3044 			inc_nlink(new_dir);
3045 		} else {
3046 			drop_nlink(new_dir);
3047 			inc_nlink(old_dir);
3048 		}
3049 	}
3050 	old_dir->i_ctime = old_dir->i_mtime =
3051 	new_dir->i_ctime = new_dir->i_mtime =
3052 	d_inode(old_dentry)->i_ctime =
3053 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3054 
3055 	return 0;
3056 }
3057 
3058 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3059 {
3060 	struct dentry *whiteout;
3061 	int error;
3062 
3063 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3064 	if (!whiteout)
3065 		return -ENOMEM;
3066 
3067 	error = shmem_mknod(old_dir, whiteout,
3068 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3069 	dput(whiteout);
3070 	if (error)
3071 		return error;
3072 
3073 	/*
3074 	 * Cheat and hash the whiteout while the old dentry is still in
3075 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3076 	 *
3077 	 * d_lookup() will consistently find one of them at this point,
3078 	 * not sure which one, but that isn't even important.
3079 	 */
3080 	d_rehash(whiteout);
3081 	return 0;
3082 }
3083 
3084 /*
3085  * The VFS layer already does all the dentry stuff for rename,
3086  * we just have to decrement the usage count for the target if
3087  * it exists so that the VFS layer correctly free's it when it
3088  * gets overwritten.
3089  */
3090 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3091 {
3092 	struct inode *inode = d_inode(old_dentry);
3093 	int they_are_dirs = S_ISDIR(inode->i_mode);
3094 
3095 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3096 		return -EINVAL;
3097 
3098 	if (flags & RENAME_EXCHANGE)
3099 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3100 
3101 	if (!simple_empty(new_dentry))
3102 		return -ENOTEMPTY;
3103 
3104 	if (flags & RENAME_WHITEOUT) {
3105 		int error;
3106 
3107 		error = shmem_whiteout(old_dir, old_dentry);
3108 		if (error)
3109 			return error;
3110 	}
3111 
3112 	if (d_really_is_positive(new_dentry)) {
3113 		(void) shmem_unlink(new_dir, new_dentry);
3114 		if (they_are_dirs) {
3115 			drop_nlink(d_inode(new_dentry));
3116 			drop_nlink(old_dir);
3117 		}
3118 	} else if (they_are_dirs) {
3119 		drop_nlink(old_dir);
3120 		inc_nlink(new_dir);
3121 	}
3122 
3123 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3124 	new_dir->i_size += BOGO_DIRENT_SIZE;
3125 	old_dir->i_ctime = old_dir->i_mtime =
3126 	new_dir->i_ctime = new_dir->i_mtime =
3127 	inode->i_ctime = current_time(old_dir);
3128 	return 0;
3129 }
3130 
3131 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3132 {
3133 	int error;
3134 	int len;
3135 	struct inode *inode;
3136 	struct page *page;
3137 
3138 	len = strlen(symname) + 1;
3139 	if (len > PAGE_SIZE)
3140 		return -ENAMETOOLONG;
3141 
3142 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3143 				VM_NORESERVE);
3144 	if (!inode)
3145 		return -ENOSPC;
3146 
3147 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3148 					     shmem_initxattrs, NULL);
3149 	if (error && error != -EOPNOTSUPP) {
3150 		iput(inode);
3151 		return error;
3152 	}
3153 
3154 	inode->i_size = len-1;
3155 	if (len <= SHORT_SYMLINK_LEN) {
3156 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3157 		if (!inode->i_link) {
3158 			iput(inode);
3159 			return -ENOMEM;
3160 		}
3161 		inode->i_op = &shmem_short_symlink_operations;
3162 	} else {
3163 		inode_nohighmem(inode);
3164 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3165 		if (error) {
3166 			iput(inode);
3167 			return error;
3168 		}
3169 		inode->i_mapping->a_ops = &shmem_aops;
3170 		inode->i_op = &shmem_symlink_inode_operations;
3171 		memcpy(page_address(page), symname, len);
3172 		SetPageUptodate(page);
3173 		set_page_dirty(page);
3174 		unlock_page(page);
3175 		put_page(page);
3176 	}
3177 	dir->i_size += BOGO_DIRENT_SIZE;
3178 	dir->i_ctime = dir->i_mtime = current_time(dir);
3179 	d_instantiate(dentry, inode);
3180 	dget(dentry);
3181 	return 0;
3182 }
3183 
3184 static void shmem_put_link(void *arg)
3185 {
3186 	mark_page_accessed(arg);
3187 	put_page(arg);
3188 }
3189 
3190 static const char *shmem_get_link(struct dentry *dentry,
3191 				  struct inode *inode,
3192 				  struct delayed_call *done)
3193 {
3194 	struct page *page = NULL;
3195 	int error;
3196 	if (!dentry) {
3197 		page = find_get_page(inode->i_mapping, 0);
3198 		if (!page)
3199 			return ERR_PTR(-ECHILD);
3200 		if (!PageUptodate(page)) {
3201 			put_page(page);
3202 			return ERR_PTR(-ECHILD);
3203 		}
3204 	} else {
3205 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3206 		if (error)
3207 			return ERR_PTR(error);
3208 		unlock_page(page);
3209 	}
3210 	set_delayed_call(done, shmem_put_link, page);
3211 	return page_address(page);
3212 }
3213 
3214 #ifdef CONFIG_TMPFS_XATTR
3215 /*
3216  * Superblocks without xattr inode operations may get some security.* xattr
3217  * support from the LSM "for free". As soon as we have any other xattrs
3218  * like ACLs, we also need to implement the security.* handlers at
3219  * filesystem level, though.
3220  */
3221 
3222 /*
3223  * Callback for security_inode_init_security() for acquiring xattrs.
3224  */
3225 static int shmem_initxattrs(struct inode *inode,
3226 			    const struct xattr *xattr_array,
3227 			    void *fs_info)
3228 {
3229 	struct shmem_inode_info *info = SHMEM_I(inode);
3230 	const struct xattr *xattr;
3231 	struct simple_xattr *new_xattr;
3232 	size_t len;
3233 
3234 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3235 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3236 		if (!new_xattr)
3237 			return -ENOMEM;
3238 
3239 		len = strlen(xattr->name) + 1;
3240 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3241 					  GFP_KERNEL);
3242 		if (!new_xattr->name) {
3243 			kvfree(new_xattr);
3244 			return -ENOMEM;
3245 		}
3246 
3247 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3248 		       XATTR_SECURITY_PREFIX_LEN);
3249 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3250 		       xattr->name, len);
3251 
3252 		simple_xattr_list_add(&info->xattrs, new_xattr);
3253 	}
3254 
3255 	return 0;
3256 }
3257 
3258 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3259 				   struct dentry *unused, struct inode *inode,
3260 				   const char *name, void *buffer, size_t size)
3261 {
3262 	struct shmem_inode_info *info = SHMEM_I(inode);
3263 
3264 	name = xattr_full_name(handler, name);
3265 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3266 }
3267 
3268 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3269 				   struct dentry *unused, struct inode *inode,
3270 				   const char *name, const void *value,
3271 				   size_t size, int flags)
3272 {
3273 	struct shmem_inode_info *info = SHMEM_I(inode);
3274 
3275 	name = xattr_full_name(handler, name);
3276 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3277 }
3278 
3279 static const struct xattr_handler shmem_security_xattr_handler = {
3280 	.prefix = XATTR_SECURITY_PREFIX,
3281 	.get = shmem_xattr_handler_get,
3282 	.set = shmem_xattr_handler_set,
3283 };
3284 
3285 static const struct xattr_handler shmem_trusted_xattr_handler = {
3286 	.prefix = XATTR_TRUSTED_PREFIX,
3287 	.get = shmem_xattr_handler_get,
3288 	.set = shmem_xattr_handler_set,
3289 };
3290 
3291 static const struct xattr_handler *shmem_xattr_handlers[] = {
3292 #ifdef CONFIG_TMPFS_POSIX_ACL
3293 	&posix_acl_access_xattr_handler,
3294 	&posix_acl_default_xattr_handler,
3295 #endif
3296 	&shmem_security_xattr_handler,
3297 	&shmem_trusted_xattr_handler,
3298 	NULL
3299 };
3300 
3301 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3302 {
3303 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3304 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3305 }
3306 #endif /* CONFIG_TMPFS_XATTR */
3307 
3308 static const struct inode_operations shmem_short_symlink_operations = {
3309 	.get_link	= simple_get_link,
3310 #ifdef CONFIG_TMPFS_XATTR
3311 	.listxattr	= shmem_listxattr,
3312 #endif
3313 };
3314 
3315 static const struct inode_operations shmem_symlink_inode_operations = {
3316 	.get_link	= shmem_get_link,
3317 #ifdef CONFIG_TMPFS_XATTR
3318 	.listxattr	= shmem_listxattr,
3319 #endif
3320 };
3321 
3322 static struct dentry *shmem_get_parent(struct dentry *child)
3323 {
3324 	return ERR_PTR(-ESTALE);
3325 }
3326 
3327 static int shmem_match(struct inode *ino, void *vfh)
3328 {
3329 	__u32 *fh = vfh;
3330 	__u64 inum = fh[2];
3331 	inum = (inum << 32) | fh[1];
3332 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3333 }
3334 
3335 /* Find any alias of inode, but prefer a hashed alias */
3336 static struct dentry *shmem_find_alias(struct inode *inode)
3337 {
3338 	struct dentry *alias = d_find_alias(inode);
3339 
3340 	return alias ?: d_find_any_alias(inode);
3341 }
3342 
3343 
3344 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3345 		struct fid *fid, int fh_len, int fh_type)
3346 {
3347 	struct inode *inode;
3348 	struct dentry *dentry = NULL;
3349 	u64 inum;
3350 
3351 	if (fh_len < 3)
3352 		return NULL;
3353 
3354 	inum = fid->raw[2];
3355 	inum = (inum << 32) | fid->raw[1];
3356 
3357 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3358 			shmem_match, fid->raw);
3359 	if (inode) {
3360 		dentry = shmem_find_alias(inode);
3361 		iput(inode);
3362 	}
3363 
3364 	return dentry;
3365 }
3366 
3367 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3368 				struct inode *parent)
3369 {
3370 	if (*len < 3) {
3371 		*len = 3;
3372 		return FILEID_INVALID;
3373 	}
3374 
3375 	if (inode_unhashed(inode)) {
3376 		/* Unfortunately insert_inode_hash is not idempotent,
3377 		 * so as we hash inodes here rather than at creation
3378 		 * time, we need a lock to ensure we only try
3379 		 * to do it once
3380 		 */
3381 		static DEFINE_SPINLOCK(lock);
3382 		spin_lock(&lock);
3383 		if (inode_unhashed(inode))
3384 			__insert_inode_hash(inode,
3385 					    inode->i_ino + inode->i_generation);
3386 		spin_unlock(&lock);
3387 	}
3388 
3389 	fh[0] = inode->i_generation;
3390 	fh[1] = inode->i_ino;
3391 	fh[2] = ((__u64)inode->i_ino) >> 32;
3392 
3393 	*len = 3;
3394 	return 1;
3395 }
3396 
3397 static const struct export_operations shmem_export_ops = {
3398 	.get_parent     = shmem_get_parent,
3399 	.encode_fh      = shmem_encode_fh,
3400 	.fh_to_dentry	= shmem_fh_to_dentry,
3401 };
3402 
3403 enum shmem_param {
3404 	Opt_gid,
3405 	Opt_huge,
3406 	Opt_mode,
3407 	Opt_mpol,
3408 	Opt_nr_blocks,
3409 	Opt_nr_inodes,
3410 	Opt_size,
3411 	Opt_uid,
3412 	Opt_inode32,
3413 	Opt_inode64,
3414 };
3415 
3416 static const struct constant_table shmem_param_enums_huge[] = {
3417 	{"never",	SHMEM_HUGE_NEVER },
3418 	{"always",	SHMEM_HUGE_ALWAYS },
3419 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3420 	{"advise",	SHMEM_HUGE_ADVISE },
3421 	{}
3422 };
3423 
3424 const struct fs_parameter_spec shmem_fs_parameters[] = {
3425 	fsparam_u32   ("gid",		Opt_gid),
3426 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3427 	fsparam_u32oct("mode",		Opt_mode),
3428 	fsparam_string("mpol",		Opt_mpol),
3429 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3430 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3431 	fsparam_string("size",		Opt_size),
3432 	fsparam_u32   ("uid",		Opt_uid),
3433 	fsparam_flag  ("inode32",	Opt_inode32),
3434 	fsparam_flag  ("inode64",	Opt_inode64),
3435 	{}
3436 };
3437 
3438 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3439 {
3440 	struct shmem_options *ctx = fc->fs_private;
3441 	struct fs_parse_result result;
3442 	unsigned long long size;
3443 	char *rest;
3444 	int opt;
3445 
3446 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3447 	if (opt < 0)
3448 		return opt;
3449 
3450 	switch (opt) {
3451 	case Opt_size:
3452 		size = memparse(param->string, &rest);
3453 		if (*rest == '%') {
3454 			size <<= PAGE_SHIFT;
3455 			size *= totalram_pages();
3456 			do_div(size, 100);
3457 			rest++;
3458 		}
3459 		if (*rest)
3460 			goto bad_value;
3461 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3462 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3463 		break;
3464 	case Opt_nr_blocks:
3465 		ctx->blocks = memparse(param->string, &rest);
3466 		if (*rest)
3467 			goto bad_value;
3468 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3469 		break;
3470 	case Opt_nr_inodes:
3471 		ctx->inodes = memparse(param->string, &rest);
3472 		if (*rest)
3473 			goto bad_value;
3474 		ctx->seen |= SHMEM_SEEN_INODES;
3475 		break;
3476 	case Opt_mode:
3477 		ctx->mode = result.uint_32 & 07777;
3478 		break;
3479 	case Opt_uid:
3480 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3481 		if (!uid_valid(ctx->uid))
3482 			goto bad_value;
3483 		break;
3484 	case Opt_gid:
3485 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3486 		if (!gid_valid(ctx->gid))
3487 			goto bad_value;
3488 		break;
3489 	case Opt_huge:
3490 		ctx->huge = result.uint_32;
3491 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3492 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3493 		      has_transparent_hugepage()))
3494 			goto unsupported_parameter;
3495 		ctx->seen |= SHMEM_SEEN_HUGE;
3496 		break;
3497 	case Opt_mpol:
3498 		if (IS_ENABLED(CONFIG_NUMA)) {
3499 			mpol_put(ctx->mpol);
3500 			ctx->mpol = NULL;
3501 			if (mpol_parse_str(param->string, &ctx->mpol))
3502 				goto bad_value;
3503 			break;
3504 		}
3505 		goto unsupported_parameter;
3506 	case Opt_inode32:
3507 		ctx->full_inums = false;
3508 		ctx->seen |= SHMEM_SEEN_INUMS;
3509 		break;
3510 	case Opt_inode64:
3511 		if (sizeof(ino_t) < 8) {
3512 			return invalfc(fc,
3513 				       "Cannot use inode64 with <64bit inums in kernel\n");
3514 		}
3515 		ctx->full_inums = true;
3516 		ctx->seen |= SHMEM_SEEN_INUMS;
3517 		break;
3518 	}
3519 	return 0;
3520 
3521 unsupported_parameter:
3522 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3523 bad_value:
3524 	return invalfc(fc, "Bad value for '%s'", param->key);
3525 }
3526 
3527 static int shmem_parse_options(struct fs_context *fc, void *data)
3528 {
3529 	char *options = data;
3530 
3531 	if (options) {
3532 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3533 		if (err)
3534 			return err;
3535 	}
3536 
3537 	while (options != NULL) {
3538 		char *this_char = options;
3539 		for (;;) {
3540 			/*
3541 			 * NUL-terminate this option: unfortunately,
3542 			 * mount options form a comma-separated list,
3543 			 * but mpol's nodelist may also contain commas.
3544 			 */
3545 			options = strchr(options, ',');
3546 			if (options == NULL)
3547 				break;
3548 			options++;
3549 			if (!isdigit(*options)) {
3550 				options[-1] = '\0';
3551 				break;
3552 			}
3553 		}
3554 		if (*this_char) {
3555 			char *value = strchr(this_char,'=');
3556 			size_t len = 0;
3557 			int err;
3558 
3559 			if (value) {
3560 				*value++ = '\0';
3561 				len = strlen(value);
3562 			}
3563 			err = vfs_parse_fs_string(fc, this_char, value, len);
3564 			if (err < 0)
3565 				return err;
3566 		}
3567 	}
3568 	return 0;
3569 }
3570 
3571 /*
3572  * Reconfigure a shmem filesystem.
3573  *
3574  * Note that we disallow change from limited->unlimited blocks/inodes while any
3575  * are in use; but we must separately disallow unlimited->limited, because in
3576  * that case we have no record of how much is already in use.
3577  */
3578 static int shmem_reconfigure(struct fs_context *fc)
3579 {
3580 	struct shmem_options *ctx = fc->fs_private;
3581 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3582 	unsigned long inodes;
3583 	const char *err;
3584 
3585 	spin_lock(&sbinfo->stat_lock);
3586 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3587 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3588 		if (!sbinfo->max_blocks) {
3589 			err = "Cannot retroactively limit size";
3590 			goto out;
3591 		}
3592 		if (percpu_counter_compare(&sbinfo->used_blocks,
3593 					   ctx->blocks) > 0) {
3594 			err = "Too small a size for current use";
3595 			goto out;
3596 		}
3597 	}
3598 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3599 		if (!sbinfo->max_inodes) {
3600 			err = "Cannot retroactively limit inodes";
3601 			goto out;
3602 		}
3603 		if (ctx->inodes < inodes) {
3604 			err = "Too few inodes for current use";
3605 			goto out;
3606 		}
3607 	}
3608 
3609 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3610 	    sbinfo->next_ino > UINT_MAX) {
3611 		err = "Current inum too high to switch to 32-bit inums";
3612 		goto out;
3613 	}
3614 
3615 	if (ctx->seen & SHMEM_SEEN_HUGE)
3616 		sbinfo->huge = ctx->huge;
3617 	if (ctx->seen & SHMEM_SEEN_INUMS)
3618 		sbinfo->full_inums = ctx->full_inums;
3619 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3620 		sbinfo->max_blocks  = ctx->blocks;
3621 	if (ctx->seen & SHMEM_SEEN_INODES) {
3622 		sbinfo->max_inodes  = ctx->inodes;
3623 		sbinfo->free_inodes = ctx->inodes - inodes;
3624 	}
3625 
3626 	/*
3627 	 * Preserve previous mempolicy unless mpol remount option was specified.
3628 	 */
3629 	if (ctx->mpol) {
3630 		mpol_put(sbinfo->mpol);
3631 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3632 		ctx->mpol = NULL;
3633 	}
3634 	spin_unlock(&sbinfo->stat_lock);
3635 	return 0;
3636 out:
3637 	spin_unlock(&sbinfo->stat_lock);
3638 	return invalfc(fc, "%s", err);
3639 }
3640 
3641 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3642 {
3643 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3644 
3645 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3646 		seq_printf(seq, ",size=%luk",
3647 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3648 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3649 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3650 	if (sbinfo->mode != (0777 | S_ISVTX))
3651 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3652 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3653 		seq_printf(seq, ",uid=%u",
3654 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3655 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3656 		seq_printf(seq, ",gid=%u",
3657 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3658 
3659 	/*
3660 	 * Showing inode{64,32} might be useful even if it's the system default,
3661 	 * since then people don't have to resort to checking both here and
3662 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3663 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3664 	 *
3665 	 * We hide it when inode64 isn't the default and we are using 32-bit
3666 	 * inodes, since that probably just means the feature isn't even under
3667 	 * consideration.
3668 	 *
3669 	 * As such:
3670 	 *
3671 	 *                     +-----------------+-----------------+
3672 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3673 	 *  +------------------+-----------------+-----------------+
3674 	 *  | full_inums=true  | show            | show            |
3675 	 *  | full_inums=false | show            | hide            |
3676 	 *  +------------------+-----------------+-----------------+
3677 	 *
3678 	 */
3679 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3680 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3682 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3683 	if (sbinfo->huge)
3684 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3685 #endif
3686 	shmem_show_mpol(seq, sbinfo->mpol);
3687 	return 0;
3688 }
3689 
3690 #endif /* CONFIG_TMPFS */
3691 
3692 static void shmem_put_super(struct super_block *sb)
3693 {
3694 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3695 
3696 	free_percpu(sbinfo->ino_batch);
3697 	percpu_counter_destroy(&sbinfo->used_blocks);
3698 	mpol_put(sbinfo->mpol);
3699 	kfree(sbinfo);
3700 	sb->s_fs_info = NULL;
3701 }
3702 
3703 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3704 {
3705 	struct shmem_options *ctx = fc->fs_private;
3706 	struct inode *inode;
3707 	struct shmem_sb_info *sbinfo;
3708 	int err = -ENOMEM;
3709 
3710 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3711 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3712 				L1_CACHE_BYTES), GFP_KERNEL);
3713 	if (!sbinfo)
3714 		return -ENOMEM;
3715 
3716 	sb->s_fs_info = sbinfo;
3717 
3718 #ifdef CONFIG_TMPFS
3719 	/*
3720 	 * Per default we only allow half of the physical ram per
3721 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3722 	 * but the internal instance is left unlimited.
3723 	 */
3724 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3725 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3726 			ctx->blocks = shmem_default_max_blocks();
3727 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3728 			ctx->inodes = shmem_default_max_inodes();
3729 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3730 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3731 	} else {
3732 		sb->s_flags |= SB_NOUSER;
3733 	}
3734 	sb->s_export_op = &shmem_export_ops;
3735 	sb->s_flags |= SB_NOSEC;
3736 #else
3737 	sb->s_flags |= SB_NOUSER;
3738 #endif
3739 	sbinfo->max_blocks = ctx->blocks;
3740 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3741 	if (sb->s_flags & SB_KERNMOUNT) {
3742 		sbinfo->ino_batch = alloc_percpu(ino_t);
3743 		if (!sbinfo->ino_batch)
3744 			goto failed;
3745 	}
3746 	sbinfo->uid = ctx->uid;
3747 	sbinfo->gid = ctx->gid;
3748 	sbinfo->full_inums = ctx->full_inums;
3749 	sbinfo->mode = ctx->mode;
3750 	sbinfo->huge = ctx->huge;
3751 	sbinfo->mpol = ctx->mpol;
3752 	ctx->mpol = NULL;
3753 
3754 	spin_lock_init(&sbinfo->stat_lock);
3755 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3756 		goto failed;
3757 	spin_lock_init(&sbinfo->shrinklist_lock);
3758 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3759 
3760 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3761 	sb->s_blocksize = PAGE_SIZE;
3762 	sb->s_blocksize_bits = PAGE_SHIFT;
3763 	sb->s_magic = TMPFS_MAGIC;
3764 	sb->s_op = &shmem_ops;
3765 	sb->s_time_gran = 1;
3766 #ifdef CONFIG_TMPFS_XATTR
3767 	sb->s_xattr = shmem_xattr_handlers;
3768 #endif
3769 #ifdef CONFIG_TMPFS_POSIX_ACL
3770 	sb->s_flags |= SB_POSIXACL;
3771 #endif
3772 	uuid_gen(&sb->s_uuid);
3773 
3774 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3775 	if (!inode)
3776 		goto failed;
3777 	inode->i_uid = sbinfo->uid;
3778 	inode->i_gid = sbinfo->gid;
3779 	sb->s_root = d_make_root(inode);
3780 	if (!sb->s_root)
3781 		goto failed;
3782 	return 0;
3783 
3784 failed:
3785 	shmem_put_super(sb);
3786 	return err;
3787 }
3788 
3789 static int shmem_get_tree(struct fs_context *fc)
3790 {
3791 	return get_tree_nodev(fc, shmem_fill_super);
3792 }
3793 
3794 static void shmem_free_fc(struct fs_context *fc)
3795 {
3796 	struct shmem_options *ctx = fc->fs_private;
3797 
3798 	if (ctx) {
3799 		mpol_put(ctx->mpol);
3800 		kfree(ctx);
3801 	}
3802 }
3803 
3804 static const struct fs_context_operations shmem_fs_context_ops = {
3805 	.free			= shmem_free_fc,
3806 	.get_tree		= shmem_get_tree,
3807 #ifdef CONFIG_TMPFS
3808 	.parse_monolithic	= shmem_parse_options,
3809 	.parse_param		= shmem_parse_one,
3810 	.reconfigure		= shmem_reconfigure,
3811 #endif
3812 };
3813 
3814 static struct kmem_cache *shmem_inode_cachep;
3815 
3816 static struct inode *shmem_alloc_inode(struct super_block *sb)
3817 {
3818 	struct shmem_inode_info *info;
3819 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3820 	if (!info)
3821 		return NULL;
3822 	return &info->vfs_inode;
3823 }
3824 
3825 static void shmem_free_in_core_inode(struct inode *inode)
3826 {
3827 	if (S_ISLNK(inode->i_mode))
3828 		kfree(inode->i_link);
3829 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3830 }
3831 
3832 static void shmem_destroy_inode(struct inode *inode)
3833 {
3834 	if (S_ISREG(inode->i_mode))
3835 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3836 }
3837 
3838 static void shmem_init_inode(void *foo)
3839 {
3840 	struct shmem_inode_info *info = foo;
3841 	inode_init_once(&info->vfs_inode);
3842 }
3843 
3844 static void shmem_init_inodecache(void)
3845 {
3846 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3847 				sizeof(struct shmem_inode_info),
3848 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3849 }
3850 
3851 static void shmem_destroy_inodecache(void)
3852 {
3853 	kmem_cache_destroy(shmem_inode_cachep);
3854 }
3855 
3856 static const struct address_space_operations shmem_aops = {
3857 	.writepage	= shmem_writepage,
3858 	.set_page_dirty	= __set_page_dirty_no_writeback,
3859 #ifdef CONFIG_TMPFS
3860 	.write_begin	= shmem_write_begin,
3861 	.write_end	= shmem_write_end,
3862 #endif
3863 #ifdef CONFIG_MIGRATION
3864 	.migratepage	= migrate_page,
3865 #endif
3866 	.error_remove_page = generic_error_remove_page,
3867 };
3868 
3869 static const struct file_operations shmem_file_operations = {
3870 	.mmap		= shmem_mmap,
3871 	.get_unmapped_area = shmem_get_unmapped_area,
3872 #ifdef CONFIG_TMPFS
3873 	.llseek		= shmem_file_llseek,
3874 	.read_iter	= shmem_file_read_iter,
3875 	.write_iter	= generic_file_write_iter,
3876 	.fsync		= noop_fsync,
3877 	.splice_read	= generic_file_splice_read,
3878 	.splice_write	= iter_file_splice_write,
3879 	.fallocate	= shmem_fallocate,
3880 #endif
3881 };
3882 
3883 static const struct inode_operations shmem_inode_operations = {
3884 	.getattr	= shmem_getattr,
3885 	.setattr	= shmem_setattr,
3886 #ifdef CONFIG_TMPFS_XATTR
3887 	.listxattr	= shmem_listxattr,
3888 	.set_acl	= simple_set_acl,
3889 #endif
3890 };
3891 
3892 static const struct inode_operations shmem_dir_inode_operations = {
3893 #ifdef CONFIG_TMPFS
3894 	.create		= shmem_create,
3895 	.lookup		= simple_lookup,
3896 	.link		= shmem_link,
3897 	.unlink		= shmem_unlink,
3898 	.symlink	= shmem_symlink,
3899 	.mkdir		= shmem_mkdir,
3900 	.rmdir		= shmem_rmdir,
3901 	.mknod		= shmem_mknod,
3902 	.rename		= shmem_rename2,
3903 	.tmpfile	= shmem_tmpfile,
3904 #endif
3905 #ifdef CONFIG_TMPFS_XATTR
3906 	.listxattr	= shmem_listxattr,
3907 #endif
3908 #ifdef CONFIG_TMPFS_POSIX_ACL
3909 	.setattr	= shmem_setattr,
3910 	.set_acl	= simple_set_acl,
3911 #endif
3912 };
3913 
3914 static const struct inode_operations shmem_special_inode_operations = {
3915 #ifdef CONFIG_TMPFS_XATTR
3916 	.listxattr	= shmem_listxattr,
3917 #endif
3918 #ifdef CONFIG_TMPFS_POSIX_ACL
3919 	.setattr	= shmem_setattr,
3920 	.set_acl	= simple_set_acl,
3921 #endif
3922 };
3923 
3924 static const struct super_operations shmem_ops = {
3925 	.alloc_inode	= shmem_alloc_inode,
3926 	.free_inode	= shmem_free_in_core_inode,
3927 	.destroy_inode	= shmem_destroy_inode,
3928 #ifdef CONFIG_TMPFS
3929 	.statfs		= shmem_statfs,
3930 	.show_options	= shmem_show_options,
3931 #endif
3932 	.evict_inode	= shmem_evict_inode,
3933 	.drop_inode	= generic_delete_inode,
3934 	.put_super	= shmem_put_super,
3935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3936 	.nr_cached_objects	= shmem_unused_huge_count,
3937 	.free_cached_objects	= shmem_unused_huge_scan,
3938 #endif
3939 };
3940 
3941 static const struct vm_operations_struct shmem_vm_ops = {
3942 	.fault		= shmem_fault,
3943 	.map_pages	= filemap_map_pages,
3944 #ifdef CONFIG_NUMA
3945 	.set_policy     = shmem_set_policy,
3946 	.get_policy     = shmem_get_policy,
3947 #endif
3948 };
3949 
3950 int shmem_init_fs_context(struct fs_context *fc)
3951 {
3952 	struct shmem_options *ctx;
3953 
3954 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3955 	if (!ctx)
3956 		return -ENOMEM;
3957 
3958 	ctx->mode = 0777 | S_ISVTX;
3959 	ctx->uid = current_fsuid();
3960 	ctx->gid = current_fsgid();
3961 
3962 	fc->fs_private = ctx;
3963 	fc->ops = &shmem_fs_context_ops;
3964 	return 0;
3965 }
3966 
3967 static struct file_system_type shmem_fs_type = {
3968 	.owner		= THIS_MODULE,
3969 	.name		= "tmpfs",
3970 	.init_fs_context = shmem_init_fs_context,
3971 #ifdef CONFIG_TMPFS
3972 	.parameters	= shmem_fs_parameters,
3973 #endif
3974 	.kill_sb	= kill_litter_super,
3975 	.fs_flags	= FS_USERNS_MOUNT,
3976 };
3977 
3978 int __init shmem_init(void)
3979 {
3980 	int error;
3981 
3982 	shmem_init_inodecache();
3983 
3984 	error = register_filesystem(&shmem_fs_type);
3985 	if (error) {
3986 		pr_err("Could not register tmpfs\n");
3987 		goto out2;
3988 	}
3989 
3990 	shm_mnt = kern_mount(&shmem_fs_type);
3991 	if (IS_ERR(shm_mnt)) {
3992 		error = PTR_ERR(shm_mnt);
3993 		pr_err("Could not kern_mount tmpfs\n");
3994 		goto out1;
3995 	}
3996 
3997 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3998 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3999 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4000 	else
4001 		shmem_huge = 0; /* just in case it was patched */
4002 #endif
4003 	return 0;
4004 
4005 out1:
4006 	unregister_filesystem(&shmem_fs_type);
4007 out2:
4008 	shmem_destroy_inodecache();
4009 	shm_mnt = ERR_PTR(error);
4010 	return error;
4011 }
4012 
4013 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4014 static ssize_t shmem_enabled_show(struct kobject *kobj,
4015 		struct kobj_attribute *attr, char *buf)
4016 {
4017 	static const int values[] = {
4018 		SHMEM_HUGE_ALWAYS,
4019 		SHMEM_HUGE_WITHIN_SIZE,
4020 		SHMEM_HUGE_ADVISE,
4021 		SHMEM_HUGE_NEVER,
4022 		SHMEM_HUGE_DENY,
4023 		SHMEM_HUGE_FORCE,
4024 	};
4025 	int i, count;
4026 
4027 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4028 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4029 
4030 		count += sprintf(buf + count, fmt,
4031 				shmem_format_huge(values[i]));
4032 	}
4033 	buf[count - 1] = '\n';
4034 	return count;
4035 }
4036 
4037 static ssize_t shmem_enabled_store(struct kobject *kobj,
4038 		struct kobj_attribute *attr, const char *buf, size_t count)
4039 {
4040 	char tmp[16];
4041 	int huge;
4042 
4043 	if (count + 1 > sizeof(tmp))
4044 		return -EINVAL;
4045 	memcpy(tmp, buf, count);
4046 	tmp[count] = '\0';
4047 	if (count && tmp[count - 1] == '\n')
4048 		tmp[count - 1] = '\0';
4049 
4050 	huge = shmem_parse_huge(tmp);
4051 	if (huge == -EINVAL)
4052 		return -EINVAL;
4053 	if (!has_transparent_hugepage() &&
4054 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4055 		return -EINVAL;
4056 
4057 	shmem_huge = huge;
4058 	if (shmem_huge > SHMEM_HUGE_DENY)
4059 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4060 	return count;
4061 }
4062 
4063 struct kobj_attribute shmem_enabled_attr =
4064 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4065 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4066 
4067 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4068 bool shmem_huge_enabled(struct vm_area_struct *vma)
4069 {
4070 	struct inode *inode = file_inode(vma->vm_file);
4071 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4072 	loff_t i_size;
4073 	pgoff_t off;
4074 
4075 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4076 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4077 		return false;
4078 	if (shmem_huge == SHMEM_HUGE_FORCE)
4079 		return true;
4080 	if (shmem_huge == SHMEM_HUGE_DENY)
4081 		return false;
4082 	switch (sbinfo->huge) {
4083 		case SHMEM_HUGE_NEVER:
4084 			return false;
4085 		case SHMEM_HUGE_ALWAYS:
4086 			return true;
4087 		case SHMEM_HUGE_WITHIN_SIZE:
4088 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4089 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4090 			if (i_size >= HPAGE_PMD_SIZE &&
4091 					i_size >> PAGE_SHIFT >= off)
4092 				return true;
4093 			fallthrough;
4094 		case SHMEM_HUGE_ADVISE:
4095 			/* TODO: implement fadvise() hints */
4096 			return (vma->vm_flags & VM_HUGEPAGE);
4097 		default:
4098 			VM_BUG_ON(1);
4099 			return false;
4100 	}
4101 }
4102 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4103 
4104 #else /* !CONFIG_SHMEM */
4105 
4106 /*
4107  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4108  *
4109  * This is intended for small system where the benefits of the full
4110  * shmem code (swap-backed and resource-limited) are outweighed by
4111  * their complexity. On systems without swap this code should be
4112  * effectively equivalent, but much lighter weight.
4113  */
4114 
4115 static struct file_system_type shmem_fs_type = {
4116 	.name		= "tmpfs",
4117 	.init_fs_context = ramfs_init_fs_context,
4118 	.parameters	= ramfs_fs_parameters,
4119 	.kill_sb	= kill_litter_super,
4120 	.fs_flags	= FS_USERNS_MOUNT,
4121 };
4122 
4123 int __init shmem_init(void)
4124 {
4125 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4126 
4127 	shm_mnt = kern_mount(&shmem_fs_type);
4128 	BUG_ON(IS_ERR(shm_mnt));
4129 
4130 	return 0;
4131 }
4132 
4133 int shmem_unuse(unsigned int type, bool frontswap,
4134 		unsigned long *fs_pages_to_unuse)
4135 {
4136 	return 0;
4137 }
4138 
4139 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4140 {
4141 	return 0;
4142 }
4143 
4144 void shmem_unlock_mapping(struct address_space *mapping)
4145 {
4146 }
4147 
4148 #ifdef CONFIG_MMU
4149 unsigned long shmem_get_unmapped_area(struct file *file,
4150 				      unsigned long addr, unsigned long len,
4151 				      unsigned long pgoff, unsigned long flags)
4152 {
4153 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4154 }
4155 #endif
4156 
4157 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4158 {
4159 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4160 }
4161 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4162 
4163 #define shmem_vm_ops				generic_file_vm_ops
4164 #define shmem_file_operations			ramfs_file_operations
4165 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4166 #define shmem_acct_size(flags, size)		0
4167 #define shmem_unacct_size(flags, size)		do {} while (0)
4168 
4169 #endif /* CONFIG_SHMEM */
4170 
4171 /* common code */
4172 
4173 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4174 				       unsigned long flags, unsigned int i_flags)
4175 {
4176 	struct inode *inode;
4177 	struct file *res;
4178 
4179 	if (IS_ERR(mnt))
4180 		return ERR_CAST(mnt);
4181 
4182 	if (size < 0 || size > MAX_LFS_FILESIZE)
4183 		return ERR_PTR(-EINVAL);
4184 
4185 	if (shmem_acct_size(flags, size))
4186 		return ERR_PTR(-ENOMEM);
4187 
4188 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4189 				flags);
4190 	if (unlikely(!inode)) {
4191 		shmem_unacct_size(flags, size);
4192 		return ERR_PTR(-ENOSPC);
4193 	}
4194 	inode->i_flags |= i_flags;
4195 	inode->i_size = size;
4196 	clear_nlink(inode);	/* It is unlinked */
4197 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4198 	if (!IS_ERR(res))
4199 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4200 				&shmem_file_operations);
4201 	if (IS_ERR(res))
4202 		iput(inode);
4203 	return res;
4204 }
4205 
4206 /**
4207  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4208  * 	kernel internal.  There will be NO LSM permission checks against the
4209  * 	underlying inode.  So users of this interface must do LSM checks at a
4210  *	higher layer.  The users are the big_key and shm implementations.  LSM
4211  *	checks are provided at the key or shm level rather than the inode.
4212  * @name: name for dentry (to be seen in /proc/<pid>/maps
4213  * @size: size to be set for the file
4214  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4215  */
4216 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4217 {
4218 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4219 }
4220 
4221 /**
4222  * shmem_file_setup - get an unlinked file living in tmpfs
4223  * @name: name for dentry (to be seen in /proc/<pid>/maps
4224  * @size: size to be set for the file
4225  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4226  */
4227 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4228 {
4229 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4230 }
4231 EXPORT_SYMBOL_GPL(shmem_file_setup);
4232 
4233 /**
4234  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4235  * @mnt: the tmpfs mount where the file will be created
4236  * @name: name for dentry (to be seen in /proc/<pid>/maps
4237  * @size: size to be set for the file
4238  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4239  */
4240 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4241 				       loff_t size, unsigned long flags)
4242 {
4243 	return __shmem_file_setup(mnt, name, size, flags, 0);
4244 }
4245 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4246 
4247 /**
4248  * shmem_zero_setup - setup a shared anonymous mapping
4249  * @vma: the vma to be mmapped is prepared by do_mmap
4250  */
4251 int shmem_zero_setup(struct vm_area_struct *vma)
4252 {
4253 	struct file *file;
4254 	loff_t size = vma->vm_end - vma->vm_start;
4255 
4256 	/*
4257 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4258 	 * between XFS directory reading and selinux: since this file is only
4259 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4260 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4261 	 */
4262 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4263 	if (IS_ERR(file))
4264 		return PTR_ERR(file);
4265 
4266 	if (vma->vm_file)
4267 		fput(vma->vm_file);
4268 	vma->vm_file = file;
4269 	vma->vm_ops = &shmem_vm_ops;
4270 
4271 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4272 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4273 			(vma->vm_end & HPAGE_PMD_MASK)) {
4274 		khugepaged_enter(vma, vma->vm_flags);
4275 	}
4276 
4277 	return 0;
4278 }
4279 
4280 /**
4281  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4282  * @mapping:	the page's address_space
4283  * @index:	the page index
4284  * @gfp:	the page allocator flags to use if allocating
4285  *
4286  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4287  * with any new page allocations done using the specified allocation flags.
4288  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4289  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4290  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4291  *
4292  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4293  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4294  */
4295 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4296 					 pgoff_t index, gfp_t gfp)
4297 {
4298 #ifdef CONFIG_SHMEM
4299 	struct inode *inode = mapping->host;
4300 	struct page *page;
4301 	int error;
4302 
4303 	BUG_ON(mapping->a_ops != &shmem_aops);
4304 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4305 				  gfp, NULL, NULL, NULL);
4306 	if (error)
4307 		page = ERR_PTR(error);
4308 	else
4309 		unlock_page(page);
4310 	return page;
4311 #else
4312 	/*
4313 	 * The tiny !SHMEM case uses ramfs without swap
4314 	 */
4315 	return read_cache_page_gfp(mapping, index, gfp);
4316 #endif
4317 }
4318 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4319