xref: /openbmc/linux/mm/shmem.c (revision e8f6f3b4)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78 
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
81 
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
84 
85 /*
86  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87  * inode->i_private (with i_mutex making sure that it has only one user at
88  * a time): we would prefer not to enlarge the shmem inode just for that.
89  */
90 struct shmem_falloc {
91 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92 	pgoff_t start;		/* start of range currently being fallocated */
93 	pgoff_t next;		/* the next page offset to be fallocated */
94 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
95 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
96 };
97 
98 /* Flag allocation requirements to shmem_getpage */
99 enum sgp_type {
100 	SGP_READ,	/* don't exceed i_size, don't allocate page */
101 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
102 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
103 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
104 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
105 };
106 
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 	return totalram_pages / 2;
111 }
112 
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118 
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 				struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124 
125 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 	struct page **pagep, enum sgp_type sgp, int *fault_type)
127 {
128 	return shmem_getpage_gfp(inode, index, pagep, sgp,
129 			mapping_gfp_mask(inode->i_mapping), fault_type);
130 }
131 
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134 	return sb->s_fs_info;
135 }
136 
137 /*
138  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139  * for shared memory and for shared anonymous (/dev/zero) mappings
140  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141  * consistent with the pre-accounting of private mappings ...
142  */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145 	return (flags & VM_NORESERVE) ?
146 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148 
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151 	if (!(flags & VM_NORESERVE))
152 		vm_unacct_memory(VM_ACCT(size));
153 }
154 
155 static inline int shmem_reacct_size(unsigned long flags,
156 		loff_t oldsize, loff_t newsize)
157 {
158 	if (!(flags & VM_NORESERVE)) {
159 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 			return security_vm_enough_memory_mm(current->mm,
161 					VM_ACCT(newsize) - VM_ACCT(oldsize));
162 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 	}
165 	return 0;
166 }
167 
168 /*
169  * ... whereas tmpfs objects are accounted incrementally as
170  * pages are allocated, in order to allow huge sparse files.
171  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173  */
174 static inline int shmem_acct_block(unsigned long flags)
175 {
176 	return (flags & VM_NORESERVE) ?
177 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178 }
179 
180 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181 {
182 	if (flags & VM_NORESERVE)
183 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184 }
185 
186 static const struct super_operations shmem_ops;
187 static const struct address_space_operations shmem_aops;
188 static const struct file_operations shmem_file_operations;
189 static const struct inode_operations shmem_inode_operations;
190 static const struct inode_operations shmem_dir_inode_operations;
191 static const struct inode_operations shmem_special_inode_operations;
192 static const struct vm_operations_struct shmem_vm_ops;
193 
194 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
195 	.ra_pages	= 0,	/* No readahead */
196 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
197 };
198 
199 static LIST_HEAD(shmem_swaplist);
200 static DEFINE_MUTEX(shmem_swaplist_mutex);
201 
202 static int shmem_reserve_inode(struct super_block *sb)
203 {
204 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
205 	if (sbinfo->max_inodes) {
206 		spin_lock(&sbinfo->stat_lock);
207 		if (!sbinfo->free_inodes) {
208 			spin_unlock(&sbinfo->stat_lock);
209 			return -ENOSPC;
210 		}
211 		sbinfo->free_inodes--;
212 		spin_unlock(&sbinfo->stat_lock);
213 	}
214 	return 0;
215 }
216 
217 static void shmem_free_inode(struct super_block *sb)
218 {
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
220 	if (sbinfo->max_inodes) {
221 		spin_lock(&sbinfo->stat_lock);
222 		sbinfo->free_inodes++;
223 		spin_unlock(&sbinfo->stat_lock);
224 	}
225 }
226 
227 /**
228  * shmem_recalc_inode - recalculate the block usage of an inode
229  * @inode: inode to recalc
230  *
231  * We have to calculate the free blocks since the mm can drop
232  * undirtied hole pages behind our back.
233  *
234  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
235  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
236  *
237  * It has to be called with the spinlock held.
238  */
239 static void shmem_recalc_inode(struct inode *inode)
240 {
241 	struct shmem_inode_info *info = SHMEM_I(inode);
242 	long freed;
243 
244 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
245 	if (freed > 0) {
246 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 		if (sbinfo->max_blocks)
248 			percpu_counter_add(&sbinfo->used_blocks, -freed);
249 		info->alloced -= freed;
250 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
251 		shmem_unacct_blocks(info->flags, freed);
252 	}
253 }
254 
255 /*
256  * Replace item expected in radix tree by a new item, while holding tree lock.
257  */
258 static int shmem_radix_tree_replace(struct address_space *mapping,
259 			pgoff_t index, void *expected, void *replacement)
260 {
261 	void **pslot;
262 	void *item;
263 
264 	VM_BUG_ON(!expected);
265 	VM_BUG_ON(!replacement);
266 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
267 	if (!pslot)
268 		return -ENOENT;
269 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
270 	if (item != expected)
271 		return -ENOENT;
272 	radix_tree_replace_slot(pslot, replacement);
273 	return 0;
274 }
275 
276 /*
277  * Sometimes, before we decide whether to proceed or to fail, we must check
278  * that an entry was not already brought back from swap by a racing thread.
279  *
280  * Checking page is not enough: by the time a SwapCache page is locked, it
281  * might be reused, and again be SwapCache, using the same swap as before.
282  */
283 static bool shmem_confirm_swap(struct address_space *mapping,
284 			       pgoff_t index, swp_entry_t swap)
285 {
286 	void *item;
287 
288 	rcu_read_lock();
289 	item = radix_tree_lookup(&mapping->page_tree, index);
290 	rcu_read_unlock();
291 	return item == swp_to_radix_entry(swap);
292 }
293 
294 /*
295  * Like add_to_page_cache_locked, but error if expected item has gone.
296  */
297 static int shmem_add_to_page_cache(struct page *page,
298 				   struct address_space *mapping,
299 				   pgoff_t index, void *expected)
300 {
301 	int error;
302 
303 	VM_BUG_ON_PAGE(!PageLocked(page), page);
304 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
305 
306 	page_cache_get(page);
307 	page->mapping = mapping;
308 	page->index = index;
309 
310 	spin_lock_irq(&mapping->tree_lock);
311 	if (!expected)
312 		error = radix_tree_insert(&mapping->page_tree, index, page);
313 	else
314 		error = shmem_radix_tree_replace(mapping, index, expected,
315 								 page);
316 	if (!error) {
317 		mapping->nrpages++;
318 		__inc_zone_page_state(page, NR_FILE_PAGES);
319 		__inc_zone_page_state(page, NR_SHMEM);
320 		spin_unlock_irq(&mapping->tree_lock);
321 	} else {
322 		page->mapping = NULL;
323 		spin_unlock_irq(&mapping->tree_lock);
324 		page_cache_release(page);
325 	}
326 	return error;
327 }
328 
329 /*
330  * Like delete_from_page_cache, but substitutes swap for page.
331  */
332 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
333 {
334 	struct address_space *mapping = page->mapping;
335 	int error;
336 
337 	spin_lock_irq(&mapping->tree_lock);
338 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
339 	page->mapping = NULL;
340 	mapping->nrpages--;
341 	__dec_zone_page_state(page, NR_FILE_PAGES);
342 	__dec_zone_page_state(page, NR_SHMEM);
343 	spin_unlock_irq(&mapping->tree_lock);
344 	page_cache_release(page);
345 	BUG_ON(error);
346 }
347 
348 /*
349  * Remove swap entry from radix tree, free the swap and its page cache.
350  */
351 static int shmem_free_swap(struct address_space *mapping,
352 			   pgoff_t index, void *radswap)
353 {
354 	void *old;
355 
356 	spin_lock_irq(&mapping->tree_lock);
357 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
358 	spin_unlock_irq(&mapping->tree_lock);
359 	if (old != radswap)
360 		return -ENOENT;
361 	free_swap_and_cache(radix_to_swp_entry(radswap));
362 	return 0;
363 }
364 
365 /*
366  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
367  */
368 void shmem_unlock_mapping(struct address_space *mapping)
369 {
370 	struct pagevec pvec;
371 	pgoff_t indices[PAGEVEC_SIZE];
372 	pgoff_t index = 0;
373 
374 	pagevec_init(&pvec, 0);
375 	/*
376 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
377 	 */
378 	while (!mapping_unevictable(mapping)) {
379 		/*
380 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
381 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
382 		 */
383 		pvec.nr = find_get_entries(mapping, index,
384 					   PAGEVEC_SIZE, pvec.pages, indices);
385 		if (!pvec.nr)
386 			break;
387 		index = indices[pvec.nr - 1] + 1;
388 		pagevec_remove_exceptionals(&pvec);
389 		check_move_unevictable_pages(pvec.pages, pvec.nr);
390 		pagevec_release(&pvec);
391 		cond_resched();
392 	}
393 }
394 
395 /*
396  * Remove range of pages and swap entries from radix tree, and free them.
397  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
398  */
399 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
400 								 bool unfalloc)
401 {
402 	struct address_space *mapping = inode->i_mapping;
403 	struct shmem_inode_info *info = SHMEM_I(inode);
404 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
405 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
406 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
407 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
408 	struct pagevec pvec;
409 	pgoff_t indices[PAGEVEC_SIZE];
410 	long nr_swaps_freed = 0;
411 	pgoff_t index;
412 	int i;
413 
414 	if (lend == -1)
415 		end = -1;	/* unsigned, so actually very big */
416 
417 	pagevec_init(&pvec, 0);
418 	index = start;
419 	while (index < end) {
420 		pvec.nr = find_get_entries(mapping, index,
421 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
422 			pvec.pages, indices);
423 		if (!pvec.nr)
424 			break;
425 		for (i = 0; i < pagevec_count(&pvec); i++) {
426 			struct page *page = pvec.pages[i];
427 
428 			index = indices[i];
429 			if (index >= end)
430 				break;
431 
432 			if (radix_tree_exceptional_entry(page)) {
433 				if (unfalloc)
434 					continue;
435 				nr_swaps_freed += !shmem_free_swap(mapping,
436 								index, page);
437 				continue;
438 			}
439 
440 			if (!trylock_page(page))
441 				continue;
442 			if (!unfalloc || !PageUptodate(page)) {
443 				if (page->mapping == mapping) {
444 					VM_BUG_ON_PAGE(PageWriteback(page), page);
445 					truncate_inode_page(mapping, page);
446 				}
447 			}
448 			unlock_page(page);
449 		}
450 		pagevec_remove_exceptionals(&pvec);
451 		pagevec_release(&pvec);
452 		cond_resched();
453 		index++;
454 	}
455 
456 	if (partial_start) {
457 		struct page *page = NULL;
458 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
459 		if (page) {
460 			unsigned int top = PAGE_CACHE_SIZE;
461 			if (start > end) {
462 				top = partial_end;
463 				partial_end = 0;
464 			}
465 			zero_user_segment(page, partial_start, top);
466 			set_page_dirty(page);
467 			unlock_page(page);
468 			page_cache_release(page);
469 		}
470 	}
471 	if (partial_end) {
472 		struct page *page = NULL;
473 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
474 		if (page) {
475 			zero_user_segment(page, 0, partial_end);
476 			set_page_dirty(page);
477 			unlock_page(page);
478 			page_cache_release(page);
479 		}
480 	}
481 	if (start >= end)
482 		return;
483 
484 	index = start;
485 	while (index < end) {
486 		cond_resched();
487 
488 		pvec.nr = find_get_entries(mapping, index,
489 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
490 				pvec.pages, indices);
491 		if (!pvec.nr) {
492 			/* If all gone or hole-punch or unfalloc, we're done */
493 			if (index == start || end != -1)
494 				break;
495 			/* But if truncating, restart to make sure all gone */
496 			index = start;
497 			continue;
498 		}
499 		for (i = 0; i < pagevec_count(&pvec); i++) {
500 			struct page *page = pvec.pages[i];
501 
502 			index = indices[i];
503 			if (index >= end)
504 				break;
505 
506 			if (radix_tree_exceptional_entry(page)) {
507 				if (unfalloc)
508 					continue;
509 				if (shmem_free_swap(mapping, index, page)) {
510 					/* Swap was replaced by page: retry */
511 					index--;
512 					break;
513 				}
514 				nr_swaps_freed++;
515 				continue;
516 			}
517 
518 			lock_page(page);
519 			if (!unfalloc || !PageUptodate(page)) {
520 				if (page->mapping == mapping) {
521 					VM_BUG_ON_PAGE(PageWriteback(page), page);
522 					truncate_inode_page(mapping, page);
523 				} else {
524 					/* Page was replaced by swap: retry */
525 					unlock_page(page);
526 					index--;
527 					break;
528 				}
529 			}
530 			unlock_page(page);
531 		}
532 		pagevec_remove_exceptionals(&pvec);
533 		pagevec_release(&pvec);
534 		index++;
535 	}
536 
537 	spin_lock(&info->lock);
538 	info->swapped -= nr_swaps_freed;
539 	shmem_recalc_inode(inode);
540 	spin_unlock(&info->lock);
541 }
542 
543 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
544 {
545 	shmem_undo_range(inode, lstart, lend, false);
546 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 }
548 EXPORT_SYMBOL_GPL(shmem_truncate_range);
549 
550 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
551 {
552 	struct inode *inode = dentry->d_inode;
553 	struct shmem_inode_info *info = SHMEM_I(inode);
554 	int error;
555 
556 	error = inode_change_ok(inode, attr);
557 	if (error)
558 		return error;
559 
560 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561 		loff_t oldsize = inode->i_size;
562 		loff_t newsize = attr->ia_size;
563 
564 		/* protected by i_mutex */
565 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
566 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
567 			return -EPERM;
568 
569 		if (newsize != oldsize) {
570 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
571 					oldsize, newsize);
572 			if (error)
573 				return error;
574 			i_size_write(inode, newsize);
575 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
576 		}
577 		if (newsize < oldsize) {
578 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
579 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
580 			shmem_truncate_range(inode, newsize, (loff_t)-1);
581 			/* unmap again to remove racily COWed private pages */
582 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
583 		}
584 	}
585 
586 	setattr_copy(inode, attr);
587 	if (attr->ia_valid & ATTR_MODE)
588 		error = posix_acl_chmod(inode, inode->i_mode);
589 	return error;
590 }
591 
592 static void shmem_evict_inode(struct inode *inode)
593 {
594 	struct shmem_inode_info *info = SHMEM_I(inode);
595 
596 	if (inode->i_mapping->a_ops == &shmem_aops) {
597 		shmem_unacct_size(info->flags, inode->i_size);
598 		inode->i_size = 0;
599 		shmem_truncate_range(inode, 0, (loff_t)-1);
600 		if (!list_empty(&info->swaplist)) {
601 			mutex_lock(&shmem_swaplist_mutex);
602 			list_del_init(&info->swaplist);
603 			mutex_unlock(&shmem_swaplist_mutex);
604 		}
605 	} else
606 		kfree(info->symlink);
607 
608 	simple_xattrs_free(&info->xattrs);
609 	WARN_ON(inode->i_blocks);
610 	shmem_free_inode(inode->i_sb);
611 	clear_inode(inode);
612 }
613 
614 /*
615  * If swap found in inode, free it and move page from swapcache to filecache.
616  */
617 static int shmem_unuse_inode(struct shmem_inode_info *info,
618 			     swp_entry_t swap, struct page **pagep)
619 {
620 	struct address_space *mapping = info->vfs_inode.i_mapping;
621 	void *radswap;
622 	pgoff_t index;
623 	gfp_t gfp;
624 	int error = 0;
625 
626 	radswap = swp_to_radix_entry(swap);
627 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
628 	if (index == -1)
629 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
630 
631 	/*
632 	 * Move _head_ to start search for next from here.
633 	 * But be careful: shmem_evict_inode checks list_empty without taking
634 	 * mutex, and there's an instant in list_move_tail when info->swaplist
635 	 * would appear empty, if it were the only one on shmem_swaplist.
636 	 */
637 	if (shmem_swaplist.next != &info->swaplist)
638 		list_move_tail(&shmem_swaplist, &info->swaplist);
639 
640 	gfp = mapping_gfp_mask(mapping);
641 	if (shmem_should_replace_page(*pagep, gfp)) {
642 		mutex_unlock(&shmem_swaplist_mutex);
643 		error = shmem_replace_page(pagep, gfp, info, index);
644 		mutex_lock(&shmem_swaplist_mutex);
645 		/*
646 		 * We needed to drop mutex to make that restrictive page
647 		 * allocation, but the inode might have been freed while we
648 		 * dropped it: although a racing shmem_evict_inode() cannot
649 		 * complete without emptying the radix_tree, our page lock
650 		 * on this swapcache page is not enough to prevent that -
651 		 * free_swap_and_cache() of our swap entry will only
652 		 * trylock_page(), removing swap from radix_tree whatever.
653 		 *
654 		 * We must not proceed to shmem_add_to_page_cache() if the
655 		 * inode has been freed, but of course we cannot rely on
656 		 * inode or mapping or info to check that.  However, we can
657 		 * safely check if our swap entry is still in use (and here
658 		 * it can't have got reused for another page): if it's still
659 		 * in use, then the inode cannot have been freed yet, and we
660 		 * can safely proceed (if it's no longer in use, that tells
661 		 * nothing about the inode, but we don't need to unuse swap).
662 		 */
663 		if (!page_swapcount(*pagep))
664 			error = -ENOENT;
665 	}
666 
667 	/*
668 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
669 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
670 	 * beneath us (pagelock doesn't help until the page is in pagecache).
671 	 */
672 	if (!error)
673 		error = shmem_add_to_page_cache(*pagep, mapping, index,
674 						radswap);
675 	if (error != -ENOMEM) {
676 		/*
677 		 * Truncation and eviction use free_swap_and_cache(), which
678 		 * only does trylock page: if we raced, best clean up here.
679 		 */
680 		delete_from_swap_cache(*pagep);
681 		set_page_dirty(*pagep);
682 		if (!error) {
683 			spin_lock(&info->lock);
684 			info->swapped--;
685 			spin_unlock(&info->lock);
686 			swap_free(swap);
687 		}
688 	}
689 	return error;
690 }
691 
692 /*
693  * Search through swapped inodes to find and replace swap by page.
694  */
695 int shmem_unuse(swp_entry_t swap, struct page *page)
696 {
697 	struct list_head *this, *next;
698 	struct shmem_inode_info *info;
699 	struct mem_cgroup *memcg;
700 	int error = 0;
701 
702 	/*
703 	 * There's a faint possibility that swap page was replaced before
704 	 * caller locked it: caller will come back later with the right page.
705 	 */
706 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
707 		goto out;
708 
709 	/*
710 	 * Charge page using GFP_KERNEL while we can wait, before taking
711 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
712 	 * Charged back to the user (not to caller) when swap account is used.
713 	 */
714 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
715 	if (error)
716 		goto out;
717 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
718 	error = -EAGAIN;
719 
720 	mutex_lock(&shmem_swaplist_mutex);
721 	list_for_each_safe(this, next, &shmem_swaplist) {
722 		info = list_entry(this, struct shmem_inode_info, swaplist);
723 		if (info->swapped)
724 			error = shmem_unuse_inode(info, swap, &page);
725 		else
726 			list_del_init(&info->swaplist);
727 		cond_resched();
728 		if (error != -EAGAIN)
729 			break;
730 		/* found nothing in this: move on to search the next */
731 	}
732 	mutex_unlock(&shmem_swaplist_mutex);
733 
734 	if (error) {
735 		if (error != -ENOMEM)
736 			error = 0;
737 		mem_cgroup_cancel_charge(page, memcg);
738 	} else
739 		mem_cgroup_commit_charge(page, memcg, true);
740 out:
741 	unlock_page(page);
742 	page_cache_release(page);
743 	return error;
744 }
745 
746 /*
747  * Move the page from the page cache to the swap cache.
748  */
749 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
750 {
751 	struct shmem_inode_info *info;
752 	struct address_space *mapping;
753 	struct inode *inode;
754 	swp_entry_t swap;
755 	pgoff_t index;
756 
757 	BUG_ON(!PageLocked(page));
758 	mapping = page->mapping;
759 	index = page->index;
760 	inode = mapping->host;
761 	info = SHMEM_I(inode);
762 	if (info->flags & VM_LOCKED)
763 		goto redirty;
764 	if (!total_swap_pages)
765 		goto redirty;
766 
767 	/*
768 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
769 	 * sync from ever calling shmem_writepage; but a stacking filesystem
770 	 * might use ->writepage of its underlying filesystem, in which case
771 	 * tmpfs should write out to swap only in response to memory pressure,
772 	 * and not for the writeback threads or sync.
773 	 */
774 	if (!wbc->for_reclaim) {
775 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
776 		goto redirty;
777 	}
778 
779 	/*
780 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
781 	 * value into swapfile.c, the only way we can correctly account for a
782 	 * fallocated page arriving here is now to initialize it and write it.
783 	 *
784 	 * That's okay for a page already fallocated earlier, but if we have
785 	 * not yet completed the fallocation, then (a) we want to keep track
786 	 * of this page in case we have to undo it, and (b) it may not be a
787 	 * good idea to continue anyway, once we're pushing into swap.  So
788 	 * reactivate the page, and let shmem_fallocate() quit when too many.
789 	 */
790 	if (!PageUptodate(page)) {
791 		if (inode->i_private) {
792 			struct shmem_falloc *shmem_falloc;
793 			spin_lock(&inode->i_lock);
794 			shmem_falloc = inode->i_private;
795 			if (shmem_falloc &&
796 			    !shmem_falloc->waitq &&
797 			    index >= shmem_falloc->start &&
798 			    index < shmem_falloc->next)
799 				shmem_falloc->nr_unswapped++;
800 			else
801 				shmem_falloc = NULL;
802 			spin_unlock(&inode->i_lock);
803 			if (shmem_falloc)
804 				goto redirty;
805 		}
806 		clear_highpage(page);
807 		flush_dcache_page(page);
808 		SetPageUptodate(page);
809 	}
810 
811 	swap = get_swap_page();
812 	if (!swap.val)
813 		goto redirty;
814 
815 	/*
816 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
817 	 * if it's not already there.  Do it now before the page is
818 	 * moved to swap cache, when its pagelock no longer protects
819 	 * the inode from eviction.  But don't unlock the mutex until
820 	 * we've incremented swapped, because shmem_unuse_inode() will
821 	 * prune a !swapped inode from the swaplist under this mutex.
822 	 */
823 	mutex_lock(&shmem_swaplist_mutex);
824 	if (list_empty(&info->swaplist))
825 		list_add_tail(&info->swaplist, &shmem_swaplist);
826 
827 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
828 		swap_shmem_alloc(swap);
829 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
830 
831 		spin_lock(&info->lock);
832 		info->swapped++;
833 		shmem_recalc_inode(inode);
834 		spin_unlock(&info->lock);
835 
836 		mutex_unlock(&shmem_swaplist_mutex);
837 		BUG_ON(page_mapped(page));
838 		swap_writepage(page, wbc);
839 		return 0;
840 	}
841 
842 	mutex_unlock(&shmem_swaplist_mutex);
843 	swapcache_free(swap);
844 redirty:
845 	set_page_dirty(page);
846 	if (wbc->for_reclaim)
847 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
848 	unlock_page(page);
849 	return 0;
850 }
851 
852 #ifdef CONFIG_NUMA
853 #ifdef CONFIG_TMPFS
854 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
855 {
856 	char buffer[64];
857 
858 	if (!mpol || mpol->mode == MPOL_DEFAULT)
859 		return;		/* show nothing */
860 
861 	mpol_to_str(buffer, sizeof(buffer), mpol);
862 
863 	seq_printf(seq, ",mpol=%s", buffer);
864 }
865 
866 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
867 {
868 	struct mempolicy *mpol = NULL;
869 	if (sbinfo->mpol) {
870 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
871 		mpol = sbinfo->mpol;
872 		mpol_get(mpol);
873 		spin_unlock(&sbinfo->stat_lock);
874 	}
875 	return mpol;
876 }
877 #endif /* CONFIG_TMPFS */
878 
879 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
880 			struct shmem_inode_info *info, pgoff_t index)
881 {
882 	struct vm_area_struct pvma;
883 	struct page *page;
884 
885 	/* Create a pseudo vma that just contains the policy */
886 	pvma.vm_start = 0;
887 	/* Bias interleave by inode number to distribute better across nodes */
888 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
889 	pvma.vm_ops = NULL;
890 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
891 
892 	page = swapin_readahead(swap, gfp, &pvma, 0);
893 
894 	/* Drop reference taken by mpol_shared_policy_lookup() */
895 	mpol_cond_put(pvma.vm_policy);
896 
897 	return page;
898 }
899 
900 static struct page *shmem_alloc_page(gfp_t gfp,
901 			struct shmem_inode_info *info, pgoff_t index)
902 {
903 	struct vm_area_struct pvma;
904 	struct page *page;
905 
906 	/* Create a pseudo vma that just contains the policy */
907 	pvma.vm_start = 0;
908 	/* Bias interleave by inode number to distribute better across nodes */
909 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
910 	pvma.vm_ops = NULL;
911 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
912 
913 	page = alloc_page_vma(gfp, &pvma, 0);
914 
915 	/* Drop reference taken by mpol_shared_policy_lookup() */
916 	mpol_cond_put(pvma.vm_policy);
917 
918 	return page;
919 }
920 #else /* !CONFIG_NUMA */
921 #ifdef CONFIG_TMPFS
922 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
923 {
924 }
925 #endif /* CONFIG_TMPFS */
926 
927 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
928 			struct shmem_inode_info *info, pgoff_t index)
929 {
930 	return swapin_readahead(swap, gfp, NULL, 0);
931 }
932 
933 static inline struct page *shmem_alloc_page(gfp_t gfp,
934 			struct shmem_inode_info *info, pgoff_t index)
935 {
936 	return alloc_page(gfp);
937 }
938 #endif /* CONFIG_NUMA */
939 
940 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
941 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
942 {
943 	return NULL;
944 }
945 #endif
946 
947 /*
948  * When a page is moved from swapcache to shmem filecache (either by the
949  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
950  * shmem_unuse_inode()), it may have been read in earlier from swap, in
951  * ignorance of the mapping it belongs to.  If that mapping has special
952  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
953  * we may need to copy to a suitable page before moving to filecache.
954  *
955  * In a future release, this may well be extended to respect cpuset and
956  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
957  * but for now it is a simple matter of zone.
958  */
959 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
960 {
961 	return page_zonenum(page) > gfp_zone(gfp);
962 }
963 
964 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
965 				struct shmem_inode_info *info, pgoff_t index)
966 {
967 	struct page *oldpage, *newpage;
968 	struct address_space *swap_mapping;
969 	pgoff_t swap_index;
970 	int error;
971 
972 	oldpage = *pagep;
973 	swap_index = page_private(oldpage);
974 	swap_mapping = page_mapping(oldpage);
975 
976 	/*
977 	 * We have arrived here because our zones are constrained, so don't
978 	 * limit chance of success by further cpuset and node constraints.
979 	 */
980 	gfp &= ~GFP_CONSTRAINT_MASK;
981 	newpage = shmem_alloc_page(gfp, info, index);
982 	if (!newpage)
983 		return -ENOMEM;
984 
985 	page_cache_get(newpage);
986 	copy_highpage(newpage, oldpage);
987 	flush_dcache_page(newpage);
988 
989 	__set_page_locked(newpage);
990 	SetPageUptodate(newpage);
991 	SetPageSwapBacked(newpage);
992 	set_page_private(newpage, swap_index);
993 	SetPageSwapCache(newpage);
994 
995 	/*
996 	 * Our caller will very soon move newpage out of swapcache, but it's
997 	 * a nice clean interface for us to replace oldpage by newpage there.
998 	 */
999 	spin_lock_irq(&swap_mapping->tree_lock);
1000 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1001 								   newpage);
1002 	if (!error) {
1003 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1004 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1005 	}
1006 	spin_unlock_irq(&swap_mapping->tree_lock);
1007 
1008 	if (unlikely(error)) {
1009 		/*
1010 		 * Is this possible?  I think not, now that our callers check
1011 		 * both PageSwapCache and page_private after getting page lock;
1012 		 * but be defensive.  Reverse old to newpage for clear and free.
1013 		 */
1014 		oldpage = newpage;
1015 	} else {
1016 		mem_cgroup_migrate(oldpage, newpage, false);
1017 		lru_cache_add_anon(newpage);
1018 		*pagep = newpage;
1019 	}
1020 
1021 	ClearPageSwapCache(oldpage);
1022 	set_page_private(oldpage, 0);
1023 
1024 	unlock_page(oldpage);
1025 	page_cache_release(oldpage);
1026 	page_cache_release(oldpage);
1027 	return error;
1028 }
1029 
1030 /*
1031  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1032  *
1033  * If we allocate a new one we do not mark it dirty. That's up to the
1034  * vm. If we swap it in we mark it dirty since we also free the swap
1035  * entry since a page cannot live in both the swap and page cache
1036  */
1037 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1038 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1039 {
1040 	struct address_space *mapping = inode->i_mapping;
1041 	struct shmem_inode_info *info;
1042 	struct shmem_sb_info *sbinfo;
1043 	struct mem_cgroup *memcg;
1044 	struct page *page;
1045 	swp_entry_t swap;
1046 	int error;
1047 	int once = 0;
1048 	int alloced = 0;
1049 
1050 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1051 		return -EFBIG;
1052 repeat:
1053 	swap.val = 0;
1054 	page = find_lock_entry(mapping, index);
1055 	if (radix_tree_exceptional_entry(page)) {
1056 		swap = radix_to_swp_entry(page);
1057 		page = NULL;
1058 	}
1059 
1060 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1061 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1062 		error = -EINVAL;
1063 		goto failed;
1064 	}
1065 
1066 	if (page && sgp == SGP_WRITE)
1067 		mark_page_accessed(page);
1068 
1069 	/* fallocated page? */
1070 	if (page && !PageUptodate(page)) {
1071 		if (sgp != SGP_READ)
1072 			goto clear;
1073 		unlock_page(page);
1074 		page_cache_release(page);
1075 		page = NULL;
1076 	}
1077 	if (page || (sgp == SGP_READ && !swap.val)) {
1078 		*pagep = page;
1079 		return 0;
1080 	}
1081 
1082 	/*
1083 	 * Fast cache lookup did not find it:
1084 	 * bring it back from swap or allocate.
1085 	 */
1086 	info = SHMEM_I(inode);
1087 	sbinfo = SHMEM_SB(inode->i_sb);
1088 
1089 	if (swap.val) {
1090 		/* Look it up and read it in.. */
1091 		page = lookup_swap_cache(swap);
1092 		if (!page) {
1093 			/* here we actually do the io */
1094 			if (fault_type)
1095 				*fault_type |= VM_FAULT_MAJOR;
1096 			page = shmem_swapin(swap, gfp, info, index);
1097 			if (!page) {
1098 				error = -ENOMEM;
1099 				goto failed;
1100 			}
1101 		}
1102 
1103 		/* We have to do this with page locked to prevent races */
1104 		lock_page(page);
1105 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1106 		    !shmem_confirm_swap(mapping, index, swap)) {
1107 			error = -EEXIST;	/* try again */
1108 			goto unlock;
1109 		}
1110 		if (!PageUptodate(page)) {
1111 			error = -EIO;
1112 			goto failed;
1113 		}
1114 		wait_on_page_writeback(page);
1115 
1116 		if (shmem_should_replace_page(page, gfp)) {
1117 			error = shmem_replace_page(&page, gfp, info, index);
1118 			if (error)
1119 				goto failed;
1120 		}
1121 
1122 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1123 		if (!error) {
1124 			error = shmem_add_to_page_cache(page, mapping, index,
1125 						swp_to_radix_entry(swap));
1126 			/*
1127 			 * We already confirmed swap under page lock, and make
1128 			 * no memory allocation here, so usually no possibility
1129 			 * of error; but free_swap_and_cache() only trylocks a
1130 			 * page, so it is just possible that the entry has been
1131 			 * truncated or holepunched since swap was confirmed.
1132 			 * shmem_undo_range() will have done some of the
1133 			 * unaccounting, now delete_from_swap_cache() will do
1134 			 * the rest (including mem_cgroup_uncharge_swapcache).
1135 			 * Reset swap.val? No, leave it so "failed" goes back to
1136 			 * "repeat": reading a hole and writing should succeed.
1137 			 */
1138 			if (error) {
1139 				mem_cgroup_cancel_charge(page, memcg);
1140 				delete_from_swap_cache(page);
1141 			}
1142 		}
1143 		if (error)
1144 			goto failed;
1145 
1146 		mem_cgroup_commit_charge(page, memcg, true);
1147 
1148 		spin_lock(&info->lock);
1149 		info->swapped--;
1150 		shmem_recalc_inode(inode);
1151 		spin_unlock(&info->lock);
1152 
1153 		if (sgp == SGP_WRITE)
1154 			mark_page_accessed(page);
1155 
1156 		delete_from_swap_cache(page);
1157 		set_page_dirty(page);
1158 		swap_free(swap);
1159 
1160 	} else {
1161 		if (shmem_acct_block(info->flags)) {
1162 			error = -ENOSPC;
1163 			goto failed;
1164 		}
1165 		if (sbinfo->max_blocks) {
1166 			if (percpu_counter_compare(&sbinfo->used_blocks,
1167 						sbinfo->max_blocks) >= 0) {
1168 				error = -ENOSPC;
1169 				goto unacct;
1170 			}
1171 			percpu_counter_inc(&sbinfo->used_blocks);
1172 		}
1173 
1174 		page = shmem_alloc_page(gfp, info, index);
1175 		if (!page) {
1176 			error = -ENOMEM;
1177 			goto decused;
1178 		}
1179 
1180 		__SetPageSwapBacked(page);
1181 		__set_page_locked(page);
1182 		if (sgp == SGP_WRITE)
1183 			__SetPageReferenced(page);
1184 
1185 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1186 		if (error)
1187 			goto decused;
1188 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1189 		if (!error) {
1190 			error = shmem_add_to_page_cache(page, mapping, index,
1191 							NULL);
1192 			radix_tree_preload_end();
1193 		}
1194 		if (error) {
1195 			mem_cgroup_cancel_charge(page, memcg);
1196 			goto decused;
1197 		}
1198 		mem_cgroup_commit_charge(page, memcg, false);
1199 		lru_cache_add_anon(page);
1200 
1201 		spin_lock(&info->lock);
1202 		info->alloced++;
1203 		inode->i_blocks += BLOCKS_PER_PAGE;
1204 		shmem_recalc_inode(inode);
1205 		spin_unlock(&info->lock);
1206 		alloced = true;
1207 
1208 		/*
1209 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1210 		 */
1211 		if (sgp == SGP_FALLOC)
1212 			sgp = SGP_WRITE;
1213 clear:
1214 		/*
1215 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1216 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1217 		 * it now, lest undo on failure cancel our earlier guarantee.
1218 		 */
1219 		if (sgp != SGP_WRITE) {
1220 			clear_highpage(page);
1221 			flush_dcache_page(page);
1222 			SetPageUptodate(page);
1223 		}
1224 		if (sgp == SGP_DIRTY)
1225 			set_page_dirty(page);
1226 	}
1227 
1228 	/* Perhaps the file has been truncated since we checked */
1229 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1230 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231 		error = -EINVAL;
1232 		if (alloced)
1233 			goto trunc;
1234 		else
1235 			goto failed;
1236 	}
1237 	*pagep = page;
1238 	return 0;
1239 
1240 	/*
1241 	 * Error recovery.
1242 	 */
1243 trunc:
1244 	info = SHMEM_I(inode);
1245 	ClearPageDirty(page);
1246 	delete_from_page_cache(page);
1247 	spin_lock(&info->lock);
1248 	info->alloced--;
1249 	inode->i_blocks -= BLOCKS_PER_PAGE;
1250 	spin_unlock(&info->lock);
1251 decused:
1252 	sbinfo = SHMEM_SB(inode->i_sb);
1253 	if (sbinfo->max_blocks)
1254 		percpu_counter_add(&sbinfo->used_blocks, -1);
1255 unacct:
1256 	shmem_unacct_blocks(info->flags, 1);
1257 failed:
1258 	if (swap.val && error != -EINVAL &&
1259 	    !shmem_confirm_swap(mapping, index, swap))
1260 		error = -EEXIST;
1261 unlock:
1262 	if (page) {
1263 		unlock_page(page);
1264 		page_cache_release(page);
1265 	}
1266 	if (error == -ENOSPC && !once++) {
1267 		info = SHMEM_I(inode);
1268 		spin_lock(&info->lock);
1269 		shmem_recalc_inode(inode);
1270 		spin_unlock(&info->lock);
1271 		goto repeat;
1272 	}
1273 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1274 		goto repeat;
1275 	return error;
1276 }
1277 
1278 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1279 {
1280 	struct inode *inode = file_inode(vma->vm_file);
1281 	int error;
1282 	int ret = VM_FAULT_LOCKED;
1283 
1284 	/*
1285 	 * Trinity finds that probing a hole which tmpfs is punching can
1286 	 * prevent the hole-punch from ever completing: which in turn
1287 	 * locks writers out with its hold on i_mutex.  So refrain from
1288 	 * faulting pages into the hole while it's being punched.  Although
1289 	 * shmem_undo_range() does remove the additions, it may be unable to
1290 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1291 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1292 	 *
1293 	 * It does not matter if we sometimes reach this check just before the
1294 	 * hole-punch begins, so that one fault then races with the punch:
1295 	 * we just need to make racing faults a rare case.
1296 	 *
1297 	 * The implementation below would be much simpler if we just used a
1298 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1299 	 * and bloating every shmem inode for this unlikely case would be sad.
1300 	 */
1301 	if (unlikely(inode->i_private)) {
1302 		struct shmem_falloc *shmem_falloc;
1303 
1304 		spin_lock(&inode->i_lock);
1305 		shmem_falloc = inode->i_private;
1306 		if (shmem_falloc &&
1307 		    shmem_falloc->waitq &&
1308 		    vmf->pgoff >= shmem_falloc->start &&
1309 		    vmf->pgoff < shmem_falloc->next) {
1310 			wait_queue_head_t *shmem_falloc_waitq;
1311 			DEFINE_WAIT(shmem_fault_wait);
1312 
1313 			ret = VM_FAULT_NOPAGE;
1314 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1315 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1316 				/* It's polite to up mmap_sem if we can */
1317 				up_read(&vma->vm_mm->mmap_sem);
1318 				ret = VM_FAULT_RETRY;
1319 			}
1320 
1321 			shmem_falloc_waitq = shmem_falloc->waitq;
1322 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1323 					TASK_UNINTERRUPTIBLE);
1324 			spin_unlock(&inode->i_lock);
1325 			schedule();
1326 
1327 			/*
1328 			 * shmem_falloc_waitq points into the shmem_fallocate()
1329 			 * stack of the hole-punching task: shmem_falloc_waitq
1330 			 * is usually invalid by the time we reach here, but
1331 			 * finish_wait() does not dereference it in that case;
1332 			 * though i_lock needed lest racing with wake_up_all().
1333 			 */
1334 			spin_lock(&inode->i_lock);
1335 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1336 			spin_unlock(&inode->i_lock);
1337 			return ret;
1338 		}
1339 		spin_unlock(&inode->i_lock);
1340 	}
1341 
1342 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1343 	if (error)
1344 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1345 
1346 	if (ret & VM_FAULT_MAJOR) {
1347 		count_vm_event(PGMAJFAULT);
1348 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1349 	}
1350 	return ret;
1351 }
1352 
1353 #ifdef CONFIG_NUMA
1354 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1355 {
1356 	struct inode *inode = file_inode(vma->vm_file);
1357 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1358 }
1359 
1360 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1361 					  unsigned long addr)
1362 {
1363 	struct inode *inode = file_inode(vma->vm_file);
1364 	pgoff_t index;
1365 
1366 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1367 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1368 }
1369 #endif
1370 
1371 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1372 {
1373 	struct inode *inode = file_inode(file);
1374 	struct shmem_inode_info *info = SHMEM_I(inode);
1375 	int retval = -ENOMEM;
1376 
1377 	spin_lock(&info->lock);
1378 	if (lock && !(info->flags & VM_LOCKED)) {
1379 		if (!user_shm_lock(inode->i_size, user))
1380 			goto out_nomem;
1381 		info->flags |= VM_LOCKED;
1382 		mapping_set_unevictable(file->f_mapping);
1383 	}
1384 	if (!lock && (info->flags & VM_LOCKED) && user) {
1385 		user_shm_unlock(inode->i_size, user);
1386 		info->flags &= ~VM_LOCKED;
1387 		mapping_clear_unevictable(file->f_mapping);
1388 	}
1389 	retval = 0;
1390 
1391 out_nomem:
1392 	spin_unlock(&info->lock);
1393 	return retval;
1394 }
1395 
1396 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1397 {
1398 	file_accessed(file);
1399 	vma->vm_ops = &shmem_vm_ops;
1400 	return 0;
1401 }
1402 
1403 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1404 				     umode_t mode, dev_t dev, unsigned long flags)
1405 {
1406 	struct inode *inode;
1407 	struct shmem_inode_info *info;
1408 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1409 
1410 	if (shmem_reserve_inode(sb))
1411 		return NULL;
1412 
1413 	inode = new_inode(sb);
1414 	if (inode) {
1415 		inode->i_ino = get_next_ino();
1416 		inode_init_owner(inode, dir, mode);
1417 		inode->i_blocks = 0;
1418 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1419 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1420 		inode->i_generation = get_seconds();
1421 		info = SHMEM_I(inode);
1422 		memset(info, 0, (char *)inode - (char *)info);
1423 		spin_lock_init(&info->lock);
1424 		info->seals = F_SEAL_SEAL;
1425 		info->flags = flags & VM_NORESERVE;
1426 		INIT_LIST_HEAD(&info->swaplist);
1427 		simple_xattrs_init(&info->xattrs);
1428 		cache_no_acl(inode);
1429 
1430 		switch (mode & S_IFMT) {
1431 		default:
1432 			inode->i_op = &shmem_special_inode_operations;
1433 			init_special_inode(inode, mode, dev);
1434 			break;
1435 		case S_IFREG:
1436 			inode->i_mapping->a_ops = &shmem_aops;
1437 			inode->i_op = &shmem_inode_operations;
1438 			inode->i_fop = &shmem_file_operations;
1439 			mpol_shared_policy_init(&info->policy,
1440 						 shmem_get_sbmpol(sbinfo));
1441 			break;
1442 		case S_IFDIR:
1443 			inc_nlink(inode);
1444 			/* Some things misbehave if size == 0 on a directory */
1445 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1446 			inode->i_op = &shmem_dir_inode_operations;
1447 			inode->i_fop = &simple_dir_operations;
1448 			break;
1449 		case S_IFLNK:
1450 			/*
1451 			 * Must not load anything in the rbtree,
1452 			 * mpol_free_shared_policy will not be called.
1453 			 */
1454 			mpol_shared_policy_init(&info->policy, NULL);
1455 			break;
1456 		}
1457 	} else
1458 		shmem_free_inode(sb);
1459 	return inode;
1460 }
1461 
1462 bool shmem_mapping(struct address_space *mapping)
1463 {
1464 	return mapping->backing_dev_info == &shmem_backing_dev_info;
1465 }
1466 
1467 #ifdef CONFIG_TMPFS
1468 static const struct inode_operations shmem_symlink_inode_operations;
1469 static const struct inode_operations shmem_short_symlink_operations;
1470 
1471 #ifdef CONFIG_TMPFS_XATTR
1472 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1473 #else
1474 #define shmem_initxattrs NULL
1475 #endif
1476 
1477 static int
1478 shmem_write_begin(struct file *file, struct address_space *mapping,
1479 			loff_t pos, unsigned len, unsigned flags,
1480 			struct page **pagep, void **fsdata)
1481 {
1482 	struct inode *inode = mapping->host;
1483 	struct shmem_inode_info *info = SHMEM_I(inode);
1484 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1485 
1486 	/* i_mutex is held by caller */
1487 	if (unlikely(info->seals)) {
1488 		if (info->seals & F_SEAL_WRITE)
1489 			return -EPERM;
1490 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1491 			return -EPERM;
1492 	}
1493 
1494 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1495 }
1496 
1497 static int
1498 shmem_write_end(struct file *file, struct address_space *mapping,
1499 			loff_t pos, unsigned len, unsigned copied,
1500 			struct page *page, void *fsdata)
1501 {
1502 	struct inode *inode = mapping->host;
1503 
1504 	if (pos + copied > inode->i_size)
1505 		i_size_write(inode, pos + copied);
1506 
1507 	if (!PageUptodate(page)) {
1508 		if (copied < PAGE_CACHE_SIZE) {
1509 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1510 			zero_user_segments(page, 0, from,
1511 					from + copied, PAGE_CACHE_SIZE);
1512 		}
1513 		SetPageUptodate(page);
1514 	}
1515 	set_page_dirty(page);
1516 	unlock_page(page);
1517 	page_cache_release(page);
1518 
1519 	return copied;
1520 }
1521 
1522 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1523 {
1524 	struct file *file = iocb->ki_filp;
1525 	struct inode *inode = file_inode(file);
1526 	struct address_space *mapping = inode->i_mapping;
1527 	pgoff_t index;
1528 	unsigned long offset;
1529 	enum sgp_type sgp = SGP_READ;
1530 	int error = 0;
1531 	ssize_t retval = 0;
1532 	loff_t *ppos = &iocb->ki_pos;
1533 
1534 	/*
1535 	 * Might this read be for a stacking filesystem?  Then when reading
1536 	 * holes of a sparse file, we actually need to allocate those pages,
1537 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1538 	 */
1539 	if (!iter_is_iovec(to))
1540 		sgp = SGP_DIRTY;
1541 
1542 	index = *ppos >> PAGE_CACHE_SHIFT;
1543 	offset = *ppos & ~PAGE_CACHE_MASK;
1544 
1545 	for (;;) {
1546 		struct page *page = NULL;
1547 		pgoff_t end_index;
1548 		unsigned long nr, ret;
1549 		loff_t i_size = i_size_read(inode);
1550 
1551 		end_index = i_size >> PAGE_CACHE_SHIFT;
1552 		if (index > end_index)
1553 			break;
1554 		if (index == end_index) {
1555 			nr = i_size & ~PAGE_CACHE_MASK;
1556 			if (nr <= offset)
1557 				break;
1558 		}
1559 
1560 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1561 		if (error) {
1562 			if (error == -EINVAL)
1563 				error = 0;
1564 			break;
1565 		}
1566 		if (page)
1567 			unlock_page(page);
1568 
1569 		/*
1570 		 * We must evaluate after, since reads (unlike writes)
1571 		 * are called without i_mutex protection against truncate
1572 		 */
1573 		nr = PAGE_CACHE_SIZE;
1574 		i_size = i_size_read(inode);
1575 		end_index = i_size >> PAGE_CACHE_SHIFT;
1576 		if (index == end_index) {
1577 			nr = i_size & ~PAGE_CACHE_MASK;
1578 			if (nr <= offset) {
1579 				if (page)
1580 					page_cache_release(page);
1581 				break;
1582 			}
1583 		}
1584 		nr -= offset;
1585 
1586 		if (page) {
1587 			/*
1588 			 * If users can be writing to this page using arbitrary
1589 			 * virtual addresses, take care about potential aliasing
1590 			 * before reading the page on the kernel side.
1591 			 */
1592 			if (mapping_writably_mapped(mapping))
1593 				flush_dcache_page(page);
1594 			/*
1595 			 * Mark the page accessed if we read the beginning.
1596 			 */
1597 			if (!offset)
1598 				mark_page_accessed(page);
1599 		} else {
1600 			page = ZERO_PAGE(0);
1601 			page_cache_get(page);
1602 		}
1603 
1604 		/*
1605 		 * Ok, we have the page, and it's up-to-date, so
1606 		 * now we can copy it to user space...
1607 		 */
1608 		ret = copy_page_to_iter(page, offset, nr, to);
1609 		retval += ret;
1610 		offset += ret;
1611 		index += offset >> PAGE_CACHE_SHIFT;
1612 		offset &= ~PAGE_CACHE_MASK;
1613 
1614 		page_cache_release(page);
1615 		if (!iov_iter_count(to))
1616 			break;
1617 		if (ret < nr) {
1618 			error = -EFAULT;
1619 			break;
1620 		}
1621 		cond_resched();
1622 	}
1623 
1624 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1625 	file_accessed(file);
1626 	return retval ? retval : error;
1627 }
1628 
1629 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1630 				struct pipe_inode_info *pipe, size_t len,
1631 				unsigned int flags)
1632 {
1633 	struct address_space *mapping = in->f_mapping;
1634 	struct inode *inode = mapping->host;
1635 	unsigned int loff, nr_pages, req_pages;
1636 	struct page *pages[PIPE_DEF_BUFFERS];
1637 	struct partial_page partial[PIPE_DEF_BUFFERS];
1638 	struct page *page;
1639 	pgoff_t index, end_index;
1640 	loff_t isize, left;
1641 	int error, page_nr;
1642 	struct splice_pipe_desc spd = {
1643 		.pages = pages,
1644 		.partial = partial,
1645 		.nr_pages_max = PIPE_DEF_BUFFERS,
1646 		.flags = flags,
1647 		.ops = &page_cache_pipe_buf_ops,
1648 		.spd_release = spd_release_page,
1649 	};
1650 
1651 	isize = i_size_read(inode);
1652 	if (unlikely(*ppos >= isize))
1653 		return 0;
1654 
1655 	left = isize - *ppos;
1656 	if (unlikely(left < len))
1657 		len = left;
1658 
1659 	if (splice_grow_spd(pipe, &spd))
1660 		return -ENOMEM;
1661 
1662 	index = *ppos >> PAGE_CACHE_SHIFT;
1663 	loff = *ppos & ~PAGE_CACHE_MASK;
1664 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1665 	nr_pages = min(req_pages, spd.nr_pages_max);
1666 
1667 	spd.nr_pages = find_get_pages_contig(mapping, index,
1668 						nr_pages, spd.pages);
1669 	index += spd.nr_pages;
1670 	error = 0;
1671 
1672 	while (spd.nr_pages < nr_pages) {
1673 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1674 		if (error)
1675 			break;
1676 		unlock_page(page);
1677 		spd.pages[spd.nr_pages++] = page;
1678 		index++;
1679 	}
1680 
1681 	index = *ppos >> PAGE_CACHE_SHIFT;
1682 	nr_pages = spd.nr_pages;
1683 	spd.nr_pages = 0;
1684 
1685 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1686 		unsigned int this_len;
1687 
1688 		if (!len)
1689 			break;
1690 
1691 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1692 		page = spd.pages[page_nr];
1693 
1694 		if (!PageUptodate(page) || page->mapping != mapping) {
1695 			error = shmem_getpage(inode, index, &page,
1696 							SGP_CACHE, NULL);
1697 			if (error)
1698 				break;
1699 			unlock_page(page);
1700 			page_cache_release(spd.pages[page_nr]);
1701 			spd.pages[page_nr] = page;
1702 		}
1703 
1704 		isize = i_size_read(inode);
1705 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1706 		if (unlikely(!isize || index > end_index))
1707 			break;
1708 
1709 		if (end_index == index) {
1710 			unsigned int plen;
1711 
1712 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1713 			if (plen <= loff)
1714 				break;
1715 
1716 			this_len = min(this_len, plen - loff);
1717 			len = this_len;
1718 		}
1719 
1720 		spd.partial[page_nr].offset = loff;
1721 		spd.partial[page_nr].len = this_len;
1722 		len -= this_len;
1723 		loff = 0;
1724 		spd.nr_pages++;
1725 		index++;
1726 	}
1727 
1728 	while (page_nr < nr_pages)
1729 		page_cache_release(spd.pages[page_nr++]);
1730 
1731 	if (spd.nr_pages)
1732 		error = splice_to_pipe(pipe, &spd);
1733 
1734 	splice_shrink_spd(&spd);
1735 
1736 	if (error > 0) {
1737 		*ppos += error;
1738 		file_accessed(in);
1739 	}
1740 	return error;
1741 }
1742 
1743 /*
1744  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1745  */
1746 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1747 				    pgoff_t index, pgoff_t end, int whence)
1748 {
1749 	struct page *page;
1750 	struct pagevec pvec;
1751 	pgoff_t indices[PAGEVEC_SIZE];
1752 	bool done = false;
1753 	int i;
1754 
1755 	pagevec_init(&pvec, 0);
1756 	pvec.nr = 1;		/* start small: we may be there already */
1757 	while (!done) {
1758 		pvec.nr = find_get_entries(mapping, index,
1759 					pvec.nr, pvec.pages, indices);
1760 		if (!pvec.nr) {
1761 			if (whence == SEEK_DATA)
1762 				index = end;
1763 			break;
1764 		}
1765 		for (i = 0; i < pvec.nr; i++, index++) {
1766 			if (index < indices[i]) {
1767 				if (whence == SEEK_HOLE) {
1768 					done = true;
1769 					break;
1770 				}
1771 				index = indices[i];
1772 			}
1773 			page = pvec.pages[i];
1774 			if (page && !radix_tree_exceptional_entry(page)) {
1775 				if (!PageUptodate(page))
1776 					page = NULL;
1777 			}
1778 			if (index >= end ||
1779 			    (page && whence == SEEK_DATA) ||
1780 			    (!page && whence == SEEK_HOLE)) {
1781 				done = true;
1782 				break;
1783 			}
1784 		}
1785 		pagevec_remove_exceptionals(&pvec);
1786 		pagevec_release(&pvec);
1787 		pvec.nr = PAGEVEC_SIZE;
1788 		cond_resched();
1789 	}
1790 	return index;
1791 }
1792 
1793 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1794 {
1795 	struct address_space *mapping = file->f_mapping;
1796 	struct inode *inode = mapping->host;
1797 	pgoff_t start, end;
1798 	loff_t new_offset;
1799 
1800 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1801 		return generic_file_llseek_size(file, offset, whence,
1802 					MAX_LFS_FILESIZE, i_size_read(inode));
1803 	mutex_lock(&inode->i_mutex);
1804 	/* We're holding i_mutex so we can access i_size directly */
1805 
1806 	if (offset < 0)
1807 		offset = -EINVAL;
1808 	else if (offset >= inode->i_size)
1809 		offset = -ENXIO;
1810 	else {
1811 		start = offset >> PAGE_CACHE_SHIFT;
1812 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1813 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1814 		new_offset <<= PAGE_CACHE_SHIFT;
1815 		if (new_offset > offset) {
1816 			if (new_offset < inode->i_size)
1817 				offset = new_offset;
1818 			else if (whence == SEEK_DATA)
1819 				offset = -ENXIO;
1820 			else
1821 				offset = inode->i_size;
1822 		}
1823 	}
1824 
1825 	if (offset >= 0)
1826 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1827 	mutex_unlock(&inode->i_mutex);
1828 	return offset;
1829 }
1830 
1831 /*
1832  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1833  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1834  */
1835 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1836 #define LAST_SCAN               4       /* about 150ms max */
1837 
1838 static void shmem_tag_pins(struct address_space *mapping)
1839 {
1840 	struct radix_tree_iter iter;
1841 	void **slot;
1842 	pgoff_t start;
1843 	struct page *page;
1844 
1845 	lru_add_drain();
1846 	start = 0;
1847 	rcu_read_lock();
1848 
1849 restart:
1850 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1851 		page = radix_tree_deref_slot(slot);
1852 		if (!page || radix_tree_exception(page)) {
1853 			if (radix_tree_deref_retry(page))
1854 				goto restart;
1855 		} else if (page_count(page) - page_mapcount(page) > 1) {
1856 			spin_lock_irq(&mapping->tree_lock);
1857 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1858 					   SHMEM_TAG_PINNED);
1859 			spin_unlock_irq(&mapping->tree_lock);
1860 		}
1861 
1862 		if (need_resched()) {
1863 			cond_resched_rcu();
1864 			start = iter.index + 1;
1865 			goto restart;
1866 		}
1867 	}
1868 	rcu_read_unlock();
1869 }
1870 
1871 /*
1872  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1873  * via get_user_pages(), drivers might have some pending I/O without any active
1874  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1875  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1876  * them to be dropped.
1877  * The caller must guarantee that no new user will acquire writable references
1878  * to those pages to avoid races.
1879  */
1880 static int shmem_wait_for_pins(struct address_space *mapping)
1881 {
1882 	struct radix_tree_iter iter;
1883 	void **slot;
1884 	pgoff_t start;
1885 	struct page *page;
1886 	int error, scan;
1887 
1888 	shmem_tag_pins(mapping);
1889 
1890 	error = 0;
1891 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1892 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1893 			break;
1894 
1895 		if (!scan)
1896 			lru_add_drain_all();
1897 		else if (schedule_timeout_killable((HZ << scan) / 200))
1898 			scan = LAST_SCAN;
1899 
1900 		start = 0;
1901 		rcu_read_lock();
1902 restart:
1903 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1904 					   start, SHMEM_TAG_PINNED) {
1905 
1906 			page = radix_tree_deref_slot(slot);
1907 			if (radix_tree_exception(page)) {
1908 				if (radix_tree_deref_retry(page))
1909 					goto restart;
1910 
1911 				page = NULL;
1912 			}
1913 
1914 			if (page &&
1915 			    page_count(page) - page_mapcount(page) != 1) {
1916 				if (scan < LAST_SCAN)
1917 					goto continue_resched;
1918 
1919 				/*
1920 				 * On the last scan, we clean up all those tags
1921 				 * we inserted; but make a note that we still
1922 				 * found pages pinned.
1923 				 */
1924 				error = -EBUSY;
1925 			}
1926 
1927 			spin_lock_irq(&mapping->tree_lock);
1928 			radix_tree_tag_clear(&mapping->page_tree,
1929 					     iter.index, SHMEM_TAG_PINNED);
1930 			spin_unlock_irq(&mapping->tree_lock);
1931 continue_resched:
1932 			if (need_resched()) {
1933 				cond_resched_rcu();
1934 				start = iter.index + 1;
1935 				goto restart;
1936 			}
1937 		}
1938 		rcu_read_unlock();
1939 	}
1940 
1941 	return error;
1942 }
1943 
1944 #define F_ALL_SEALS (F_SEAL_SEAL | \
1945 		     F_SEAL_SHRINK | \
1946 		     F_SEAL_GROW | \
1947 		     F_SEAL_WRITE)
1948 
1949 int shmem_add_seals(struct file *file, unsigned int seals)
1950 {
1951 	struct inode *inode = file_inode(file);
1952 	struct shmem_inode_info *info = SHMEM_I(inode);
1953 	int error;
1954 
1955 	/*
1956 	 * SEALING
1957 	 * Sealing allows multiple parties to share a shmem-file but restrict
1958 	 * access to a specific subset of file operations. Seals can only be
1959 	 * added, but never removed. This way, mutually untrusted parties can
1960 	 * share common memory regions with a well-defined policy. A malicious
1961 	 * peer can thus never perform unwanted operations on a shared object.
1962 	 *
1963 	 * Seals are only supported on special shmem-files and always affect
1964 	 * the whole underlying inode. Once a seal is set, it may prevent some
1965 	 * kinds of access to the file. Currently, the following seals are
1966 	 * defined:
1967 	 *   SEAL_SEAL: Prevent further seals from being set on this file
1968 	 *   SEAL_SHRINK: Prevent the file from shrinking
1969 	 *   SEAL_GROW: Prevent the file from growing
1970 	 *   SEAL_WRITE: Prevent write access to the file
1971 	 *
1972 	 * As we don't require any trust relationship between two parties, we
1973 	 * must prevent seals from being removed. Therefore, sealing a file
1974 	 * only adds a given set of seals to the file, it never touches
1975 	 * existing seals. Furthermore, the "setting seals"-operation can be
1976 	 * sealed itself, which basically prevents any further seal from being
1977 	 * added.
1978 	 *
1979 	 * Semantics of sealing are only defined on volatile files. Only
1980 	 * anonymous shmem files support sealing. More importantly, seals are
1981 	 * never written to disk. Therefore, there's no plan to support it on
1982 	 * other file types.
1983 	 */
1984 
1985 	if (file->f_op != &shmem_file_operations)
1986 		return -EINVAL;
1987 	if (!(file->f_mode & FMODE_WRITE))
1988 		return -EPERM;
1989 	if (seals & ~(unsigned int)F_ALL_SEALS)
1990 		return -EINVAL;
1991 
1992 	mutex_lock(&inode->i_mutex);
1993 
1994 	if (info->seals & F_SEAL_SEAL) {
1995 		error = -EPERM;
1996 		goto unlock;
1997 	}
1998 
1999 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2000 		error = mapping_deny_writable(file->f_mapping);
2001 		if (error)
2002 			goto unlock;
2003 
2004 		error = shmem_wait_for_pins(file->f_mapping);
2005 		if (error) {
2006 			mapping_allow_writable(file->f_mapping);
2007 			goto unlock;
2008 		}
2009 	}
2010 
2011 	info->seals |= seals;
2012 	error = 0;
2013 
2014 unlock:
2015 	mutex_unlock(&inode->i_mutex);
2016 	return error;
2017 }
2018 EXPORT_SYMBOL_GPL(shmem_add_seals);
2019 
2020 int shmem_get_seals(struct file *file)
2021 {
2022 	if (file->f_op != &shmem_file_operations)
2023 		return -EINVAL;
2024 
2025 	return SHMEM_I(file_inode(file))->seals;
2026 }
2027 EXPORT_SYMBOL_GPL(shmem_get_seals);
2028 
2029 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2030 {
2031 	long error;
2032 
2033 	switch (cmd) {
2034 	case F_ADD_SEALS:
2035 		/* disallow upper 32bit */
2036 		if (arg > UINT_MAX)
2037 			return -EINVAL;
2038 
2039 		error = shmem_add_seals(file, arg);
2040 		break;
2041 	case F_GET_SEALS:
2042 		error = shmem_get_seals(file);
2043 		break;
2044 	default:
2045 		error = -EINVAL;
2046 		break;
2047 	}
2048 
2049 	return error;
2050 }
2051 
2052 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2053 							 loff_t len)
2054 {
2055 	struct inode *inode = file_inode(file);
2056 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2057 	struct shmem_inode_info *info = SHMEM_I(inode);
2058 	struct shmem_falloc shmem_falloc;
2059 	pgoff_t start, index, end;
2060 	int error;
2061 
2062 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2063 		return -EOPNOTSUPP;
2064 
2065 	mutex_lock(&inode->i_mutex);
2066 
2067 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2068 		struct address_space *mapping = file->f_mapping;
2069 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2070 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2071 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2072 
2073 		/* protected by i_mutex */
2074 		if (info->seals & F_SEAL_WRITE) {
2075 			error = -EPERM;
2076 			goto out;
2077 		}
2078 
2079 		shmem_falloc.waitq = &shmem_falloc_waitq;
2080 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2081 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2082 		spin_lock(&inode->i_lock);
2083 		inode->i_private = &shmem_falloc;
2084 		spin_unlock(&inode->i_lock);
2085 
2086 		if ((u64)unmap_end > (u64)unmap_start)
2087 			unmap_mapping_range(mapping, unmap_start,
2088 					    1 + unmap_end - unmap_start, 0);
2089 		shmem_truncate_range(inode, offset, offset + len - 1);
2090 		/* No need to unmap again: hole-punching leaves COWed pages */
2091 
2092 		spin_lock(&inode->i_lock);
2093 		inode->i_private = NULL;
2094 		wake_up_all(&shmem_falloc_waitq);
2095 		spin_unlock(&inode->i_lock);
2096 		error = 0;
2097 		goto out;
2098 	}
2099 
2100 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2101 	error = inode_newsize_ok(inode, offset + len);
2102 	if (error)
2103 		goto out;
2104 
2105 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2106 		error = -EPERM;
2107 		goto out;
2108 	}
2109 
2110 	start = offset >> PAGE_CACHE_SHIFT;
2111 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2112 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2113 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2114 		error = -ENOSPC;
2115 		goto out;
2116 	}
2117 
2118 	shmem_falloc.waitq = NULL;
2119 	shmem_falloc.start = start;
2120 	shmem_falloc.next  = start;
2121 	shmem_falloc.nr_falloced = 0;
2122 	shmem_falloc.nr_unswapped = 0;
2123 	spin_lock(&inode->i_lock);
2124 	inode->i_private = &shmem_falloc;
2125 	spin_unlock(&inode->i_lock);
2126 
2127 	for (index = start; index < end; index++) {
2128 		struct page *page;
2129 
2130 		/*
2131 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2132 		 * been interrupted because we are using up too much memory.
2133 		 */
2134 		if (signal_pending(current))
2135 			error = -EINTR;
2136 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2137 			error = -ENOMEM;
2138 		else
2139 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2140 									NULL);
2141 		if (error) {
2142 			/* Remove the !PageUptodate pages we added */
2143 			shmem_undo_range(inode,
2144 				(loff_t)start << PAGE_CACHE_SHIFT,
2145 				(loff_t)index << PAGE_CACHE_SHIFT, true);
2146 			goto undone;
2147 		}
2148 
2149 		/*
2150 		 * Inform shmem_writepage() how far we have reached.
2151 		 * No need for lock or barrier: we have the page lock.
2152 		 */
2153 		shmem_falloc.next++;
2154 		if (!PageUptodate(page))
2155 			shmem_falloc.nr_falloced++;
2156 
2157 		/*
2158 		 * If !PageUptodate, leave it that way so that freeable pages
2159 		 * can be recognized if we need to rollback on error later.
2160 		 * But set_page_dirty so that memory pressure will swap rather
2161 		 * than free the pages we are allocating (and SGP_CACHE pages
2162 		 * might still be clean: we now need to mark those dirty too).
2163 		 */
2164 		set_page_dirty(page);
2165 		unlock_page(page);
2166 		page_cache_release(page);
2167 		cond_resched();
2168 	}
2169 
2170 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2171 		i_size_write(inode, offset + len);
2172 	inode->i_ctime = CURRENT_TIME;
2173 undone:
2174 	spin_lock(&inode->i_lock);
2175 	inode->i_private = NULL;
2176 	spin_unlock(&inode->i_lock);
2177 out:
2178 	mutex_unlock(&inode->i_mutex);
2179 	return error;
2180 }
2181 
2182 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2183 {
2184 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2185 
2186 	buf->f_type = TMPFS_MAGIC;
2187 	buf->f_bsize = PAGE_CACHE_SIZE;
2188 	buf->f_namelen = NAME_MAX;
2189 	if (sbinfo->max_blocks) {
2190 		buf->f_blocks = sbinfo->max_blocks;
2191 		buf->f_bavail =
2192 		buf->f_bfree  = sbinfo->max_blocks -
2193 				percpu_counter_sum(&sbinfo->used_blocks);
2194 	}
2195 	if (sbinfo->max_inodes) {
2196 		buf->f_files = sbinfo->max_inodes;
2197 		buf->f_ffree = sbinfo->free_inodes;
2198 	}
2199 	/* else leave those fields 0 like simple_statfs */
2200 	return 0;
2201 }
2202 
2203 /*
2204  * File creation. Allocate an inode, and we're done..
2205  */
2206 static int
2207 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2208 {
2209 	struct inode *inode;
2210 	int error = -ENOSPC;
2211 
2212 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2213 	if (inode) {
2214 		error = simple_acl_create(dir, inode);
2215 		if (error)
2216 			goto out_iput;
2217 		error = security_inode_init_security(inode, dir,
2218 						     &dentry->d_name,
2219 						     shmem_initxattrs, NULL);
2220 		if (error && error != -EOPNOTSUPP)
2221 			goto out_iput;
2222 
2223 		error = 0;
2224 		dir->i_size += BOGO_DIRENT_SIZE;
2225 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2226 		d_instantiate(dentry, inode);
2227 		dget(dentry); /* Extra count - pin the dentry in core */
2228 	}
2229 	return error;
2230 out_iput:
2231 	iput(inode);
2232 	return error;
2233 }
2234 
2235 static int
2236 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2237 {
2238 	struct inode *inode;
2239 	int error = -ENOSPC;
2240 
2241 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2242 	if (inode) {
2243 		error = security_inode_init_security(inode, dir,
2244 						     NULL,
2245 						     shmem_initxattrs, NULL);
2246 		if (error && error != -EOPNOTSUPP)
2247 			goto out_iput;
2248 		error = simple_acl_create(dir, inode);
2249 		if (error)
2250 			goto out_iput;
2251 		d_tmpfile(dentry, inode);
2252 	}
2253 	return error;
2254 out_iput:
2255 	iput(inode);
2256 	return error;
2257 }
2258 
2259 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2260 {
2261 	int error;
2262 
2263 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2264 		return error;
2265 	inc_nlink(dir);
2266 	return 0;
2267 }
2268 
2269 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2270 		bool excl)
2271 {
2272 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2273 }
2274 
2275 /*
2276  * Link a file..
2277  */
2278 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2279 {
2280 	struct inode *inode = old_dentry->d_inode;
2281 	int ret;
2282 
2283 	/*
2284 	 * No ordinary (disk based) filesystem counts links as inodes;
2285 	 * but each new link needs a new dentry, pinning lowmem, and
2286 	 * tmpfs dentries cannot be pruned until they are unlinked.
2287 	 */
2288 	ret = shmem_reserve_inode(inode->i_sb);
2289 	if (ret)
2290 		goto out;
2291 
2292 	dir->i_size += BOGO_DIRENT_SIZE;
2293 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2294 	inc_nlink(inode);
2295 	ihold(inode);	/* New dentry reference */
2296 	dget(dentry);		/* Extra pinning count for the created dentry */
2297 	d_instantiate(dentry, inode);
2298 out:
2299 	return ret;
2300 }
2301 
2302 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2303 {
2304 	struct inode *inode = dentry->d_inode;
2305 
2306 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2307 		shmem_free_inode(inode->i_sb);
2308 
2309 	dir->i_size -= BOGO_DIRENT_SIZE;
2310 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2311 	drop_nlink(inode);
2312 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2313 	return 0;
2314 }
2315 
2316 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2317 {
2318 	if (!simple_empty(dentry))
2319 		return -ENOTEMPTY;
2320 
2321 	drop_nlink(dentry->d_inode);
2322 	drop_nlink(dir);
2323 	return shmem_unlink(dir, dentry);
2324 }
2325 
2326 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2327 {
2328 	bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2329 	bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
2330 
2331 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2332 		if (old_is_dir) {
2333 			drop_nlink(old_dir);
2334 			inc_nlink(new_dir);
2335 		} else {
2336 			drop_nlink(new_dir);
2337 			inc_nlink(old_dir);
2338 		}
2339 	}
2340 	old_dir->i_ctime = old_dir->i_mtime =
2341 	new_dir->i_ctime = new_dir->i_mtime =
2342 	old_dentry->d_inode->i_ctime =
2343 	new_dentry->d_inode->i_ctime = CURRENT_TIME;
2344 
2345 	return 0;
2346 }
2347 
2348 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2349 {
2350 	struct dentry *whiteout;
2351 	int error;
2352 
2353 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2354 	if (!whiteout)
2355 		return -ENOMEM;
2356 
2357 	error = shmem_mknod(old_dir, whiteout,
2358 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2359 	dput(whiteout);
2360 	if (error)
2361 		return error;
2362 
2363 	/*
2364 	 * Cheat and hash the whiteout while the old dentry is still in
2365 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2366 	 *
2367 	 * d_lookup() will consistently find one of them at this point,
2368 	 * not sure which one, but that isn't even important.
2369 	 */
2370 	d_rehash(whiteout);
2371 	return 0;
2372 }
2373 
2374 /*
2375  * The VFS layer already does all the dentry stuff for rename,
2376  * we just have to decrement the usage count for the target if
2377  * it exists so that the VFS layer correctly free's it when it
2378  * gets overwritten.
2379  */
2380 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2381 {
2382 	struct inode *inode = old_dentry->d_inode;
2383 	int they_are_dirs = S_ISDIR(inode->i_mode);
2384 
2385 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2386 		return -EINVAL;
2387 
2388 	if (flags & RENAME_EXCHANGE)
2389 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2390 
2391 	if (!simple_empty(new_dentry))
2392 		return -ENOTEMPTY;
2393 
2394 	if (flags & RENAME_WHITEOUT) {
2395 		int error;
2396 
2397 		error = shmem_whiteout(old_dir, old_dentry);
2398 		if (error)
2399 			return error;
2400 	}
2401 
2402 	if (new_dentry->d_inode) {
2403 		(void) shmem_unlink(new_dir, new_dentry);
2404 		if (they_are_dirs) {
2405 			drop_nlink(new_dentry->d_inode);
2406 			drop_nlink(old_dir);
2407 		}
2408 	} else if (they_are_dirs) {
2409 		drop_nlink(old_dir);
2410 		inc_nlink(new_dir);
2411 	}
2412 
2413 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2414 	new_dir->i_size += BOGO_DIRENT_SIZE;
2415 	old_dir->i_ctime = old_dir->i_mtime =
2416 	new_dir->i_ctime = new_dir->i_mtime =
2417 	inode->i_ctime = CURRENT_TIME;
2418 	return 0;
2419 }
2420 
2421 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2422 {
2423 	int error;
2424 	int len;
2425 	struct inode *inode;
2426 	struct page *page;
2427 	char *kaddr;
2428 	struct shmem_inode_info *info;
2429 
2430 	len = strlen(symname) + 1;
2431 	if (len > PAGE_CACHE_SIZE)
2432 		return -ENAMETOOLONG;
2433 
2434 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2435 	if (!inode)
2436 		return -ENOSPC;
2437 
2438 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2439 					     shmem_initxattrs, NULL);
2440 	if (error) {
2441 		if (error != -EOPNOTSUPP) {
2442 			iput(inode);
2443 			return error;
2444 		}
2445 		error = 0;
2446 	}
2447 
2448 	info = SHMEM_I(inode);
2449 	inode->i_size = len-1;
2450 	if (len <= SHORT_SYMLINK_LEN) {
2451 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2452 		if (!info->symlink) {
2453 			iput(inode);
2454 			return -ENOMEM;
2455 		}
2456 		inode->i_op = &shmem_short_symlink_operations;
2457 	} else {
2458 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2459 		if (error) {
2460 			iput(inode);
2461 			return error;
2462 		}
2463 		inode->i_mapping->a_ops = &shmem_aops;
2464 		inode->i_op = &shmem_symlink_inode_operations;
2465 		kaddr = kmap_atomic(page);
2466 		memcpy(kaddr, symname, len);
2467 		kunmap_atomic(kaddr);
2468 		SetPageUptodate(page);
2469 		set_page_dirty(page);
2470 		unlock_page(page);
2471 		page_cache_release(page);
2472 	}
2473 	dir->i_size += BOGO_DIRENT_SIZE;
2474 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2475 	d_instantiate(dentry, inode);
2476 	dget(dentry);
2477 	return 0;
2478 }
2479 
2480 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2481 {
2482 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2483 	return NULL;
2484 }
2485 
2486 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2487 {
2488 	struct page *page = NULL;
2489 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2490 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2491 	if (page)
2492 		unlock_page(page);
2493 	return page;
2494 }
2495 
2496 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2497 {
2498 	if (!IS_ERR(nd_get_link(nd))) {
2499 		struct page *page = cookie;
2500 		kunmap(page);
2501 		mark_page_accessed(page);
2502 		page_cache_release(page);
2503 	}
2504 }
2505 
2506 #ifdef CONFIG_TMPFS_XATTR
2507 /*
2508  * Superblocks without xattr inode operations may get some security.* xattr
2509  * support from the LSM "for free". As soon as we have any other xattrs
2510  * like ACLs, we also need to implement the security.* handlers at
2511  * filesystem level, though.
2512  */
2513 
2514 /*
2515  * Callback for security_inode_init_security() for acquiring xattrs.
2516  */
2517 static int shmem_initxattrs(struct inode *inode,
2518 			    const struct xattr *xattr_array,
2519 			    void *fs_info)
2520 {
2521 	struct shmem_inode_info *info = SHMEM_I(inode);
2522 	const struct xattr *xattr;
2523 	struct simple_xattr *new_xattr;
2524 	size_t len;
2525 
2526 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2527 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2528 		if (!new_xattr)
2529 			return -ENOMEM;
2530 
2531 		len = strlen(xattr->name) + 1;
2532 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2533 					  GFP_KERNEL);
2534 		if (!new_xattr->name) {
2535 			kfree(new_xattr);
2536 			return -ENOMEM;
2537 		}
2538 
2539 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2540 		       XATTR_SECURITY_PREFIX_LEN);
2541 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2542 		       xattr->name, len);
2543 
2544 		simple_xattr_list_add(&info->xattrs, new_xattr);
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 static const struct xattr_handler *shmem_xattr_handlers[] = {
2551 #ifdef CONFIG_TMPFS_POSIX_ACL
2552 	&posix_acl_access_xattr_handler,
2553 	&posix_acl_default_xattr_handler,
2554 #endif
2555 	NULL
2556 };
2557 
2558 static int shmem_xattr_validate(const char *name)
2559 {
2560 	struct { const char *prefix; size_t len; } arr[] = {
2561 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2562 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2563 	};
2564 	int i;
2565 
2566 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2567 		size_t preflen = arr[i].len;
2568 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2569 			if (!name[preflen])
2570 				return -EINVAL;
2571 			return 0;
2572 		}
2573 	}
2574 	return -EOPNOTSUPP;
2575 }
2576 
2577 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2578 			      void *buffer, size_t size)
2579 {
2580 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2581 	int err;
2582 
2583 	/*
2584 	 * If this is a request for a synthetic attribute in the system.*
2585 	 * namespace use the generic infrastructure to resolve a handler
2586 	 * for it via sb->s_xattr.
2587 	 */
2588 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2589 		return generic_getxattr(dentry, name, buffer, size);
2590 
2591 	err = shmem_xattr_validate(name);
2592 	if (err)
2593 		return err;
2594 
2595 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2596 }
2597 
2598 static int shmem_setxattr(struct dentry *dentry, const char *name,
2599 			  const void *value, size_t size, int flags)
2600 {
2601 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2602 	int err;
2603 
2604 	/*
2605 	 * If this is a request for a synthetic attribute in the system.*
2606 	 * namespace use the generic infrastructure to resolve a handler
2607 	 * for it via sb->s_xattr.
2608 	 */
2609 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2610 		return generic_setxattr(dentry, name, value, size, flags);
2611 
2612 	err = shmem_xattr_validate(name);
2613 	if (err)
2614 		return err;
2615 
2616 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2617 }
2618 
2619 static int shmem_removexattr(struct dentry *dentry, const char *name)
2620 {
2621 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2622 	int err;
2623 
2624 	/*
2625 	 * If this is a request for a synthetic attribute in the system.*
2626 	 * namespace use the generic infrastructure to resolve a handler
2627 	 * for it via sb->s_xattr.
2628 	 */
2629 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2630 		return generic_removexattr(dentry, name);
2631 
2632 	err = shmem_xattr_validate(name);
2633 	if (err)
2634 		return err;
2635 
2636 	return simple_xattr_remove(&info->xattrs, name);
2637 }
2638 
2639 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2640 {
2641 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2642 	return simple_xattr_list(&info->xattrs, buffer, size);
2643 }
2644 #endif /* CONFIG_TMPFS_XATTR */
2645 
2646 static const struct inode_operations shmem_short_symlink_operations = {
2647 	.readlink	= generic_readlink,
2648 	.follow_link	= shmem_follow_short_symlink,
2649 #ifdef CONFIG_TMPFS_XATTR
2650 	.setxattr	= shmem_setxattr,
2651 	.getxattr	= shmem_getxattr,
2652 	.listxattr	= shmem_listxattr,
2653 	.removexattr	= shmem_removexattr,
2654 #endif
2655 };
2656 
2657 static const struct inode_operations shmem_symlink_inode_operations = {
2658 	.readlink	= generic_readlink,
2659 	.follow_link	= shmem_follow_link,
2660 	.put_link	= shmem_put_link,
2661 #ifdef CONFIG_TMPFS_XATTR
2662 	.setxattr	= shmem_setxattr,
2663 	.getxattr	= shmem_getxattr,
2664 	.listxattr	= shmem_listxattr,
2665 	.removexattr	= shmem_removexattr,
2666 #endif
2667 };
2668 
2669 static struct dentry *shmem_get_parent(struct dentry *child)
2670 {
2671 	return ERR_PTR(-ESTALE);
2672 }
2673 
2674 static int shmem_match(struct inode *ino, void *vfh)
2675 {
2676 	__u32 *fh = vfh;
2677 	__u64 inum = fh[2];
2678 	inum = (inum << 32) | fh[1];
2679 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2680 }
2681 
2682 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2683 		struct fid *fid, int fh_len, int fh_type)
2684 {
2685 	struct inode *inode;
2686 	struct dentry *dentry = NULL;
2687 	u64 inum;
2688 
2689 	if (fh_len < 3)
2690 		return NULL;
2691 
2692 	inum = fid->raw[2];
2693 	inum = (inum << 32) | fid->raw[1];
2694 
2695 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2696 			shmem_match, fid->raw);
2697 	if (inode) {
2698 		dentry = d_find_alias(inode);
2699 		iput(inode);
2700 	}
2701 
2702 	return dentry;
2703 }
2704 
2705 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2706 				struct inode *parent)
2707 {
2708 	if (*len < 3) {
2709 		*len = 3;
2710 		return FILEID_INVALID;
2711 	}
2712 
2713 	if (inode_unhashed(inode)) {
2714 		/* Unfortunately insert_inode_hash is not idempotent,
2715 		 * so as we hash inodes here rather than at creation
2716 		 * time, we need a lock to ensure we only try
2717 		 * to do it once
2718 		 */
2719 		static DEFINE_SPINLOCK(lock);
2720 		spin_lock(&lock);
2721 		if (inode_unhashed(inode))
2722 			__insert_inode_hash(inode,
2723 					    inode->i_ino + inode->i_generation);
2724 		spin_unlock(&lock);
2725 	}
2726 
2727 	fh[0] = inode->i_generation;
2728 	fh[1] = inode->i_ino;
2729 	fh[2] = ((__u64)inode->i_ino) >> 32;
2730 
2731 	*len = 3;
2732 	return 1;
2733 }
2734 
2735 static const struct export_operations shmem_export_ops = {
2736 	.get_parent     = shmem_get_parent,
2737 	.encode_fh      = shmem_encode_fh,
2738 	.fh_to_dentry	= shmem_fh_to_dentry,
2739 };
2740 
2741 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2742 			       bool remount)
2743 {
2744 	char *this_char, *value, *rest;
2745 	struct mempolicy *mpol = NULL;
2746 	uid_t uid;
2747 	gid_t gid;
2748 
2749 	while (options != NULL) {
2750 		this_char = options;
2751 		for (;;) {
2752 			/*
2753 			 * NUL-terminate this option: unfortunately,
2754 			 * mount options form a comma-separated list,
2755 			 * but mpol's nodelist may also contain commas.
2756 			 */
2757 			options = strchr(options, ',');
2758 			if (options == NULL)
2759 				break;
2760 			options++;
2761 			if (!isdigit(*options)) {
2762 				options[-1] = '\0';
2763 				break;
2764 			}
2765 		}
2766 		if (!*this_char)
2767 			continue;
2768 		if ((value = strchr(this_char,'=')) != NULL) {
2769 			*value++ = 0;
2770 		} else {
2771 			printk(KERN_ERR
2772 			    "tmpfs: No value for mount option '%s'\n",
2773 			    this_char);
2774 			goto error;
2775 		}
2776 
2777 		if (!strcmp(this_char,"size")) {
2778 			unsigned long long size;
2779 			size = memparse(value,&rest);
2780 			if (*rest == '%') {
2781 				size <<= PAGE_SHIFT;
2782 				size *= totalram_pages;
2783 				do_div(size, 100);
2784 				rest++;
2785 			}
2786 			if (*rest)
2787 				goto bad_val;
2788 			sbinfo->max_blocks =
2789 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2790 		} else if (!strcmp(this_char,"nr_blocks")) {
2791 			sbinfo->max_blocks = memparse(value, &rest);
2792 			if (*rest)
2793 				goto bad_val;
2794 		} else if (!strcmp(this_char,"nr_inodes")) {
2795 			sbinfo->max_inodes = memparse(value, &rest);
2796 			if (*rest)
2797 				goto bad_val;
2798 		} else if (!strcmp(this_char,"mode")) {
2799 			if (remount)
2800 				continue;
2801 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2802 			if (*rest)
2803 				goto bad_val;
2804 		} else if (!strcmp(this_char,"uid")) {
2805 			if (remount)
2806 				continue;
2807 			uid = simple_strtoul(value, &rest, 0);
2808 			if (*rest)
2809 				goto bad_val;
2810 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2811 			if (!uid_valid(sbinfo->uid))
2812 				goto bad_val;
2813 		} else if (!strcmp(this_char,"gid")) {
2814 			if (remount)
2815 				continue;
2816 			gid = simple_strtoul(value, &rest, 0);
2817 			if (*rest)
2818 				goto bad_val;
2819 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2820 			if (!gid_valid(sbinfo->gid))
2821 				goto bad_val;
2822 		} else if (!strcmp(this_char,"mpol")) {
2823 			mpol_put(mpol);
2824 			mpol = NULL;
2825 			if (mpol_parse_str(value, &mpol))
2826 				goto bad_val;
2827 		} else {
2828 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2829 			       this_char);
2830 			goto error;
2831 		}
2832 	}
2833 	sbinfo->mpol = mpol;
2834 	return 0;
2835 
2836 bad_val:
2837 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2838 	       value, this_char);
2839 error:
2840 	mpol_put(mpol);
2841 	return 1;
2842 
2843 }
2844 
2845 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2846 {
2847 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2848 	struct shmem_sb_info config = *sbinfo;
2849 	unsigned long inodes;
2850 	int error = -EINVAL;
2851 
2852 	config.mpol = NULL;
2853 	if (shmem_parse_options(data, &config, true))
2854 		return error;
2855 
2856 	spin_lock(&sbinfo->stat_lock);
2857 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2858 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2859 		goto out;
2860 	if (config.max_inodes < inodes)
2861 		goto out;
2862 	/*
2863 	 * Those tests disallow limited->unlimited while any are in use;
2864 	 * but we must separately disallow unlimited->limited, because
2865 	 * in that case we have no record of how much is already in use.
2866 	 */
2867 	if (config.max_blocks && !sbinfo->max_blocks)
2868 		goto out;
2869 	if (config.max_inodes && !sbinfo->max_inodes)
2870 		goto out;
2871 
2872 	error = 0;
2873 	sbinfo->max_blocks  = config.max_blocks;
2874 	sbinfo->max_inodes  = config.max_inodes;
2875 	sbinfo->free_inodes = config.max_inodes - inodes;
2876 
2877 	/*
2878 	 * Preserve previous mempolicy unless mpol remount option was specified.
2879 	 */
2880 	if (config.mpol) {
2881 		mpol_put(sbinfo->mpol);
2882 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2883 	}
2884 out:
2885 	spin_unlock(&sbinfo->stat_lock);
2886 	return error;
2887 }
2888 
2889 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2890 {
2891 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2892 
2893 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2894 		seq_printf(seq, ",size=%luk",
2895 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2896 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2897 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2898 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2899 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2900 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2901 		seq_printf(seq, ",uid=%u",
2902 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2903 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2904 		seq_printf(seq, ",gid=%u",
2905 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2906 	shmem_show_mpol(seq, sbinfo->mpol);
2907 	return 0;
2908 }
2909 
2910 #define MFD_NAME_PREFIX "memfd:"
2911 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2912 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2913 
2914 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2915 
2916 SYSCALL_DEFINE2(memfd_create,
2917 		const char __user *, uname,
2918 		unsigned int, flags)
2919 {
2920 	struct shmem_inode_info *info;
2921 	struct file *file;
2922 	int fd, error;
2923 	char *name;
2924 	long len;
2925 
2926 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2927 		return -EINVAL;
2928 
2929 	/* length includes terminating zero */
2930 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2931 	if (len <= 0)
2932 		return -EFAULT;
2933 	if (len > MFD_NAME_MAX_LEN + 1)
2934 		return -EINVAL;
2935 
2936 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2937 	if (!name)
2938 		return -ENOMEM;
2939 
2940 	strcpy(name, MFD_NAME_PREFIX);
2941 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2942 		error = -EFAULT;
2943 		goto err_name;
2944 	}
2945 
2946 	/* terminating-zero may have changed after strnlen_user() returned */
2947 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2948 		error = -EFAULT;
2949 		goto err_name;
2950 	}
2951 
2952 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2953 	if (fd < 0) {
2954 		error = fd;
2955 		goto err_name;
2956 	}
2957 
2958 	file = shmem_file_setup(name, 0, VM_NORESERVE);
2959 	if (IS_ERR(file)) {
2960 		error = PTR_ERR(file);
2961 		goto err_fd;
2962 	}
2963 	info = SHMEM_I(file_inode(file));
2964 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2965 	file->f_flags |= O_RDWR | O_LARGEFILE;
2966 	if (flags & MFD_ALLOW_SEALING)
2967 		info->seals &= ~F_SEAL_SEAL;
2968 
2969 	fd_install(fd, file);
2970 	kfree(name);
2971 	return fd;
2972 
2973 err_fd:
2974 	put_unused_fd(fd);
2975 err_name:
2976 	kfree(name);
2977 	return error;
2978 }
2979 
2980 #endif /* CONFIG_TMPFS */
2981 
2982 static void shmem_put_super(struct super_block *sb)
2983 {
2984 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2985 
2986 	percpu_counter_destroy(&sbinfo->used_blocks);
2987 	mpol_put(sbinfo->mpol);
2988 	kfree(sbinfo);
2989 	sb->s_fs_info = NULL;
2990 }
2991 
2992 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2993 {
2994 	struct inode *inode;
2995 	struct shmem_sb_info *sbinfo;
2996 	int err = -ENOMEM;
2997 
2998 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2999 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3000 				L1_CACHE_BYTES), GFP_KERNEL);
3001 	if (!sbinfo)
3002 		return -ENOMEM;
3003 
3004 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3005 	sbinfo->uid = current_fsuid();
3006 	sbinfo->gid = current_fsgid();
3007 	sb->s_fs_info = sbinfo;
3008 
3009 #ifdef CONFIG_TMPFS
3010 	/*
3011 	 * Per default we only allow half of the physical ram per
3012 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3013 	 * but the internal instance is left unlimited.
3014 	 */
3015 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3016 		sbinfo->max_blocks = shmem_default_max_blocks();
3017 		sbinfo->max_inodes = shmem_default_max_inodes();
3018 		if (shmem_parse_options(data, sbinfo, false)) {
3019 			err = -EINVAL;
3020 			goto failed;
3021 		}
3022 	} else {
3023 		sb->s_flags |= MS_NOUSER;
3024 	}
3025 	sb->s_export_op = &shmem_export_ops;
3026 	sb->s_flags |= MS_NOSEC;
3027 #else
3028 	sb->s_flags |= MS_NOUSER;
3029 #endif
3030 
3031 	spin_lock_init(&sbinfo->stat_lock);
3032 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3033 		goto failed;
3034 	sbinfo->free_inodes = sbinfo->max_inodes;
3035 
3036 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3037 	sb->s_blocksize = PAGE_CACHE_SIZE;
3038 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3039 	sb->s_magic = TMPFS_MAGIC;
3040 	sb->s_op = &shmem_ops;
3041 	sb->s_time_gran = 1;
3042 #ifdef CONFIG_TMPFS_XATTR
3043 	sb->s_xattr = shmem_xattr_handlers;
3044 #endif
3045 #ifdef CONFIG_TMPFS_POSIX_ACL
3046 	sb->s_flags |= MS_POSIXACL;
3047 #endif
3048 
3049 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3050 	if (!inode)
3051 		goto failed;
3052 	inode->i_uid = sbinfo->uid;
3053 	inode->i_gid = sbinfo->gid;
3054 	sb->s_root = d_make_root(inode);
3055 	if (!sb->s_root)
3056 		goto failed;
3057 	return 0;
3058 
3059 failed:
3060 	shmem_put_super(sb);
3061 	return err;
3062 }
3063 
3064 static struct kmem_cache *shmem_inode_cachep;
3065 
3066 static struct inode *shmem_alloc_inode(struct super_block *sb)
3067 {
3068 	struct shmem_inode_info *info;
3069 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3070 	if (!info)
3071 		return NULL;
3072 	return &info->vfs_inode;
3073 }
3074 
3075 static void shmem_destroy_callback(struct rcu_head *head)
3076 {
3077 	struct inode *inode = container_of(head, struct inode, i_rcu);
3078 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3079 }
3080 
3081 static void shmem_destroy_inode(struct inode *inode)
3082 {
3083 	if (S_ISREG(inode->i_mode))
3084 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3085 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3086 }
3087 
3088 static void shmem_init_inode(void *foo)
3089 {
3090 	struct shmem_inode_info *info = foo;
3091 	inode_init_once(&info->vfs_inode);
3092 }
3093 
3094 static int shmem_init_inodecache(void)
3095 {
3096 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3097 				sizeof(struct shmem_inode_info),
3098 				0, SLAB_PANIC, shmem_init_inode);
3099 	return 0;
3100 }
3101 
3102 static void shmem_destroy_inodecache(void)
3103 {
3104 	kmem_cache_destroy(shmem_inode_cachep);
3105 }
3106 
3107 static const struct address_space_operations shmem_aops = {
3108 	.writepage	= shmem_writepage,
3109 	.set_page_dirty	= __set_page_dirty_no_writeback,
3110 #ifdef CONFIG_TMPFS
3111 	.write_begin	= shmem_write_begin,
3112 	.write_end	= shmem_write_end,
3113 #endif
3114 #ifdef CONFIG_MIGRATION
3115 	.migratepage	= migrate_page,
3116 #endif
3117 	.error_remove_page = generic_error_remove_page,
3118 };
3119 
3120 static const struct file_operations shmem_file_operations = {
3121 	.mmap		= shmem_mmap,
3122 #ifdef CONFIG_TMPFS
3123 	.llseek		= shmem_file_llseek,
3124 	.read		= new_sync_read,
3125 	.write		= new_sync_write,
3126 	.read_iter	= shmem_file_read_iter,
3127 	.write_iter	= generic_file_write_iter,
3128 	.fsync		= noop_fsync,
3129 	.splice_read	= shmem_file_splice_read,
3130 	.splice_write	= iter_file_splice_write,
3131 	.fallocate	= shmem_fallocate,
3132 #endif
3133 };
3134 
3135 static const struct inode_operations shmem_inode_operations = {
3136 	.setattr	= shmem_setattr,
3137 #ifdef CONFIG_TMPFS_XATTR
3138 	.setxattr	= shmem_setxattr,
3139 	.getxattr	= shmem_getxattr,
3140 	.listxattr	= shmem_listxattr,
3141 	.removexattr	= shmem_removexattr,
3142 	.set_acl	= simple_set_acl,
3143 #endif
3144 };
3145 
3146 static const struct inode_operations shmem_dir_inode_operations = {
3147 #ifdef CONFIG_TMPFS
3148 	.create		= shmem_create,
3149 	.lookup		= simple_lookup,
3150 	.link		= shmem_link,
3151 	.unlink		= shmem_unlink,
3152 	.symlink	= shmem_symlink,
3153 	.mkdir		= shmem_mkdir,
3154 	.rmdir		= shmem_rmdir,
3155 	.mknod		= shmem_mknod,
3156 	.rename2	= shmem_rename2,
3157 	.tmpfile	= shmem_tmpfile,
3158 #endif
3159 #ifdef CONFIG_TMPFS_XATTR
3160 	.setxattr	= shmem_setxattr,
3161 	.getxattr	= shmem_getxattr,
3162 	.listxattr	= shmem_listxattr,
3163 	.removexattr	= shmem_removexattr,
3164 #endif
3165 #ifdef CONFIG_TMPFS_POSIX_ACL
3166 	.setattr	= shmem_setattr,
3167 	.set_acl	= simple_set_acl,
3168 #endif
3169 };
3170 
3171 static const struct inode_operations shmem_special_inode_operations = {
3172 #ifdef CONFIG_TMPFS_XATTR
3173 	.setxattr	= shmem_setxattr,
3174 	.getxattr	= shmem_getxattr,
3175 	.listxattr	= shmem_listxattr,
3176 	.removexattr	= shmem_removexattr,
3177 #endif
3178 #ifdef CONFIG_TMPFS_POSIX_ACL
3179 	.setattr	= shmem_setattr,
3180 	.set_acl	= simple_set_acl,
3181 #endif
3182 };
3183 
3184 static const struct super_operations shmem_ops = {
3185 	.alloc_inode	= shmem_alloc_inode,
3186 	.destroy_inode	= shmem_destroy_inode,
3187 #ifdef CONFIG_TMPFS
3188 	.statfs		= shmem_statfs,
3189 	.remount_fs	= shmem_remount_fs,
3190 	.show_options	= shmem_show_options,
3191 #endif
3192 	.evict_inode	= shmem_evict_inode,
3193 	.drop_inode	= generic_delete_inode,
3194 	.put_super	= shmem_put_super,
3195 };
3196 
3197 static const struct vm_operations_struct shmem_vm_ops = {
3198 	.fault		= shmem_fault,
3199 	.map_pages	= filemap_map_pages,
3200 #ifdef CONFIG_NUMA
3201 	.set_policy     = shmem_set_policy,
3202 	.get_policy     = shmem_get_policy,
3203 #endif
3204 	.remap_pages	= generic_file_remap_pages,
3205 };
3206 
3207 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3208 	int flags, const char *dev_name, void *data)
3209 {
3210 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3211 }
3212 
3213 static struct file_system_type shmem_fs_type = {
3214 	.owner		= THIS_MODULE,
3215 	.name		= "tmpfs",
3216 	.mount		= shmem_mount,
3217 	.kill_sb	= kill_litter_super,
3218 	.fs_flags	= FS_USERNS_MOUNT,
3219 };
3220 
3221 int __init shmem_init(void)
3222 {
3223 	int error;
3224 
3225 	/* If rootfs called this, don't re-init */
3226 	if (shmem_inode_cachep)
3227 		return 0;
3228 
3229 	error = bdi_init(&shmem_backing_dev_info);
3230 	if (error)
3231 		goto out4;
3232 
3233 	error = shmem_init_inodecache();
3234 	if (error)
3235 		goto out3;
3236 
3237 	error = register_filesystem(&shmem_fs_type);
3238 	if (error) {
3239 		printk(KERN_ERR "Could not register tmpfs\n");
3240 		goto out2;
3241 	}
3242 
3243 	shm_mnt = kern_mount(&shmem_fs_type);
3244 	if (IS_ERR(shm_mnt)) {
3245 		error = PTR_ERR(shm_mnt);
3246 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3247 		goto out1;
3248 	}
3249 	return 0;
3250 
3251 out1:
3252 	unregister_filesystem(&shmem_fs_type);
3253 out2:
3254 	shmem_destroy_inodecache();
3255 out3:
3256 	bdi_destroy(&shmem_backing_dev_info);
3257 out4:
3258 	shm_mnt = ERR_PTR(error);
3259 	return error;
3260 }
3261 
3262 #else /* !CONFIG_SHMEM */
3263 
3264 /*
3265  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3266  *
3267  * This is intended for small system where the benefits of the full
3268  * shmem code (swap-backed and resource-limited) are outweighed by
3269  * their complexity. On systems without swap this code should be
3270  * effectively equivalent, but much lighter weight.
3271  */
3272 
3273 static struct file_system_type shmem_fs_type = {
3274 	.name		= "tmpfs",
3275 	.mount		= ramfs_mount,
3276 	.kill_sb	= kill_litter_super,
3277 	.fs_flags	= FS_USERNS_MOUNT,
3278 };
3279 
3280 int __init shmem_init(void)
3281 {
3282 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3283 
3284 	shm_mnt = kern_mount(&shmem_fs_type);
3285 	BUG_ON(IS_ERR(shm_mnt));
3286 
3287 	return 0;
3288 }
3289 
3290 int shmem_unuse(swp_entry_t swap, struct page *page)
3291 {
3292 	return 0;
3293 }
3294 
3295 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3296 {
3297 	return 0;
3298 }
3299 
3300 void shmem_unlock_mapping(struct address_space *mapping)
3301 {
3302 }
3303 
3304 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3305 {
3306 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3307 }
3308 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3309 
3310 #define shmem_vm_ops				generic_file_vm_ops
3311 #define shmem_file_operations			ramfs_file_operations
3312 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3313 #define shmem_acct_size(flags, size)		0
3314 #define shmem_unacct_size(flags, size)		do {} while (0)
3315 
3316 #endif /* CONFIG_SHMEM */
3317 
3318 /* common code */
3319 
3320 static struct dentry_operations anon_ops = {
3321 	.d_dname = simple_dname
3322 };
3323 
3324 static struct file *__shmem_file_setup(const char *name, loff_t size,
3325 				       unsigned long flags, unsigned int i_flags)
3326 {
3327 	struct file *res;
3328 	struct inode *inode;
3329 	struct path path;
3330 	struct super_block *sb;
3331 	struct qstr this;
3332 
3333 	if (IS_ERR(shm_mnt))
3334 		return ERR_CAST(shm_mnt);
3335 
3336 	if (size < 0 || size > MAX_LFS_FILESIZE)
3337 		return ERR_PTR(-EINVAL);
3338 
3339 	if (shmem_acct_size(flags, size))
3340 		return ERR_PTR(-ENOMEM);
3341 
3342 	res = ERR_PTR(-ENOMEM);
3343 	this.name = name;
3344 	this.len = strlen(name);
3345 	this.hash = 0; /* will go */
3346 	sb = shm_mnt->mnt_sb;
3347 	path.mnt = mntget(shm_mnt);
3348 	path.dentry = d_alloc_pseudo(sb, &this);
3349 	if (!path.dentry)
3350 		goto put_memory;
3351 	d_set_d_op(path.dentry, &anon_ops);
3352 
3353 	res = ERR_PTR(-ENOSPC);
3354 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3355 	if (!inode)
3356 		goto put_memory;
3357 
3358 	inode->i_flags |= i_flags;
3359 	d_instantiate(path.dentry, inode);
3360 	inode->i_size = size;
3361 	clear_nlink(inode);	/* It is unlinked */
3362 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3363 	if (IS_ERR(res))
3364 		goto put_path;
3365 
3366 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3367 		  &shmem_file_operations);
3368 	if (IS_ERR(res))
3369 		goto put_path;
3370 
3371 	return res;
3372 
3373 put_memory:
3374 	shmem_unacct_size(flags, size);
3375 put_path:
3376 	path_put(&path);
3377 	return res;
3378 }
3379 
3380 /**
3381  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3382  * 	kernel internal.  There will be NO LSM permission checks against the
3383  * 	underlying inode.  So users of this interface must do LSM checks at a
3384  * 	higher layer.  The one user is the big_key implementation.  LSM checks
3385  * 	are provided at the key level rather than the inode level.
3386  * @name: name for dentry (to be seen in /proc/<pid>/maps
3387  * @size: size to be set for the file
3388  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3389  */
3390 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3391 {
3392 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3393 }
3394 
3395 /**
3396  * shmem_file_setup - get an unlinked file living in tmpfs
3397  * @name: name for dentry (to be seen in /proc/<pid>/maps
3398  * @size: size to be set for the file
3399  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3400  */
3401 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3402 {
3403 	return __shmem_file_setup(name, size, flags, 0);
3404 }
3405 EXPORT_SYMBOL_GPL(shmem_file_setup);
3406 
3407 /**
3408  * shmem_zero_setup - setup a shared anonymous mapping
3409  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3410  */
3411 int shmem_zero_setup(struct vm_area_struct *vma)
3412 {
3413 	struct file *file;
3414 	loff_t size = vma->vm_end - vma->vm_start;
3415 
3416 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3417 	if (IS_ERR(file))
3418 		return PTR_ERR(file);
3419 
3420 	if (vma->vm_file)
3421 		fput(vma->vm_file);
3422 	vma->vm_file = file;
3423 	vma->vm_ops = &shmem_vm_ops;
3424 	return 0;
3425 }
3426 
3427 /**
3428  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3429  * @mapping:	the page's address_space
3430  * @index:	the page index
3431  * @gfp:	the page allocator flags to use if allocating
3432  *
3433  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3434  * with any new page allocations done using the specified allocation flags.
3435  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3436  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3437  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3438  *
3439  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3440  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3441  */
3442 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3443 					 pgoff_t index, gfp_t gfp)
3444 {
3445 #ifdef CONFIG_SHMEM
3446 	struct inode *inode = mapping->host;
3447 	struct page *page;
3448 	int error;
3449 
3450 	BUG_ON(mapping->a_ops != &shmem_aops);
3451 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3452 	if (error)
3453 		page = ERR_PTR(error);
3454 	else
3455 		unlock_page(page);
3456 	return page;
3457 #else
3458 	/*
3459 	 * The tiny !SHMEM case uses ramfs without swap
3460 	 */
3461 	return read_cache_page_gfp(mapping, index, gfp);
3462 #endif
3463 }
3464 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3465