xref: /openbmc/linux/mm/shmem.c (revision e8e0929d)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 #include <linux/ima.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/generic_acl.h>
46 #include <linux/mman.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/backing-dev.h>
50 #include <linux/shmem_fs.h>
51 #include <linux/writeback.h>
52 #include <linux/blkdev.h>
53 #include <linux/security.h>
54 #include <linux/swapops.h>
55 #include <linux/mempolicy.h>
56 #include <linux/namei.h>
57 #include <linux/ctype.h>
58 #include <linux/migrate.h>
59 #include <linux/highmem.h>
60 #include <linux/seq_file.h>
61 #include <linux/magic.h>
62 
63 #include <asm/uaccess.h>
64 #include <asm/div64.h>
65 #include <asm/pgtable.h>
66 
67 /*
68  * The maximum size of a shmem/tmpfs file is limited by the maximum size of
69  * its triple-indirect swap vector - see illustration at shmem_swp_entry().
70  *
71  * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
72  * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
73  * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
74  * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
75  *
76  * We use / and * instead of shifts in the definitions below, so that the swap
77  * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
78  */
79 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
80 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
81 
82 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
83 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
84 
85 #define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
86 #define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
87 
88 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
92 #define SHMEM_PAGEIN	 VM_READ
93 #define SHMEM_TRUNCATE	 VM_WRITE
94 
95 /* Definition to limit shmem_truncate's steps between cond_rescheds */
96 #define LATENCY_LIMIT	 64
97 
98 /* Pretend that each entry is of this size in directory's i_size */
99 #define BOGO_DIRENT_SIZE 20
100 
101 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
102 enum sgp_type {
103 	SGP_READ,	/* don't exceed i_size, don't allocate page */
104 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
105 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
106 	SGP_WRITE,	/* may exceed i_size, may allocate page */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static int shmem_getpage(struct inode *inode, unsigned long idx,
122 			 struct page **pagep, enum sgp_type sgp, int *type);
123 
124 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
125 {
126 	/*
127 	 * The above definition of ENTRIES_PER_PAGE, and the use of
128 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
129 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
130 	 *
131 	 * Mobility flags are masked out as swap vectors cannot move
132 	 */
133 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
134 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
135 }
136 
137 static inline void shmem_dir_free(struct page *page)
138 {
139 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
140 }
141 
142 static struct page **shmem_dir_map(struct page *page)
143 {
144 	return (struct page **)kmap_atomic(page, KM_USER0);
145 }
146 
147 static inline void shmem_dir_unmap(struct page **dir)
148 {
149 	kunmap_atomic(dir, KM_USER0);
150 }
151 
152 static swp_entry_t *shmem_swp_map(struct page *page)
153 {
154 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
155 }
156 
157 static inline void shmem_swp_balance_unmap(void)
158 {
159 	/*
160 	 * When passing a pointer to an i_direct entry, to code which
161 	 * also handles indirect entries and so will shmem_swp_unmap,
162 	 * we must arrange for the preempt count to remain in balance.
163 	 * What kmap_atomic of a lowmem page does depends on config
164 	 * and architecture, so pretend to kmap_atomic some lowmem page.
165 	 */
166 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
167 }
168 
169 static inline void shmem_swp_unmap(swp_entry_t *entry)
170 {
171 	kunmap_atomic(entry, KM_USER1);
172 }
173 
174 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
175 {
176 	return sb->s_fs_info;
177 }
178 
179 /*
180  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
181  * for shared memory and for shared anonymous (/dev/zero) mappings
182  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
183  * consistent with the pre-accounting of private mappings ...
184  */
185 static inline int shmem_acct_size(unsigned long flags, loff_t size)
186 {
187 	return (flags & VM_NORESERVE) ?
188 		0 : security_vm_enough_memory_kern(VM_ACCT(size));
189 }
190 
191 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
192 {
193 	if (!(flags & VM_NORESERVE))
194 		vm_unacct_memory(VM_ACCT(size));
195 }
196 
197 /*
198  * ... whereas tmpfs objects are accounted incrementally as
199  * pages are allocated, in order to allow huge sparse files.
200  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
201  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
202  */
203 static inline int shmem_acct_block(unsigned long flags)
204 {
205 	return (flags & VM_NORESERVE) ?
206 		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
207 }
208 
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 	if (flags & VM_NORESERVE)
212 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
213 }
214 
215 static const struct super_operations shmem_ops;
216 static const struct address_space_operations shmem_aops;
217 static const struct file_operations shmem_file_operations;
218 static const struct inode_operations shmem_inode_operations;
219 static const struct inode_operations shmem_dir_inode_operations;
220 static const struct inode_operations shmem_special_inode_operations;
221 static const struct vm_operations_struct shmem_vm_ops;
222 
223 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
224 	.ra_pages	= 0,	/* No readahead */
225 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
226 	.unplug_io_fn	= default_unplug_io_fn,
227 };
228 
229 static LIST_HEAD(shmem_swaplist);
230 static DEFINE_MUTEX(shmem_swaplist_mutex);
231 
232 static void shmem_free_blocks(struct inode *inode, long pages)
233 {
234 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 	if (sbinfo->max_blocks) {
236 		spin_lock(&sbinfo->stat_lock);
237 		sbinfo->free_blocks += pages;
238 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239 		spin_unlock(&sbinfo->stat_lock);
240 	}
241 }
242 
243 static int shmem_reserve_inode(struct super_block *sb)
244 {
245 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 	if (sbinfo->max_inodes) {
247 		spin_lock(&sbinfo->stat_lock);
248 		if (!sbinfo->free_inodes) {
249 			spin_unlock(&sbinfo->stat_lock);
250 			return -ENOSPC;
251 		}
252 		sbinfo->free_inodes--;
253 		spin_unlock(&sbinfo->stat_lock);
254 	}
255 	return 0;
256 }
257 
258 static void shmem_free_inode(struct super_block *sb)
259 {
260 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261 	if (sbinfo->max_inodes) {
262 		spin_lock(&sbinfo->stat_lock);
263 		sbinfo->free_inodes++;
264 		spin_unlock(&sbinfo->stat_lock);
265 	}
266 }
267 
268 /**
269  * shmem_recalc_inode - recalculate the size of an inode
270  * @inode: inode to recalc
271  *
272  * We have to calculate the free blocks since the mm can drop
273  * undirtied hole pages behind our back.
274  *
275  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
276  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277  *
278  * It has to be called with the spinlock held.
279  */
280 static void shmem_recalc_inode(struct inode *inode)
281 {
282 	struct shmem_inode_info *info = SHMEM_I(inode);
283 	long freed;
284 
285 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286 	if (freed > 0) {
287 		info->alloced -= freed;
288 		shmem_unacct_blocks(info->flags, freed);
289 		shmem_free_blocks(inode, freed);
290 	}
291 }
292 
293 /**
294  * shmem_swp_entry - find the swap vector position in the info structure
295  * @info:  info structure for the inode
296  * @index: index of the page to find
297  * @page:  optional page to add to the structure. Has to be preset to
298  *         all zeros
299  *
300  * If there is no space allocated yet it will return NULL when
301  * page is NULL, else it will use the page for the needed block,
302  * setting it to NULL on return to indicate that it has been used.
303  *
304  * The swap vector is organized the following way:
305  *
306  * There are SHMEM_NR_DIRECT entries directly stored in the
307  * shmem_inode_info structure. So small files do not need an addional
308  * allocation.
309  *
310  * For pages with index > SHMEM_NR_DIRECT there is the pointer
311  * i_indirect which points to a page which holds in the first half
312  * doubly indirect blocks, in the second half triple indirect blocks:
313  *
314  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315  * following layout (for SHMEM_NR_DIRECT == 16):
316  *
317  * i_indirect -> dir --> 16-19
318  * 	      |	     +-> 20-23
319  * 	      |
320  * 	      +-->dir2 --> 24-27
321  * 	      |	       +-> 28-31
322  * 	      |	       +-> 32-35
323  * 	      |	       +-> 36-39
324  * 	      |
325  * 	      +-->dir3 --> 40-43
326  * 	       	       +-> 44-47
327  * 	      	       +-> 48-51
328  * 	      	       +-> 52-55
329  */
330 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331 {
332 	unsigned long offset;
333 	struct page **dir;
334 	struct page *subdir;
335 
336 	if (index < SHMEM_NR_DIRECT) {
337 		shmem_swp_balance_unmap();
338 		return info->i_direct+index;
339 	}
340 	if (!info->i_indirect) {
341 		if (page) {
342 			info->i_indirect = *page;
343 			*page = NULL;
344 		}
345 		return NULL;			/* need another page */
346 	}
347 
348 	index -= SHMEM_NR_DIRECT;
349 	offset = index % ENTRIES_PER_PAGE;
350 	index /= ENTRIES_PER_PAGE;
351 	dir = shmem_dir_map(info->i_indirect);
352 
353 	if (index >= ENTRIES_PER_PAGE/2) {
354 		index -= ENTRIES_PER_PAGE/2;
355 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356 		index %= ENTRIES_PER_PAGE;
357 		subdir = *dir;
358 		if (!subdir) {
359 			if (page) {
360 				*dir = *page;
361 				*page = NULL;
362 			}
363 			shmem_dir_unmap(dir);
364 			return NULL;		/* need another page */
365 		}
366 		shmem_dir_unmap(dir);
367 		dir = shmem_dir_map(subdir);
368 	}
369 
370 	dir += index;
371 	subdir = *dir;
372 	if (!subdir) {
373 		if (!page || !(subdir = *page)) {
374 			shmem_dir_unmap(dir);
375 			return NULL;		/* need a page */
376 		}
377 		*dir = subdir;
378 		*page = NULL;
379 	}
380 	shmem_dir_unmap(dir);
381 	return shmem_swp_map(subdir) + offset;
382 }
383 
384 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385 {
386 	long incdec = value? 1: -1;
387 
388 	entry->val = value;
389 	info->swapped += incdec;
390 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391 		struct page *page = kmap_atomic_to_page(entry);
392 		set_page_private(page, page_private(page) + incdec);
393 	}
394 }
395 
396 /**
397  * shmem_swp_alloc - get the position of the swap entry for the page.
398  * @info:	info structure for the inode
399  * @index:	index of the page to find
400  * @sgp:	check and recheck i_size? skip allocation?
401  *
402  * If the entry does not exist, allocate it.
403  */
404 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405 {
406 	struct inode *inode = &info->vfs_inode;
407 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408 	struct page *page = NULL;
409 	swp_entry_t *entry;
410 
411 	if (sgp != SGP_WRITE &&
412 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413 		return ERR_PTR(-EINVAL);
414 
415 	while (!(entry = shmem_swp_entry(info, index, &page))) {
416 		if (sgp == SGP_READ)
417 			return shmem_swp_map(ZERO_PAGE(0));
418 		/*
419 		 * Test free_blocks against 1 not 0, since we have 1 data
420 		 * page (and perhaps indirect index pages) yet to allocate:
421 		 * a waste to allocate index if we cannot allocate data.
422 		 */
423 		if (sbinfo->max_blocks) {
424 			spin_lock(&sbinfo->stat_lock);
425 			if (sbinfo->free_blocks <= 1) {
426 				spin_unlock(&sbinfo->stat_lock);
427 				return ERR_PTR(-ENOSPC);
428 			}
429 			sbinfo->free_blocks--;
430 			inode->i_blocks += BLOCKS_PER_PAGE;
431 			spin_unlock(&sbinfo->stat_lock);
432 		}
433 
434 		spin_unlock(&info->lock);
435 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
436 		if (page)
437 			set_page_private(page, 0);
438 		spin_lock(&info->lock);
439 
440 		if (!page) {
441 			shmem_free_blocks(inode, 1);
442 			return ERR_PTR(-ENOMEM);
443 		}
444 		if (sgp != SGP_WRITE &&
445 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
446 			entry = ERR_PTR(-EINVAL);
447 			break;
448 		}
449 		if (info->next_index <= index)
450 			info->next_index = index + 1;
451 	}
452 	if (page) {
453 		/* another task gave its page, or truncated the file */
454 		shmem_free_blocks(inode, 1);
455 		shmem_dir_free(page);
456 	}
457 	if (info->next_index <= index && !IS_ERR(entry))
458 		info->next_index = index + 1;
459 	return entry;
460 }
461 
462 /**
463  * shmem_free_swp - free some swap entries in a directory
464  * @dir:        pointer to the directory
465  * @edir:       pointer after last entry of the directory
466  * @punch_lock: pointer to spinlock when needed for the holepunch case
467  */
468 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
469 						spinlock_t *punch_lock)
470 {
471 	spinlock_t *punch_unlock = NULL;
472 	swp_entry_t *ptr;
473 	int freed = 0;
474 
475 	for (ptr = dir; ptr < edir; ptr++) {
476 		if (ptr->val) {
477 			if (unlikely(punch_lock)) {
478 				punch_unlock = punch_lock;
479 				punch_lock = NULL;
480 				spin_lock(punch_unlock);
481 				if (!ptr->val)
482 					continue;
483 			}
484 			free_swap_and_cache(*ptr);
485 			*ptr = (swp_entry_t){0};
486 			freed++;
487 		}
488 	}
489 	if (punch_unlock)
490 		spin_unlock(punch_unlock);
491 	return freed;
492 }
493 
494 static int shmem_map_and_free_swp(struct page *subdir, int offset,
495 		int limit, struct page ***dir, spinlock_t *punch_lock)
496 {
497 	swp_entry_t *ptr;
498 	int freed = 0;
499 
500 	ptr = shmem_swp_map(subdir);
501 	for (; offset < limit; offset += LATENCY_LIMIT) {
502 		int size = limit - offset;
503 		if (size > LATENCY_LIMIT)
504 			size = LATENCY_LIMIT;
505 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
506 							punch_lock);
507 		if (need_resched()) {
508 			shmem_swp_unmap(ptr);
509 			if (*dir) {
510 				shmem_dir_unmap(*dir);
511 				*dir = NULL;
512 			}
513 			cond_resched();
514 			ptr = shmem_swp_map(subdir);
515 		}
516 	}
517 	shmem_swp_unmap(ptr);
518 	return freed;
519 }
520 
521 static void shmem_free_pages(struct list_head *next)
522 {
523 	struct page *page;
524 	int freed = 0;
525 
526 	do {
527 		page = container_of(next, struct page, lru);
528 		next = next->next;
529 		shmem_dir_free(page);
530 		freed++;
531 		if (freed >= LATENCY_LIMIT) {
532 			cond_resched();
533 			freed = 0;
534 		}
535 	} while (next);
536 }
537 
538 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
539 {
540 	struct shmem_inode_info *info = SHMEM_I(inode);
541 	unsigned long idx;
542 	unsigned long size;
543 	unsigned long limit;
544 	unsigned long stage;
545 	unsigned long diroff;
546 	struct page **dir;
547 	struct page *topdir;
548 	struct page *middir;
549 	struct page *subdir;
550 	swp_entry_t *ptr;
551 	LIST_HEAD(pages_to_free);
552 	long nr_pages_to_free = 0;
553 	long nr_swaps_freed = 0;
554 	int offset;
555 	int freed;
556 	int punch_hole;
557 	spinlock_t *needs_lock;
558 	spinlock_t *punch_lock;
559 	unsigned long upper_limit;
560 
561 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
562 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
563 	if (idx >= info->next_index)
564 		return;
565 
566 	spin_lock(&info->lock);
567 	info->flags |= SHMEM_TRUNCATE;
568 	if (likely(end == (loff_t) -1)) {
569 		limit = info->next_index;
570 		upper_limit = SHMEM_MAX_INDEX;
571 		info->next_index = idx;
572 		needs_lock = NULL;
573 		punch_hole = 0;
574 	} else {
575 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
576 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
577 							PAGE_CACHE_SHIFT;
578 			upper_limit = SHMEM_MAX_INDEX;
579 		} else {
580 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
581 			upper_limit = limit;
582 		}
583 		needs_lock = &info->lock;
584 		punch_hole = 1;
585 	}
586 
587 	topdir = info->i_indirect;
588 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
589 		info->i_indirect = NULL;
590 		nr_pages_to_free++;
591 		list_add(&topdir->lru, &pages_to_free);
592 	}
593 	spin_unlock(&info->lock);
594 
595 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
596 		ptr = info->i_direct;
597 		size = limit;
598 		if (size > SHMEM_NR_DIRECT)
599 			size = SHMEM_NR_DIRECT;
600 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
601 	}
602 
603 	/*
604 	 * If there are no indirect blocks or we are punching a hole
605 	 * below indirect blocks, nothing to be done.
606 	 */
607 	if (!topdir || limit <= SHMEM_NR_DIRECT)
608 		goto done2;
609 
610 	/*
611 	 * The truncation case has already dropped info->lock, and we're safe
612 	 * because i_size and next_index have already been lowered, preventing
613 	 * access beyond.  But in the punch_hole case, we still need to take
614 	 * the lock when updating the swap directory, because there might be
615 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
616 	 * shmem_writepage.  However, whenever we find we can remove a whole
617 	 * directory page (not at the misaligned start or end of the range),
618 	 * we first NULLify its pointer in the level above, and then have no
619 	 * need to take the lock when updating its contents: needs_lock and
620 	 * punch_lock (either pointing to info->lock or NULL) manage this.
621 	 */
622 
623 	upper_limit -= SHMEM_NR_DIRECT;
624 	limit -= SHMEM_NR_DIRECT;
625 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
626 	offset = idx % ENTRIES_PER_PAGE;
627 	idx -= offset;
628 
629 	dir = shmem_dir_map(topdir);
630 	stage = ENTRIES_PER_PAGEPAGE/2;
631 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
632 		middir = topdir;
633 		diroff = idx/ENTRIES_PER_PAGE;
634 	} else {
635 		dir += ENTRIES_PER_PAGE/2;
636 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
637 		while (stage <= idx)
638 			stage += ENTRIES_PER_PAGEPAGE;
639 		middir = *dir;
640 		if (*dir) {
641 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
642 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
643 			if (!diroff && !offset && upper_limit >= stage) {
644 				if (needs_lock) {
645 					spin_lock(needs_lock);
646 					*dir = NULL;
647 					spin_unlock(needs_lock);
648 					needs_lock = NULL;
649 				} else
650 					*dir = NULL;
651 				nr_pages_to_free++;
652 				list_add(&middir->lru, &pages_to_free);
653 			}
654 			shmem_dir_unmap(dir);
655 			dir = shmem_dir_map(middir);
656 		} else {
657 			diroff = 0;
658 			offset = 0;
659 			idx = stage;
660 		}
661 	}
662 
663 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
664 		if (unlikely(idx == stage)) {
665 			shmem_dir_unmap(dir);
666 			dir = shmem_dir_map(topdir) +
667 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
668 			while (!*dir) {
669 				dir++;
670 				idx += ENTRIES_PER_PAGEPAGE;
671 				if (idx >= limit)
672 					goto done1;
673 			}
674 			stage = idx + ENTRIES_PER_PAGEPAGE;
675 			middir = *dir;
676 			if (punch_hole)
677 				needs_lock = &info->lock;
678 			if (upper_limit >= stage) {
679 				if (needs_lock) {
680 					spin_lock(needs_lock);
681 					*dir = NULL;
682 					spin_unlock(needs_lock);
683 					needs_lock = NULL;
684 				} else
685 					*dir = NULL;
686 				nr_pages_to_free++;
687 				list_add(&middir->lru, &pages_to_free);
688 			}
689 			shmem_dir_unmap(dir);
690 			cond_resched();
691 			dir = shmem_dir_map(middir);
692 			diroff = 0;
693 		}
694 		punch_lock = needs_lock;
695 		subdir = dir[diroff];
696 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
697 			if (needs_lock) {
698 				spin_lock(needs_lock);
699 				dir[diroff] = NULL;
700 				spin_unlock(needs_lock);
701 				punch_lock = NULL;
702 			} else
703 				dir[diroff] = NULL;
704 			nr_pages_to_free++;
705 			list_add(&subdir->lru, &pages_to_free);
706 		}
707 		if (subdir && page_private(subdir) /* has swap entries */) {
708 			size = limit - idx;
709 			if (size > ENTRIES_PER_PAGE)
710 				size = ENTRIES_PER_PAGE;
711 			freed = shmem_map_and_free_swp(subdir,
712 					offset, size, &dir, punch_lock);
713 			if (!dir)
714 				dir = shmem_dir_map(middir);
715 			nr_swaps_freed += freed;
716 			if (offset || punch_lock) {
717 				spin_lock(&info->lock);
718 				set_page_private(subdir,
719 					page_private(subdir) - freed);
720 				spin_unlock(&info->lock);
721 			} else
722 				BUG_ON(page_private(subdir) != freed);
723 		}
724 		offset = 0;
725 	}
726 done1:
727 	shmem_dir_unmap(dir);
728 done2:
729 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
730 		/*
731 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
732 		 * may have swizzled a page in from swap since vmtruncate or
733 		 * generic_delete_inode did it, before we lowered next_index.
734 		 * Also, though shmem_getpage checks i_size before adding to
735 		 * cache, no recheck after: so fix the narrow window there too.
736 		 *
737 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
738 		 * every time for punch_hole (which never got a chance to clear
739 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
740 		 * yet hardly ever necessary: try to optimize them out later.
741 		 */
742 		truncate_inode_pages_range(inode->i_mapping, start, end);
743 		if (punch_hole)
744 			unmap_mapping_range(inode->i_mapping, start,
745 							end - start, 1);
746 	}
747 
748 	spin_lock(&info->lock);
749 	info->flags &= ~SHMEM_TRUNCATE;
750 	info->swapped -= nr_swaps_freed;
751 	if (nr_pages_to_free)
752 		shmem_free_blocks(inode, nr_pages_to_free);
753 	shmem_recalc_inode(inode);
754 	spin_unlock(&info->lock);
755 
756 	/*
757 	 * Empty swap vector directory pages to be freed?
758 	 */
759 	if (!list_empty(&pages_to_free)) {
760 		pages_to_free.prev->next = NULL;
761 		shmem_free_pages(pages_to_free.next);
762 	}
763 }
764 
765 static void shmem_truncate(struct inode *inode)
766 {
767 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
768 }
769 
770 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
771 {
772 	struct inode *inode = dentry->d_inode;
773 	struct page *page = NULL;
774 	int error;
775 
776 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
777 		if (attr->ia_size < inode->i_size) {
778 			/*
779 			 * If truncating down to a partial page, then
780 			 * if that page is already allocated, hold it
781 			 * in memory until the truncation is over, so
782 			 * truncate_partial_page cannnot miss it were
783 			 * it assigned to swap.
784 			 */
785 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
786 				(void) shmem_getpage(inode,
787 					attr->ia_size>>PAGE_CACHE_SHIFT,
788 						&page, SGP_READ, NULL);
789 				if (page)
790 					unlock_page(page);
791 			}
792 			/*
793 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794 			 * detect if any pages might have been added to cache
795 			 * after truncate_inode_pages.  But we needn't bother
796 			 * if it's being fully truncated to zero-length: the
797 			 * nrpages check is efficient enough in that case.
798 			 */
799 			if (attr->ia_size) {
800 				struct shmem_inode_info *info = SHMEM_I(inode);
801 				spin_lock(&info->lock);
802 				info->flags &= ~SHMEM_PAGEIN;
803 				spin_unlock(&info->lock);
804 			}
805 		}
806 	}
807 
808 	error = inode_change_ok(inode, attr);
809 	if (!error)
810 		error = inode_setattr(inode, attr);
811 #ifdef CONFIG_TMPFS_POSIX_ACL
812 	if (!error && (attr->ia_valid & ATTR_MODE))
813 		error = generic_acl_chmod(inode, &shmem_acl_ops);
814 #endif
815 	if (page)
816 		page_cache_release(page);
817 	return error;
818 }
819 
820 static void shmem_delete_inode(struct inode *inode)
821 {
822 	struct shmem_inode_info *info = SHMEM_I(inode);
823 
824 	if (inode->i_op->truncate == shmem_truncate) {
825 		truncate_inode_pages(inode->i_mapping, 0);
826 		shmem_unacct_size(info->flags, inode->i_size);
827 		inode->i_size = 0;
828 		shmem_truncate(inode);
829 		if (!list_empty(&info->swaplist)) {
830 			mutex_lock(&shmem_swaplist_mutex);
831 			list_del_init(&info->swaplist);
832 			mutex_unlock(&shmem_swaplist_mutex);
833 		}
834 	}
835 	BUG_ON(inode->i_blocks);
836 	shmem_free_inode(inode->i_sb);
837 	clear_inode(inode);
838 }
839 
840 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
841 {
842 	swp_entry_t *ptr;
843 
844 	for (ptr = dir; ptr < edir; ptr++) {
845 		if (ptr->val == entry.val)
846 			return ptr - dir;
847 	}
848 	return -1;
849 }
850 
851 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
852 {
853 	struct inode *inode;
854 	unsigned long idx;
855 	unsigned long size;
856 	unsigned long limit;
857 	unsigned long stage;
858 	struct page **dir;
859 	struct page *subdir;
860 	swp_entry_t *ptr;
861 	int offset;
862 	int error;
863 
864 	idx = 0;
865 	ptr = info->i_direct;
866 	spin_lock(&info->lock);
867 	if (!info->swapped) {
868 		list_del_init(&info->swaplist);
869 		goto lost2;
870 	}
871 	limit = info->next_index;
872 	size = limit;
873 	if (size > SHMEM_NR_DIRECT)
874 		size = SHMEM_NR_DIRECT;
875 	offset = shmem_find_swp(entry, ptr, ptr+size);
876 	if (offset >= 0)
877 		goto found;
878 	if (!info->i_indirect)
879 		goto lost2;
880 
881 	dir = shmem_dir_map(info->i_indirect);
882 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
883 
884 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
885 		if (unlikely(idx == stage)) {
886 			shmem_dir_unmap(dir-1);
887 			if (cond_resched_lock(&info->lock)) {
888 				/* check it has not been truncated */
889 				if (limit > info->next_index) {
890 					limit = info->next_index;
891 					if (idx >= limit)
892 						goto lost2;
893 				}
894 			}
895 			dir = shmem_dir_map(info->i_indirect) +
896 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
897 			while (!*dir) {
898 				dir++;
899 				idx += ENTRIES_PER_PAGEPAGE;
900 				if (idx >= limit)
901 					goto lost1;
902 			}
903 			stage = idx + ENTRIES_PER_PAGEPAGE;
904 			subdir = *dir;
905 			shmem_dir_unmap(dir);
906 			dir = shmem_dir_map(subdir);
907 		}
908 		subdir = *dir;
909 		if (subdir && page_private(subdir)) {
910 			ptr = shmem_swp_map(subdir);
911 			size = limit - idx;
912 			if (size > ENTRIES_PER_PAGE)
913 				size = ENTRIES_PER_PAGE;
914 			offset = shmem_find_swp(entry, ptr, ptr+size);
915 			shmem_swp_unmap(ptr);
916 			if (offset >= 0) {
917 				shmem_dir_unmap(dir);
918 				goto found;
919 			}
920 		}
921 	}
922 lost1:
923 	shmem_dir_unmap(dir-1);
924 lost2:
925 	spin_unlock(&info->lock);
926 	return 0;
927 found:
928 	idx += offset;
929 	inode = igrab(&info->vfs_inode);
930 	spin_unlock(&info->lock);
931 
932 	/*
933 	 * Move _head_ to start search for next from here.
934 	 * But be careful: shmem_delete_inode checks list_empty without taking
935 	 * mutex, and there's an instant in list_move_tail when info->swaplist
936 	 * would appear empty, if it were the only one on shmem_swaplist.  We
937 	 * could avoid doing it if inode NULL; or use this minor optimization.
938 	 */
939 	if (shmem_swaplist.next != &info->swaplist)
940 		list_move_tail(&shmem_swaplist, &info->swaplist);
941 	mutex_unlock(&shmem_swaplist_mutex);
942 
943 	error = 1;
944 	if (!inode)
945 		goto out;
946 	/*
947 	 * Charge page using GFP_KERNEL while we can wait.
948 	 * Charged back to the user(not to caller) when swap account is used.
949 	 * add_to_page_cache() will be called with GFP_NOWAIT.
950 	 */
951 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
952 	if (error)
953 		goto out;
954 	error = radix_tree_preload(GFP_KERNEL);
955 	if (error) {
956 		mem_cgroup_uncharge_cache_page(page);
957 		goto out;
958 	}
959 	error = 1;
960 
961 	spin_lock(&info->lock);
962 	ptr = shmem_swp_entry(info, idx, NULL);
963 	if (ptr && ptr->val == entry.val) {
964 		error = add_to_page_cache_locked(page, inode->i_mapping,
965 						idx, GFP_NOWAIT);
966 		/* does mem_cgroup_uncharge_cache_page on error */
967 	} else	/* we must compensate for our precharge above */
968 		mem_cgroup_uncharge_cache_page(page);
969 
970 	if (error == -EEXIST) {
971 		struct page *filepage = find_get_page(inode->i_mapping, idx);
972 		error = 1;
973 		if (filepage) {
974 			/*
975 			 * There might be a more uptodate page coming down
976 			 * from a stacked writepage: forget our swappage if so.
977 			 */
978 			if (PageUptodate(filepage))
979 				error = 0;
980 			page_cache_release(filepage);
981 		}
982 	}
983 	if (!error) {
984 		delete_from_swap_cache(page);
985 		set_page_dirty(page);
986 		info->flags |= SHMEM_PAGEIN;
987 		shmem_swp_set(info, ptr, 0);
988 		swap_free(entry);
989 		error = 1;	/* not an error, but entry was found */
990 	}
991 	if (ptr)
992 		shmem_swp_unmap(ptr);
993 	spin_unlock(&info->lock);
994 	radix_tree_preload_end();
995 out:
996 	unlock_page(page);
997 	page_cache_release(page);
998 	iput(inode);		/* allows for NULL */
999 	return error;
1000 }
1001 
1002 /*
1003  * shmem_unuse() search for an eventually swapped out shmem page.
1004  */
1005 int shmem_unuse(swp_entry_t entry, struct page *page)
1006 {
1007 	struct list_head *p, *next;
1008 	struct shmem_inode_info *info;
1009 	int found = 0;
1010 
1011 	mutex_lock(&shmem_swaplist_mutex);
1012 	list_for_each_safe(p, next, &shmem_swaplist) {
1013 		info = list_entry(p, struct shmem_inode_info, swaplist);
1014 		found = shmem_unuse_inode(info, entry, page);
1015 		cond_resched();
1016 		if (found)
1017 			goto out;
1018 	}
1019 	mutex_unlock(&shmem_swaplist_mutex);
1020 out:	return found;	/* 0 or 1 or -ENOMEM */
1021 }
1022 
1023 /*
1024  * Move the page from the page cache to the swap cache.
1025  */
1026 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1027 {
1028 	struct shmem_inode_info *info;
1029 	swp_entry_t *entry, swap;
1030 	struct address_space *mapping;
1031 	unsigned long index;
1032 	struct inode *inode;
1033 
1034 	BUG_ON(!PageLocked(page));
1035 	mapping = page->mapping;
1036 	index = page->index;
1037 	inode = mapping->host;
1038 	info = SHMEM_I(inode);
1039 	if (info->flags & VM_LOCKED)
1040 		goto redirty;
1041 	if (!total_swap_pages)
1042 		goto redirty;
1043 
1044 	/*
1045 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1046 	 * sync from ever calling shmem_writepage; but a stacking filesystem
1047 	 * may use the ->writepage of its underlying filesystem, in which case
1048 	 * tmpfs should write out to swap only in response to memory pressure,
1049 	 * and not for the writeback threads or sync.  However, in those cases,
1050 	 * we do still want to check if there's a redundant swappage to be
1051 	 * discarded.
1052 	 */
1053 	if (wbc->for_reclaim)
1054 		swap = get_swap_page();
1055 	else
1056 		swap.val = 0;
1057 
1058 	spin_lock(&info->lock);
1059 	if (index >= info->next_index) {
1060 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1061 		goto unlock;
1062 	}
1063 	entry = shmem_swp_entry(info, index, NULL);
1064 	if (entry->val) {
1065 		/*
1066 		 * The more uptodate page coming down from a stacked
1067 		 * writepage should replace our old swappage.
1068 		 */
1069 		free_swap_and_cache(*entry);
1070 		shmem_swp_set(info, entry, 0);
1071 	}
1072 	shmem_recalc_inode(inode);
1073 
1074 	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1075 		remove_from_page_cache(page);
1076 		shmem_swp_set(info, entry, swap.val);
1077 		shmem_swp_unmap(entry);
1078 		if (list_empty(&info->swaplist))
1079 			inode = igrab(inode);
1080 		else
1081 			inode = NULL;
1082 		spin_unlock(&info->lock);
1083 		swap_duplicate(swap);
1084 		BUG_ON(page_mapped(page));
1085 		page_cache_release(page);	/* pagecache ref */
1086 		swap_writepage(page, wbc);
1087 		if (inode) {
1088 			mutex_lock(&shmem_swaplist_mutex);
1089 			/* move instead of add in case we're racing */
1090 			list_move_tail(&info->swaplist, &shmem_swaplist);
1091 			mutex_unlock(&shmem_swaplist_mutex);
1092 			iput(inode);
1093 		}
1094 		return 0;
1095 	}
1096 
1097 	shmem_swp_unmap(entry);
1098 unlock:
1099 	spin_unlock(&info->lock);
1100 	/*
1101 	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1102 	 * clear SWAP_HAS_CACHE flag.
1103 	 */
1104 	swapcache_free(swap, NULL);
1105 redirty:
1106 	set_page_dirty(page);
1107 	if (wbc->for_reclaim)
1108 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1109 	unlock_page(page);
1110 	return 0;
1111 }
1112 
1113 #ifdef CONFIG_NUMA
1114 #ifdef CONFIG_TMPFS
1115 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1116 {
1117 	char buffer[64];
1118 
1119 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1120 		return;		/* show nothing */
1121 
1122 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1123 
1124 	seq_printf(seq, ",mpol=%s", buffer);
1125 }
1126 
1127 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1128 {
1129 	struct mempolicy *mpol = NULL;
1130 	if (sbinfo->mpol) {
1131 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1132 		mpol = sbinfo->mpol;
1133 		mpol_get(mpol);
1134 		spin_unlock(&sbinfo->stat_lock);
1135 	}
1136 	return mpol;
1137 }
1138 #endif /* CONFIG_TMPFS */
1139 
1140 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1141 			struct shmem_inode_info *info, unsigned long idx)
1142 {
1143 	struct mempolicy mpol, *spol;
1144 	struct vm_area_struct pvma;
1145 	struct page *page;
1146 
1147 	spol = mpol_cond_copy(&mpol,
1148 				mpol_shared_policy_lookup(&info->policy, idx));
1149 
1150 	/* Create a pseudo vma that just contains the policy */
1151 	pvma.vm_start = 0;
1152 	pvma.vm_pgoff = idx;
1153 	pvma.vm_ops = NULL;
1154 	pvma.vm_policy = spol;
1155 	page = swapin_readahead(entry, gfp, &pvma, 0);
1156 	return page;
1157 }
1158 
1159 static struct page *shmem_alloc_page(gfp_t gfp,
1160 			struct shmem_inode_info *info, unsigned long idx)
1161 {
1162 	struct vm_area_struct pvma;
1163 
1164 	/* Create a pseudo vma that just contains the policy */
1165 	pvma.vm_start = 0;
1166 	pvma.vm_pgoff = idx;
1167 	pvma.vm_ops = NULL;
1168 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1169 
1170 	/*
1171 	 * alloc_page_vma() will drop the shared policy reference
1172 	 */
1173 	return alloc_page_vma(gfp, &pvma, 0);
1174 }
1175 #else /* !CONFIG_NUMA */
1176 #ifdef CONFIG_TMPFS
1177 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1178 {
1179 }
1180 #endif /* CONFIG_TMPFS */
1181 
1182 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1183 			struct shmem_inode_info *info, unsigned long idx)
1184 {
1185 	return swapin_readahead(entry, gfp, NULL, 0);
1186 }
1187 
1188 static inline struct page *shmem_alloc_page(gfp_t gfp,
1189 			struct shmem_inode_info *info, unsigned long idx)
1190 {
1191 	return alloc_page(gfp);
1192 }
1193 #endif /* CONFIG_NUMA */
1194 
1195 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1196 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1197 {
1198 	return NULL;
1199 }
1200 #endif
1201 
1202 /*
1203  * shmem_getpage - either get the page from swap or allocate a new one
1204  *
1205  * If we allocate a new one we do not mark it dirty. That's up to the
1206  * vm. If we swap it in we mark it dirty since we also free the swap
1207  * entry since a page cannot live in both the swap and page cache
1208  */
1209 static int shmem_getpage(struct inode *inode, unsigned long idx,
1210 			struct page **pagep, enum sgp_type sgp, int *type)
1211 {
1212 	struct address_space *mapping = inode->i_mapping;
1213 	struct shmem_inode_info *info = SHMEM_I(inode);
1214 	struct shmem_sb_info *sbinfo;
1215 	struct page *filepage = *pagep;
1216 	struct page *swappage;
1217 	swp_entry_t *entry;
1218 	swp_entry_t swap;
1219 	gfp_t gfp;
1220 	int error;
1221 
1222 	if (idx >= SHMEM_MAX_INDEX)
1223 		return -EFBIG;
1224 
1225 	if (type)
1226 		*type = 0;
1227 
1228 	/*
1229 	 * Normally, filepage is NULL on entry, and either found
1230 	 * uptodate immediately, or allocated and zeroed, or read
1231 	 * in under swappage, which is then assigned to filepage.
1232 	 * But shmem_readpage (required for splice) passes in a locked
1233 	 * filepage, which may be found not uptodate by other callers
1234 	 * too, and may need to be copied from the swappage read in.
1235 	 */
1236 repeat:
1237 	if (!filepage)
1238 		filepage = find_lock_page(mapping, idx);
1239 	if (filepage && PageUptodate(filepage))
1240 		goto done;
1241 	error = 0;
1242 	gfp = mapping_gfp_mask(mapping);
1243 	if (!filepage) {
1244 		/*
1245 		 * Try to preload while we can wait, to not make a habit of
1246 		 * draining atomic reserves; but don't latch on to this cpu.
1247 		 */
1248 		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1249 		if (error)
1250 			goto failed;
1251 		radix_tree_preload_end();
1252 	}
1253 
1254 	spin_lock(&info->lock);
1255 	shmem_recalc_inode(inode);
1256 	entry = shmem_swp_alloc(info, idx, sgp);
1257 	if (IS_ERR(entry)) {
1258 		spin_unlock(&info->lock);
1259 		error = PTR_ERR(entry);
1260 		goto failed;
1261 	}
1262 	swap = *entry;
1263 
1264 	if (swap.val) {
1265 		/* Look it up and read it in.. */
1266 		swappage = lookup_swap_cache(swap);
1267 		if (!swappage) {
1268 			shmem_swp_unmap(entry);
1269 			/* here we actually do the io */
1270 			if (type && !(*type & VM_FAULT_MAJOR)) {
1271 				__count_vm_event(PGMAJFAULT);
1272 				*type |= VM_FAULT_MAJOR;
1273 			}
1274 			spin_unlock(&info->lock);
1275 			swappage = shmem_swapin(swap, gfp, info, idx);
1276 			if (!swappage) {
1277 				spin_lock(&info->lock);
1278 				entry = shmem_swp_alloc(info, idx, sgp);
1279 				if (IS_ERR(entry))
1280 					error = PTR_ERR(entry);
1281 				else {
1282 					if (entry->val == swap.val)
1283 						error = -ENOMEM;
1284 					shmem_swp_unmap(entry);
1285 				}
1286 				spin_unlock(&info->lock);
1287 				if (error)
1288 					goto failed;
1289 				goto repeat;
1290 			}
1291 			wait_on_page_locked(swappage);
1292 			page_cache_release(swappage);
1293 			goto repeat;
1294 		}
1295 
1296 		/* We have to do this with page locked to prevent races */
1297 		if (!trylock_page(swappage)) {
1298 			shmem_swp_unmap(entry);
1299 			spin_unlock(&info->lock);
1300 			wait_on_page_locked(swappage);
1301 			page_cache_release(swappage);
1302 			goto repeat;
1303 		}
1304 		if (PageWriteback(swappage)) {
1305 			shmem_swp_unmap(entry);
1306 			spin_unlock(&info->lock);
1307 			wait_on_page_writeback(swappage);
1308 			unlock_page(swappage);
1309 			page_cache_release(swappage);
1310 			goto repeat;
1311 		}
1312 		if (!PageUptodate(swappage)) {
1313 			shmem_swp_unmap(entry);
1314 			spin_unlock(&info->lock);
1315 			unlock_page(swappage);
1316 			page_cache_release(swappage);
1317 			error = -EIO;
1318 			goto failed;
1319 		}
1320 
1321 		if (filepage) {
1322 			shmem_swp_set(info, entry, 0);
1323 			shmem_swp_unmap(entry);
1324 			delete_from_swap_cache(swappage);
1325 			spin_unlock(&info->lock);
1326 			copy_highpage(filepage, swappage);
1327 			unlock_page(swappage);
1328 			page_cache_release(swappage);
1329 			flush_dcache_page(filepage);
1330 			SetPageUptodate(filepage);
1331 			set_page_dirty(filepage);
1332 			swap_free(swap);
1333 		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1334 					idx, GFP_NOWAIT))) {
1335 			info->flags |= SHMEM_PAGEIN;
1336 			shmem_swp_set(info, entry, 0);
1337 			shmem_swp_unmap(entry);
1338 			delete_from_swap_cache(swappage);
1339 			spin_unlock(&info->lock);
1340 			filepage = swappage;
1341 			set_page_dirty(filepage);
1342 			swap_free(swap);
1343 		} else {
1344 			shmem_swp_unmap(entry);
1345 			spin_unlock(&info->lock);
1346 			if (error == -ENOMEM) {
1347 				/*
1348 				 * reclaim from proper memory cgroup and
1349 				 * call memcg's OOM if needed.
1350 				 */
1351 				error = mem_cgroup_shmem_charge_fallback(
1352 								swappage,
1353 								current->mm,
1354 								gfp);
1355 				if (error) {
1356 					unlock_page(swappage);
1357 					page_cache_release(swappage);
1358 					goto failed;
1359 				}
1360 			}
1361 			unlock_page(swappage);
1362 			page_cache_release(swappage);
1363 			goto repeat;
1364 		}
1365 	} else if (sgp == SGP_READ && !filepage) {
1366 		shmem_swp_unmap(entry);
1367 		filepage = find_get_page(mapping, idx);
1368 		if (filepage &&
1369 		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1370 			spin_unlock(&info->lock);
1371 			wait_on_page_locked(filepage);
1372 			page_cache_release(filepage);
1373 			filepage = NULL;
1374 			goto repeat;
1375 		}
1376 		spin_unlock(&info->lock);
1377 	} else {
1378 		shmem_swp_unmap(entry);
1379 		sbinfo = SHMEM_SB(inode->i_sb);
1380 		if (sbinfo->max_blocks) {
1381 			spin_lock(&sbinfo->stat_lock);
1382 			if (sbinfo->free_blocks == 0 ||
1383 			    shmem_acct_block(info->flags)) {
1384 				spin_unlock(&sbinfo->stat_lock);
1385 				spin_unlock(&info->lock);
1386 				error = -ENOSPC;
1387 				goto failed;
1388 			}
1389 			sbinfo->free_blocks--;
1390 			inode->i_blocks += BLOCKS_PER_PAGE;
1391 			spin_unlock(&sbinfo->stat_lock);
1392 		} else if (shmem_acct_block(info->flags)) {
1393 			spin_unlock(&info->lock);
1394 			error = -ENOSPC;
1395 			goto failed;
1396 		}
1397 
1398 		if (!filepage) {
1399 			int ret;
1400 
1401 			spin_unlock(&info->lock);
1402 			filepage = shmem_alloc_page(gfp, info, idx);
1403 			if (!filepage) {
1404 				shmem_unacct_blocks(info->flags, 1);
1405 				shmem_free_blocks(inode, 1);
1406 				error = -ENOMEM;
1407 				goto failed;
1408 			}
1409 			SetPageSwapBacked(filepage);
1410 
1411 			/* Precharge page while we can wait, compensate after */
1412 			error = mem_cgroup_cache_charge(filepage, current->mm,
1413 					GFP_KERNEL);
1414 			if (error) {
1415 				page_cache_release(filepage);
1416 				shmem_unacct_blocks(info->flags, 1);
1417 				shmem_free_blocks(inode, 1);
1418 				filepage = NULL;
1419 				goto failed;
1420 			}
1421 
1422 			spin_lock(&info->lock);
1423 			entry = shmem_swp_alloc(info, idx, sgp);
1424 			if (IS_ERR(entry))
1425 				error = PTR_ERR(entry);
1426 			else {
1427 				swap = *entry;
1428 				shmem_swp_unmap(entry);
1429 			}
1430 			ret = error || swap.val;
1431 			if (ret)
1432 				mem_cgroup_uncharge_cache_page(filepage);
1433 			else
1434 				ret = add_to_page_cache_lru(filepage, mapping,
1435 						idx, GFP_NOWAIT);
1436 			/*
1437 			 * At add_to_page_cache_lru() failure, uncharge will
1438 			 * be done automatically.
1439 			 */
1440 			if (ret) {
1441 				spin_unlock(&info->lock);
1442 				page_cache_release(filepage);
1443 				shmem_unacct_blocks(info->flags, 1);
1444 				shmem_free_blocks(inode, 1);
1445 				filepage = NULL;
1446 				if (error)
1447 					goto failed;
1448 				goto repeat;
1449 			}
1450 			info->flags |= SHMEM_PAGEIN;
1451 		}
1452 
1453 		info->alloced++;
1454 		spin_unlock(&info->lock);
1455 		clear_highpage(filepage);
1456 		flush_dcache_page(filepage);
1457 		SetPageUptodate(filepage);
1458 		if (sgp == SGP_DIRTY)
1459 			set_page_dirty(filepage);
1460 	}
1461 done:
1462 	*pagep = filepage;
1463 	return 0;
1464 
1465 failed:
1466 	if (*pagep != filepage) {
1467 		unlock_page(filepage);
1468 		page_cache_release(filepage);
1469 	}
1470 	return error;
1471 }
1472 
1473 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1474 {
1475 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1476 	int error;
1477 	int ret;
1478 
1479 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1480 		return VM_FAULT_SIGBUS;
1481 
1482 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1483 	if (error)
1484 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1485 
1486 	return ret | VM_FAULT_LOCKED;
1487 }
1488 
1489 #ifdef CONFIG_NUMA
1490 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1491 {
1492 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1493 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1494 }
1495 
1496 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1497 					  unsigned long addr)
1498 {
1499 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1500 	unsigned long idx;
1501 
1502 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1503 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1504 }
1505 #endif
1506 
1507 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1508 {
1509 	struct inode *inode = file->f_path.dentry->d_inode;
1510 	struct shmem_inode_info *info = SHMEM_I(inode);
1511 	int retval = -ENOMEM;
1512 
1513 	spin_lock(&info->lock);
1514 	if (lock && !(info->flags & VM_LOCKED)) {
1515 		if (!user_shm_lock(inode->i_size, user))
1516 			goto out_nomem;
1517 		info->flags |= VM_LOCKED;
1518 		mapping_set_unevictable(file->f_mapping);
1519 	}
1520 	if (!lock && (info->flags & VM_LOCKED) && user) {
1521 		user_shm_unlock(inode->i_size, user);
1522 		info->flags &= ~VM_LOCKED;
1523 		mapping_clear_unevictable(file->f_mapping);
1524 		scan_mapping_unevictable_pages(file->f_mapping);
1525 	}
1526 	retval = 0;
1527 
1528 out_nomem:
1529 	spin_unlock(&info->lock);
1530 	return retval;
1531 }
1532 
1533 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1534 {
1535 	file_accessed(file);
1536 	vma->vm_ops = &shmem_vm_ops;
1537 	vma->vm_flags |= VM_CAN_NONLINEAR;
1538 	return 0;
1539 }
1540 
1541 static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1542 					dev_t dev, unsigned long flags)
1543 {
1544 	struct inode *inode;
1545 	struct shmem_inode_info *info;
1546 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1547 
1548 	if (shmem_reserve_inode(sb))
1549 		return NULL;
1550 
1551 	inode = new_inode(sb);
1552 	if (inode) {
1553 		inode->i_mode = mode;
1554 		inode->i_uid = current_fsuid();
1555 		inode->i_gid = current_fsgid();
1556 		inode->i_blocks = 0;
1557 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1558 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1559 		inode->i_generation = get_seconds();
1560 		info = SHMEM_I(inode);
1561 		memset(info, 0, (char *)inode - (char *)info);
1562 		spin_lock_init(&info->lock);
1563 		info->flags = flags & VM_NORESERVE;
1564 		INIT_LIST_HEAD(&info->swaplist);
1565 		cache_no_acl(inode);
1566 
1567 		switch (mode & S_IFMT) {
1568 		default:
1569 			inode->i_op = &shmem_special_inode_operations;
1570 			init_special_inode(inode, mode, dev);
1571 			break;
1572 		case S_IFREG:
1573 			inode->i_mapping->a_ops = &shmem_aops;
1574 			inode->i_op = &shmem_inode_operations;
1575 			inode->i_fop = &shmem_file_operations;
1576 			mpol_shared_policy_init(&info->policy,
1577 						 shmem_get_sbmpol(sbinfo));
1578 			break;
1579 		case S_IFDIR:
1580 			inc_nlink(inode);
1581 			/* Some things misbehave if size == 0 on a directory */
1582 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1583 			inode->i_op = &shmem_dir_inode_operations;
1584 			inode->i_fop = &simple_dir_operations;
1585 			break;
1586 		case S_IFLNK:
1587 			/*
1588 			 * Must not load anything in the rbtree,
1589 			 * mpol_free_shared_policy will not be called.
1590 			 */
1591 			mpol_shared_policy_init(&info->policy, NULL);
1592 			break;
1593 		}
1594 	} else
1595 		shmem_free_inode(sb);
1596 	return inode;
1597 }
1598 
1599 #ifdef CONFIG_TMPFS
1600 static const struct inode_operations shmem_symlink_inode_operations;
1601 static const struct inode_operations shmem_symlink_inline_operations;
1602 
1603 /*
1604  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1605  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1606  * below the loop driver, in the generic fashion that many filesystems support.
1607  */
1608 static int shmem_readpage(struct file *file, struct page *page)
1609 {
1610 	struct inode *inode = page->mapping->host;
1611 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1612 	unlock_page(page);
1613 	return error;
1614 }
1615 
1616 static int
1617 shmem_write_begin(struct file *file, struct address_space *mapping,
1618 			loff_t pos, unsigned len, unsigned flags,
1619 			struct page **pagep, void **fsdata)
1620 {
1621 	struct inode *inode = mapping->host;
1622 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1623 	*pagep = NULL;
1624 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1625 }
1626 
1627 static int
1628 shmem_write_end(struct file *file, struct address_space *mapping,
1629 			loff_t pos, unsigned len, unsigned copied,
1630 			struct page *page, void *fsdata)
1631 {
1632 	struct inode *inode = mapping->host;
1633 
1634 	if (pos + copied > inode->i_size)
1635 		i_size_write(inode, pos + copied);
1636 
1637 	set_page_dirty(page);
1638 	unlock_page(page);
1639 	page_cache_release(page);
1640 
1641 	return copied;
1642 }
1643 
1644 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1645 {
1646 	struct inode *inode = filp->f_path.dentry->d_inode;
1647 	struct address_space *mapping = inode->i_mapping;
1648 	unsigned long index, offset;
1649 	enum sgp_type sgp = SGP_READ;
1650 
1651 	/*
1652 	 * Might this read be for a stacking filesystem?  Then when reading
1653 	 * holes of a sparse file, we actually need to allocate those pages,
1654 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1655 	 */
1656 	if (segment_eq(get_fs(), KERNEL_DS))
1657 		sgp = SGP_DIRTY;
1658 
1659 	index = *ppos >> PAGE_CACHE_SHIFT;
1660 	offset = *ppos & ~PAGE_CACHE_MASK;
1661 
1662 	for (;;) {
1663 		struct page *page = NULL;
1664 		unsigned long end_index, nr, ret;
1665 		loff_t i_size = i_size_read(inode);
1666 
1667 		end_index = i_size >> PAGE_CACHE_SHIFT;
1668 		if (index > end_index)
1669 			break;
1670 		if (index == end_index) {
1671 			nr = i_size & ~PAGE_CACHE_MASK;
1672 			if (nr <= offset)
1673 				break;
1674 		}
1675 
1676 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1677 		if (desc->error) {
1678 			if (desc->error == -EINVAL)
1679 				desc->error = 0;
1680 			break;
1681 		}
1682 		if (page)
1683 			unlock_page(page);
1684 
1685 		/*
1686 		 * We must evaluate after, since reads (unlike writes)
1687 		 * are called without i_mutex protection against truncate
1688 		 */
1689 		nr = PAGE_CACHE_SIZE;
1690 		i_size = i_size_read(inode);
1691 		end_index = i_size >> PAGE_CACHE_SHIFT;
1692 		if (index == end_index) {
1693 			nr = i_size & ~PAGE_CACHE_MASK;
1694 			if (nr <= offset) {
1695 				if (page)
1696 					page_cache_release(page);
1697 				break;
1698 			}
1699 		}
1700 		nr -= offset;
1701 
1702 		if (page) {
1703 			/*
1704 			 * If users can be writing to this page using arbitrary
1705 			 * virtual addresses, take care about potential aliasing
1706 			 * before reading the page on the kernel side.
1707 			 */
1708 			if (mapping_writably_mapped(mapping))
1709 				flush_dcache_page(page);
1710 			/*
1711 			 * Mark the page accessed if we read the beginning.
1712 			 */
1713 			if (!offset)
1714 				mark_page_accessed(page);
1715 		} else {
1716 			page = ZERO_PAGE(0);
1717 			page_cache_get(page);
1718 		}
1719 
1720 		/*
1721 		 * Ok, we have the page, and it's up-to-date, so
1722 		 * now we can copy it to user space...
1723 		 *
1724 		 * The actor routine returns how many bytes were actually used..
1725 		 * NOTE! This may not be the same as how much of a user buffer
1726 		 * we filled up (we may be padding etc), so we can only update
1727 		 * "pos" here (the actor routine has to update the user buffer
1728 		 * pointers and the remaining count).
1729 		 */
1730 		ret = actor(desc, page, offset, nr);
1731 		offset += ret;
1732 		index += offset >> PAGE_CACHE_SHIFT;
1733 		offset &= ~PAGE_CACHE_MASK;
1734 
1735 		page_cache_release(page);
1736 		if (ret != nr || !desc->count)
1737 			break;
1738 
1739 		cond_resched();
1740 	}
1741 
1742 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1743 	file_accessed(filp);
1744 }
1745 
1746 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1747 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1748 {
1749 	struct file *filp = iocb->ki_filp;
1750 	ssize_t retval;
1751 	unsigned long seg;
1752 	size_t count;
1753 	loff_t *ppos = &iocb->ki_pos;
1754 
1755 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1756 	if (retval)
1757 		return retval;
1758 
1759 	for (seg = 0; seg < nr_segs; seg++) {
1760 		read_descriptor_t desc;
1761 
1762 		desc.written = 0;
1763 		desc.arg.buf = iov[seg].iov_base;
1764 		desc.count = iov[seg].iov_len;
1765 		if (desc.count == 0)
1766 			continue;
1767 		desc.error = 0;
1768 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1769 		retval += desc.written;
1770 		if (desc.error) {
1771 			retval = retval ?: desc.error;
1772 			break;
1773 		}
1774 		if (desc.count > 0)
1775 			break;
1776 	}
1777 	return retval;
1778 }
1779 
1780 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1781 {
1782 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1783 
1784 	buf->f_type = TMPFS_MAGIC;
1785 	buf->f_bsize = PAGE_CACHE_SIZE;
1786 	buf->f_namelen = NAME_MAX;
1787 	spin_lock(&sbinfo->stat_lock);
1788 	if (sbinfo->max_blocks) {
1789 		buf->f_blocks = sbinfo->max_blocks;
1790 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1791 	}
1792 	if (sbinfo->max_inodes) {
1793 		buf->f_files = sbinfo->max_inodes;
1794 		buf->f_ffree = sbinfo->free_inodes;
1795 	}
1796 	/* else leave those fields 0 like simple_statfs */
1797 	spin_unlock(&sbinfo->stat_lock);
1798 	return 0;
1799 }
1800 
1801 /*
1802  * File creation. Allocate an inode, and we're done..
1803  */
1804 static int
1805 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1806 {
1807 	struct inode *inode;
1808 	int error = -ENOSPC;
1809 
1810 	inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1811 	if (inode) {
1812 		error = security_inode_init_security(inode, dir, NULL, NULL,
1813 						     NULL);
1814 		if (error) {
1815 			if (error != -EOPNOTSUPP) {
1816 				iput(inode);
1817 				return error;
1818 			}
1819 		}
1820 		error = shmem_acl_init(inode, dir);
1821 		if (error) {
1822 			iput(inode);
1823 			return error;
1824 		}
1825 		if (dir->i_mode & S_ISGID) {
1826 			inode->i_gid = dir->i_gid;
1827 			if (S_ISDIR(mode))
1828 				inode->i_mode |= S_ISGID;
1829 		}
1830 		dir->i_size += BOGO_DIRENT_SIZE;
1831 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1832 		d_instantiate(dentry, inode);
1833 		dget(dentry); /* Extra count - pin the dentry in core */
1834 	}
1835 	return error;
1836 }
1837 
1838 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1839 {
1840 	int error;
1841 
1842 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1843 		return error;
1844 	inc_nlink(dir);
1845 	return 0;
1846 }
1847 
1848 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1849 		struct nameidata *nd)
1850 {
1851 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1852 }
1853 
1854 /*
1855  * Link a file..
1856  */
1857 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1858 {
1859 	struct inode *inode = old_dentry->d_inode;
1860 	int ret;
1861 
1862 	/*
1863 	 * No ordinary (disk based) filesystem counts links as inodes;
1864 	 * but each new link needs a new dentry, pinning lowmem, and
1865 	 * tmpfs dentries cannot be pruned until they are unlinked.
1866 	 */
1867 	ret = shmem_reserve_inode(inode->i_sb);
1868 	if (ret)
1869 		goto out;
1870 
1871 	dir->i_size += BOGO_DIRENT_SIZE;
1872 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1873 	inc_nlink(inode);
1874 	atomic_inc(&inode->i_count);	/* New dentry reference */
1875 	dget(dentry);		/* Extra pinning count for the created dentry */
1876 	d_instantiate(dentry, inode);
1877 out:
1878 	return ret;
1879 }
1880 
1881 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1882 {
1883 	struct inode *inode = dentry->d_inode;
1884 
1885 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1886 		shmem_free_inode(inode->i_sb);
1887 
1888 	dir->i_size -= BOGO_DIRENT_SIZE;
1889 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1890 	drop_nlink(inode);
1891 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1892 	return 0;
1893 }
1894 
1895 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1896 {
1897 	if (!simple_empty(dentry))
1898 		return -ENOTEMPTY;
1899 
1900 	drop_nlink(dentry->d_inode);
1901 	drop_nlink(dir);
1902 	return shmem_unlink(dir, dentry);
1903 }
1904 
1905 /*
1906  * The VFS layer already does all the dentry stuff for rename,
1907  * we just have to decrement the usage count for the target if
1908  * it exists so that the VFS layer correctly free's it when it
1909  * gets overwritten.
1910  */
1911 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1912 {
1913 	struct inode *inode = old_dentry->d_inode;
1914 	int they_are_dirs = S_ISDIR(inode->i_mode);
1915 
1916 	if (!simple_empty(new_dentry))
1917 		return -ENOTEMPTY;
1918 
1919 	if (new_dentry->d_inode) {
1920 		(void) shmem_unlink(new_dir, new_dentry);
1921 		if (they_are_dirs)
1922 			drop_nlink(old_dir);
1923 	} else if (they_are_dirs) {
1924 		drop_nlink(old_dir);
1925 		inc_nlink(new_dir);
1926 	}
1927 
1928 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1929 	new_dir->i_size += BOGO_DIRENT_SIZE;
1930 	old_dir->i_ctime = old_dir->i_mtime =
1931 	new_dir->i_ctime = new_dir->i_mtime =
1932 	inode->i_ctime = CURRENT_TIME;
1933 	return 0;
1934 }
1935 
1936 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1937 {
1938 	int error;
1939 	int len;
1940 	struct inode *inode;
1941 	struct page *page = NULL;
1942 	char *kaddr;
1943 	struct shmem_inode_info *info;
1944 
1945 	len = strlen(symname) + 1;
1946 	if (len > PAGE_CACHE_SIZE)
1947 		return -ENAMETOOLONG;
1948 
1949 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1950 	if (!inode)
1951 		return -ENOSPC;
1952 
1953 	error = security_inode_init_security(inode, dir, NULL, NULL,
1954 					     NULL);
1955 	if (error) {
1956 		if (error != -EOPNOTSUPP) {
1957 			iput(inode);
1958 			return error;
1959 		}
1960 		error = 0;
1961 	}
1962 
1963 	info = SHMEM_I(inode);
1964 	inode->i_size = len-1;
1965 	if (len <= (char *)inode - (char *)info) {
1966 		/* do it inline */
1967 		memcpy(info, symname, len);
1968 		inode->i_op = &shmem_symlink_inline_operations;
1969 	} else {
1970 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1971 		if (error) {
1972 			iput(inode);
1973 			return error;
1974 		}
1975 		inode->i_mapping->a_ops = &shmem_aops;
1976 		inode->i_op = &shmem_symlink_inode_operations;
1977 		kaddr = kmap_atomic(page, KM_USER0);
1978 		memcpy(kaddr, symname, len);
1979 		kunmap_atomic(kaddr, KM_USER0);
1980 		set_page_dirty(page);
1981 		unlock_page(page);
1982 		page_cache_release(page);
1983 	}
1984 	if (dir->i_mode & S_ISGID)
1985 		inode->i_gid = dir->i_gid;
1986 	dir->i_size += BOGO_DIRENT_SIZE;
1987 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1988 	d_instantiate(dentry, inode);
1989 	dget(dentry);
1990 	return 0;
1991 }
1992 
1993 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1994 {
1995 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1996 	return NULL;
1997 }
1998 
1999 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2000 {
2001 	struct page *page = NULL;
2002 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2003 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2004 	if (page)
2005 		unlock_page(page);
2006 	return page;
2007 }
2008 
2009 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2010 {
2011 	if (!IS_ERR(nd_get_link(nd))) {
2012 		struct page *page = cookie;
2013 		kunmap(page);
2014 		mark_page_accessed(page);
2015 		page_cache_release(page);
2016 	}
2017 }
2018 
2019 static const struct inode_operations shmem_symlink_inline_operations = {
2020 	.readlink	= generic_readlink,
2021 	.follow_link	= shmem_follow_link_inline,
2022 };
2023 
2024 static const struct inode_operations shmem_symlink_inode_operations = {
2025 	.truncate	= shmem_truncate,
2026 	.readlink	= generic_readlink,
2027 	.follow_link	= shmem_follow_link,
2028 	.put_link	= shmem_put_link,
2029 };
2030 
2031 #ifdef CONFIG_TMPFS_POSIX_ACL
2032 /*
2033  * Superblocks without xattr inode operations will get security.* xattr
2034  * support from the VFS "for free". As soon as we have any other xattrs
2035  * like ACLs, we also need to implement the security.* handlers at
2036  * filesystem level, though.
2037  */
2038 
2039 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2040 					size_t list_len, const char *name,
2041 					size_t name_len)
2042 {
2043 	return security_inode_listsecurity(inode, list, list_len);
2044 }
2045 
2046 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2047 				    void *buffer, size_t size)
2048 {
2049 	if (strcmp(name, "") == 0)
2050 		return -EINVAL;
2051 	return xattr_getsecurity(inode, name, buffer, size);
2052 }
2053 
2054 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2055 				    const void *value, size_t size, int flags)
2056 {
2057 	if (strcmp(name, "") == 0)
2058 		return -EINVAL;
2059 	return security_inode_setsecurity(inode, name, value, size, flags);
2060 }
2061 
2062 static struct xattr_handler shmem_xattr_security_handler = {
2063 	.prefix = XATTR_SECURITY_PREFIX,
2064 	.list   = shmem_xattr_security_list,
2065 	.get    = shmem_xattr_security_get,
2066 	.set    = shmem_xattr_security_set,
2067 };
2068 
2069 static struct xattr_handler *shmem_xattr_handlers[] = {
2070 	&shmem_xattr_acl_access_handler,
2071 	&shmem_xattr_acl_default_handler,
2072 	&shmem_xattr_security_handler,
2073 	NULL
2074 };
2075 #endif
2076 
2077 static struct dentry *shmem_get_parent(struct dentry *child)
2078 {
2079 	return ERR_PTR(-ESTALE);
2080 }
2081 
2082 static int shmem_match(struct inode *ino, void *vfh)
2083 {
2084 	__u32 *fh = vfh;
2085 	__u64 inum = fh[2];
2086 	inum = (inum << 32) | fh[1];
2087 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2088 }
2089 
2090 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2091 		struct fid *fid, int fh_len, int fh_type)
2092 {
2093 	struct inode *inode;
2094 	struct dentry *dentry = NULL;
2095 	u64 inum = fid->raw[2];
2096 	inum = (inum << 32) | fid->raw[1];
2097 
2098 	if (fh_len < 3)
2099 		return NULL;
2100 
2101 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2102 			shmem_match, fid->raw);
2103 	if (inode) {
2104 		dentry = d_find_alias(inode);
2105 		iput(inode);
2106 	}
2107 
2108 	return dentry;
2109 }
2110 
2111 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2112 				int connectable)
2113 {
2114 	struct inode *inode = dentry->d_inode;
2115 
2116 	if (*len < 3)
2117 		return 255;
2118 
2119 	if (hlist_unhashed(&inode->i_hash)) {
2120 		/* Unfortunately insert_inode_hash is not idempotent,
2121 		 * so as we hash inodes here rather than at creation
2122 		 * time, we need a lock to ensure we only try
2123 		 * to do it once
2124 		 */
2125 		static DEFINE_SPINLOCK(lock);
2126 		spin_lock(&lock);
2127 		if (hlist_unhashed(&inode->i_hash))
2128 			__insert_inode_hash(inode,
2129 					    inode->i_ino + inode->i_generation);
2130 		spin_unlock(&lock);
2131 	}
2132 
2133 	fh[0] = inode->i_generation;
2134 	fh[1] = inode->i_ino;
2135 	fh[2] = ((__u64)inode->i_ino) >> 32;
2136 
2137 	*len = 3;
2138 	return 1;
2139 }
2140 
2141 static const struct export_operations shmem_export_ops = {
2142 	.get_parent     = shmem_get_parent,
2143 	.encode_fh      = shmem_encode_fh,
2144 	.fh_to_dentry	= shmem_fh_to_dentry,
2145 };
2146 
2147 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2148 			       bool remount)
2149 {
2150 	char *this_char, *value, *rest;
2151 
2152 	while (options != NULL) {
2153 		this_char = options;
2154 		for (;;) {
2155 			/*
2156 			 * NUL-terminate this option: unfortunately,
2157 			 * mount options form a comma-separated list,
2158 			 * but mpol's nodelist may also contain commas.
2159 			 */
2160 			options = strchr(options, ',');
2161 			if (options == NULL)
2162 				break;
2163 			options++;
2164 			if (!isdigit(*options)) {
2165 				options[-1] = '\0';
2166 				break;
2167 			}
2168 		}
2169 		if (!*this_char)
2170 			continue;
2171 		if ((value = strchr(this_char,'=')) != NULL) {
2172 			*value++ = 0;
2173 		} else {
2174 			printk(KERN_ERR
2175 			    "tmpfs: No value for mount option '%s'\n",
2176 			    this_char);
2177 			return 1;
2178 		}
2179 
2180 		if (!strcmp(this_char,"size")) {
2181 			unsigned long long size;
2182 			size = memparse(value,&rest);
2183 			if (*rest == '%') {
2184 				size <<= PAGE_SHIFT;
2185 				size *= totalram_pages;
2186 				do_div(size, 100);
2187 				rest++;
2188 			}
2189 			if (*rest)
2190 				goto bad_val;
2191 			sbinfo->max_blocks =
2192 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2193 		} else if (!strcmp(this_char,"nr_blocks")) {
2194 			sbinfo->max_blocks = memparse(value, &rest);
2195 			if (*rest)
2196 				goto bad_val;
2197 		} else if (!strcmp(this_char,"nr_inodes")) {
2198 			sbinfo->max_inodes = memparse(value, &rest);
2199 			if (*rest)
2200 				goto bad_val;
2201 		} else if (!strcmp(this_char,"mode")) {
2202 			if (remount)
2203 				continue;
2204 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2205 			if (*rest)
2206 				goto bad_val;
2207 		} else if (!strcmp(this_char,"uid")) {
2208 			if (remount)
2209 				continue;
2210 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2211 			if (*rest)
2212 				goto bad_val;
2213 		} else if (!strcmp(this_char,"gid")) {
2214 			if (remount)
2215 				continue;
2216 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2217 			if (*rest)
2218 				goto bad_val;
2219 		} else if (!strcmp(this_char,"mpol")) {
2220 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2221 				goto bad_val;
2222 		} else {
2223 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2224 			       this_char);
2225 			return 1;
2226 		}
2227 	}
2228 	return 0;
2229 
2230 bad_val:
2231 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2232 	       value, this_char);
2233 	return 1;
2234 
2235 }
2236 
2237 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2238 {
2239 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2240 	struct shmem_sb_info config = *sbinfo;
2241 	unsigned long blocks;
2242 	unsigned long inodes;
2243 	int error = -EINVAL;
2244 
2245 	if (shmem_parse_options(data, &config, true))
2246 		return error;
2247 
2248 	spin_lock(&sbinfo->stat_lock);
2249 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2250 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2251 	if (config.max_blocks < blocks)
2252 		goto out;
2253 	if (config.max_inodes < inodes)
2254 		goto out;
2255 	/*
2256 	 * Those tests also disallow limited->unlimited while any are in
2257 	 * use, so i_blocks will always be zero when max_blocks is zero;
2258 	 * but we must separately disallow unlimited->limited, because
2259 	 * in that case we have no record of how much is already in use.
2260 	 */
2261 	if (config.max_blocks && !sbinfo->max_blocks)
2262 		goto out;
2263 	if (config.max_inodes && !sbinfo->max_inodes)
2264 		goto out;
2265 
2266 	error = 0;
2267 	sbinfo->max_blocks  = config.max_blocks;
2268 	sbinfo->free_blocks = config.max_blocks - blocks;
2269 	sbinfo->max_inodes  = config.max_inodes;
2270 	sbinfo->free_inodes = config.max_inodes - inodes;
2271 
2272 	mpol_put(sbinfo->mpol);
2273 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2274 out:
2275 	spin_unlock(&sbinfo->stat_lock);
2276 	return error;
2277 }
2278 
2279 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2280 {
2281 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2282 
2283 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2284 		seq_printf(seq, ",size=%luk",
2285 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2286 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2287 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2288 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2289 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2290 	if (sbinfo->uid != 0)
2291 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2292 	if (sbinfo->gid != 0)
2293 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2294 	shmem_show_mpol(seq, sbinfo->mpol);
2295 	return 0;
2296 }
2297 #endif /* CONFIG_TMPFS */
2298 
2299 static void shmem_put_super(struct super_block *sb)
2300 {
2301 	kfree(sb->s_fs_info);
2302 	sb->s_fs_info = NULL;
2303 }
2304 
2305 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2306 {
2307 	struct inode *inode;
2308 	struct dentry *root;
2309 	struct shmem_sb_info *sbinfo;
2310 	int err = -ENOMEM;
2311 
2312 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2313 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2314 				L1_CACHE_BYTES), GFP_KERNEL);
2315 	if (!sbinfo)
2316 		return -ENOMEM;
2317 
2318 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2319 	sbinfo->uid = current_fsuid();
2320 	sbinfo->gid = current_fsgid();
2321 	sb->s_fs_info = sbinfo;
2322 
2323 #ifdef CONFIG_TMPFS
2324 	/*
2325 	 * Per default we only allow half of the physical ram per
2326 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2327 	 * but the internal instance is left unlimited.
2328 	 */
2329 	if (!(sb->s_flags & MS_NOUSER)) {
2330 		sbinfo->max_blocks = shmem_default_max_blocks();
2331 		sbinfo->max_inodes = shmem_default_max_inodes();
2332 		if (shmem_parse_options(data, sbinfo, false)) {
2333 			err = -EINVAL;
2334 			goto failed;
2335 		}
2336 	}
2337 	sb->s_export_op = &shmem_export_ops;
2338 #else
2339 	sb->s_flags |= MS_NOUSER;
2340 #endif
2341 
2342 	spin_lock_init(&sbinfo->stat_lock);
2343 	sbinfo->free_blocks = sbinfo->max_blocks;
2344 	sbinfo->free_inodes = sbinfo->max_inodes;
2345 
2346 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2347 	sb->s_blocksize = PAGE_CACHE_SIZE;
2348 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2349 	sb->s_magic = TMPFS_MAGIC;
2350 	sb->s_op = &shmem_ops;
2351 	sb->s_time_gran = 1;
2352 #ifdef CONFIG_TMPFS_POSIX_ACL
2353 	sb->s_xattr = shmem_xattr_handlers;
2354 	sb->s_flags |= MS_POSIXACL;
2355 #endif
2356 
2357 	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2358 	if (!inode)
2359 		goto failed;
2360 	inode->i_uid = sbinfo->uid;
2361 	inode->i_gid = sbinfo->gid;
2362 	root = d_alloc_root(inode);
2363 	if (!root)
2364 		goto failed_iput;
2365 	sb->s_root = root;
2366 	return 0;
2367 
2368 failed_iput:
2369 	iput(inode);
2370 failed:
2371 	shmem_put_super(sb);
2372 	return err;
2373 }
2374 
2375 static struct kmem_cache *shmem_inode_cachep;
2376 
2377 static struct inode *shmem_alloc_inode(struct super_block *sb)
2378 {
2379 	struct shmem_inode_info *p;
2380 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2381 	if (!p)
2382 		return NULL;
2383 	return &p->vfs_inode;
2384 }
2385 
2386 static void shmem_destroy_inode(struct inode *inode)
2387 {
2388 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2389 		/* only struct inode is valid if it's an inline symlink */
2390 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2391 	}
2392 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2393 }
2394 
2395 static void init_once(void *foo)
2396 {
2397 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2398 
2399 	inode_init_once(&p->vfs_inode);
2400 }
2401 
2402 static int init_inodecache(void)
2403 {
2404 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2405 				sizeof(struct shmem_inode_info),
2406 				0, SLAB_PANIC, init_once);
2407 	return 0;
2408 }
2409 
2410 static void destroy_inodecache(void)
2411 {
2412 	kmem_cache_destroy(shmem_inode_cachep);
2413 }
2414 
2415 static const struct address_space_operations shmem_aops = {
2416 	.writepage	= shmem_writepage,
2417 	.set_page_dirty	= __set_page_dirty_no_writeback,
2418 #ifdef CONFIG_TMPFS
2419 	.readpage	= shmem_readpage,
2420 	.write_begin	= shmem_write_begin,
2421 	.write_end	= shmem_write_end,
2422 #endif
2423 	.migratepage	= migrate_page,
2424 	.error_remove_page = generic_error_remove_page,
2425 };
2426 
2427 static const struct file_operations shmem_file_operations = {
2428 	.mmap		= shmem_mmap,
2429 #ifdef CONFIG_TMPFS
2430 	.llseek		= generic_file_llseek,
2431 	.read		= do_sync_read,
2432 	.write		= do_sync_write,
2433 	.aio_read	= shmem_file_aio_read,
2434 	.aio_write	= generic_file_aio_write,
2435 	.fsync		= simple_sync_file,
2436 	.splice_read	= generic_file_splice_read,
2437 	.splice_write	= generic_file_splice_write,
2438 #endif
2439 };
2440 
2441 static const struct inode_operations shmem_inode_operations = {
2442 	.truncate	= shmem_truncate,
2443 	.setattr	= shmem_notify_change,
2444 	.truncate_range	= shmem_truncate_range,
2445 #ifdef CONFIG_TMPFS_POSIX_ACL
2446 	.setxattr	= generic_setxattr,
2447 	.getxattr	= generic_getxattr,
2448 	.listxattr	= generic_listxattr,
2449 	.removexattr	= generic_removexattr,
2450 	.check_acl	= shmem_check_acl,
2451 #endif
2452 
2453 };
2454 
2455 static const struct inode_operations shmem_dir_inode_operations = {
2456 #ifdef CONFIG_TMPFS
2457 	.create		= shmem_create,
2458 	.lookup		= simple_lookup,
2459 	.link		= shmem_link,
2460 	.unlink		= shmem_unlink,
2461 	.symlink	= shmem_symlink,
2462 	.mkdir		= shmem_mkdir,
2463 	.rmdir		= shmem_rmdir,
2464 	.mknod		= shmem_mknod,
2465 	.rename		= shmem_rename,
2466 #endif
2467 #ifdef CONFIG_TMPFS_POSIX_ACL
2468 	.setattr	= shmem_notify_change,
2469 	.setxattr	= generic_setxattr,
2470 	.getxattr	= generic_getxattr,
2471 	.listxattr	= generic_listxattr,
2472 	.removexattr	= generic_removexattr,
2473 	.check_acl	= shmem_check_acl,
2474 #endif
2475 };
2476 
2477 static const struct inode_operations shmem_special_inode_operations = {
2478 #ifdef CONFIG_TMPFS_POSIX_ACL
2479 	.setattr	= shmem_notify_change,
2480 	.setxattr	= generic_setxattr,
2481 	.getxattr	= generic_getxattr,
2482 	.listxattr	= generic_listxattr,
2483 	.removexattr	= generic_removexattr,
2484 	.check_acl	= shmem_check_acl,
2485 #endif
2486 };
2487 
2488 static const struct super_operations shmem_ops = {
2489 	.alloc_inode	= shmem_alloc_inode,
2490 	.destroy_inode	= shmem_destroy_inode,
2491 #ifdef CONFIG_TMPFS
2492 	.statfs		= shmem_statfs,
2493 	.remount_fs	= shmem_remount_fs,
2494 	.show_options	= shmem_show_options,
2495 #endif
2496 	.delete_inode	= shmem_delete_inode,
2497 	.drop_inode	= generic_delete_inode,
2498 	.put_super	= shmem_put_super,
2499 };
2500 
2501 static const struct vm_operations_struct shmem_vm_ops = {
2502 	.fault		= shmem_fault,
2503 #ifdef CONFIG_NUMA
2504 	.set_policy     = shmem_set_policy,
2505 	.get_policy     = shmem_get_policy,
2506 #endif
2507 };
2508 
2509 
2510 static int shmem_get_sb(struct file_system_type *fs_type,
2511 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2512 {
2513 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2514 }
2515 
2516 static struct file_system_type tmpfs_fs_type = {
2517 	.owner		= THIS_MODULE,
2518 	.name		= "tmpfs",
2519 	.get_sb		= shmem_get_sb,
2520 	.kill_sb	= kill_litter_super,
2521 };
2522 
2523 int __init init_tmpfs(void)
2524 {
2525 	int error;
2526 
2527 	error = bdi_init(&shmem_backing_dev_info);
2528 	if (error)
2529 		goto out4;
2530 
2531 	error = init_inodecache();
2532 	if (error)
2533 		goto out3;
2534 
2535 	error = register_filesystem(&tmpfs_fs_type);
2536 	if (error) {
2537 		printk(KERN_ERR "Could not register tmpfs\n");
2538 		goto out2;
2539 	}
2540 
2541 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2542 				tmpfs_fs_type.name, NULL);
2543 	if (IS_ERR(shm_mnt)) {
2544 		error = PTR_ERR(shm_mnt);
2545 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2546 		goto out1;
2547 	}
2548 	return 0;
2549 
2550 out1:
2551 	unregister_filesystem(&tmpfs_fs_type);
2552 out2:
2553 	destroy_inodecache();
2554 out3:
2555 	bdi_destroy(&shmem_backing_dev_info);
2556 out4:
2557 	shm_mnt = ERR_PTR(error);
2558 	return error;
2559 }
2560 
2561 #else /* !CONFIG_SHMEM */
2562 
2563 /*
2564  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2565  *
2566  * This is intended for small system where the benefits of the full
2567  * shmem code (swap-backed and resource-limited) are outweighed by
2568  * their complexity. On systems without swap this code should be
2569  * effectively equivalent, but much lighter weight.
2570  */
2571 
2572 #include <linux/ramfs.h>
2573 
2574 static struct file_system_type tmpfs_fs_type = {
2575 	.name		= "tmpfs",
2576 	.get_sb		= ramfs_get_sb,
2577 	.kill_sb	= kill_litter_super,
2578 };
2579 
2580 int __init init_tmpfs(void)
2581 {
2582 	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2583 
2584 	shm_mnt = kern_mount(&tmpfs_fs_type);
2585 	BUG_ON(IS_ERR(shm_mnt));
2586 
2587 	return 0;
2588 }
2589 
2590 int shmem_unuse(swp_entry_t entry, struct page *page)
2591 {
2592 	return 0;
2593 }
2594 
2595 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2596 {
2597 	return 0;
2598 }
2599 
2600 #define shmem_vm_ops				generic_file_vm_ops
2601 #define shmem_file_operations			ramfs_file_operations
2602 #define shmem_get_inode(sb, mode, dev, flags)	ramfs_get_inode(sb, mode, dev)
2603 #define shmem_acct_size(flags, size)		0
2604 #define shmem_unacct_size(flags, size)		do {} while (0)
2605 #define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2606 
2607 #endif /* CONFIG_SHMEM */
2608 
2609 /* common code */
2610 
2611 /**
2612  * shmem_file_setup - get an unlinked file living in tmpfs
2613  * @name: name for dentry (to be seen in /proc/<pid>/maps
2614  * @size: size to be set for the file
2615  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2616  */
2617 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2618 {
2619 	int error;
2620 	struct file *file;
2621 	struct inode *inode;
2622 	struct dentry *dentry, *root;
2623 	struct qstr this;
2624 
2625 	if (IS_ERR(shm_mnt))
2626 		return (void *)shm_mnt;
2627 
2628 	if (size < 0 || size > SHMEM_MAX_BYTES)
2629 		return ERR_PTR(-EINVAL);
2630 
2631 	if (shmem_acct_size(flags, size))
2632 		return ERR_PTR(-ENOMEM);
2633 
2634 	error = -ENOMEM;
2635 	this.name = name;
2636 	this.len = strlen(name);
2637 	this.hash = 0; /* will go */
2638 	root = shm_mnt->mnt_root;
2639 	dentry = d_alloc(root, &this);
2640 	if (!dentry)
2641 		goto put_memory;
2642 
2643 	error = -ENFILE;
2644 	file = get_empty_filp();
2645 	if (!file)
2646 		goto put_dentry;
2647 
2648 	error = -ENOSPC;
2649 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2650 	if (!inode)
2651 		goto close_file;
2652 
2653 	d_instantiate(dentry, inode);
2654 	inode->i_size = size;
2655 	inode->i_nlink = 0;	/* It is unlinked */
2656 	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2657 		  &shmem_file_operations);
2658 
2659 #ifndef CONFIG_MMU
2660 	error = ramfs_nommu_expand_for_mapping(inode, size);
2661 	if (error)
2662 		goto close_file;
2663 #endif
2664 	ima_counts_get(file);
2665 	return file;
2666 
2667 close_file:
2668 	put_filp(file);
2669 put_dentry:
2670 	dput(dentry);
2671 put_memory:
2672 	shmem_unacct_size(flags, size);
2673 	return ERR_PTR(error);
2674 }
2675 EXPORT_SYMBOL_GPL(shmem_file_setup);
2676 
2677 /**
2678  * shmem_zero_setup - setup a shared anonymous mapping
2679  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2680  */
2681 int shmem_zero_setup(struct vm_area_struct *vma)
2682 {
2683 	struct file *file;
2684 	loff_t size = vma->vm_end - vma->vm_start;
2685 
2686 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2687 	if (IS_ERR(file))
2688 		return PTR_ERR(file);
2689 
2690 	if (vma->vm_file)
2691 		fput(vma->vm_file);
2692 	vma->vm_file = file;
2693 	vma->vm_ops = &shmem_vm_ops;
2694 	return 0;
2695 }
2696