1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2005 Hugh Dickins. 10 * Copyright (C) 2002-2005 VERITAS Software Corporation. 11 * Copyright (C) 2004 Andi Kleen, SuSE Labs 12 * 13 * Extended attribute support for tmpfs: 14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 16 * 17 * tiny-shmem: 18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 19 * 20 * This file is released under the GPL. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <linux/vfs.h> 26 #include <linux/mount.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/swap.h> 32 #include <linux/ima.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/generic_acl.h> 46 #include <linux/mman.h> 47 #include <linux/string.h> 48 #include <linux/slab.h> 49 #include <linux/backing-dev.h> 50 #include <linux/shmem_fs.h> 51 #include <linux/writeback.h> 52 #include <linux/blkdev.h> 53 #include <linux/security.h> 54 #include <linux/swapops.h> 55 #include <linux/mempolicy.h> 56 #include <linux/namei.h> 57 #include <linux/ctype.h> 58 #include <linux/migrate.h> 59 #include <linux/highmem.h> 60 #include <linux/seq_file.h> 61 #include <linux/magic.h> 62 63 #include <asm/uaccess.h> 64 #include <asm/div64.h> 65 #include <asm/pgtable.h> 66 67 /* 68 * The maximum size of a shmem/tmpfs file is limited by the maximum size of 69 * its triple-indirect swap vector - see illustration at shmem_swp_entry(). 70 * 71 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel, 72 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum 73 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel, 74 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout. 75 * 76 * We use / and * instead of shifts in the definitions below, so that the swap 77 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE. 78 */ 79 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) 80 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) 81 82 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) 83 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT) 84 85 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE) 86 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT)) 87 88 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ 92 #define SHMEM_PAGEIN VM_READ 93 #define SHMEM_TRUNCATE VM_WRITE 94 95 /* Definition to limit shmem_truncate's steps between cond_rescheds */ 96 #define LATENCY_LIMIT 64 97 98 /* Pretend that each entry is of this size in directory's i_size */ 99 #define BOGO_DIRENT_SIZE 20 100 101 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ 102 enum sgp_type { 103 SGP_READ, /* don't exceed i_size, don't allocate page */ 104 SGP_CACHE, /* don't exceed i_size, may allocate page */ 105 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 106 SGP_WRITE, /* may exceed i_size, may allocate page */ 107 }; 108 109 #ifdef CONFIG_TMPFS 110 static unsigned long shmem_default_max_blocks(void) 111 { 112 return totalram_pages / 2; 113 } 114 115 static unsigned long shmem_default_max_inodes(void) 116 { 117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 118 } 119 #endif 120 121 static int shmem_getpage(struct inode *inode, unsigned long idx, 122 struct page **pagep, enum sgp_type sgp, int *type); 123 124 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) 125 { 126 /* 127 * The above definition of ENTRIES_PER_PAGE, and the use of 128 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: 129 * might be reconsidered if it ever diverges from PAGE_SIZE. 130 * 131 * Mobility flags are masked out as swap vectors cannot move 132 */ 133 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO, 134 PAGE_CACHE_SHIFT-PAGE_SHIFT); 135 } 136 137 static inline void shmem_dir_free(struct page *page) 138 { 139 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); 140 } 141 142 static struct page **shmem_dir_map(struct page *page) 143 { 144 return (struct page **)kmap_atomic(page, KM_USER0); 145 } 146 147 static inline void shmem_dir_unmap(struct page **dir) 148 { 149 kunmap_atomic(dir, KM_USER0); 150 } 151 152 static swp_entry_t *shmem_swp_map(struct page *page) 153 { 154 return (swp_entry_t *)kmap_atomic(page, KM_USER1); 155 } 156 157 static inline void shmem_swp_balance_unmap(void) 158 { 159 /* 160 * When passing a pointer to an i_direct entry, to code which 161 * also handles indirect entries and so will shmem_swp_unmap, 162 * we must arrange for the preempt count to remain in balance. 163 * What kmap_atomic of a lowmem page does depends on config 164 * and architecture, so pretend to kmap_atomic some lowmem page. 165 */ 166 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); 167 } 168 169 static inline void shmem_swp_unmap(swp_entry_t *entry) 170 { 171 kunmap_atomic(entry, KM_USER1); 172 } 173 174 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 175 { 176 return sb->s_fs_info; 177 } 178 179 /* 180 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 181 * for shared memory and for shared anonymous (/dev/zero) mappings 182 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 183 * consistent with the pre-accounting of private mappings ... 184 */ 185 static inline int shmem_acct_size(unsigned long flags, loff_t size) 186 { 187 return (flags & VM_NORESERVE) ? 188 0 : security_vm_enough_memory_kern(VM_ACCT(size)); 189 } 190 191 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 192 { 193 if (!(flags & VM_NORESERVE)) 194 vm_unacct_memory(VM_ACCT(size)); 195 } 196 197 /* 198 * ... whereas tmpfs objects are accounted incrementally as 199 * pages are allocated, in order to allow huge sparse files. 200 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 201 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 202 */ 203 static inline int shmem_acct_block(unsigned long flags) 204 { 205 return (flags & VM_NORESERVE) ? 206 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0; 207 } 208 209 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 210 { 211 if (flags & VM_NORESERVE) 212 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 213 } 214 215 static const struct super_operations shmem_ops; 216 static const struct address_space_operations shmem_aops; 217 static const struct file_operations shmem_file_operations; 218 static const struct inode_operations shmem_inode_operations; 219 static const struct inode_operations shmem_dir_inode_operations; 220 static const struct inode_operations shmem_special_inode_operations; 221 static const struct vm_operations_struct shmem_vm_ops; 222 223 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 224 .ra_pages = 0, /* No readahead */ 225 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 226 .unplug_io_fn = default_unplug_io_fn, 227 }; 228 229 static LIST_HEAD(shmem_swaplist); 230 static DEFINE_MUTEX(shmem_swaplist_mutex); 231 232 static void shmem_free_blocks(struct inode *inode, long pages) 233 { 234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 235 if (sbinfo->max_blocks) { 236 spin_lock(&sbinfo->stat_lock); 237 sbinfo->free_blocks += pages; 238 inode->i_blocks -= pages*BLOCKS_PER_PAGE; 239 spin_unlock(&sbinfo->stat_lock); 240 } 241 } 242 243 static int shmem_reserve_inode(struct super_block *sb) 244 { 245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 246 if (sbinfo->max_inodes) { 247 spin_lock(&sbinfo->stat_lock); 248 if (!sbinfo->free_inodes) { 249 spin_unlock(&sbinfo->stat_lock); 250 return -ENOSPC; 251 } 252 sbinfo->free_inodes--; 253 spin_unlock(&sbinfo->stat_lock); 254 } 255 return 0; 256 } 257 258 static void shmem_free_inode(struct super_block *sb) 259 { 260 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 261 if (sbinfo->max_inodes) { 262 spin_lock(&sbinfo->stat_lock); 263 sbinfo->free_inodes++; 264 spin_unlock(&sbinfo->stat_lock); 265 } 266 } 267 268 /** 269 * shmem_recalc_inode - recalculate the size of an inode 270 * @inode: inode to recalc 271 * 272 * We have to calculate the free blocks since the mm can drop 273 * undirtied hole pages behind our back. 274 * 275 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 277 * 278 * It has to be called with the spinlock held. 279 */ 280 static void shmem_recalc_inode(struct inode *inode) 281 { 282 struct shmem_inode_info *info = SHMEM_I(inode); 283 long freed; 284 285 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 286 if (freed > 0) { 287 info->alloced -= freed; 288 shmem_unacct_blocks(info->flags, freed); 289 shmem_free_blocks(inode, freed); 290 } 291 } 292 293 /** 294 * shmem_swp_entry - find the swap vector position in the info structure 295 * @info: info structure for the inode 296 * @index: index of the page to find 297 * @page: optional page to add to the structure. Has to be preset to 298 * all zeros 299 * 300 * If there is no space allocated yet it will return NULL when 301 * page is NULL, else it will use the page for the needed block, 302 * setting it to NULL on return to indicate that it has been used. 303 * 304 * The swap vector is organized the following way: 305 * 306 * There are SHMEM_NR_DIRECT entries directly stored in the 307 * shmem_inode_info structure. So small files do not need an addional 308 * allocation. 309 * 310 * For pages with index > SHMEM_NR_DIRECT there is the pointer 311 * i_indirect which points to a page which holds in the first half 312 * doubly indirect blocks, in the second half triple indirect blocks: 313 * 314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the 315 * following layout (for SHMEM_NR_DIRECT == 16): 316 * 317 * i_indirect -> dir --> 16-19 318 * | +-> 20-23 319 * | 320 * +-->dir2 --> 24-27 321 * | +-> 28-31 322 * | +-> 32-35 323 * | +-> 36-39 324 * | 325 * +-->dir3 --> 40-43 326 * +-> 44-47 327 * +-> 48-51 328 * +-> 52-55 329 */ 330 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) 331 { 332 unsigned long offset; 333 struct page **dir; 334 struct page *subdir; 335 336 if (index < SHMEM_NR_DIRECT) { 337 shmem_swp_balance_unmap(); 338 return info->i_direct+index; 339 } 340 if (!info->i_indirect) { 341 if (page) { 342 info->i_indirect = *page; 343 *page = NULL; 344 } 345 return NULL; /* need another page */ 346 } 347 348 index -= SHMEM_NR_DIRECT; 349 offset = index % ENTRIES_PER_PAGE; 350 index /= ENTRIES_PER_PAGE; 351 dir = shmem_dir_map(info->i_indirect); 352 353 if (index >= ENTRIES_PER_PAGE/2) { 354 index -= ENTRIES_PER_PAGE/2; 355 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; 356 index %= ENTRIES_PER_PAGE; 357 subdir = *dir; 358 if (!subdir) { 359 if (page) { 360 *dir = *page; 361 *page = NULL; 362 } 363 shmem_dir_unmap(dir); 364 return NULL; /* need another page */ 365 } 366 shmem_dir_unmap(dir); 367 dir = shmem_dir_map(subdir); 368 } 369 370 dir += index; 371 subdir = *dir; 372 if (!subdir) { 373 if (!page || !(subdir = *page)) { 374 shmem_dir_unmap(dir); 375 return NULL; /* need a page */ 376 } 377 *dir = subdir; 378 *page = NULL; 379 } 380 shmem_dir_unmap(dir); 381 return shmem_swp_map(subdir) + offset; 382 } 383 384 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) 385 { 386 long incdec = value? 1: -1; 387 388 entry->val = value; 389 info->swapped += incdec; 390 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { 391 struct page *page = kmap_atomic_to_page(entry); 392 set_page_private(page, page_private(page) + incdec); 393 } 394 } 395 396 /** 397 * shmem_swp_alloc - get the position of the swap entry for the page. 398 * @info: info structure for the inode 399 * @index: index of the page to find 400 * @sgp: check and recheck i_size? skip allocation? 401 * 402 * If the entry does not exist, allocate it. 403 */ 404 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) 405 { 406 struct inode *inode = &info->vfs_inode; 407 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 408 struct page *page = NULL; 409 swp_entry_t *entry; 410 411 if (sgp != SGP_WRITE && 412 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 413 return ERR_PTR(-EINVAL); 414 415 while (!(entry = shmem_swp_entry(info, index, &page))) { 416 if (sgp == SGP_READ) 417 return shmem_swp_map(ZERO_PAGE(0)); 418 /* 419 * Test free_blocks against 1 not 0, since we have 1 data 420 * page (and perhaps indirect index pages) yet to allocate: 421 * a waste to allocate index if we cannot allocate data. 422 */ 423 if (sbinfo->max_blocks) { 424 spin_lock(&sbinfo->stat_lock); 425 if (sbinfo->free_blocks <= 1) { 426 spin_unlock(&sbinfo->stat_lock); 427 return ERR_PTR(-ENOSPC); 428 } 429 sbinfo->free_blocks--; 430 inode->i_blocks += BLOCKS_PER_PAGE; 431 spin_unlock(&sbinfo->stat_lock); 432 } 433 434 spin_unlock(&info->lock); 435 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping)); 436 if (page) 437 set_page_private(page, 0); 438 spin_lock(&info->lock); 439 440 if (!page) { 441 shmem_free_blocks(inode, 1); 442 return ERR_PTR(-ENOMEM); 443 } 444 if (sgp != SGP_WRITE && 445 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 446 entry = ERR_PTR(-EINVAL); 447 break; 448 } 449 if (info->next_index <= index) 450 info->next_index = index + 1; 451 } 452 if (page) { 453 /* another task gave its page, or truncated the file */ 454 shmem_free_blocks(inode, 1); 455 shmem_dir_free(page); 456 } 457 if (info->next_index <= index && !IS_ERR(entry)) 458 info->next_index = index + 1; 459 return entry; 460 } 461 462 /** 463 * shmem_free_swp - free some swap entries in a directory 464 * @dir: pointer to the directory 465 * @edir: pointer after last entry of the directory 466 * @punch_lock: pointer to spinlock when needed for the holepunch case 467 */ 468 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir, 469 spinlock_t *punch_lock) 470 { 471 spinlock_t *punch_unlock = NULL; 472 swp_entry_t *ptr; 473 int freed = 0; 474 475 for (ptr = dir; ptr < edir; ptr++) { 476 if (ptr->val) { 477 if (unlikely(punch_lock)) { 478 punch_unlock = punch_lock; 479 punch_lock = NULL; 480 spin_lock(punch_unlock); 481 if (!ptr->val) 482 continue; 483 } 484 free_swap_and_cache(*ptr); 485 *ptr = (swp_entry_t){0}; 486 freed++; 487 } 488 } 489 if (punch_unlock) 490 spin_unlock(punch_unlock); 491 return freed; 492 } 493 494 static int shmem_map_and_free_swp(struct page *subdir, int offset, 495 int limit, struct page ***dir, spinlock_t *punch_lock) 496 { 497 swp_entry_t *ptr; 498 int freed = 0; 499 500 ptr = shmem_swp_map(subdir); 501 for (; offset < limit; offset += LATENCY_LIMIT) { 502 int size = limit - offset; 503 if (size > LATENCY_LIMIT) 504 size = LATENCY_LIMIT; 505 freed += shmem_free_swp(ptr+offset, ptr+offset+size, 506 punch_lock); 507 if (need_resched()) { 508 shmem_swp_unmap(ptr); 509 if (*dir) { 510 shmem_dir_unmap(*dir); 511 *dir = NULL; 512 } 513 cond_resched(); 514 ptr = shmem_swp_map(subdir); 515 } 516 } 517 shmem_swp_unmap(ptr); 518 return freed; 519 } 520 521 static void shmem_free_pages(struct list_head *next) 522 { 523 struct page *page; 524 int freed = 0; 525 526 do { 527 page = container_of(next, struct page, lru); 528 next = next->next; 529 shmem_dir_free(page); 530 freed++; 531 if (freed >= LATENCY_LIMIT) { 532 cond_resched(); 533 freed = 0; 534 } 535 } while (next); 536 } 537 538 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) 539 { 540 struct shmem_inode_info *info = SHMEM_I(inode); 541 unsigned long idx; 542 unsigned long size; 543 unsigned long limit; 544 unsigned long stage; 545 unsigned long diroff; 546 struct page **dir; 547 struct page *topdir; 548 struct page *middir; 549 struct page *subdir; 550 swp_entry_t *ptr; 551 LIST_HEAD(pages_to_free); 552 long nr_pages_to_free = 0; 553 long nr_swaps_freed = 0; 554 int offset; 555 int freed; 556 int punch_hole; 557 spinlock_t *needs_lock; 558 spinlock_t *punch_lock; 559 unsigned long upper_limit; 560 561 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 562 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 563 if (idx >= info->next_index) 564 return; 565 566 spin_lock(&info->lock); 567 info->flags |= SHMEM_TRUNCATE; 568 if (likely(end == (loff_t) -1)) { 569 limit = info->next_index; 570 upper_limit = SHMEM_MAX_INDEX; 571 info->next_index = idx; 572 needs_lock = NULL; 573 punch_hole = 0; 574 } else { 575 if (end + 1 >= inode->i_size) { /* we may free a little more */ 576 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >> 577 PAGE_CACHE_SHIFT; 578 upper_limit = SHMEM_MAX_INDEX; 579 } else { 580 limit = (end + 1) >> PAGE_CACHE_SHIFT; 581 upper_limit = limit; 582 } 583 needs_lock = &info->lock; 584 punch_hole = 1; 585 } 586 587 topdir = info->i_indirect; 588 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { 589 info->i_indirect = NULL; 590 nr_pages_to_free++; 591 list_add(&topdir->lru, &pages_to_free); 592 } 593 spin_unlock(&info->lock); 594 595 if (info->swapped && idx < SHMEM_NR_DIRECT) { 596 ptr = info->i_direct; 597 size = limit; 598 if (size > SHMEM_NR_DIRECT) 599 size = SHMEM_NR_DIRECT; 600 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock); 601 } 602 603 /* 604 * If there are no indirect blocks or we are punching a hole 605 * below indirect blocks, nothing to be done. 606 */ 607 if (!topdir || limit <= SHMEM_NR_DIRECT) 608 goto done2; 609 610 /* 611 * The truncation case has already dropped info->lock, and we're safe 612 * because i_size and next_index have already been lowered, preventing 613 * access beyond. But in the punch_hole case, we still need to take 614 * the lock when updating the swap directory, because there might be 615 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or 616 * shmem_writepage. However, whenever we find we can remove a whole 617 * directory page (not at the misaligned start or end of the range), 618 * we first NULLify its pointer in the level above, and then have no 619 * need to take the lock when updating its contents: needs_lock and 620 * punch_lock (either pointing to info->lock or NULL) manage this. 621 */ 622 623 upper_limit -= SHMEM_NR_DIRECT; 624 limit -= SHMEM_NR_DIRECT; 625 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; 626 offset = idx % ENTRIES_PER_PAGE; 627 idx -= offset; 628 629 dir = shmem_dir_map(topdir); 630 stage = ENTRIES_PER_PAGEPAGE/2; 631 if (idx < ENTRIES_PER_PAGEPAGE/2) { 632 middir = topdir; 633 diroff = idx/ENTRIES_PER_PAGE; 634 } else { 635 dir += ENTRIES_PER_PAGE/2; 636 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; 637 while (stage <= idx) 638 stage += ENTRIES_PER_PAGEPAGE; 639 middir = *dir; 640 if (*dir) { 641 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % 642 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; 643 if (!diroff && !offset && upper_limit >= stage) { 644 if (needs_lock) { 645 spin_lock(needs_lock); 646 *dir = NULL; 647 spin_unlock(needs_lock); 648 needs_lock = NULL; 649 } else 650 *dir = NULL; 651 nr_pages_to_free++; 652 list_add(&middir->lru, &pages_to_free); 653 } 654 shmem_dir_unmap(dir); 655 dir = shmem_dir_map(middir); 656 } else { 657 diroff = 0; 658 offset = 0; 659 idx = stage; 660 } 661 } 662 663 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { 664 if (unlikely(idx == stage)) { 665 shmem_dir_unmap(dir); 666 dir = shmem_dir_map(topdir) + 667 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 668 while (!*dir) { 669 dir++; 670 idx += ENTRIES_PER_PAGEPAGE; 671 if (idx >= limit) 672 goto done1; 673 } 674 stage = idx + ENTRIES_PER_PAGEPAGE; 675 middir = *dir; 676 if (punch_hole) 677 needs_lock = &info->lock; 678 if (upper_limit >= stage) { 679 if (needs_lock) { 680 spin_lock(needs_lock); 681 *dir = NULL; 682 spin_unlock(needs_lock); 683 needs_lock = NULL; 684 } else 685 *dir = NULL; 686 nr_pages_to_free++; 687 list_add(&middir->lru, &pages_to_free); 688 } 689 shmem_dir_unmap(dir); 690 cond_resched(); 691 dir = shmem_dir_map(middir); 692 diroff = 0; 693 } 694 punch_lock = needs_lock; 695 subdir = dir[diroff]; 696 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) { 697 if (needs_lock) { 698 spin_lock(needs_lock); 699 dir[diroff] = NULL; 700 spin_unlock(needs_lock); 701 punch_lock = NULL; 702 } else 703 dir[diroff] = NULL; 704 nr_pages_to_free++; 705 list_add(&subdir->lru, &pages_to_free); 706 } 707 if (subdir && page_private(subdir) /* has swap entries */) { 708 size = limit - idx; 709 if (size > ENTRIES_PER_PAGE) 710 size = ENTRIES_PER_PAGE; 711 freed = shmem_map_and_free_swp(subdir, 712 offset, size, &dir, punch_lock); 713 if (!dir) 714 dir = shmem_dir_map(middir); 715 nr_swaps_freed += freed; 716 if (offset || punch_lock) { 717 spin_lock(&info->lock); 718 set_page_private(subdir, 719 page_private(subdir) - freed); 720 spin_unlock(&info->lock); 721 } else 722 BUG_ON(page_private(subdir) != freed); 723 } 724 offset = 0; 725 } 726 done1: 727 shmem_dir_unmap(dir); 728 done2: 729 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { 730 /* 731 * Call truncate_inode_pages again: racing shmem_unuse_inode 732 * may have swizzled a page in from swap since vmtruncate or 733 * generic_delete_inode did it, before we lowered next_index. 734 * Also, though shmem_getpage checks i_size before adding to 735 * cache, no recheck after: so fix the narrow window there too. 736 * 737 * Recalling truncate_inode_pages_range and unmap_mapping_range 738 * every time for punch_hole (which never got a chance to clear 739 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive, 740 * yet hardly ever necessary: try to optimize them out later. 741 */ 742 truncate_inode_pages_range(inode->i_mapping, start, end); 743 if (punch_hole) 744 unmap_mapping_range(inode->i_mapping, start, 745 end - start, 1); 746 } 747 748 spin_lock(&info->lock); 749 info->flags &= ~SHMEM_TRUNCATE; 750 info->swapped -= nr_swaps_freed; 751 if (nr_pages_to_free) 752 shmem_free_blocks(inode, nr_pages_to_free); 753 shmem_recalc_inode(inode); 754 spin_unlock(&info->lock); 755 756 /* 757 * Empty swap vector directory pages to be freed? 758 */ 759 if (!list_empty(&pages_to_free)) { 760 pages_to_free.prev->next = NULL; 761 shmem_free_pages(pages_to_free.next); 762 } 763 } 764 765 static void shmem_truncate(struct inode *inode) 766 { 767 shmem_truncate_range(inode, inode->i_size, (loff_t)-1); 768 } 769 770 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) 771 { 772 struct inode *inode = dentry->d_inode; 773 struct page *page = NULL; 774 int error; 775 776 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 777 if (attr->ia_size < inode->i_size) { 778 /* 779 * If truncating down to a partial page, then 780 * if that page is already allocated, hold it 781 * in memory until the truncation is over, so 782 * truncate_partial_page cannnot miss it were 783 * it assigned to swap. 784 */ 785 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) { 786 (void) shmem_getpage(inode, 787 attr->ia_size>>PAGE_CACHE_SHIFT, 788 &page, SGP_READ, NULL); 789 if (page) 790 unlock_page(page); 791 } 792 /* 793 * Reset SHMEM_PAGEIN flag so that shmem_truncate can 794 * detect if any pages might have been added to cache 795 * after truncate_inode_pages. But we needn't bother 796 * if it's being fully truncated to zero-length: the 797 * nrpages check is efficient enough in that case. 798 */ 799 if (attr->ia_size) { 800 struct shmem_inode_info *info = SHMEM_I(inode); 801 spin_lock(&info->lock); 802 info->flags &= ~SHMEM_PAGEIN; 803 spin_unlock(&info->lock); 804 } 805 } 806 } 807 808 error = inode_change_ok(inode, attr); 809 if (!error) 810 error = inode_setattr(inode, attr); 811 #ifdef CONFIG_TMPFS_POSIX_ACL 812 if (!error && (attr->ia_valid & ATTR_MODE)) 813 error = generic_acl_chmod(inode, &shmem_acl_ops); 814 #endif 815 if (page) 816 page_cache_release(page); 817 return error; 818 } 819 820 static void shmem_delete_inode(struct inode *inode) 821 { 822 struct shmem_inode_info *info = SHMEM_I(inode); 823 824 if (inode->i_op->truncate == shmem_truncate) { 825 truncate_inode_pages(inode->i_mapping, 0); 826 shmem_unacct_size(info->flags, inode->i_size); 827 inode->i_size = 0; 828 shmem_truncate(inode); 829 if (!list_empty(&info->swaplist)) { 830 mutex_lock(&shmem_swaplist_mutex); 831 list_del_init(&info->swaplist); 832 mutex_unlock(&shmem_swaplist_mutex); 833 } 834 } 835 BUG_ON(inode->i_blocks); 836 shmem_free_inode(inode->i_sb); 837 clear_inode(inode); 838 } 839 840 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) 841 { 842 swp_entry_t *ptr; 843 844 for (ptr = dir; ptr < edir; ptr++) { 845 if (ptr->val == entry.val) 846 return ptr - dir; 847 } 848 return -1; 849 } 850 851 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) 852 { 853 struct inode *inode; 854 unsigned long idx; 855 unsigned long size; 856 unsigned long limit; 857 unsigned long stage; 858 struct page **dir; 859 struct page *subdir; 860 swp_entry_t *ptr; 861 int offset; 862 int error; 863 864 idx = 0; 865 ptr = info->i_direct; 866 spin_lock(&info->lock); 867 if (!info->swapped) { 868 list_del_init(&info->swaplist); 869 goto lost2; 870 } 871 limit = info->next_index; 872 size = limit; 873 if (size > SHMEM_NR_DIRECT) 874 size = SHMEM_NR_DIRECT; 875 offset = shmem_find_swp(entry, ptr, ptr+size); 876 if (offset >= 0) 877 goto found; 878 if (!info->i_indirect) 879 goto lost2; 880 881 dir = shmem_dir_map(info->i_indirect); 882 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; 883 884 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { 885 if (unlikely(idx == stage)) { 886 shmem_dir_unmap(dir-1); 887 if (cond_resched_lock(&info->lock)) { 888 /* check it has not been truncated */ 889 if (limit > info->next_index) { 890 limit = info->next_index; 891 if (idx >= limit) 892 goto lost2; 893 } 894 } 895 dir = shmem_dir_map(info->i_indirect) + 896 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 897 while (!*dir) { 898 dir++; 899 idx += ENTRIES_PER_PAGEPAGE; 900 if (idx >= limit) 901 goto lost1; 902 } 903 stage = idx + ENTRIES_PER_PAGEPAGE; 904 subdir = *dir; 905 shmem_dir_unmap(dir); 906 dir = shmem_dir_map(subdir); 907 } 908 subdir = *dir; 909 if (subdir && page_private(subdir)) { 910 ptr = shmem_swp_map(subdir); 911 size = limit - idx; 912 if (size > ENTRIES_PER_PAGE) 913 size = ENTRIES_PER_PAGE; 914 offset = shmem_find_swp(entry, ptr, ptr+size); 915 shmem_swp_unmap(ptr); 916 if (offset >= 0) { 917 shmem_dir_unmap(dir); 918 goto found; 919 } 920 } 921 } 922 lost1: 923 shmem_dir_unmap(dir-1); 924 lost2: 925 spin_unlock(&info->lock); 926 return 0; 927 found: 928 idx += offset; 929 inode = igrab(&info->vfs_inode); 930 spin_unlock(&info->lock); 931 932 /* 933 * Move _head_ to start search for next from here. 934 * But be careful: shmem_delete_inode checks list_empty without taking 935 * mutex, and there's an instant in list_move_tail when info->swaplist 936 * would appear empty, if it were the only one on shmem_swaplist. We 937 * could avoid doing it if inode NULL; or use this minor optimization. 938 */ 939 if (shmem_swaplist.next != &info->swaplist) 940 list_move_tail(&shmem_swaplist, &info->swaplist); 941 mutex_unlock(&shmem_swaplist_mutex); 942 943 error = 1; 944 if (!inode) 945 goto out; 946 /* 947 * Charge page using GFP_KERNEL while we can wait. 948 * Charged back to the user(not to caller) when swap account is used. 949 * add_to_page_cache() will be called with GFP_NOWAIT. 950 */ 951 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 952 if (error) 953 goto out; 954 error = radix_tree_preload(GFP_KERNEL); 955 if (error) { 956 mem_cgroup_uncharge_cache_page(page); 957 goto out; 958 } 959 error = 1; 960 961 spin_lock(&info->lock); 962 ptr = shmem_swp_entry(info, idx, NULL); 963 if (ptr && ptr->val == entry.val) { 964 error = add_to_page_cache_locked(page, inode->i_mapping, 965 idx, GFP_NOWAIT); 966 /* does mem_cgroup_uncharge_cache_page on error */ 967 } else /* we must compensate for our precharge above */ 968 mem_cgroup_uncharge_cache_page(page); 969 970 if (error == -EEXIST) { 971 struct page *filepage = find_get_page(inode->i_mapping, idx); 972 error = 1; 973 if (filepage) { 974 /* 975 * There might be a more uptodate page coming down 976 * from a stacked writepage: forget our swappage if so. 977 */ 978 if (PageUptodate(filepage)) 979 error = 0; 980 page_cache_release(filepage); 981 } 982 } 983 if (!error) { 984 delete_from_swap_cache(page); 985 set_page_dirty(page); 986 info->flags |= SHMEM_PAGEIN; 987 shmem_swp_set(info, ptr, 0); 988 swap_free(entry); 989 error = 1; /* not an error, but entry was found */ 990 } 991 if (ptr) 992 shmem_swp_unmap(ptr); 993 spin_unlock(&info->lock); 994 radix_tree_preload_end(); 995 out: 996 unlock_page(page); 997 page_cache_release(page); 998 iput(inode); /* allows for NULL */ 999 return error; 1000 } 1001 1002 /* 1003 * shmem_unuse() search for an eventually swapped out shmem page. 1004 */ 1005 int shmem_unuse(swp_entry_t entry, struct page *page) 1006 { 1007 struct list_head *p, *next; 1008 struct shmem_inode_info *info; 1009 int found = 0; 1010 1011 mutex_lock(&shmem_swaplist_mutex); 1012 list_for_each_safe(p, next, &shmem_swaplist) { 1013 info = list_entry(p, struct shmem_inode_info, swaplist); 1014 found = shmem_unuse_inode(info, entry, page); 1015 cond_resched(); 1016 if (found) 1017 goto out; 1018 } 1019 mutex_unlock(&shmem_swaplist_mutex); 1020 out: return found; /* 0 or 1 or -ENOMEM */ 1021 } 1022 1023 /* 1024 * Move the page from the page cache to the swap cache. 1025 */ 1026 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1027 { 1028 struct shmem_inode_info *info; 1029 swp_entry_t *entry, swap; 1030 struct address_space *mapping; 1031 unsigned long index; 1032 struct inode *inode; 1033 1034 BUG_ON(!PageLocked(page)); 1035 mapping = page->mapping; 1036 index = page->index; 1037 inode = mapping->host; 1038 info = SHMEM_I(inode); 1039 if (info->flags & VM_LOCKED) 1040 goto redirty; 1041 if (!total_swap_pages) 1042 goto redirty; 1043 1044 /* 1045 * shmem_backing_dev_info's capabilities prevent regular writeback or 1046 * sync from ever calling shmem_writepage; but a stacking filesystem 1047 * may use the ->writepage of its underlying filesystem, in which case 1048 * tmpfs should write out to swap only in response to memory pressure, 1049 * and not for the writeback threads or sync. However, in those cases, 1050 * we do still want to check if there's a redundant swappage to be 1051 * discarded. 1052 */ 1053 if (wbc->for_reclaim) 1054 swap = get_swap_page(); 1055 else 1056 swap.val = 0; 1057 1058 spin_lock(&info->lock); 1059 if (index >= info->next_index) { 1060 BUG_ON(!(info->flags & SHMEM_TRUNCATE)); 1061 goto unlock; 1062 } 1063 entry = shmem_swp_entry(info, index, NULL); 1064 if (entry->val) { 1065 /* 1066 * The more uptodate page coming down from a stacked 1067 * writepage should replace our old swappage. 1068 */ 1069 free_swap_and_cache(*entry); 1070 shmem_swp_set(info, entry, 0); 1071 } 1072 shmem_recalc_inode(inode); 1073 1074 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1075 remove_from_page_cache(page); 1076 shmem_swp_set(info, entry, swap.val); 1077 shmem_swp_unmap(entry); 1078 if (list_empty(&info->swaplist)) 1079 inode = igrab(inode); 1080 else 1081 inode = NULL; 1082 spin_unlock(&info->lock); 1083 swap_duplicate(swap); 1084 BUG_ON(page_mapped(page)); 1085 page_cache_release(page); /* pagecache ref */ 1086 swap_writepage(page, wbc); 1087 if (inode) { 1088 mutex_lock(&shmem_swaplist_mutex); 1089 /* move instead of add in case we're racing */ 1090 list_move_tail(&info->swaplist, &shmem_swaplist); 1091 mutex_unlock(&shmem_swaplist_mutex); 1092 iput(inode); 1093 } 1094 return 0; 1095 } 1096 1097 shmem_swp_unmap(entry); 1098 unlock: 1099 spin_unlock(&info->lock); 1100 /* 1101 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 1102 * clear SWAP_HAS_CACHE flag. 1103 */ 1104 swapcache_free(swap, NULL); 1105 redirty: 1106 set_page_dirty(page); 1107 if (wbc->for_reclaim) 1108 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1109 unlock_page(page); 1110 return 0; 1111 } 1112 1113 #ifdef CONFIG_NUMA 1114 #ifdef CONFIG_TMPFS 1115 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1116 { 1117 char buffer[64]; 1118 1119 if (!mpol || mpol->mode == MPOL_DEFAULT) 1120 return; /* show nothing */ 1121 1122 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 1123 1124 seq_printf(seq, ",mpol=%s", buffer); 1125 } 1126 1127 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1128 { 1129 struct mempolicy *mpol = NULL; 1130 if (sbinfo->mpol) { 1131 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1132 mpol = sbinfo->mpol; 1133 mpol_get(mpol); 1134 spin_unlock(&sbinfo->stat_lock); 1135 } 1136 return mpol; 1137 } 1138 #endif /* CONFIG_TMPFS */ 1139 1140 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1141 struct shmem_inode_info *info, unsigned long idx) 1142 { 1143 struct mempolicy mpol, *spol; 1144 struct vm_area_struct pvma; 1145 struct page *page; 1146 1147 spol = mpol_cond_copy(&mpol, 1148 mpol_shared_policy_lookup(&info->policy, idx)); 1149 1150 /* Create a pseudo vma that just contains the policy */ 1151 pvma.vm_start = 0; 1152 pvma.vm_pgoff = idx; 1153 pvma.vm_ops = NULL; 1154 pvma.vm_policy = spol; 1155 page = swapin_readahead(entry, gfp, &pvma, 0); 1156 return page; 1157 } 1158 1159 static struct page *shmem_alloc_page(gfp_t gfp, 1160 struct shmem_inode_info *info, unsigned long idx) 1161 { 1162 struct vm_area_struct pvma; 1163 1164 /* Create a pseudo vma that just contains the policy */ 1165 pvma.vm_start = 0; 1166 pvma.vm_pgoff = idx; 1167 pvma.vm_ops = NULL; 1168 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); 1169 1170 /* 1171 * alloc_page_vma() will drop the shared policy reference 1172 */ 1173 return alloc_page_vma(gfp, &pvma, 0); 1174 } 1175 #else /* !CONFIG_NUMA */ 1176 #ifdef CONFIG_TMPFS 1177 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p) 1178 { 1179 } 1180 #endif /* CONFIG_TMPFS */ 1181 1182 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1183 struct shmem_inode_info *info, unsigned long idx) 1184 { 1185 return swapin_readahead(entry, gfp, NULL, 0); 1186 } 1187 1188 static inline struct page *shmem_alloc_page(gfp_t gfp, 1189 struct shmem_inode_info *info, unsigned long idx) 1190 { 1191 return alloc_page(gfp); 1192 } 1193 #endif /* CONFIG_NUMA */ 1194 1195 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1196 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1197 { 1198 return NULL; 1199 } 1200 #endif 1201 1202 /* 1203 * shmem_getpage - either get the page from swap or allocate a new one 1204 * 1205 * If we allocate a new one we do not mark it dirty. That's up to the 1206 * vm. If we swap it in we mark it dirty since we also free the swap 1207 * entry since a page cannot live in both the swap and page cache 1208 */ 1209 static int shmem_getpage(struct inode *inode, unsigned long idx, 1210 struct page **pagep, enum sgp_type sgp, int *type) 1211 { 1212 struct address_space *mapping = inode->i_mapping; 1213 struct shmem_inode_info *info = SHMEM_I(inode); 1214 struct shmem_sb_info *sbinfo; 1215 struct page *filepage = *pagep; 1216 struct page *swappage; 1217 swp_entry_t *entry; 1218 swp_entry_t swap; 1219 gfp_t gfp; 1220 int error; 1221 1222 if (idx >= SHMEM_MAX_INDEX) 1223 return -EFBIG; 1224 1225 if (type) 1226 *type = 0; 1227 1228 /* 1229 * Normally, filepage is NULL on entry, and either found 1230 * uptodate immediately, or allocated and zeroed, or read 1231 * in under swappage, which is then assigned to filepage. 1232 * But shmem_readpage (required for splice) passes in a locked 1233 * filepage, which may be found not uptodate by other callers 1234 * too, and may need to be copied from the swappage read in. 1235 */ 1236 repeat: 1237 if (!filepage) 1238 filepage = find_lock_page(mapping, idx); 1239 if (filepage && PageUptodate(filepage)) 1240 goto done; 1241 error = 0; 1242 gfp = mapping_gfp_mask(mapping); 1243 if (!filepage) { 1244 /* 1245 * Try to preload while we can wait, to not make a habit of 1246 * draining atomic reserves; but don't latch on to this cpu. 1247 */ 1248 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM); 1249 if (error) 1250 goto failed; 1251 radix_tree_preload_end(); 1252 } 1253 1254 spin_lock(&info->lock); 1255 shmem_recalc_inode(inode); 1256 entry = shmem_swp_alloc(info, idx, sgp); 1257 if (IS_ERR(entry)) { 1258 spin_unlock(&info->lock); 1259 error = PTR_ERR(entry); 1260 goto failed; 1261 } 1262 swap = *entry; 1263 1264 if (swap.val) { 1265 /* Look it up and read it in.. */ 1266 swappage = lookup_swap_cache(swap); 1267 if (!swappage) { 1268 shmem_swp_unmap(entry); 1269 /* here we actually do the io */ 1270 if (type && !(*type & VM_FAULT_MAJOR)) { 1271 __count_vm_event(PGMAJFAULT); 1272 *type |= VM_FAULT_MAJOR; 1273 } 1274 spin_unlock(&info->lock); 1275 swappage = shmem_swapin(swap, gfp, info, idx); 1276 if (!swappage) { 1277 spin_lock(&info->lock); 1278 entry = shmem_swp_alloc(info, idx, sgp); 1279 if (IS_ERR(entry)) 1280 error = PTR_ERR(entry); 1281 else { 1282 if (entry->val == swap.val) 1283 error = -ENOMEM; 1284 shmem_swp_unmap(entry); 1285 } 1286 spin_unlock(&info->lock); 1287 if (error) 1288 goto failed; 1289 goto repeat; 1290 } 1291 wait_on_page_locked(swappage); 1292 page_cache_release(swappage); 1293 goto repeat; 1294 } 1295 1296 /* We have to do this with page locked to prevent races */ 1297 if (!trylock_page(swappage)) { 1298 shmem_swp_unmap(entry); 1299 spin_unlock(&info->lock); 1300 wait_on_page_locked(swappage); 1301 page_cache_release(swappage); 1302 goto repeat; 1303 } 1304 if (PageWriteback(swappage)) { 1305 shmem_swp_unmap(entry); 1306 spin_unlock(&info->lock); 1307 wait_on_page_writeback(swappage); 1308 unlock_page(swappage); 1309 page_cache_release(swappage); 1310 goto repeat; 1311 } 1312 if (!PageUptodate(swappage)) { 1313 shmem_swp_unmap(entry); 1314 spin_unlock(&info->lock); 1315 unlock_page(swappage); 1316 page_cache_release(swappage); 1317 error = -EIO; 1318 goto failed; 1319 } 1320 1321 if (filepage) { 1322 shmem_swp_set(info, entry, 0); 1323 shmem_swp_unmap(entry); 1324 delete_from_swap_cache(swappage); 1325 spin_unlock(&info->lock); 1326 copy_highpage(filepage, swappage); 1327 unlock_page(swappage); 1328 page_cache_release(swappage); 1329 flush_dcache_page(filepage); 1330 SetPageUptodate(filepage); 1331 set_page_dirty(filepage); 1332 swap_free(swap); 1333 } else if (!(error = add_to_page_cache_locked(swappage, mapping, 1334 idx, GFP_NOWAIT))) { 1335 info->flags |= SHMEM_PAGEIN; 1336 shmem_swp_set(info, entry, 0); 1337 shmem_swp_unmap(entry); 1338 delete_from_swap_cache(swappage); 1339 spin_unlock(&info->lock); 1340 filepage = swappage; 1341 set_page_dirty(filepage); 1342 swap_free(swap); 1343 } else { 1344 shmem_swp_unmap(entry); 1345 spin_unlock(&info->lock); 1346 if (error == -ENOMEM) { 1347 /* 1348 * reclaim from proper memory cgroup and 1349 * call memcg's OOM if needed. 1350 */ 1351 error = mem_cgroup_shmem_charge_fallback( 1352 swappage, 1353 current->mm, 1354 gfp); 1355 if (error) { 1356 unlock_page(swappage); 1357 page_cache_release(swappage); 1358 goto failed; 1359 } 1360 } 1361 unlock_page(swappage); 1362 page_cache_release(swappage); 1363 goto repeat; 1364 } 1365 } else if (sgp == SGP_READ && !filepage) { 1366 shmem_swp_unmap(entry); 1367 filepage = find_get_page(mapping, idx); 1368 if (filepage && 1369 (!PageUptodate(filepage) || !trylock_page(filepage))) { 1370 spin_unlock(&info->lock); 1371 wait_on_page_locked(filepage); 1372 page_cache_release(filepage); 1373 filepage = NULL; 1374 goto repeat; 1375 } 1376 spin_unlock(&info->lock); 1377 } else { 1378 shmem_swp_unmap(entry); 1379 sbinfo = SHMEM_SB(inode->i_sb); 1380 if (sbinfo->max_blocks) { 1381 spin_lock(&sbinfo->stat_lock); 1382 if (sbinfo->free_blocks == 0 || 1383 shmem_acct_block(info->flags)) { 1384 spin_unlock(&sbinfo->stat_lock); 1385 spin_unlock(&info->lock); 1386 error = -ENOSPC; 1387 goto failed; 1388 } 1389 sbinfo->free_blocks--; 1390 inode->i_blocks += BLOCKS_PER_PAGE; 1391 spin_unlock(&sbinfo->stat_lock); 1392 } else if (shmem_acct_block(info->flags)) { 1393 spin_unlock(&info->lock); 1394 error = -ENOSPC; 1395 goto failed; 1396 } 1397 1398 if (!filepage) { 1399 int ret; 1400 1401 spin_unlock(&info->lock); 1402 filepage = shmem_alloc_page(gfp, info, idx); 1403 if (!filepage) { 1404 shmem_unacct_blocks(info->flags, 1); 1405 shmem_free_blocks(inode, 1); 1406 error = -ENOMEM; 1407 goto failed; 1408 } 1409 SetPageSwapBacked(filepage); 1410 1411 /* Precharge page while we can wait, compensate after */ 1412 error = mem_cgroup_cache_charge(filepage, current->mm, 1413 GFP_KERNEL); 1414 if (error) { 1415 page_cache_release(filepage); 1416 shmem_unacct_blocks(info->flags, 1); 1417 shmem_free_blocks(inode, 1); 1418 filepage = NULL; 1419 goto failed; 1420 } 1421 1422 spin_lock(&info->lock); 1423 entry = shmem_swp_alloc(info, idx, sgp); 1424 if (IS_ERR(entry)) 1425 error = PTR_ERR(entry); 1426 else { 1427 swap = *entry; 1428 shmem_swp_unmap(entry); 1429 } 1430 ret = error || swap.val; 1431 if (ret) 1432 mem_cgroup_uncharge_cache_page(filepage); 1433 else 1434 ret = add_to_page_cache_lru(filepage, mapping, 1435 idx, GFP_NOWAIT); 1436 /* 1437 * At add_to_page_cache_lru() failure, uncharge will 1438 * be done automatically. 1439 */ 1440 if (ret) { 1441 spin_unlock(&info->lock); 1442 page_cache_release(filepage); 1443 shmem_unacct_blocks(info->flags, 1); 1444 shmem_free_blocks(inode, 1); 1445 filepage = NULL; 1446 if (error) 1447 goto failed; 1448 goto repeat; 1449 } 1450 info->flags |= SHMEM_PAGEIN; 1451 } 1452 1453 info->alloced++; 1454 spin_unlock(&info->lock); 1455 clear_highpage(filepage); 1456 flush_dcache_page(filepage); 1457 SetPageUptodate(filepage); 1458 if (sgp == SGP_DIRTY) 1459 set_page_dirty(filepage); 1460 } 1461 done: 1462 *pagep = filepage; 1463 return 0; 1464 1465 failed: 1466 if (*pagep != filepage) { 1467 unlock_page(filepage); 1468 page_cache_release(filepage); 1469 } 1470 return error; 1471 } 1472 1473 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1474 { 1475 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1476 int error; 1477 int ret; 1478 1479 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 1480 return VM_FAULT_SIGBUS; 1481 1482 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1483 if (error) 1484 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1485 1486 return ret | VM_FAULT_LOCKED; 1487 } 1488 1489 #ifdef CONFIG_NUMA 1490 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) 1491 { 1492 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1493 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); 1494 } 1495 1496 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1497 unsigned long addr) 1498 { 1499 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1500 unsigned long idx; 1501 1502 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1503 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); 1504 } 1505 #endif 1506 1507 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1508 { 1509 struct inode *inode = file->f_path.dentry->d_inode; 1510 struct shmem_inode_info *info = SHMEM_I(inode); 1511 int retval = -ENOMEM; 1512 1513 spin_lock(&info->lock); 1514 if (lock && !(info->flags & VM_LOCKED)) { 1515 if (!user_shm_lock(inode->i_size, user)) 1516 goto out_nomem; 1517 info->flags |= VM_LOCKED; 1518 mapping_set_unevictable(file->f_mapping); 1519 } 1520 if (!lock && (info->flags & VM_LOCKED) && user) { 1521 user_shm_unlock(inode->i_size, user); 1522 info->flags &= ~VM_LOCKED; 1523 mapping_clear_unevictable(file->f_mapping); 1524 scan_mapping_unevictable_pages(file->f_mapping); 1525 } 1526 retval = 0; 1527 1528 out_nomem: 1529 spin_unlock(&info->lock); 1530 return retval; 1531 } 1532 1533 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1534 { 1535 file_accessed(file); 1536 vma->vm_ops = &shmem_vm_ops; 1537 vma->vm_flags |= VM_CAN_NONLINEAR; 1538 return 0; 1539 } 1540 1541 static struct inode *shmem_get_inode(struct super_block *sb, int mode, 1542 dev_t dev, unsigned long flags) 1543 { 1544 struct inode *inode; 1545 struct shmem_inode_info *info; 1546 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1547 1548 if (shmem_reserve_inode(sb)) 1549 return NULL; 1550 1551 inode = new_inode(sb); 1552 if (inode) { 1553 inode->i_mode = mode; 1554 inode->i_uid = current_fsuid(); 1555 inode->i_gid = current_fsgid(); 1556 inode->i_blocks = 0; 1557 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1558 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1559 inode->i_generation = get_seconds(); 1560 info = SHMEM_I(inode); 1561 memset(info, 0, (char *)inode - (char *)info); 1562 spin_lock_init(&info->lock); 1563 info->flags = flags & VM_NORESERVE; 1564 INIT_LIST_HEAD(&info->swaplist); 1565 cache_no_acl(inode); 1566 1567 switch (mode & S_IFMT) { 1568 default: 1569 inode->i_op = &shmem_special_inode_operations; 1570 init_special_inode(inode, mode, dev); 1571 break; 1572 case S_IFREG: 1573 inode->i_mapping->a_ops = &shmem_aops; 1574 inode->i_op = &shmem_inode_operations; 1575 inode->i_fop = &shmem_file_operations; 1576 mpol_shared_policy_init(&info->policy, 1577 shmem_get_sbmpol(sbinfo)); 1578 break; 1579 case S_IFDIR: 1580 inc_nlink(inode); 1581 /* Some things misbehave if size == 0 on a directory */ 1582 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1583 inode->i_op = &shmem_dir_inode_operations; 1584 inode->i_fop = &simple_dir_operations; 1585 break; 1586 case S_IFLNK: 1587 /* 1588 * Must not load anything in the rbtree, 1589 * mpol_free_shared_policy will not be called. 1590 */ 1591 mpol_shared_policy_init(&info->policy, NULL); 1592 break; 1593 } 1594 } else 1595 shmem_free_inode(sb); 1596 return inode; 1597 } 1598 1599 #ifdef CONFIG_TMPFS 1600 static const struct inode_operations shmem_symlink_inode_operations; 1601 static const struct inode_operations shmem_symlink_inline_operations; 1602 1603 /* 1604 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin; 1605 * but providing them allows a tmpfs file to be used for splice, sendfile, and 1606 * below the loop driver, in the generic fashion that many filesystems support. 1607 */ 1608 static int shmem_readpage(struct file *file, struct page *page) 1609 { 1610 struct inode *inode = page->mapping->host; 1611 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL); 1612 unlock_page(page); 1613 return error; 1614 } 1615 1616 static int 1617 shmem_write_begin(struct file *file, struct address_space *mapping, 1618 loff_t pos, unsigned len, unsigned flags, 1619 struct page **pagep, void **fsdata) 1620 { 1621 struct inode *inode = mapping->host; 1622 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1623 *pagep = NULL; 1624 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1625 } 1626 1627 static int 1628 shmem_write_end(struct file *file, struct address_space *mapping, 1629 loff_t pos, unsigned len, unsigned copied, 1630 struct page *page, void *fsdata) 1631 { 1632 struct inode *inode = mapping->host; 1633 1634 if (pos + copied > inode->i_size) 1635 i_size_write(inode, pos + copied); 1636 1637 set_page_dirty(page); 1638 unlock_page(page); 1639 page_cache_release(page); 1640 1641 return copied; 1642 } 1643 1644 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1645 { 1646 struct inode *inode = filp->f_path.dentry->d_inode; 1647 struct address_space *mapping = inode->i_mapping; 1648 unsigned long index, offset; 1649 enum sgp_type sgp = SGP_READ; 1650 1651 /* 1652 * Might this read be for a stacking filesystem? Then when reading 1653 * holes of a sparse file, we actually need to allocate those pages, 1654 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1655 */ 1656 if (segment_eq(get_fs(), KERNEL_DS)) 1657 sgp = SGP_DIRTY; 1658 1659 index = *ppos >> PAGE_CACHE_SHIFT; 1660 offset = *ppos & ~PAGE_CACHE_MASK; 1661 1662 for (;;) { 1663 struct page *page = NULL; 1664 unsigned long end_index, nr, ret; 1665 loff_t i_size = i_size_read(inode); 1666 1667 end_index = i_size >> PAGE_CACHE_SHIFT; 1668 if (index > end_index) 1669 break; 1670 if (index == end_index) { 1671 nr = i_size & ~PAGE_CACHE_MASK; 1672 if (nr <= offset) 1673 break; 1674 } 1675 1676 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1677 if (desc->error) { 1678 if (desc->error == -EINVAL) 1679 desc->error = 0; 1680 break; 1681 } 1682 if (page) 1683 unlock_page(page); 1684 1685 /* 1686 * We must evaluate after, since reads (unlike writes) 1687 * are called without i_mutex protection against truncate 1688 */ 1689 nr = PAGE_CACHE_SIZE; 1690 i_size = i_size_read(inode); 1691 end_index = i_size >> PAGE_CACHE_SHIFT; 1692 if (index == end_index) { 1693 nr = i_size & ~PAGE_CACHE_MASK; 1694 if (nr <= offset) { 1695 if (page) 1696 page_cache_release(page); 1697 break; 1698 } 1699 } 1700 nr -= offset; 1701 1702 if (page) { 1703 /* 1704 * If users can be writing to this page using arbitrary 1705 * virtual addresses, take care about potential aliasing 1706 * before reading the page on the kernel side. 1707 */ 1708 if (mapping_writably_mapped(mapping)) 1709 flush_dcache_page(page); 1710 /* 1711 * Mark the page accessed if we read the beginning. 1712 */ 1713 if (!offset) 1714 mark_page_accessed(page); 1715 } else { 1716 page = ZERO_PAGE(0); 1717 page_cache_get(page); 1718 } 1719 1720 /* 1721 * Ok, we have the page, and it's up-to-date, so 1722 * now we can copy it to user space... 1723 * 1724 * The actor routine returns how many bytes were actually used.. 1725 * NOTE! This may not be the same as how much of a user buffer 1726 * we filled up (we may be padding etc), so we can only update 1727 * "pos" here (the actor routine has to update the user buffer 1728 * pointers and the remaining count). 1729 */ 1730 ret = actor(desc, page, offset, nr); 1731 offset += ret; 1732 index += offset >> PAGE_CACHE_SHIFT; 1733 offset &= ~PAGE_CACHE_MASK; 1734 1735 page_cache_release(page); 1736 if (ret != nr || !desc->count) 1737 break; 1738 1739 cond_resched(); 1740 } 1741 1742 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1743 file_accessed(filp); 1744 } 1745 1746 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1747 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1748 { 1749 struct file *filp = iocb->ki_filp; 1750 ssize_t retval; 1751 unsigned long seg; 1752 size_t count; 1753 loff_t *ppos = &iocb->ki_pos; 1754 1755 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1756 if (retval) 1757 return retval; 1758 1759 for (seg = 0; seg < nr_segs; seg++) { 1760 read_descriptor_t desc; 1761 1762 desc.written = 0; 1763 desc.arg.buf = iov[seg].iov_base; 1764 desc.count = iov[seg].iov_len; 1765 if (desc.count == 0) 1766 continue; 1767 desc.error = 0; 1768 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1769 retval += desc.written; 1770 if (desc.error) { 1771 retval = retval ?: desc.error; 1772 break; 1773 } 1774 if (desc.count > 0) 1775 break; 1776 } 1777 return retval; 1778 } 1779 1780 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1781 { 1782 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1783 1784 buf->f_type = TMPFS_MAGIC; 1785 buf->f_bsize = PAGE_CACHE_SIZE; 1786 buf->f_namelen = NAME_MAX; 1787 spin_lock(&sbinfo->stat_lock); 1788 if (sbinfo->max_blocks) { 1789 buf->f_blocks = sbinfo->max_blocks; 1790 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks; 1791 } 1792 if (sbinfo->max_inodes) { 1793 buf->f_files = sbinfo->max_inodes; 1794 buf->f_ffree = sbinfo->free_inodes; 1795 } 1796 /* else leave those fields 0 like simple_statfs */ 1797 spin_unlock(&sbinfo->stat_lock); 1798 return 0; 1799 } 1800 1801 /* 1802 * File creation. Allocate an inode, and we're done.. 1803 */ 1804 static int 1805 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1806 { 1807 struct inode *inode; 1808 int error = -ENOSPC; 1809 1810 inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE); 1811 if (inode) { 1812 error = security_inode_init_security(inode, dir, NULL, NULL, 1813 NULL); 1814 if (error) { 1815 if (error != -EOPNOTSUPP) { 1816 iput(inode); 1817 return error; 1818 } 1819 } 1820 error = shmem_acl_init(inode, dir); 1821 if (error) { 1822 iput(inode); 1823 return error; 1824 } 1825 if (dir->i_mode & S_ISGID) { 1826 inode->i_gid = dir->i_gid; 1827 if (S_ISDIR(mode)) 1828 inode->i_mode |= S_ISGID; 1829 } 1830 dir->i_size += BOGO_DIRENT_SIZE; 1831 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1832 d_instantiate(dentry, inode); 1833 dget(dentry); /* Extra count - pin the dentry in core */ 1834 } 1835 return error; 1836 } 1837 1838 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1839 { 1840 int error; 1841 1842 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1843 return error; 1844 inc_nlink(dir); 1845 return 0; 1846 } 1847 1848 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, 1849 struct nameidata *nd) 1850 { 1851 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1852 } 1853 1854 /* 1855 * Link a file.. 1856 */ 1857 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1858 { 1859 struct inode *inode = old_dentry->d_inode; 1860 int ret; 1861 1862 /* 1863 * No ordinary (disk based) filesystem counts links as inodes; 1864 * but each new link needs a new dentry, pinning lowmem, and 1865 * tmpfs dentries cannot be pruned until they are unlinked. 1866 */ 1867 ret = shmem_reserve_inode(inode->i_sb); 1868 if (ret) 1869 goto out; 1870 1871 dir->i_size += BOGO_DIRENT_SIZE; 1872 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1873 inc_nlink(inode); 1874 atomic_inc(&inode->i_count); /* New dentry reference */ 1875 dget(dentry); /* Extra pinning count for the created dentry */ 1876 d_instantiate(dentry, inode); 1877 out: 1878 return ret; 1879 } 1880 1881 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1882 { 1883 struct inode *inode = dentry->d_inode; 1884 1885 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1886 shmem_free_inode(inode->i_sb); 1887 1888 dir->i_size -= BOGO_DIRENT_SIZE; 1889 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1890 drop_nlink(inode); 1891 dput(dentry); /* Undo the count from "create" - this does all the work */ 1892 return 0; 1893 } 1894 1895 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1896 { 1897 if (!simple_empty(dentry)) 1898 return -ENOTEMPTY; 1899 1900 drop_nlink(dentry->d_inode); 1901 drop_nlink(dir); 1902 return shmem_unlink(dir, dentry); 1903 } 1904 1905 /* 1906 * The VFS layer already does all the dentry stuff for rename, 1907 * we just have to decrement the usage count for the target if 1908 * it exists so that the VFS layer correctly free's it when it 1909 * gets overwritten. 1910 */ 1911 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1912 { 1913 struct inode *inode = old_dentry->d_inode; 1914 int they_are_dirs = S_ISDIR(inode->i_mode); 1915 1916 if (!simple_empty(new_dentry)) 1917 return -ENOTEMPTY; 1918 1919 if (new_dentry->d_inode) { 1920 (void) shmem_unlink(new_dir, new_dentry); 1921 if (they_are_dirs) 1922 drop_nlink(old_dir); 1923 } else if (they_are_dirs) { 1924 drop_nlink(old_dir); 1925 inc_nlink(new_dir); 1926 } 1927 1928 old_dir->i_size -= BOGO_DIRENT_SIZE; 1929 new_dir->i_size += BOGO_DIRENT_SIZE; 1930 old_dir->i_ctime = old_dir->i_mtime = 1931 new_dir->i_ctime = new_dir->i_mtime = 1932 inode->i_ctime = CURRENT_TIME; 1933 return 0; 1934 } 1935 1936 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1937 { 1938 int error; 1939 int len; 1940 struct inode *inode; 1941 struct page *page = NULL; 1942 char *kaddr; 1943 struct shmem_inode_info *info; 1944 1945 len = strlen(symname) + 1; 1946 if (len > PAGE_CACHE_SIZE) 1947 return -ENAMETOOLONG; 1948 1949 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 1950 if (!inode) 1951 return -ENOSPC; 1952 1953 error = security_inode_init_security(inode, dir, NULL, NULL, 1954 NULL); 1955 if (error) { 1956 if (error != -EOPNOTSUPP) { 1957 iput(inode); 1958 return error; 1959 } 1960 error = 0; 1961 } 1962 1963 info = SHMEM_I(inode); 1964 inode->i_size = len-1; 1965 if (len <= (char *)inode - (char *)info) { 1966 /* do it inline */ 1967 memcpy(info, symname, len); 1968 inode->i_op = &shmem_symlink_inline_operations; 1969 } else { 1970 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1971 if (error) { 1972 iput(inode); 1973 return error; 1974 } 1975 inode->i_mapping->a_ops = &shmem_aops; 1976 inode->i_op = &shmem_symlink_inode_operations; 1977 kaddr = kmap_atomic(page, KM_USER0); 1978 memcpy(kaddr, symname, len); 1979 kunmap_atomic(kaddr, KM_USER0); 1980 set_page_dirty(page); 1981 unlock_page(page); 1982 page_cache_release(page); 1983 } 1984 if (dir->i_mode & S_ISGID) 1985 inode->i_gid = dir->i_gid; 1986 dir->i_size += BOGO_DIRENT_SIZE; 1987 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1988 d_instantiate(dentry, inode); 1989 dget(dentry); 1990 return 0; 1991 } 1992 1993 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) 1994 { 1995 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); 1996 return NULL; 1997 } 1998 1999 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2000 { 2001 struct page *page = NULL; 2002 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2003 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); 2004 if (page) 2005 unlock_page(page); 2006 return page; 2007 } 2008 2009 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2010 { 2011 if (!IS_ERR(nd_get_link(nd))) { 2012 struct page *page = cookie; 2013 kunmap(page); 2014 mark_page_accessed(page); 2015 page_cache_release(page); 2016 } 2017 } 2018 2019 static const struct inode_operations shmem_symlink_inline_operations = { 2020 .readlink = generic_readlink, 2021 .follow_link = shmem_follow_link_inline, 2022 }; 2023 2024 static const struct inode_operations shmem_symlink_inode_operations = { 2025 .truncate = shmem_truncate, 2026 .readlink = generic_readlink, 2027 .follow_link = shmem_follow_link, 2028 .put_link = shmem_put_link, 2029 }; 2030 2031 #ifdef CONFIG_TMPFS_POSIX_ACL 2032 /* 2033 * Superblocks without xattr inode operations will get security.* xattr 2034 * support from the VFS "for free". As soon as we have any other xattrs 2035 * like ACLs, we also need to implement the security.* handlers at 2036 * filesystem level, though. 2037 */ 2038 2039 static size_t shmem_xattr_security_list(struct inode *inode, char *list, 2040 size_t list_len, const char *name, 2041 size_t name_len) 2042 { 2043 return security_inode_listsecurity(inode, list, list_len); 2044 } 2045 2046 static int shmem_xattr_security_get(struct inode *inode, const char *name, 2047 void *buffer, size_t size) 2048 { 2049 if (strcmp(name, "") == 0) 2050 return -EINVAL; 2051 return xattr_getsecurity(inode, name, buffer, size); 2052 } 2053 2054 static int shmem_xattr_security_set(struct inode *inode, const char *name, 2055 const void *value, size_t size, int flags) 2056 { 2057 if (strcmp(name, "") == 0) 2058 return -EINVAL; 2059 return security_inode_setsecurity(inode, name, value, size, flags); 2060 } 2061 2062 static struct xattr_handler shmem_xattr_security_handler = { 2063 .prefix = XATTR_SECURITY_PREFIX, 2064 .list = shmem_xattr_security_list, 2065 .get = shmem_xattr_security_get, 2066 .set = shmem_xattr_security_set, 2067 }; 2068 2069 static struct xattr_handler *shmem_xattr_handlers[] = { 2070 &shmem_xattr_acl_access_handler, 2071 &shmem_xattr_acl_default_handler, 2072 &shmem_xattr_security_handler, 2073 NULL 2074 }; 2075 #endif 2076 2077 static struct dentry *shmem_get_parent(struct dentry *child) 2078 { 2079 return ERR_PTR(-ESTALE); 2080 } 2081 2082 static int shmem_match(struct inode *ino, void *vfh) 2083 { 2084 __u32 *fh = vfh; 2085 __u64 inum = fh[2]; 2086 inum = (inum << 32) | fh[1]; 2087 return ino->i_ino == inum && fh[0] == ino->i_generation; 2088 } 2089 2090 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2091 struct fid *fid, int fh_len, int fh_type) 2092 { 2093 struct inode *inode; 2094 struct dentry *dentry = NULL; 2095 u64 inum = fid->raw[2]; 2096 inum = (inum << 32) | fid->raw[1]; 2097 2098 if (fh_len < 3) 2099 return NULL; 2100 2101 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2102 shmem_match, fid->raw); 2103 if (inode) { 2104 dentry = d_find_alias(inode); 2105 iput(inode); 2106 } 2107 2108 return dentry; 2109 } 2110 2111 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2112 int connectable) 2113 { 2114 struct inode *inode = dentry->d_inode; 2115 2116 if (*len < 3) 2117 return 255; 2118 2119 if (hlist_unhashed(&inode->i_hash)) { 2120 /* Unfortunately insert_inode_hash is not idempotent, 2121 * so as we hash inodes here rather than at creation 2122 * time, we need a lock to ensure we only try 2123 * to do it once 2124 */ 2125 static DEFINE_SPINLOCK(lock); 2126 spin_lock(&lock); 2127 if (hlist_unhashed(&inode->i_hash)) 2128 __insert_inode_hash(inode, 2129 inode->i_ino + inode->i_generation); 2130 spin_unlock(&lock); 2131 } 2132 2133 fh[0] = inode->i_generation; 2134 fh[1] = inode->i_ino; 2135 fh[2] = ((__u64)inode->i_ino) >> 32; 2136 2137 *len = 3; 2138 return 1; 2139 } 2140 2141 static const struct export_operations shmem_export_ops = { 2142 .get_parent = shmem_get_parent, 2143 .encode_fh = shmem_encode_fh, 2144 .fh_to_dentry = shmem_fh_to_dentry, 2145 }; 2146 2147 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2148 bool remount) 2149 { 2150 char *this_char, *value, *rest; 2151 2152 while (options != NULL) { 2153 this_char = options; 2154 for (;;) { 2155 /* 2156 * NUL-terminate this option: unfortunately, 2157 * mount options form a comma-separated list, 2158 * but mpol's nodelist may also contain commas. 2159 */ 2160 options = strchr(options, ','); 2161 if (options == NULL) 2162 break; 2163 options++; 2164 if (!isdigit(*options)) { 2165 options[-1] = '\0'; 2166 break; 2167 } 2168 } 2169 if (!*this_char) 2170 continue; 2171 if ((value = strchr(this_char,'=')) != NULL) { 2172 *value++ = 0; 2173 } else { 2174 printk(KERN_ERR 2175 "tmpfs: No value for mount option '%s'\n", 2176 this_char); 2177 return 1; 2178 } 2179 2180 if (!strcmp(this_char,"size")) { 2181 unsigned long long size; 2182 size = memparse(value,&rest); 2183 if (*rest == '%') { 2184 size <<= PAGE_SHIFT; 2185 size *= totalram_pages; 2186 do_div(size, 100); 2187 rest++; 2188 } 2189 if (*rest) 2190 goto bad_val; 2191 sbinfo->max_blocks = 2192 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2193 } else if (!strcmp(this_char,"nr_blocks")) { 2194 sbinfo->max_blocks = memparse(value, &rest); 2195 if (*rest) 2196 goto bad_val; 2197 } else if (!strcmp(this_char,"nr_inodes")) { 2198 sbinfo->max_inodes = memparse(value, &rest); 2199 if (*rest) 2200 goto bad_val; 2201 } else if (!strcmp(this_char,"mode")) { 2202 if (remount) 2203 continue; 2204 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2205 if (*rest) 2206 goto bad_val; 2207 } else if (!strcmp(this_char,"uid")) { 2208 if (remount) 2209 continue; 2210 sbinfo->uid = simple_strtoul(value, &rest, 0); 2211 if (*rest) 2212 goto bad_val; 2213 } else if (!strcmp(this_char,"gid")) { 2214 if (remount) 2215 continue; 2216 sbinfo->gid = simple_strtoul(value, &rest, 0); 2217 if (*rest) 2218 goto bad_val; 2219 } else if (!strcmp(this_char,"mpol")) { 2220 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2221 goto bad_val; 2222 } else { 2223 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2224 this_char); 2225 return 1; 2226 } 2227 } 2228 return 0; 2229 2230 bad_val: 2231 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2232 value, this_char); 2233 return 1; 2234 2235 } 2236 2237 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2238 { 2239 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2240 struct shmem_sb_info config = *sbinfo; 2241 unsigned long blocks; 2242 unsigned long inodes; 2243 int error = -EINVAL; 2244 2245 if (shmem_parse_options(data, &config, true)) 2246 return error; 2247 2248 spin_lock(&sbinfo->stat_lock); 2249 blocks = sbinfo->max_blocks - sbinfo->free_blocks; 2250 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2251 if (config.max_blocks < blocks) 2252 goto out; 2253 if (config.max_inodes < inodes) 2254 goto out; 2255 /* 2256 * Those tests also disallow limited->unlimited while any are in 2257 * use, so i_blocks will always be zero when max_blocks is zero; 2258 * but we must separately disallow unlimited->limited, because 2259 * in that case we have no record of how much is already in use. 2260 */ 2261 if (config.max_blocks && !sbinfo->max_blocks) 2262 goto out; 2263 if (config.max_inodes && !sbinfo->max_inodes) 2264 goto out; 2265 2266 error = 0; 2267 sbinfo->max_blocks = config.max_blocks; 2268 sbinfo->free_blocks = config.max_blocks - blocks; 2269 sbinfo->max_inodes = config.max_inodes; 2270 sbinfo->free_inodes = config.max_inodes - inodes; 2271 2272 mpol_put(sbinfo->mpol); 2273 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2274 out: 2275 spin_unlock(&sbinfo->stat_lock); 2276 return error; 2277 } 2278 2279 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs) 2280 { 2281 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb); 2282 2283 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2284 seq_printf(seq, ",size=%luk", 2285 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2286 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2287 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2288 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2289 seq_printf(seq, ",mode=%03o", sbinfo->mode); 2290 if (sbinfo->uid != 0) 2291 seq_printf(seq, ",uid=%u", sbinfo->uid); 2292 if (sbinfo->gid != 0) 2293 seq_printf(seq, ",gid=%u", sbinfo->gid); 2294 shmem_show_mpol(seq, sbinfo->mpol); 2295 return 0; 2296 } 2297 #endif /* CONFIG_TMPFS */ 2298 2299 static void shmem_put_super(struct super_block *sb) 2300 { 2301 kfree(sb->s_fs_info); 2302 sb->s_fs_info = NULL; 2303 } 2304 2305 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2306 { 2307 struct inode *inode; 2308 struct dentry *root; 2309 struct shmem_sb_info *sbinfo; 2310 int err = -ENOMEM; 2311 2312 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2313 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2314 L1_CACHE_BYTES), GFP_KERNEL); 2315 if (!sbinfo) 2316 return -ENOMEM; 2317 2318 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2319 sbinfo->uid = current_fsuid(); 2320 sbinfo->gid = current_fsgid(); 2321 sb->s_fs_info = sbinfo; 2322 2323 #ifdef CONFIG_TMPFS 2324 /* 2325 * Per default we only allow half of the physical ram per 2326 * tmpfs instance, limiting inodes to one per page of lowmem; 2327 * but the internal instance is left unlimited. 2328 */ 2329 if (!(sb->s_flags & MS_NOUSER)) { 2330 sbinfo->max_blocks = shmem_default_max_blocks(); 2331 sbinfo->max_inodes = shmem_default_max_inodes(); 2332 if (shmem_parse_options(data, sbinfo, false)) { 2333 err = -EINVAL; 2334 goto failed; 2335 } 2336 } 2337 sb->s_export_op = &shmem_export_ops; 2338 #else 2339 sb->s_flags |= MS_NOUSER; 2340 #endif 2341 2342 spin_lock_init(&sbinfo->stat_lock); 2343 sbinfo->free_blocks = sbinfo->max_blocks; 2344 sbinfo->free_inodes = sbinfo->max_inodes; 2345 2346 sb->s_maxbytes = SHMEM_MAX_BYTES; 2347 sb->s_blocksize = PAGE_CACHE_SIZE; 2348 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2349 sb->s_magic = TMPFS_MAGIC; 2350 sb->s_op = &shmem_ops; 2351 sb->s_time_gran = 1; 2352 #ifdef CONFIG_TMPFS_POSIX_ACL 2353 sb->s_xattr = shmem_xattr_handlers; 2354 sb->s_flags |= MS_POSIXACL; 2355 #endif 2356 2357 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2358 if (!inode) 2359 goto failed; 2360 inode->i_uid = sbinfo->uid; 2361 inode->i_gid = sbinfo->gid; 2362 root = d_alloc_root(inode); 2363 if (!root) 2364 goto failed_iput; 2365 sb->s_root = root; 2366 return 0; 2367 2368 failed_iput: 2369 iput(inode); 2370 failed: 2371 shmem_put_super(sb); 2372 return err; 2373 } 2374 2375 static struct kmem_cache *shmem_inode_cachep; 2376 2377 static struct inode *shmem_alloc_inode(struct super_block *sb) 2378 { 2379 struct shmem_inode_info *p; 2380 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2381 if (!p) 2382 return NULL; 2383 return &p->vfs_inode; 2384 } 2385 2386 static void shmem_destroy_inode(struct inode *inode) 2387 { 2388 if ((inode->i_mode & S_IFMT) == S_IFREG) { 2389 /* only struct inode is valid if it's an inline symlink */ 2390 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2391 } 2392 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2393 } 2394 2395 static void init_once(void *foo) 2396 { 2397 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2398 2399 inode_init_once(&p->vfs_inode); 2400 } 2401 2402 static int init_inodecache(void) 2403 { 2404 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2405 sizeof(struct shmem_inode_info), 2406 0, SLAB_PANIC, init_once); 2407 return 0; 2408 } 2409 2410 static void destroy_inodecache(void) 2411 { 2412 kmem_cache_destroy(shmem_inode_cachep); 2413 } 2414 2415 static const struct address_space_operations shmem_aops = { 2416 .writepage = shmem_writepage, 2417 .set_page_dirty = __set_page_dirty_no_writeback, 2418 #ifdef CONFIG_TMPFS 2419 .readpage = shmem_readpage, 2420 .write_begin = shmem_write_begin, 2421 .write_end = shmem_write_end, 2422 #endif 2423 .migratepage = migrate_page, 2424 .error_remove_page = generic_error_remove_page, 2425 }; 2426 2427 static const struct file_operations shmem_file_operations = { 2428 .mmap = shmem_mmap, 2429 #ifdef CONFIG_TMPFS 2430 .llseek = generic_file_llseek, 2431 .read = do_sync_read, 2432 .write = do_sync_write, 2433 .aio_read = shmem_file_aio_read, 2434 .aio_write = generic_file_aio_write, 2435 .fsync = simple_sync_file, 2436 .splice_read = generic_file_splice_read, 2437 .splice_write = generic_file_splice_write, 2438 #endif 2439 }; 2440 2441 static const struct inode_operations shmem_inode_operations = { 2442 .truncate = shmem_truncate, 2443 .setattr = shmem_notify_change, 2444 .truncate_range = shmem_truncate_range, 2445 #ifdef CONFIG_TMPFS_POSIX_ACL 2446 .setxattr = generic_setxattr, 2447 .getxattr = generic_getxattr, 2448 .listxattr = generic_listxattr, 2449 .removexattr = generic_removexattr, 2450 .check_acl = shmem_check_acl, 2451 #endif 2452 2453 }; 2454 2455 static const struct inode_operations shmem_dir_inode_operations = { 2456 #ifdef CONFIG_TMPFS 2457 .create = shmem_create, 2458 .lookup = simple_lookup, 2459 .link = shmem_link, 2460 .unlink = shmem_unlink, 2461 .symlink = shmem_symlink, 2462 .mkdir = shmem_mkdir, 2463 .rmdir = shmem_rmdir, 2464 .mknod = shmem_mknod, 2465 .rename = shmem_rename, 2466 #endif 2467 #ifdef CONFIG_TMPFS_POSIX_ACL 2468 .setattr = shmem_notify_change, 2469 .setxattr = generic_setxattr, 2470 .getxattr = generic_getxattr, 2471 .listxattr = generic_listxattr, 2472 .removexattr = generic_removexattr, 2473 .check_acl = shmem_check_acl, 2474 #endif 2475 }; 2476 2477 static const struct inode_operations shmem_special_inode_operations = { 2478 #ifdef CONFIG_TMPFS_POSIX_ACL 2479 .setattr = shmem_notify_change, 2480 .setxattr = generic_setxattr, 2481 .getxattr = generic_getxattr, 2482 .listxattr = generic_listxattr, 2483 .removexattr = generic_removexattr, 2484 .check_acl = shmem_check_acl, 2485 #endif 2486 }; 2487 2488 static const struct super_operations shmem_ops = { 2489 .alloc_inode = shmem_alloc_inode, 2490 .destroy_inode = shmem_destroy_inode, 2491 #ifdef CONFIG_TMPFS 2492 .statfs = shmem_statfs, 2493 .remount_fs = shmem_remount_fs, 2494 .show_options = shmem_show_options, 2495 #endif 2496 .delete_inode = shmem_delete_inode, 2497 .drop_inode = generic_delete_inode, 2498 .put_super = shmem_put_super, 2499 }; 2500 2501 static const struct vm_operations_struct shmem_vm_ops = { 2502 .fault = shmem_fault, 2503 #ifdef CONFIG_NUMA 2504 .set_policy = shmem_set_policy, 2505 .get_policy = shmem_get_policy, 2506 #endif 2507 }; 2508 2509 2510 static int shmem_get_sb(struct file_system_type *fs_type, 2511 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 2512 { 2513 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt); 2514 } 2515 2516 static struct file_system_type tmpfs_fs_type = { 2517 .owner = THIS_MODULE, 2518 .name = "tmpfs", 2519 .get_sb = shmem_get_sb, 2520 .kill_sb = kill_litter_super, 2521 }; 2522 2523 int __init init_tmpfs(void) 2524 { 2525 int error; 2526 2527 error = bdi_init(&shmem_backing_dev_info); 2528 if (error) 2529 goto out4; 2530 2531 error = init_inodecache(); 2532 if (error) 2533 goto out3; 2534 2535 error = register_filesystem(&tmpfs_fs_type); 2536 if (error) { 2537 printk(KERN_ERR "Could not register tmpfs\n"); 2538 goto out2; 2539 } 2540 2541 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER, 2542 tmpfs_fs_type.name, NULL); 2543 if (IS_ERR(shm_mnt)) { 2544 error = PTR_ERR(shm_mnt); 2545 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2546 goto out1; 2547 } 2548 return 0; 2549 2550 out1: 2551 unregister_filesystem(&tmpfs_fs_type); 2552 out2: 2553 destroy_inodecache(); 2554 out3: 2555 bdi_destroy(&shmem_backing_dev_info); 2556 out4: 2557 shm_mnt = ERR_PTR(error); 2558 return error; 2559 } 2560 2561 #else /* !CONFIG_SHMEM */ 2562 2563 /* 2564 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2565 * 2566 * This is intended for small system where the benefits of the full 2567 * shmem code (swap-backed and resource-limited) are outweighed by 2568 * their complexity. On systems without swap this code should be 2569 * effectively equivalent, but much lighter weight. 2570 */ 2571 2572 #include <linux/ramfs.h> 2573 2574 static struct file_system_type tmpfs_fs_type = { 2575 .name = "tmpfs", 2576 .get_sb = ramfs_get_sb, 2577 .kill_sb = kill_litter_super, 2578 }; 2579 2580 int __init init_tmpfs(void) 2581 { 2582 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0); 2583 2584 shm_mnt = kern_mount(&tmpfs_fs_type); 2585 BUG_ON(IS_ERR(shm_mnt)); 2586 2587 return 0; 2588 } 2589 2590 int shmem_unuse(swp_entry_t entry, struct page *page) 2591 { 2592 return 0; 2593 } 2594 2595 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2596 { 2597 return 0; 2598 } 2599 2600 #define shmem_vm_ops generic_file_vm_ops 2601 #define shmem_file_operations ramfs_file_operations 2602 #define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev) 2603 #define shmem_acct_size(flags, size) 0 2604 #define shmem_unacct_size(flags, size) do {} while (0) 2605 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE 2606 2607 #endif /* CONFIG_SHMEM */ 2608 2609 /* common code */ 2610 2611 /** 2612 * shmem_file_setup - get an unlinked file living in tmpfs 2613 * @name: name for dentry (to be seen in /proc/<pid>/maps 2614 * @size: size to be set for the file 2615 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2616 */ 2617 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2618 { 2619 int error; 2620 struct file *file; 2621 struct inode *inode; 2622 struct dentry *dentry, *root; 2623 struct qstr this; 2624 2625 if (IS_ERR(shm_mnt)) 2626 return (void *)shm_mnt; 2627 2628 if (size < 0 || size > SHMEM_MAX_BYTES) 2629 return ERR_PTR(-EINVAL); 2630 2631 if (shmem_acct_size(flags, size)) 2632 return ERR_PTR(-ENOMEM); 2633 2634 error = -ENOMEM; 2635 this.name = name; 2636 this.len = strlen(name); 2637 this.hash = 0; /* will go */ 2638 root = shm_mnt->mnt_root; 2639 dentry = d_alloc(root, &this); 2640 if (!dentry) 2641 goto put_memory; 2642 2643 error = -ENFILE; 2644 file = get_empty_filp(); 2645 if (!file) 2646 goto put_dentry; 2647 2648 error = -ENOSPC; 2649 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags); 2650 if (!inode) 2651 goto close_file; 2652 2653 d_instantiate(dentry, inode); 2654 inode->i_size = size; 2655 inode->i_nlink = 0; /* It is unlinked */ 2656 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ, 2657 &shmem_file_operations); 2658 2659 #ifndef CONFIG_MMU 2660 error = ramfs_nommu_expand_for_mapping(inode, size); 2661 if (error) 2662 goto close_file; 2663 #endif 2664 ima_counts_get(file); 2665 return file; 2666 2667 close_file: 2668 put_filp(file); 2669 put_dentry: 2670 dput(dentry); 2671 put_memory: 2672 shmem_unacct_size(flags, size); 2673 return ERR_PTR(error); 2674 } 2675 EXPORT_SYMBOL_GPL(shmem_file_setup); 2676 2677 /** 2678 * shmem_zero_setup - setup a shared anonymous mapping 2679 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2680 */ 2681 int shmem_zero_setup(struct vm_area_struct *vma) 2682 { 2683 struct file *file; 2684 loff_t size = vma->vm_end - vma->vm_start; 2685 2686 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2687 if (IS_ERR(file)) 2688 return PTR_ERR(file); 2689 2690 if (vma->vm_file) 2691 fput(vma->vm_file); 2692 vma->vm_file = file; 2693 vma->vm_ops = &shmem_vm_ops; 2694 return 0; 2695 } 2696