1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Pretend that one inode + its dentry occupy this much memory */ 94 #define BOGO_INODE_SIZE 1024 95 96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 97 #define SHORT_SYMLINK_LEN 128 98 99 /* 100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 101 * inode->i_private (with i_rwsem making sure that it has only one user at 102 * a time): we would prefer not to enlarge the shmem inode just for that. 103 */ 104 struct shmem_falloc { 105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 106 pgoff_t start; /* start of range currently being fallocated */ 107 pgoff_t next; /* the next page offset to be fallocated */ 108 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 110 }; 111 112 struct shmem_options { 113 unsigned long long blocks; 114 unsigned long long inodes; 115 struct mempolicy *mpol; 116 kuid_t uid; 117 kgid_t gid; 118 umode_t mode; 119 bool full_inums; 120 int huge; 121 int seen; 122 bool noswap; 123 unsigned short quota_types; 124 struct shmem_quota_limits qlimits; 125 #define SHMEM_SEEN_BLOCKS 1 126 #define SHMEM_SEEN_INODES 2 127 #define SHMEM_SEEN_HUGE 4 128 #define SHMEM_SEEN_INUMS 8 129 #define SHMEM_SEEN_NOSWAP 16 130 #define SHMEM_SEEN_QUOTA 32 131 }; 132 133 #ifdef CONFIG_TMPFS 134 static unsigned long shmem_default_max_blocks(void) 135 { 136 return totalram_pages() / 2; 137 } 138 139 static unsigned long shmem_default_max_inodes(void) 140 { 141 unsigned long nr_pages = totalram_pages(); 142 143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 144 ULONG_MAX / BOGO_INODE_SIZE); 145 } 146 #endif 147 148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 149 struct folio **foliop, enum sgp_type sgp, 150 gfp_t gfp, struct vm_area_struct *vma, 151 vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_block(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (percpu_counter_compare(&sbinfo->used_blocks, 222 sbinfo->max_blocks - pages) > 0) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) 227 goto unacct; 228 229 percpu_counter_add(&sbinfo->used_blocks, pages); 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool vma_is_anon_shmem(struct vm_area_struct *vma) 267 { 268 return vma->vm_ops == &shmem_anon_vm_ops; 269 } 270 271 bool vma_is_shmem(struct vm_area_struct *vma) 272 { 273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 274 } 275 276 static LIST_HEAD(shmem_swaplist); 277 static DEFINE_MUTEX(shmem_swaplist_mutex); 278 279 #ifdef CONFIG_TMPFS_QUOTA 280 281 static int shmem_enable_quotas(struct super_block *sb, 282 unsigned short quota_types) 283 { 284 int type, err = 0; 285 286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 288 if (!(quota_types & (1 << type))) 289 continue; 290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 291 DQUOT_USAGE_ENABLED | 292 DQUOT_LIMITS_ENABLED); 293 if (err) 294 goto out_err; 295 } 296 return 0; 297 298 out_err: 299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 300 type, err); 301 for (type--; type >= 0; type--) 302 dquot_quota_off(sb, type); 303 return err; 304 } 305 306 static void shmem_disable_quotas(struct super_block *sb) 307 { 308 int type; 309 310 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 311 dquot_quota_off(sb, type); 312 } 313 314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 315 { 316 return SHMEM_I(inode)->i_dquot; 317 } 318 #endif /* CONFIG_TMPFS_QUOTA */ 319 320 /* 321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 322 * produces a novel ino for the newly allocated inode. 323 * 324 * It may also be called when making a hard link to permit the space needed by 325 * each dentry. However, in that case, no new inode number is needed since that 326 * internally draws from another pool of inode numbers (currently global 327 * get_next_ino()). This case is indicated by passing NULL as inop. 328 */ 329 #define SHMEM_INO_BATCH 1024 330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 331 { 332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 333 ino_t ino; 334 335 if (!(sb->s_flags & SB_KERNMOUNT)) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 if (sbinfo->max_inodes) { 338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 339 raw_spin_unlock(&sbinfo->stat_lock); 340 return -ENOSPC; 341 } 342 sbinfo->free_ispace -= BOGO_INODE_SIZE; 343 } 344 if (inop) { 345 ino = sbinfo->next_ino++; 346 if (unlikely(is_zero_ino(ino))) 347 ino = sbinfo->next_ino++; 348 if (unlikely(!sbinfo->full_inums && 349 ino > UINT_MAX)) { 350 /* 351 * Emulate get_next_ino uint wraparound for 352 * compatibility 353 */ 354 if (IS_ENABLED(CONFIG_64BIT)) 355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 356 __func__, MINOR(sb->s_dev)); 357 sbinfo->next_ino = 1; 358 ino = sbinfo->next_ino++; 359 } 360 *inop = ino; 361 } 362 raw_spin_unlock(&sbinfo->stat_lock); 363 } else if (inop) { 364 /* 365 * __shmem_file_setup, one of our callers, is lock-free: it 366 * doesn't hold stat_lock in shmem_reserve_inode since 367 * max_inodes is always 0, and is called from potentially 368 * unknown contexts. As such, use a per-cpu batched allocator 369 * which doesn't require the per-sb stat_lock unless we are at 370 * the batch boundary. 371 * 372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 373 * shmem mounts are not exposed to userspace, so we don't need 374 * to worry about things like glibc compatibility. 375 */ 376 ino_t *next_ino; 377 378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 379 ino = *next_ino; 380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 381 raw_spin_lock(&sbinfo->stat_lock); 382 ino = sbinfo->next_ino; 383 sbinfo->next_ino += SHMEM_INO_BATCH; 384 raw_spin_unlock(&sbinfo->stat_lock); 385 if (unlikely(is_zero_ino(ino))) 386 ino++; 387 } 388 *inop = ino; 389 *next_ino = ++ino; 390 put_cpu(); 391 } 392 393 return 0; 394 } 395 396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 397 { 398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 399 if (sbinfo->max_inodes) { 400 raw_spin_lock(&sbinfo->stat_lock); 401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 } 404 } 405 406 /** 407 * shmem_recalc_inode - recalculate the block usage of an inode 408 * @inode: inode to recalc 409 * @alloced: the change in number of pages allocated to inode 410 * @swapped: the change in number of pages swapped from inode 411 * 412 * We have to calculate the free blocks since the mm can drop 413 * undirtied hole pages behind our back. 414 * 415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 417 */ 418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 419 { 420 struct shmem_inode_info *info = SHMEM_I(inode); 421 long freed; 422 423 spin_lock(&info->lock); 424 info->alloced += alloced; 425 info->swapped += swapped; 426 freed = info->alloced - info->swapped - 427 READ_ONCE(inode->i_mapping->nrpages); 428 /* 429 * Special case: whereas normally shmem_recalc_inode() is called 430 * after i_mapping->nrpages has already been adjusted (up or down), 431 * shmem_writepage() has to raise swapped before nrpages is lowered - 432 * to stop a racing shmem_recalc_inode() from thinking that a page has 433 * been freed. Compensate here, to avoid the need for a followup call. 434 */ 435 if (swapped > 0) 436 freed += swapped; 437 if (freed > 0) 438 info->alloced -= freed; 439 spin_unlock(&info->lock); 440 441 /* The quota case may block */ 442 if (freed > 0) 443 shmem_inode_unacct_blocks(inode, freed); 444 } 445 446 bool shmem_charge(struct inode *inode, long pages) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 450 if (shmem_inode_acct_block(inode, pages)) 451 return false; 452 453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 454 xa_lock_irq(&mapping->i_pages); 455 mapping->nrpages += pages; 456 xa_unlock_irq(&mapping->i_pages); 457 458 shmem_recalc_inode(inode, pages, 0); 459 return true; 460 } 461 462 void shmem_uncharge(struct inode *inode, long pages) 463 { 464 /* pages argument is currently unused: keep it to help debugging */ 465 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 466 467 shmem_recalc_inode(inode, 0, 0); 468 } 469 470 /* 471 * Replace item expected in xarray by a new item, while holding xa_lock. 472 */ 473 static int shmem_replace_entry(struct address_space *mapping, 474 pgoff_t index, void *expected, void *replacement) 475 { 476 XA_STATE(xas, &mapping->i_pages, index); 477 void *item; 478 479 VM_BUG_ON(!expected); 480 VM_BUG_ON(!replacement); 481 item = xas_load(&xas); 482 if (item != expected) 483 return -ENOENT; 484 xas_store(&xas, replacement); 485 return 0; 486 } 487 488 /* 489 * Sometimes, before we decide whether to proceed or to fail, we must check 490 * that an entry was not already brought back from swap by a racing thread. 491 * 492 * Checking page is not enough: by the time a SwapCache page is locked, it 493 * might be reused, and again be SwapCache, using the same swap as before. 494 */ 495 static bool shmem_confirm_swap(struct address_space *mapping, 496 pgoff_t index, swp_entry_t swap) 497 { 498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 499 } 500 501 /* 502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 503 * 504 * SHMEM_HUGE_NEVER: 505 * disables huge pages for the mount; 506 * SHMEM_HUGE_ALWAYS: 507 * enables huge pages for the mount; 508 * SHMEM_HUGE_WITHIN_SIZE: 509 * only allocate huge pages if the page will be fully within i_size, 510 * also respect fadvise()/madvise() hints; 511 * SHMEM_HUGE_ADVISE: 512 * only allocate huge pages if requested with fadvise()/madvise(); 513 */ 514 515 #define SHMEM_HUGE_NEVER 0 516 #define SHMEM_HUGE_ALWAYS 1 517 #define SHMEM_HUGE_WITHIN_SIZE 2 518 #define SHMEM_HUGE_ADVISE 3 519 520 /* 521 * Special values. 522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 523 * 524 * SHMEM_HUGE_DENY: 525 * disables huge on shm_mnt and all mounts, for emergency use; 526 * SHMEM_HUGE_FORCE: 527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 528 * 529 */ 530 #define SHMEM_HUGE_DENY (-1) 531 #define SHMEM_HUGE_FORCE (-2) 532 533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 534 /* ifdef here to avoid bloating shmem.o when not necessary */ 535 536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 537 538 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 539 struct mm_struct *mm, unsigned long vm_flags) 540 { 541 loff_t i_size; 542 543 if (!S_ISREG(inode->i_mode)) 544 return false; 545 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 546 return false; 547 if (shmem_huge == SHMEM_HUGE_DENY) 548 return false; 549 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 550 return true; 551 552 switch (SHMEM_SB(inode->i_sb)->huge) { 553 case SHMEM_HUGE_ALWAYS: 554 return true; 555 case SHMEM_HUGE_WITHIN_SIZE: 556 index = round_up(index + 1, HPAGE_PMD_NR); 557 i_size = round_up(i_size_read(inode), PAGE_SIZE); 558 if (i_size >> PAGE_SHIFT >= index) 559 return true; 560 fallthrough; 561 case SHMEM_HUGE_ADVISE: 562 if (mm && (vm_flags & VM_HUGEPAGE)) 563 return true; 564 fallthrough; 565 default: 566 return false; 567 } 568 } 569 570 #if defined(CONFIG_SYSFS) 571 static int shmem_parse_huge(const char *str) 572 { 573 if (!strcmp(str, "never")) 574 return SHMEM_HUGE_NEVER; 575 if (!strcmp(str, "always")) 576 return SHMEM_HUGE_ALWAYS; 577 if (!strcmp(str, "within_size")) 578 return SHMEM_HUGE_WITHIN_SIZE; 579 if (!strcmp(str, "advise")) 580 return SHMEM_HUGE_ADVISE; 581 if (!strcmp(str, "deny")) 582 return SHMEM_HUGE_DENY; 583 if (!strcmp(str, "force")) 584 return SHMEM_HUGE_FORCE; 585 return -EINVAL; 586 } 587 #endif 588 589 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 590 static const char *shmem_format_huge(int huge) 591 { 592 switch (huge) { 593 case SHMEM_HUGE_NEVER: 594 return "never"; 595 case SHMEM_HUGE_ALWAYS: 596 return "always"; 597 case SHMEM_HUGE_WITHIN_SIZE: 598 return "within_size"; 599 case SHMEM_HUGE_ADVISE: 600 return "advise"; 601 case SHMEM_HUGE_DENY: 602 return "deny"; 603 case SHMEM_HUGE_FORCE: 604 return "force"; 605 default: 606 VM_BUG_ON(1); 607 return "bad_val"; 608 } 609 } 610 #endif 611 612 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 613 struct shrink_control *sc, unsigned long nr_to_split) 614 { 615 LIST_HEAD(list), *pos, *next; 616 LIST_HEAD(to_remove); 617 struct inode *inode; 618 struct shmem_inode_info *info; 619 struct folio *folio; 620 unsigned long batch = sc ? sc->nr_to_scan : 128; 621 int split = 0; 622 623 if (list_empty(&sbinfo->shrinklist)) 624 return SHRINK_STOP; 625 626 spin_lock(&sbinfo->shrinklist_lock); 627 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 628 info = list_entry(pos, struct shmem_inode_info, shrinklist); 629 630 /* pin the inode */ 631 inode = igrab(&info->vfs_inode); 632 633 /* inode is about to be evicted */ 634 if (!inode) { 635 list_del_init(&info->shrinklist); 636 goto next; 637 } 638 639 /* Check if there's anything to gain */ 640 if (round_up(inode->i_size, PAGE_SIZE) == 641 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 642 list_move(&info->shrinklist, &to_remove); 643 goto next; 644 } 645 646 list_move(&info->shrinklist, &list); 647 next: 648 sbinfo->shrinklist_len--; 649 if (!--batch) 650 break; 651 } 652 spin_unlock(&sbinfo->shrinklist_lock); 653 654 list_for_each_safe(pos, next, &to_remove) { 655 info = list_entry(pos, struct shmem_inode_info, shrinklist); 656 inode = &info->vfs_inode; 657 list_del_init(&info->shrinklist); 658 iput(inode); 659 } 660 661 list_for_each_safe(pos, next, &list) { 662 int ret; 663 pgoff_t index; 664 665 info = list_entry(pos, struct shmem_inode_info, shrinklist); 666 inode = &info->vfs_inode; 667 668 if (nr_to_split && split >= nr_to_split) 669 goto move_back; 670 671 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 672 folio = filemap_get_folio(inode->i_mapping, index); 673 if (IS_ERR(folio)) 674 goto drop; 675 676 /* No huge page at the end of the file: nothing to split */ 677 if (!folio_test_large(folio)) { 678 folio_put(folio); 679 goto drop; 680 } 681 682 /* 683 * Move the inode on the list back to shrinklist if we failed 684 * to lock the page at this time. 685 * 686 * Waiting for the lock may lead to deadlock in the 687 * reclaim path. 688 */ 689 if (!folio_trylock(folio)) { 690 folio_put(folio); 691 goto move_back; 692 } 693 694 ret = split_folio(folio); 695 folio_unlock(folio); 696 folio_put(folio); 697 698 /* If split failed move the inode on the list back to shrinklist */ 699 if (ret) 700 goto move_back; 701 702 split++; 703 drop: 704 list_del_init(&info->shrinklist); 705 goto put; 706 move_back: 707 /* 708 * Make sure the inode is either on the global list or deleted 709 * from any local list before iput() since it could be deleted 710 * in another thread once we put the inode (then the local list 711 * is corrupted). 712 */ 713 spin_lock(&sbinfo->shrinklist_lock); 714 list_move(&info->shrinklist, &sbinfo->shrinklist); 715 sbinfo->shrinklist_len++; 716 spin_unlock(&sbinfo->shrinklist_lock); 717 put: 718 iput(inode); 719 } 720 721 return split; 722 } 723 724 static long shmem_unused_huge_scan(struct super_block *sb, 725 struct shrink_control *sc) 726 { 727 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 728 729 if (!READ_ONCE(sbinfo->shrinklist_len)) 730 return SHRINK_STOP; 731 732 return shmem_unused_huge_shrink(sbinfo, sc, 0); 733 } 734 735 static long shmem_unused_huge_count(struct super_block *sb, 736 struct shrink_control *sc) 737 { 738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 739 return READ_ONCE(sbinfo->shrinklist_len); 740 } 741 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 742 743 #define shmem_huge SHMEM_HUGE_DENY 744 745 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 746 struct shrink_control *sc, unsigned long nr_to_split) 747 { 748 return 0; 749 } 750 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 751 752 /* 753 * Like filemap_add_folio, but error if expected item has gone. 754 */ 755 static int shmem_add_to_page_cache(struct folio *folio, 756 struct address_space *mapping, 757 pgoff_t index, void *expected, gfp_t gfp, 758 struct mm_struct *charge_mm) 759 { 760 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 761 long nr = folio_nr_pages(folio); 762 int error; 763 764 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 765 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 766 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 767 VM_BUG_ON(expected && folio_test_large(folio)); 768 769 folio_ref_add(folio, nr); 770 folio->mapping = mapping; 771 folio->index = index; 772 773 if (!folio_test_swapcache(folio)) { 774 error = mem_cgroup_charge(folio, charge_mm, gfp); 775 if (error) { 776 if (folio_test_pmd_mappable(folio)) { 777 count_vm_event(THP_FILE_FALLBACK); 778 count_vm_event(THP_FILE_FALLBACK_CHARGE); 779 } 780 goto error; 781 } 782 } 783 folio_throttle_swaprate(folio, gfp); 784 785 do { 786 xas_lock_irq(&xas); 787 if (expected != xas_find_conflict(&xas)) { 788 xas_set_err(&xas, -EEXIST); 789 goto unlock; 790 } 791 if (expected && xas_find_conflict(&xas)) { 792 xas_set_err(&xas, -EEXIST); 793 goto unlock; 794 } 795 xas_store(&xas, folio); 796 if (xas_error(&xas)) 797 goto unlock; 798 if (folio_test_pmd_mappable(folio)) { 799 count_vm_event(THP_FILE_ALLOC); 800 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 801 } 802 mapping->nrpages += nr; 803 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 804 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 805 unlock: 806 xas_unlock_irq(&xas); 807 } while (xas_nomem(&xas, gfp)); 808 809 if (xas_error(&xas)) { 810 error = xas_error(&xas); 811 goto error; 812 } 813 814 return 0; 815 error: 816 folio->mapping = NULL; 817 folio_ref_sub(folio, nr); 818 return error; 819 } 820 821 /* 822 * Like delete_from_page_cache, but substitutes swap for @folio. 823 */ 824 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 825 { 826 struct address_space *mapping = folio->mapping; 827 long nr = folio_nr_pages(folio); 828 int error; 829 830 xa_lock_irq(&mapping->i_pages); 831 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 832 folio->mapping = NULL; 833 mapping->nrpages -= nr; 834 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 835 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 836 xa_unlock_irq(&mapping->i_pages); 837 folio_put(folio); 838 BUG_ON(error); 839 } 840 841 /* 842 * Remove swap entry from page cache, free the swap and its page cache. 843 */ 844 static int shmem_free_swap(struct address_space *mapping, 845 pgoff_t index, void *radswap) 846 { 847 void *old; 848 849 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 850 if (old != radswap) 851 return -ENOENT; 852 free_swap_and_cache(radix_to_swp_entry(radswap)); 853 return 0; 854 } 855 856 /* 857 * Determine (in bytes) how many of the shmem object's pages mapped by the 858 * given offsets are swapped out. 859 * 860 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 861 * as long as the inode doesn't go away and racy results are not a problem. 862 */ 863 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 864 pgoff_t start, pgoff_t end) 865 { 866 XA_STATE(xas, &mapping->i_pages, start); 867 struct page *page; 868 unsigned long swapped = 0; 869 unsigned long max = end - 1; 870 871 rcu_read_lock(); 872 xas_for_each(&xas, page, max) { 873 if (xas_retry(&xas, page)) 874 continue; 875 if (xa_is_value(page)) 876 swapped++; 877 if (xas.xa_index == max) 878 break; 879 if (need_resched()) { 880 xas_pause(&xas); 881 cond_resched_rcu(); 882 } 883 } 884 885 rcu_read_unlock(); 886 887 return swapped << PAGE_SHIFT; 888 } 889 890 /* 891 * Determine (in bytes) how many of the shmem object's pages mapped by the 892 * given vma is swapped out. 893 * 894 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 895 * as long as the inode doesn't go away and racy results are not a problem. 896 */ 897 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 898 { 899 struct inode *inode = file_inode(vma->vm_file); 900 struct shmem_inode_info *info = SHMEM_I(inode); 901 struct address_space *mapping = inode->i_mapping; 902 unsigned long swapped; 903 904 /* Be careful as we don't hold info->lock */ 905 swapped = READ_ONCE(info->swapped); 906 907 /* 908 * The easier cases are when the shmem object has nothing in swap, or 909 * the vma maps it whole. Then we can simply use the stats that we 910 * already track. 911 */ 912 if (!swapped) 913 return 0; 914 915 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 916 return swapped << PAGE_SHIFT; 917 918 /* Here comes the more involved part */ 919 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 920 vma->vm_pgoff + vma_pages(vma)); 921 } 922 923 /* 924 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 925 */ 926 void shmem_unlock_mapping(struct address_space *mapping) 927 { 928 struct folio_batch fbatch; 929 pgoff_t index = 0; 930 931 folio_batch_init(&fbatch); 932 /* 933 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 934 */ 935 while (!mapping_unevictable(mapping) && 936 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 937 check_move_unevictable_folios(&fbatch); 938 folio_batch_release(&fbatch); 939 cond_resched(); 940 } 941 } 942 943 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 944 { 945 struct folio *folio; 946 947 /* 948 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 949 * beyond i_size, and reports fallocated folios as holes. 950 */ 951 folio = filemap_get_entry(inode->i_mapping, index); 952 if (!folio) 953 return folio; 954 if (!xa_is_value(folio)) { 955 folio_lock(folio); 956 if (folio->mapping == inode->i_mapping) 957 return folio; 958 /* The folio has been swapped out */ 959 folio_unlock(folio); 960 folio_put(folio); 961 } 962 /* 963 * But read a folio back from swap if any of it is within i_size 964 * (although in some cases this is just a waste of time). 965 */ 966 folio = NULL; 967 shmem_get_folio(inode, index, &folio, SGP_READ); 968 return folio; 969 } 970 971 /* 972 * Remove range of pages and swap entries from page cache, and free them. 973 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 974 */ 975 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 976 bool unfalloc) 977 { 978 struct address_space *mapping = inode->i_mapping; 979 struct shmem_inode_info *info = SHMEM_I(inode); 980 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 981 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 982 struct folio_batch fbatch; 983 pgoff_t indices[PAGEVEC_SIZE]; 984 struct folio *folio; 985 bool same_folio; 986 long nr_swaps_freed = 0; 987 pgoff_t index; 988 int i; 989 990 if (lend == -1) 991 end = -1; /* unsigned, so actually very big */ 992 993 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 994 info->fallocend = start; 995 996 folio_batch_init(&fbatch); 997 index = start; 998 while (index < end && find_lock_entries(mapping, &index, end - 1, 999 &fbatch, indices)) { 1000 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1001 folio = fbatch.folios[i]; 1002 1003 if (xa_is_value(folio)) { 1004 if (unfalloc) 1005 continue; 1006 nr_swaps_freed += !shmem_free_swap(mapping, 1007 indices[i], folio); 1008 continue; 1009 } 1010 1011 if (!unfalloc || !folio_test_uptodate(folio)) 1012 truncate_inode_folio(mapping, folio); 1013 folio_unlock(folio); 1014 } 1015 folio_batch_remove_exceptionals(&fbatch); 1016 folio_batch_release(&fbatch); 1017 cond_resched(); 1018 } 1019 1020 /* 1021 * When undoing a failed fallocate, we want none of the partial folio 1022 * zeroing and splitting below, but shall want to truncate the whole 1023 * folio when !uptodate indicates that it was added by this fallocate, 1024 * even when [lstart, lend] covers only a part of the folio. 1025 */ 1026 if (unfalloc) 1027 goto whole_folios; 1028 1029 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1030 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1031 if (folio) { 1032 same_folio = lend < folio_pos(folio) + folio_size(folio); 1033 folio_mark_dirty(folio); 1034 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1035 start = folio_next_index(folio); 1036 if (same_folio) 1037 end = folio->index; 1038 } 1039 folio_unlock(folio); 1040 folio_put(folio); 1041 folio = NULL; 1042 } 1043 1044 if (!same_folio) 1045 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1046 if (folio) { 1047 folio_mark_dirty(folio); 1048 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1049 end = folio->index; 1050 folio_unlock(folio); 1051 folio_put(folio); 1052 } 1053 1054 whole_folios: 1055 1056 index = start; 1057 while (index < end) { 1058 cond_resched(); 1059 1060 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1061 indices)) { 1062 /* If all gone or hole-punch or unfalloc, we're done */ 1063 if (index == start || end != -1) 1064 break; 1065 /* But if truncating, restart to make sure all gone */ 1066 index = start; 1067 continue; 1068 } 1069 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1070 folio = fbatch.folios[i]; 1071 1072 if (xa_is_value(folio)) { 1073 if (unfalloc) 1074 continue; 1075 if (shmem_free_swap(mapping, indices[i], folio)) { 1076 /* Swap was replaced by page: retry */ 1077 index = indices[i]; 1078 break; 1079 } 1080 nr_swaps_freed++; 1081 continue; 1082 } 1083 1084 folio_lock(folio); 1085 1086 if (!unfalloc || !folio_test_uptodate(folio)) { 1087 if (folio_mapping(folio) != mapping) { 1088 /* Page was replaced by swap: retry */ 1089 folio_unlock(folio); 1090 index = indices[i]; 1091 break; 1092 } 1093 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1094 folio); 1095 1096 if (!folio_test_large(folio)) { 1097 truncate_inode_folio(mapping, folio); 1098 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1099 /* 1100 * If we split a page, reset the loop so 1101 * that we pick up the new sub pages. 1102 * Otherwise the THP was entirely 1103 * dropped or the target range was 1104 * zeroed, so just continue the loop as 1105 * is. 1106 */ 1107 if (!folio_test_large(folio)) { 1108 folio_unlock(folio); 1109 index = start; 1110 break; 1111 } 1112 } 1113 } 1114 folio_unlock(folio); 1115 } 1116 folio_batch_remove_exceptionals(&fbatch); 1117 folio_batch_release(&fbatch); 1118 } 1119 1120 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1121 } 1122 1123 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1124 { 1125 shmem_undo_range(inode, lstart, lend, false); 1126 inode->i_mtime = inode_set_ctime_current(inode); 1127 inode_inc_iversion(inode); 1128 } 1129 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1130 1131 static int shmem_getattr(struct mnt_idmap *idmap, 1132 const struct path *path, struct kstat *stat, 1133 u32 request_mask, unsigned int query_flags) 1134 { 1135 struct inode *inode = path->dentry->d_inode; 1136 struct shmem_inode_info *info = SHMEM_I(inode); 1137 1138 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1139 shmem_recalc_inode(inode, 0, 0); 1140 1141 if (info->fsflags & FS_APPEND_FL) 1142 stat->attributes |= STATX_ATTR_APPEND; 1143 if (info->fsflags & FS_IMMUTABLE_FL) 1144 stat->attributes |= STATX_ATTR_IMMUTABLE; 1145 if (info->fsflags & FS_NODUMP_FL) 1146 stat->attributes |= STATX_ATTR_NODUMP; 1147 stat->attributes_mask |= (STATX_ATTR_APPEND | 1148 STATX_ATTR_IMMUTABLE | 1149 STATX_ATTR_NODUMP); 1150 generic_fillattr(idmap, request_mask, inode, stat); 1151 1152 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1153 stat->blksize = HPAGE_PMD_SIZE; 1154 1155 if (request_mask & STATX_BTIME) { 1156 stat->result_mask |= STATX_BTIME; 1157 stat->btime.tv_sec = info->i_crtime.tv_sec; 1158 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1159 } 1160 1161 return 0; 1162 } 1163 1164 static int shmem_setattr(struct mnt_idmap *idmap, 1165 struct dentry *dentry, struct iattr *attr) 1166 { 1167 struct inode *inode = d_inode(dentry); 1168 struct shmem_inode_info *info = SHMEM_I(inode); 1169 int error; 1170 bool update_mtime = false; 1171 bool update_ctime = true; 1172 1173 error = setattr_prepare(idmap, dentry, attr); 1174 if (error) 1175 return error; 1176 1177 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1178 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1179 return -EPERM; 1180 } 1181 } 1182 1183 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1184 loff_t oldsize = inode->i_size; 1185 loff_t newsize = attr->ia_size; 1186 1187 /* protected by i_rwsem */ 1188 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1189 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1190 return -EPERM; 1191 1192 if (newsize != oldsize) { 1193 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1194 oldsize, newsize); 1195 if (error) 1196 return error; 1197 i_size_write(inode, newsize); 1198 update_mtime = true; 1199 } else { 1200 update_ctime = false; 1201 } 1202 if (newsize <= oldsize) { 1203 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1204 if (oldsize > holebegin) 1205 unmap_mapping_range(inode->i_mapping, 1206 holebegin, 0, 1); 1207 if (info->alloced) 1208 shmem_truncate_range(inode, 1209 newsize, (loff_t)-1); 1210 /* unmap again to remove racily COWed private pages */ 1211 if (oldsize > holebegin) 1212 unmap_mapping_range(inode->i_mapping, 1213 holebegin, 0, 1); 1214 } 1215 } 1216 1217 if (is_quota_modification(idmap, inode, attr)) { 1218 error = dquot_initialize(inode); 1219 if (error) 1220 return error; 1221 } 1222 1223 /* Transfer quota accounting */ 1224 if (i_uid_needs_update(idmap, attr, inode) || 1225 i_gid_needs_update(idmap, attr, inode)) { 1226 error = dquot_transfer(idmap, inode, attr); 1227 1228 if (error) 1229 return error; 1230 } 1231 1232 setattr_copy(idmap, inode, attr); 1233 if (attr->ia_valid & ATTR_MODE) 1234 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1235 if (!error && update_ctime) { 1236 inode_set_ctime_current(inode); 1237 if (update_mtime) 1238 inode->i_mtime = inode_get_ctime(inode); 1239 inode_inc_iversion(inode); 1240 } 1241 return error; 1242 } 1243 1244 static void shmem_evict_inode(struct inode *inode) 1245 { 1246 struct shmem_inode_info *info = SHMEM_I(inode); 1247 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1248 size_t freed = 0; 1249 1250 if (shmem_mapping(inode->i_mapping)) { 1251 shmem_unacct_size(info->flags, inode->i_size); 1252 inode->i_size = 0; 1253 mapping_set_exiting(inode->i_mapping); 1254 shmem_truncate_range(inode, 0, (loff_t)-1); 1255 if (!list_empty(&info->shrinklist)) { 1256 spin_lock(&sbinfo->shrinklist_lock); 1257 if (!list_empty(&info->shrinklist)) { 1258 list_del_init(&info->shrinklist); 1259 sbinfo->shrinklist_len--; 1260 } 1261 spin_unlock(&sbinfo->shrinklist_lock); 1262 } 1263 while (!list_empty(&info->swaplist)) { 1264 /* Wait while shmem_unuse() is scanning this inode... */ 1265 wait_var_event(&info->stop_eviction, 1266 !atomic_read(&info->stop_eviction)); 1267 mutex_lock(&shmem_swaplist_mutex); 1268 /* ...but beware of the race if we peeked too early */ 1269 if (!atomic_read(&info->stop_eviction)) 1270 list_del_init(&info->swaplist); 1271 mutex_unlock(&shmem_swaplist_mutex); 1272 } 1273 } 1274 1275 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1276 shmem_free_inode(inode->i_sb, freed); 1277 WARN_ON(inode->i_blocks); 1278 clear_inode(inode); 1279 #ifdef CONFIG_TMPFS_QUOTA 1280 dquot_free_inode(inode); 1281 dquot_drop(inode); 1282 #endif 1283 } 1284 1285 static int shmem_find_swap_entries(struct address_space *mapping, 1286 pgoff_t start, struct folio_batch *fbatch, 1287 pgoff_t *indices, unsigned int type) 1288 { 1289 XA_STATE(xas, &mapping->i_pages, start); 1290 struct folio *folio; 1291 swp_entry_t entry; 1292 1293 rcu_read_lock(); 1294 xas_for_each(&xas, folio, ULONG_MAX) { 1295 if (xas_retry(&xas, folio)) 1296 continue; 1297 1298 if (!xa_is_value(folio)) 1299 continue; 1300 1301 entry = radix_to_swp_entry(folio); 1302 /* 1303 * swapin error entries can be found in the mapping. But they're 1304 * deliberately ignored here as we've done everything we can do. 1305 */ 1306 if (swp_type(entry) != type) 1307 continue; 1308 1309 indices[folio_batch_count(fbatch)] = xas.xa_index; 1310 if (!folio_batch_add(fbatch, folio)) 1311 break; 1312 1313 if (need_resched()) { 1314 xas_pause(&xas); 1315 cond_resched_rcu(); 1316 } 1317 } 1318 rcu_read_unlock(); 1319 1320 return xas.xa_index; 1321 } 1322 1323 /* 1324 * Move the swapped pages for an inode to page cache. Returns the count 1325 * of pages swapped in, or the error in case of failure. 1326 */ 1327 static int shmem_unuse_swap_entries(struct inode *inode, 1328 struct folio_batch *fbatch, pgoff_t *indices) 1329 { 1330 int i = 0; 1331 int ret = 0; 1332 int error = 0; 1333 struct address_space *mapping = inode->i_mapping; 1334 1335 for (i = 0; i < folio_batch_count(fbatch); i++) { 1336 struct folio *folio = fbatch->folios[i]; 1337 1338 if (!xa_is_value(folio)) 1339 continue; 1340 error = shmem_swapin_folio(inode, indices[i], 1341 &folio, SGP_CACHE, 1342 mapping_gfp_mask(mapping), 1343 NULL, NULL); 1344 if (error == 0) { 1345 folio_unlock(folio); 1346 folio_put(folio); 1347 ret++; 1348 } 1349 if (error == -ENOMEM) 1350 break; 1351 error = 0; 1352 } 1353 return error ? error : ret; 1354 } 1355 1356 /* 1357 * If swap found in inode, free it and move page from swapcache to filecache. 1358 */ 1359 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1360 { 1361 struct address_space *mapping = inode->i_mapping; 1362 pgoff_t start = 0; 1363 struct folio_batch fbatch; 1364 pgoff_t indices[PAGEVEC_SIZE]; 1365 int ret = 0; 1366 1367 do { 1368 folio_batch_init(&fbatch); 1369 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1370 if (folio_batch_count(&fbatch) == 0) { 1371 ret = 0; 1372 break; 1373 } 1374 1375 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1376 if (ret < 0) 1377 break; 1378 1379 start = indices[folio_batch_count(&fbatch) - 1]; 1380 } while (true); 1381 1382 return ret; 1383 } 1384 1385 /* 1386 * Read all the shared memory data that resides in the swap 1387 * device 'type' back into memory, so the swap device can be 1388 * unused. 1389 */ 1390 int shmem_unuse(unsigned int type) 1391 { 1392 struct shmem_inode_info *info, *next; 1393 int error = 0; 1394 1395 if (list_empty(&shmem_swaplist)) 1396 return 0; 1397 1398 mutex_lock(&shmem_swaplist_mutex); 1399 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1400 if (!info->swapped) { 1401 list_del_init(&info->swaplist); 1402 continue; 1403 } 1404 /* 1405 * Drop the swaplist mutex while searching the inode for swap; 1406 * but before doing so, make sure shmem_evict_inode() will not 1407 * remove placeholder inode from swaplist, nor let it be freed 1408 * (igrab() would protect from unlink, but not from unmount). 1409 */ 1410 atomic_inc(&info->stop_eviction); 1411 mutex_unlock(&shmem_swaplist_mutex); 1412 1413 error = shmem_unuse_inode(&info->vfs_inode, type); 1414 cond_resched(); 1415 1416 mutex_lock(&shmem_swaplist_mutex); 1417 next = list_next_entry(info, swaplist); 1418 if (!info->swapped) 1419 list_del_init(&info->swaplist); 1420 if (atomic_dec_and_test(&info->stop_eviction)) 1421 wake_up_var(&info->stop_eviction); 1422 if (error) 1423 break; 1424 } 1425 mutex_unlock(&shmem_swaplist_mutex); 1426 1427 return error; 1428 } 1429 1430 /* 1431 * Move the page from the page cache to the swap cache. 1432 */ 1433 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1434 { 1435 struct folio *folio = page_folio(page); 1436 struct address_space *mapping = folio->mapping; 1437 struct inode *inode = mapping->host; 1438 struct shmem_inode_info *info = SHMEM_I(inode); 1439 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1440 swp_entry_t swap; 1441 pgoff_t index; 1442 1443 /* 1444 * Our capabilities prevent regular writeback or sync from ever calling 1445 * shmem_writepage; but a stacking filesystem might use ->writepage of 1446 * its underlying filesystem, in which case tmpfs should write out to 1447 * swap only in response to memory pressure, and not for the writeback 1448 * threads or sync. 1449 */ 1450 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1451 goto redirty; 1452 1453 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1454 goto redirty; 1455 1456 if (!total_swap_pages) 1457 goto redirty; 1458 1459 /* 1460 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1461 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1462 * and its shmem_writeback() needs them to be split when swapping. 1463 */ 1464 if (folio_test_large(folio)) { 1465 /* Ensure the subpages are still dirty */ 1466 folio_test_set_dirty(folio); 1467 if (split_huge_page(page) < 0) 1468 goto redirty; 1469 folio = page_folio(page); 1470 folio_clear_dirty(folio); 1471 } 1472 1473 index = folio->index; 1474 1475 /* 1476 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1477 * value into swapfile.c, the only way we can correctly account for a 1478 * fallocated folio arriving here is now to initialize it and write it. 1479 * 1480 * That's okay for a folio already fallocated earlier, but if we have 1481 * not yet completed the fallocation, then (a) we want to keep track 1482 * of this folio in case we have to undo it, and (b) it may not be a 1483 * good idea to continue anyway, once we're pushing into swap. So 1484 * reactivate the folio, and let shmem_fallocate() quit when too many. 1485 */ 1486 if (!folio_test_uptodate(folio)) { 1487 if (inode->i_private) { 1488 struct shmem_falloc *shmem_falloc; 1489 spin_lock(&inode->i_lock); 1490 shmem_falloc = inode->i_private; 1491 if (shmem_falloc && 1492 !shmem_falloc->waitq && 1493 index >= shmem_falloc->start && 1494 index < shmem_falloc->next) 1495 shmem_falloc->nr_unswapped++; 1496 else 1497 shmem_falloc = NULL; 1498 spin_unlock(&inode->i_lock); 1499 if (shmem_falloc) 1500 goto redirty; 1501 } 1502 folio_zero_range(folio, 0, folio_size(folio)); 1503 flush_dcache_folio(folio); 1504 folio_mark_uptodate(folio); 1505 } 1506 1507 swap = folio_alloc_swap(folio); 1508 if (!swap.val) 1509 goto redirty; 1510 1511 /* 1512 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1513 * if it's not already there. Do it now before the folio is 1514 * moved to swap cache, when its pagelock no longer protects 1515 * the inode from eviction. But don't unlock the mutex until 1516 * we've incremented swapped, because shmem_unuse_inode() will 1517 * prune a !swapped inode from the swaplist under this mutex. 1518 */ 1519 mutex_lock(&shmem_swaplist_mutex); 1520 if (list_empty(&info->swaplist)) 1521 list_add(&info->swaplist, &shmem_swaplist); 1522 1523 if (add_to_swap_cache(folio, swap, 1524 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1525 NULL) == 0) { 1526 shmem_recalc_inode(inode, 0, 1); 1527 swap_shmem_alloc(swap); 1528 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1529 1530 mutex_unlock(&shmem_swaplist_mutex); 1531 BUG_ON(folio_mapped(folio)); 1532 swap_writepage(&folio->page, wbc); 1533 return 0; 1534 } 1535 1536 mutex_unlock(&shmem_swaplist_mutex); 1537 put_swap_folio(folio, swap); 1538 redirty: 1539 folio_mark_dirty(folio); 1540 if (wbc->for_reclaim) 1541 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1542 folio_unlock(folio); 1543 return 0; 1544 } 1545 1546 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1547 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1548 { 1549 char buffer[64]; 1550 1551 if (!mpol || mpol->mode == MPOL_DEFAULT) 1552 return; /* show nothing */ 1553 1554 mpol_to_str(buffer, sizeof(buffer), mpol); 1555 1556 seq_printf(seq, ",mpol=%s", buffer); 1557 } 1558 1559 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1560 { 1561 struct mempolicy *mpol = NULL; 1562 if (sbinfo->mpol) { 1563 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1564 mpol = sbinfo->mpol; 1565 mpol_get(mpol); 1566 raw_spin_unlock(&sbinfo->stat_lock); 1567 } 1568 return mpol; 1569 } 1570 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1571 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1572 { 1573 } 1574 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1575 { 1576 return NULL; 1577 } 1578 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1579 #ifndef CONFIG_NUMA 1580 #define vm_policy vm_private_data 1581 #endif 1582 1583 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1584 struct shmem_inode_info *info, pgoff_t index) 1585 { 1586 /* Create a pseudo vma that just contains the policy */ 1587 vma_init(vma, NULL); 1588 /* Bias interleave by inode number to distribute better across nodes */ 1589 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1590 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1591 } 1592 1593 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1594 { 1595 /* Drop reference taken by mpol_shared_policy_lookup() */ 1596 mpol_cond_put(vma->vm_policy); 1597 } 1598 1599 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1600 struct shmem_inode_info *info, pgoff_t index) 1601 { 1602 struct vm_area_struct pvma; 1603 struct page *page; 1604 struct vm_fault vmf = { 1605 .vma = &pvma, 1606 }; 1607 1608 shmem_pseudo_vma_init(&pvma, info, index); 1609 page = swap_cluster_readahead(swap, gfp, &vmf); 1610 shmem_pseudo_vma_destroy(&pvma); 1611 1612 if (!page) 1613 return NULL; 1614 return page_folio(page); 1615 } 1616 1617 /* 1618 * Make sure huge_gfp is always more limited than limit_gfp. 1619 * Some of the flags set permissions, while others set limitations. 1620 */ 1621 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1622 { 1623 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1624 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1625 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1626 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1627 1628 /* Allow allocations only from the originally specified zones. */ 1629 result |= zoneflags; 1630 1631 /* 1632 * Minimize the result gfp by taking the union with the deny flags, 1633 * and the intersection of the allow flags. 1634 */ 1635 result |= (limit_gfp & denyflags); 1636 result |= (huge_gfp & limit_gfp) & allowflags; 1637 1638 return result; 1639 } 1640 1641 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1642 struct shmem_inode_info *info, pgoff_t index) 1643 { 1644 struct vm_area_struct pvma; 1645 struct address_space *mapping = info->vfs_inode.i_mapping; 1646 pgoff_t hindex; 1647 struct folio *folio; 1648 1649 hindex = round_down(index, HPAGE_PMD_NR); 1650 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1651 XA_PRESENT)) 1652 return NULL; 1653 1654 shmem_pseudo_vma_init(&pvma, info, hindex); 1655 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1656 shmem_pseudo_vma_destroy(&pvma); 1657 if (!folio) 1658 count_vm_event(THP_FILE_FALLBACK); 1659 return folio; 1660 } 1661 1662 static struct folio *shmem_alloc_folio(gfp_t gfp, 1663 struct shmem_inode_info *info, pgoff_t index) 1664 { 1665 struct vm_area_struct pvma; 1666 struct folio *folio; 1667 1668 shmem_pseudo_vma_init(&pvma, info, index); 1669 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1670 shmem_pseudo_vma_destroy(&pvma); 1671 1672 return folio; 1673 } 1674 1675 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1676 pgoff_t index, bool huge) 1677 { 1678 struct shmem_inode_info *info = SHMEM_I(inode); 1679 struct folio *folio; 1680 int nr; 1681 int err; 1682 1683 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1684 huge = false; 1685 nr = huge ? HPAGE_PMD_NR : 1; 1686 1687 err = shmem_inode_acct_block(inode, nr); 1688 if (err) 1689 goto failed; 1690 1691 if (huge) 1692 folio = shmem_alloc_hugefolio(gfp, info, index); 1693 else 1694 folio = shmem_alloc_folio(gfp, info, index); 1695 if (folio) { 1696 __folio_set_locked(folio); 1697 __folio_set_swapbacked(folio); 1698 return folio; 1699 } 1700 1701 err = -ENOMEM; 1702 shmem_inode_unacct_blocks(inode, nr); 1703 failed: 1704 return ERR_PTR(err); 1705 } 1706 1707 /* 1708 * When a page is moved from swapcache to shmem filecache (either by the 1709 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1710 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1711 * ignorance of the mapping it belongs to. If that mapping has special 1712 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1713 * we may need to copy to a suitable page before moving to filecache. 1714 * 1715 * In a future release, this may well be extended to respect cpuset and 1716 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1717 * but for now it is a simple matter of zone. 1718 */ 1719 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1720 { 1721 return folio_zonenum(folio) > gfp_zone(gfp); 1722 } 1723 1724 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1725 struct shmem_inode_info *info, pgoff_t index) 1726 { 1727 struct folio *old, *new; 1728 struct address_space *swap_mapping; 1729 swp_entry_t entry; 1730 pgoff_t swap_index; 1731 int error; 1732 1733 old = *foliop; 1734 entry = old->swap; 1735 swap_index = swp_offset(entry); 1736 swap_mapping = swap_address_space(entry); 1737 1738 /* 1739 * We have arrived here because our zones are constrained, so don't 1740 * limit chance of success by further cpuset and node constraints. 1741 */ 1742 gfp &= ~GFP_CONSTRAINT_MASK; 1743 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1744 new = shmem_alloc_folio(gfp, info, index); 1745 if (!new) 1746 return -ENOMEM; 1747 1748 folio_get(new); 1749 folio_copy(new, old); 1750 flush_dcache_folio(new); 1751 1752 __folio_set_locked(new); 1753 __folio_set_swapbacked(new); 1754 folio_mark_uptodate(new); 1755 new->swap = entry; 1756 folio_set_swapcache(new); 1757 1758 /* 1759 * Our caller will very soon move newpage out of swapcache, but it's 1760 * a nice clean interface for us to replace oldpage by newpage there. 1761 */ 1762 xa_lock_irq(&swap_mapping->i_pages); 1763 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1764 if (!error) { 1765 mem_cgroup_migrate(old, new); 1766 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1767 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1768 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1769 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1770 } 1771 xa_unlock_irq(&swap_mapping->i_pages); 1772 1773 if (unlikely(error)) { 1774 /* 1775 * Is this possible? I think not, now that our callers check 1776 * both PageSwapCache and page_private after getting page lock; 1777 * but be defensive. Reverse old to newpage for clear and free. 1778 */ 1779 old = new; 1780 } else { 1781 folio_add_lru(new); 1782 *foliop = new; 1783 } 1784 1785 folio_clear_swapcache(old); 1786 old->private = NULL; 1787 1788 folio_unlock(old); 1789 folio_put_refs(old, 2); 1790 return error; 1791 } 1792 1793 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1794 struct folio *folio, swp_entry_t swap) 1795 { 1796 struct address_space *mapping = inode->i_mapping; 1797 swp_entry_t swapin_error; 1798 void *old; 1799 1800 swapin_error = make_poisoned_swp_entry(); 1801 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1802 swp_to_radix_entry(swap), 1803 swp_to_radix_entry(swapin_error), 0); 1804 if (old != swp_to_radix_entry(swap)) 1805 return; 1806 1807 folio_wait_writeback(folio); 1808 delete_from_swap_cache(folio); 1809 /* 1810 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1811 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1812 * in shmem_evict_inode(). 1813 */ 1814 shmem_recalc_inode(inode, -1, -1); 1815 swap_free(swap); 1816 } 1817 1818 /* 1819 * Swap in the folio pointed to by *foliop. 1820 * Caller has to make sure that *foliop contains a valid swapped folio. 1821 * Returns 0 and the folio in foliop if success. On failure, returns the 1822 * error code and NULL in *foliop. 1823 */ 1824 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1825 struct folio **foliop, enum sgp_type sgp, 1826 gfp_t gfp, struct vm_area_struct *vma, 1827 vm_fault_t *fault_type) 1828 { 1829 struct address_space *mapping = inode->i_mapping; 1830 struct shmem_inode_info *info = SHMEM_I(inode); 1831 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1832 struct swap_info_struct *si; 1833 struct folio *folio = NULL; 1834 swp_entry_t swap; 1835 int error; 1836 1837 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1838 swap = radix_to_swp_entry(*foliop); 1839 *foliop = NULL; 1840 1841 if (is_poisoned_swp_entry(swap)) 1842 return -EIO; 1843 1844 si = get_swap_device(swap); 1845 if (!si) { 1846 if (!shmem_confirm_swap(mapping, index, swap)) 1847 return -EEXIST; 1848 else 1849 return -EINVAL; 1850 } 1851 1852 /* Look it up and read it in.. */ 1853 folio = swap_cache_get_folio(swap, NULL, 0); 1854 if (!folio) { 1855 /* Or update major stats only when swapin succeeds?? */ 1856 if (fault_type) { 1857 *fault_type |= VM_FAULT_MAJOR; 1858 count_vm_event(PGMAJFAULT); 1859 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1860 } 1861 /* Here we actually start the io */ 1862 folio = shmem_swapin(swap, gfp, info, index); 1863 if (!folio) { 1864 error = -ENOMEM; 1865 goto failed; 1866 } 1867 } 1868 1869 /* We have to do this with folio locked to prevent races */ 1870 folio_lock(folio); 1871 if (!folio_test_swapcache(folio) || 1872 folio->swap.val != swap.val || 1873 !shmem_confirm_swap(mapping, index, swap)) { 1874 error = -EEXIST; 1875 goto unlock; 1876 } 1877 if (!folio_test_uptodate(folio)) { 1878 error = -EIO; 1879 goto failed; 1880 } 1881 folio_wait_writeback(folio); 1882 1883 /* 1884 * Some architectures may have to restore extra metadata to the 1885 * folio after reading from swap. 1886 */ 1887 arch_swap_restore(swap, folio); 1888 1889 if (shmem_should_replace_folio(folio, gfp)) { 1890 error = shmem_replace_folio(&folio, gfp, info, index); 1891 if (error) 1892 goto failed; 1893 } 1894 1895 error = shmem_add_to_page_cache(folio, mapping, index, 1896 swp_to_radix_entry(swap), gfp, 1897 charge_mm); 1898 if (error) 1899 goto failed; 1900 1901 shmem_recalc_inode(inode, 0, -1); 1902 1903 if (sgp == SGP_WRITE) 1904 folio_mark_accessed(folio); 1905 1906 delete_from_swap_cache(folio); 1907 folio_mark_dirty(folio); 1908 swap_free(swap); 1909 put_swap_device(si); 1910 1911 *foliop = folio; 1912 return 0; 1913 failed: 1914 if (!shmem_confirm_swap(mapping, index, swap)) 1915 error = -EEXIST; 1916 if (error == -EIO) 1917 shmem_set_folio_swapin_error(inode, index, folio, swap); 1918 unlock: 1919 if (folio) { 1920 folio_unlock(folio); 1921 folio_put(folio); 1922 } 1923 put_swap_device(si); 1924 1925 return error; 1926 } 1927 1928 /* 1929 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1930 * 1931 * If we allocate a new one we do not mark it dirty. That's up to the 1932 * vm. If we swap it in we mark it dirty since we also free the swap 1933 * entry since a page cannot live in both the swap and page cache. 1934 * 1935 * vma, vmf, and fault_type are only supplied by shmem_fault: 1936 * otherwise they are NULL. 1937 */ 1938 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1939 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1940 struct vm_area_struct *vma, struct vm_fault *vmf, 1941 vm_fault_t *fault_type) 1942 { 1943 struct address_space *mapping = inode->i_mapping; 1944 struct shmem_inode_info *info = SHMEM_I(inode); 1945 struct shmem_sb_info *sbinfo; 1946 struct mm_struct *charge_mm; 1947 struct folio *folio; 1948 pgoff_t hindex; 1949 gfp_t huge_gfp; 1950 int error; 1951 int once = 0; 1952 int alloced = 0; 1953 1954 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1955 return -EFBIG; 1956 repeat: 1957 if (sgp <= SGP_CACHE && 1958 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1959 return -EINVAL; 1960 } 1961 1962 sbinfo = SHMEM_SB(inode->i_sb); 1963 charge_mm = vma ? vma->vm_mm : NULL; 1964 1965 folio = filemap_get_entry(mapping, index); 1966 if (folio && vma && userfaultfd_minor(vma)) { 1967 if (!xa_is_value(folio)) 1968 folio_put(folio); 1969 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1970 return 0; 1971 } 1972 1973 if (xa_is_value(folio)) { 1974 error = shmem_swapin_folio(inode, index, &folio, 1975 sgp, gfp, vma, fault_type); 1976 if (error == -EEXIST) 1977 goto repeat; 1978 1979 *foliop = folio; 1980 return error; 1981 } 1982 1983 if (folio) { 1984 folio_lock(folio); 1985 1986 /* Has the folio been truncated or swapped out? */ 1987 if (unlikely(folio->mapping != mapping)) { 1988 folio_unlock(folio); 1989 folio_put(folio); 1990 goto repeat; 1991 } 1992 if (sgp == SGP_WRITE) 1993 folio_mark_accessed(folio); 1994 if (folio_test_uptodate(folio)) 1995 goto out; 1996 /* fallocated folio */ 1997 if (sgp != SGP_READ) 1998 goto clear; 1999 folio_unlock(folio); 2000 folio_put(folio); 2001 } 2002 2003 /* 2004 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2005 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2006 */ 2007 *foliop = NULL; 2008 if (sgp == SGP_READ) 2009 return 0; 2010 if (sgp == SGP_NOALLOC) 2011 return -ENOENT; 2012 2013 /* 2014 * Fast cache lookup and swap lookup did not find it: allocate. 2015 */ 2016 2017 if (vma && userfaultfd_missing(vma)) { 2018 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2019 return 0; 2020 } 2021 2022 if (!shmem_is_huge(inode, index, false, 2023 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0)) 2024 goto alloc_nohuge; 2025 2026 huge_gfp = vma_thp_gfp_mask(vma); 2027 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2028 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 2029 if (IS_ERR(folio)) { 2030 alloc_nohuge: 2031 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 2032 } 2033 if (IS_ERR(folio)) { 2034 int retry = 5; 2035 2036 error = PTR_ERR(folio); 2037 folio = NULL; 2038 if (error != -ENOSPC) 2039 goto unlock; 2040 /* 2041 * Try to reclaim some space by splitting a large folio 2042 * beyond i_size on the filesystem. 2043 */ 2044 while (retry--) { 2045 int ret; 2046 2047 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 2048 if (ret == SHRINK_STOP) 2049 break; 2050 if (ret) 2051 goto alloc_nohuge; 2052 } 2053 goto unlock; 2054 } 2055 2056 hindex = round_down(index, folio_nr_pages(folio)); 2057 2058 if (sgp == SGP_WRITE) 2059 __folio_set_referenced(folio); 2060 2061 error = shmem_add_to_page_cache(folio, mapping, hindex, 2062 NULL, gfp & GFP_RECLAIM_MASK, 2063 charge_mm); 2064 if (error) 2065 goto unacct; 2066 2067 folio_add_lru(folio); 2068 shmem_recalc_inode(inode, folio_nr_pages(folio), 0); 2069 alloced = true; 2070 2071 if (folio_test_pmd_mappable(folio) && 2072 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2073 folio_next_index(folio) - 1) { 2074 /* 2075 * Part of the large folio is beyond i_size: subject 2076 * to shrink under memory pressure. 2077 */ 2078 spin_lock(&sbinfo->shrinklist_lock); 2079 /* 2080 * _careful to defend against unlocked access to 2081 * ->shrink_list in shmem_unused_huge_shrink() 2082 */ 2083 if (list_empty_careful(&info->shrinklist)) { 2084 list_add_tail(&info->shrinklist, 2085 &sbinfo->shrinklist); 2086 sbinfo->shrinklist_len++; 2087 } 2088 spin_unlock(&sbinfo->shrinklist_lock); 2089 } 2090 2091 /* 2092 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2093 */ 2094 if (sgp == SGP_FALLOC) 2095 sgp = SGP_WRITE; 2096 clear: 2097 /* 2098 * Let SGP_WRITE caller clear ends if write does not fill folio; 2099 * but SGP_FALLOC on a folio fallocated earlier must initialize 2100 * it now, lest undo on failure cancel our earlier guarantee. 2101 */ 2102 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2103 long i, n = folio_nr_pages(folio); 2104 2105 for (i = 0; i < n; i++) 2106 clear_highpage(folio_page(folio, i)); 2107 flush_dcache_folio(folio); 2108 folio_mark_uptodate(folio); 2109 } 2110 2111 /* Perhaps the file has been truncated since we checked */ 2112 if (sgp <= SGP_CACHE && 2113 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2114 if (alloced) { 2115 folio_clear_dirty(folio); 2116 filemap_remove_folio(folio); 2117 shmem_recalc_inode(inode, 0, 0); 2118 } 2119 error = -EINVAL; 2120 goto unlock; 2121 } 2122 out: 2123 *foliop = folio; 2124 return 0; 2125 2126 /* 2127 * Error recovery. 2128 */ 2129 unacct: 2130 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2131 2132 if (folio_test_large(folio)) { 2133 folio_unlock(folio); 2134 folio_put(folio); 2135 goto alloc_nohuge; 2136 } 2137 unlock: 2138 if (folio) { 2139 folio_unlock(folio); 2140 folio_put(folio); 2141 } 2142 if (error == -ENOSPC && !once++) { 2143 shmem_recalc_inode(inode, 0, 0); 2144 goto repeat; 2145 } 2146 if (error == -EEXIST) 2147 goto repeat; 2148 return error; 2149 } 2150 2151 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2152 enum sgp_type sgp) 2153 { 2154 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2156 } 2157 2158 /* 2159 * This is like autoremove_wake_function, but it removes the wait queue 2160 * entry unconditionally - even if something else had already woken the 2161 * target. 2162 */ 2163 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2164 { 2165 int ret = default_wake_function(wait, mode, sync, key); 2166 list_del_init(&wait->entry); 2167 return ret; 2168 } 2169 2170 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2171 { 2172 struct vm_area_struct *vma = vmf->vma; 2173 struct inode *inode = file_inode(vma->vm_file); 2174 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2175 struct folio *folio = NULL; 2176 int err; 2177 vm_fault_t ret = VM_FAULT_LOCKED; 2178 2179 /* 2180 * Trinity finds that probing a hole which tmpfs is punching can 2181 * prevent the hole-punch from ever completing: which in turn 2182 * locks writers out with its hold on i_rwsem. So refrain from 2183 * faulting pages into the hole while it's being punched. Although 2184 * shmem_undo_range() does remove the additions, it may be unable to 2185 * keep up, as each new page needs its own unmap_mapping_range() call, 2186 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2187 * 2188 * It does not matter if we sometimes reach this check just before the 2189 * hole-punch begins, so that one fault then races with the punch: 2190 * we just need to make racing faults a rare case. 2191 * 2192 * The implementation below would be much simpler if we just used a 2193 * standard mutex or completion: but we cannot take i_rwsem in fault, 2194 * and bloating every shmem inode for this unlikely case would be sad. 2195 */ 2196 if (unlikely(inode->i_private)) { 2197 struct shmem_falloc *shmem_falloc; 2198 2199 spin_lock(&inode->i_lock); 2200 shmem_falloc = inode->i_private; 2201 if (shmem_falloc && 2202 shmem_falloc->waitq && 2203 vmf->pgoff >= shmem_falloc->start && 2204 vmf->pgoff < shmem_falloc->next) { 2205 struct file *fpin; 2206 wait_queue_head_t *shmem_falloc_waitq; 2207 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2208 2209 ret = VM_FAULT_NOPAGE; 2210 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2211 if (fpin) 2212 ret = VM_FAULT_RETRY; 2213 2214 shmem_falloc_waitq = shmem_falloc->waitq; 2215 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2216 TASK_UNINTERRUPTIBLE); 2217 spin_unlock(&inode->i_lock); 2218 schedule(); 2219 2220 /* 2221 * shmem_falloc_waitq points into the shmem_fallocate() 2222 * stack of the hole-punching task: shmem_falloc_waitq 2223 * is usually invalid by the time we reach here, but 2224 * finish_wait() does not dereference it in that case; 2225 * though i_lock needed lest racing with wake_up_all(). 2226 */ 2227 spin_lock(&inode->i_lock); 2228 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2229 spin_unlock(&inode->i_lock); 2230 2231 if (fpin) 2232 fput(fpin); 2233 return ret; 2234 } 2235 spin_unlock(&inode->i_lock); 2236 } 2237 2238 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2239 gfp, vma, vmf, &ret); 2240 if (err) 2241 return vmf_error(err); 2242 if (folio) 2243 vmf->page = folio_file_page(folio, vmf->pgoff); 2244 return ret; 2245 } 2246 2247 unsigned long shmem_get_unmapped_area(struct file *file, 2248 unsigned long uaddr, unsigned long len, 2249 unsigned long pgoff, unsigned long flags) 2250 { 2251 unsigned long (*get_area)(struct file *, 2252 unsigned long, unsigned long, unsigned long, unsigned long); 2253 unsigned long addr; 2254 unsigned long offset; 2255 unsigned long inflated_len; 2256 unsigned long inflated_addr; 2257 unsigned long inflated_offset; 2258 2259 if (len > TASK_SIZE) 2260 return -ENOMEM; 2261 2262 get_area = current->mm->get_unmapped_area; 2263 addr = get_area(file, uaddr, len, pgoff, flags); 2264 2265 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2266 return addr; 2267 if (IS_ERR_VALUE(addr)) 2268 return addr; 2269 if (addr & ~PAGE_MASK) 2270 return addr; 2271 if (addr > TASK_SIZE - len) 2272 return addr; 2273 2274 if (shmem_huge == SHMEM_HUGE_DENY) 2275 return addr; 2276 if (len < HPAGE_PMD_SIZE) 2277 return addr; 2278 if (flags & MAP_FIXED) 2279 return addr; 2280 /* 2281 * Our priority is to support MAP_SHARED mapped hugely; 2282 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2283 * But if caller specified an address hint and we allocated area there 2284 * successfully, respect that as before. 2285 */ 2286 if (uaddr == addr) 2287 return addr; 2288 2289 if (shmem_huge != SHMEM_HUGE_FORCE) { 2290 struct super_block *sb; 2291 2292 if (file) { 2293 VM_BUG_ON(file->f_op != &shmem_file_operations); 2294 sb = file_inode(file)->i_sb; 2295 } else { 2296 /* 2297 * Called directly from mm/mmap.c, or drivers/char/mem.c 2298 * for "/dev/zero", to create a shared anonymous object. 2299 */ 2300 if (IS_ERR(shm_mnt)) 2301 return addr; 2302 sb = shm_mnt->mnt_sb; 2303 } 2304 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2305 return addr; 2306 } 2307 2308 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2309 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2310 return addr; 2311 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2312 return addr; 2313 2314 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2315 if (inflated_len > TASK_SIZE) 2316 return addr; 2317 if (inflated_len < len) 2318 return addr; 2319 2320 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2321 if (IS_ERR_VALUE(inflated_addr)) 2322 return addr; 2323 if (inflated_addr & ~PAGE_MASK) 2324 return addr; 2325 2326 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2327 inflated_addr += offset - inflated_offset; 2328 if (inflated_offset > offset) 2329 inflated_addr += HPAGE_PMD_SIZE; 2330 2331 if (inflated_addr > TASK_SIZE - len) 2332 return addr; 2333 return inflated_addr; 2334 } 2335 2336 #ifdef CONFIG_NUMA 2337 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2338 { 2339 struct inode *inode = file_inode(vma->vm_file); 2340 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2341 } 2342 2343 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2344 unsigned long addr) 2345 { 2346 struct inode *inode = file_inode(vma->vm_file); 2347 pgoff_t index; 2348 2349 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2350 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2351 } 2352 #endif 2353 2354 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2355 { 2356 struct inode *inode = file_inode(file); 2357 struct shmem_inode_info *info = SHMEM_I(inode); 2358 int retval = -ENOMEM; 2359 2360 /* 2361 * What serializes the accesses to info->flags? 2362 * ipc_lock_object() when called from shmctl_do_lock(), 2363 * no serialization needed when called from shm_destroy(). 2364 */ 2365 if (lock && !(info->flags & VM_LOCKED)) { 2366 if (!user_shm_lock(inode->i_size, ucounts)) 2367 goto out_nomem; 2368 info->flags |= VM_LOCKED; 2369 mapping_set_unevictable(file->f_mapping); 2370 } 2371 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2372 user_shm_unlock(inode->i_size, ucounts); 2373 info->flags &= ~VM_LOCKED; 2374 mapping_clear_unevictable(file->f_mapping); 2375 } 2376 retval = 0; 2377 2378 out_nomem: 2379 return retval; 2380 } 2381 2382 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2383 { 2384 struct inode *inode = file_inode(file); 2385 struct shmem_inode_info *info = SHMEM_I(inode); 2386 int ret; 2387 2388 ret = seal_check_future_write(info->seals, vma); 2389 if (ret) 2390 return ret; 2391 2392 /* arm64 - allow memory tagging on RAM-based files */ 2393 vm_flags_set(vma, VM_MTE_ALLOWED); 2394 2395 file_accessed(file); 2396 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2397 if (inode->i_nlink) 2398 vma->vm_ops = &shmem_vm_ops; 2399 else 2400 vma->vm_ops = &shmem_anon_vm_ops; 2401 return 0; 2402 } 2403 2404 static int shmem_file_open(struct inode *inode, struct file *file) 2405 { 2406 file->f_mode |= FMODE_CAN_ODIRECT; 2407 return generic_file_open(inode, file); 2408 } 2409 2410 #ifdef CONFIG_TMPFS_XATTR 2411 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2412 2413 /* 2414 * chattr's fsflags are unrelated to extended attributes, 2415 * but tmpfs has chosen to enable them under the same config option. 2416 */ 2417 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2418 { 2419 unsigned int i_flags = 0; 2420 2421 if (fsflags & FS_NOATIME_FL) 2422 i_flags |= S_NOATIME; 2423 if (fsflags & FS_APPEND_FL) 2424 i_flags |= S_APPEND; 2425 if (fsflags & FS_IMMUTABLE_FL) 2426 i_flags |= S_IMMUTABLE; 2427 /* 2428 * But FS_NODUMP_FL does not require any action in i_flags. 2429 */ 2430 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2431 } 2432 #else 2433 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2434 { 2435 } 2436 #define shmem_initxattrs NULL 2437 #endif 2438 2439 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2440 { 2441 return &SHMEM_I(inode)->dir_offsets; 2442 } 2443 2444 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2445 struct super_block *sb, 2446 struct inode *dir, umode_t mode, 2447 dev_t dev, unsigned long flags) 2448 { 2449 struct inode *inode; 2450 struct shmem_inode_info *info; 2451 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2452 ino_t ino; 2453 int err; 2454 2455 err = shmem_reserve_inode(sb, &ino); 2456 if (err) 2457 return ERR_PTR(err); 2458 2459 2460 inode = new_inode(sb); 2461 if (!inode) { 2462 shmem_free_inode(sb, 0); 2463 return ERR_PTR(-ENOSPC); 2464 } 2465 2466 inode->i_ino = ino; 2467 inode_init_owner(idmap, inode, dir, mode); 2468 inode->i_blocks = 0; 2469 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 2470 inode->i_generation = get_random_u32(); 2471 info = SHMEM_I(inode); 2472 memset(info, 0, (char *)inode - (char *)info); 2473 spin_lock_init(&info->lock); 2474 atomic_set(&info->stop_eviction, 0); 2475 info->seals = F_SEAL_SEAL; 2476 info->flags = flags & VM_NORESERVE; 2477 info->i_crtime = inode->i_mtime; 2478 info->fsflags = (dir == NULL) ? 0 : 2479 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2480 if (info->fsflags) 2481 shmem_set_inode_flags(inode, info->fsflags); 2482 INIT_LIST_HEAD(&info->shrinklist); 2483 INIT_LIST_HEAD(&info->swaplist); 2484 INIT_LIST_HEAD(&info->swaplist); 2485 if (sbinfo->noswap) 2486 mapping_set_unevictable(inode->i_mapping); 2487 simple_xattrs_init(&info->xattrs); 2488 cache_no_acl(inode); 2489 mapping_set_large_folios(inode->i_mapping); 2490 2491 switch (mode & S_IFMT) { 2492 default: 2493 inode->i_op = &shmem_special_inode_operations; 2494 init_special_inode(inode, mode, dev); 2495 break; 2496 case S_IFREG: 2497 inode->i_mapping->a_ops = &shmem_aops; 2498 inode->i_op = &shmem_inode_operations; 2499 inode->i_fop = &shmem_file_operations; 2500 mpol_shared_policy_init(&info->policy, 2501 shmem_get_sbmpol(sbinfo)); 2502 break; 2503 case S_IFDIR: 2504 inc_nlink(inode); 2505 /* Some things misbehave if size == 0 on a directory */ 2506 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2507 inode->i_op = &shmem_dir_inode_operations; 2508 inode->i_fop = &simple_offset_dir_operations; 2509 simple_offset_init(shmem_get_offset_ctx(inode)); 2510 break; 2511 case S_IFLNK: 2512 /* 2513 * Must not load anything in the rbtree, 2514 * mpol_free_shared_policy will not be called. 2515 */ 2516 mpol_shared_policy_init(&info->policy, NULL); 2517 break; 2518 } 2519 2520 lockdep_annotate_inode_mutex_key(inode); 2521 return inode; 2522 } 2523 2524 #ifdef CONFIG_TMPFS_QUOTA 2525 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2526 struct super_block *sb, struct inode *dir, 2527 umode_t mode, dev_t dev, unsigned long flags) 2528 { 2529 int err; 2530 struct inode *inode; 2531 2532 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2533 if (IS_ERR(inode)) 2534 return inode; 2535 2536 err = dquot_initialize(inode); 2537 if (err) 2538 goto errout; 2539 2540 err = dquot_alloc_inode(inode); 2541 if (err) { 2542 dquot_drop(inode); 2543 goto errout; 2544 } 2545 return inode; 2546 2547 errout: 2548 inode->i_flags |= S_NOQUOTA; 2549 iput(inode); 2550 return ERR_PTR(err); 2551 } 2552 #else 2553 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2554 struct super_block *sb, struct inode *dir, 2555 umode_t mode, dev_t dev, unsigned long flags) 2556 { 2557 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2558 } 2559 #endif /* CONFIG_TMPFS_QUOTA */ 2560 2561 #ifdef CONFIG_USERFAULTFD 2562 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2563 struct vm_area_struct *dst_vma, 2564 unsigned long dst_addr, 2565 unsigned long src_addr, 2566 uffd_flags_t flags, 2567 struct folio **foliop) 2568 { 2569 struct inode *inode = file_inode(dst_vma->vm_file); 2570 struct shmem_inode_info *info = SHMEM_I(inode); 2571 struct address_space *mapping = inode->i_mapping; 2572 gfp_t gfp = mapping_gfp_mask(mapping); 2573 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2574 void *page_kaddr; 2575 struct folio *folio; 2576 int ret; 2577 pgoff_t max_off; 2578 2579 if (shmem_inode_acct_block(inode, 1)) { 2580 /* 2581 * We may have got a page, returned -ENOENT triggering a retry, 2582 * and now we find ourselves with -ENOMEM. Release the page, to 2583 * avoid a BUG_ON in our caller. 2584 */ 2585 if (unlikely(*foliop)) { 2586 folio_put(*foliop); 2587 *foliop = NULL; 2588 } 2589 return -ENOMEM; 2590 } 2591 2592 if (!*foliop) { 2593 ret = -ENOMEM; 2594 folio = shmem_alloc_folio(gfp, info, pgoff); 2595 if (!folio) 2596 goto out_unacct_blocks; 2597 2598 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2599 page_kaddr = kmap_local_folio(folio, 0); 2600 /* 2601 * The read mmap_lock is held here. Despite the 2602 * mmap_lock being read recursive a deadlock is still 2603 * possible if a writer has taken a lock. For example: 2604 * 2605 * process A thread 1 takes read lock on own mmap_lock 2606 * process A thread 2 calls mmap, blocks taking write lock 2607 * process B thread 1 takes page fault, read lock on own mmap lock 2608 * process B thread 2 calls mmap, blocks taking write lock 2609 * process A thread 1 blocks taking read lock on process B 2610 * process B thread 1 blocks taking read lock on process A 2611 * 2612 * Disable page faults to prevent potential deadlock 2613 * and retry the copy outside the mmap_lock. 2614 */ 2615 pagefault_disable(); 2616 ret = copy_from_user(page_kaddr, 2617 (const void __user *)src_addr, 2618 PAGE_SIZE); 2619 pagefault_enable(); 2620 kunmap_local(page_kaddr); 2621 2622 /* fallback to copy_from_user outside mmap_lock */ 2623 if (unlikely(ret)) { 2624 *foliop = folio; 2625 ret = -ENOENT; 2626 /* don't free the page */ 2627 goto out_unacct_blocks; 2628 } 2629 2630 flush_dcache_folio(folio); 2631 } else { /* ZEROPAGE */ 2632 clear_user_highpage(&folio->page, dst_addr); 2633 } 2634 } else { 2635 folio = *foliop; 2636 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2637 *foliop = NULL; 2638 } 2639 2640 VM_BUG_ON(folio_test_locked(folio)); 2641 VM_BUG_ON(folio_test_swapbacked(folio)); 2642 __folio_set_locked(folio); 2643 __folio_set_swapbacked(folio); 2644 __folio_mark_uptodate(folio); 2645 2646 ret = -EFAULT; 2647 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2648 if (unlikely(pgoff >= max_off)) 2649 goto out_release; 2650 2651 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2652 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm); 2653 if (ret) 2654 goto out_release; 2655 2656 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2657 &folio->page, true, flags); 2658 if (ret) 2659 goto out_delete_from_cache; 2660 2661 shmem_recalc_inode(inode, 1, 0); 2662 folio_unlock(folio); 2663 return 0; 2664 out_delete_from_cache: 2665 filemap_remove_folio(folio); 2666 out_release: 2667 folio_unlock(folio); 2668 folio_put(folio); 2669 out_unacct_blocks: 2670 shmem_inode_unacct_blocks(inode, 1); 2671 return ret; 2672 } 2673 #endif /* CONFIG_USERFAULTFD */ 2674 2675 #ifdef CONFIG_TMPFS 2676 static const struct inode_operations shmem_symlink_inode_operations; 2677 static const struct inode_operations shmem_short_symlink_operations; 2678 2679 static int 2680 shmem_write_begin(struct file *file, struct address_space *mapping, 2681 loff_t pos, unsigned len, 2682 struct page **pagep, void **fsdata) 2683 { 2684 struct inode *inode = mapping->host; 2685 struct shmem_inode_info *info = SHMEM_I(inode); 2686 pgoff_t index = pos >> PAGE_SHIFT; 2687 struct folio *folio; 2688 int ret = 0; 2689 2690 /* i_rwsem is held by caller */ 2691 if (unlikely(info->seals & (F_SEAL_GROW | 2692 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2693 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2694 return -EPERM; 2695 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2696 return -EPERM; 2697 } 2698 2699 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2700 2701 if (ret) 2702 return ret; 2703 2704 *pagep = folio_file_page(folio, index); 2705 if (PageHWPoison(*pagep)) { 2706 folio_unlock(folio); 2707 folio_put(folio); 2708 *pagep = NULL; 2709 return -EIO; 2710 } 2711 2712 return 0; 2713 } 2714 2715 static int 2716 shmem_write_end(struct file *file, struct address_space *mapping, 2717 loff_t pos, unsigned len, unsigned copied, 2718 struct page *page, void *fsdata) 2719 { 2720 struct folio *folio = page_folio(page); 2721 struct inode *inode = mapping->host; 2722 2723 if (pos + copied > inode->i_size) 2724 i_size_write(inode, pos + copied); 2725 2726 if (!folio_test_uptodate(folio)) { 2727 if (copied < folio_size(folio)) { 2728 size_t from = offset_in_folio(folio, pos); 2729 folio_zero_segments(folio, 0, from, 2730 from + copied, folio_size(folio)); 2731 } 2732 folio_mark_uptodate(folio); 2733 } 2734 folio_mark_dirty(folio); 2735 folio_unlock(folio); 2736 folio_put(folio); 2737 2738 return copied; 2739 } 2740 2741 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2742 { 2743 struct file *file = iocb->ki_filp; 2744 struct inode *inode = file_inode(file); 2745 struct address_space *mapping = inode->i_mapping; 2746 pgoff_t index; 2747 unsigned long offset; 2748 int error = 0; 2749 ssize_t retval = 0; 2750 loff_t *ppos = &iocb->ki_pos; 2751 2752 index = *ppos >> PAGE_SHIFT; 2753 offset = *ppos & ~PAGE_MASK; 2754 2755 for (;;) { 2756 struct folio *folio = NULL; 2757 struct page *page = NULL; 2758 pgoff_t end_index; 2759 unsigned long nr, ret; 2760 loff_t i_size = i_size_read(inode); 2761 2762 end_index = i_size >> PAGE_SHIFT; 2763 if (index > end_index) 2764 break; 2765 if (index == end_index) { 2766 nr = i_size & ~PAGE_MASK; 2767 if (nr <= offset) 2768 break; 2769 } 2770 2771 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2772 if (error) { 2773 if (error == -EINVAL) 2774 error = 0; 2775 break; 2776 } 2777 if (folio) { 2778 folio_unlock(folio); 2779 2780 page = folio_file_page(folio, index); 2781 if (PageHWPoison(page)) { 2782 folio_put(folio); 2783 error = -EIO; 2784 break; 2785 } 2786 } 2787 2788 /* 2789 * We must evaluate after, since reads (unlike writes) 2790 * are called without i_rwsem protection against truncate 2791 */ 2792 nr = PAGE_SIZE; 2793 i_size = i_size_read(inode); 2794 end_index = i_size >> PAGE_SHIFT; 2795 if (index == end_index) { 2796 nr = i_size & ~PAGE_MASK; 2797 if (nr <= offset) { 2798 if (folio) 2799 folio_put(folio); 2800 break; 2801 } 2802 } 2803 nr -= offset; 2804 2805 if (folio) { 2806 /* 2807 * If users can be writing to this page using arbitrary 2808 * virtual addresses, take care about potential aliasing 2809 * before reading the page on the kernel side. 2810 */ 2811 if (mapping_writably_mapped(mapping)) 2812 flush_dcache_page(page); 2813 /* 2814 * Mark the page accessed if we read the beginning. 2815 */ 2816 if (!offset) 2817 folio_mark_accessed(folio); 2818 /* 2819 * Ok, we have the page, and it's up-to-date, so 2820 * now we can copy it to user space... 2821 */ 2822 ret = copy_page_to_iter(page, offset, nr, to); 2823 folio_put(folio); 2824 2825 } else if (user_backed_iter(to)) { 2826 /* 2827 * Copy to user tends to be so well optimized, but 2828 * clear_user() not so much, that it is noticeably 2829 * faster to copy the zero page instead of clearing. 2830 */ 2831 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2832 } else { 2833 /* 2834 * But submitting the same page twice in a row to 2835 * splice() - or others? - can result in confusion: 2836 * so don't attempt that optimization on pipes etc. 2837 */ 2838 ret = iov_iter_zero(nr, to); 2839 } 2840 2841 retval += ret; 2842 offset += ret; 2843 index += offset >> PAGE_SHIFT; 2844 offset &= ~PAGE_MASK; 2845 2846 if (!iov_iter_count(to)) 2847 break; 2848 if (ret < nr) { 2849 error = -EFAULT; 2850 break; 2851 } 2852 cond_resched(); 2853 } 2854 2855 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2856 file_accessed(file); 2857 return retval ? retval : error; 2858 } 2859 2860 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2861 { 2862 struct file *file = iocb->ki_filp; 2863 struct inode *inode = file->f_mapping->host; 2864 ssize_t ret; 2865 2866 inode_lock(inode); 2867 ret = generic_write_checks(iocb, from); 2868 if (ret <= 0) 2869 goto unlock; 2870 ret = file_remove_privs(file); 2871 if (ret) 2872 goto unlock; 2873 ret = file_update_time(file); 2874 if (ret) 2875 goto unlock; 2876 ret = generic_perform_write(iocb, from); 2877 unlock: 2878 inode_unlock(inode); 2879 return ret; 2880 } 2881 2882 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2883 struct pipe_buffer *buf) 2884 { 2885 return true; 2886 } 2887 2888 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2889 struct pipe_buffer *buf) 2890 { 2891 } 2892 2893 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2894 struct pipe_buffer *buf) 2895 { 2896 return false; 2897 } 2898 2899 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2900 .release = zero_pipe_buf_release, 2901 .try_steal = zero_pipe_buf_try_steal, 2902 .get = zero_pipe_buf_get, 2903 }; 2904 2905 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2906 loff_t fpos, size_t size) 2907 { 2908 size_t offset = fpos & ~PAGE_MASK; 2909 2910 size = min_t(size_t, size, PAGE_SIZE - offset); 2911 2912 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2913 struct pipe_buffer *buf = pipe_head_buf(pipe); 2914 2915 *buf = (struct pipe_buffer) { 2916 .ops = &zero_pipe_buf_ops, 2917 .page = ZERO_PAGE(0), 2918 .offset = offset, 2919 .len = size, 2920 }; 2921 pipe->head++; 2922 } 2923 2924 return size; 2925 } 2926 2927 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2928 struct pipe_inode_info *pipe, 2929 size_t len, unsigned int flags) 2930 { 2931 struct inode *inode = file_inode(in); 2932 struct address_space *mapping = inode->i_mapping; 2933 struct folio *folio = NULL; 2934 size_t total_spliced = 0, used, npages, n, part; 2935 loff_t isize; 2936 int error = 0; 2937 2938 /* Work out how much data we can actually add into the pipe */ 2939 used = pipe_occupancy(pipe->head, pipe->tail); 2940 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2941 len = min_t(size_t, len, npages * PAGE_SIZE); 2942 2943 do { 2944 if (*ppos >= i_size_read(inode)) 2945 break; 2946 2947 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2948 SGP_READ); 2949 if (error) { 2950 if (error == -EINVAL) 2951 error = 0; 2952 break; 2953 } 2954 if (folio) { 2955 folio_unlock(folio); 2956 2957 if (folio_test_hwpoison(folio) || 2958 (folio_test_large(folio) && 2959 folio_test_has_hwpoisoned(folio))) { 2960 error = -EIO; 2961 break; 2962 } 2963 } 2964 2965 /* 2966 * i_size must be checked after we know the pages are Uptodate. 2967 * 2968 * Checking i_size after the check allows us to calculate 2969 * the correct value for "nr", which means the zero-filled 2970 * part of the page is not copied back to userspace (unless 2971 * another truncate extends the file - this is desired though). 2972 */ 2973 isize = i_size_read(inode); 2974 if (unlikely(*ppos >= isize)) 2975 break; 2976 part = min_t(loff_t, isize - *ppos, len); 2977 2978 if (folio) { 2979 /* 2980 * If users can be writing to this page using arbitrary 2981 * virtual addresses, take care about potential aliasing 2982 * before reading the page on the kernel side. 2983 */ 2984 if (mapping_writably_mapped(mapping)) 2985 flush_dcache_folio(folio); 2986 folio_mark_accessed(folio); 2987 /* 2988 * Ok, we have the page, and it's up-to-date, so we can 2989 * now splice it into the pipe. 2990 */ 2991 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 2992 folio_put(folio); 2993 folio = NULL; 2994 } else { 2995 n = splice_zeropage_into_pipe(pipe, *ppos, part); 2996 } 2997 2998 if (!n) 2999 break; 3000 len -= n; 3001 total_spliced += n; 3002 *ppos += n; 3003 in->f_ra.prev_pos = *ppos; 3004 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3005 break; 3006 3007 cond_resched(); 3008 } while (len); 3009 3010 if (folio) 3011 folio_put(folio); 3012 3013 file_accessed(in); 3014 return total_spliced ? total_spliced : error; 3015 } 3016 3017 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3018 { 3019 struct address_space *mapping = file->f_mapping; 3020 struct inode *inode = mapping->host; 3021 3022 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3023 return generic_file_llseek_size(file, offset, whence, 3024 MAX_LFS_FILESIZE, i_size_read(inode)); 3025 if (offset < 0) 3026 return -ENXIO; 3027 3028 inode_lock(inode); 3029 /* We're holding i_rwsem so we can access i_size directly */ 3030 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3031 if (offset >= 0) 3032 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3033 inode_unlock(inode); 3034 return offset; 3035 } 3036 3037 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3038 loff_t len) 3039 { 3040 struct inode *inode = file_inode(file); 3041 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3042 struct shmem_inode_info *info = SHMEM_I(inode); 3043 struct shmem_falloc shmem_falloc; 3044 pgoff_t start, index, end, undo_fallocend; 3045 int error; 3046 3047 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3048 return -EOPNOTSUPP; 3049 3050 inode_lock(inode); 3051 3052 if (mode & FALLOC_FL_PUNCH_HOLE) { 3053 struct address_space *mapping = file->f_mapping; 3054 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3055 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3056 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3057 3058 /* protected by i_rwsem */ 3059 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3060 error = -EPERM; 3061 goto out; 3062 } 3063 3064 shmem_falloc.waitq = &shmem_falloc_waitq; 3065 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3066 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3067 spin_lock(&inode->i_lock); 3068 inode->i_private = &shmem_falloc; 3069 spin_unlock(&inode->i_lock); 3070 3071 if ((u64)unmap_end > (u64)unmap_start) 3072 unmap_mapping_range(mapping, unmap_start, 3073 1 + unmap_end - unmap_start, 0); 3074 shmem_truncate_range(inode, offset, offset + len - 1); 3075 /* No need to unmap again: hole-punching leaves COWed pages */ 3076 3077 spin_lock(&inode->i_lock); 3078 inode->i_private = NULL; 3079 wake_up_all(&shmem_falloc_waitq); 3080 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3081 spin_unlock(&inode->i_lock); 3082 error = 0; 3083 goto out; 3084 } 3085 3086 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3087 error = inode_newsize_ok(inode, offset + len); 3088 if (error) 3089 goto out; 3090 3091 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3092 error = -EPERM; 3093 goto out; 3094 } 3095 3096 start = offset >> PAGE_SHIFT; 3097 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3098 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3099 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3100 error = -ENOSPC; 3101 goto out; 3102 } 3103 3104 shmem_falloc.waitq = NULL; 3105 shmem_falloc.start = start; 3106 shmem_falloc.next = start; 3107 shmem_falloc.nr_falloced = 0; 3108 shmem_falloc.nr_unswapped = 0; 3109 spin_lock(&inode->i_lock); 3110 inode->i_private = &shmem_falloc; 3111 spin_unlock(&inode->i_lock); 3112 3113 /* 3114 * info->fallocend is only relevant when huge pages might be 3115 * involved: to prevent split_huge_page() freeing fallocated 3116 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3117 */ 3118 undo_fallocend = info->fallocend; 3119 if (info->fallocend < end) 3120 info->fallocend = end; 3121 3122 for (index = start; index < end; ) { 3123 struct folio *folio; 3124 3125 /* 3126 * Good, the fallocate(2) manpage permits EINTR: we may have 3127 * been interrupted because we are using up too much memory. 3128 */ 3129 if (signal_pending(current)) 3130 error = -EINTR; 3131 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3132 error = -ENOMEM; 3133 else 3134 error = shmem_get_folio(inode, index, &folio, 3135 SGP_FALLOC); 3136 if (error) { 3137 info->fallocend = undo_fallocend; 3138 /* Remove the !uptodate folios we added */ 3139 if (index > start) { 3140 shmem_undo_range(inode, 3141 (loff_t)start << PAGE_SHIFT, 3142 ((loff_t)index << PAGE_SHIFT) - 1, true); 3143 } 3144 goto undone; 3145 } 3146 3147 /* 3148 * Here is a more important optimization than it appears: 3149 * a second SGP_FALLOC on the same large folio will clear it, 3150 * making it uptodate and un-undoable if we fail later. 3151 */ 3152 index = folio_next_index(folio); 3153 /* Beware 32-bit wraparound */ 3154 if (!index) 3155 index--; 3156 3157 /* 3158 * Inform shmem_writepage() how far we have reached. 3159 * No need for lock or barrier: we have the page lock. 3160 */ 3161 if (!folio_test_uptodate(folio)) 3162 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3163 shmem_falloc.next = index; 3164 3165 /* 3166 * If !uptodate, leave it that way so that freeable folios 3167 * can be recognized if we need to rollback on error later. 3168 * But mark it dirty so that memory pressure will swap rather 3169 * than free the folios we are allocating (and SGP_CACHE folios 3170 * might still be clean: we now need to mark those dirty too). 3171 */ 3172 folio_mark_dirty(folio); 3173 folio_unlock(folio); 3174 folio_put(folio); 3175 cond_resched(); 3176 } 3177 3178 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3179 i_size_write(inode, offset + len); 3180 undone: 3181 spin_lock(&inode->i_lock); 3182 inode->i_private = NULL; 3183 spin_unlock(&inode->i_lock); 3184 out: 3185 if (!error) 3186 file_modified(file); 3187 inode_unlock(inode); 3188 return error; 3189 } 3190 3191 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3192 { 3193 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3194 3195 buf->f_type = TMPFS_MAGIC; 3196 buf->f_bsize = PAGE_SIZE; 3197 buf->f_namelen = NAME_MAX; 3198 if (sbinfo->max_blocks) { 3199 buf->f_blocks = sbinfo->max_blocks; 3200 buf->f_bavail = 3201 buf->f_bfree = sbinfo->max_blocks - 3202 percpu_counter_sum(&sbinfo->used_blocks); 3203 } 3204 if (sbinfo->max_inodes) { 3205 buf->f_files = sbinfo->max_inodes; 3206 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3207 } 3208 /* else leave those fields 0 like simple_statfs */ 3209 3210 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3211 3212 return 0; 3213 } 3214 3215 /* 3216 * File creation. Allocate an inode, and we're done.. 3217 */ 3218 static int 3219 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3220 struct dentry *dentry, umode_t mode, dev_t dev) 3221 { 3222 struct inode *inode; 3223 int error; 3224 3225 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3226 if (IS_ERR(inode)) 3227 return PTR_ERR(inode); 3228 3229 error = simple_acl_create(dir, inode); 3230 if (error) 3231 goto out_iput; 3232 error = security_inode_init_security(inode, dir, 3233 &dentry->d_name, 3234 shmem_initxattrs, NULL); 3235 if (error && error != -EOPNOTSUPP) 3236 goto out_iput; 3237 3238 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3239 if (error) 3240 goto out_iput; 3241 3242 dir->i_size += BOGO_DIRENT_SIZE; 3243 dir->i_mtime = inode_set_ctime_current(dir); 3244 inode_inc_iversion(dir); 3245 d_instantiate(dentry, inode); 3246 dget(dentry); /* Extra count - pin the dentry in core */ 3247 return error; 3248 3249 out_iput: 3250 iput(inode); 3251 return error; 3252 } 3253 3254 static int 3255 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3256 struct file *file, umode_t mode) 3257 { 3258 struct inode *inode; 3259 int error; 3260 3261 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3262 3263 if (IS_ERR(inode)) { 3264 error = PTR_ERR(inode); 3265 goto err_out; 3266 } 3267 3268 error = security_inode_init_security(inode, dir, 3269 NULL, 3270 shmem_initxattrs, NULL); 3271 if (error && error != -EOPNOTSUPP) 3272 goto out_iput; 3273 error = simple_acl_create(dir, inode); 3274 if (error) 3275 goto out_iput; 3276 d_tmpfile(file, inode); 3277 3278 err_out: 3279 return finish_open_simple(file, error); 3280 out_iput: 3281 iput(inode); 3282 return error; 3283 } 3284 3285 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3286 struct dentry *dentry, umode_t mode) 3287 { 3288 int error; 3289 3290 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3291 if (error) 3292 return error; 3293 inc_nlink(dir); 3294 return 0; 3295 } 3296 3297 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3298 struct dentry *dentry, umode_t mode, bool excl) 3299 { 3300 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3301 } 3302 3303 /* 3304 * Link a file.. 3305 */ 3306 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3307 { 3308 struct inode *inode = d_inode(old_dentry); 3309 int ret = 0; 3310 3311 /* 3312 * No ordinary (disk based) filesystem counts links as inodes; 3313 * but each new link needs a new dentry, pinning lowmem, and 3314 * tmpfs dentries cannot be pruned until they are unlinked. 3315 * But if an O_TMPFILE file is linked into the tmpfs, the 3316 * first link must skip that, to get the accounting right. 3317 */ 3318 if (inode->i_nlink) { 3319 ret = shmem_reserve_inode(inode->i_sb, NULL); 3320 if (ret) 3321 goto out; 3322 } 3323 3324 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3325 if (ret) { 3326 if (inode->i_nlink) 3327 shmem_free_inode(inode->i_sb, 0); 3328 goto out; 3329 } 3330 3331 dir->i_size += BOGO_DIRENT_SIZE; 3332 dir->i_mtime = inode_set_ctime_to_ts(dir, 3333 inode_set_ctime_current(inode)); 3334 inode_inc_iversion(dir); 3335 inc_nlink(inode); 3336 ihold(inode); /* New dentry reference */ 3337 dget(dentry); /* Extra pinning count for the created dentry */ 3338 d_instantiate(dentry, inode); 3339 out: 3340 return ret; 3341 } 3342 3343 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3344 { 3345 struct inode *inode = d_inode(dentry); 3346 3347 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3348 shmem_free_inode(inode->i_sb, 0); 3349 3350 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3351 3352 dir->i_size -= BOGO_DIRENT_SIZE; 3353 dir->i_mtime = inode_set_ctime_to_ts(dir, 3354 inode_set_ctime_current(inode)); 3355 inode_inc_iversion(dir); 3356 drop_nlink(inode); 3357 dput(dentry); /* Undo the count from "create" - this does all the work */ 3358 return 0; 3359 } 3360 3361 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3362 { 3363 if (!simple_empty(dentry)) 3364 return -ENOTEMPTY; 3365 3366 drop_nlink(d_inode(dentry)); 3367 drop_nlink(dir); 3368 return shmem_unlink(dir, dentry); 3369 } 3370 3371 static int shmem_whiteout(struct mnt_idmap *idmap, 3372 struct inode *old_dir, struct dentry *old_dentry) 3373 { 3374 struct dentry *whiteout; 3375 int error; 3376 3377 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3378 if (!whiteout) 3379 return -ENOMEM; 3380 3381 error = shmem_mknod(idmap, old_dir, whiteout, 3382 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3383 dput(whiteout); 3384 if (error) 3385 return error; 3386 3387 /* 3388 * Cheat and hash the whiteout while the old dentry is still in 3389 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3390 * 3391 * d_lookup() will consistently find one of them at this point, 3392 * not sure which one, but that isn't even important. 3393 */ 3394 d_rehash(whiteout); 3395 return 0; 3396 } 3397 3398 /* 3399 * The VFS layer already does all the dentry stuff for rename, 3400 * we just have to decrement the usage count for the target if 3401 * it exists so that the VFS layer correctly free's it when it 3402 * gets overwritten. 3403 */ 3404 static int shmem_rename2(struct mnt_idmap *idmap, 3405 struct inode *old_dir, struct dentry *old_dentry, 3406 struct inode *new_dir, struct dentry *new_dentry, 3407 unsigned int flags) 3408 { 3409 struct inode *inode = d_inode(old_dentry); 3410 int they_are_dirs = S_ISDIR(inode->i_mode); 3411 int error; 3412 3413 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3414 return -EINVAL; 3415 3416 if (flags & RENAME_EXCHANGE) 3417 return simple_offset_rename_exchange(old_dir, old_dentry, 3418 new_dir, new_dentry); 3419 3420 if (!simple_empty(new_dentry)) 3421 return -ENOTEMPTY; 3422 3423 if (flags & RENAME_WHITEOUT) { 3424 error = shmem_whiteout(idmap, old_dir, old_dentry); 3425 if (error) 3426 return error; 3427 } 3428 3429 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3430 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3431 if (error) 3432 return error; 3433 3434 if (d_really_is_positive(new_dentry)) { 3435 (void) shmem_unlink(new_dir, new_dentry); 3436 if (they_are_dirs) { 3437 drop_nlink(d_inode(new_dentry)); 3438 drop_nlink(old_dir); 3439 } 3440 } else if (they_are_dirs) { 3441 drop_nlink(old_dir); 3442 inc_nlink(new_dir); 3443 } 3444 3445 old_dir->i_size -= BOGO_DIRENT_SIZE; 3446 new_dir->i_size += BOGO_DIRENT_SIZE; 3447 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3448 inode_inc_iversion(old_dir); 3449 inode_inc_iversion(new_dir); 3450 return 0; 3451 } 3452 3453 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3454 struct dentry *dentry, const char *symname) 3455 { 3456 int error; 3457 int len; 3458 struct inode *inode; 3459 struct folio *folio; 3460 3461 len = strlen(symname) + 1; 3462 if (len > PAGE_SIZE) 3463 return -ENAMETOOLONG; 3464 3465 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3466 VM_NORESERVE); 3467 3468 if (IS_ERR(inode)) 3469 return PTR_ERR(inode); 3470 3471 error = security_inode_init_security(inode, dir, &dentry->d_name, 3472 shmem_initxattrs, NULL); 3473 if (error && error != -EOPNOTSUPP) 3474 goto out_iput; 3475 3476 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3477 if (error) 3478 goto out_iput; 3479 3480 inode->i_size = len-1; 3481 if (len <= SHORT_SYMLINK_LEN) { 3482 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3483 if (!inode->i_link) { 3484 error = -ENOMEM; 3485 goto out_remove_offset; 3486 } 3487 inode->i_op = &shmem_short_symlink_operations; 3488 } else { 3489 inode_nohighmem(inode); 3490 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3491 if (error) 3492 goto out_remove_offset; 3493 inode->i_mapping->a_ops = &shmem_aops; 3494 inode->i_op = &shmem_symlink_inode_operations; 3495 memcpy(folio_address(folio), symname, len); 3496 folio_mark_uptodate(folio); 3497 folio_mark_dirty(folio); 3498 folio_unlock(folio); 3499 folio_put(folio); 3500 } 3501 dir->i_size += BOGO_DIRENT_SIZE; 3502 dir->i_mtime = inode_set_ctime_current(dir); 3503 inode_inc_iversion(dir); 3504 d_instantiate(dentry, inode); 3505 dget(dentry); 3506 return 0; 3507 3508 out_remove_offset: 3509 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3510 out_iput: 3511 iput(inode); 3512 return error; 3513 } 3514 3515 static void shmem_put_link(void *arg) 3516 { 3517 folio_mark_accessed(arg); 3518 folio_put(arg); 3519 } 3520 3521 static const char *shmem_get_link(struct dentry *dentry, 3522 struct inode *inode, 3523 struct delayed_call *done) 3524 { 3525 struct folio *folio = NULL; 3526 int error; 3527 3528 if (!dentry) { 3529 folio = filemap_get_folio(inode->i_mapping, 0); 3530 if (IS_ERR(folio)) 3531 return ERR_PTR(-ECHILD); 3532 if (PageHWPoison(folio_page(folio, 0)) || 3533 !folio_test_uptodate(folio)) { 3534 folio_put(folio); 3535 return ERR_PTR(-ECHILD); 3536 } 3537 } else { 3538 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3539 if (error) 3540 return ERR_PTR(error); 3541 if (!folio) 3542 return ERR_PTR(-ECHILD); 3543 if (PageHWPoison(folio_page(folio, 0))) { 3544 folio_unlock(folio); 3545 folio_put(folio); 3546 return ERR_PTR(-ECHILD); 3547 } 3548 folio_unlock(folio); 3549 } 3550 set_delayed_call(done, shmem_put_link, folio); 3551 return folio_address(folio); 3552 } 3553 3554 #ifdef CONFIG_TMPFS_XATTR 3555 3556 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3557 { 3558 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3559 3560 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3561 3562 return 0; 3563 } 3564 3565 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3566 struct dentry *dentry, struct fileattr *fa) 3567 { 3568 struct inode *inode = d_inode(dentry); 3569 struct shmem_inode_info *info = SHMEM_I(inode); 3570 3571 if (fileattr_has_fsx(fa)) 3572 return -EOPNOTSUPP; 3573 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3574 return -EOPNOTSUPP; 3575 3576 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3577 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3578 3579 shmem_set_inode_flags(inode, info->fsflags); 3580 inode_set_ctime_current(inode); 3581 inode_inc_iversion(inode); 3582 return 0; 3583 } 3584 3585 /* 3586 * Superblocks without xattr inode operations may get some security.* xattr 3587 * support from the LSM "for free". As soon as we have any other xattrs 3588 * like ACLs, we also need to implement the security.* handlers at 3589 * filesystem level, though. 3590 */ 3591 3592 /* 3593 * Callback for security_inode_init_security() for acquiring xattrs. 3594 */ 3595 static int shmem_initxattrs(struct inode *inode, 3596 const struct xattr *xattr_array, 3597 void *fs_info) 3598 { 3599 struct shmem_inode_info *info = SHMEM_I(inode); 3600 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3601 const struct xattr *xattr; 3602 struct simple_xattr *new_xattr; 3603 size_t ispace = 0; 3604 size_t len; 3605 3606 if (sbinfo->max_inodes) { 3607 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3608 ispace += simple_xattr_space(xattr->name, 3609 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3610 } 3611 if (ispace) { 3612 raw_spin_lock(&sbinfo->stat_lock); 3613 if (sbinfo->free_ispace < ispace) 3614 ispace = 0; 3615 else 3616 sbinfo->free_ispace -= ispace; 3617 raw_spin_unlock(&sbinfo->stat_lock); 3618 if (!ispace) 3619 return -ENOSPC; 3620 } 3621 } 3622 3623 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3624 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3625 if (!new_xattr) 3626 break; 3627 3628 len = strlen(xattr->name) + 1; 3629 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3630 GFP_KERNEL_ACCOUNT); 3631 if (!new_xattr->name) { 3632 kvfree(new_xattr); 3633 break; 3634 } 3635 3636 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3637 XATTR_SECURITY_PREFIX_LEN); 3638 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3639 xattr->name, len); 3640 3641 simple_xattr_add(&info->xattrs, new_xattr); 3642 } 3643 3644 if (xattr->name != NULL) { 3645 if (ispace) { 3646 raw_spin_lock(&sbinfo->stat_lock); 3647 sbinfo->free_ispace += ispace; 3648 raw_spin_unlock(&sbinfo->stat_lock); 3649 } 3650 simple_xattrs_free(&info->xattrs, NULL); 3651 return -ENOMEM; 3652 } 3653 3654 return 0; 3655 } 3656 3657 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3658 struct dentry *unused, struct inode *inode, 3659 const char *name, void *buffer, size_t size) 3660 { 3661 struct shmem_inode_info *info = SHMEM_I(inode); 3662 3663 name = xattr_full_name(handler, name); 3664 return simple_xattr_get(&info->xattrs, name, buffer, size); 3665 } 3666 3667 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3668 struct mnt_idmap *idmap, 3669 struct dentry *unused, struct inode *inode, 3670 const char *name, const void *value, 3671 size_t size, int flags) 3672 { 3673 struct shmem_inode_info *info = SHMEM_I(inode); 3674 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3675 struct simple_xattr *old_xattr; 3676 size_t ispace = 0; 3677 3678 name = xattr_full_name(handler, name); 3679 if (value && sbinfo->max_inodes) { 3680 ispace = simple_xattr_space(name, size); 3681 raw_spin_lock(&sbinfo->stat_lock); 3682 if (sbinfo->free_ispace < ispace) 3683 ispace = 0; 3684 else 3685 sbinfo->free_ispace -= ispace; 3686 raw_spin_unlock(&sbinfo->stat_lock); 3687 if (!ispace) 3688 return -ENOSPC; 3689 } 3690 3691 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3692 if (!IS_ERR(old_xattr)) { 3693 ispace = 0; 3694 if (old_xattr && sbinfo->max_inodes) 3695 ispace = simple_xattr_space(old_xattr->name, 3696 old_xattr->size); 3697 simple_xattr_free(old_xattr); 3698 old_xattr = NULL; 3699 inode_set_ctime_current(inode); 3700 inode_inc_iversion(inode); 3701 } 3702 if (ispace) { 3703 raw_spin_lock(&sbinfo->stat_lock); 3704 sbinfo->free_ispace += ispace; 3705 raw_spin_unlock(&sbinfo->stat_lock); 3706 } 3707 return PTR_ERR(old_xattr); 3708 } 3709 3710 static const struct xattr_handler shmem_security_xattr_handler = { 3711 .prefix = XATTR_SECURITY_PREFIX, 3712 .get = shmem_xattr_handler_get, 3713 .set = shmem_xattr_handler_set, 3714 }; 3715 3716 static const struct xattr_handler shmem_trusted_xattr_handler = { 3717 .prefix = XATTR_TRUSTED_PREFIX, 3718 .get = shmem_xattr_handler_get, 3719 .set = shmem_xattr_handler_set, 3720 }; 3721 3722 static const struct xattr_handler shmem_user_xattr_handler = { 3723 .prefix = XATTR_USER_PREFIX, 3724 .get = shmem_xattr_handler_get, 3725 .set = shmem_xattr_handler_set, 3726 }; 3727 3728 static const struct xattr_handler *shmem_xattr_handlers[] = { 3729 &shmem_security_xattr_handler, 3730 &shmem_trusted_xattr_handler, 3731 &shmem_user_xattr_handler, 3732 NULL 3733 }; 3734 3735 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3736 { 3737 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3738 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3739 } 3740 #endif /* CONFIG_TMPFS_XATTR */ 3741 3742 static const struct inode_operations shmem_short_symlink_operations = { 3743 .getattr = shmem_getattr, 3744 .setattr = shmem_setattr, 3745 .get_link = simple_get_link, 3746 #ifdef CONFIG_TMPFS_XATTR 3747 .listxattr = shmem_listxattr, 3748 #endif 3749 }; 3750 3751 static const struct inode_operations shmem_symlink_inode_operations = { 3752 .getattr = shmem_getattr, 3753 .setattr = shmem_setattr, 3754 .get_link = shmem_get_link, 3755 #ifdef CONFIG_TMPFS_XATTR 3756 .listxattr = shmem_listxattr, 3757 #endif 3758 }; 3759 3760 static struct dentry *shmem_get_parent(struct dentry *child) 3761 { 3762 return ERR_PTR(-ESTALE); 3763 } 3764 3765 static int shmem_match(struct inode *ino, void *vfh) 3766 { 3767 __u32 *fh = vfh; 3768 __u64 inum = fh[2]; 3769 inum = (inum << 32) | fh[1]; 3770 return ino->i_ino == inum && fh[0] == ino->i_generation; 3771 } 3772 3773 /* Find any alias of inode, but prefer a hashed alias */ 3774 static struct dentry *shmem_find_alias(struct inode *inode) 3775 { 3776 struct dentry *alias = d_find_alias(inode); 3777 3778 return alias ?: d_find_any_alias(inode); 3779 } 3780 3781 3782 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3783 struct fid *fid, int fh_len, int fh_type) 3784 { 3785 struct inode *inode; 3786 struct dentry *dentry = NULL; 3787 u64 inum; 3788 3789 if (fh_len < 3) 3790 return NULL; 3791 3792 inum = fid->raw[2]; 3793 inum = (inum << 32) | fid->raw[1]; 3794 3795 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3796 shmem_match, fid->raw); 3797 if (inode) { 3798 dentry = shmem_find_alias(inode); 3799 iput(inode); 3800 } 3801 3802 return dentry; 3803 } 3804 3805 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3806 struct inode *parent) 3807 { 3808 if (*len < 3) { 3809 *len = 3; 3810 return FILEID_INVALID; 3811 } 3812 3813 if (inode_unhashed(inode)) { 3814 /* Unfortunately insert_inode_hash is not idempotent, 3815 * so as we hash inodes here rather than at creation 3816 * time, we need a lock to ensure we only try 3817 * to do it once 3818 */ 3819 static DEFINE_SPINLOCK(lock); 3820 spin_lock(&lock); 3821 if (inode_unhashed(inode)) 3822 __insert_inode_hash(inode, 3823 inode->i_ino + inode->i_generation); 3824 spin_unlock(&lock); 3825 } 3826 3827 fh[0] = inode->i_generation; 3828 fh[1] = inode->i_ino; 3829 fh[2] = ((__u64)inode->i_ino) >> 32; 3830 3831 *len = 3; 3832 return 1; 3833 } 3834 3835 static const struct export_operations shmem_export_ops = { 3836 .get_parent = shmem_get_parent, 3837 .encode_fh = shmem_encode_fh, 3838 .fh_to_dentry = shmem_fh_to_dentry, 3839 }; 3840 3841 enum shmem_param { 3842 Opt_gid, 3843 Opt_huge, 3844 Opt_mode, 3845 Opt_mpol, 3846 Opt_nr_blocks, 3847 Opt_nr_inodes, 3848 Opt_size, 3849 Opt_uid, 3850 Opt_inode32, 3851 Opt_inode64, 3852 Opt_noswap, 3853 Opt_quota, 3854 Opt_usrquota, 3855 Opt_grpquota, 3856 Opt_usrquota_block_hardlimit, 3857 Opt_usrquota_inode_hardlimit, 3858 Opt_grpquota_block_hardlimit, 3859 Opt_grpquota_inode_hardlimit, 3860 }; 3861 3862 static const struct constant_table shmem_param_enums_huge[] = { 3863 {"never", SHMEM_HUGE_NEVER }, 3864 {"always", SHMEM_HUGE_ALWAYS }, 3865 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3866 {"advise", SHMEM_HUGE_ADVISE }, 3867 {} 3868 }; 3869 3870 const struct fs_parameter_spec shmem_fs_parameters[] = { 3871 fsparam_u32 ("gid", Opt_gid), 3872 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3873 fsparam_u32oct("mode", Opt_mode), 3874 fsparam_string("mpol", Opt_mpol), 3875 fsparam_string("nr_blocks", Opt_nr_blocks), 3876 fsparam_string("nr_inodes", Opt_nr_inodes), 3877 fsparam_string("size", Opt_size), 3878 fsparam_u32 ("uid", Opt_uid), 3879 fsparam_flag ("inode32", Opt_inode32), 3880 fsparam_flag ("inode64", Opt_inode64), 3881 fsparam_flag ("noswap", Opt_noswap), 3882 #ifdef CONFIG_TMPFS_QUOTA 3883 fsparam_flag ("quota", Opt_quota), 3884 fsparam_flag ("usrquota", Opt_usrquota), 3885 fsparam_flag ("grpquota", Opt_grpquota), 3886 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3887 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3888 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3889 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3890 #endif 3891 {} 3892 }; 3893 3894 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3895 { 3896 struct shmem_options *ctx = fc->fs_private; 3897 struct fs_parse_result result; 3898 unsigned long long size; 3899 char *rest; 3900 int opt; 3901 kuid_t kuid; 3902 kgid_t kgid; 3903 3904 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3905 if (opt < 0) 3906 return opt; 3907 3908 switch (opt) { 3909 case Opt_size: 3910 size = memparse(param->string, &rest); 3911 if (*rest == '%') { 3912 size <<= PAGE_SHIFT; 3913 size *= totalram_pages(); 3914 do_div(size, 100); 3915 rest++; 3916 } 3917 if (*rest) 3918 goto bad_value; 3919 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3920 ctx->seen |= SHMEM_SEEN_BLOCKS; 3921 break; 3922 case Opt_nr_blocks: 3923 ctx->blocks = memparse(param->string, &rest); 3924 if (*rest || ctx->blocks > LONG_MAX) 3925 goto bad_value; 3926 ctx->seen |= SHMEM_SEEN_BLOCKS; 3927 break; 3928 case Opt_nr_inodes: 3929 ctx->inodes = memparse(param->string, &rest); 3930 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3931 goto bad_value; 3932 ctx->seen |= SHMEM_SEEN_INODES; 3933 break; 3934 case Opt_mode: 3935 ctx->mode = result.uint_32 & 07777; 3936 break; 3937 case Opt_uid: 3938 kuid = make_kuid(current_user_ns(), result.uint_32); 3939 if (!uid_valid(kuid)) 3940 goto bad_value; 3941 3942 /* 3943 * The requested uid must be representable in the 3944 * filesystem's idmapping. 3945 */ 3946 if (!kuid_has_mapping(fc->user_ns, kuid)) 3947 goto bad_value; 3948 3949 ctx->uid = kuid; 3950 break; 3951 case Opt_gid: 3952 kgid = make_kgid(current_user_ns(), result.uint_32); 3953 if (!gid_valid(kgid)) 3954 goto bad_value; 3955 3956 /* 3957 * The requested gid must be representable in the 3958 * filesystem's idmapping. 3959 */ 3960 if (!kgid_has_mapping(fc->user_ns, kgid)) 3961 goto bad_value; 3962 3963 ctx->gid = kgid; 3964 break; 3965 case Opt_huge: 3966 ctx->huge = result.uint_32; 3967 if (ctx->huge != SHMEM_HUGE_NEVER && 3968 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3969 has_transparent_hugepage())) 3970 goto unsupported_parameter; 3971 ctx->seen |= SHMEM_SEEN_HUGE; 3972 break; 3973 case Opt_mpol: 3974 if (IS_ENABLED(CONFIG_NUMA)) { 3975 mpol_put(ctx->mpol); 3976 ctx->mpol = NULL; 3977 if (mpol_parse_str(param->string, &ctx->mpol)) 3978 goto bad_value; 3979 break; 3980 } 3981 goto unsupported_parameter; 3982 case Opt_inode32: 3983 ctx->full_inums = false; 3984 ctx->seen |= SHMEM_SEEN_INUMS; 3985 break; 3986 case Opt_inode64: 3987 if (sizeof(ino_t) < 8) { 3988 return invalfc(fc, 3989 "Cannot use inode64 with <64bit inums in kernel\n"); 3990 } 3991 ctx->full_inums = true; 3992 ctx->seen |= SHMEM_SEEN_INUMS; 3993 break; 3994 case Opt_noswap: 3995 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 3996 return invalfc(fc, 3997 "Turning off swap in unprivileged tmpfs mounts unsupported"); 3998 } 3999 ctx->noswap = true; 4000 ctx->seen |= SHMEM_SEEN_NOSWAP; 4001 break; 4002 case Opt_quota: 4003 if (fc->user_ns != &init_user_ns) 4004 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4005 ctx->seen |= SHMEM_SEEN_QUOTA; 4006 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4007 break; 4008 case Opt_usrquota: 4009 if (fc->user_ns != &init_user_ns) 4010 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4011 ctx->seen |= SHMEM_SEEN_QUOTA; 4012 ctx->quota_types |= QTYPE_MASK_USR; 4013 break; 4014 case Opt_grpquota: 4015 if (fc->user_ns != &init_user_ns) 4016 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4017 ctx->seen |= SHMEM_SEEN_QUOTA; 4018 ctx->quota_types |= QTYPE_MASK_GRP; 4019 break; 4020 case Opt_usrquota_block_hardlimit: 4021 size = memparse(param->string, &rest); 4022 if (*rest || !size) 4023 goto bad_value; 4024 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4025 return invalfc(fc, 4026 "User quota block hardlimit too large."); 4027 ctx->qlimits.usrquota_bhardlimit = size; 4028 break; 4029 case Opt_grpquota_block_hardlimit: 4030 size = memparse(param->string, &rest); 4031 if (*rest || !size) 4032 goto bad_value; 4033 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4034 return invalfc(fc, 4035 "Group quota block hardlimit too large."); 4036 ctx->qlimits.grpquota_bhardlimit = size; 4037 break; 4038 case Opt_usrquota_inode_hardlimit: 4039 size = memparse(param->string, &rest); 4040 if (*rest || !size) 4041 goto bad_value; 4042 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4043 return invalfc(fc, 4044 "User quota inode hardlimit too large."); 4045 ctx->qlimits.usrquota_ihardlimit = size; 4046 break; 4047 case Opt_grpquota_inode_hardlimit: 4048 size = memparse(param->string, &rest); 4049 if (*rest || !size) 4050 goto bad_value; 4051 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4052 return invalfc(fc, 4053 "Group quota inode hardlimit too large."); 4054 ctx->qlimits.grpquota_ihardlimit = size; 4055 break; 4056 } 4057 return 0; 4058 4059 unsupported_parameter: 4060 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4061 bad_value: 4062 return invalfc(fc, "Bad value for '%s'", param->key); 4063 } 4064 4065 static int shmem_parse_options(struct fs_context *fc, void *data) 4066 { 4067 char *options = data; 4068 4069 if (options) { 4070 int err = security_sb_eat_lsm_opts(options, &fc->security); 4071 if (err) 4072 return err; 4073 } 4074 4075 while (options != NULL) { 4076 char *this_char = options; 4077 for (;;) { 4078 /* 4079 * NUL-terminate this option: unfortunately, 4080 * mount options form a comma-separated list, 4081 * but mpol's nodelist may also contain commas. 4082 */ 4083 options = strchr(options, ','); 4084 if (options == NULL) 4085 break; 4086 options++; 4087 if (!isdigit(*options)) { 4088 options[-1] = '\0'; 4089 break; 4090 } 4091 } 4092 if (*this_char) { 4093 char *value = strchr(this_char, '='); 4094 size_t len = 0; 4095 int err; 4096 4097 if (value) { 4098 *value++ = '\0'; 4099 len = strlen(value); 4100 } 4101 err = vfs_parse_fs_string(fc, this_char, value, len); 4102 if (err < 0) 4103 return err; 4104 } 4105 } 4106 return 0; 4107 } 4108 4109 /* 4110 * Reconfigure a shmem filesystem. 4111 */ 4112 static int shmem_reconfigure(struct fs_context *fc) 4113 { 4114 struct shmem_options *ctx = fc->fs_private; 4115 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4116 unsigned long used_isp; 4117 struct mempolicy *mpol = NULL; 4118 const char *err; 4119 4120 raw_spin_lock(&sbinfo->stat_lock); 4121 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4122 4123 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4124 if (!sbinfo->max_blocks) { 4125 err = "Cannot retroactively limit size"; 4126 goto out; 4127 } 4128 if (percpu_counter_compare(&sbinfo->used_blocks, 4129 ctx->blocks) > 0) { 4130 err = "Too small a size for current use"; 4131 goto out; 4132 } 4133 } 4134 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4135 if (!sbinfo->max_inodes) { 4136 err = "Cannot retroactively limit inodes"; 4137 goto out; 4138 } 4139 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4140 err = "Too few inodes for current use"; 4141 goto out; 4142 } 4143 } 4144 4145 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4146 sbinfo->next_ino > UINT_MAX) { 4147 err = "Current inum too high to switch to 32-bit inums"; 4148 goto out; 4149 } 4150 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4151 err = "Cannot disable swap on remount"; 4152 goto out; 4153 } 4154 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4155 err = "Cannot enable swap on remount if it was disabled on first mount"; 4156 goto out; 4157 } 4158 4159 if (ctx->seen & SHMEM_SEEN_QUOTA && 4160 !sb_any_quota_loaded(fc->root->d_sb)) { 4161 err = "Cannot enable quota on remount"; 4162 goto out; 4163 } 4164 4165 #ifdef CONFIG_TMPFS_QUOTA 4166 #define CHANGED_LIMIT(name) \ 4167 (ctx->qlimits.name## hardlimit && \ 4168 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4169 4170 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4171 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4172 err = "Cannot change global quota limit on remount"; 4173 goto out; 4174 } 4175 #endif /* CONFIG_TMPFS_QUOTA */ 4176 4177 if (ctx->seen & SHMEM_SEEN_HUGE) 4178 sbinfo->huge = ctx->huge; 4179 if (ctx->seen & SHMEM_SEEN_INUMS) 4180 sbinfo->full_inums = ctx->full_inums; 4181 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4182 sbinfo->max_blocks = ctx->blocks; 4183 if (ctx->seen & SHMEM_SEEN_INODES) { 4184 sbinfo->max_inodes = ctx->inodes; 4185 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4186 } 4187 4188 /* 4189 * Preserve previous mempolicy unless mpol remount option was specified. 4190 */ 4191 if (ctx->mpol) { 4192 mpol = sbinfo->mpol; 4193 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4194 ctx->mpol = NULL; 4195 } 4196 4197 if (ctx->noswap) 4198 sbinfo->noswap = true; 4199 4200 raw_spin_unlock(&sbinfo->stat_lock); 4201 mpol_put(mpol); 4202 return 0; 4203 out: 4204 raw_spin_unlock(&sbinfo->stat_lock); 4205 return invalfc(fc, "%s", err); 4206 } 4207 4208 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4209 { 4210 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4211 struct mempolicy *mpol; 4212 4213 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4214 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4215 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4216 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4217 if (sbinfo->mode != (0777 | S_ISVTX)) 4218 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4219 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4220 seq_printf(seq, ",uid=%u", 4221 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4222 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4223 seq_printf(seq, ",gid=%u", 4224 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4225 4226 /* 4227 * Showing inode{64,32} might be useful even if it's the system default, 4228 * since then people don't have to resort to checking both here and 4229 * /proc/config.gz to confirm 64-bit inums were successfully applied 4230 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4231 * 4232 * We hide it when inode64 isn't the default and we are using 32-bit 4233 * inodes, since that probably just means the feature isn't even under 4234 * consideration. 4235 * 4236 * As such: 4237 * 4238 * +-----------------+-----------------+ 4239 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4240 * +------------------+-----------------+-----------------+ 4241 * | full_inums=true | show | show | 4242 * | full_inums=false | show | hide | 4243 * +------------------+-----------------+-----------------+ 4244 * 4245 */ 4246 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4247 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4248 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4249 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4250 if (sbinfo->huge) 4251 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4252 #endif 4253 mpol = shmem_get_sbmpol(sbinfo); 4254 shmem_show_mpol(seq, mpol); 4255 mpol_put(mpol); 4256 if (sbinfo->noswap) 4257 seq_printf(seq, ",noswap"); 4258 return 0; 4259 } 4260 4261 #endif /* CONFIG_TMPFS */ 4262 4263 static void shmem_put_super(struct super_block *sb) 4264 { 4265 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4266 4267 #ifdef CONFIG_TMPFS_QUOTA 4268 shmem_disable_quotas(sb); 4269 #endif 4270 free_percpu(sbinfo->ino_batch); 4271 percpu_counter_destroy(&sbinfo->used_blocks); 4272 mpol_put(sbinfo->mpol); 4273 kfree(sbinfo); 4274 sb->s_fs_info = NULL; 4275 } 4276 4277 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4278 { 4279 struct shmem_options *ctx = fc->fs_private; 4280 struct inode *inode; 4281 struct shmem_sb_info *sbinfo; 4282 int error = -ENOMEM; 4283 4284 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4285 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4286 L1_CACHE_BYTES), GFP_KERNEL); 4287 if (!sbinfo) 4288 return error; 4289 4290 sb->s_fs_info = sbinfo; 4291 4292 #ifdef CONFIG_TMPFS 4293 /* 4294 * Per default we only allow half of the physical ram per 4295 * tmpfs instance, limiting inodes to one per page of lowmem; 4296 * but the internal instance is left unlimited. 4297 */ 4298 if (!(sb->s_flags & SB_KERNMOUNT)) { 4299 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4300 ctx->blocks = shmem_default_max_blocks(); 4301 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4302 ctx->inodes = shmem_default_max_inodes(); 4303 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4304 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4305 sbinfo->noswap = ctx->noswap; 4306 } else { 4307 sb->s_flags |= SB_NOUSER; 4308 } 4309 sb->s_export_op = &shmem_export_ops; 4310 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4311 #else 4312 sb->s_flags |= SB_NOUSER; 4313 #endif 4314 sbinfo->max_blocks = ctx->blocks; 4315 sbinfo->max_inodes = ctx->inodes; 4316 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4317 if (sb->s_flags & SB_KERNMOUNT) { 4318 sbinfo->ino_batch = alloc_percpu(ino_t); 4319 if (!sbinfo->ino_batch) 4320 goto failed; 4321 } 4322 sbinfo->uid = ctx->uid; 4323 sbinfo->gid = ctx->gid; 4324 sbinfo->full_inums = ctx->full_inums; 4325 sbinfo->mode = ctx->mode; 4326 sbinfo->huge = ctx->huge; 4327 sbinfo->mpol = ctx->mpol; 4328 ctx->mpol = NULL; 4329 4330 raw_spin_lock_init(&sbinfo->stat_lock); 4331 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4332 goto failed; 4333 spin_lock_init(&sbinfo->shrinklist_lock); 4334 INIT_LIST_HEAD(&sbinfo->shrinklist); 4335 4336 sb->s_maxbytes = MAX_LFS_FILESIZE; 4337 sb->s_blocksize = PAGE_SIZE; 4338 sb->s_blocksize_bits = PAGE_SHIFT; 4339 sb->s_magic = TMPFS_MAGIC; 4340 sb->s_op = &shmem_ops; 4341 sb->s_time_gran = 1; 4342 #ifdef CONFIG_TMPFS_XATTR 4343 sb->s_xattr = shmem_xattr_handlers; 4344 #endif 4345 #ifdef CONFIG_TMPFS_POSIX_ACL 4346 sb->s_flags |= SB_POSIXACL; 4347 #endif 4348 uuid_gen(&sb->s_uuid); 4349 4350 #ifdef CONFIG_TMPFS_QUOTA 4351 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4352 sb->dq_op = &shmem_quota_operations; 4353 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4354 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4355 4356 /* Copy the default limits from ctx into sbinfo */ 4357 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4358 sizeof(struct shmem_quota_limits)); 4359 4360 if (shmem_enable_quotas(sb, ctx->quota_types)) 4361 goto failed; 4362 } 4363 #endif /* CONFIG_TMPFS_QUOTA */ 4364 4365 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 4366 VM_NORESERVE); 4367 if (IS_ERR(inode)) { 4368 error = PTR_ERR(inode); 4369 goto failed; 4370 } 4371 inode->i_uid = sbinfo->uid; 4372 inode->i_gid = sbinfo->gid; 4373 sb->s_root = d_make_root(inode); 4374 if (!sb->s_root) 4375 goto failed; 4376 return 0; 4377 4378 failed: 4379 shmem_put_super(sb); 4380 return error; 4381 } 4382 4383 static int shmem_get_tree(struct fs_context *fc) 4384 { 4385 return get_tree_nodev(fc, shmem_fill_super); 4386 } 4387 4388 static void shmem_free_fc(struct fs_context *fc) 4389 { 4390 struct shmem_options *ctx = fc->fs_private; 4391 4392 if (ctx) { 4393 mpol_put(ctx->mpol); 4394 kfree(ctx); 4395 } 4396 } 4397 4398 static const struct fs_context_operations shmem_fs_context_ops = { 4399 .free = shmem_free_fc, 4400 .get_tree = shmem_get_tree, 4401 #ifdef CONFIG_TMPFS 4402 .parse_monolithic = shmem_parse_options, 4403 .parse_param = shmem_parse_one, 4404 .reconfigure = shmem_reconfigure, 4405 #endif 4406 }; 4407 4408 static struct kmem_cache *shmem_inode_cachep; 4409 4410 static struct inode *shmem_alloc_inode(struct super_block *sb) 4411 { 4412 struct shmem_inode_info *info; 4413 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4414 if (!info) 4415 return NULL; 4416 return &info->vfs_inode; 4417 } 4418 4419 static void shmem_free_in_core_inode(struct inode *inode) 4420 { 4421 if (S_ISLNK(inode->i_mode)) 4422 kfree(inode->i_link); 4423 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4424 } 4425 4426 static void shmem_destroy_inode(struct inode *inode) 4427 { 4428 if (S_ISREG(inode->i_mode)) 4429 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4430 if (S_ISDIR(inode->i_mode)) 4431 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4432 } 4433 4434 static void shmem_init_inode(void *foo) 4435 { 4436 struct shmem_inode_info *info = foo; 4437 inode_init_once(&info->vfs_inode); 4438 } 4439 4440 static void shmem_init_inodecache(void) 4441 { 4442 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4443 sizeof(struct shmem_inode_info), 4444 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4445 } 4446 4447 static void shmem_destroy_inodecache(void) 4448 { 4449 kmem_cache_destroy(shmem_inode_cachep); 4450 } 4451 4452 /* Keep the page in page cache instead of truncating it */ 4453 static int shmem_error_remove_page(struct address_space *mapping, 4454 struct page *page) 4455 { 4456 return 0; 4457 } 4458 4459 const struct address_space_operations shmem_aops = { 4460 .writepage = shmem_writepage, 4461 .dirty_folio = noop_dirty_folio, 4462 #ifdef CONFIG_TMPFS 4463 .write_begin = shmem_write_begin, 4464 .write_end = shmem_write_end, 4465 #endif 4466 #ifdef CONFIG_MIGRATION 4467 .migrate_folio = migrate_folio, 4468 #endif 4469 .error_remove_page = shmem_error_remove_page, 4470 }; 4471 EXPORT_SYMBOL(shmem_aops); 4472 4473 static const struct file_operations shmem_file_operations = { 4474 .mmap = shmem_mmap, 4475 .open = shmem_file_open, 4476 .get_unmapped_area = shmem_get_unmapped_area, 4477 #ifdef CONFIG_TMPFS 4478 .llseek = shmem_file_llseek, 4479 .read_iter = shmem_file_read_iter, 4480 .write_iter = shmem_file_write_iter, 4481 .fsync = noop_fsync, 4482 .splice_read = shmem_file_splice_read, 4483 .splice_write = iter_file_splice_write, 4484 .fallocate = shmem_fallocate, 4485 #endif 4486 }; 4487 4488 static const struct inode_operations shmem_inode_operations = { 4489 .getattr = shmem_getattr, 4490 .setattr = shmem_setattr, 4491 #ifdef CONFIG_TMPFS_XATTR 4492 .listxattr = shmem_listxattr, 4493 .set_acl = simple_set_acl, 4494 .fileattr_get = shmem_fileattr_get, 4495 .fileattr_set = shmem_fileattr_set, 4496 #endif 4497 }; 4498 4499 static const struct inode_operations shmem_dir_inode_operations = { 4500 #ifdef CONFIG_TMPFS 4501 .getattr = shmem_getattr, 4502 .create = shmem_create, 4503 .lookup = simple_lookup, 4504 .link = shmem_link, 4505 .unlink = shmem_unlink, 4506 .symlink = shmem_symlink, 4507 .mkdir = shmem_mkdir, 4508 .rmdir = shmem_rmdir, 4509 .mknod = shmem_mknod, 4510 .rename = shmem_rename2, 4511 .tmpfile = shmem_tmpfile, 4512 .get_offset_ctx = shmem_get_offset_ctx, 4513 #endif 4514 #ifdef CONFIG_TMPFS_XATTR 4515 .listxattr = shmem_listxattr, 4516 .fileattr_get = shmem_fileattr_get, 4517 .fileattr_set = shmem_fileattr_set, 4518 #endif 4519 #ifdef CONFIG_TMPFS_POSIX_ACL 4520 .setattr = shmem_setattr, 4521 .set_acl = simple_set_acl, 4522 #endif 4523 }; 4524 4525 static const struct inode_operations shmem_special_inode_operations = { 4526 .getattr = shmem_getattr, 4527 #ifdef CONFIG_TMPFS_XATTR 4528 .listxattr = shmem_listxattr, 4529 #endif 4530 #ifdef CONFIG_TMPFS_POSIX_ACL 4531 .setattr = shmem_setattr, 4532 .set_acl = simple_set_acl, 4533 #endif 4534 }; 4535 4536 static const struct super_operations shmem_ops = { 4537 .alloc_inode = shmem_alloc_inode, 4538 .free_inode = shmem_free_in_core_inode, 4539 .destroy_inode = shmem_destroy_inode, 4540 #ifdef CONFIG_TMPFS 4541 .statfs = shmem_statfs, 4542 .show_options = shmem_show_options, 4543 #endif 4544 #ifdef CONFIG_TMPFS_QUOTA 4545 .get_dquots = shmem_get_dquots, 4546 #endif 4547 .evict_inode = shmem_evict_inode, 4548 .drop_inode = generic_delete_inode, 4549 .put_super = shmem_put_super, 4550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4551 .nr_cached_objects = shmem_unused_huge_count, 4552 .free_cached_objects = shmem_unused_huge_scan, 4553 #endif 4554 }; 4555 4556 static const struct vm_operations_struct shmem_vm_ops = { 4557 .fault = shmem_fault, 4558 .map_pages = filemap_map_pages, 4559 #ifdef CONFIG_NUMA 4560 .set_policy = shmem_set_policy, 4561 .get_policy = shmem_get_policy, 4562 #endif 4563 }; 4564 4565 static const struct vm_operations_struct shmem_anon_vm_ops = { 4566 .fault = shmem_fault, 4567 .map_pages = filemap_map_pages, 4568 #ifdef CONFIG_NUMA 4569 .set_policy = shmem_set_policy, 4570 .get_policy = shmem_get_policy, 4571 #endif 4572 }; 4573 4574 int shmem_init_fs_context(struct fs_context *fc) 4575 { 4576 struct shmem_options *ctx; 4577 4578 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4579 if (!ctx) 4580 return -ENOMEM; 4581 4582 ctx->mode = 0777 | S_ISVTX; 4583 ctx->uid = current_fsuid(); 4584 ctx->gid = current_fsgid(); 4585 4586 fc->fs_private = ctx; 4587 fc->ops = &shmem_fs_context_ops; 4588 return 0; 4589 } 4590 4591 static struct file_system_type shmem_fs_type = { 4592 .owner = THIS_MODULE, 4593 .name = "tmpfs", 4594 .init_fs_context = shmem_init_fs_context, 4595 #ifdef CONFIG_TMPFS 4596 .parameters = shmem_fs_parameters, 4597 #endif 4598 .kill_sb = kill_litter_super, 4599 #ifdef CONFIG_SHMEM 4600 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4601 #else 4602 .fs_flags = FS_USERNS_MOUNT, 4603 #endif 4604 }; 4605 4606 void __init shmem_init(void) 4607 { 4608 int error; 4609 4610 shmem_init_inodecache(); 4611 4612 #ifdef CONFIG_TMPFS_QUOTA 4613 error = register_quota_format(&shmem_quota_format); 4614 if (error < 0) { 4615 pr_err("Could not register quota format\n"); 4616 goto out3; 4617 } 4618 #endif 4619 4620 error = register_filesystem(&shmem_fs_type); 4621 if (error) { 4622 pr_err("Could not register tmpfs\n"); 4623 goto out2; 4624 } 4625 4626 shm_mnt = kern_mount(&shmem_fs_type); 4627 if (IS_ERR(shm_mnt)) { 4628 error = PTR_ERR(shm_mnt); 4629 pr_err("Could not kern_mount tmpfs\n"); 4630 goto out1; 4631 } 4632 4633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4634 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4635 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4636 else 4637 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4638 #endif 4639 return; 4640 4641 out1: 4642 unregister_filesystem(&shmem_fs_type); 4643 out2: 4644 #ifdef CONFIG_TMPFS_QUOTA 4645 unregister_quota_format(&shmem_quota_format); 4646 out3: 4647 #endif 4648 shmem_destroy_inodecache(); 4649 shm_mnt = ERR_PTR(error); 4650 } 4651 4652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4653 static ssize_t shmem_enabled_show(struct kobject *kobj, 4654 struct kobj_attribute *attr, char *buf) 4655 { 4656 static const int values[] = { 4657 SHMEM_HUGE_ALWAYS, 4658 SHMEM_HUGE_WITHIN_SIZE, 4659 SHMEM_HUGE_ADVISE, 4660 SHMEM_HUGE_NEVER, 4661 SHMEM_HUGE_DENY, 4662 SHMEM_HUGE_FORCE, 4663 }; 4664 int len = 0; 4665 int i; 4666 4667 for (i = 0; i < ARRAY_SIZE(values); i++) { 4668 len += sysfs_emit_at(buf, len, 4669 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4670 i ? " " : "", 4671 shmem_format_huge(values[i])); 4672 } 4673 4674 len += sysfs_emit_at(buf, len, "\n"); 4675 4676 return len; 4677 } 4678 4679 static ssize_t shmem_enabled_store(struct kobject *kobj, 4680 struct kobj_attribute *attr, const char *buf, size_t count) 4681 { 4682 char tmp[16]; 4683 int huge; 4684 4685 if (count + 1 > sizeof(tmp)) 4686 return -EINVAL; 4687 memcpy(tmp, buf, count); 4688 tmp[count] = '\0'; 4689 if (count && tmp[count - 1] == '\n') 4690 tmp[count - 1] = '\0'; 4691 4692 huge = shmem_parse_huge(tmp); 4693 if (huge == -EINVAL) 4694 return -EINVAL; 4695 if (!has_transparent_hugepage() && 4696 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4697 return -EINVAL; 4698 4699 shmem_huge = huge; 4700 if (shmem_huge > SHMEM_HUGE_DENY) 4701 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4702 return count; 4703 } 4704 4705 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4706 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4707 4708 #else /* !CONFIG_SHMEM */ 4709 4710 /* 4711 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4712 * 4713 * This is intended for small system where the benefits of the full 4714 * shmem code (swap-backed and resource-limited) are outweighed by 4715 * their complexity. On systems without swap this code should be 4716 * effectively equivalent, but much lighter weight. 4717 */ 4718 4719 static struct file_system_type shmem_fs_type = { 4720 .name = "tmpfs", 4721 .init_fs_context = ramfs_init_fs_context, 4722 .parameters = ramfs_fs_parameters, 4723 .kill_sb = ramfs_kill_sb, 4724 .fs_flags = FS_USERNS_MOUNT, 4725 }; 4726 4727 void __init shmem_init(void) 4728 { 4729 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4730 4731 shm_mnt = kern_mount(&shmem_fs_type); 4732 BUG_ON(IS_ERR(shm_mnt)); 4733 } 4734 4735 int shmem_unuse(unsigned int type) 4736 { 4737 return 0; 4738 } 4739 4740 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4741 { 4742 return 0; 4743 } 4744 4745 void shmem_unlock_mapping(struct address_space *mapping) 4746 { 4747 } 4748 4749 #ifdef CONFIG_MMU 4750 unsigned long shmem_get_unmapped_area(struct file *file, 4751 unsigned long addr, unsigned long len, 4752 unsigned long pgoff, unsigned long flags) 4753 { 4754 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4755 } 4756 #endif 4757 4758 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4759 { 4760 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4761 } 4762 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4763 4764 #define shmem_vm_ops generic_file_vm_ops 4765 #define shmem_anon_vm_ops generic_file_vm_ops 4766 #define shmem_file_operations ramfs_file_operations 4767 #define shmem_acct_size(flags, size) 0 4768 #define shmem_unacct_size(flags, size) do {} while (0) 4769 4770 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir, 4771 umode_t mode, dev_t dev, unsigned long flags) 4772 { 4773 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4774 return inode ? inode : ERR_PTR(-ENOSPC); 4775 } 4776 4777 #endif /* CONFIG_SHMEM */ 4778 4779 /* common code */ 4780 4781 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4782 unsigned long flags, unsigned int i_flags) 4783 { 4784 struct inode *inode; 4785 struct file *res; 4786 4787 if (IS_ERR(mnt)) 4788 return ERR_CAST(mnt); 4789 4790 if (size < 0 || size > MAX_LFS_FILESIZE) 4791 return ERR_PTR(-EINVAL); 4792 4793 if (shmem_acct_size(flags, size)) 4794 return ERR_PTR(-ENOMEM); 4795 4796 if (is_idmapped_mnt(mnt)) 4797 return ERR_PTR(-EINVAL); 4798 4799 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4800 S_IFREG | S_IRWXUGO, 0, flags); 4801 4802 if (IS_ERR(inode)) { 4803 shmem_unacct_size(flags, size); 4804 return ERR_CAST(inode); 4805 } 4806 inode->i_flags |= i_flags; 4807 inode->i_size = size; 4808 clear_nlink(inode); /* It is unlinked */ 4809 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4810 if (!IS_ERR(res)) 4811 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4812 &shmem_file_operations); 4813 if (IS_ERR(res)) 4814 iput(inode); 4815 return res; 4816 } 4817 4818 /** 4819 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4820 * kernel internal. There will be NO LSM permission checks against the 4821 * underlying inode. So users of this interface must do LSM checks at a 4822 * higher layer. The users are the big_key and shm implementations. LSM 4823 * checks are provided at the key or shm level rather than the inode. 4824 * @name: name for dentry (to be seen in /proc/<pid>/maps 4825 * @size: size to be set for the file 4826 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4827 */ 4828 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4829 { 4830 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4831 } 4832 4833 /** 4834 * shmem_file_setup - get an unlinked file living in tmpfs 4835 * @name: name for dentry (to be seen in /proc/<pid>/maps 4836 * @size: size to be set for the file 4837 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4838 */ 4839 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4840 { 4841 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4842 } 4843 EXPORT_SYMBOL_GPL(shmem_file_setup); 4844 4845 /** 4846 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4847 * @mnt: the tmpfs mount where the file will be created 4848 * @name: name for dentry (to be seen in /proc/<pid>/maps 4849 * @size: size to be set for the file 4850 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4851 */ 4852 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4853 loff_t size, unsigned long flags) 4854 { 4855 return __shmem_file_setup(mnt, name, size, flags, 0); 4856 } 4857 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4858 4859 /** 4860 * shmem_zero_setup - setup a shared anonymous mapping 4861 * @vma: the vma to be mmapped is prepared by do_mmap 4862 */ 4863 int shmem_zero_setup(struct vm_area_struct *vma) 4864 { 4865 struct file *file; 4866 loff_t size = vma->vm_end - vma->vm_start; 4867 4868 /* 4869 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4870 * between XFS directory reading and selinux: since this file is only 4871 * accessible to the user through its mapping, use S_PRIVATE flag to 4872 * bypass file security, in the same way as shmem_kernel_file_setup(). 4873 */ 4874 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4875 if (IS_ERR(file)) 4876 return PTR_ERR(file); 4877 4878 if (vma->vm_file) 4879 fput(vma->vm_file); 4880 vma->vm_file = file; 4881 vma->vm_ops = &shmem_anon_vm_ops; 4882 4883 return 0; 4884 } 4885 4886 /** 4887 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4888 * @mapping: the folio's address_space 4889 * @index: the folio index 4890 * @gfp: the page allocator flags to use if allocating 4891 * 4892 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4893 * with any new page allocations done using the specified allocation flags. 4894 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4895 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4896 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4897 * 4898 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4899 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4900 */ 4901 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4902 pgoff_t index, gfp_t gfp) 4903 { 4904 #ifdef CONFIG_SHMEM 4905 struct inode *inode = mapping->host; 4906 struct folio *folio; 4907 int error; 4908 4909 BUG_ON(!shmem_mapping(mapping)); 4910 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4911 gfp, NULL, NULL, NULL); 4912 if (error) 4913 return ERR_PTR(error); 4914 4915 folio_unlock(folio); 4916 return folio; 4917 #else 4918 /* 4919 * The tiny !SHMEM case uses ramfs without swap 4920 */ 4921 return mapping_read_folio_gfp(mapping, index, gfp); 4922 #endif 4923 } 4924 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4925 4926 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4927 pgoff_t index, gfp_t gfp) 4928 { 4929 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4930 struct page *page; 4931 4932 if (IS_ERR(folio)) 4933 return &folio->page; 4934 4935 page = folio_file_page(folio, index); 4936 if (PageHWPoison(page)) { 4937 folio_put(folio); 4938 return ERR_PTR(-EIO); 4939 } 4940 4941 return page; 4942 } 4943 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4944