1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/sched/signal.h> 33 #include <linux/export.h> 34 #include <linux/swap.h> 35 #include <linux/uio.h> 36 #include <linux/khugepaged.h> 37 #include <linux/hugetlb.h> 38 39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 40 41 static struct vfsmount *shm_mnt; 42 43 #ifdef CONFIG_SHMEM 44 /* 45 * This virtual memory filesystem is heavily based on the ramfs. It 46 * extends ramfs by the ability to use swap and honor resource limits 47 * which makes it a completely usable filesystem. 48 */ 49 50 #include <linux/xattr.h> 51 #include <linux/exportfs.h> 52 #include <linux/posix_acl.h> 53 #include <linux/posix_acl_xattr.h> 54 #include <linux/mman.h> 55 #include <linux/string.h> 56 #include <linux/slab.h> 57 #include <linux/backing-dev.h> 58 #include <linux/shmem_fs.h> 59 #include <linux/writeback.h> 60 #include <linux/blkdev.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 #include <asm/pgtable.h> 83 84 #include "internal.h" 85 86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 88 89 /* Pretend that each entry is of this size in directory's i_size */ 90 #define BOGO_DIRENT_SIZE 20 91 92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 93 #define SHORT_SYMLINK_LEN 128 94 95 /* 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 97 * inode->i_private (with i_mutex making sure that it has only one user at 98 * a time): we would prefer not to enlarge the shmem inode just for that. 99 */ 100 struct shmem_falloc { 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 102 pgoff_t start; /* start of range currently being fallocated */ 103 pgoff_t next; /* the next page offset to be fallocated */ 104 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, 125 gfp_t gfp, struct vm_area_struct *vma, 126 struct vm_fault *vmf, int *fault_type); 127 128 int shmem_getpage(struct inode *inode, pgoff_t index, 129 struct page **pagep, enum sgp_type sgp) 130 { 131 return shmem_getpage_gfp(inode, index, pagep, sgp, 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 133 } 134 135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 136 { 137 return sb->s_fs_info; 138 } 139 140 /* 141 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 142 * for shared memory and for shared anonymous (/dev/zero) mappings 143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 144 * consistent with the pre-accounting of private mappings ... 145 */ 146 static inline int shmem_acct_size(unsigned long flags, loff_t size) 147 { 148 return (flags & VM_NORESERVE) ? 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 150 } 151 152 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 153 { 154 if (!(flags & VM_NORESERVE)) 155 vm_unacct_memory(VM_ACCT(size)); 156 } 157 158 static inline int shmem_reacct_size(unsigned long flags, 159 loff_t oldsize, loff_t newsize) 160 { 161 if (!(flags & VM_NORESERVE)) { 162 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 163 return security_vm_enough_memory_mm(current->mm, 164 VM_ACCT(newsize) - VM_ACCT(oldsize)); 165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 167 } 168 return 0; 169 } 170 171 /* 172 * ... whereas tmpfs objects are accounted incrementally as 173 * pages are allocated, in order to allow large sparse files. 174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 176 */ 177 static inline int shmem_acct_block(unsigned long flags, long pages) 178 { 179 if (!(flags & VM_NORESERVE)) 180 return 0; 181 182 return security_vm_enough_memory_mm(current->mm, 183 pages * VM_ACCT(PAGE_SIZE)); 184 } 185 186 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 187 { 188 if (flags & VM_NORESERVE) 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 190 } 191 192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 193 { 194 struct shmem_inode_info *info = SHMEM_I(inode); 195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 196 197 if (shmem_acct_block(info->flags, pages)) 198 return false; 199 200 if (sbinfo->max_blocks) { 201 if (percpu_counter_compare(&sbinfo->used_blocks, 202 sbinfo->max_blocks - pages) > 0) 203 goto unacct; 204 percpu_counter_add(&sbinfo->used_blocks, pages); 205 } 206 207 return true; 208 209 unacct: 210 shmem_unacct_blocks(info->flags, pages); 211 return false; 212 } 213 214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 215 { 216 struct shmem_inode_info *info = SHMEM_I(inode); 217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 218 219 if (sbinfo->max_blocks) 220 percpu_counter_sub(&sbinfo->used_blocks, pages); 221 shmem_unacct_blocks(info->flags, pages); 222 } 223 224 static const struct super_operations shmem_ops; 225 static const struct address_space_operations shmem_aops; 226 static const struct file_operations shmem_file_operations; 227 static const struct inode_operations shmem_inode_operations; 228 static const struct inode_operations shmem_dir_inode_operations; 229 static const struct inode_operations shmem_special_inode_operations; 230 static const struct vm_operations_struct shmem_vm_ops; 231 static struct file_system_type shmem_fs_type; 232 233 bool vma_is_shmem(struct vm_area_struct *vma) 234 { 235 return vma->vm_ops == &shmem_vm_ops; 236 } 237 238 static LIST_HEAD(shmem_swaplist); 239 static DEFINE_MUTEX(shmem_swaplist_mutex); 240 241 static int shmem_reserve_inode(struct super_block *sb) 242 { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 244 if (sbinfo->max_inodes) { 245 spin_lock(&sbinfo->stat_lock); 246 if (!sbinfo->free_inodes) { 247 spin_unlock(&sbinfo->stat_lock); 248 return -ENOSPC; 249 } 250 sbinfo->free_inodes--; 251 spin_unlock(&sbinfo->stat_lock); 252 } 253 return 0; 254 } 255 256 static void shmem_free_inode(struct super_block *sb) 257 { 258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 259 if (sbinfo->max_inodes) { 260 spin_lock(&sbinfo->stat_lock); 261 sbinfo->free_inodes++; 262 spin_unlock(&sbinfo->stat_lock); 263 } 264 } 265 266 /** 267 * shmem_recalc_inode - recalculate the block usage of an inode 268 * @inode: inode to recalc 269 * 270 * We have to calculate the free blocks since the mm can drop 271 * undirtied hole pages behind our back. 272 * 273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 275 * 276 * It has to be called with the spinlock held. 277 */ 278 static void shmem_recalc_inode(struct inode *inode) 279 { 280 struct shmem_inode_info *info = SHMEM_I(inode); 281 long freed; 282 283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 284 if (freed > 0) { 285 info->alloced -= freed; 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 287 shmem_inode_unacct_blocks(inode, freed); 288 } 289 } 290 291 bool shmem_charge(struct inode *inode, long pages) 292 { 293 struct shmem_inode_info *info = SHMEM_I(inode); 294 unsigned long flags; 295 296 if (!shmem_inode_acct_block(inode, pages)) 297 return false; 298 299 spin_lock_irqsave(&info->lock, flags); 300 info->alloced += pages; 301 inode->i_blocks += pages * BLOCKS_PER_PAGE; 302 shmem_recalc_inode(inode); 303 spin_unlock_irqrestore(&info->lock, flags); 304 inode->i_mapping->nrpages += pages; 305 306 return true; 307 } 308 309 void shmem_uncharge(struct inode *inode, long pages) 310 { 311 struct shmem_inode_info *info = SHMEM_I(inode); 312 unsigned long flags; 313 314 spin_lock_irqsave(&info->lock, flags); 315 info->alloced -= pages; 316 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 317 shmem_recalc_inode(inode); 318 spin_unlock_irqrestore(&info->lock, flags); 319 320 shmem_inode_unacct_blocks(inode, pages); 321 } 322 323 /* 324 * Replace item expected in radix tree by a new item, while holding tree lock. 325 */ 326 static int shmem_radix_tree_replace(struct address_space *mapping, 327 pgoff_t index, void *expected, void *replacement) 328 { 329 struct radix_tree_node *node; 330 void **pslot; 331 void *item; 332 333 VM_BUG_ON(!expected); 334 VM_BUG_ON(!replacement); 335 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot); 336 if (!item) 337 return -ENOENT; 338 if (item != expected) 339 return -ENOENT; 340 __radix_tree_replace(&mapping->i_pages, node, pslot, 341 replacement, NULL); 342 return 0; 343 } 344 345 /* 346 * Sometimes, before we decide whether to proceed or to fail, we must check 347 * that an entry was not already brought back from swap by a racing thread. 348 * 349 * Checking page is not enough: by the time a SwapCache page is locked, it 350 * might be reused, and again be SwapCache, using the same swap as before. 351 */ 352 static bool shmem_confirm_swap(struct address_space *mapping, 353 pgoff_t index, swp_entry_t swap) 354 { 355 void *item; 356 357 rcu_read_lock(); 358 item = radix_tree_lookup(&mapping->i_pages, index); 359 rcu_read_unlock(); 360 return item == swp_to_radix_entry(swap); 361 } 362 363 /* 364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 365 * 366 * SHMEM_HUGE_NEVER: 367 * disables huge pages for the mount; 368 * SHMEM_HUGE_ALWAYS: 369 * enables huge pages for the mount; 370 * SHMEM_HUGE_WITHIN_SIZE: 371 * only allocate huge pages if the page will be fully within i_size, 372 * also respect fadvise()/madvise() hints; 373 * SHMEM_HUGE_ADVISE: 374 * only allocate huge pages if requested with fadvise()/madvise(); 375 */ 376 377 #define SHMEM_HUGE_NEVER 0 378 #define SHMEM_HUGE_ALWAYS 1 379 #define SHMEM_HUGE_WITHIN_SIZE 2 380 #define SHMEM_HUGE_ADVISE 3 381 382 /* 383 * Special values. 384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 385 * 386 * SHMEM_HUGE_DENY: 387 * disables huge on shm_mnt and all mounts, for emergency use; 388 * SHMEM_HUGE_FORCE: 389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 390 * 391 */ 392 #define SHMEM_HUGE_DENY (-1) 393 #define SHMEM_HUGE_FORCE (-2) 394 395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 396 /* ifdef here to avoid bloating shmem.o when not necessary */ 397 398 int shmem_huge __read_mostly; 399 400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 401 static int shmem_parse_huge(const char *str) 402 { 403 if (!strcmp(str, "never")) 404 return SHMEM_HUGE_NEVER; 405 if (!strcmp(str, "always")) 406 return SHMEM_HUGE_ALWAYS; 407 if (!strcmp(str, "within_size")) 408 return SHMEM_HUGE_WITHIN_SIZE; 409 if (!strcmp(str, "advise")) 410 return SHMEM_HUGE_ADVISE; 411 if (!strcmp(str, "deny")) 412 return SHMEM_HUGE_DENY; 413 if (!strcmp(str, "force")) 414 return SHMEM_HUGE_FORCE; 415 return -EINVAL; 416 } 417 418 static const char *shmem_format_huge(int huge) 419 { 420 switch (huge) { 421 case SHMEM_HUGE_NEVER: 422 return "never"; 423 case SHMEM_HUGE_ALWAYS: 424 return "always"; 425 case SHMEM_HUGE_WITHIN_SIZE: 426 return "within_size"; 427 case SHMEM_HUGE_ADVISE: 428 return "advise"; 429 case SHMEM_HUGE_DENY: 430 return "deny"; 431 case SHMEM_HUGE_FORCE: 432 return "force"; 433 default: 434 VM_BUG_ON(1); 435 return "bad_val"; 436 } 437 } 438 #endif 439 440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 441 struct shrink_control *sc, unsigned long nr_to_split) 442 { 443 LIST_HEAD(list), *pos, *next; 444 LIST_HEAD(to_remove); 445 struct inode *inode; 446 struct shmem_inode_info *info; 447 struct page *page; 448 unsigned long batch = sc ? sc->nr_to_scan : 128; 449 int removed = 0, split = 0; 450 451 if (list_empty(&sbinfo->shrinklist)) 452 return SHRINK_STOP; 453 454 spin_lock(&sbinfo->shrinklist_lock); 455 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 456 info = list_entry(pos, struct shmem_inode_info, shrinklist); 457 458 /* pin the inode */ 459 inode = igrab(&info->vfs_inode); 460 461 /* inode is about to be evicted */ 462 if (!inode) { 463 list_del_init(&info->shrinklist); 464 removed++; 465 goto next; 466 } 467 468 /* Check if there's anything to gain */ 469 if (round_up(inode->i_size, PAGE_SIZE) == 470 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 471 list_move(&info->shrinklist, &to_remove); 472 removed++; 473 goto next; 474 } 475 476 list_move(&info->shrinklist, &list); 477 next: 478 if (!--batch) 479 break; 480 } 481 spin_unlock(&sbinfo->shrinklist_lock); 482 483 list_for_each_safe(pos, next, &to_remove) { 484 info = list_entry(pos, struct shmem_inode_info, shrinklist); 485 inode = &info->vfs_inode; 486 list_del_init(&info->shrinklist); 487 iput(inode); 488 } 489 490 list_for_each_safe(pos, next, &list) { 491 int ret; 492 493 info = list_entry(pos, struct shmem_inode_info, shrinklist); 494 inode = &info->vfs_inode; 495 496 if (nr_to_split && split >= nr_to_split) 497 goto leave; 498 499 page = find_get_page(inode->i_mapping, 500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 501 if (!page) 502 goto drop; 503 504 /* No huge page at the end of the file: nothing to split */ 505 if (!PageTransHuge(page)) { 506 put_page(page); 507 goto drop; 508 } 509 510 /* 511 * Leave the inode on the list if we failed to lock 512 * the page at this time. 513 * 514 * Waiting for the lock may lead to deadlock in the 515 * reclaim path. 516 */ 517 if (!trylock_page(page)) { 518 put_page(page); 519 goto leave; 520 } 521 522 ret = split_huge_page(page); 523 unlock_page(page); 524 put_page(page); 525 526 /* If split failed leave the inode on the list */ 527 if (ret) 528 goto leave; 529 530 split++; 531 drop: 532 list_del_init(&info->shrinklist); 533 removed++; 534 leave: 535 iput(inode); 536 } 537 538 spin_lock(&sbinfo->shrinklist_lock); 539 list_splice_tail(&list, &sbinfo->shrinklist); 540 sbinfo->shrinklist_len -= removed; 541 spin_unlock(&sbinfo->shrinklist_lock); 542 543 return split; 544 } 545 546 static long shmem_unused_huge_scan(struct super_block *sb, 547 struct shrink_control *sc) 548 { 549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 550 551 if (!READ_ONCE(sbinfo->shrinklist_len)) 552 return SHRINK_STOP; 553 554 return shmem_unused_huge_shrink(sbinfo, sc, 0); 555 } 556 557 static long shmem_unused_huge_count(struct super_block *sb, 558 struct shrink_control *sc) 559 { 560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 561 return READ_ONCE(sbinfo->shrinklist_len); 562 } 563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 564 565 #define shmem_huge SHMEM_HUGE_DENY 566 567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 568 struct shrink_control *sc, unsigned long nr_to_split) 569 { 570 return 0; 571 } 572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 573 574 /* 575 * Like add_to_page_cache_locked, but error if expected item has gone. 576 */ 577 static int shmem_add_to_page_cache(struct page *page, 578 struct address_space *mapping, 579 pgoff_t index, void *expected) 580 { 581 int error, nr = hpage_nr_pages(page); 582 583 VM_BUG_ON_PAGE(PageTail(page), page); 584 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 585 VM_BUG_ON_PAGE(!PageLocked(page), page); 586 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 587 VM_BUG_ON(expected && PageTransHuge(page)); 588 589 page_ref_add(page, nr); 590 page->mapping = mapping; 591 page->index = index; 592 593 xa_lock_irq(&mapping->i_pages); 594 if (PageTransHuge(page)) { 595 void __rcu **results; 596 pgoff_t idx; 597 int i; 598 599 error = 0; 600 if (radix_tree_gang_lookup_slot(&mapping->i_pages, 601 &results, &idx, index, 1) && 602 idx < index + HPAGE_PMD_NR) { 603 error = -EEXIST; 604 } 605 606 if (!error) { 607 for (i = 0; i < HPAGE_PMD_NR; i++) { 608 error = radix_tree_insert(&mapping->i_pages, 609 index + i, page + i); 610 VM_BUG_ON(error); 611 } 612 count_vm_event(THP_FILE_ALLOC); 613 } 614 } else if (!expected) { 615 error = radix_tree_insert(&mapping->i_pages, index, page); 616 } else { 617 error = shmem_radix_tree_replace(mapping, index, expected, 618 page); 619 } 620 621 if (!error) { 622 mapping->nrpages += nr; 623 if (PageTransHuge(page)) 624 __inc_node_page_state(page, NR_SHMEM_THPS); 625 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 626 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 627 xa_unlock_irq(&mapping->i_pages); 628 } else { 629 page->mapping = NULL; 630 xa_unlock_irq(&mapping->i_pages); 631 page_ref_sub(page, nr); 632 } 633 return error; 634 } 635 636 /* 637 * Like delete_from_page_cache, but substitutes swap for page. 638 */ 639 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 640 { 641 struct address_space *mapping = page->mapping; 642 int error; 643 644 VM_BUG_ON_PAGE(PageCompound(page), page); 645 646 xa_lock_irq(&mapping->i_pages); 647 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 648 page->mapping = NULL; 649 mapping->nrpages--; 650 __dec_node_page_state(page, NR_FILE_PAGES); 651 __dec_node_page_state(page, NR_SHMEM); 652 xa_unlock_irq(&mapping->i_pages); 653 put_page(page); 654 BUG_ON(error); 655 } 656 657 /* 658 * Remove swap entry from radix tree, free the swap and its page cache. 659 */ 660 static int shmem_free_swap(struct address_space *mapping, 661 pgoff_t index, void *radswap) 662 { 663 void *old; 664 665 xa_lock_irq(&mapping->i_pages); 666 old = radix_tree_delete_item(&mapping->i_pages, index, radswap); 667 xa_unlock_irq(&mapping->i_pages); 668 if (old != radswap) 669 return -ENOENT; 670 free_swap_and_cache(radix_to_swp_entry(radswap)); 671 return 0; 672 } 673 674 /* 675 * Determine (in bytes) how many of the shmem object's pages mapped by the 676 * given offsets are swapped out. 677 * 678 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 679 * as long as the inode doesn't go away and racy results are not a problem. 680 */ 681 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 682 pgoff_t start, pgoff_t end) 683 { 684 struct radix_tree_iter iter; 685 void **slot; 686 struct page *page; 687 unsigned long swapped = 0; 688 689 rcu_read_lock(); 690 691 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { 692 if (iter.index >= end) 693 break; 694 695 page = radix_tree_deref_slot(slot); 696 697 if (radix_tree_deref_retry(page)) { 698 slot = radix_tree_iter_retry(&iter); 699 continue; 700 } 701 702 if (radix_tree_exceptional_entry(page)) 703 swapped++; 704 705 if (need_resched()) { 706 slot = radix_tree_iter_resume(slot, &iter); 707 cond_resched_rcu(); 708 } 709 } 710 711 rcu_read_unlock(); 712 713 return swapped << PAGE_SHIFT; 714 } 715 716 /* 717 * Determine (in bytes) how many of the shmem object's pages mapped by the 718 * given vma is swapped out. 719 * 720 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 721 * as long as the inode doesn't go away and racy results are not a problem. 722 */ 723 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 724 { 725 struct inode *inode = file_inode(vma->vm_file); 726 struct shmem_inode_info *info = SHMEM_I(inode); 727 struct address_space *mapping = inode->i_mapping; 728 unsigned long swapped; 729 730 /* Be careful as we don't hold info->lock */ 731 swapped = READ_ONCE(info->swapped); 732 733 /* 734 * The easier cases are when the shmem object has nothing in swap, or 735 * the vma maps it whole. Then we can simply use the stats that we 736 * already track. 737 */ 738 if (!swapped) 739 return 0; 740 741 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 742 return swapped << PAGE_SHIFT; 743 744 /* Here comes the more involved part */ 745 return shmem_partial_swap_usage(mapping, 746 linear_page_index(vma, vma->vm_start), 747 linear_page_index(vma, vma->vm_end)); 748 } 749 750 /* 751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 752 */ 753 void shmem_unlock_mapping(struct address_space *mapping) 754 { 755 struct pagevec pvec; 756 pgoff_t indices[PAGEVEC_SIZE]; 757 pgoff_t index = 0; 758 759 pagevec_init(&pvec); 760 /* 761 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 762 */ 763 while (!mapping_unevictable(mapping)) { 764 /* 765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 767 */ 768 pvec.nr = find_get_entries(mapping, index, 769 PAGEVEC_SIZE, pvec.pages, indices); 770 if (!pvec.nr) 771 break; 772 index = indices[pvec.nr - 1] + 1; 773 pagevec_remove_exceptionals(&pvec); 774 check_move_unevictable_pages(pvec.pages, pvec.nr); 775 pagevec_release(&pvec); 776 cond_resched(); 777 } 778 } 779 780 /* 781 * Remove range of pages and swap entries from radix tree, and free them. 782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 783 */ 784 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 785 bool unfalloc) 786 { 787 struct address_space *mapping = inode->i_mapping; 788 struct shmem_inode_info *info = SHMEM_I(inode); 789 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 790 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 791 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 792 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 793 struct pagevec pvec; 794 pgoff_t indices[PAGEVEC_SIZE]; 795 long nr_swaps_freed = 0; 796 pgoff_t index; 797 int i; 798 799 if (lend == -1) 800 end = -1; /* unsigned, so actually very big */ 801 802 pagevec_init(&pvec); 803 index = start; 804 while (index < end) { 805 pvec.nr = find_get_entries(mapping, index, 806 min(end - index, (pgoff_t)PAGEVEC_SIZE), 807 pvec.pages, indices); 808 if (!pvec.nr) 809 break; 810 for (i = 0; i < pagevec_count(&pvec); i++) { 811 struct page *page = pvec.pages[i]; 812 813 index = indices[i]; 814 if (index >= end) 815 break; 816 817 if (radix_tree_exceptional_entry(page)) { 818 if (unfalloc) 819 continue; 820 nr_swaps_freed += !shmem_free_swap(mapping, 821 index, page); 822 continue; 823 } 824 825 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 826 827 if (!trylock_page(page)) 828 continue; 829 830 if (PageTransTail(page)) { 831 /* Middle of THP: zero out the page */ 832 clear_highpage(page); 833 unlock_page(page); 834 continue; 835 } else if (PageTransHuge(page)) { 836 if (index == round_down(end, HPAGE_PMD_NR)) { 837 /* 838 * Range ends in the middle of THP: 839 * zero out the page 840 */ 841 clear_highpage(page); 842 unlock_page(page); 843 continue; 844 } 845 index += HPAGE_PMD_NR - 1; 846 i += HPAGE_PMD_NR - 1; 847 } 848 849 if (!unfalloc || !PageUptodate(page)) { 850 VM_BUG_ON_PAGE(PageTail(page), page); 851 if (page_mapping(page) == mapping) { 852 VM_BUG_ON_PAGE(PageWriteback(page), page); 853 truncate_inode_page(mapping, page); 854 } 855 } 856 unlock_page(page); 857 } 858 pagevec_remove_exceptionals(&pvec); 859 pagevec_release(&pvec); 860 cond_resched(); 861 index++; 862 } 863 864 if (partial_start) { 865 struct page *page = NULL; 866 shmem_getpage(inode, start - 1, &page, SGP_READ); 867 if (page) { 868 unsigned int top = PAGE_SIZE; 869 if (start > end) { 870 top = partial_end; 871 partial_end = 0; 872 } 873 zero_user_segment(page, partial_start, top); 874 set_page_dirty(page); 875 unlock_page(page); 876 put_page(page); 877 } 878 } 879 if (partial_end) { 880 struct page *page = NULL; 881 shmem_getpage(inode, end, &page, SGP_READ); 882 if (page) { 883 zero_user_segment(page, 0, partial_end); 884 set_page_dirty(page); 885 unlock_page(page); 886 put_page(page); 887 } 888 } 889 if (start >= end) 890 return; 891 892 index = start; 893 while (index < end) { 894 cond_resched(); 895 896 pvec.nr = find_get_entries(mapping, index, 897 min(end - index, (pgoff_t)PAGEVEC_SIZE), 898 pvec.pages, indices); 899 if (!pvec.nr) { 900 /* If all gone or hole-punch or unfalloc, we're done */ 901 if (index == start || end != -1) 902 break; 903 /* But if truncating, restart to make sure all gone */ 904 index = start; 905 continue; 906 } 907 for (i = 0; i < pagevec_count(&pvec); i++) { 908 struct page *page = pvec.pages[i]; 909 910 index = indices[i]; 911 if (index >= end) 912 break; 913 914 if (radix_tree_exceptional_entry(page)) { 915 if (unfalloc) 916 continue; 917 if (shmem_free_swap(mapping, index, page)) { 918 /* Swap was replaced by page: retry */ 919 index--; 920 break; 921 } 922 nr_swaps_freed++; 923 continue; 924 } 925 926 lock_page(page); 927 928 if (PageTransTail(page)) { 929 /* Middle of THP: zero out the page */ 930 clear_highpage(page); 931 unlock_page(page); 932 /* 933 * Partial thp truncate due 'start' in middle 934 * of THP: don't need to look on these pages 935 * again on !pvec.nr restart. 936 */ 937 if (index != round_down(end, HPAGE_PMD_NR)) 938 start++; 939 continue; 940 } else if (PageTransHuge(page)) { 941 if (index == round_down(end, HPAGE_PMD_NR)) { 942 /* 943 * Range ends in the middle of THP: 944 * zero out the page 945 */ 946 clear_highpage(page); 947 unlock_page(page); 948 continue; 949 } 950 index += HPAGE_PMD_NR - 1; 951 i += HPAGE_PMD_NR - 1; 952 } 953 954 if (!unfalloc || !PageUptodate(page)) { 955 VM_BUG_ON_PAGE(PageTail(page), page); 956 if (page_mapping(page) == mapping) { 957 VM_BUG_ON_PAGE(PageWriteback(page), page); 958 truncate_inode_page(mapping, page); 959 } else { 960 /* Page was replaced by swap: retry */ 961 unlock_page(page); 962 index--; 963 break; 964 } 965 } 966 unlock_page(page); 967 } 968 pagevec_remove_exceptionals(&pvec); 969 pagevec_release(&pvec); 970 index++; 971 } 972 973 spin_lock_irq(&info->lock); 974 info->swapped -= nr_swaps_freed; 975 shmem_recalc_inode(inode); 976 spin_unlock_irq(&info->lock); 977 } 978 979 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 980 { 981 shmem_undo_range(inode, lstart, lend, false); 982 inode->i_ctime = inode->i_mtime = current_time(inode); 983 } 984 EXPORT_SYMBOL_GPL(shmem_truncate_range); 985 986 static int shmem_getattr(const struct path *path, struct kstat *stat, 987 u32 request_mask, unsigned int query_flags) 988 { 989 struct inode *inode = path->dentry->d_inode; 990 struct shmem_inode_info *info = SHMEM_I(inode); 991 992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 993 spin_lock_irq(&info->lock); 994 shmem_recalc_inode(inode); 995 spin_unlock_irq(&info->lock); 996 } 997 generic_fillattr(inode, stat); 998 return 0; 999 } 1000 1001 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1002 { 1003 struct inode *inode = d_inode(dentry); 1004 struct shmem_inode_info *info = SHMEM_I(inode); 1005 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1006 int error; 1007 1008 error = setattr_prepare(dentry, attr); 1009 if (error) 1010 return error; 1011 1012 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1013 loff_t oldsize = inode->i_size; 1014 loff_t newsize = attr->ia_size; 1015 1016 /* protected by i_mutex */ 1017 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1018 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1019 return -EPERM; 1020 1021 if (newsize != oldsize) { 1022 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1023 oldsize, newsize); 1024 if (error) 1025 return error; 1026 i_size_write(inode, newsize); 1027 inode->i_ctime = inode->i_mtime = current_time(inode); 1028 } 1029 if (newsize <= oldsize) { 1030 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1031 if (oldsize > holebegin) 1032 unmap_mapping_range(inode->i_mapping, 1033 holebegin, 0, 1); 1034 if (info->alloced) 1035 shmem_truncate_range(inode, 1036 newsize, (loff_t)-1); 1037 /* unmap again to remove racily COWed private pages */ 1038 if (oldsize > holebegin) 1039 unmap_mapping_range(inode->i_mapping, 1040 holebegin, 0, 1); 1041 1042 /* 1043 * Part of the huge page can be beyond i_size: subject 1044 * to shrink under memory pressure. 1045 */ 1046 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1047 spin_lock(&sbinfo->shrinklist_lock); 1048 /* 1049 * _careful to defend against unlocked access to 1050 * ->shrink_list in shmem_unused_huge_shrink() 1051 */ 1052 if (list_empty_careful(&info->shrinklist)) { 1053 list_add_tail(&info->shrinklist, 1054 &sbinfo->shrinklist); 1055 sbinfo->shrinklist_len++; 1056 } 1057 spin_unlock(&sbinfo->shrinklist_lock); 1058 } 1059 } 1060 } 1061 1062 setattr_copy(inode, attr); 1063 if (attr->ia_valid & ATTR_MODE) 1064 error = posix_acl_chmod(inode, inode->i_mode); 1065 return error; 1066 } 1067 1068 static void shmem_evict_inode(struct inode *inode) 1069 { 1070 struct shmem_inode_info *info = SHMEM_I(inode); 1071 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1072 1073 if (inode->i_mapping->a_ops == &shmem_aops) { 1074 shmem_unacct_size(info->flags, inode->i_size); 1075 inode->i_size = 0; 1076 shmem_truncate_range(inode, 0, (loff_t)-1); 1077 if (!list_empty(&info->shrinklist)) { 1078 spin_lock(&sbinfo->shrinklist_lock); 1079 if (!list_empty(&info->shrinklist)) { 1080 list_del_init(&info->shrinklist); 1081 sbinfo->shrinklist_len--; 1082 } 1083 spin_unlock(&sbinfo->shrinklist_lock); 1084 } 1085 if (!list_empty(&info->swaplist)) { 1086 mutex_lock(&shmem_swaplist_mutex); 1087 list_del_init(&info->swaplist); 1088 mutex_unlock(&shmem_swaplist_mutex); 1089 } 1090 } 1091 1092 simple_xattrs_free(&info->xattrs); 1093 WARN_ON(inode->i_blocks); 1094 shmem_free_inode(inode->i_sb); 1095 clear_inode(inode); 1096 } 1097 1098 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) 1099 { 1100 struct radix_tree_iter iter; 1101 void **slot; 1102 unsigned long found = -1; 1103 unsigned int checked = 0; 1104 1105 rcu_read_lock(); 1106 radix_tree_for_each_slot(slot, root, &iter, 0) { 1107 if (*slot == item) { 1108 found = iter.index; 1109 break; 1110 } 1111 checked++; 1112 if ((checked % 4096) != 0) 1113 continue; 1114 slot = radix_tree_iter_resume(slot, &iter); 1115 cond_resched_rcu(); 1116 } 1117 1118 rcu_read_unlock(); 1119 return found; 1120 } 1121 1122 /* 1123 * If swap found in inode, free it and move page from swapcache to filecache. 1124 */ 1125 static int shmem_unuse_inode(struct shmem_inode_info *info, 1126 swp_entry_t swap, struct page **pagep) 1127 { 1128 struct address_space *mapping = info->vfs_inode.i_mapping; 1129 void *radswap; 1130 pgoff_t index; 1131 gfp_t gfp; 1132 int error = 0; 1133 1134 radswap = swp_to_radix_entry(swap); 1135 index = find_swap_entry(&mapping->i_pages, radswap); 1136 if (index == -1) 1137 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1138 1139 /* 1140 * Move _head_ to start search for next from here. 1141 * But be careful: shmem_evict_inode checks list_empty without taking 1142 * mutex, and there's an instant in list_move_tail when info->swaplist 1143 * would appear empty, if it were the only one on shmem_swaplist. 1144 */ 1145 if (shmem_swaplist.next != &info->swaplist) 1146 list_move_tail(&shmem_swaplist, &info->swaplist); 1147 1148 gfp = mapping_gfp_mask(mapping); 1149 if (shmem_should_replace_page(*pagep, gfp)) { 1150 mutex_unlock(&shmem_swaplist_mutex); 1151 error = shmem_replace_page(pagep, gfp, info, index); 1152 mutex_lock(&shmem_swaplist_mutex); 1153 /* 1154 * We needed to drop mutex to make that restrictive page 1155 * allocation, but the inode might have been freed while we 1156 * dropped it: although a racing shmem_evict_inode() cannot 1157 * complete without emptying the radix_tree, our page lock 1158 * on this swapcache page is not enough to prevent that - 1159 * free_swap_and_cache() of our swap entry will only 1160 * trylock_page(), removing swap from radix_tree whatever. 1161 * 1162 * We must not proceed to shmem_add_to_page_cache() if the 1163 * inode has been freed, but of course we cannot rely on 1164 * inode or mapping or info to check that. However, we can 1165 * safely check if our swap entry is still in use (and here 1166 * it can't have got reused for another page): if it's still 1167 * in use, then the inode cannot have been freed yet, and we 1168 * can safely proceed (if it's no longer in use, that tells 1169 * nothing about the inode, but we don't need to unuse swap). 1170 */ 1171 if (!page_swapcount(*pagep)) 1172 error = -ENOENT; 1173 } 1174 1175 /* 1176 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1177 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1178 * beneath us (pagelock doesn't help until the page is in pagecache). 1179 */ 1180 if (!error) 1181 error = shmem_add_to_page_cache(*pagep, mapping, index, 1182 radswap); 1183 if (error != -ENOMEM) { 1184 /* 1185 * Truncation and eviction use free_swap_and_cache(), which 1186 * only does trylock page: if we raced, best clean up here. 1187 */ 1188 delete_from_swap_cache(*pagep); 1189 set_page_dirty(*pagep); 1190 if (!error) { 1191 spin_lock_irq(&info->lock); 1192 info->swapped--; 1193 spin_unlock_irq(&info->lock); 1194 swap_free(swap); 1195 } 1196 } 1197 return error; 1198 } 1199 1200 /* 1201 * Search through swapped inodes to find and replace swap by page. 1202 */ 1203 int shmem_unuse(swp_entry_t swap, struct page *page) 1204 { 1205 struct list_head *this, *next; 1206 struct shmem_inode_info *info; 1207 struct mem_cgroup *memcg; 1208 int error = 0; 1209 1210 /* 1211 * There's a faint possibility that swap page was replaced before 1212 * caller locked it: caller will come back later with the right page. 1213 */ 1214 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1215 goto out; 1216 1217 /* 1218 * Charge page using GFP_KERNEL while we can wait, before taking 1219 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1220 * Charged back to the user (not to caller) when swap account is used. 1221 */ 1222 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1223 false); 1224 if (error) 1225 goto out; 1226 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1227 error = -EAGAIN; 1228 1229 mutex_lock(&shmem_swaplist_mutex); 1230 list_for_each_safe(this, next, &shmem_swaplist) { 1231 info = list_entry(this, struct shmem_inode_info, swaplist); 1232 if (info->swapped) 1233 error = shmem_unuse_inode(info, swap, &page); 1234 else 1235 list_del_init(&info->swaplist); 1236 cond_resched(); 1237 if (error != -EAGAIN) 1238 break; 1239 /* found nothing in this: move on to search the next */ 1240 } 1241 mutex_unlock(&shmem_swaplist_mutex); 1242 1243 if (error) { 1244 if (error != -ENOMEM) 1245 error = 0; 1246 mem_cgroup_cancel_charge(page, memcg, false); 1247 } else 1248 mem_cgroup_commit_charge(page, memcg, true, false); 1249 out: 1250 unlock_page(page); 1251 put_page(page); 1252 return error; 1253 } 1254 1255 /* 1256 * Move the page from the page cache to the swap cache. 1257 */ 1258 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1259 { 1260 struct shmem_inode_info *info; 1261 struct address_space *mapping; 1262 struct inode *inode; 1263 swp_entry_t swap; 1264 pgoff_t index; 1265 1266 VM_BUG_ON_PAGE(PageCompound(page), page); 1267 BUG_ON(!PageLocked(page)); 1268 mapping = page->mapping; 1269 index = page->index; 1270 inode = mapping->host; 1271 info = SHMEM_I(inode); 1272 if (info->flags & VM_LOCKED) 1273 goto redirty; 1274 if (!total_swap_pages) 1275 goto redirty; 1276 1277 /* 1278 * Our capabilities prevent regular writeback or sync from ever calling 1279 * shmem_writepage; but a stacking filesystem might use ->writepage of 1280 * its underlying filesystem, in which case tmpfs should write out to 1281 * swap only in response to memory pressure, and not for the writeback 1282 * threads or sync. 1283 */ 1284 if (!wbc->for_reclaim) { 1285 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1286 goto redirty; 1287 } 1288 1289 /* 1290 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1291 * value into swapfile.c, the only way we can correctly account for a 1292 * fallocated page arriving here is now to initialize it and write it. 1293 * 1294 * That's okay for a page already fallocated earlier, but if we have 1295 * not yet completed the fallocation, then (a) we want to keep track 1296 * of this page in case we have to undo it, and (b) it may not be a 1297 * good idea to continue anyway, once we're pushing into swap. So 1298 * reactivate the page, and let shmem_fallocate() quit when too many. 1299 */ 1300 if (!PageUptodate(page)) { 1301 if (inode->i_private) { 1302 struct shmem_falloc *shmem_falloc; 1303 spin_lock(&inode->i_lock); 1304 shmem_falloc = inode->i_private; 1305 if (shmem_falloc && 1306 !shmem_falloc->waitq && 1307 index >= shmem_falloc->start && 1308 index < shmem_falloc->next) 1309 shmem_falloc->nr_unswapped++; 1310 else 1311 shmem_falloc = NULL; 1312 spin_unlock(&inode->i_lock); 1313 if (shmem_falloc) 1314 goto redirty; 1315 } 1316 clear_highpage(page); 1317 flush_dcache_page(page); 1318 SetPageUptodate(page); 1319 } 1320 1321 swap = get_swap_page(page); 1322 if (!swap.val) 1323 goto redirty; 1324 1325 if (mem_cgroup_try_charge_swap(page, swap)) 1326 goto free_swap; 1327 1328 /* 1329 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1330 * if it's not already there. Do it now before the page is 1331 * moved to swap cache, when its pagelock no longer protects 1332 * the inode from eviction. But don't unlock the mutex until 1333 * we've incremented swapped, because shmem_unuse_inode() will 1334 * prune a !swapped inode from the swaplist under this mutex. 1335 */ 1336 mutex_lock(&shmem_swaplist_mutex); 1337 if (list_empty(&info->swaplist)) 1338 list_add_tail(&info->swaplist, &shmem_swaplist); 1339 1340 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1341 spin_lock_irq(&info->lock); 1342 shmem_recalc_inode(inode); 1343 info->swapped++; 1344 spin_unlock_irq(&info->lock); 1345 1346 swap_shmem_alloc(swap); 1347 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1348 1349 mutex_unlock(&shmem_swaplist_mutex); 1350 BUG_ON(page_mapped(page)); 1351 swap_writepage(page, wbc); 1352 return 0; 1353 } 1354 1355 mutex_unlock(&shmem_swaplist_mutex); 1356 free_swap: 1357 put_swap_page(page, swap); 1358 redirty: 1359 set_page_dirty(page); 1360 if (wbc->for_reclaim) 1361 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1362 unlock_page(page); 1363 return 0; 1364 } 1365 1366 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1367 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1368 { 1369 char buffer[64]; 1370 1371 if (!mpol || mpol->mode == MPOL_DEFAULT) 1372 return; /* show nothing */ 1373 1374 mpol_to_str(buffer, sizeof(buffer), mpol); 1375 1376 seq_printf(seq, ",mpol=%s", buffer); 1377 } 1378 1379 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1380 { 1381 struct mempolicy *mpol = NULL; 1382 if (sbinfo->mpol) { 1383 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1384 mpol = sbinfo->mpol; 1385 mpol_get(mpol); 1386 spin_unlock(&sbinfo->stat_lock); 1387 } 1388 return mpol; 1389 } 1390 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1391 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1392 { 1393 } 1394 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1395 { 1396 return NULL; 1397 } 1398 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1399 #ifndef CONFIG_NUMA 1400 #define vm_policy vm_private_data 1401 #endif 1402 1403 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1404 struct shmem_inode_info *info, pgoff_t index) 1405 { 1406 /* Create a pseudo vma that just contains the policy */ 1407 vma->vm_start = 0; 1408 /* Bias interleave by inode number to distribute better across nodes */ 1409 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1410 vma->vm_ops = NULL; 1411 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1412 } 1413 1414 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1415 { 1416 /* Drop reference taken by mpol_shared_policy_lookup() */ 1417 mpol_cond_put(vma->vm_policy); 1418 } 1419 1420 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1421 struct shmem_inode_info *info, pgoff_t index) 1422 { 1423 struct vm_area_struct pvma; 1424 struct page *page; 1425 struct vm_fault vmf; 1426 1427 shmem_pseudo_vma_init(&pvma, info, index); 1428 vmf.vma = &pvma; 1429 vmf.address = 0; 1430 page = swap_cluster_readahead(swap, gfp, &vmf); 1431 shmem_pseudo_vma_destroy(&pvma); 1432 1433 return page; 1434 } 1435 1436 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1437 struct shmem_inode_info *info, pgoff_t index) 1438 { 1439 struct vm_area_struct pvma; 1440 struct inode *inode = &info->vfs_inode; 1441 struct address_space *mapping = inode->i_mapping; 1442 pgoff_t idx, hindex; 1443 void __rcu **results; 1444 struct page *page; 1445 1446 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1447 return NULL; 1448 1449 hindex = round_down(index, HPAGE_PMD_NR); 1450 rcu_read_lock(); 1451 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx, 1452 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1453 rcu_read_unlock(); 1454 return NULL; 1455 } 1456 rcu_read_unlock(); 1457 1458 shmem_pseudo_vma_init(&pvma, info, hindex); 1459 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1460 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1461 shmem_pseudo_vma_destroy(&pvma); 1462 if (page) 1463 prep_transhuge_page(page); 1464 return page; 1465 } 1466 1467 static struct page *shmem_alloc_page(gfp_t gfp, 1468 struct shmem_inode_info *info, pgoff_t index) 1469 { 1470 struct vm_area_struct pvma; 1471 struct page *page; 1472 1473 shmem_pseudo_vma_init(&pvma, info, index); 1474 page = alloc_page_vma(gfp, &pvma, 0); 1475 shmem_pseudo_vma_destroy(&pvma); 1476 1477 return page; 1478 } 1479 1480 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1481 struct inode *inode, 1482 pgoff_t index, bool huge) 1483 { 1484 struct shmem_inode_info *info = SHMEM_I(inode); 1485 struct page *page; 1486 int nr; 1487 int err = -ENOSPC; 1488 1489 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1490 huge = false; 1491 nr = huge ? HPAGE_PMD_NR : 1; 1492 1493 if (!shmem_inode_acct_block(inode, nr)) 1494 goto failed; 1495 1496 if (huge) 1497 page = shmem_alloc_hugepage(gfp, info, index); 1498 else 1499 page = shmem_alloc_page(gfp, info, index); 1500 if (page) { 1501 __SetPageLocked(page); 1502 __SetPageSwapBacked(page); 1503 return page; 1504 } 1505 1506 err = -ENOMEM; 1507 shmem_inode_unacct_blocks(inode, nr); 1508 failed: 1509 return ERR_PTR(err); 1510 } 1511 1512 /* 1513 * When a page is moved from swapcache to shmem filecache (either by the 1514 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1515 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1516 * ignorance of the mapping it belongs to. If that mapping has special 1517 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1518 * we may need to copy to a suitable page before moving to filecache. 1519 * 1520 * In a future release, this may well be extended to respect cpuset and 1521 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1522 * but for now it is a simple matter of zone. 1523 */ 1524 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1525 { 1526 return page_zonenum(page) > gfp_zone(gfp); 1527 } 1528 1529 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1530 struct shmem_inode_info *info, pgoff_t index) 1531 { 1532 struct page *oldpage, *newpage; 1533 struct address_space *swap_mapping; 1534 pgoff_t swap_index; 1535 int error; 1536 1537 oldpage = *pagep; 1538 swap_index = page_private(oldpage); 1539 swap_mapping = page_mapping(oldpage); 1540 1541 /* 1542 * We have arrived here because our zones are constrained, so don't 1543 * limit chance of success by further cpuset and node constraints. 1544 */ 1545 gfp &= ~GFP_CONSTRAINT_MASK; 1546 newpage = shmem_alloc_page(gfp, info, index); 1547 if (!newpage) 1548 return -ENOMEM; 1549 1550 get_page(newpage); 1551 copy_highpage(newpage, oldpage); 1552 flush_dcache_page(newpage); 1553 1554 __SetPageLocked(newpage); 1555 __SetPageSwapBacked(newpage); 1556 SetPageUptodate(newpage); 1557 set_page_private(newpage, swap_index); 1558 SetPageSwapCache(newpage); 1559 1560 /* 1561 * Our caller will very soon move newpage out of swapcache, but it's 1562 * a nice clean interface for us to replace oldpage by newpage there. 1563 */ 1564 xa_lock_irq(&swap_mapping->i_pages); 1565 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1566 newpage); 1567 if (!error) { 1568 __inc_node_page_state(newpage, NR_FILE_PAGES); 1569 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1570 } 1571 xa_unlock_irq(&swap_mapping->i_pages); 1572 1573 if (unlikely(error)) { 1574 /* 1575 * Is this possible? I think not, now that our callers check 1576 * both PageSwapCache and page_private after getting page lock; 1577 * but be defensive. Reverse old to newpage for clear and free. 1578 */ 1579 oldpage = newpage; 1580 } else { 1581 mem_cgroup_migrate(oldpage, newpage); 1582 lru_cache_add_anon(newpage); 1583 *pagep = newpage; 1584 } 1585 1586 ClearPageSwapCache(oldpage); 1587 set_page_private(oldpage, 0); 1588 1589 unlock_page(oldpage); 1590 put_page(oldpage); 1591 put_page(oldpage); 1592 return error; 1593 } 1594 1595 /* 1596 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1597 * 1598 * If we allocate a new one we do not mark it dirty. That's up to the 1599 * vm. If we swap it in we mark it dirty since we also free the swap 1600 * entry since a page cannot live in both the swap and page cache. 1601 * 1602 * fault_mm and fault_type are only supplied by shmem_fault: 1603 * otherwise they are NULL. 1604 */ 1605 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1606 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1607 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type) 1608 { 1609 struct address_space *mapping = inode->i_mapping; 1610 struct shmem_inode_info *info = SHMEM_I(inode); 1611 struct shmem_sb_info *sbinfo; 1612 struct mm_struct *charge_mm; 1613 struct mem_cgroup *memcg; 1614 struct page *page; 1615 swp_entry_t swap; 1616 enum sgp_type sgp_huge = sgp; 1617 pgoff_t hindex = index; 1618 int error; 1619 int once = 0; 1620 int alloced = 0; 1621 1622 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1623 return -EFBIG; 1624 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1625 sgp = SGP_CACHE; 1626 repeat: 1627 swap.val = 0; 1628 page = find_lock_entry(mapping, index); 1629 if (radix_tree_exceptional_entry(page)) { 1630 swap = radix_to_swp_entry(page); 1631 page = NULL; 1632 } 1633 1634 if (sgp <= SGP_CACHE && 1635 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1636 error = -EINVAL; 1637 goto unlock; 1638 } 1639 1640 if (page && sgp == SGP_WRITE) 1641 mark_page_accessed(page); 1642 1643 /* fallocated page? */ 1644 if (page && !PageUptodate(page)) { 1645 if (sgp != SGP_READ) 1646 goto clear; 1647 unlock_page(page); 1648 put_page(page); 1649 page = NULL; 1650 } 1651 if (page || (sgp == SGP_READ && !swap.val)) { 1652 *pagep = page; 1653 return 0; 1654 } 1655 1656 /* 1657 * Fast cache lookup did not find it: 1658 * bring it back from swap or allocate. 1659 */ 1660 sbinfo = SHMEM_SB(inode->i_sb); 1661 charge_mm = vma ? vma->vm_mm : current->mm; 1662 1663 if (swap.val) { 1664 /* Look it up and read it in.. */ 1665 page = lookup_swap_cache(swap, NULL, 0); 1666 if (!page) { 1667 /* Or update major stats only when swapin succeeds?? */ 1668 if (fault_type) { 1669 *fault_type |= VM_FAULT_MAJOR; 1670 count_vm_event(PGMAJFAULT); 1671 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1672 } 1673 /* Here we actually start the io */ 1674 page = shmem_swapin(swap, gfp, info, index); 1675 if (!page) { 1676 error = -ENOMEM; 1677 goto failed; 1678 } 1679 } 1680 1681 /* We have to do this with page locked to prevent races */ 1682 lock_page(page); 1683 if (!PageSwapCache(page) || page_private(page) != swap.val || 1684 !shmem_confirm_swap(mapping, index, swap)) { 1685 error = -EEXIST; /* try again */ 1686 goto unlock; 1687 } 1688 if (!PageUptodate(page)) { 1689 error = -EIO; 1690 goto failed; 1691 } 1692 wait_on_page_writeback(page); 1693 1694 if (shmem_should_replace_page(page, gfp)) { 1695 error = shmem_replace_page(&page, gfp, info, index); 1696 if (error) 1697 goto failed; 1698 } 1699 1700 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1701 false); 1702 if (!error) { 1703 error = shmem_add_to_page_cache(page, mapping, index, 1704 swp_to_radix_entry(swap)); 1705 /* 1706 * We already confirmed swap under page lock, and make 1707 * no memory allocation here, so usually no possibility 1708 * of error; but free_swap_and_cache() only trylocks a 1709 * page, so it is just possible that the entry has been 1710 * truncated or holepunched since swap was confirmed. 1711 * shmem_undo_range() will have done some of the 1712 * unaccounting, now delete_from_swap_cache() will do 1713 * the rest. 1714 * Reset swap.val? No, leave it so "failed" goes back to 1715 * "repeat": reading a hole and writing should succeed. 1716 */ 1717 if (error) { 1718 mem_cgroup_cancel_charge(page, memcg, false); 1719 delete_from_swap_cache(page); 1720 } 1721 } 1722 if (error) 1723 goto failed; 1724 1725 mem_cgroup_commit_charge(page, memcg, true, false); 1726 1727 spin_lock_irq(&info->lock); 1728 info->swapped--; 1729 shmem_recalc_inode(inode); 1730 spin_unlock_irq(&info->lock); 1731 1732 if (sgp == SGP_WRITE) 1733 mark_page_accessed(page); 1734 1735 delete_from_swap_cache(page); 1736 set_page_dirty(page); 1737 swap_free(swap); 1738 1739 } else { 1740 if (vma && userfaultfd_missing(vma)) { 1741 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1742 return 0; 1743 } 1744 1745 /* shmem_symlink() */ 1746 if (mapping->a_ops != &shmem_aops) 1747 goto alloc_nohuge; 1748 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1749 goto alloc_nohuge; 1750 if (shmem_huge == SHMEM_HUGE_FORCE) 1751 goto alloc_huge; 1752 switch (sbinfo->huge) { 1753 loff_t i_size; 1754 pgoff_t off; 1755 case SHMEM_HUGE_NEVER: 1756 goto alloc_nohuge; 1757 case SHMEM_HUGE_WITHIN_SIZE: 1758 off = round_up(index, HPAGE_PMD_NR); 1759 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1760 if (i_size >= HPAGE_PMD_SIZE && 1761 i_size >> PAGE_SHIFT >= off) 1762 goto alloc_huge; 1763 /* fallthrough */ 1764 case SHMEM_HUGE_ADVISE: 1765 if (sgp_huge == SGP_HUGE) 1766 goto alloc_huge; 1767 /* TODO: implement fadvise() hints */ 1768 goto alloc_nohuge; 1769 } 1770 1771 alloc_huge: 1772 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1773 if (IS_ERR(page)) { 1774 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, 1775 index, false); 1776 } 1777 if (IS_ERR(page)) { 1778 int retry = 5; 1779 error = PTR_ERR(page); 1780 page = NULL; 1781 if (error != -ENOSPC) 1782 goto failed; 1783 /* 1784 * Try to reclaim some spece by splitting a huge page 1785 * beyond i_size on the filesystem. 1786 */ 1787 while (retry--) { 1788 int ret; 1789 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1790 if (ret == SHRINK_STOP) 1791 break; 1792 if (ret) 1793 goto alloc_nohuge; 1794 } 1795 goto failed; 1796 } 1797 1798 if (PageTransHuge(page)) 1799 hindex = round_down(index, HPAGE_PMD_NR); 1800 else 1801 hindex = index; 1802 1803 if (sgp == SGP_WRITE) 1804 __SetPageReferenced(page); 1805 1806 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1807 PageTransHuge(page)); 1808 if (error) 1809 goto unacct; 1810 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1811 compound_order(page)); 1812 if (!error) { 1813 error = shmem_add_to_page_cache(page, mapping, hindex, 1814 NULL); 1815 radix_tree_preload_end(); 1816 } 1817 if (error) { 1818 mem_cgroup_cancel_charge(page, memcg, 1819 PageTransHuge(page)); 1820 goto unacct; 1821 } 1822 mem_cgroup_commit_charge(page, memcg, false, 1823 PageTransHuge(page)); 1824 lru_cache_add_anon(page); 1825 1826 spin_lock_irq(&info->lock); 1827 info->alloced += 1 << compound_order(page); 1828 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1829 shmem_recalc_inode(inode); 1830 spin_unlock_irq(&info->lock); 1831 alloced = true; 1832 1833 if (PageTransHuge(page) && 1834 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1835 hindex + HPAGE_PMD_NR - 1) { 1836 /* 1837 * Part of the huge page is beyond i_size: subject 1838 * to shrink under memory pressure. 1839 */ 1840 spin_lock(&sbinfo->shrinklist_lock); 1841 /* 1842 * _careful to defend against unlocked access to 1843 * ->shrink_list in shmem_unused_huge_shrink() 1844 */ 1845 if (list_empty_careful(&info->shrinklist)) { 1846 list_add_tail(&info->shrinklist, 1847 &sbinfo->shrinklist); 1848 sbinfo->shrinklist_len++; 1849 } 1850 spin_unlock(&sbinfo->shrinklist_lock); 1851 } 1852 1853 /* 1854 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1855 */ 1856 if (sgp == SGP_FALLOC) 1857 sgp = SGP_WRITE; 1858 clear: 1859 /* 1860 * Let SGP_WRITE caller clear ends if write does not fill page; 1861 * but SGP_FALLOC on a page fallocated earlier must initialize 1862 * it now, lest undo on failure cancel our earlier guarantee. 1863 */ 1864 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1865 struct page *head = compound_head(page); 1866 int i; 1867 1868 for (i = 0; i < (1 << compound_order(head)); i++) { 1869 clear_highpage(head + i); 1870 flush_dcache_page(head + i); 1871 } 1872 SetPageUptodate(head); 1873 } 1874 } 1875 1876 /* Perhaps the file has been truncated since we checked */ 1877 if (sgp <= SGP_CACHE && 1878 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1879 if (alloced) { 1880 ClearPageDirty(page); 1881 delete_from_page_cache(page); 1882 spin_lock_irq(&info->lock); 1883 shmem_recalc_inode(inode); 1884 spin_unlock_irq(&info->lock); 1885 } 1886 error = -EINVAL; 1887 goto unlock; 1888 } 1889 *pagep = page + index - hindex; 1890 return 0; 1891 1892 /* 1893 * Error recovery. 1894 */ 1895 unacct: 1896 shmem_inode_unacct_blocks(inode, 1 << compound_order(page)); 1897 1898 if (PageTransHuge(page)) { 1899 unlock_page(page); 1900 put_page(page); 1901 goto alloc_nohuge; 1902 } 1903 failed: 1904 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1905 error = -EEXIST; 1906 unlock: 1907 if (page) { 1908 unlock_page(page); 1909 put_page(page); 1910 } 1911 if (error == -ENOSPC && !once++) { 1912 spin_lock_irq(&info->lock); 1913 shmem_recalc_inode(inode); 1914 spin_unlock_irq(&info->lock); 1915 goto repeat; 1916 } 1917 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1918 goto repeat; 1919 return error; 1920 } 1921 1922 /* 1923 * This is like autoremove_wake_function, but it removes the wait queue 1924 * entry unconditionally - even if something else had already woken the 1925 * target. 1926 */ 1927 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1928 { 1929 int ret = default_wake_function(wait, mode, sync, key); 1930 list_del_init(&wait->entry); 1931 return ret; 1932 } 1933 1934 static int shmem_fault(struct vm_fault *vmf) 1935 { 1936 struct vm_area_struct *vma = vmf->vma; 1937 struct inode *inode = file_inode(vma->vm_file); 1938 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1939 enum sgp_type sgp; 1940 int error; 1941 int ret = VM_FAULT_LOCKED; 1942 1943 /* 1944 * Trinity finds that probing a hole which tmpfs is punching can 1945 * prevent the hole-punch from ever completing: which in turn 1946 * locks writers out with its hold on i_mutex. So refrain from 1947 * faulting pages into the hole while it's being punched. Although 1948 * shmem_undo_range() does remove the additions, it may be unable to 1949 * keep up, as each new page needs its own unmap_mapping_range() call, 1950 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1951 * 1952 * It does not matter if we sometimes reach this check just before the 1953 * hole-punch begins, so that one fault then races with the punch: 1954 * we just need to make racing faults a rare case. 1955 * 1956 * The implementation below would be much simpler if we just used a 1957 * standard mutex or completion: but we cannot take i_mutex in fault, 1958 * and bloating every shmem inode for this unlikely case would be sad. 1959 */ 1960 if (unlikely(inode->i_private)) { 1961 struct shmem_falloc *shmem_falloc; 1962 1963 spin_lock(&inode->i_lock); 1964 shmem_falloc = inode->i_private; 1965 if (shmem_falloc && 1966 shmem_falloc->waitq && 1967 vmf->pgoff >= shmem_falloc->start && 1968 vmf->pgoff < shmem_falloc->next) { 1969 wait_queue_head_t *shmem_falloc_waitq; 1970 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1971 1972 ret = VM_FAULT_NOPAGE; 1973 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1974 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1975 /* It's polite to up mmap_sem if we can */ 1976 up_read(&vma->vm_mm->mmap_sem); 1977 ret = VM_FAULT_RETRY; 1978 } 1979 1980 shmem_falloc_waitq = shmem_falloc->waitq; 1981 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1982 TASK_UNINTERRUPTIBLE); 1983 spin_unlock(&inode->i_lock); 1984 schedule(); 1985 1986 /* 1987 * shmem_falloc_waitq points into the shmem_fallocate() 1988 * stack of the hole-punching task: shmem_falloc_waitq 1989 * is usually invalid by the time we reach here, but 1990 * finish_wait() does not dereference it in that case; 1991 * though i_lock needed lest racing with wake_up_all(). 1992 */ 1993 spin_lock(&inode->i_lock); 1994 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1995 spin_unlock(&inode->i_lock); 1996 return ret; 1997 } 1998 spin_unlock(&inode->i_lock); 1999 } 2000 2001 sgp = SGP_CACHE; 2002 2003 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2004 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2005 sgp = SGP_NOHUGE; 2006 else if (vma->vm_flags & VM_HUGEPAGE) 2007 sgp = SGP_HUGE; 2008 2009 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2010 gfp, vma, vmf, &ret); 2011 if (error) 2012 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 2013 return ret; 2014 } 2015 2016 unsigned long shmem_get_unmapped_area(struct file *file, 2017 unsigned long uaddr, unsigned long len, 2018 unsigned long pgoff, unsigned long flags) 2019 { 2020 unsigned long (*get_area)(struct file *, 2021 unsigned long, unsigned long, unsigned long, unsigned long); 2022 unsigned long addr; 2023 unsigned long offset; 2024 unsigned long inflated_len; 2025 unsigned long inflated_addr; 2026 unsigned long inflated_offset; 2027 2028 if (len > TASK_SIZE) 2029 return -ENOMEM; 2030 2031 get_area = current->mm->get_unmapped_area; 2032 addr = get_area(file, uaddr, len, pgoff, flags); 2033 2034 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2035 return addr; 2036 if (IS_ERR_VALUE(addr)) 2037 return addr; 2038 if (addr & ~PAGE_MASK) 2039 return addr; 2040 if (addr > TASK_SIZE - len) 2041 return addr; 2042 2043 if (shmem_huge == SHMEM_HUGE_DENY) 2044 return addr; 2045 if (len < HPAGE_PMD_SIZE) 2046 return addr; 2047 if (flags & MAP_FIXED) 2048 return addr; 2049 /* 2050 * Our priority is to support MAP_SHARED mapped hugely; 2051 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2052 * But if caller specified an address hint, respect that as before. 2053 */ 2054 if (uaddr) 2055 return addr; 2056 2057 if (shmem_huge != SHMEM_HUGE_FORCE) { 2058 struct super_block *sb; 2059 2060 if (file) { 2061 VM_BUG_ON(file->f_op != &shmem_file_operations); 2062 sb = file_inode(file)->i_sb; 2063 } else { 2064 /* 2065 * Called directly from mm/mmap.c, or drivers/char/mem.c 2066 * for "/dev/zero", to create a shared anonymous object. 2067 */ 2068 if (IS_ERR(shm_mnt)) 2069 return addr; 2070 sb = shm_mnt->mnt_sb; 2071 } 2072 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2073 return addr; 2074 } 2075 2076 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2077 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2078 return addr; 2079 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2080 return addr; 2081 2082 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2083 if (inflated_len > TASK_SIZE) 2084 return addr; 2085 if (inflated_len < len) 2086 return addr; 2087 2088 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2089 if (IS_ERR_VALUE(inflated_addr)) 2090 return addr; 2091 if (inflated_addr & ~PAGE_MASK) 2092 return addr; 2093 2094 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2095 inflated_addr += offset - inflated_offset; 2096 if (inflated_offset > offset) 2097 inflated_addr += HPAGE_PMD_SIZE; 2098 2099 if (inflated_addr > TASK_SIZE - len) 2100 return addr; 2101 return inflated_addr; 2102 } 2103 2104 #ifdef CONFIG_NUMA 2105 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2106 { 2107 struct inode *inode = file_inode(vma->vm_file); 2108 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2109 } 2110 2111 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2112 unsigned long addr) 2113 { 2114 struct inode *inode = file_inode(vma->vm_file); 2115 pgoff_t index; 2116 2117 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2118 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2119 } 2120 #endif 2121 2122 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2123 { 2124 struct inode *inode = file_inode(file); 2125 struct shmem_inode_info *info = SHMEM_I(inode); 2126 int retval = -ENOMEM; 2127 2128 spin_lock_irq(&info->lock); 2129 if (lock && !(info->flags & VM_LOCKED)) { 2130 if (!user_shm_lock(inode->i_size, user)) 2131 goto out_nomem; 2132 info->flags |= VM_LOCKED; 2133 mapping_set_unevictable(file->f_mapping); 2134 } 2135 if (!lock && (info->flags & VM_LOCKED) && user) { 2136 user_shm_unlock(inode->i_size, user); 2137 info->flags &= ~VM_LOCKED; 2138 mapping_clear_unevictable(file->f_mapping); 2139 } 2140 retval = 0; 2141 2142 out_nomem: 2143 spin_unlock_irq(&info->lock); 2144 return retval; 2145 } 2146 2147 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2148 { 2149 file_accessed(file); 2150 vma->vm_ops = &shmem_vm_ops; 2151 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2152 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2153 (vma->vm_end & HPAGE_PMD_MASK)) { 2154 khugepaged_enter(vma, vma->vm_flags); 2155 } 2156 return 0; 2157 } 2158 2159 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2160 umode_t mode, dev_t dev, unsigned long flags) 2161 { 2162 struct inode *inode; 2163 struct shmem_inode_info *info; 2164 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2165 2166 if (shmem_reserve_inode(sb)) 2167 return NULL; 2168 2169 inode = new_inode(sb); 2170 if (inode) { 2171 inode->i_ino = get_next_ino(); 2172 inode_init_owner(inode, dir, mode); 2173 inode->i_blocks = 0; 2174 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2175 inode->i_generation = get_seconds(); 2176 info = SHMEM_I(inode); 2177 memset(info, 0, (char *)inode - (char *)info); 2178 spin_lock_init(&info->lock); 2179 info->seals = F_SEAL_SEAL; 2180 info->flags = flags & VM_NORESERVE; 2181 INIT_LIST_HEAD(&info->shrinklist); 2182 INIT_LIST_HEAD(&info->swaplist); 2183 simple_xattrs_init(&info->xattrs); 2184 cache_no_acl(inode); 2185 2186 switch (mode & S_IFMT) { 2187 default: 2188 inode->i_op = &shmem_special_inode_operations; 2189 init_special_inode(inode, mode, dev); 2190 break; 2191 case S_IFREG: 2192 inode->i_mapping->a_ops = &shmem_aops; 2193 inode->i_op = &shmem_inode_operations; 2194 inode->i_fop = &shmem_file_operations; 2195 mpol_shared_policy_init(&info->policy, 2196 shmem_get_sbmpol(sbinfo)); 2197 break; 2198 case S_IFDIR: 2199 inc_nlink(inode); 2200 /* Some things misbehave if size == 0 on a directory */ 2201 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2202 inode->i_op = &shmem_dir_inode_operations; 2203 inode->i_fop = &simple_dir_operations; 2204 break; 2205 case S_IFLNK: 2206 /* 2207 * Must not load anything in the rbtree, 2208 * mpol_free_shared_policy will not be called. 2209 */ 2210 mpol_shared_policy_init(&info->policy, NULL); 2211 break; 2212 } 2213 } else 2214 shmem_free_inode(sb); 2215 return inode; 2216 } 2217 2218 bool shmem_mapping(struct address_space *mapping) 2219 { 2220 return mapping->a_ops == &shmem_aops; 2221 } 2222 2223 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2224 pmd_t *dst_pmd, 2225 struct vm_area_struct *dst_vma, 2226 unsigned long dst_addr, 2227 unsigned long src_addr, 2228 bool zeropage, 2229 struct page **pagep) 2230 { 2231 struct inode *inode = file_inode(dst_vma->vm_file); 2232 struct shmem_inode_info *info = SHMEM_I(inode); 2233 struct address_space *mapping = inode->i_mapping; 2234 gfp_t gfp = mapping_gfp_mask(mapping); 2235 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2236 struct mem_cgroup *memcg; 2237 spinlock_t *ptl; 2238 void *page_kaddr; 2239 struct page *page; 2240 pte_t _dst_pte, *dst_pte; 2241 int ret; 2242 2243 ret = -ENOMEM; 2244 if (!shmem_inode_acct_block(inode, 1)) 2245 goto out; 2246 2247 if (!*pagep) { 2248 page = shmem_alloc_page(gfp, info, pgoff); 2249 if (!page) 2250 goto out_unacct_blocks; 2251 2252 if (!zeropage) { /* mcopy_atomic */ 2253 page_kaddr = kmap_atomic(page); 2254 ret = copy_from_user(page_kaddr, 2255 (const void __user *)src_addr, 2256 PAGE_SIZE); 2257 kunmap_atomic(page_kaddr); 2258 2259 /* fallback to copy_from_user outside mmap_sem */ 2260 if (unlikely(ret)) { 2261 *pagep = page; 2262 shmem_inode_unacct_blocks(inode, 1); 2263 /* don't free the page */ 2264 return -EFAULT; 2265 } 2266 } else { /* mfill_zeropage_atomic */ 2267 clear_highpage(page); 2268 } 2269 } else { 2270 page = *pagep; 2271 *pagep = NULL; 2272 } 2273 2274 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2275 __SetPageLocked(page); 2276 __SetPageSwapBacked(page); 2277 __SetPageUptodate(page); 2278 2279 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false); 2280 if (ret) 2281 goto out_release; 2282 2283 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 2284 if (!ret) { 2285 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); 2286 radix_tree_preload_end(); 2287 } 2288 if (ret) 2289 goto out_release_uncharge; 2290 2291 mem_cgroup_commit_charge(page, memcg, false, false); 2292 2293 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2294 if (dst_vma->vm_flags & VM_WRITE) 2295 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2296 2297 ret = -EEXIST; 2298 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2299 if (!pte_none(*dst_pte)) 2300 goto out_release_uncharge_unlock; 2301 2302 lru_cache_add_anon(page); 2303 2304 spin_lock(&info->lock); 2305 info->alloced++; 2306 inode->i_blocks += BLOCKS_PER_PAGE; 2307 shmem_recalc_inode(inode); 2308 spin_unlock(&info->lock); 2309 2310 inc_mm_counter(dst_mm, mm_counter_file(page)); 2311 page_add_file_rmap(page, false); 2312 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2313 2314 /* No need to invalidate - it was non-present before */ 2315 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2316 unlock_page(page); 2317 pte_unmap_unlock(dst_pte, ptl); 2318 ret = 0; 2319 out: 2320 return ret; 2321 out_release_uncharge_unlock: 2322 pte_unmap_unlock(dst_pte, ptl); 2323 out_release_uncharge: 2324 mem_cgroup_cancel_charge(page, memcg, false); 2325 out_release: 2326 unlock_page(page); 2327 put_page(page); 2328 out_unacct_blocks: 2329 shmem_inode_unacct_blocks(inode, 1); 2330 goto out; 2331 } 2332 2333 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2334 pmd_t *dst_pmd, 2335 struct vm_area_struct *dst_vma, 2336 unsigned long dst_addr, 2337 unsigned long src_addr, 2338 struct page **pagep) 2339 { 2340 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2341 dst_addr, src_addr, false, pagep); 2342 } 2343 2344 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2345 pmd_t *dst_pmd, 2346 struct vm_area_struct *dst_vma, 2347 unsigned long dst_addr) 2348 { 2349 struct page *page = NULL; 2350 2351 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2352 dst_addr, 0, true, &page); 2353 } 2354 2355 #ifdef CONFIG_TMPFS 2356 static const struct inode_operations shmem_symlink_inode_operations; 2357 static const struct inode_operations shmem_short_symlink_operations; 2358 2359 #ifdef CONFIG_TMPFS_XATTR 2360 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2361 #else 2362 #define shmem_initxattrs NULL 2363 #endif 2364 2365 static int 2366 shmem_write_begin(struct file *file, struct address_space *mapping, 2367 loff_t pos, unsigned len, unsigned flags, 2368 struct page **pagep, void **fsdata) 2369 { 2370 struct inode *inode = mapping->host; 2371 struct shmem_inode_info *info = SHMEM_I(inode); 2372 pgoff_t index = pos >> PAGE_SHIFT; 2373 2374 /* i_mutex is held by caller */ 2375 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2376 if (info->seals & F_SEAL_WRITE) 2377 return -EPERM; 2378 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2379 return -EPERM; 2380 } 2381 2382 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2383 } 2384 2385 static int 2386 shmem_write_end(struct file *file, struct address_space *mapping, 2387 loff_t pos, unsigned len, unsigned copied, 2388 struct page *page, void *fsdata) 2389 { 2390 struct inode *inode = mapping->host; 2391 2392 if (pos + copied > inode->i_size) 2393 i_size_write(inode, pos + copied); 2394 2395 if (!PageUptodate(page)) { 2396 struct page *head = compound_head(page); 2397 if (PageTransCompound(page)) { 2398 int i; 2399 2400 for (i = 0; i < HPAGE_PMD_NR; i++) { 2401 if (head + i == page) 2402 continue; 2403 clear_highpage(head + i); 2404 flush_dcache_page(head + i); 2405 } 2406 } 2407 if (copied < PAGE_SIZE) { 2408 unsigned from = pos & (PAGE_SIZE - 1); 2409 zero_user_segments(page, 0, from, 2410 from + copied, PAGE_SIZE); 2411 } 2412 SetPageUptodate(head); 2413 } 2414 set_page_dirty(page); 2415 unlock_page(page); 2416 put_page(page); 2417 2418 return copied; 2419 } 2420 2421 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2422 { 2423 struct file *file = iocb->ki_filp; 2424 struct inode *inode = file_inode(file); 2425 struct address_space *mapping = inode->i_mapping; 2426 pgoff_t index; 2427 unsigned long offset; 2428 enum sgp_type sgp = SGP_READ; 2429 int error = 0; 2430 ssize_t retval = 0; 2431 loff_t *ppos = &iocb->ki_pos; 2432 2433 /* 2434 * Might this read be for a stacking filesystem? Then when reading 2435 * holes of a sparse file, we actually need to allocate those pages, 2436 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2437 */ 2438 if (!iter_is_iovec(to)) 2439 sgp = SGP_CACHE; 2440 2441 index = *ppos >> PAGE_SHIFT; 2442 offset = *ppos & ~PAGE_MASK; 2443 2444 for (;;) { 2445 struct page *page = NULL; 2446 pgoff_t end_index; 2447 unsigned long nr, ret; 2448 loff_t i_size = i_size_read(inode); 2449 2450 end_index = i_size >> PAGE_SHIFT; 2451 if (index > end_index) 2452 break; 2453 if (index == end_index) { 2454 nr = i_size & ~PAGE_MASK; 2455 if (nr <= offset) 2456 break; 2457 } 2458 2459 error = shmem_getpage(inode, index, &page, sgp); 2460 if (error) { 2461 if (error == -EINVAL) 2462 error = 0; 2463 break; 2464 } 2465 if (page) { 2466 if (sgp == SGP_CACHE) 2467 set_page_dirty(page); 2468 unlock_page(page); 2469 } 2470 2471 /* 2472 * We must evaluate after, since reads (unlike writes) 2473 * are called without i_mutex protection against truncate 2474 */ 2475 nr = PAGE_SIZE; 2476 i_size = i_size_read(inode); 2477 end_index = i_size >> PAGE_SHIFT; 2478 if (index == end_index) { 2479 nr = i_size & ~PAGE_MASK; 2480 if (nr <= offset) { 2481 if (page) 2482 put_page(page); 2483 break; 2484 } 2485 } 2486 nr -= offset; 2487 2488 if (page) { 2489 /* 2490 * If users can be writing to this page using arbitrary 2491 * virtual addresses, take care about potential aliasing 2492 * before reading the page on the kernel side. 2493 */ 2494 if (mapping_writably_mapped(mapping)) 2495 flush_dcache_page(page); 2496 /* 2497 * Mark the page accessed if we read the beginning. 2498 */ 2499 if (!offset) 2500 mark_page_accessed(page); 2501 } else { 2502 page = ZERO_PAGE(0); 2503 get_page(page); 2504 } 2505 2506 /* 2507 * Ok, we have the page, and it's up-to-date, so 2508 * now we can copy it to user space... 2509 */ 2510 ret = copy_page_to_iter(page, offset, nr, to); 2511 retval += ret; 2512 offset += ret; 2513 index += offset >> PAGE_SHIFT; 2514 offset &= ~PAGE_MASK; 2515 2516 put_page(page); 2517 if (!iov_iter_count(to)) 2518 break; 2519 if (ret < nr) { 2520 error = -EFAULT; 2521 break; 2522 } 2523 cond_resched(); 2524 } 2525 2526 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2527 file_accessed(file); 2528 return retval ? retval : error; 2529 } 2530 2531 /* 2532 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2533 */ 2534 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2535 pgoff_t index, pgoff_t end, int whence) 2536 { 2537 struct page *page; 2538 struct pagevec pvec; 2539 pgoff_t indices[PAGEVEC_SIZE]; 2540 bool done = false; 2541 int i; 2542 2543 pagevec_init(&pvec); 2544 pvec.nr = 1; /* start small: we may be there already */ 2545 while (!done) { 2546 pvec.nr = find_get_entries(mapping, index, 2547 pvec.nr, pvec.pages, indices); 2548 if (!pvec.nr) { 2549 if (whence == SEEK_DATA) 2550 index = end; 2551 break; 2552 } 2553 for (i = 0; i < pvec.nr; i++, index++) { 2554 if (index < indices[i]) { 2555 if (whence == SEEK_HOLE) { 2556 done = true; 2557 break; 2558 } 2559 index = indices[i]; 2560 } 2561 page = pvec.pages[i]; 2562 if (page && !radix_tree_exceptional_entry(page)) { 2563 if (!PageUptodate(page)) 2564 page = NULL; 2565 } 2566 if (index >= end || 2567 (page && whence == SEEK_DATA) || 2568 (!page && whence == SEEK_HOLE)) { 2569 done = true; 2570 break; 2571 } 2572 } 2573 pagevec_remove_exceptionals(&pvec); 2574 pagevec_release(&pvec); 2575 pvec.nr = PAGEVEC_SIZE; 2576 cond_resched(); 2577 } 2578 return index; 2579 } 2580 2581 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2582 { 2583 struct address_space *mapping = file->f_mapping; 2584 struct inode *inode = mapping->host; 2585 pgoff_t start, end; 2586 loff_t new_offset; 2587 2588 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2589 return generic_file_llseek_size(file, offset, whence, 2590 MAX_LFS_FILESIZE, i_size_read(inode)); 2591 inode_lock(inode); 2592 /* We're holding i_mutex so we can access i_size directly */ 2593 2594 if (offset < 0) 2595 offset = -EINVAL; 2596 else if (offset >= inode->i_size) 2597 offset = -ENXIO; 2598 else { 2599 start = offset >> PAGE_SHIFT; 2600 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2601 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2602 new_offset <<= PAGE_SHIFT; 2603 if (new_offset > offset) { 2604 if (new_offset < inode->i_size) 2605 offset = new_offset; 2606 else if (whence == SEEK_DATA) 2607 offset = -ENXIO; 2608 else 2609 offset = inode->i_size; 2610 } 2611 } 2612 2613 if (offset >= 0) 2614 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2615 inode_unlock(inode); 2616 return offset; 2617 } 2618 2619 /* 2620 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2621 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2622 */ 2623 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2624 #define LAST_SCAN 4 /* about 150ms max */ 2625 2626 static void shmem_tag_pins(struct address_space *mapping) 2627 { 2628 struct radix_tree_iter iter; 2629 void **slot; 2630 pgoff_t start; 2631 struct page *page; 2632 2633 lru_add_drain(); 2634 start = 0; 2635 rcu_read_lock(); 2636 2637 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { 2638 page = radix_tree_deref_slot(slot); 2639 if (!page || radix_tree_exception(page)) { 2640 if (radix_tree_deref_retry(page)) { 2641 slot = radix_tree_iter_retry(&iter); 2642 continue; 2643 } 2644 } else if (page_count(page) - page_mapcount(page) > 1) { 2645 xa_lock_irq(&mapping->i_pages); 2646 radix_tree_tag_set(&mapping->i_pages, iter.index, 2647 SHMEM_TAG_PINNED); 2648 xa_unlock_irq(&mapping->i_pages); 2649 } 2650 2651 if (need_resched()) { 2652 slot = radix_tree_iter_resume(slot, &iter); 2653 cond_resched_rcu(); 2654 } 2655 } 2656 rcu_read_unlock(); 2657 } 2658 2659 /* 2660 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2661 * via get_user_pages(), drivers might have some pending I/O without any active 2662 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2663 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2664 * them to be dropped. 2665 * The caller must guarantee that no new user will acquire writable references 2666 * to those pages to avoid races. 2667 */ 2668 static int shmem_wait_for_pins(struct address_space *mapping) 2669 { 2670 struct radix_tree_iter iter; 2671 void **slot; 2672 pgoff_t start; 2673 struct page *page; 2674 int error, scan; 2675 2676 shmem_tag_pins(mapping); 2677 2678 error = 0; 2679 for (scan = 0; scan <= LAST_SCAN; scan++) { 2680 if (!radix_tree_tagged(&mapping->i_pages, SHMEM_TAG_PINNED)) 2681 break; 2682 2683 if (!scan) 2684 lru_add_drain_all(); 2685 else if (schedule_timeout_killable((HZ << scan) / 200)) 2686 scan = LAST_SCAN; 2687 2688 start = 0; 2689 rcu_read_lock(); 2690 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 2691 start, SHMEM_TAG_PINNED) { 2692 2693 page = radix_tree_deref_slot(slot); 2694 if (radix_tree_exception(page)) { 2695 if (radix_tree_deref_retry(page)) { 2696 slot = radix_tree_iter_retry(&iter); 2697 continue; 2698 } 2699 2700 page = NULL; 2701 } 2702 2703 if (page && 2704 page_count(page) - page_mapcount(page) != 1) { 2705 if (scan < LAST_SCAN) 2706 goto continue_resched; 2707 2708 /* 2709 * On the last scan, we clean up all those tags 2710 * we inserted; but make a note that we still 2711 * found pages pinned. 2712 */ 2713 error = -EBUSY; 2714 } 2715 2716 xa_lock_irq(&mapping->i_pages); 2717 radix_tree_tag_clear(&mapping->i_pages, 2718 iter.index, SHMEM_TAG_PINNED); 2719 xa_unlock_irq(&mapping->i_pages); 2720 continue_resched: 2721 if (need_resched()) { 2722 slot = radix_tree_iter_resume(slot, &iter); 2723 cond_resched_rcu(); 2724 } 2725 } 2726 rcu_read_unlock(); 2727 } 2728 2729 return error; 2730 } 2731 2732 static unsigned int *memfd_file_seals_ptr(struct file *file) 2733 { 2734 if (file->f_op == &shmem_file_operations) 2735 return &SHMEM_I(file_inode(file))->seals; 2736 2737 #ifdef CONFIG_HUGETLBFS 2738 if (file->f_op == &hugetlbfs_file_operations) 2739 return &HUGETLBFS_I(file_inode(file))->seals; 2740 #endif 2741 2742 return NULL; 2743 } 2744 2745 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2746 F_SEAL_SHRINK | \ 2747 F_SEAL_GROW | \ 2748 F_SEAL_WRITE) 2749 2750 static int memfd_add_seals(struct file *file, unsigned int seals) 2751 { 2752 struct inode *inode = file_inode(file); 2753 unsigned int *file_seals; 2754 int error; 2755 2756 /* 2757 * SEALING 2758 * Sealing allows multiple parties to share a shmem-file but restrict 2759 * access to a specific subset of file operations. Seals can only be 2760 * added, but never removed. This way, mutually untrusted parties can 2761 * share common memory regions with a well-defined policy. A malicious 2762 * peer can thus never perform unwanted operations on a shared object. 2763 * 2764 * Seals are only supported on special shmem-files and always affect 2765 * the whole underlying inode. Once a seal is set, it may prevent some 2766 * kinds of access to the file. Currently, the following seals are 2767 * defined: 2768 * SEAL_SEAL: Prevent further seals from being set on this file 2769 * SEAL_SHRINK: Prevent the file from shrinking 2770 * SEAL_GROW: Prevent the file from growing 2771 * SEAL_WRITE: Prevent write access to the file 2772 * 2773 * As we don't require any trust relationship between two parties, we 2774 * must prevent seals from being removed. Therefore, sealing a file 2775 * only adds a given set of seals to the file, it never touches 2776 * existing seals. Furthermore, the "setting seals"-operation can be 2777 * sealed itself, which basically prevents any further seal from being 2778 * added. 2779 * 2780 * Semantics of sealing are only defined on volatile files. Only 2781 * anonymous shmem files support sealing. More importantly, seals are 2782 * never written to disk. Therefore, there's no plan to support it on 2783 * other file types. 2784 */ 2785 2786 if (!(file->f_mode & FMODE_WRITE)) 2787 return -EPERM; 2788 if (seals & ~(unsigned int)F_ALL_SEALS) 2789 return -EINVAL; 2790 2791 inode_lock(inode); 2792 2793 file_seals = memfd_file_seals_ptr(file); 2794 if (!file_seals) { 2795 error = -EINVAL; 2796 goto unlock; 2797 } 2798 2799 if (*file_seals & F_SEAL_SEAL) { 2800 error = -EPERM; 2801 goto unlock; 2802 } 2803 2804 if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) { 2805 error = mapping_deny_writable(file->f_mapping); 2806 if (error) 2807 goto unlock; 2808 2809 error = shmem_wait_for_pins(file->f_mapping); 2810 if (error) { 2811 mapping_allow_writable(file->f_mapping); 2812 goto unlock; 2813 } 2814 } 2815 2816 *file_seals |= seals; 2817 error = 0; 2818 2819 unlock: 2820 inode_unlock(inode); 2821 return error; 2822 } 2823 2824 static int memfd_get_seals(struct file *file) 2825 { 2826 unsigned int *seals = memfd_file_seals_ptr(file); 2827 2828 return seals ? *seals : -EINVAL; 2829 } 2830 2831 long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2832 { 2833 long error; 2834 2835 switch (cmd) { 2836 case F_ADD_SEALS: 2837 /* disallow upper 32bit */ 2838 if (arg > UINT_MAX) 2839 return -EINVAL; 2840 2841 error = memfd_add_seals(file, arg); 2842 break; 2843 case F_GET_SEALS: 2844 error = memfd_get_seals(file); 2845 break; 2846 default: 2847 error = -EINVAL; 2848 break; 2849 } 2850 2851 return error; 2852 } 2853 2854 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2855 loff_t len) 2856 { 2857 struct inode *inode = file_inode(file); 2858 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2859 struct shmem_inode_info *info = SHMEM_I(inode); 2860 struct shmem_falloc shmem_falloc; 2861 pgoff_t start, index, end; 2862 int error; 2863 2864 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2865 return -EOPNOTSUPP; 2866 2867 inode_lock(inode); 2868 2869 if (mode & FALLOC_FL_PUNCH_HOLE) { 2870 struct address_space *mapping = file->f_mapping; 2871 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2872 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2873 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2874 2875 /* protected by i_mutex */ 2876 if (info->seals & F_SEAL_WRITE) { 2877 error = -EPERM; 2878 goto out; 2879 } 2880 2881 shmem_falloc.waitq = &shmem_falloc_waitq; 2882 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2883 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2884 spin_lock(&inode->i_lock); 2885 inode->i_private = &shmem_falloc; 2886 spin_unlock(&inode->i_lock); 2887 2888 if ((u64)unmap_end > (u64)unmap_start) 2889 unmap_mapping_range(mapping, unmap_start, 2890 1 + unmap_end - unmap_start, 0); 2891 shmem_truncate_range(inode, offset, offset + len - 1); 2892 /* No need to unmap again: hole-punching leaves COWed pages */ 2893 2894 spin_lock(&inode->i_lock); 2895 inode->i_private = NULL; 2896 wake_up_all(&shmem_falloc_waitq); 2897 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2898 spin_unlock(&inode->i_lock); 2899 error = 0; 2900 goto out; 2901 } 2902 2903 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2904 error = inode_newsize_ok(inode, offset + len); 2905 if (error) 2906 goto out; 2907 2908 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2909 error = -EPERM; 2910 goto out; 2911 } 2912 2913 start = offset >> PAGE_SHIFT; 2914 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2915 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2916 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2917 error = -ENOSPC; 2918 goto out; 2919 } 2920 2921 shmem_falloc.waitq = NULL; 2922 shmem_falloc.start = start; 2923 shmem_falloc.next = start; 2924 shmem_falloc.nr_falloced = 0; 2925 shmem_falloc.nr_unswapped = 0; 2926 spin_lock(&inode->i_lock); 2927 inode->i_private = &shmem_falloc; 2928 spin_unlock(&inode->i_lock); 2929 2930 for (index = start; index < end; index++) { 2931 struct page *page; 2932 2933 /* 2934 * Good, the fallocate(2) manpage permits EINTR: we may have 2935 * been interrupted because we are using up too much memory. 2936 */ 2937 if (signal_pending(current)) 2938 error = -EINTR; 2939 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2940 error = -ENOMEM; 2941 else 2942 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2943 if (error) { 2944 /* Remove the !PageUptodate pages we added */ 2945 if (index > start) { 2946 shmem_undo_range(inode, 2947 (loff_t)start << PAGE_SHIFT, 2948 ((loff_t)index << PAGE_SHIFT) - 1, true); 2949 } 2950 goto undone; 2951 } 2952 2953 /* 2954 * Inform shmem_writepage() how far we have reached. 2955 * No need for lock or barrier: we have the page lock. 2956 */ 2957 shmem_falloc.next++; 2958 if (!PageUptodate(page)) 2959 shmem_falloc.nr_falloced++; 2960 2961 /* 2962 * If !PageUptodate, leave it that way so that freeable pages 2963 * can be recognized if we need to rollback on error later. 2964 * But set_page_dirty so that memory pressure will swap rather 2965 * than free the pages we are allocating (and SGP_CACHE pages 2966 * might still be clean: we now need to mark those dirty too). 2967 */ 2968 set_page_dirty(page); 2969 unlock_page(page); 2970 put_page(page); 2971 cond_resched(); 2972 } 2973 2974 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2975 i_size_write(inode, offset + len); 2976 inode->i_ctime = current_time(inode); 2977 undone: 2978 spin_lock(&inode->i_lock); 2979 inode->i_private = NULL; 2980 spin_unlock(&inode->i_lock); 2981 out: 2982 inode_unlock(inode); 2983 return error; 2984 } 2985 2986 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2987 { 2988 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2989 2990 buf->f_type = TMPFS_MAGIC; 2991 buf->f_bsize = PAGE_SIZE; 2992 buf->f_namelen = NAME_MAX; 2993 if (sbinfo->max_blocks) { 2994 buf->f_blocks = sbinfo->max_blocks; 2995 buf->f_bavail = 2996 buf->f_bfree = sbinfo->max_blocks - 2997 percpu_counter_sum(&sbinfo->used_blocks); 2998 } 2999 if (sbinfo->max_inodes) { 3000 buf->f_files = sbinfo->max_inodes; 3001 buf->f_ffree = sbinfo->free_inodes; 3002 } 3003 /* else leave those fields 0 like simple_statfs */ 3004 return 0; 3005 } 3006 3007 /* 3008 * File creation. Allocate an inode, and we're done.. 3009 */ 3010 static int 3011 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3012 { 3013 struct inode *inode; 3014 int error = -ENOSPC; 3015 3016 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 3017 if (inode) { 3018 error = simple_acl_create(dir, inode); 3019 if (error) 3020 goto out_iput; 3021 error = security_inode_init_security(inode, dir, 3022 &dentry->d_name, 3023 shmem_initxattrs, NULL); 3024 if (error && error != -EOPNOTSUPP) 3025 goto out_iput; 3026 3027 error = 0; 3028 dir->i_size += BOGO_DIRENT_SIZE; 3029 dir->i_ctime = dir->i_mtime = current_time(dir); 3030 d_instantiate(dentry, inode); 3031 dget(dentry); /* Extra count - pin the dentry in core */ 3032 } 3033 return error; 3034 out_iput: 3035 iput(inode); 3036 return error; 3037 } 3038 3039 static int 3040 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 3041 { 3042 struct inode *inode; 3043 int error = -ENOSPC; 3044 3045 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 3046 if (inode) { 3047 error = security_inode_init_security(inode, dir, 3048 NULL, 3049 shmem_initxattrs, NULL); 3050 if (error && error != -EOPNOTSUPP) 3051 goto out_iput; 3052 error = simple_acl_create(dir, inode); 3053 if (error) 3054 goto out_iput; 3055 d_tmpfile(dentry, inode); 3056 } 3057 return error; 3058 out_iput: 3059 iput(inode); 3060 return error; 3061 } 3062 3063 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3064 { 3065 int error; 3066 3067 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 3068 return error; 3069 inc_nlink(dir); 3070 return 0; 3071 } 3072 3073 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 3074 bool excl) 3075 { 3076 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 3077 } 3078 3079 /* 3080 * Link a file.. 3081 */ 3082 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3083 { 3084 struct inode *inode = d_inode(old_dentry); 3085 int ret; 3086 3087 /* 3088 * No ordinary (disk based) filesystem counts links as inodes; 3089 * but each new link needs a new dentry, pinning lowmem, and 3090 * tmpfs dentries cannot be pruned until they are unlinked. 3091 */ 3092 ret = shmem_reserve_inode(inode->i_sb); 3093 if (ret) 3094 goto out; 3095 3096 dir->i_size += BOGO_DIRENT_SIZE; 3097 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3098 inc_nlink(inode); 3099 ihold(inode); /* New dentry reference */ 3100 dget(dentry); /* Extra pinning count for the created dentry */ 3101 d_instantiate(dentry, inode); 3102 out: 3103 return ret; 3104 } 3105 3106 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3107 { 3108 struct inode *inode = d_inode(dentry); 3109 3110 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3111 shmem_free_inode(inode->i_sb); 3112 3113 dir->i_size -= BOGO_DIRENT_SIZE; 3114 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3115 drop_nlink(inode); 3116 dput(dentry); /* Undo the count from "create" - this does all the work */ 3117 return 0; 3118 } 3119 3120 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3121 { 3122 if (!simple_empty(dentry)) 3123 return -ENOTEMPTY; 3124 3125 drop_nlink(d_inode(dentry)); 3126 drop_nlink(dir); 3127 return shmem_unlink(dir, dentry); 3128 } 3129 3130 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3131 { 3132 bool old_is_dir = d_is_dir(old_dentry); 3133 bool new_is_dir = d_is_dir(new_dentry); 3134 3135 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3136 if (old_is_dir) { 3137 drop_nlink(old_dir); 3138 inc_nlink(new_dir); 3139 } else { 3140 drop_nlink(new_dir); 3141 inc_nlink(old_dir); 3142 } 3143 } 3144 old_dir->i_ctime = old_dir->i_mtime = 3145 new_dir->i_ctime = new_dir->i_mtime = 3146 d_inode(old_dentry)->i_ctime = 3147 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3148 3149 return 0; 3150 } 3151 3152 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3153 { 3154 struct dentry *whiteout; 3155 int error; 3156 3157 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3158 if (!whiteout) 3159 return -ENOMEM; 3160 3161 error = shmem_mknod(old_dir, whiteout, 3162 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3163 dput(whiteout); 3164 if (error) 3165 return error; 3166 3167 /* 3168 * Cheat and hash the whiteout while the old dentry is still in 3169 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3170 * 3171 * d_lookup() will consistently find one of them at this point, 3172 * not sure which one, but that isn't even important. 3173 */ 3174 d_rehash(whiteout); 3175 return 0; 3176 } 3177 3178 /* 3179 * The VFS layer already does all the dentry stuff for rename, 3180 * we just have to decrement the usage count for the target if 3181 * it exists so that the VFS layer correctly free's it when it 3182 * gets overwritten. 3183 */ 3184 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3185 { 3186 struct inode *inode = d_inode(old_dentry); 3187 int they_are_dirs = S_ISDIR(inode->i_mode); 3188 3189 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3190 return -EINVAL; 3191 3192 if (flags & RENAME_EXCHANGE) 3193 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3194 3195 if (!simple_empty(new_dentry)) 3196 return -ENOTEMPTY; 3197 3198 if (flags & RENAME_WHITEOUT) { 3199 int error; 3200 3201 error = shmem_whiteout(old_dir, old_dentry); 3202 if (error) 3203 return error; 3204 } 3205 3206 if (d_really_is_positive(new_dentry)) { 3207 (void) shmem_unlink(new_dir, new_dentry); 3208 if (they_are_dirs) { 3209 drop_nlink(d_inode(new_dentry)); 3210 drop_nlink(old_dir); 3211 } 3212 } else if (they_are_dirs) { 3213 drop_nlink(old_dir); 3214 inc_nlink(new_dir); 3215 } 3216 3217 old_dir->i_size -= BOGO_DIRENT_SIZE; 3218 new_dir->i_size += BOGO_DIRENT_SIZE; 3219 old_dir->i_ctime = old_dir->i_mtime = 3220 new_dir->i_ctime = new_dir->i_mtime = 3221 inode->i_ctime = current_time(old_dir); 3222 return 0; 3223 } 3224 3225 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3226 { 3227 int error; 3228 int len; 3229 struct inode *inode; 3230 struct page *page; 3231 3232 len = strlen(symname) + 1; 3233 if (len > PAGE_SIZE) 3234 return -ENAMETOOLONG; 3235 3236 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3237 if (!inode) 3238 return -ENOSPC; 3239 3240 error = security_inode_init_security(inode, dir, &dentry->d_name, 3241 shmem_initxattrs, NULL); 3242 if (error) { 3243 if (error != -EOPNOTSUPP) { 3244 iput(inode); 3245 return error; 3246 } 3247 error = 0; 3248 } 3249 3250 inode->i_size = len-1; 3251 if (len <= SHORT_SYMLINK_LEN) { 3252 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3253 if (!inode->i_link) { 3254 iput(inode); 3255 return -ENOMEM; 3256 } 3257 inode->i_op = &shmem_short_symlink_operations; 3258 } else { 3259 inode_nohighmem(inode); 3260 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3261 if (error) { 3262 iput(inode); 3263 return error; 3264 } 3265 inode->i_mapping->a_ops = &shmem_aops; 3266 inode->i_op = &shmem_symlink_inode_operations; 3267 memcpy(page_address(page), symname, len); 3268 SetPageUptodate(page); 3269 set_page_dirty(page); 3270 unlock_page(page); 3271 put_page(page); 3272 } 3273 dir->i_size += BOGO_DIRENT_SIZE; 3274 dir->i_ctime = dir->i_mtime = current_time(dir); 3275 d_instantiate(dentry, inode); 3276 dget(dentry); 3277 return 0; 3278 } 3279 3280 static void shmem_put_link(void *arg) 3281 { 3282 mark_page_accessed(arg); 3283 put_page(arg); 3284 } 3285 3286 static const char *shmem_get_link(struct dentry *dentry, 3287 struct inode *inode, 3288 struct delayed_call *done) 3289 { 3290 struct page *page = NULL; 3291 int error; 3292 if (!dentry) { 3293 page = find_get_page(inode->i_mapping, 0); 3294 if (!page) 3295 return ERR_PTR(-ECHILD); 3296 if (!PageUptodate(page)) { 3297 put_page(page); 3298 return ERR_PTR(-ECHILD); 3299 } 3300 } else { 3301 error = shmem_getpage(inode, 0, &page, SGP_READ); 3302 if (error) 3303 return ERR_PTR(error); 3304 unlock_page(page); 3305 } 3306 set_delayed_call(done, shmem_put_link, page); 3307 return page_address(page); 3308 } 3309 3310 #ifdef CONFIG_TMPFS_XATTR 3311 /* 3312 * Superblocks without xattr inode operations may get some security.* xattr 3313 * support from the LSM "for free". As soon as we have any other xattrs 3314 * like ACLs, we also need to implement the security.* handlers at 3315 * filesystem level, though. 3316 */ 3317 3318 /* 3319 * Callback for security_inode_init_security() for acquiring xattrs. 3320 */ 3321 static int shmem_initxattrs(struct inode *inode, 3322 const struct xattr *xattr_array, 3323 void *fs_info) 3324 { 3325 struct shmem_inode_info *info = SHMEM_I(inode); 3326 const struct xattr *xattr; 3327 struct simple_xattr *new_xattr; 3328 size_t len; 3329 3330 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3331 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3332 if (!new_xattr) 3333 return -ENOMEM; 3334 3335 len = strlen(xattr->name) + 1; 3336 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3337 GFP_KERNEL); 3338 if (!new_xattr->name) { 3339 kfree(new_xattr); 3340 return -ENOMEM; 3341 } 3342 3343 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3344 XATTR_SECURITY_PREFIX_LEN); 3345 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3346 xattr->name, len); 3347 3348 simple_xattr_list_add(&info->xattrs, new_xattr); 3349 } 3350 3351 return 0; 3352 } 3353 3354 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3355 struct dentry *unused, struct inode *inode, 3356 const char *name, void *buffer, size_t size) 3357 { 3358 struct shmem_inode_info *info = SHMEM_I(inode); 3359 3360 name = xattr_full_name(handler, name); 3361 return simple_xattr_get(&info->xattrs, name, buffer, size); 3362 } 3363 3364 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3365 struct dentry *unused, struct inode *inode, 3366 const char *name, const void *value, 3367 size_t size, int flags) 3368 { 3369 struct shmem_inode_info *info = SHMEM_I(inode); 3370 3371 name = xattr_full_name(handler, name); 3372 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3373 } 3374 3375 static const struct xattr_handler shmem_security_xattr_handler = { 3376 .prefix = XATTR_SECURITY_PREFIX, 3377 .get = shmem_xattr_handler_get, 3378 .set = shmem_xattr_handler_set, 3379 }; 3380 3381 static const struct xattr_handler shmem_trusted_xattr_handler = { 3382 .prefix = XATTR_TRUSTED_PREFIX, 3383 .get = shmem_xattr_handler_get, 3384 .set = shmem_xattr_handler_set, 3385 }; 3386 3387 static const struct xattr_handler *shmem_xattr_handlers[] = { 3388 #ifdef CONFIG_TMPFS_POSIX_ACL 3389 &posix_acl_access_xattr_handler, 3390 &posix_acl_default_xattr_handler, 3391 #endif 3392 &shmem_security_xattr_handler, 3393 &shmem_trusted_xattr_handler, 3394 NULL 3395 }; 3396 3397 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3398 { 3399 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3400 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3401 } 3402 #endif /* CONFIG_TMPFS_XATTR */ 3403 3404 static const struct inode_operations shmem_short_symlink_operations = { 3405 .get_link = simple_get_link, 3406 #ifdef CONFIG_TMPFS_XATTR 3407 .listxattr = shmem_listxattr, 3408 #endif 3409 }; 3410 3411 static const struct inode_operations shmem_symlink_inode_operations = { 3412 .get_link = shmem_get_link, 3413 #ifdef CONFIG_TMPFS_XATTR 3414 .listxattr = shmem_listxattr, 3415 #endif 3416 }; 3417 3418 static struct dentry *shmem_get_parent(struct dentry *child) 3419 { 3420 return ERR_PTR(-ESTALE); 3421 } 3422 3423 static int shmem_match(struct inode *ino, void *vfh) 3424 { 3425 __u32 *fh = vfh; 3426 __u64 inum = fh[2]; 3427 inum = (inum << 32) | fh[1]; 3428 return ino->i_ino == inum && fh[0] == ino->i_generation; 3429 } 3430 3431 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3432 struct fid *fid, int fh_len, int fh_type) 3433 { 3434 struct inode *inode; 3435 struct dentry *dentry = NULL; 3436 u64 inum; 3437 3438 if (fh_len < 3) 3439 return NULL; 3440 3441 inum = fid->raw[2]; 3442 inum = (inum << 32) | fid->raw[1]; 3443 3444 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3445 shmem_match, fid->raw); 3446 if (inode) { 3447 dentry = d_find_alias(inode); 3448 iput(inode); 3449 } 3450 3451 return dentry; 3452 } 3453 3454 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3455 struct inode *parent) 3456 { 3457 if (*len < 3) { 3458 *len = 3; 3459 return FILEID_INVALID; 3460 } 3461 3462 if (inode_unhashed(inode)) { 3463 /* Unfortunately insert_inode_hash is not idempotent, 3464 * so as we hash inodes here rather than at creation 3465 * time, we need a lock to ensure we only try 3466 * to do it once 3467 */ 3468 static DEFINE_SPINLOCK(lock); 3469 spin_lock(&lock); 3470 if (inode_unhashed(inode)) 3471 __insert_inode_hash(inode, 3472 inode->i_ino + inode->i_generation); 3473 spin_unlock(&lock); 3474 } 3475 3476 fh[0] = inode->i_generation; 3477 fh[1] = inode->i_ino; 3478 fh[2] = ((__u64)inode->i_ino) >> 32; 3479 3480 *len = 3; 3481 return 1; 3482 } 3483 3484 static const struct export_operations shmem_export_ops = { 3485 .get_parent = shmem_get_parent, 3486 .encode_fh = shmem_encode_fh, 3487 .fh_to_dentry = shmem_fh_to_dentry, 3488 }; 3489 3490 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3491 bool remount) 3492 { 3493 char *this_char, *value, *rest; 3494 struct mempolicy *mpol = NULL; 3495 uid_t uid; 3496 gid_t gid; 3497 3498 while (options != NULL) { 3499 this_char = options; 3500 for (;;) { 3501 /* 3502 * NUL-terminate this option: unfortunately, 3503 * mount options form a comma-separated list, 3504 * but mpol's nodelist may also contain commas. 3505 */ 3506 options = strchr(options, ','); 3507 if (options == NULL) 3508 break; 3509 options++; 3510 if (!isdigit(*options)) { 3511 options[-1] = '\0'; 3512 break; 3513 } 3514 } 3515 if (!*this_char) 3516 continue; 3517 if ((value = strchr(this_char,'=')) != NULL) { 3518 *value++ = 0; 3519 } else { 3520 pr_err("tmpfs: No value for mount option '%s'\n", 3521 this_char); 3522 goto error; 3523 } 3524 3525 if (!strcmp(this_char,"size")) { 3526 unsigned long long size; 3527 size = memparse(value,&rest); 3528 if (*rest == '%') { 3529 size <<= PAGE_SHIFT; 3530 size *= totalram_pages; 3531 do_div(size, 100); 3532 rest++; 3533 } 3534 if (*rest) 3535 goto bad_val; 3536 sbinfo->max_blocks = 3537 DIV_ROUND_UP(size, PAGE_SIZE); 3538 } else if (!strcmp(this_char,"nr_blocks")) { 3539 sbinfo->max_blocks = memparse(value, &rest); 3540 if (*rest) 3541 goto bad_val; 3542 } else if (!strcmp(this_char,"nr_inodes")) { 3543 sbinfo->max_inodes = memparse(value, &rest); 3544 if (*rest) 3545 goto bad_val; 3546 } else if (!strcmp(this_char,"mode")) { 3547 if (remount) 3548 continue; 3549 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3550 if (*rest) 3551 goto bad_val; 3552 } else if (!strcmp(this_char,"uid")) { 3553 if (remount) 3554 continue; 3555 uid = simple_strtoul(value, &rest, 0); 3556 if (*rest) 3557 goto bad_val; 3558 sbinfo->uid = make_kuid(current_user_ns(), uid); 3559 if (!uid_valid(sbinfo->uid)) 3560 goto bad_val; 3561 } else if (!strcmp(this_char,"gid")) { 3562 if (remount) 3563 continue; 3564 gid = simple_strtoul(value, &rest, 0); 3565 if (*rest) 3566 goto bad_val; 3567 sbinfo->gid = make_kgid(current_user_ns(), gid); 3568 if (!gid_valid(sbinfo->gid)) 3569 goto bad_val; 3570 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3571 } else if (!strcmp(this_char, "huge")) { 3572 int huge; 3573 huge = shmem_parse_huge(value); 3574 if (huge < 0) 3575 goto bad_val; 3576 if (!has_transparent_hugepage() && 3577 huge != SHMEM_HUGE_NEVER) 3578 goto bad_val; 3579 sbinfo->huge = huge; 3580 #endif 3581 #ifdef CONFIG_NUMA 3582 } else if (!strcmp(this_char,"mpol")) { 3583 mpol_put(mpol); 3584 mpol = NULL; 3585 if (mpol_parse_str(value, &mpol)) 3586 goto bad_val; 3587 #endif 3588 } else { 3589 pr_err("tmpfs: Bad mount option %s\n", this_char); 3590 goto error; 3591 } 3592 } 3593 sbinfo->mpol = mpol; 3594 return 0; 3595 3596 bad_val: 3597 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3598 value, this_char); 3599 error: 3600 mpol_put(mpol); 3601 return 1; 3602 3603 } 3604 3605 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3606 { 3607 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3608 struct shmem_sb_info config = *sbinfo; 3609 unsigned long inodes; 3610 int error = -EINVAL; 3611 3612 config.mpol = NULL; 3613 if (shmem_parse_options(data, &config, true)) 3614 return error; 3615 3616 spin_lock(&sbinfo->stat_lock); 3617 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3618 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3619 goto out; 3620 if (config.max_inodes < inodes) 3621 goto out; 3622 /* 3623 * Those tests disallow limited->unlimited while any are in use; 3624 * but we must separately disallow unlimited->limited, because 3625 * in that case we have no record of how much is already in use. 3626 */ 3627 if (config.max_blocks && !sbinfo->max_blocks) 3628 goto out; 3629 if (config.max_inodes && !sbinfo->max_inodes) 3630 goto out; 3631 3632 error = 0; 3633 sbinfo->huge = config.huge; 3634 sbinfo->max_blocks = config.max_blocks; 3635 sbinfo->max_inodes = config.max_inodes; 3636 sbinfo->free_inodes = config.max_inodes - inodes; 3637 3638 /* 3639 * Preserve previous mempolicy unless mpol remount option was specified. 3640 */ 3641 if (config.mpol) { 3642 mpol_put(sbinfo->mpol); 3643 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3644 } 3645 out: 3646 spin_unlock(&sbinfo->stat_lock); 3647 return error; 3648 } 3649 3650 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3651 { 3652 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3653 3654 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3655 seq_printf(seq, ",size=%luk", 3656 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3657 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3658 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3659 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3660 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3661 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3662 seq_printf(seq, ",uid=%u", 3663 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3664 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3665 seq_printf(seq, ",gid=%u", 3666 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3667 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3668 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3669 if (sbinfo->huge) 3670 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3671 #endif 3672 shmem_show_mpol(seq, sbinfo->mpol); 3673 return 0; 3674 } 3675 3676 #define MFD_NAME_PREFIX "memfd:" 3677 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3678 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3679 3680 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB) 3681 3682 SYSCALL_DEFINE2(memfd_create, 3683 const char __user *, uname, 3684 unsigned int, flags) 3685 { 3686 unsigned int *file_seals; 3687 struct file *file; 3688 int fd, error; 3689 char *name; 3690 long len; 3691 3692 if (!(flags & MFD_HUGETLB)) { 3693 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3694 return -EINVAL; 3695 } else { 3696 /* Allow huge page size encoding in flags. */ 3697 if (flags & ~(unsigned int)(MFD_ALL_FLAGS | 3698 (MFD_HUGE_MASK << MFD_HUGE_SHIFT))) 3699 return -EINVAL; 3700 } 3701 3702 /* length includes terminating zero */ 3703 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3704 if (len <= 0) 3705 return -EFAULT; 3706 if (len > MFD_NAME_MAX_LEN + 1) 3707 return -EINVAL; 3708 3709 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL); 3710 if (!name) 3711 return -ENOMEM; 3712 3713 strcpy(name, MFD_NAME_PREFIX); 3714 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3715 error = -EFAULT; 3716 goto err_name; 3717 } 3718 3719 /* terminating-zero may have changed after strnlen_user() returned */ 3720 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3721 error = -EFAULT; 3722 goto err_name; 3723 } 3724 3725 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3726 if (fd < 0) { 3727 error = fd; 3728 goto err_name; 3729 } 3730 3731 if (flags & MFD_HUGETLB) { 3732 struct user_struct *user = NULL; 3733 3734 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user, 3735 HUGETLB_ANONHUGE_INODE, 3736 (flags >> MFD_HUGE_SHIFT) & 3737 MFD_HUGE_MASK); 3738 } else 3739 file = shmem_file_setup(name, 0, VM_NORESERVE); 3740 if (IS_ERR(file)) { 3741 error = PTR_ERR(file); 3742 goto err_fd; 3743 } 3744 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3745 file->f_flags |= O_RDWR | O_LARGEFILE; 3746 3747 if (flags & MFD_ALLOW_SEALING) { 3748 file_seals = memfd_file_seals_ptr(file); 3749 *file_seals &= ~F_SEAL_SEAL; 3750 } 3751 3752 fd_install(fd, file); 3753 kfree(name); 3754 return fd; 3755 3756 err_fd: 3757 put_unused_fd(fd); 3758 err_name: 3759 kfree(name); 3760 return error; 3761 } 3762 3763 #endif /* CONFIG_TMPFS */ 3764 3765 static void shmem_put_super(struct super_block *sb) 3766 { 3767 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3768 3769 percpu_counter_destroy(&sbinfo->used_blocks); 3770 mpol_put(sbinfo->mpol); 3771 kfree(sbinfo); 3772 sb->s_fs_info = NULL; 3773 } 3774 3775 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3776 { 3777 struct inode *inode; 3778 struct shmem_sb_info *sbinfo; 3779 int err = -ENOMEM; 3780 3781 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3782 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3783 L1_CACHE_BYTES), GFP_KERNEL); 3784 if (!sbinfo) 3785 return -ENOMEM; 3786 3787 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3788 sbinfo->uid = current_fsuid(); 3789 sbinfo->gid = current_fsgid(); 3790 sb->s_fs_info = sbinfo; 3791 3792 #ifdef CONFIG_TMPFS 3793 /* 3794 * Per default we only allow half of the physical ram per 3795 * tmpfs instance, limiting inodes to one per page of lowmem; 3796 * but the internal instance is left unlimited. 3797 */ 3798 if (!(sb->s_flags & SB_KERNMOUNT)) { 3799 sbinfo->max_blocks = shmem_default_max_blocks(); 3800 sbinfo->max_inodes = shmem_default_max_inodes(); 3801 if (shmem_parse_options(data, sbinfo, false)) { 3802 err = -EINVAL; 3803 goto failed; 3804 } 3805 } else { 3806 sb->s_flags |= SB_NOUSER; 3807 } 3808 sb->s_export_op = &shmem_export_ops; 3809 sb->s_flags |= SB_NOSEC; 3810 #else 3811 sb->s_flags |= SB_NOUSER; 3812 #endif 3813 3814 spin_lock_init(&sbinfo->stat_lock); 3815 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3816 goto failed; 3817 sbinfo->free_inodes = sbinfo->max_inodes; 3818 spin_lock_init(&sbinfo->shrinklist_lock); 3819 INIT_LIST_HEAD(&sbinfo->shrinklist); 3820 3821 sb->s_maxbytes = MAX_LFS_FILESIZE; 3822 sb->s_blocksize = PAGE_SIZE; 3823 sb->s_blocksize_bits = PAGE_SHIFT; 3824 sb->s_magic = TMPFS_MAGIC; 3825 sb->s_op = &shmem_ops; 3826 sb->s_time_gran = 1; 3827 #ifdef CONFIG_TMPFS_XATTR 3828 sb->s_xattr = shmem_xattr_handlers; 3829 #endif 3830 #ifdef CONFIG_TMPFS_POSIX_ACL 3831 sb->s_flags |= SB_POSIXACL; 3832 #endif 3833 uuid_gen(&sb->s_uuid); 3834 3835 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3836 if (!inode) 3837 goto failed; 3838 inode->i_uid = sbinfo->uid; 3839 inode->i_gid = sbinfo->gid; 3840 sb->s_root = d_make_root(inode); 3841 if (!sb->s_root) 3842 goto failed; 3843 return 0; 3844 3845 failed: 3846 shmem_put_super(sb); 3847 return err; 3848 } 3849 3850 static struct kmem_cache *shmem_inode_cachep; 3851 3852 static struct inode *shmem_alloc_inode(struct super_block *sb) 3853 { 3854 struct shmem_inode_info *info; 3855 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3856 if (!info) 3857 return NULL; 3858 return &info->vfs_inode; 3859 } 3860 3861 static void shmem_destroy_callback(struct rcu_head *head) 3862 { 3863 struct inode *inode = container_of(head, struct inode, i_rcu); 3864 if (S_ISLNK(inode->i_mode)) 3865 kfree(inode->i_link); 3866 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3867 } 3868 3869 static void shmem_destroy_inode(struct inode *inode) 3870 { 3871 if (S_ISREG(inode->i_mode)) 3872 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3873 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3874 } 3875 3876 static void shmem_init_inode(void *foo) 3877 { 3878 struct shmem_inode_info *info = foo; 3879 inode_init_once(&info->vfs_inode); 3880 } 3881 3882 static void shmem_init_inodecache(void) 3883 { 3884 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3885 sizeof(struct shmem_inode_info), 3886 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3887 } 3888 3889 static void shmem_destroy_inodecache(void) 3890 { 3891 kmem_cache_destroy(shmem_inode_cachep); 3892 } 3893 3894 static const struct address_space_operations shmem_aops = { 3895 .writepage = shmem_writepage, 3896 .set_page_dirty = __set_page_dirty_no_writeback, 3897 #ifdef CONFIG_TMPFS 3898 .write_begin = shmem_write_begin, 3899 .write_end = shmem_write_end, 3900 #endif 3901 #ifdef CONFIG_MIGRATION 3902 .migratepage = migrate_page, 3903 #endif 3904 .error_remove_page = generic_error_remove_page, 3905 }; 3906 3907 static const struct file_operations shmem_file_operations = { 3908 .mmap = shmem_mmap, 3909 .get_unmapped_area = shmem_get_unmapped_area, 3910 #ifdef CONFIG_TMPFS 3911 .llseek = shmem_file_llseek, 3912 .read_iter = shmem_file_read_iter, 3913 .write_iter = generic_file_write_iter, 3914 .fsync = noop_fsync, 3915 .splice_read = generic_file_splice_read, 3916 .splice_write = iter_file_splice_write, 3917 .fallocate = shmem_fallocate, 3918 #endif 3919 }; 3920 3921 static const struct inode_operations shmem_inode_operations = { 3922 .getattr = shmem_getattr, 3923 .setattr = shmem_setattr, 3924 #ifdef CONFIG_TMPFS_XATTR 3925 .listxattr = shmem_listxattr, 3926 .set_acl = simple_set_acl, 3927 #endif 3928 }; 3929 3930 static const struct inode_operations shmem_dir_inode_operations = { 3931 #ifdef CONFIG_TMPFS 3932 .create = shmem_create, 3933 .lookup = simple_lookup, 3934 .link = shmem_link, 3935 .unlink = shmem_unlink, 3936 .symlink = shmem_symlink, 3937 .mkdir = shmem_mkdir, 3938 .rmdir = shmem_rmdir, 3939 .mknod = shmem_mknod, 3940 .rename = shmem_rename2, 3941 .tmpfile = shmem_tmpfile, 3942 #endif 3943 #ifdef CONFIG_TMPFS_XATTR 3944 .listxattr = shmem_listxattr, 3945 #endif 3946 #ifdef CONFIG_TMPFS_POSIX_ACL 3947 .setattr = shmem_setattr, 3948 .set_acl = simple_set_acl, 3949 #endif 3950 }; 3951 3952 static const struct inode_operations shmem_special_inode_operations = { 3953 #ifdef CONFIG_TMPFS_XATTR 3954 .listxattr = shmem_listxattr, 3955 #endif 3956 #ifdef CONFIG_TMPFS_POSIX_ACL 3957 .setattr = shmem_setattr, 3958 .set_acl = simple_set_acl, 3959 #endif 3960 }; 3961 3962 static const struct super_operations shmem_ops = { 3963 .alloc_inode = shmem_alloc_inode, 3964 .destroy_inode = shmem_destroy_inode, 3965 #ifdef CONFIG_TMPFS 3966 .statfs = shmem_statfs, 3967 .remount_fs = shmem_remount_fs, 3968 .show_options = shmem_show_options, 3969 #endif 3970 .evict_inode = shmem_evict_inode, 3971 .drop_inode = generic_delete_inode, 3972 .put_super = shmem_put_super, 3973 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3974 .nr_cached_objects = shmem_unused_huge_count, 3975 .free_cached_objects = shmem_unused_huge_scan, 3976 #endif 3977 }; 3978 3979 static const struct vm_operations_struct shmem_vm_ops = { 3980 .fault = shmem_fault, 3981 .map_pages = filemap_map_pages, 3982 #ifdef CONFIG_NUMA 3983 .set_policy = shmem_set_policy, 3984 .get_policy = shmem_get_policy, 3985 #endif 3986 }; 3987 3988 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3989 int flags, const char *dev_name, void *data) 3990 { 3991 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3992 } 3993 3994 static struct file_system_type shmem_fs_type = { 3995 .owner = THIS_MODULE, 3996 .name = "tmpfs", 3997 .mount = shmem_mount, 3998 .kill_sb = kill_litter_super, 3999 .fs_flags = FS_USERNS_MOUNT, 4000 }; 4001 4002 int __init shmem_init(void) 4003 { 4004 int error; 4005 4006 /* If rootfs called this, don't re-init */ 4007 if (shmem_inode_cachep) 4008 return 0; 4009 4010 shmem_init_inodecache(); 4011 4012 error = register_filesystem(&shmem_fs_type); 4013 if (error) { 4014 pr_err("Could not register tmpfs\n"); 4015 goto out2; 4016 } 4017 4018 shm_mnt = kern_mount(&shmem_fs_type); 4019 if (IS_ERR(shm_mnt)) { 4020 error = PTR_ERR(shm_mnt); 4021 pr_err("Could not kern_mount tmpfs\n"); 4022 goto out1; 4023 } 4024 4025 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 4026 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4027 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4028 else 4029 shmem_huge = 0; /* just in case it was patched */ 4030 #endif 4031 return 0; 4032 4033 out1: 4034 unregister_filesystem(&shmem_fs_type); 4035 out2: 4036 shmem_destroy_inodecache(); 4037 shm_mnt = ERR_PTR(error); 4038 return error; 4039 } 4040 4041 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 4042 static ssize_t shmem_enabled_show(struct kobject *kobj, 4043 struct kobj_attribute *attr, char *buf) 4044 { 4045 int values[] = { 4046 SHMEM_HUGE_ALWAYS, 4047 SHMEM_HUGE_WITHIN_SIZE, 4048 SHMEM_HUGE_ADVISE, 4049 SHMEM_HUGE_NEVER, 4050 SHMEM_HUGE_DENY, 4051 SHMEM_HUGE_FORCE, 4052 }; 4053 int i, count; 4054 4055 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 4056 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 4057 4058 count += sprintf(buf + count, fmt, 4059 shmem_format_huge(values[i])); 4060 } 4061 buf[count - 1] = '\n'; 4062 return count; 4063 } 4064 4065 static ssize_t shmem_enabled_store(struct kobject *kobj, 4066 struct kobj_attribute *attr, const char *buf, size_t count) 4067 { 4068 char tmp[16]; 4069 int huge; 4070 4071 if (count + 1 > sizeof(tmp)) 4072 return -EINVAL; 4073 memcpy(tmp, buf, count); 4074 tmp[count] = '\0'; 4075 if (count && tmp[count - 1] == '\n') 4076 tmp[count - 1] = '\0'; 4077 4078 huge = shmem_parse_huge(tmp); 4079 if (huge == -EINVAL) 4080 return -EINVAL; 4081 if (!has_transparent_hugepage() && 4082 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4083 return -EINVAL; 4084 4085 shmem_huge = huge; 4086 if (shmem_huge > SHMEM_HUGE_DENY) 4087 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4088 return count; 4089 } 4090 4091 struct kobj_attribute shmem_enabled_attr = 4092 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4093 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 4094 4095 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 4096 bool shmem_huge_enabled(struct vm_area_struct *vma) 4097 { 4098 struct inode *inode = file_inode(vma->vm_file); 4099 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4100 loff_t i_size; 4101 pgoff_t off; 4102 4103 if (shmem_huge == SHMEM_HUGE_FORCE) 4104 return true; 4105 if (shmem_huge == SHMEM_HUGE_DENY) 4106 return false; 4107 switch (sbinfo->huge) { 4108 case SHMEM_HUGE_NEVER: 4109 return false; 4110 case SHMEM_HUGE_ALWAYS: 4111 return true; 4112 case SHMEM_HUGE_WITHIN_SIZE: 4113 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4114 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4115 if (i_size >= HPAGE_PMD_SIZE && 4116 i_size >> PAGE_SHIFT >= off) 4117 return true; 4118 /* fall through */ 4119 case SHMEM_HUGE_ADVISE: 4120 /* TODO: implement fadvise() hints */ 4121 return (vma->vm_flags & VM_HUGEPAGE); 4122 default: 4123 VM_BUG_ON(1); 4124 return false; 4125 } 4126 } 4127 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4128 4129 #else /* !CONFIG_SHMEM */ 4130 4131 /* 4132 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4133 * 4134 * This is intended for small system where the benefits of the full 4135 * shmem code (swap-backed and resource-limited) are outweighed by 4136 * their complexity. On systems without swap this code should be 4137 * effectively equivalent, but much lighter weight. 4138 */ 4139 4140 static struct file_system_type shmem_fs_type = { 4141 .name = "tmpfs", 4142 .mount = ramfs_mount, 4143 .kill_sb = kill_litter_super, 4144 .fs_flags = FS_USERNS_MOUNT, 4145 }; 4146 4147 int __init shmem_init(void) 4148 { 4149 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4150 4151 shm_mnt = kern_mount(&shmem_fs_type); 4152 BUG_ON(IS_ERR(shm_mnt)); 4153 4154 return 0; 4155 } 4156 4157 int shmem_unuse(swp_entry_t swap, struct page *page) 4158 { 4159 return 0; 4160 } 4161 4162 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4163 { 4164 return 0; 4165 } 4166 4167 void shmem_unlock_mapping(struct address_space *mapping) 4168 { 4169 } 4170 4171 #ifdef CONFIG_MMU 4172 unsigned long shmem_get_unmapped_area(struct file *file, 4173 unsigned long addr, unsigned long len, 4174 unsigned long pgoff, unsigned long flags) 4175 { 4176 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4177 } 4178 #endif 4179 4180 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4181 { 4182 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4183 } 4184 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4185 4186 #define shmem_vm_ops generic_file_vm_ops 4187 #define shmem_file_operations ramfs_file_operations 4188 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4189 #define shmem_acct_size(flags, size) 0 4190 #define shmem_unacct_size(flags, size) do {} while (0) 4191 4192 #endif /* CONFIG_SHMEM */ 4193 4194 /* common code */ 4195 4196 static const struct dentry_operations anon_ops = { 4197 .d_dname = simple_dname 4198 }; 4199 4200 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4201 unsigned long flags, unsigned int i_flags) 4202 { 4203 struct file *res; 4204 struct inode *inode; 4205 struct path path; 4206 struct super_block *sb; 4207 struct qstr this; 4208 4209 if (IS_ERR(mnt)) 4210 return ERR_CAST(mnt); 4211 4212 if (size < 0 || size > MAX_LFS_FILESIZE) 4213 return ERR_PTR(-EINVAL); 4214 4215 if (shmem_acct_size(flags, size)) 4216 return ERR_PTR(-ENOMEM); 4217 4218 res = ERR_PTR(-ENOMEM); 4219 this.name = name; 4220 this.len = strlen(name); 4221 this.hash = 0; /* will go */ 4222 sb = mnt->mnt_sb; 4223 path.mnt = mntget(mnt); 4224 path.dentry = d_alloc_pseudo(sb, &this); 4225 if (!path.dentry) 4226 goto put_memory; 4227 d_set_d_op(path.dentry, &anon_ops); 4228 4229 res = ERR_PTR(-ENOSPC); 4230 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4231 if (!inode) 4232 goto put_memory; 4233 4234 inode->i_flags |= i_flags; 4235 d_instantiate(path.dentry, inode); 4236 inode->i_size = size; 4237 clear_nlink(inode); /* It is unlinked */ 4238 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4239 if (IS_ERR(res)) 4240 goto put_path; 4241 4242 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4243 &shmem_file_operations); 4244 if (IS_ERR(res)) 4245 goto put_path; 4246 4247 return res; 4248 4249 put_memory: 4250 shmem_unacct_size(flags, size); 4251 put_path: 4252 path_put(&path); 4253 return res; 4254 } 4255 4256 /** 4257 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4258 * kernel internal. There will be NO LSM permission checks against the 4259 * underlying inode. So users of this interface must do LSM checks at a 4260 * higher layer. The users are the big_key and shm implementations. LSM 4261 * checks are provided at the key or shm level rather than the inode. 4262 * @name: name for dentry (to be seen in /proc/<pid>/maps 4263 * @size: size to be set for the file 4264 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4265 */ 4266 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4267 { 4268 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4269 } 4270 4271 /** 4272 * shmem_file_setup - get an unlinked file living in tmpfs 4273 * @name: name for dentry (to be seen in /proc/<pid>/maps 4274 * @size: size to be set for the file 4275 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4276 */ 4277 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4278 { 4279 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4280 } 4281 EXPORT_SYMBOL_GPL(shmem_file_setup); 4282 4283 /** 4284 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4285 * @mnt: the tmpfs mount where the file will be created 4286 * @name: name for dentry (to be seen in /proc/<pid>/maps 4287 * @size: size to be set for the file 4288 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4289 */ 4290 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4291 loff_t size, unsigned long flags) 4292 { 4293 return __shmem_file_setup(mnt, name, size, flags, 0); 4294 } 4295 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4296 4297 /** 4298 * shmem_zero_setup - setup a shared anonymous mapping 4299 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4300 */ 4301 int shmem_zero_setup(struct vm_area_struct *vma) 4302 { 4303 struct file *file; 4304 loff_t size = vma->vm_end - vma->vm_start; 4305 4306 /* 4307 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4308 * between XFS directory reading and selinux: since this file is only 4309 * accessible to the user through its mapping, use S_PRIVATE flag to 4310 * bypass file security, in the same way as shmem_kernel_file_setup(). 4311 */ 4312 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4313 if (IS_ERR(file)) 4314 return PTR_ERR(file); 4315 4316 if (vma->vm_file) 4317 fput(vma->vm_file); 4318 vma->vm_file = file; 4319 vma->vm_ops = &shmem_vm_ops; 4320 4321 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4322 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4323 (vma->vm_end & HPAGE_PMD_MASK)) { 4324 khugepaged_enter(vma, vma->vm_flags); 4325 } 4326 4327 return 0; 4328 } 4329 4330 /** 4331 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4332 * @mapping: the page's address_space 4333 * @index: the page index 4334 * @gfp: the page allocator flags to use if allocating 4335 * 4336 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4337 * with any new page allocations done using the specified allocation flags. 4338 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4339 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4340 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4341 * 4342 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4343 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4344 */ 4345 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4346 pgoff_t index, gfp_t gfp) 4347 { 4348 #ifdef CONFIG_SHMEM 4349 struct inode *inode = mapping->host; 4350 struct page *page; 4351 int error; 4352 4353 BUG_ON(mapping->a_ops != &shmem_aops); 4354 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4355 gfp, NULL, NULL, NULL); 4356 if (error) 4357 page = ERR_PTR(error); 4358 else 4359 unlock_page(page); 4360 return page; 4361 #else 4362 /* 4363 * The tiny !SHMEM case uses ramfs without swap 4364 */ 4365 return read_cache_page_gfp(mapping, index, gfp); 4366 #endif 4367 } 4368 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4369