xref: /openbmc/linux/mm/shmem.c (revision e23feb16)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/generic_acl.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72 
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81 
82 /*
83  * shmem_fallocate and shmem_writepage communicate via inode->i_private
84  * (with i_mutex making sure that it has only one user at a time):
85  * we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88 	pgoff_t start;		/* start of range currently being fallocated */
89 	pgoff_t next;		/* the next page offset to be fallocated */
90 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
91 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
92 };
93 
94 /* Flag allocation requirements to shmem_getpage */
95 enum sgp_type {
96 	SGP_READ,	/* don't exceed i_size, don't allocate page */
97 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
98 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
99 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
100 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
101 };
102 
103 #ifdef CONFIG_TMPFS
104 static unsigned long shmem_default_max_blocks(void)
105 {
106 	return totalram_pages / 2;
107 }
108 
109 static unsigned long shmem_default_max_inodes(void)
110 {
111 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112 }
113 #endif
114 
115 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117 				struct shmem_inode_info *info, pgoff_t index);
118 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120 
121 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122 	struct page **pagep, enum sgp_type sgp, int *fault_type)
123 {
124 	return shmem_getpage_gfp(inode, index, pagep, sgp,
125 			mapping_gfp_mask(inode->i_mapping), fault_type);
126 }
127 
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130 	return sb->s_fs_info;
131 }
132 
133 /*
134  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135  * for shared memory and for shared anonymous (/dev/zero) mappings
136  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137  * consistent with the pre-accounting of private mappings ...
138  */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141 	return (flags & VM_NORESERVE) ?
142 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144 
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147 	if (!(flags & VM_NORESERVE))
148 		vm_unacct_memory(VM_ACCT(size));
149 }
150 
151 /*
152  * ... whereas tmpfs objects are accounted incrementally as
153  * pages are allocated, in order to allow huge sparse files.
154  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156  */
157 static inline int shmem_acct_block(unsigned long flags)
158 {
159 	return (flags & VM_NORESERVE) ?
160 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 }
162 
163 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164 {
165 	if (flags & VM_NORESERVE)
166 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 }
168 
169 static const struct super_operations shmem_ops;
170 static const struct address_space_operations shmem_aops;
171 static const struct file_operations shmem_file_operations;
172 static const struct inode_operations shmem_inode_operations;
173 static const struct inode_operations shmem_dir_inode_operations;
174 static const struct inode_operations shmem_special_inode_operations;
175 static const struct vm_operations_struct shmem_vm_ops;
176 
177 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
178 	.ra_pages	= 0,	/* No readahead */
179 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 };
181 
182 static LIST_HEAD(shmem_swaplist);
183 static DEFINE_MUTEX(shmem_swaplist_mutex);
184 
185 static int shmem_reserve_inode(struct super_block *sb)
186 {
187 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188 	if (sbinfo->max_inodes) {
189 		spin_lock(&sbinfo->stat_lock);
190 		if (!sbinfo->free_inodes) {
191 			spin_unlock(&sbinfo->stat_lock);
192 			return -ENOSPC;
193 		}
194 		sbinfo->free_inodes--;
195 		spin_unlock(&sbinfo->stat_lock);
196 	}
197 	return 0;
198 }
199 
200 static void shmem_free_inode(struct super_block *sb)
201 {
202 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203 	if (sbinfo->max_inodes) {
204 		spin_lock(&sbinfo->stat_lock);
205 		sbinfo->free_inodes++;
206 		spin_unlock(&sbinfo->stat_lock);
207 	}
208 }
209 
210 /**
211  * shmem_recalc_inode - recalculate the block usage of an inode
212  * @inode: inode to recalc
213  *
214  * We have to calculate the free blocks since the mm can drop
215  * undirtied hole pages behind our back.
216  *
217  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
218  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219  *
220  * It has to be called with the spinlock held.
221  */
222 static void shmem_recalc_inode(struct inode *inode)
223 {
224 	struct shmem_inode_info *info = SHMEM_I(inode);
225 	long freed;
226 
227 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228 	if (freed > 0) {
229 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230 		if (sbinfo->max_blocks)
231 			percpu_counter_add(&sbinfo->used_blocks, -freed);
232 		info->alloced -= freed;
233 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234 		shmem_unacct_blocks(info->flags, freed);
235 	}
236 }
237 
238 /*
239  * Replace item expected in radix tree by a new item, while holding tree lock.
240  */
241 static int shmem_radix_tree_replace(struct address_space *mapping,
242 			pgoff_t index, void *expected, void *replacement)
243 {
244 	void **pslot;
245 	void *item = NULL;
246 
247 	VM_BUG_ON(!expected);
248 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
249 	if (pslot)
250 		item = radix_tree_deref_slot_protected(pslot,
251 							&mapping->tree_lock);
252 	if (item != expected)
253 		return -ENOENT;
254 	if (replacement)
255 		radix_tree_replace_slot(pslot, replacement);
256 	else
257 		radix_tree_delete(&mapping->page_tree, index);
258 	return 0;
259 }
260 
261 /*
262  * Sometimes, before we decide whether to proceed or to fail, we must check
263  * that an entry was not already brought back from swap by a racing thread.
264  *
265  * Checking page is not enough: by the time a SwapCache page is locked, it
266  * might be reused, and again be SwapCache, using the same swap as before.
267  */
268 static bool shmem_confirm_swap(struct address_space *mapping,
269 			       pgoff_t index, swp_entry_t swap)
270 {
271 	void *item;
272 
273 	rcu_read_lock();
274 	item = radix_tree_lookup(&mapping->page_tree, index);
275 	rcu_read_unlock();
276 	return item == swp_to_radix_entry(swap);
277 }
278 
279 /*
280  * Like add_to_page_cache_locked, but error if expected item has gone.
281  */
282 static int shmem_add_to_page_cache(struct page *page,
283 				   struct address_space *mapping,
284 				   pgoff_t index, gfp_t gfp, void *expected)
285 {
286 	int error;
287 
288 	VM_BUG_ON(!PageLocked(page));
289 	VM_BUG_ON(!PageSwapBacked(page));
290 
291 	page_cache_get(page);
292 	page->mapping = mapping;
293 	page->index = index;
294 
295 	spin_lock_irq(&mapping->tree_lock);
296 	if (!expected)
297 		error = radix_tree_insert(&mapping->page_tree, index, page);
298 	else
299 		error = shmem_radix_tree_replace(mapping, index, expected,
300 								 page);
301 	if (!error) {
302 		mapping->nrpages++;
303 		__inc_zone_page_state(page, NR_FILE_PAGES);
304 		__inc_zone_page_state(page, NR_SHMEM);
305 		spin_unlock_irq(&mapping->tree_lock);
306 	} else {
307 		page->mapping = NULL;
308 		spin_unlock_irq(&mapping->tree_lock);
309 		page_cache_release(page);
310 	}
311 	return error;
312 }
313 
314 /*
315  * Like delete_from_page_cache, but substitutes swap for page.
316  */
317 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
318 {
319 	struct address_space *mapping = page->mapping;
320 	int error;
321 
322 	spin_lock_irq(&mapping->tree_lock);
323 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
324 	page->mapping = NULL;
325 	mapping->nrpages--;
326 	__dec_zone_page_state(page, NR_FILE_PAGES);
327 	__dec_zone_page_state(page, NR_SHMEM);
328 	spin_unlock_irq(&mapping->tree_lock);
329 	page_cache_release(page);
330 	BUG_ON(error);
331 }
332 
333 /*
334  * Like find_get_pages, but collecting swap entries as well as pages.
335  */
336 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
337 					pgoff_t start, unsigned int nr_pages,
338 					struct page **pages, pgoff_t *indices)
339 {
340 	void **slot;
341 	unsigned int ret = 0;
342 	struct radix_tree_iter iter;
343 
344 	if (!nr_pages)
345 		return 0;
346 
347 	rcu_read_lock();
348 restart:
349 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
350 		struct page *page;
351 repeat:
352 		page = radix_tree_deref_slot(slot);
353 		if (unlikely(!page))
354 			continue;
355 		if (radix_tree_exception(page)) {
356 			if (radix_tree_deref_retry(page))
357 				goto restart;
358 			/*
359 			 * Otherwise, we must be storing a swap entry
360 			 * here as an exceptional entry: so return it
361 			 * without attempting to raise page count.
362 			 */
363 			goto export;
364 		}
365 		if (!page_cache_get_speculative(page))
366 			goto repeat;
367 
368 		/* Has the page moved? */
369 		if (unlikely(page != *slot)) {
370 			page_cache_release(page);
371 			goto repeat;
372 		}
373 export:
374 		indices[ret] = iter.index;
375 		pages[ret] = page;
376 		if (++ret == nr_pages)
377 			break;
378 	}
379 	rcu_read_unlock();
380 	return ret;
381 }
382 
383 /*
384  * Remove swap entry from radix tree, free the swap and its page cache.
385  */
386 static int shmem_free_swap(struct address_space *mapping,
387 			   pgoff_t index, void *radswap)
388 {
389 	int error;
390 
391 	spin_lock_irq(&mapping->tree_lock);
392 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
393 	spin_unlock_irq(&mapping->tree_lock);
394 	if (!error)
395 		free_swap_and_cache(radix_to_swp_entry(radswap));
396 	return error;
397 }
398 
399 /*
400  * Pagevec may contain swap entries, so shuffle up pages before releasing.
401  */
402 static void shmem_deswap_pagevec(struct pagevec *pvec)
403 {
404 	int i, j;
405 
406 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
407 		struct page *page = pvec->pages[i];
408 		if (!radix_tree_exceptional_entry(page))
409 			pvec->pages[j++] = page;
410 	}
411 	pvec->nr = j;
412 }
413 
414 /*
415  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416  */
417 void shmem_unlock_mapping(struct address_space *mapping)
418 {
419 	struct pagevec pvec;
420 	pgoff_t indices[PAGEVEC_SIZE];
421 	pgoff_t index = 0;
422 
423 	pagevec_init(&pvec, 0);
424 	/*
425 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426 	 */
427 	while (!mapping_unevictable(mapping)) {
428 		/*
429 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
430 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431 		 */
432 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
433 					PAGEVEC_SIZE, pvec.pages, indices);
434 		if (!pvec.nr)
435 			break;
436 		index = indices[pvec.nr - 1] + 1;
437 		shmem_deswap_pagevec(&pvec);
438 		check_move_unevictable_pages(pvec.pages, pvec.nr);
439 		pagevec_release(&pvec);
440 		cond_resched();
441 	}
442 }
443 
444 /*
445  * Remove range of pages and swap entries from radix tree, and free them.
446  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447  */
448 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
449 								 bool unfalloc)
450 {
451 	struct address_space *mapping = inode->i_mapping;
452 	struct shmem_inode_info *info = SHMEM_I(inode);
453 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
454 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
455 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
456 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
457 	struct pagevec pvec;
458 	pgoff_t indices[PAGEVEC_SIZE];
459 	long nr_swaps_freed = 0;
460 	pgoff_t index;
461 	int i;
462 
463 	if (lend == -1)
464 		end = -1;	/* unsigned, so actually very big */
465 
466 	pagevec_init(&pvec, 0);
467 	index = start;
468 	while (index < end) {
469 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
470 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
471 							pvec.pages, indices);
472 		if (!pvec.nr)
473 			break;
474 		mem_cgroup_uncharge_start();
475 		for (i = 0; i < pagevec_count(&pvec); i++) {
476 			struct page *page = pvec.pages[i];
477 
478 			index = indices[i];
479 			if (index >= end)
480 				break;
481 
482 			if (radix_tree_exceptional_entry(page)) {
483 				if (unfalloc)
484 					continue;
485 				nr_swaps_freed += !shmem_free_swap(mapping,
486 								index, page);
487 				continue;
488 			}
489 
490 			if (!trylock_page(page))
491 				continue;
492 			if (!unfalloc || !PageUptodate(page)) {
493 				if (page->mapping == mapping) {
494 					VM_BUG_ON(PageWriteback(page));
495 					truncate_inode_page(mapping, page);
496 				}
497 			}
498 			unlock_page(page);
499 		}
500 		shmem_deswap_pagevec(&pvec);
501 		pagevec_release(&pvec);
502 		mem_cgroup_uncharge_end();
503 		cond_resched();
504 		index++;
505 	}
506 
507 	if (partial_start) {
508 		struct page *page = NULL;
509 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
510 		if (page) {
511 			unsigned int top = PAGE_CACHE_SIZE;
512 			if (start > end) {
513 				top = partial_end;
514 				partial_end = 0;
515 			}
516 			zero_user_segment(page, partial_start, top);
517 			set_page_dirty(page);
518 			unlock_page(page);
519 			page_cache_release(page);
520 		}
521 	}
522 	if (partial_end) {
523 		struct page *page = NULL;
524 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
525 		if (page) {
526 			zero_user_segment(page, 0, partial_end);
527 			set_page_dirty(page);
528 			unlock_page(page);
529 			page_cache_release(page);
530 		}
531 	}
532 	if (start >= end)
533 		return;
534 
535 	index = start;
536 	for ( ; ; ) {
537 		cond_resched();
538 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
539 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
540 							pvec.pages, indices);
541 		if (!pvec.nr) {
542 			if (index == start || unfalloc)
543 				break;
544 			index = start;
545 			continue;
546 		}
547 		if ((index == start || unfalloc) && indices[0] >= end) {
548 			shmem_deswap_pagevec(&pvec);
549 			pagevec_release(&pvec);
550 			break;
551 		}
552 		mem_cgroup_uncharge_start();
553 		for (i = 0; i < pagevec_count(&pvec); i++) {
554 			struct page *page = pvec.pages[i];
555 
556 			index = indices[i];
557 			if (index >= end)
558 				break;
559 
560 			if (radix_tree_exceptional_entry(page)) {
561 				if (unfalloc)
562 					continue;
563 				nr_swaps_freed += !shmem_free_swap(mapping,
564 								index, page);
565 				continue;
566 			}
567 
568 			lock_page(page);
569 			if (!unfalloc || !PageUptodate(page)) {
570 				if (page->mapping == mapping) {
571 					VM_BUG_ON(PageWriteback(page));
572 					truncate_inode_page(mapping, page);
573 				}
574 			}
575 			unlock_page(page);
576 		}
577 		shmem_deswap_pagevec(&pvec);
578 		pagevec_release(&pvec);
579 		mem_cgroup_uncharge_end();
580 		index++;
581 	}
582 
583 	spin_lock(&info->lock);
584 	info->swapped -= nr_swaps_freed;
585 	shmem_recalc_inode(inode);
586 	spin_unlock(&info->lock);
587 }
588 
589 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
590 {
591 	shmem_undo_range(inode, lstart, lend, false);
592 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
593 }
594 EXPORT_SYMBOL_GPL(shmem_truncate_range);
595 
596 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
597 {
598 	struct inode *inode = dentry->d_inode;
599 	int error;
600 
601 	error = inode_change_ok(inode, attr);
602 	if (error)
603 		return error;
604 
605 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
606 		loff_t oldsize = inode->i_size;
607 		loff_t newsize = attr->ia_size;
608 
609 		if (newsize != oldsize) {
610 			i_size_write(inode, newsize);
611 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
612 		}
613 		if (newsize < oldsize) {
614 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
615 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 			shmem_truncate_range(inode, newsize, (loff_t)-1);
617 			/* unmap again to remove racily COWed private pages */
618 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
619 		}
620 	}
621 
622 	setattr_copy(inode, attr);
623 #ifdef CONFIG_TMPFS_POSIX_ACL
624 	if (attr->ia_valid & ATTR_MODE)
625 		error = generic_acl_chmod(inode);
626 #endif
627 	return error;
628 }
629 
630 static void shmem_evict_inode(struct inode *inode)
631 {
632 	struct shmem_inode_info *info = SHMEM_I(inode);
633 
634 	if (inode->i_mapping->a_ops == &shmem_aops) {
635 		shmem_unacct_size(info->flags, inode->i_size);
636 		inode->i_size = 0;
637 		shmem_truncate_range(inode, 0, (loff_t)-1);
638 		if (!list_empty(&info->swaplist)) {
639 			mutex_lock(&shmem_swaplist_mutex);
640 			list_del_init(&info->swaplist);
641 			mutex_unlock(&shmem_swaplist_mutex);
642 		}
643 	} else
644 		kfree(info->symlink);
645 
646 	simple_xattrs_free(&info->xattrs);
647 	WARN_ON(inode->i_blocks);
648 	shmem_free_inode(inode->i_sb);
649 	clear_inode(inode);
650 }
651 
652 /*
653  * If swap found in inode, free it and move page from swapcache to filecache.
654  */
655 static int shmem_unuse_inode(struct shmem_inode_info *info,
656 			     swp_entry_t swap, struct page **pagep)
657 {
658 	struct address_space *mapping = info->vfs_inode.i_mapping;
659 	void *radswap;
660 	pgoff_t index;
661 	gfp_t gfp;
662 	int error = 0;
663 
664 	radswap = swp_to_radix_entry(swap);
665 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
666 	if (index == -1)
667 		return 0;
668 
669 	/*
670 	 * Move _head_ to start search for next from here.
671 	 * But be careful: shmem_evict_inode checks list_empty without taking
672 	 * mutex, and there's an instant in list_move_tail when info->swaplist
673 	 * would appear empty, if it were the only one on shmem_swaplist.
674 	 */
675 	if (shmem_swaplist.next != &info->swaplist)
676 		list_move_tail(&shmem_swaplist, &info->swaplist);
677 
678 	gfp = mapping_gfp_mask(mapping);
679 	if (shmem_should_replace_page(*pagep, gfp)) {
680 		mutex_unlock(&shmem_swaplist_mutex);
681 		error = shmem_replace_page(pagep, gfp, info, index);
682 		mutex_lock(&shmem_swaplist_mutex);
683 		/*
684 		 * We needed to drop mutex to make that restrictive page
685 		 * allocation, but the inode might have been freed while we
686 		 * dropped it: although a racing shmem_evict_inode() cannot
687 		 * complete without emptying the radix_tree, our page lock
688 		 * on this swapcache page is not enough to prevent that -
689 		 * free_swap_and_cache() of our swap entry will only
690 		 * trylock_page(), removing swap from radix_tree whatever.
691 		 *
692 		 * We must not proceed to shmem_add_to_page_cache() if the
693 		 * inode has been freed, but of course we cannot rely on
694 		 * inode or mapping or info to check that.  However, we can
695 		 * safely check if our swap entry is still in use (and here
696 		 * it can't have got reused for another page): if it's still
697 		 * in use, then the inode cannot have been freed yet, and we
698 		 * can safely proceed (if it's no longer in use, that tells
699 		 * nothing about the inode, but we don't need to unuse swap).
700 		 */
701 		if (!page_swapcount(*pagep))
702 			error = -ENOENT;
703 	}
704 
705 	/*
706 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
707 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
708 	 * beneath us (pagelock doesn't help until the page is in pagecache).
709 	 */
710 	if (!error)
711 		error = shmem_add_to_page_cache(*pagep, mapping, index,
712 						GFP_NOWAIT, radswap);
713 	if (error != -ENOMEM) {
714 		/*
715 		 * Truncation and eviction use free_swap_and_cache(), which
716 		 * only does trylock page: if we raced, best clean up here.
717 		 */
718 		delete_from_swap_cache(*pagep);
719 		set_page_dirty(*pagep);
720 		if (!error) {
721 			spin_lock(&info->lock);
722 			info->swapped--;
723 			spin_unlock(&info->lock);
724 			swap_free(swap);
725 		}
726 		error = 1;	/* not an error, but entry was found */
727 	}
728 	return error;
729 }
730 
731 /*
732  * Search through swapped inodes to find and replace swap by page.
733  */
734 int shmem_unuse(swp_entry_t swap, struct page *page)
735 {
736 	struct list_head *this, *next;
737 	struct shmem_inode_info *info;
738 	int found = 0;
739 	int error = 0;
740 
741 	/*
742 	 * There's a faint possibility that swap page was replaced before
743 	 * caller locked it: caller will come back later with the right page.
744 	 */
745 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
746 		goto out;
747 
748 	/*
749 	 * Charge page using GFP_KERNEL while we can wait, before taking
750 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
751 	 * Charged back to the user (not to caller) when swap account is used.
752 	 */
753 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
754 	if (error)
755 		goto out;
756 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
757 
758 	mutex_lock(&shmem_swaplist_mutex);
759 	list_for_each_safe(this, next, &shmem_swaplist) {
760 		info = list_entry(this, struct shmem_inode_info, swaplist);
761 		if (info->swapped)
762 			found = shmem_unuse_inode(info, swap, &page);
763 		else
764 			list_del_init(&info->swaplist);
765 		cond_resched();
766 		if (found)
767 			break;
768 	}
769 	mutex_unlock(&shmem_swaplist_mutex);
770 
771 	if (found < 0)
772 		error = found;
773 out:
774 	unlock_page(page);
775 	page_cache_release(page);
776 	return error;
777 }
778 
779 /*
780  * Move the page from the page cache to the swap cache.
781  */
782 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
783 {
784 	struct shmem_inode_info *info;
785 	struct address_space *mapping;
786 	struct inode *inode;
787 	swp_entry_t swap;
788 	pgoff_t index;
789 
790 	BUG_ON(!PageLocked(page));
791 	mapping = page->mapping;
792 	index = page->index;
793 	inode = mapping->host;
794 	info = SHMEM_I(inode);
795 	if (info->flags & VM_LOCKED)
796 		goto redirty;
797 	if (!total_swap_pages)
798 		goto redirty;
799 
800 	/*
801 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
802 	 * sync from ever calling shmem_writepage; but a stacking filesystem
803 	 * might use ->writepage of its underlying filesystem, in which case
804 	 * tmpfs should write out to swap only in response to memory pressure,
805 	 * and not for the writeback threads or sync.
806 	 */
807 	if (!wbc->for_reclaim) {
808 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
809 		goto redirty;
810 	}
811 
812 	/*
813 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
814 	 * value into swapfile.c, the only way we can correctly account for a
815 	 * fallocated page arriving here is now to initialize it and write it.
816 	 *
817 	 * That's okay for a page already fallocated earlier, but if we have
818 	 * not yet completed the fallocation, then (a) we want to keep track
819 	 * of this page in case we have to undo it, and (b) it may not be a
820 	 * good idea to continue anyway, once we're pushing into swap.  So
821 	 * reactivate the page, and let shmem_fallocate() quit when too many.
822 	 */
823 	if (!PageUptodate(page)) {
824 		if (inode->i_private) {
825 			struct shmem_falloc *shmem_falloc;
826 			spin_lock(&inode->i_lock);
827 			shmem_falloc = inode->i_private;
828 			if (shmem_falloc &&
829 			    index >= shmem_falloc->start &&
830 			    index < shmem_falloc->next)
831 				shmem_falloc->nr_unswapped++;
832 			else
833 				shmem_falloc = NULL;
834 			spin_unlock(&inode->i_lock);
835 			if (shmem_falloc)
836 				goto redirty;
837 		}
838 		clear_highpage(page);
839 		flush_dcache_page(page);
840 		SetPageUptodate(page);
841 	}
842 
843 	swap = get_swap_page();
844 	if (!swap.val)
845 		goto redirty;
846 
847 	/*
848 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
849 	 * if it's not already there.  Do it now before the page is
850 	 * moved to swap cache, when its pagelock no longer protects
851 	 * the inode from eviction.  But don't unlock the mutex until
852 	 * we've incremented swapped, because shmem_unuse_inode() will
853 	 * prune a !swapped inode from the swaplist under this mutex.
854 	 */
855 	mutex_lock(&shmem_swaplist_mutex);
856 	if (list_empty(&info->swaplist))
857 		list_add_tail(&info->swaplist, &shmem_swaplist);
858 
859 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
860 		swap_shmem_alloc(swap);
861 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
862 
863 		spin_lock(&info->lock);
864 		info->swapped++;
865 		shmem_recalc_inode(inode);
866 		spin_unlock(&info->lock);
867 
868 		mutex_unlock(&shmem_swaplist_mutex);
869 		BUG_ON(page_mapped(page));
870 		swap_writepage(page, wbc);
871 		return 0;
872 	}
873 
874 	mutex_unlock(&shmem_swaplist_mutex);
875 	swapcache_free(swap, NULL);
876 redirty:
877 	set_page_dirty(page);
878 	if (wbc->for_reclaim)
879 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
880 	unlock_page(page);
881 	return 0;
882 }
883 
884 #ifdef CONFIG_NUMA
885 #ifdef CONFIG_TMPFS
886 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
887 {
888 	char buffer[64];
889 
890 	if (!mpol || mpol->mode == MPOL_DEFAULT)
891 		return;		/* show nothing */
892 
893 	mpol_to_str(buffer, sizeof(buffer), mpol);
894 
895 	seq_printf(seq, ",mpol=%s", buffer);
896 }
897 
898 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
899 {
900 	struct mempolicy *mpol = NULL;
901 	if (sbinfo->mpol) {
902 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
903 		mpol = sbinfo->mpol;
904 		mpol_get(mpol);
905 		spin_unlock(&sbinfo->stat_lock);
906 	}
907 	return mpol;
908 }
909 #endif /* CONFIG_TMPFS */
910 
911 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
912 			struct shmem_inode_info *info, pgoff_t index)
913 {
914 	struct vm_area_struct pvma;
915 	struct page *page;
916 
917 	/* Create a pseudo vma that just contains the policy */
918 	pvma.vm_start = 0;
919 	/* Bias interleave by inode number to distribute better across nodes */
920 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
921 	pvma.vm_ops = NULL;
922 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
923 
924 	page = swapin_readahead(swap, gfp, &pvma, 0);
925 
926 	/* Drop reference taken by mpol_shared_policy_lookup() */
927 	mpol_cond_put(pvma.vm_policy);
928 
929 	return page;
930 }
931 
932 static struct page *shmem_alloc_page(gfp_t gfp,
933 			struct shmem_inode_info *info, pgoff_t index)
934 {
935 	struct vm_area_struct pvma;
936 	struct page *page;
937 
938 	/* Create a pseudo vma that just contains the policy */
939 	pvma.vm_start = 0;
940 	/* Bias interleave by inode number to distribute better across nodes */
941 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
942 	pvma.vm_ops = NULL;
943 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
944 
945 	page = alloc_page_vma(gfp, &pvma, 0);
946 
947 	/* Drop reference taken by mpol_shared_policy_lookup() */
948 	mpol_cond_put(pvma.vm_policy);
949 
950 	return page;
951 }
952 #else /* !CONFIG_NUMA */
953 #ifdef CONFIG_TMPFS
954 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
955 {
956 }
957 #endif /* CONFIG_TMPFS */
958 
959 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
960 			struct shmem_inode_info *info, pgoff_t index)
961 {
962 	return swapin_readahead(swap, gfp, NULL, 0);
963 }
964 
965 static inline struct page *shmem_alloc_page(gfp_t gfp,
966 			struct shmem_inode_info *info, pgoff_t index)
967 {
968 	return alloc_page(gfp);
969 }
970 #endif /* CONFIG_NUMA */
971 
972 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
973 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
974 {
975 	return NULL;
976 }
977 #endif
978 
979 /*
980  * When a page is moved from swapcache to shmem filecache (either by the
981  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
982  * shmem_unuse_inode()), it may have been read in earlier from swap, in
983  * ignorance of the mapping it belongs to.  If that mapping has special
984  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
985  * we may need to copy to a suitable page before moving to filecache.
986  *
987  * In a future release, this may well be extended to respect cpuset and
988  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
989  * but for now it is a simple matter of zone.
990  */
991 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
992 {
993 	return page_zonenum(page) > gfp_zone(gfp);
994 }
995 
996 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
997 				struct shmem_inode_info *info, pgoff_t index)
998 {
999 	struct page *oldpage, *newpage;
1000 	struct address_space *swap_mapping;
1001 	pgoff_t swap_index;
1002 	int error;
1003 
1004 	oldpage = *pagep;
1005 	swap_index = page_private(oldpage);
1006 	swap_mapping = page_mapping(oldpage);
1007 
1008 	/*
1009 	 * We have arrived here because our zones are constrained, so don't
1010 	 * limit chance of success by further cpuset and node constraints.
1011 	 */
1012 	gfp &= ~GFP_CONSTRAINT_MASK;
1013 	newpage = shmem_alloc_page(gfp, info, index);
1014 	if (!newpage)
1015 		return -ENOMEM;
1016 
1017 	page_cache_get(newpage);
1018 	copy_highpage(newpage, oldpage);
1019 	flush_dcache_page(newpage);
1020 
1021 	__set_page_locked(newpage);
1022 	SetPageUptodate(newpage);
1023 	SetPageSwapBacked(newpage);
1024 	set_page_private(newpage, swap_index);
1025 	SetPageSwapCache(newpage);
1026 
1027 	/*
1028 	 * Our caller will very soon move newpage out of swapcache, but it's
1029 	 * a nice clean interface for us to replace oldpage by newpage there.
1030 	 */
1031 	spin_lock_irq(&swap_mapping->tree_lock);
1032 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1033 								   newpage);
1034 	if (!error) {
1035 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1036 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1037 	}
1038 	spin_unlock_irq(&swap_mapping->tree_lock);
1039 
1040 	if (unlikely(error)) {
1041 		/*
1042 		 * Is this possible?  I think not, now that our callers check
1043 		 * both PageSwapCache and page_private after getting page lock;
1044 		 * but be defensive.  Reverse old to newpage for clear and free.
1045 		 */
1046 		oldpage = newpage;
1047 	} else {
1048 		mem_cgroup_replace_page_cache(oldpage, newpage);
1049 		lru_cache_add_anon(newpage);
1050 		*pagep = newpage;
1051 	}
1052 
1053 	ClearPageSwapCache(oldpage);
1054 	set_page_private(oldpage, 0);
1055 
1056 	unlock_page(oldpage);
1057 	page_cache_release(oldpage);
1058 	page_cache_release(oldpage);
1059 	return error;
1060 }
1061 
1062 /*
1063  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1064  *
1065  * If we allocate a new one we do not mark it dirty. That's up to the
1066  * vm. If we swap it in we mark it dirty since we also free the swap
1067  * entry since a page cannot live in both the swap and page cache
1068  */
1069 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1070 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1071 {
1072 	struct address_space *mapping = inode->i_mapping;
1073 	struct shmem_inode_info *info;
1074 	struct shmem_sb_info *sbinfo;
1075 	struct page *page;
1076 	swp_entry_t swap;
1077 	int error;
1078 	int once = 0;
1079 	int alloced = 0;
1080 
1081 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1082 		return -EFBIG;
1083 repeat:
1084 	swap.val = 0;
1085 	page = find_lock_page(mapping, index);
1086 	if (radix_tree_exceptional_entry(page)) {
1087 		swap = radix_to_swp_entry(page);
1088 		page = NULL;
1089 	}
1090 
1091 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1092 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1093 		error = -EINVAL;
1094 		goto failed;
1095 	}
1096 
1097 	/* fallocated page? */
1098 	if (page && !PageUptodate(page)) {
1099 		if (sgp != SGP_READ)
1100 			goto clear;
1101 		unlock_page(page);
1102 		page_cache_release(page);
1103 		page = NULL;
1104 	}
1105 	if (page || (sgp == SGP_READ && !swap.val)) {
1106 		*pagep = page;
1107 		return 0;
1108 	}
1109 
1110 	/*
1111 	 * Fast cache lookup did not find it:
1112 	 * bring it back from swap or allocate.
1113 	 */
1114 	info = SHMEM_I(inode);
1115 	sbinfo = SHMEM_SB(inode->i_sb);
1116 
1117 	if (swap.val) {
1118 		/* Look it up and read it in.. */
1119 		page = lookup_swap_cache(swap);
1120 		if (!page) {
1121 			/* here we actually do the io */
1122 			if (fault_type)
1123 				*fault_type |= VM_FAULT_MAJOR;
1124 			page = shmem_swapin(swap, gfp, info, index);
1125 			if (!page) {
1126 				error = -ENOMEM;
1127 				goto failed;
1128 			}
1129 		}
1130 
1131 		/* We have to do this with page locked to prevent races */
1132 		lock_page(page);
1133 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1134 		    !shmem_confirm_swap(mapping, index, swap)) {
1135 			error = -EEXIST;	/* try again */
1136 			goto unlock;
1137 		}
1138 		if (!PageUptodate(page)) {
1139 			error = -EIO;
1140 			goto failed;
1141 		}
1142 		wait_on_page_writeback(page);
1143 
1144 		if (shmem_should_replace_page(page, gfp)) {
1145 			error = shmem_replace_page(&page, gfp, info, index);
1146 			if (error)
1147 				goto failed;
1148 		}
1149 
1150 		error = mem_cgroup_cache_charge(page, current->mm,
1151 						gfp & GFP_RECLAIM_MASK);
1152 		if (!error) {
1153 			error = shmem_add_to_page_cache(page, mapping, index,
1154 						gfp, swp_to_radix_entry(swap));
1155 			/*
1156 			 * We already confirmed swap under page lock, and make
1157 			 * no memory allocation here, so usually no possibility
1158 			 * of error; but free_swap_and_cache() only trylocks a
1159 			 * page, so it is just possible that the entry has been
1160 			 * truncated or holepunched since swap was confirmed.
1161 			 * shmem_undo_range() will have done some of the
1162 			 * unaccounting, now delete_from_swap_cache() will do
1163 			 * the rest (including mem_cgroup_uncharge_swapcache).
1164 			 * Reset swap.val? No, leave it so "failed" goes back to
1165 			 * "repeat": reading a hole and writing should succeed.
1166 			 */
1167 			if (error)
1168 				delete_from_swap_cache(page);
1169 		}
1170 		if (error)
1171 			goto failed;
1172 
1173 		spin_lock(&info->lock);
1174 		info->swapped--;
1175 		shmem_recalc_inode(inode);
1176 		spin_unlock(&info->lock);
1177 
1178 		delete_from_swap_cache(page);
1179 		set_page_dirty(page);
1180 		swap_free(swap);
1181 
1182 	} else {
1183 		if (shmem_acct_block(info->flags)) {
1184 			error = -ENOSPC;
1185 			goto failed;
1186 		}
1187 		if (sbinfo->max_blocks) {
1188 			if (percpu_counter_compare(&sbinfo->used_blocks,
1189 						sbinfo->max_blocks) >= 0) {
1190 				error = -ENOSPC;
1191 				goto unacct;
1192 			}
1193 			percpu_counter_inc(&sbinfo->used_blocks);
1194 		}
1195 
1196 		page = shmem_alloc_page(gfp, info, index);
1197 		if (!page) {
1198 			error = -ENOMEM;
1199 			goto decused;
1200 		}
1201 
1202 		SetPageSwapBacked(page);
1203 		__set_page_locked(page);
1204 		error = mem_cgroup_cache_charge(page, current->mm,
1205 						gfp & GFP_RECLAIM_MASK);
1206 		if (error)
1207 			goto decused;
1208 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1209 		if (!error) {
1210 			error = shmem_add_to_page_cache(page, mapping, index,
1211 							gfp, NULL);
1212 			radix_tree_preload_end();
1213 		}
1214 		if (error) {
1215 			mem_cgroup_uncharge_cache_page(page);
1216 			goto decused;
1217 		}
1218 		lru_cache_add_anon(page);
1219 
1220 		spin_lock(&info->lock);
1221 		info->alloced++;
1222 		inode->i_blocks += BLOCKS_PER_PAGE;
1223 		shmem_recalc_inode(inode);
1224 		spin_unlock(&info->lock);
1225 		alloced = true;
1226 
1227 		/*
1228 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1229 		 */
1230 		if (sgp == SGP_FALLOC)
1231 			sgp = SGP_WRITE;
1232 clear:
1233 		/*
1234 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1235 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1236 		 * it now, lest undo on failure cancel our earlier guarantee.
1237 		 */
1238 		if (sgp != SGP_WRITE) {
1239 			clear_highpage(page);
1240 			flush_dcache_page(page);
1241 			SetPageUptodate(page);
1242 		}
1243 		if (sgp == SGP_DIRTY)
1244 			set_page_dirty(page);
1245 	}
1246 
1247 	/* Perhaps the file has been truncated since we checked */
1248 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1249 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1250 		error = -EINVAL;
1251 		if (alloced)
1252 			goto trunc;
1253 		else
1254 			goto failed;
1255 	}
1256 	*pagep = page;
1257 	return 0;
1258 
1259 	/*
1260 	 * Error recovery.
1261 	 */
1262 trunc:
1263 	info = SHMEM_I(inode);
1264 	ClearPageDirty(page);
1265 	delete_from_page_cache(page);
1266 	spin_lock(&info->lock);
1267 	info->alloced--;
1268 	inode->i_blocks -= BLOCKS_PER_PAGE;
1269 	spin_unlock(&info->lock);
1270 decused:
1271 	sbinfo = SHMEM_SB(inode->i_sb);
1272 	if (sbinfo->max_blocks)
1273 		percpu_counter_add(&sbinfo->used_blocks, -1);
1274 unacct:
1275 	shmem_unacct_blocks(info->flags, 1);
1276 failed:
1277 	if (swap.val && error != -EINVAL &&
1278 	    !shmem_confirm_swap(mapping, index, swap))
1279 		error = -EEXIST;
1280 unlock:
1281 	if (page) {
1282 		unlock_page(page);
1283 		page_cache_release(page);
1284 	}
1285 	if (error == -ENOSPC && !once++) {
1286 		info = SHMEM_I(inode);
1287 		spin_lock(&info->lock);
1288 		shmem_recalc_inode(inode);
1289 		spin_unlock(&info->lock);
1290 		goto repeat;
1291 	}
1292 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1293 		goto repeat;
1294 	return error;
1295 }
1296 
1297 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1298 {
1299 	struct inode *inode = file_inode(vma->vm_file);
1300 	int error;
1301 	int ret = VM_FAULT_LOCKED;
1302 
1303 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1304 	if (error)
1305 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1306 
1307 	if (ret & VM_FAULT_MAJOR) {
1308 		count_vm_event(PGMAJFAULT);
1309 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1310 	}
1311 	return ret;
1312 }
1313 
1314 #ifdef CONFIG_NUMA
1315 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1316 {
1317 	struct inode *inode = file_inode(vma->vm_file);
1318 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1319 }
1320 
1321 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1322 					  unsigned long addr)
1323 {
1324 	struct inode *inode = file_inode(vma->vm_file);
1325 	pgoff_t index;
1326 
1327 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1328 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1329 }
1330 #endif
1331 
1332 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1333 {
1334 	struct inode *inode = file_inode(file);
1335 	struct shmem_inode_info *info = SHMEM_I(inode);
1336 	int retval = -ENOMEM;
1337 
1338 	spin_lock(&info->lock);
1339 	if (lock && !(info->flags & VM_LOCKED)) {
1340 		if (!user_shm_lock(inode->i_size, user))
1341 			goto out_nomem;
1342 		info->flags |= VM_LOCKED;
1343 		mapping_set_unevictable(file->f_mapping);
1344 	}
1345 	if (!lock && (info->flags & VM_LOCKED) && user) {
1346 		user_shm_unlock(inode->i_size, user);
1347 		info->flags &= ~VM_LOCKED;
1348 		mapping_clear_unevictable(file->f_mapping);
1349 	}
1350 	retval = 0;
1351 
1352 out_nomem:
1353 	spin_unlock(&info->lock);
1354 	return retval;
1355 }
1356 
1357 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1358 {
1359 	file_accessed(file);
1360 	vma->vm_ops = &shmem_vm_ops;
1361 	return 0;
1362 }
1363 
1364 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1365 				     umode_t mode, dev_t dev, unsigned long flags)
1366 {
1367 	struct inode *inode;
1368 	struct shmem_inode_info *info;
1369 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1370 
1371 	if (shmem_reserve_inode(sb))
1372 		return NULL;
1373 
1374 	inode = new_inode(sb);
1375 	if (inode) {
1376 		inode->i_ino = get_next_ino();
1377 		inode_init_owner(inode, dir, mode);
1378 		inode->i_blocks = 0;
1379 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1380 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1381 		inode->i_generation = get_seconds();
1382 		info = SHMEM_I(inode);
1383 		memset(info, 0, (char *)inode - (char *)info);
1384 		spin_lock_init(&info->lock);
1385 		info->flags = flags & VM_NORESERVE;
1386 		INIT_LIST_HEAD(&info->swaplist);
1387 		simple_xattrs_init(&info->xattrs);
1388 		cache_no_acl(inode);
1389 
1390 		switch (mode & S_IFMT) {
1391 		default:
1392 			inode->i_op = &shmem_special_inode_operations;
1393 			init_special_inode(inode, mode, dev);
1394 			break;
1395 		case S_IFREG:
1396 			inode->i_mapping->a_ops = &shmem_aops;
1397 			inode->i_op = &shmem_inode_operations;
1398 			inode->i_fop = &shmem_file_operations;
1399 			mpol_shared_policy_init(&info->policy,
1400 						 shmem_get_sbmpol(sbinfo));
1401 			break;
1402 		case S_IFDIR:
1403 			inc_nlink(inode);
1404 			/* Some things misbehave if size == 0 on a directory */
1405 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1406 			inode->i_op = &shmem_dir_inode_operations;
1407 			inode->i_fop = &simple_dir_operations;
1408 			break;
1409 		case S_IFLNK:
1410 			/*
1411 			 * Must not load anything in the rbtree,
1412 			 * mpol_free_shared_policy will not be called.
1413 			 */
1414 			mpol_shared_policy_init(&info->policy, NULL);
1415 			break;
1416 		}
1417 	} else
1418 		shmem_free_inode(sb);
1419 	return inode;
1420 }
1421 
1422 #ifdef CONFIG_TMPFS
1423 static const struct inode_operations shmem_symlink_inode_operations;
1424 static const struct inode_operations shmem_short_symlink_operations;
1425 
1426 #ifdef CONFIG_TMPFS_XATTR
1427 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1428 #else
1429 #define shmem_initxattrs NULL
1430 #endif
1431 
1432 static int
1433 shmem_write_begin(struct file *file, struct address_space *mapping,
1434 			loff_t pos, unsigned len, unsigned flags,
1435 			struct page **pagep, void **fsdata)
1436 {
1437 	struct inode *inode = mapping->host;
1438 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1439 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1440 }
1441 
1442 static int
1443 shmem_write_end(struct file *file, struct address_space *mapping,
1444 			loff_t pos, unsigned len, unsigned copied,
1445 			struct page *page, void *fsdata)
1446 {
1447 	struct inode *inode = mapping->host;
1448 
1449 	if (pos + copied > inode->i_size)
1450 		i_size_write(inode, pos + copied);
1451 
1452 	if (!PageUptodate(page)) {
1453 		if (copied < PAGE_CACHE_SIZE) {
1454 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1455 			zero_user_segments(page, 0, from,
1456 					from + copied, PAGE_CACHE_SIZE);
1457 		}
1458 		SetPageUptodate(page);
1459 	}
1460 	set_page_dirty(page);
1461 	unlock_page(page);
1462 	page_cache_release(page);
1463 
1464 	return copied;
1465 }
1466 
1467 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1468 {
1469 	struct inode *inode = file_inode(filp);
1470 	struct address_space *mapping = inode->i_mapping;
1471 	pgoff_t index;
1472 	unsigned long offset;
1473 	enum sgp_type sgp = SGP_READ;
1474 
1475 	/*
1476 	 * Might this read be for a stacking filesystem?  Then when reading
1477 	 * holes of a sparse file, we actually need to allocate those pages,
1478 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1479 	 */
1480 	if (segment_eq(get_fs(), KERNEL_DS))
1481 		sgp = SGP_DIRTY;
1482 
1483 	index = *ppos >> PAGE_CACHE_SHIFT;
1484 	offset = *ppos & ~PAGE_CACHE_MASK;
1485 
1486 	for (;;) {
1487 		struct page *page = NULL;
1488 		pgoff_t end_index;
1489 		unsigned long nr, ret;
1490 		loff_t i_size = i_size_read(inode);
1491 
1492 		end_index = i_size >> PAGE_CACHE_SHIFT;
1493 		if (index > end_index)
1494 			break;
1495 		if (index == end_index) {
1496 			nr = i_size & ~PAGE_CACHE_MASK;
1497 			if (nr <= offset)
1498 				break;
1499 		}
1500 
1501 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1502 		if (desc->error) {
1503 			if (desc->error == -EINVAL)
1504 				desc->error = 0;
1505 			break;
1506 		}
1507 		if (page)
1508 			unlock_page(page);
1509 
1510 		/*
1511 		 * We must evaluate after, since reads (unlike writes)
1512 		 * are called without i_mutex protection against truncate
1513 		 */
1514 		nr = PAGE_CACHE_SIZE;
1515 		i_size = i_size_read(inode);
1516 		end_index = i_size >> PAGE_CACHE_SHIFT;
1517 		if (index == end_index) {
1518 			nr = i_size & ~PAGE_CACHE_MASK;
1519 			if (nr <= offset) {
1520 				if (page)
1521 					page_cache_release(page);
1522 				break;
1523 			}
1524 		}
1525 		nr -= offset;
1526 
1527 		if (page) {
1528 			/*
1529 			 * If users can be writing to this page using arbitrary
1530 			 * virtual addresses, take care about potential aliasing
1531 			 * before reading the page on the kernel side.
1532 			 */
1533 			if (mapping_writably_mapped(mapping))
1534 				flush_dcache_page(page);
1535 			/*
1536 			 * Mark the page accessed if we read the beginning.
1537 			 */
1538 			if (!offset)
1539 				mark_page_accessed(page);
1540 		} else {
1541 			page = ZERO_PAGE(0);
1542 			page_cache_get(page);
1543 		}
1544 
1545 		/*
1546 		 * Ok, we have the page, and it's up-to-date, so
1547 		 * now we can copy it to user space...
1548 		 *
1549 		 * The actor routine returns how many bytes were actually used..
1550 		 * NOTE! This may not be the same as how much of a user buffer
1551 		 * we filled up (we may be padding etc), so we can only update
1552 		 * "pos" here (the actor routine has to update the user buffer
1553 		 * pointers and the remaining count).
1554 		 */
1555 		ret = actor(desc, page, offset, nr);
1556 		offset += ret;
1557 		index += offset >> PAGE_CACHE_SHIFT;
1558 		offset &= ~PAGE_CACHE_MASK;
1559 
1560 		page_cache_release(page);
1561 		if (ret != nr || !desc->count)
1562 			break;
1563 
1564 		cond_resched();
1565 	}
1566 
1567 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1568 	file_accessed(filp);
1569 }
1570 
1571 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1572 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1573 {
1574 	struct file *filp = iocb->ki_filp;
1575 	ssize_t retval;
1576 	unsigned long seg;
1577 	size_t count;
1578 	loff_t *ppos = &iocb->ki_pos;
1579 
1580 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1581 	if (retval)
1582 		return retval;
1583 
1584 	for (seg = 0; seg < nr_segs; seg++) {
1585 		read_descriptor_t desc;
1586 
1587 		desc.written = 0;
1588 		desc.arg.buf = iov[seg].iov_base;
1589 		desc.count = iov[seg].iov_len;
1590 		if (desc.count == 0)
1591 			continue;
1592 		desc.error = 0;
1593 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1594 		retval += desc.written;
1595 		if (desc.error) {
1596 			retval = retval ?: desc.error;
1597 			break;
1598 		}
1599 		if (desc.count > 0)
1600 			break;
1601 	}
1602 	return retval;
1603 }
1604 
1605 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1606 				struct pipe_inode_info *pipe, size_t len,
1607 				unsigned int flags)
1608 {
1609 	struct address_space *mapping = in->f_mapping;
1610 	struct inode *inode = mapping->host;
1611 	unsigned int loff, nr_pages, req_pages;
1612 	struct page *pages[PIPE_DEF_BUFFERS];
1613 	struct partial_page partial[PIPE_DEF_BUFFERS];
1614 	struct page *page;
1615 	pgoff_t index, end_index;
1616 	loff_t isize, left;
1617 	int error, page_nr;
1618 	struct splice_pipe_desc spd = {
1619 		.pages = pages,
1620 		.partial = partial,
1621 		.nr_pages_max = PIPE_DEF_BUFFERS,
1622 		.flags = flags,
1623 		.ops = &page_cache_pipe_buf_ops,
1624 		.spd_release = spd_release_page,
1625 	};
1626 
1627 	isize = i_size_read(inode);
1628 	if (unlikely(*ppos >= isize))
1629 		return 0;
1630 
1631 	left = isize - *ppos;
1632 	if (unlikely(left < len))
1633 		len = left;
1634 
1635 	if (splice_grow_spd(pipe, &spd))
1636 		return -ENOMEM;
1637 
1638 	index = *ppos >> PAGE_CACHE_SHIFT;
1639 	loff = *ppos & ~PAGE_CACHE_MASK;
1640 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1641 	nr_pages = min(req_pages, pipe->buffers);
1642 
1643 	spd.nr_pages = find_get_pages_contig(mapping, index,
1644 						nr_pages, spd.pages);
1645 	index += spd.nr_pages;
1646 	error = 0;
1647 
1648 	while (spd.nr_pages < nr_pages) {
1649 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1650 		if (error)
1651 			break;
1652 		unlock_page(page);
1653 		spd.pages[spd.nr_pages++] = page;
1654 		index++;
1655 	}
1656 
1657 	index = *ppos >> PAGE_CACHE_SHIFT;
1658 	nr_pages = spd.nr_pages;
1659 	spd.nr_pages = 0;
1660 
1661 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1662 		unsigned int this_len;
1663 
1664 		if (!len)
1665 			break;
1666 
1667 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1668 		page = spd.pages[page_nr];
1669 
1670 		if (!PageUptodate(page) || page->mapping != mapping) {
1671 			error = shmem_getpage(inode, index, &page,
1672 							SGP_CACHE, NULL);
1673 			if (error)
1674 				break;
1675 			unlock_page(page);
1676 			page_cache_release(spd.pages[page_nr]);
1677 			spd.pages[page_nr] = page;
1678 		}
1679 
1680 		isize = i_size_read(inode);
1681 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1682 		if (unlikely(!isize || index > end_index))
1683 			break;
1684 
1685 		if (end_index == index) {
1686 			unsigned int plen;
1687 
1688 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1689 			if (plen <= loff)
1690 				break;
1691 
1692 			this_len = min(this_len, plen - loff);
1693 			len = this_len;
1694 		}
1695 
1696 		spd.partial[page_nr].offset = loff;
1697 		spd.partial[page_nr].len = this_len;
1698 		len -= this_len;
1699 		loff = 0;
1700 		spd.nr_pages++;
1701 		index++;
1702 	}
1703 
1704 	while (page_nr < nr_pages)
1705 		page_cache_release(spd.pages[page_nr++]);
1706 
1707 	if (spd.nr_pages)
1708 		error = splice_to_pipe(pipe, &spd);
1709 
1710 	splice_shrink_spd(&spd);
1711 
1712 	if (error > 0) {
1713 		*ppos += error;
1714 		file_accessed(in);
1715 	}
1716 	return error;
1717 }
1718 
1719 /*
1720  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1721  */
1722 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1723 				    pgoff_t index, pgoff_t end, int whence)
1724 {
1725 	struct page *page;
1726 	struct pagevec pvec;
1727 	pgoff_t indices[PAGEVEC_SIZE];
1728 	bool done = false;
1729 	int i;
1730 
1731 	pagevec_init(&pvec, 0);
1732 	pvec.nr = 1;		/* start small: we may be there already */
1733 	while (!done) {
1734 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1735 					pvec.nr, pvec.pages, indices);
1736 		if (!pvec.nr) {
1737 			if (whence == SEEK_DATA)
1738 				index = end;
1739 			break;
1740 		}
1741 		for (i = 0; i < pvec.nr; i++, index++) {
1742 			if (index < indices[i]) {
1743 				if (whence == SEEK_HOLE) {
1744 					done = true;
1745 					break;
1746 				}
1747 				index = indices[i];
1748 			}
1749 			page = pvec.pages[i];
1750 			if (page && !radix_tree_exceptional_entry(page)) {
1751 				if (!PageUptodate(page))
1752 					page = NULL;
1753 			}
1754 			if (index >= end ||
1755 			    (page && whence == SEEK_DATA) ||
1756 			    (!page && whence == SEEK_HOLE)) {
1757 				done = true;
1758 				break;
1759 			}
1760 		}
1761 		shmem_deswap_pagevec(&pvec);
1762 		pagevec_release(&pvec);
1763 		pvec.nr = PAGEVEC_SIZE;
1764 		cond_resched();
1765 	}
1766 	return index;
1767 }
1768 
1769 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1770 {
1771 	struct address_space *mapping = file->f_mapping;
1772 	struct inode *inode = mapping->host;
1773 	pgoff_t start, end;
1774 	loff_t new_offset;
1775 
1776 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1777 		return generic_file_llseek_size(file, offset, whence,
1778 					MAX_LFS_FILESIZE, i_size_read(inode));
1779 	mutex_lock(&inode->i_mutex);
1780 	/* We're holding i_mutex so we can access i_size directly */
1781 
1782 	if (offset < 0)
1783 		offset = -EINVAL;
1784 	else if (offset >= inode->i_size)
1785 		offset = -ENXIO;
1786 	else {
1787 		start = offset >> PAGE_CACHE_SHIFT;
1788 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1789 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1790 		new_offset <<= PAGE_CACHE_SHIFT;
1791 		if (new_offset > offset) {
1792 			if (new_offset < inode->i_size)
1793 				offset = new_offset;
1794 			else if (whence == SEEK_DATA)
1795 				offset = -ENXIO;
1796 			else
1797 				offset = inode->i_size;
1798 		}
1799 	}
1800 
1801 	if (offset >= 0)
1802 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1803 	mutex_unlock(&inode->i_mutex);
1804 	return offset;
1805 }
1806 
1807 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1808 							 loff_t len)
1809 {
1810 	struct inode *inode = file_inode(file);
1811 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1812 	struct shmem_falloc shmem_falloc;
1813 	pgoff_t start, index, end;
1814 	int error;
1815 
1816 	mutex_lock(&inode->i_mutex);
1817 
1818 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1819 		struct address_space *mapping = file->f_mapping;
1820 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1821 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1822 
1823 		if ((u64)unmap_end > (u64)unmap_start)
1824 			unmap_mapping_range(mapping, unmap_start,
1825 					    1 + unmap_end - unmap_start, 0);
1826 		shmem_truncate_range(inode, offset, offset + len - 1);
1827 		/* No need to unmap again: hole-punching leaves COWed pages */
1828 		error = 0;
1829 		goto out;
1830 	}
1831 
1832 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1833 	error = inode_newsize_ok(inode, offset + len);
1834 	if (error)
1835 		goto out;
1836 
1837 	start = offset >> PAGE_CACHE_SHIFT;
1838 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1839 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1840 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1841 		error = -ENOSPC;
1842 		goto out;
1843 	}
1844 
1845 	shmem_falloc.start = start;
1846 	shmem_falloc.next  = start;
1847 	shmem_falloc.nr_falloced = 0;
1848 	shmem_falloc.nr_unswapped = 0;
1849 	spin_lock(&inode->i_lock);
1850 	inode->i_private = &shmem_falloc;
1851 	spin_unlock(&inode->i_lock);
1852 
1853 	for (index = start; index < end; index++) {
1854 		struct page *page;
1855 
1856 		/*
1857 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1858 		 * been interrupted because we are using up too much memory.
1859 		 */
1860 		if (signal_pending(current))
1861 			error = -EINTR;
1862 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1863 			error = -ENOMEM;
1864 		else
1865 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1866 									NULL);
1867 		if (error) {
1868 			/* Remove the !PageUptodate pages we added */
1869 			shmem_undo_range(inode,
1870 				(loff_t)start << PAGE_CACHE_SHIFT,
1871 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1872 			goto undone;
1873 		}
1874 
1875 		/*
1876 		 * Inform shmem_writepage() how far we have reached.
1877 		 * No need for lock or barrier: we have the page lock.
1878 		 */
1879 		shmem_falloc.next++;
1880 		if (!PageUptodate(page))
1881 			shmem_falloc.nr_falloced++;
1882 
1883 		/*
1884 		 * If !PageUptodate, leave it that way so that freeable pages
1885 		 * can be recognized if we need to rollback on error later.
1886 		 * But set_page_dirty so that memory pressure will swap rather
1887 		 * than free the pages we are allocating (and SGP_CACHE pages
1888 		 * might still be clean: we now need to mark those dirty too).
1889 		 */
1890 		set_page_dirty(page);
1891 		unlock_page(page);
1892 		page_cache_release(page);
1893 		cond_resched();
1894 	}
1895 
1896 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1897 		i_size_write(inode, offset + len);
1898 	inode->i_ctime = CURRENT_TIME;
1899 undone:
1900 	spin_lock(&inode->i_lock);
1901 	inode->i_private = NULL;
1902 	spin_unlock(&inode->i_lock);
1903 out:
1904 	mutex_unlock(&inode->i_mutex);
1905 	return error;
1906 }
1907 
1908 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1909 {
1910 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1911 
1912 	buf->f_type = TMPFS_MAGIC;
1913 	buf->f_bsize = PAGE_CACHE_SIZE;
1914 	buf->f_namelen = NAME_MAX;
1915 	if (sbinfo->max_blocks) {
1916 		buf->f_blocks = sbinfo->max_blocks;
1917 		buf->f_bavail =
1918 		buf->f_bfree  = sbinfo->max_blocks -
1919 				percpu_counter_sum(&sbinfo->used_blocks);
1920 	}
1921 	if (sbinfo->max_inodes) {
1922 		buf->f_files = sbinfo->max_inodes;
1923 		buf->f_ffree = sbinfo->free_inodes;
1924 	}
1925 	/* else leave those fields 0 like simple_statfs */
1926 	return 0;
1927 }
1928 
1929 /*
1930  * File creation. Allocate an inode, and we're done..
1931  */
1932 static int
1933 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1934 {
1935 	struct inode *inode;
1936 	int error = -ENOSPC;
1937 
1938 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1939 	if (inode) {
1940 #ifdef CONFIG_TMPFS_POSIX_ACL
1941 		error = generic_acl_init(inode, dir);
1942 		if (error) {
1943 			iput(inode);
1944 			return error;
1945 		}
1946 #endif
1947 		error = security_inode_init_security(inode, dir,
1948 						     &dentry->d_name,
1949 						     shmem_initxattrs, NULL);
1950 		if (error) {
1951 			if (error != -EOPNOTSUPP) {
1952 				iput(inode);
1953 				return error;
1954 			}
1955 		}
1956 
1957 		error = 0;
1958 		dir->i_size += BOGO_DIRENT_SIZE;
1959 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1960 		d_instantiate(dentry, inode);
1961 		dget(dentry); /* Extra count - pin the dentry in core */
1962 	}
1963 	return error;
1964 }
1965 
1966 static int
1967 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1968 {
1969 	struct inode *inode;
1970 	int error = -ENOSPC;
1971 
1972 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1973 	if (inode) {
1974 		error = security_inode_init_security(inode, dir,
1975 						     NULL,
1976 						     shmem_initxattrs, NULL);
1977 		if (error) {
1978 			if (error != -EOPNOTSUPP) {
1979 				iput(inode);
1980 				return error;
1981 			}
1982 		}
1983 #ifdef CONFIG_TMPFS_POSIX_ACL
1984 		error = generic_acl_init(inode, dir);
1985 		if (error) {
1986 			iput(inode);
1987 			return error;
1988 		}
1989 #else
1990 		error = 0;
1991 #endif
1992 		d_tmpfile(dentry, inode);
1993 	}
1994 	return error;
1995 }
1996 
1997 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1998 {
1999 	int error;
2000 
2001 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2002 		return error;
2003 	inc_nlink(dir);
2004 	return 0;
2005 }
2006 
2007 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2008 		bool excl)
2009 {
2010 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2011 }
2012 
2013 /*
2014  * Link a file..
2015  */
2016 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2017 {
2018 	struct inode *inode = old_dentry->d_inode;
2019 	int ret;
2020 
2021 	/*
2022 	 * No ordinary (disk based) filesystem counts links as inodes;
2023 	 * but each new link needs a new dentry, pinning lowmem, and
2024 	 * tmpfs dentries cannot be pruned until they are unlinked.
2025 	 */
2026 	ret = shmem_reserve_inode(inode->i_sb);
2027 	if (ret)
2028 		goto out;
2029 
2030 	dir->i_size += BOGO_DIRENT_SIZE;
2031 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2032 	inc_nlink(inode);
2033 	ihold(inode);	/* New dentry reference */
2034 	dget(dentry);		/* Extra pinning count for the created dentry */
2035 	d_instantiate(dentry, inode);
2036 out:
2037 	return ret;
2038 }
2039 
2040 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2041 {
2042 	struct inode *inode = dentry->d_inode;
2043 
2044 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2045 		shmem_free_inode(inode->i_sb);
2046 
2047 	dir->i_size -= BOGO_DIRENT_SIZE;
2048 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2049 	drop_nlink(inode);
2050 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2051 	return 0;
2052 }
2053 
2054 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2055 {
2056 	if (!simple_empty(dentry))
2057 		return -ENOTEMPTY;
2058 
2059 	drop_nlink(dentry->d_inode);
2060 	drop_nlink(dir);
2061 	return shmem_unlink(dir, dentry);
2062 }
2063 
2064 /*
2065  * The VFS layer already does all the dentry stuff for rename,
2066  * we just have to decrement the usage count for the target if
2067  * it exists so that the VFS layer correctly free's it when it
2068  * gets overwritten.
2069  */
2070 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2071 {
2072 	struct inode *inode = old_dentry->d_inode;
2073 	int they_are_dirs = S_ISDIR(inode->i_mode);
2074 
2075 	if (!simple_empty(new_dentry))
2076 		return -ENOTEMPTY;
2077 
2078 	if (new_dentry->d_inode) {
2079 		(void) shmem_unlink(new_dir, new_dentry);
2080 		if (they_are_dirs)
2081 			drop_nlink(old_dir);
2082 	} else if (they_are_dirs) {
2083 		drop_nlink(old_dir);
2084 		inc_nlink(new_dir);
2085 	}
2086 
2087 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2088 	new_dir->i_size += BOGO_DIRENT_SIZE;
2089 	old_dir->i_ctime = old_dir->i_mtime =
2090 	new_dir->i_ctime = new_dir->i_mtime =
2091 	inode->i_ctime = CURRENT_TIME;
2092 	return 0;
2093 }
2094 
2095 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2096 {
2097 	int error;
2098 	int len;
2099 	struct inode *inode;
2100 	struct page *page;
2101 	char *kaddr;
2102 	struct shmem_inode_info *info;
2103 
2104 	len = strlen(symname) + 1;
2105 	if (len > PAGE_CACHE_SIZE)
2106 		return -ENAMETOOLONG;
2107 
2108 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2109 	if (!inode)
2110 		return -ENOSPC;
2111 
2112 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2113 					     shmem_initxattrs, NULL);
2114 	if (error) {
2115 		if (error != -EOPNOTSUPP) {
2116 			iput(inode);
2117 			return error;
2118 		}
2119 		error = 0;
2120 	}
2121 
2122 	info = SHMEM_I(inode);
2123 	inode->i_size = len-1;
2124 	if (len <= SHORT_SYMLINK_LEN) {
2125 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2126 		if (!info->symlink) {
2127 			iput(inode);
2128 			return -ENOMEM;
2129 		}
2130 		inode->i_op = &shmem_short_symlink_operations;
2131 	} else {
2132 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2133 		if (error) {
2134 			iput(inode);
2135 			return error;
2136 		}
2137 		inode->i_mapping->a_ops = &shmem_aops;
2138 		inode->i_op = &shmem_symlink_inode_operations;
2139 		kaddr = kmap_atomic(page);
2140 		memcpy(kaddr, symname, len);
2141 		kunmap_atomic(kaddr);
2142 		SetPageUptodate(page);
2143 		set_page_dirty(page);
2144 		unlock_page(page);
2145 		page_cache_release(page);
2146 	}
2147 	dir->i_size += BOGO_DIRENT_SIZE;
2148 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2149 	d_instantiate(dentry, inode);
2150 	dget(dentry);
2151 	return 0;
2152 }
2153 
2154 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2155 {
2156 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2157 	return NULL;
2158 }
2159 
2160 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2161 {
2162 	struct page *page = NULL;
2163 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2164 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2165 	if (page)
2166 		unlock_page(page);
2167 	return page;
2168 }
2169 
2170 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2171 {
2172 	if (!IS_ERR(nd_get_link(nd))) {
2173 		struct page *page = cookie;
2174 		kunmap(page);
2175 		mark_page_accessed(page);
2176 		page_cache_release(page);
2177 	}
2178 }
2179 
2180 #ifdef CONFIG_TMPFS_XATTR
2181 /*
2182  * Superblocks without xattr inode operations may get some security.* xattr
2183  * support from the LSM "for free". As soon as we have any other xattrs
2184  * like ACLs, we also need to implement the security.* handlers at
2185  * filesystem level, though.
2186  */
2187 
2188 /*
2189  * Callback for security_inode_init_security() for acquiring xattrs.
2190  */
2191 static int shmem_initxattrs(struct inode *inode,
2192 			    const struct xattr *xattr_array,
2193 			    void *fs_info)
2194 {
2195 	struct shmem_inode_info *info = SHMEM_I(inode);
2196 	const struct xattr *xattr;
2197 	struct simple_xattr *new_xattr;
2198 	size_t len;
2199 
2200 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2201 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2202 		if (!new_xattr)
2203 			return -ENOMEM;
2204 
2205 		len = strlen(xattr->name) + 1;
2206 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2207 					  GFP_KERNEL);
2208 		if (!new_xattr->name) {
2209 			kfree(new_xattr);
2210 			return -ENOMEM;
2211 		}
2212 
2213 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2214 		       XATTR_SECURITY_PREFIX_LEN);
2215 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2216 		       xattr->name, len);
2217 
2218 		simple_xattr_list_add(&info->xattrs, new_xattr);
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 static const struct xattr_handler *shmem_xattr_handlers[] = {
2225 #ifdef CONFIG_TMPFS_POSIX_ACL
2226 	&generic_acl_access_handler,
2227 	&generic_acl_default_handler,
2228 #endif
2229 	NULL
2230 };
2231 
2232 static int shmem_xattr_validate(const char *name)
2233 {
2234 	struct { const char *prefix; size_t len; } arr[] = {
2235 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2236 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2237 	};
2238 	int i;
2239 
2240 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2241 		size_t preflen = arr[i].len;
2242 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2243 			if (!name[preflen])
2244 				return -EINVAL;
2245 			return 0;
2246 		}
2247 	}
2248 	return -EOPNOTSUPP;
2249 }
2250 
2251 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2252 			      void *buffer, size_t size)
2253 {
2254 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2255 	int err;
2256 
2257 	/*
2258 	 * If this is a request for a synthetic attribute in the system.*
2259 	 * namespace use the generic infrastructure to resolve a handler
2260 	 * for it via sb->s_xattr.
2261 	 */
2262 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2263 		return generic_getxattr(dentry, name, buffer, size);
2264 
2265 	err = shmem_xattr_validate(name);
2266 	if (err)
2267 		return err;
2268 
2269 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2270 }
2271 
2272 static int shmem_setxattr(struct dentry *dentry, const char *name,
2273 			  const void *value, size_t size, int flags)
2274 {
2275 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2276 	int err;
2277 
2278 	/*
2279 	 * If this is a request for a synthetic attribute in the system.*
2280 	 * namespace use the generic infrastructure to resolve a handler
2281 	 * for it via sb->s_xattr.
2282 	 */
2283 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2284 		return generic_setxattr(dentry, name, value, size, flags);
2285 
2286 	err = shmem_xattr_validate(name);
2287 	if (err)
2288 		return err;
2289 
2290 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2291 }
2292 
2293 static int shmem_removexattr(struct dentry *dentry, const char *name)
2294 {
2295 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2296 	int err;
2297 
2298 	/*
2299 	 * If this is a request for a synthetic attribute in the system.*
2300 	 * namespace use the generic infrastructure to resolve a handler
2301 	 * for it via sb->s_xattr.
2302 	 */
2303 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2304 		return generic_removexattr(dentry, name);
2305 
2306 	err = shmem_xattr_validate(name);
2307 	if (err)
2308 		return err;
2309 
2310 	return simple_xattr_remove(&info->xattrs, name);
2311 }
2312 
2313 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2314 {
2315 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2316 	return simple_xattr_list(&info->xattrs, buffer, size);
2317 }
2318 #endif /* CONFIG_TMPFS_XATTR */
2319 
2320 static const struct inode_operations shmem_short_symlink_operations = {
2321 	.readlink	= generic_readlink,
2322 	.follow_link	= shmem_follow_short_symlink,
2323 #ifdef CONFIG_TMPFS_XATTR
2324 	.setxattr	= shmem_setxattr,
2325 	.getxattr	= shmem_getxattr,
2326 	.listxattr	= shmem_listxattr,
2327 	.removexattr	= shmem_removexattr,
2328 #endif
2329 };
2330 
2331 static const struct inode_operations shmem_symlink_inode_operations = {
2332 	.readlink	= generic_readlink,
2333 	.follow_link	= shmem_follow_link,
2334 	.put_link	= shmem_put_link,
2335 #ifdef CONFIG_TMPFS_XATTR
2336 	.setxattr	= shmem_setxattr,
2337 	.getxattr	= shmem_getxattr,
2338 	.listxattr	= shmem_listxattr,
2339 	.removexattr	= shmem_removexattr,
2340 #endif
2341 };
2342 
2343 static struct dentry *shmem_get_parent(struct dentry *child)
2344 {
2345 	return ERR_PTR(-ESTALE);
2346 }
2347 
2348 static int shmem_match(struct inode *ino, void *vfh)
2349 {
2350 	__u32 *fh = vfh;
2351 	__u64 inum = fh[2];
2352 	inum = (inum << 32) | fh[1];
2353 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2354 }
2355 
2356 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2357 		struct fid *fid, int fh_len, int fh_type)
2358 {
2359 	struct inode *inode;
2360 	struct dentry *dentry = NULL;
2361 	u64 inum;
2362 
2363 	if (fh_len < 3)
2364 		return NULL;
2365 
2366 	inum = fid->raw[2];
2367 	inum = (inum << 32) | fid->raw[1];
2368 
2369 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2370 			shmem_match, fid->raw);
2371 	if (inode) {
2372 		dentry = d_find_alias(inode);
2373 		iput(inode);
2374 	}
2375 
2376 	return dentry;
2377 }
2378 
2379 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2380 				struct inode *parent)
2381 {
2382 	if (*len < 3) {
2383 		*len = 3;
2384 		return FILEID_INVALID;
2385 	}
2386 
2387 	if (inode_unhashed(inode)) {
2388 		/* Unfortunately insert_inode_hash is not idempotent,
2389 		 * so as we hash inodes here rather than at creation
2390 		 * time, we need a lock to ensure we only try
2391 		 * to do it once
2392 		 */
2393 		static DEFINE_SPINLOCK(lock);
2394 		spin_lock(&lock);
2395 		if (inode_unhashed(inode))
2396 			__insert_inode_hash(inode,
2397 					    inode->i_ino + inode->i_generation);
2398 		spin_unlock(&lock);
2399 	}
2400 
2401 	fh[0] = inode->i_generation;
2402 	fh[1] = inode->i_ino;
2403 	fh[2] = ((__u64)inode->i_ino) >> 32;
2404 
2405 	*len = 3;
2406 	return 1;
2407 }
2408 
2409 static const struct export_operations shmem_export_ops = {
2410 	.get_parent     = shmem_get_parent,
2411 	.encode_fh      = shmem_encode_fh,
2412 	.fh_to_dentry	= shmem_fh_to_dentry,
2413 };
2414 
2415 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2416 			       bool remount)
2417 {
2418 	char *this_char, *value, *rest;
2419 	struct mempolicy *mpol = NULL;
2420 	uid_t uid;
2421 	gid_t gid;
2422 
2423 	while (options != NULL) {
2424 		this_char = options;
2425 		for (;;) {
2426 			/*
2427 			 * NUL-terminate this option: unfortunately,
2428 			 * mount options form a comma-separated list,
2429 			 * but mpol's nodelist may also contain commas.
2430 			 */
2431 			options = strchr(options, ',');
2432 			if (options == NULL)
2433 				break;
2434 			options++;
2435 			if (!isdigit(*options)) {
2436 				options[-1] = '\0';
2437 				break;
2438 			}
2439 		}
2440 		if (!*this_char)
2441 			continue;
2442 		if ((value = strchr(this_char,'=')) != NULL) {
2443 			*value++ = 0;
2444 		} else {
2445 			printk(KERN_ERR
2446 			    "tmpfs: No value for mount option '%s'\n",
2447 			    this_char);
2448 			goto error;
2449 		}
2450 
2451 		if (!strcmp(this_char,"size")) {
2452 			unsigned long long size;
2453 			size = memparse(value,&rest);
2454 			if (*rest == '%') {
2455 				size <<= PAGE_SHIFT;
2456 				size *= totalram_pages;
2457 				do_div(size, 100);
2458 				rest++;
2459 			}
2460 			if (*rest)
2461 				goto bad_val;
2462 			sbinfo->max_blocks =
2463 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2464 		} else if (!strcmp(this_char,"nr_blocks")) {
2465 			sbinfo->max_blocks = memparse(value, &rest);
2466 			if (*rest)
2467 				goto bad_val;
2468 		} else if (!strcmp(this_char,"nr_inodes")) {
2469 			sbinfo->max_inodes = memparse(value, &rest);
2470 			if (*rest)
2471 				goto bad_val;
2472 		} else if (!strcmp(this_char,"mode")) {
2473 			if (remount)
2474 				continue;
2475 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2476 			if (*rest)
2477 				goto bad_val;
2478 		} else if (!strcmp(this_char,"uid")) {
2479 			if (remount)
2480 				continue;
2481 			uid = simple_strtoul(value, &rest, 0);
2482 			if (*rest)
2483 				goto bad_val;
2484 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2485 			if (!uid_valid(sbinfo->uid))
2486 				goto bad_val;
2487 		} else if (!strcmp(this_char,"gid")) {
2488 			if (remount)
2489 				continue;
2490 			gid = simple_strtoul(value, &rest, 0);
2491 			if (*rest)
2492 				goto bad_val;
2493 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2494 			if (!gid_valid(sbinfo->gid))
2495 				goto bad_val;
2496 		} else if (!strcmp(this_char,"mpol")) {
2497 			mpol_put(mpol);
2498 			mpol = NULL;
2499 			if (mpol_parse_str(value, &mpol))
2500 				goto bad_val;
2501 		} else {
2502 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2503 			       this_char);
2504 			goto error;
2505 		}
2506 	}
2507 	sbinfo->mpol = mpol;
2508 	return 0;
2509 
2510 bad_val:
2511 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2512 	       value, this_char);
2513 error:
2514 	mpol_put(mpol);
2515 	return 1;
2516 
2517 }
2518 
2519 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2520 {
2521 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2522 	struct shmem_sb_info config = *sbinfo;
2523 	unsigned long inodes;
2524 	int error = -EINVAL;
2525 
2526 	config.mpol = NULL;
2527 	if (shmem_parse_options(data, &config, true))
2528 		return error;
2529 
2530 	spin_lock(&sbinfo->stat_lock);
2531 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2532 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2533 		goto out;
2534 	if (config.max_inodes < inodes)
2535 		goto out;
2536 	/*
2537 	 * Those tests disallow limited->unlimited while any are in use;
2538 	 * but we must separately disallow unlimited->limited, because
2539 	 * in that case we have no record of how much is already in use.
2540 	 */
2541 	if (config.max_blocks && !sbinfo->max_blocks)
2542 		goto out;
2543 	if (config.max_inodes && !sbinfo->max_inodes)
2544 		goto out;
2545 
2546 	error = 0;
2547 	sbinfo->max_blocks  = config.max_blocks;
2548 	sbinfo->max_inodes  = config.max_inodes;
2549 	sbinfo->free_inodes = config.max_inodes - inodes;
2550 
2551 	/*
2552 	 * Preserve previous mempolicy unless mpol remount option was specified.
2553 	 */
2554 	if (config.mpol) {
2555 		mpol_put(sbinfo->mpol);
2556 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2557 	}
2558 out:
2559 	spin_unlock(&sbinfo->stat_lock);
2560 	return error;
2561 }
2562 
2563 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2564 {
2565 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2566 
2567 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2568 		seq_printf(seq, ",size=%luk",
2569 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2570 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2571 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2572 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2573 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2574 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2575 		seq_printf(seq, ",uid=%u",
2576 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2577 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2578 		seq_printf(seq, ",gid=%u",
2579 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2580 	shmem_show_mpol(seq, sbinfo->mpol);
2581 	return 0;
2582 }
2583 #endif /* CONFIG_TMPFS */
2584 
2585 static void shmem_put_super(struct super_block *sb)
2586 {
2587 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2588 
2589 	percpu_counter_destroy(&sbinfo->used_blocks);
2590 	mpol_put(sbinfo->mpol);
2591 	kfree(sbinfo);
2592 	sb->s_fs_info = NULL;
2593 }
2594 
2595 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2596 {
2597 	struct inode *inode;
2598 	struct shmem_sb_info *sbinfo;
2599 	int err = -ENOMEM;
2600 
2601 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2602 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2603 				L1_CACHE_BYTES), GFP_KERNEL);
2604 	if (!sbinfo)
2605 		return -ENOMEM;
2606 
2607 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2608 	sbinfo->uid = current_fsuid();
2609 	sbinfo->gid = current_fsgid();
2610 	sb->s_fs_info = sbinfo;
2611 
2612 #ifdef CONFIG_TMPFS
2613 	/*
2614 	 * Per default we only allow half of the physical ram per
2615 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2616 	 * but the internal instance is left unlimited.
2617 	 */
2618 	if (!(sb->s_flags & MS_KERNMOUNT)) {
2619 		sbinfo->max_blocks = shmem_default_max_blocks();
2620 		sbinfo->max_inodes = shmem_default_max_inodes();
2621 		if (shmem_parse_options(data, sbinfo, false)) {
2622 			err = -EINVAL;
2623 			goto failed;
2624 		}
2625 	} else {
2626 		sb->s_flags |= MS_NOUSER;
2627 	}
2628 	sb->s_export_op = &shmem_export_ops;
2629 	sb->s_flags |= MS_NOSEC;
2630 #else
2631 	sb->s_flags |= MS_NOUSER;
2632 #endif
2633 
2634 	spin_lock_init(&sbinfo->stat_lock);
2635 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2636 		goto failed;
2637 	sbinfo->free_inodes = sbinfo->max_inodes;
2638 
2639 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2640 	sb->s_blocksize = PAGE_CACHE_SIZE;
2641 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2642 	sb->s_magic = TMPFS_MAGIC;
2643 	sb->s_op = &shmem_ops;
2644 	sb->s_time_gran = 1;
2645 #ifdef CONFIG_TMPFS_XATTR
2646 	sb->s_xattr = shmem_xattr_handlers;
2647 #endif
2648 #ifdef CONFIG_TMPFS_POSIX_ACL
2649 	sb->s_flags |= MS_POSIXACL;
2650 #endif
2651 
2652 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2653 	if (!inode)
2654 		goto failed;
2655 	inode->i_uid = sbinfo->uid;
2656 	inode->i_gid = sbinfo->gid;
2657 	sb->s_root = d_make_root(inode);
2658 	if (!sb->s_root)
2659 		goto failed;
2660 	return 0;
2661 
2662 failed:
2663 	shmem_put_super(sb);
2664 	return err;
2665 }
2666 
2667 static struct kmem_cache *shmem_inode_cachep;
2668 
2669 static struct inode *shmem_alloc_inode(struct super_block *sb)
2670 {
2671 	struct shmem_inode_info *info;
2672 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2673 	if (!info)
2674 		return NULL;
2675 	return &info->vfs_inode;
2676 }
2677 
2678 static void shmem_destroy_callback(struct rcu_head *head)
2679 {
2680 	struct inode *inode = container_of(head, struct inode, i_rcu);
2681 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2682 }
2683 
2684 static void shmem_destroy_inode(struct inode *inode)
2685 {
2686 	if (S_ISREG(inode->i_mode))
2687 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2688 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2689 }
2690 
2691 static void shmem_init_inode(void *foo)
2692 {
2693 	struct shmem_inode_info *info = foo;
2694 	inode_init_once(&info->vfs_inode);
2695 }
2696 
2697 static int shmem_init_inodecache(void)
2698 {
2699 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2700 				sizeof(struct shmem_inode_info),
2701 				0, SLAB_PANIC, shmem_init_inode);
2702 	return 0;
2703 }
2704 
2705 static void shmem_destroy_inodecache(void)
2706 {
2707 	kmem_cache_destroy(shmem_inode_cachep);
2708 }
2709 
2710 static const struct address_space_operations shmem_aops = {
2711 	.writepage	= shmem_writepage,
2712 	.set_page_dirty	= __set_page_dirty_no_writeback,
2713 #ifdef CONFIG_TMPFS
2714 	.write_begin	= shmem_write_begin,
2715 	.write_end	= shmem_write_end,
2716 #endif
2717 	.migratepage	= migrate_page,
2718 	.error_remove_page = generic_error_remove_page,
2719 };
2720 
2721 static const struct file_operations shmem_file_operations = {
2722 	.mmap		= shmem_mmap,
2723 #ifdef CONFIG_TMPFS
2724 	.llseek		= shmem_file_llseek,
2725 	.read		= do_sync_read,
2726 	.write		= do_sync_write,
2727 	.aio_read	= shmem_file_aio_read,
2728 	.aio_write	= generic_file_aio_write,
2729 	.fsync		= noop_fsync,
2730 	.splice_read	= shmem_file_splice_read,
2731 	.splice_write	= generic_file_splice_write,
2732 	.fallocate	= shmem_fallocate,
2733 #endif
2734 };
2735 
2736 static const struct inode_operations shmem_inode_operations = {
2737 	.setattr	= shmem_setattr,
2738 #ifdef CONFIG_TMPFS_XATTR
2739 	.setxattr	= shmem_setxattr,
2740 	.getxattr	= shmem_getxattr,
2741 	.listxattr	= shmem_listxattr,
2742 	.removexattr	= shmem_removexattr,
2743 #endif
2744 };
2745 
2746 static const struct inode_operations shmem_dir_inode_operations = {
2747 #ifdef CONFIG_TMPFS
2748 	.create		= shmem_create,
2749 	.lookup		= simple_lookup,
2750 	.link		= shmem_link,
2751 	.unlink		= shmem_unlink,
2752 	.symlink	= shmem_symlink,
2753 	.mkdir		= shmem_mkdir,
2754 	.rmdir		= shmem_rmdir,
2755 	.mknod		= shmem_mknod,
2756 	.rename		= shmem_rename,
2757 	.tmpfile	= shmem_tmpfile,
2758 #endif
2759 #ifdef CONFIG_TMPFS_XATTR
2760 	.setxattr	= shmem_setxattr,
2761 	.getxattr	= shmem_getxattr,
2762 	.listxattr	= shmem_listxattr,
2763 	.removexattr	= shmem_removexattr,
2764 #endif
2765 #ifdef CONFIG_TMPFS_POSIX_ACL
2766 	.setattr	= shmem_setattr,
2767 #endif
2768 };
2769 
2770 static const struct inode_operations shmem_special_inode_operations = {
2771 #ifdef CONFIG_TMPFS_XATTR
2772 	.setxattr	= shmem_setxattr,
2773 	.getxattr	= shmem_getxattr,
2774 	.listxattr	= shmem_listxattr,
2775 	.removexattr	= shmem_removexattr,
2776 #endif
2777 #ifdef CONFIG_TMPFS_POSIX_ACL
2778 	.setattr	= shmem_setattr,
2779 #endif
2780 };
2781 
2782 static const struct super_operations shmem_ops = {
2783 	.alloc_inode	= shmem_alloc_inode,
2784 	.destroy_inode	= shmem_destroy_inode,
2785 #ifdef CONFIG_TMPFS
2786 	.statfs		= shmem_statfs,
2787 	.remount_fs	= shmem_remount_fs,
2788 	.show_options	= shmem_show_options,
2789 #endif
2790 	.evict_inode	= shmem_evict_inode,
2791 	.drop_inode	= generic_delete_inode,
2792 	.put_super	= shmem_put_super,
2793 };
2794 
2795 static const struct vm_operations_struct shmem_vm_ops = {
2796 	.fault		= shmem_fault,
2797 #ifdef CONFIG_NUMA
2798 	.set_policy     = shmem_set_policy,
2799 	.get_policy     = shmem_get_policy,
2800 #endif
2801 	.remap_pages	= generic_file_remap_pages,
2802 };
2803 
2804 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2805 	int flags, const char *dev_name, void *data)
2806 {
2807 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2808 }
2809 
2810 static struct file_system_type shmem_fs_type = {
2811 	.owner		= THIS_MODULE,
2812 	.name		= "tmpfs",
2813 	.mount		= shmem_mount,
2814 	.kill_sb	= kill_litter_super,
2815 	.fs_flags	= FS_USERNS_MOUNT,
2816 };
2817 
2818 int __init shmem_init(void)
2819 {
2820 	int error;
2821 
2822 	/* If rootfs called this, don't re-init */
2823 	if (shmem_inode_cachep)
2824 		return 0;
2825 
2826 	error = bdi_init(&shmem_backing_dev_info);
2827 	if (error)
2828 		goto out4;
2829 
2830 	error = shmem_init_inodecache();
2831 	if (error)
2832 		goto out3;
2833 
2834 	error = register_filesystem(&shmem_fs_type);
2835 	if (error) {
2836 		printk(KERN_ERR "Could not register tmpfs\n");
2837 		goto out2;
2838 	}
2839 
2840 	shm_mnt = kern_mount(&shmem_fs_type);
2841 	if (IS_ERR(shm_mnt)) {
2842 		error = PTR_ERR(shm_mnt);
2843 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2844 		goto out1;
2845 	}
2846 	return 0;
2847 
2848 out1:
2849 	unregister_filesystem(&shmem_fs_type);
2850 out2:
2851 	shmem_destroy_inodecache();
2852 out3:
2853 	bdi_destroy(&shmem_backing_dev_info);
2854 out4:
2855 	shm_mnt = ERR_PTR(error);
2856 	return error;
2857 }
2858 
2859 #else /* !CONFIG_SHMEM */
2860 
2861 /*
2862  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2863  *
2864  * This is intended for small system where the benefits of the full
2865  * shmem code (swap-backed and resource-limited) are outweighed by
2866  * their complexity. On systems without swap this code should be
2867  * effectively equivalent, but much lighter weight.
2868  */
2869 
2870 static struct file_system_type shmem_fs_type = {
2871 	.name		= "tmpfs",
2872 	.mount		= ramfs_mount,
2873 	.kill_sb	= kill_litter_super,
2874 	.fs_flags	= FS_USERNS_MOUNT,
2875 };
2876 
2877 int __init shmem_init(void)
2878 {
2879 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2880 
2881 	shm_mnt = kern_mount(&shmem_fs_type);
2882 	BUG_ON(IS_ERR(shm_mnt));
2883 
2884 	return 0;
2885 }
2886 
2887 int shmem_unuse(swp_entry_t swap, struct page *page)
2888 {
2889 	return 0;
2890 }
2891 
2892 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2893 {
2894 	return 0;
2895 }
2896 
2897 void shmem_unlock_mapping(struct address_space *mapping)
2898 {
2899 }
2900 
2901 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2902 {
2903 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2904 }
2905 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2906 
2907 #define shmem_vm_ops				generic_file_vm_ops
2908 #define shmem_file_operations			ramfs_file_operations
2909 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2910 #define shmem_acct_size(flags, size)		0
2911 #define shmem_unacct_size(flags, size)		do {} while (0)
2912 
2913 #endif /* CONFIG_SHMEM */
2914 
2915 /* common code */
2916 
2917 static struct dentry_operations anon_ops = {
2918 	.d_dname = simple_dname
2919 };
2920 
2921 /**
2922  * shmem_file_setup - get an unlinked file living in tmpfs
2923  * @name: name for dentry (to be seen in /proc/<pid>/maps
2924  * @size: size to be set for the file
2925  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2926  */
2927 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2928 {
2929 	struct file *res;
2930 	struct inode *inode;
2931 	struct path path;
2932 	struct super_block *sb;
2933 	struct qstr this;
2934 
2935 	if (IS_ERR(shm_mnt))
2936 		return ERR_CAST(shm_mnt);
2937 
2938 	if (size < 0 || size > MAX_LFS_FILESIZE)
2939 		return ERR_PTR(-EINVAL);
2940 
2941 	if (shmem_acct_size(flags, size))
2942 		return ERR_PTR(-ENOMEM);
2943 
2944 	res = ERR_PTR(-ENOMEM);
2945 	this.name = name;
2946 	this.len = strlen(name);
2947 	this.hash = 0; /* will go */
2948 	sb = shm_mnt->mnt_sb;
2949 	path.dentry = d_alloc_pseudo(sb, &this);
2950 	if (!path.dentry)
2951 		goto put_memory;
2952 	d_set_d_op(path.dentry, &anon_ops);
2953 	path.mnt = mntget(shm_mnt);
2954 
2955 	res = ERR_PTR(-ENOSPC);
2956 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2957 	if (!inode)
2958 		goto put_dentry;
2959 
2960 	d_instantiate(path.dentry, inode);
2961 	inode->i_size = size;
2962 	clear_nlink(inode);	/* It is unlinked */
2963 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2964 	if (IS_ERR(res))
2965 		goto put_dentry;
2966 
2967 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2968 		  &shmem_file_operations);
2969 	if (IS_ERR(res))
2970 		goto put_dentry;
2971 
2972 	return res;
2973 
2974 put_dentry:
2975 	path_put(&path);
2976 put_memory:
2977 	shmem_unacct_size(flags, size);
2978 	return res;
2979 }
2980 EXPORT_SYMBOL_GPL(shmem_file_setup);
2981 
2982 /**
2983  * shmem_zero_setup - setup a shared anonymous mapping
2984  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2985  */
2986 int shmem_zero_setup(struct vm_area_struct *vma)
2987 {
2988 	struct file *file;
2989 	loff_t size = vma->vm_end - vma->vm_start;
2990 
2991 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2992 	if (IS_ERR(file))
2993 		return PTR_ERR(file);
2994 
2995 	if (vma->vm_file)
2996 		fput(vma->vm_file);
2997 	vma->vm_file = file;
2998 	vma->vm_ops = &shmem_vm_ops;
2999 	return 0;
3000 }
3001 
3002 /**
3003  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3004  * @mapping:	the page's address_space
3005  * @index:	the page index
3006  * @gfp:	the page allocator flags to use if allocating
3007  *
3008  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3009  * with any new page allocations done using the specified allocation flags.
3010  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3011  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3012  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3013  *
3014  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3015  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3016  */
3017 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3018 					 pgoff_t index, gfp_t gfp)
3019 {
3020 #ifdef CONFIG_SHMEM
3021 	struct inode *inode = mapping->host;
3022 	struct page *page;
3023 	int error;
3024 
3025 	BUG_ON(mapping->a_ops != &shmem_aops);
3026 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3027 	if (error)
3028 		page = ERR_PTR(error);
3029 	else
3030 		unlock_page(page);
3031 	return page;
3032 #else
3033 	/*
3034 	 * The tiny !SHMEM case uses ramfs without swap
3035 	 */
3036 	return read_cache_page_gfp(mapping, index, gfp);
3037 #endif
3038 }
3039 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3040