xref: /openbmc/linux/mm/shmem.c (revision e1e38ea1)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 				struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 		struct page **pagep, enum sgp_type sgp,
126 		gfp_t gfp, struct vm_area_struct *vma,
127 		struct vm_fault *vmf, vm_fault_t *fault_type);
128 
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130 		struct page **pagep, enum sgp_type sgp)
131 {
132 	return shmem_getpage_gfp(inode, index, pagep, sgp,
133 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135 
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138 	return sb->s_fs_info;
139 }
140 
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149 	return (flags & VM_NORESERVE) ?
150 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152 
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155 	if (!(flags & VM_NORESERVE))
156 		vm_unacct_memory(VM_ACCT(size));
157 }
158 
159 static inline int shmem_reacct_size(unsigned long flags,
160 		loff_t oldsize, loff_t newsize)
161 {
162 	if (!(flags & VM_NORESERVE)) {
163 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 			return security_vm_enough_memory_mm(current->mm,
165 					VM_ACCT(newsize) - VM_ACCT(oldsize));
166 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 	}
169 	return 0;
170 }
171 
172 /*
173  * ... whereas tmpfs objects are accounted incrementally as
174  * pages are allocated, in order to allow large sparse files.
175  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177  */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180 	if (!(flags & VM_NORESERVE))
181 		return 0;
182 
183 	return security_vm_enough_memory_mm(current->mm,
184 			pages * VM_ACCT(PAGE_SIZE));
185 }
186 
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189 	if (flags & VM_NORESERVE)
190 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192 
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195 	struct shmem_inode_info *info = SHMEM_I(inode);
196 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197 
198 	if (shmem_acct_block(info->flags, pages))
199 		return false;
200 
201 	if (sbinfo->max_blocks) {
202 		if (percpu_counter_compare(&sbinfo->used_blocks,
203 					   sbinfo->max_blocks - pages) > 0)
204 			goto unacct;
205 		percpu_counter_add(&sbinfo->used_blocks, pages);
206 	}
207 
208 	return true;
209 
210 unacct:
211 	shmem_unacct_blocks(info->flags, pages);
212 	return false;
213 }
214 
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217 	struct shmem_inode_info *info = SHMEM_I(inode);
218 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 
220 	if (sbinfo->max_blocks)
221 		percpu_counter_sub(&sbinfo->used_blocks, pages);
222 	shmem_unacct_blocks(info->flags, pages);
223 }
224 
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233 
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236 	return vma->vm_ops == &shmem_vm_ops;
237 }
238 
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241 
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245 	if (sbinfo->max_inodes) {
246 		spin_lock(&sbinfo->stat_lock);
247 		if (!sbinfo->free_inodes) {
248 			spin_unlock(&sbinfo->stat_lock);
249 			return -ENOSPC;
250 		}
251 		sbinfo->free_inodes--;
252 		spin_unlock(&sbinfo->stat_lock);
253 	}
254 	return 0;
255 }
256 
257 static void shmem_free_inode(struct super_block *sb)
258 {
259 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260 	if (sbinfo->max_inodes) {
261 		spin_lock(&sbinfo->stat_lock);
262 		sbinfo->free_inodes++;
263 		spin_unlock(&sbinfo->stat_lock);
264 	}
265 }
266 
267 /**
268  * shmem_recalc_inode - recalculate the block usage of an inode
269  * @inode: inode to recalc
270  *
271  * We have to calculate the free blocks since the mm can drop
272  * undirtied hole pages behind our back.
273  *
274  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276  *
277  * It has to be called with the spinlock held.
278  */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281 	struct shmem_inode_info *info = SHMEM_I(inode);
282 	long freed;
283 
284 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285 	if (freed > 0) {
286 		info->alloced -= freed;
287 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288 		shmem_inode_unacct_blocks(inode, freed);
289 	}
290 }
291 
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294 	struct shmem_inode_info *info = SHMEM_I(inode);
295 	unsigned long flags;
296 
297 	if (!shmem_inode_acct_block(inode, pages))
298 		return false;
299 
300 	spin_lock_irqsave(&info->lock, flags);
301 	info->alloced += pages;
302 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
303 	shmem_recalc_inode(inode);
304 	spin_unlock_irqrestore(&info->lock, flags);
305 	inode->i_mapping->nrpages += pages;
306 
307 	return true;
308 }
309 
310 void shmem_uncharge(struct inode *inode, long pages)
311 {
312 	struct shmem_inode_info *info = SHMEM_I(inode);
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&info->lock, flags);
316 	info->alloced -= pages;
317 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
318 	shmem_recalc_inode(inode);
319 	spin_unlock_irqrestore(&info->lock, flags);
320 
321 	shmem_inode_unacct_blocks(inode, pages);
322 }
323 
324 /*
325  * Replace item expected in radix tree by a new item, while holding tree lock.
326  */
327 static int shmem_radix_tree_replace(struct address_space *mapping,
328 			pgoff_t index, void *expected, void *replacement)
329 {
330 	struct radix_tree_node *node;
331 	void __rcu **pslot;
332 	void *item;
333 
334 	VM_BUG_ON(!expected);
335 	VM_BUG_ON(!replacement);
336 	item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
337 	if (!item)
338 		return -ENOENT;
339 	if (item != expected)
340 		return -ENOENT;
341 	__radix_tree_replace(&mapping->i_pages, node, pslot,
342 			     replacement, NULL);
343 	return 0;
344 }
345 
346 /*
347  * Sometimes, before we decide whether to proceed or to fail, we must check
348  * that an entry was not already brought back from swap by a racing thread.
349  *
350  * Checking page is not enough: by the time a SwapCache page is locked, it
351  * might be reused, and again be SwapCache, using the same swap as before.
352  */
353 static bool shmem_confirm_swap(struct address_space *mapping,
354 			       pgoff_t index, swp_entry_t swap)
355 {
356 	void *item;
357 
358 	rcu_read_lock();
359 	item = radix_tree_lookup(&mapping->i_pages, index);
360 	rcu_read_unlock();
361 	return item == swp_to_radix_entry(swap);
362 }
363 
364 /*
365  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
366  *
367  * SHMEM_HUGE_NEVER:
368  *	disables huge pages for the mount;
369  * SHMEM_HUGE_ALWAYS:
370  *	enables huge pages for the mount;
371  * SHMEM_HUGE_WITHIN_SIZE:
372  *	only allocate huge pages if the page will be fully within i_size,
373  *	also respect fadvise()/madvise() hints;
374  * SHMEM_HUGE_ADVISE:
375  *	only allocate huge pages if requested with fadvise()/madvise();
376  */
377 
378 #define SHMEM_HUGE_NEVER	0
379 #define SHMEM_HUGE_ALWAYS	1
380 #define SHMEM_HUGE_WITHIN_SIZE	2
381 #define SHMEM_HUGE_ADVISE	3
382 
383 /*
384  * Special values.
385  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
386  *
387  * SHMEM_HUGE_DENY:
388  *	disables huge on shm_mnt and all mounts, for emergency use;
389  * SHMEM_HUGE_FORCE:
390  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
391  *
392  */
393 #define SHMEM_HUGE_DENY		(-1)
394 #define SHMEM_HUGE_FORCE	(-2)
395 
396 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
397 /* ifdef here to avoid bloating shmem.o when not necessary */
398 
399 static int shmem_huge __read_mostly;
400 
401 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
402 static int shmem_parse_huge(const char *str)
403 {
404 	if (!strcmp(str, "never"))
405 		return SHMEM_HUGE_NEVER;
406 	if (!strcmp(str, "always"))
407 		return SHMEM_HUGE_ALWAYS;
408 	if (!strcmp(str, "within_size"))
409 		return SHMEM_HUGE_WITHIN_SIZE;
410 	if (!strcmp(str, "advise"))
411 		return SHMEM_HUGE_ADVISE;
412 	if (!strcmp(str, "deny"))
413 		return SHMEM_HUGE_DENY;
414 	if (!strcmp(str, "force"))
415 		return SHMEM_HUGE_FORCE;
416 	return -EINVAL;
417 }
418 
419 static const char *shmem_format_huge(int huge)
420 {
421 	switch (huge) {
422 	case SHMEM_HUGE_NEVER:
423 		return "never";
424 	case SHMEM_HUGE_ALWAYS:
425 		return "always";
426 	case SHMEM_HUGE_WITHIN_SIZE:
427 		return "within_size";
428 	case SHMEM_HUGE_ADVISE:
429 		return "advise";
430 	case SHMEM_HUGE_DENY:
431 		return "deny";
432 	case SHMEM_HUGE_FORCE:
433 		return "force";
434 	default:
435 		VM_BUG_ON(1);
436 		return "bad_val";
437 	}
438 }
439 #endif
440 
441 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
442 		struct shrink_control *sc, unsigned long nr_to_split)
443 {
444 	LIST_HEAD(list), *pos, *next;
445 	LIST_HEAD(to_remove);
446 	struct inode *inode;
447 	struct shmem_inode_info *info;
448 	struct page *page;
449 	unsigned long batch = sc ? sc->nr_to_scan : 128;
450 	int removed = 0, split = 0;
451 
452 	if (list_empty(&sbinfo->shrinklist))
453 		return SHRINK_STOP;
454 
455 	spin_lock(&sbinfo->shrinklist_lock);
456 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
457 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
458 
459 		/* pin the inode */
460 		inode = igrab(&info->vfs_inode);
461 
462 		/* inode is about to be evicted */
463 		if (!inode) {
464 			list_del_init(&info->shrinklist);
465 			removed++;
466 			goto next;
467 		}
468 
469 		/* Check if there's anything to gain */
470 		if (round_up(inode->i_size, PAGE_SIZE) ==
471 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
472 			list_move(&info->shrinklist, &to_remove);
473 			removed++;
474 			goto next;
475 		}
476 
477 		list_move(&info->shrinklist, &list);
478 next:
479 		if (!--batch)
480 			break;
481 	}
482 	spin_unlock(&sbinfo->shrinklist_lock);
483 
484 	list_for_each_safe(pos, next, &to_remove) {
485 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
486 		inode = &info->vfs_inode;
487 		list_del_init(&info->shrinklist);
488 		iput(inode);
489 	}
490 
491 	list_for_each_safe(pos, next, &list) {
492 		int ret;
493 
494 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
495 		inode = &info->vfs_inode;
496 
497 		if (nr_to_split && split >= nr_to_split)
498 			goto leave;
499 
500 		page = find_get_page(inode->i_mapping,
501 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
502 		if (!page)
503 			goto drop;
504 
505 		/* No huge page at the end of the file: nothing to split */
506 		if (!PageTransHuge(page)) {
507 			put_page(page);
508 			goto drop;
509 		}
510 
511 		/*
512 		 * Leave the inode on the list if we failed to lock
513 		 * the page at this time.
514 		 *
515 		 * Waiting for the lock may lead to deadlock in the
516 		 * reclaim path.
517 		 */
518 		if (!trylock_page(page)) {
519 			put_page(page);
520 			goto leave;
521 		}
522 
523 		ret = split_huge_page(page);
524 		unlock_page(page);
525 		put_page(page);
526 
527 		/* If split failed leave the inode on the list */
528 		if (ret)
529 			goto leave;
530 
531 		split++;
532 drop:
533 		list_del_init(&info->shrinklist);
534 		removed++;
535 leave:
536 		iput(inode);
537 	}
538 
539 	spin_lock(&sbinfo->shrinklist_lock);
540 	list_splice_tail(&list, &sbinfo->shrinklist);
541 	sbinfo->shrinklist_len -= removed;
542 	spin_unlock(&sbinfo->shrinklist_lock);
543 
544 	return split;
545 }
546 
547 static long shmem_unused_huge_scan(struct super_block *sb,
548 		struct shrink_control *sc)
549 {
550 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
551 
552 	if (!READ_ONCE(sbinfo->shrinklist_len))
553 		return SHRINK_STOP;
554 
555 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
556 }
557 
558 static long shmem_unused_huge_count(struct super_block *sb,
559 		struct shrink_control *sc)
560 {
561 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
562 	return READ_ONCE(sbinfo->shrinklist_len);
563 }
564 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565 
566 #define shmem_huge SHMEM_HUGE_DENY
567 
568 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
569 		struct shrink_control *sc, unsigned long nr_to_split)
570 {
571 	return 0;
572 }
573 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
574 
575 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
576 {
577 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
578 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
579 	    shmem_huge != SHMEM_HUGE_DENY)
580 		return true;
581 	return false;
582 }
583 
584 /*
585  * Like add_to_page_cache_locked, but error if expected item has gone.
586  */
587 static int shmem_add_to_page_cache(struct page *page,
588 				   struct address_space *mapping,
589 				   pgoff_t index, void *expected)
590 {
591 	int error, nr = hpage_nr_pages(page);
592 
593 	VM_BUG_ON_PAGE(PageTail(page), page);
594 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
595 	VM_BUG_ON_PAGE(!PageLocked(page), page);
596 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
597 	VM_BUG_ON(expected && PageTransHuge(page));
598 
599 	page_ref_add(page, nr);
600 	page->mapping = mapping;
601 	page->index = index;
602 
603 	xa_lock_irq(&mapping->i_pages);
604 	if (PageTransHuge(page)) {
605 		void __rcu **results;
606 		pgoff_t idx;
607 		int i;
608 
609 		error = 0;
610 		if (radix_tree_gang_lookup_slot(&mapping->i_pages,
611 					&results, &idx, index, 1) &&
612 				idx < index + HPAGE_PMD_NR) {
613 			error = -EEXIST;
614 		}
615 
616 		if (!error) {
617 			for (i = 0; i < HPAGE_PMD_NR; i++) {
618 				error = radix_tree_insert(&mapping->i_pages,
619 						index + i, page + i);
620 				VM_BUG_ON(error);
621 			}
622 			count_vm_event(THP_FILE_ALLOC);
623 		}
624 	} else if (!expected) {
625 		error = radix_tree_insert(&mapping->i_pages, index, page);
626 	} else {
627 		error = shmem_radix_tree_replace(mapping, index, expected,
628 								 page);
629 	}
630 
631 	if (!error) {
632 		mapping->nrpages += nr;
633 		if (PageTransHuge(page))
634 			__inc_node_page_state(page, NR_SHMEM_THPS);
635 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
636 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
637 		xa_unlock_irq(&mapping->i_pages);
638 	} else {
639 		page->mapping = NULL;
640 		xa_unlock_irq(&mapping->i_pages);
641 		page_ref_sub(page, nr);
642 	}
643 	return error;
644 }
645 
646 /*
647  * Like delete_from_page_cache, but substitutes swap for page.
648  */
649 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
650 {
651 	struct address_space *mapping = page->mapping;
652 	int error;
653 
654 	VM_BUG_ON_PAGE(PageCompound(page), page);
655 
656 	xa_lock_irq(&mapping->i_pages);
657 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
658 	page->mapping = NULL;
659 	mapping->nrpages--;
660 	__dec_node_page_state(page, NR_FILE_PAGES);
661 	__dec_node_page_state(page, NR_SHMEM);
662 	xa_unlock_irq(&mapping->i_pages);
663 	put_page(page);
664 	BUG_ON(error);
665 }
666 
667 /*
668  * Remove swap entry from radix tree, free the swap and its page cache.
669  */
670 static int shmem_free_swap(struct address_space *mapping,
671 			   pgoff_t index, void *radswap)
672 {
673 	void *old;
674 
675 	xa_lock_irq(&mapping->i_pages);
676 	old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
677 	xa_unlock_irq(&mapping->i_pages);
678 	if (old != radswap)
679 		return -ENOENT;
680 	free_swap_and_cache(radix_to_swp_entry(radswap));
681 	return 0;
682 }
683 
684 /*
685  * Determine (in bytes) how many of the shmem object's pages mapped by the
686  * given offsets are swapped out.
687  *
688  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
689  * as long as the inode doesn't go away and racy results are not a problem.
690  */
691 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
692 						pgoff_t start, pgoff_t end)
693 {
694 	struct radix_tree_iter iter;
695 	void __rcu **slot;
696 	struct page *page;
697 	unsigned long swapped = 0;
698 
699 	rcu_read_lock();
700 
701 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
702 		if (iter.index >= end)
703 			break;
704 
705 		page = radix_tree_deref_slot(slot);
706 
707 		if (radix_tree_deref_retry(page)) {
708 			slot = radix_tree_iter_retry(&iter);
709 			continue;
710 		}
711 
712 		if (radix_tree_exceptional_entry(page))
713 			swapped++;
714 
715 		if (need_resched()) {
716 			slot = radix_tree_iter_resume(slot, &iter);
717 			cond_resched_rcu();
718 		}
719 	}
720 
721 	rcu_read_unlock();
722 
723 	return swapped << PAGE_SHIFT;
724 }
725 
726 /*
727  * Determine (in bytes) how many of the shmem object's pages mapped by the
728  * given vma is swapped out.
729  *
730  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
731  * as long as the inode doesn't go away and racy results are not a problem.
732  */
733 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
734 {
735 	struct inode *inode = file_inode(vma->vm_file);
736 	struct shmem_inode_info *info = SHMEM_I(inode);
737 	struct address_space *mapping = inode->i_mapping;
738 	unsigned long swapped;
739 
740 	/* Be careful as we don't hold info->lock */
741 	swapped = READ_ONCE(info->swapped);
742 
743 	/*
744 	 * The easier cases are when the shmem object has nothing in swap, or
745 	 * the vma maps it whole. Then we can simply use the stats that we
746 	 * already track.
747 	 */
748 	if (!swapped)
749 		return 0;
750 
751 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
752 		return swapped << PAGE_SHIFT;
753 
754 	/* Here comes the more involved part */
755 	return shmem_partial_swap_usage(mapping,
756 			linear_page_index(vma, vma->vm_start),
757 			linear_page_index(vma, vma->vm_end));
758 }
759 
760 /*
761  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
762  */
763 void shmem_unlock_mapping(struct address_space *mapping)
764 {
765 	struct pagevec pvec;
766 	pgoff_t indices[PAGEVEC_SIZE];
767 	pgoff_t index = 0;
768 
769 	pagevec_init(&pvec);
770 	/*
771 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
772 	 */
773 	while (!mapping_unevictable(mapping)) {
774 		/*
775 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
776 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
777 		 */
778 		pvec.nr = find_get_entries(mapping, index,
779 					   PAGEVEC_SIZE, pvec.pages, indices);
780 		if (!pvec.nr)
781 			break;
782 		index = indices[pvec.nr - 1] + 1;
783 		pagevec_remove_exceptionals(&pvec);
784 		check_move_unevictable_pages(pvec.pages, pvec.nr);
785 		pagevec_release(&pvec);
786 		cond_resched();
787 	}
788 }
789 
790 /*
791  * Remove range of pages and swap entries from radix tree, and free them.
792  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
793  */
794 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
795 								 bool unfalloc)
796 {
797 	struct address_space *mapping = inode->i_mapping;
798 	struct shmem_inode_info *info = SHMEM_I(inode);
799 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
800 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
801 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
802 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
803 	struct pagevec pvec;
804 	pgoff_t indices[PAGEVEC_SIZE];
805 	long nr_swaps_freed = 0;
806 	pgoff_t index;
807 	int i;
808 
809 	if (lend == -1)
810 		end = -1;	/* unsigned, so actually very big */
811 
812 	pagevec_init(&pvec);
813 	index = start;
814 	while (index < end) {
815 		pvec.nr = find_get_entries(mapping, index,
816 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
817 			pvec.pages, indices);
818 		if (!pvec.nr)
819 			break;
820 		for (i = 0; i < pagevec_count(&pvec); i++) {
821 			struct page *page = pvec.pages[i];
822 
823 			index = indices[i];
824 			if (index >= end)
825 				break;
826 
827 			if (radix_tree_exceptional_entry(page)) {
828 				if (unfalloc)
829 					continue;
830 				nr_swaps_freed += !shmem_free_swap(mapping,
831 								index, page);
832 				continue;
833 			}
834 
835 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
836 
837 			if (!trylock_page(page))
838 				continue;
839 
840 			if (PageTransTail(page)) {
841 				/* Middle of THP: zero out the page */
842 				clear_highpage(page);
843 				unlock_page(page);
844 				continue;
845 			} else if (PageTransHuge(page)) {
846 				if (index == round_down(end, HPAGE_PMD_NR)) {
847 					/*
848 					 * Range ends in the middle of THP:
849 					 * zero out the page
850 					 */
851 					clear_highpage(page);
852 					unlock_page(page);
853 					continue;
854 				}
855 				index += HPAGE_PMD_NR - 1;
856 				i += HPAGE_PMD_NR - 1;
857 			}
858 
859 			if (!unfalloc || !PageUptodate(page)) {
860 				VM_BUG_ON_PAGE(PageTail(page), page);
861 				if (page_mapping(page) == mapping) {
862 					VM_BUG_ON_PAGE(PageWriteback(page), page);
863 					truncate_inode_page(mapping, page);
864 				}
865 			}
866 			unlock_page(page);
867 		}
868 		pagevec_remove_exceptionals(&pvec);
869 		pagevec_release(&pvec);
870 		cond_resched();
871 		index++;
872 	}
873 
874 	if (partial_start) {
875 		struct page *page = NULL;
876 		shmem_getpage(inode, start - 1, &page, SGP_READ);
877 		if (page) {
878 			unsigned int top = PAGE_SIZE;
879 			if (start > end) {
880 				top = partial_end;
881 				partial_end = 0;
882 			}
883 			zero_user_segment(page, partial_start, top);
884 			set_page_dirty(page);
885 			unlock_page(page);
886 			put_page(page);
887 		}
888 	}
889 	if (partial_end) {
890 		struct page *page = NULL;
891 		shmem_getpage(inode, end, &page, SGP_READ);
892 		if (page) {
893 			zero_user_segment(page, 0, partial_end);
894 			set_page_dirty(page);
895 			unlock_page(page);
896 			put_page(page);
897 		}
898 	}
899 	if (start >= end)
900 		return;
901 
902 	index = start;
903 	while (index < end) {
904 		cond_resched();
905 
906 		pvec.nr = find_get_entries(mapping, index,
907 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
908 				pvec.pages, indices);
909 		if (!pvec.nr) {
910 			/* If all gone or hole-punch or unfalloc, we're done */
911 			if (index == start || end != -1)
912 				break;
913 			/* But if truncating, restart to make sure all gone */
914 			index = start;
915 			continue;
916 		}
917 		for (i = 0; i < pagevec_count(&pvec); i++) {
918 			struct page *page = pvec.pages[i];
919 
920 			index = indices[i];
921 			if (index >= end)
922 				break;
923 
924 			if (radix_tree_exceptional_entry(page)) {
925 				if (unfalloc)
926 					continue;
927 				if (shmem_free_swap(mapping, index, page)) {
928 					/* Swap was replaced by page: retry */
929 					index--;
930 					break;
931 				}
932 				nr_swaps_freed++;
933 				continue;
934 			}
935 
936 			lock_page(page);
937 
938 			if (PageTransTail(page)) {
939 				/* Middle of THP: zero out the page */
940 				clear_highpage(page);
941 				unlock_page(page);
942 				/*
943 				 * Partial thp truncate due 'start' in middle
944 				 * of THP: don't need to look on these pages
945 				 * again on !pvec.nr restart.
946 				 */
947 				if (index != round_down(end, HPAGE_PMD_NR))
948 					start++;
949 				continue;
950 			} else if (PageTransHuge(page)) {
951 				if (index == round_down(end, HPAGE_PMD_NR)) {
952 					/*
953 					 * Range ends in the middle of THP:
954 					 * zero out the page
955 					 */
956 					clear_highpage(page);
957 					unlock_page(page);
958 					continue;
959 				}
960 				index += HPAGE_PMD_NR - 1;
961 				i += HPAGE_PMD_NR - 1;
962 			}
963 
964 			if (!unfalloc || !PageUptodate(page)) {
965 				VM_BUG_ON_PAGE(PageTail(page), page);
966 				if (page_mapping(page) == mapping) {
967 					VM_BUG_ON_PAGE(PageWriteback(page), page);
968 					truncate_inode_page(mapping, page);
969 				} else {
970 					/* Page was replaced by swap: retry */
971 					unlock_page(page);
972 					index--;
973 					break;
974 				}
975 			}
976 			unlock_page(page);
977 		}
978 		pagevec_remove_exceptionals(&pvec);
979 		pagevec_release(&pvec);
980 		index++;
981 	}
982 
983 	spin_lock_irq(&info->lock);
984 	info->swapped -= nr_swaps_freed;
985 	shmem_recalc_inode(inode);
986 	spin_unlock_irq(&info->lock);
987 }
988 
989 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
990 {
991 	shmem_undo_range(inode, lstart, lend, false);
992 	inode->i_ctime = inode->i_mtime = current_time(inode);
993 }
994 EXPORT_SYMBOL_GPL(shmem_truncate_range);
995 
996 static int shmem_getattr(const struct path *path, struct kstat *stat,
997 			 u32 request_mask, unsigned int query_flags)
998 {
999 	struct inode *inode = path->dentry->d_inode;
1000 	struct shmem_inode_info *info = SHMEM_I(inode);
1001 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1002 
1003 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1004 		spin_lock_irq(&info->lock);
1005 		shmem_recalc_inode(inode);
1006 		spin_unlock_irq(&info->lock);
1007 	}
1008 	generic_fillattr(inode, stat);
1009 
1010 	if (is_huge_enabled(sb_info))
1011 		stat->blksize = HPAGE_PMD_SIZE;
1012 
1013 	return 0;
1014 }
1015 
1016 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1017 {
1018 	struct inode *inode = d_inode(dentry);
1019 	struct shmem_inode_info *info = SHMEM_I(inode);
1020 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1021 	int error;
1022 
1023 	error = setattr_prepare(dentry, attr);
1024 	if (error)
1025 		return error;
1026 
1027 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1028 		loff_t oldsize = inode->i_size;
1029 		loff_t newsize = attr->ia_size;
1030 
1031 		/* protected by i_mutex */
1032 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1033 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1034 			return -EPERM;
1035 
1036 		if (newsize != oldsize) {
1037 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1038 					oldsize, newsize);
1039 			if (error)
1040 				return error;
1041 			i_size_write(inode, newsize);
1042 			inode->i_ctime = inode->i_mtime = current_time(inode);
1043 		}
1044 		if (newsize <= oldsize) {
1045 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1046 			if (oldsize > holebegin)
1047 				unmap_mapping_range(inode->i_mapping,
1048 							holebegin, 0, 1);
1049 			if (info->alloced)
1050 				shmem_truncate_range(inode,
1051 							newsize, (loff_t)-1);
1052 			/* unmap again to remove racily COWed private pages */
1053 			if (oldsize > holebegin)
1054 				unmap_mapping_range(inode->i_mapping,
1055 							holebegin, 0, 1);
1056 
1057 			/*
1058 			 * Part of the huge page can be beyond i_size: subject
1059 			 * to shrink under memory pressure.
1060 			 */
1061 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1062 				spin_lock(&sbinfo->shrinklist_lock);
1063 				/*
1064 				 * _careful to defend against unlocked access to
1065 				 * ->shrink_list in shmem_unused_huge_shrink()
1066 				 */
1067 				if (list_empty_careful(&info->shrinklist)) {
1068 					list_add_tail(&info->shrinklist,
1069 							&sbinfo->shrinklist);
1070 					sbinfo->shrinklist_len++;
1071 				}
1072 				spin_unlock(&sbinfo->shrinklist_lock);
1073 			}
1074 		}
1075 	}
1076 
1077 	setattr_copy(inode, attr);
1078 	if (attr->ia_valid & ATTR_MODE)
1079 		error = posix_acl_chmod(inode, inode->i_mode);
1080 	return error;
1081 }
1082 
1083 static void shmem_evict_inode(struct inode *inode)
1084 {
1085 	struct shmem_inode_info *info = SHMEM_I(inode);
1086 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1087 
1088 	if (inode->i_mapping->a_ops == &shmem_aops) {
1089 		shmem_unacct_size(info->flags, inode->i_size);
1090 		inode->i_size = 0;
1091 		shmem_truncate_range(inode, 0, (loff_t)-1);
1092 		if (!list_empty(&info->shrinklist)) {
1093 			spin_lock(&sbinfo->shrinklist_lock);
1094 			if (!list_empty(&info->shrinklist)) {
1095 				list_del_init(&info->shrinklist);
1096 				sbinfo->shrinklist_len--;
1097 			}
1098 			spin_unlock(&sbinfo->shrinklist_lock);
1099 		}
1100 		if (!list_empty(&info->swaplist)) {
1101 			mutex_lock(&shmem_swaplist_mutex);
1102 			list_del_init(&info->swaplist);
1103 			mutex_unlock(&shmem_swaplist_mutex);
1104 		}
1105 	}
1106 
1107 	simple_xattrs_free(&info->xattrs);
1108 	WARN_ON(inode->i_blocks);
1109 	shmem_free_inode(inode->i_sb);
1110 	clear_inode(inode);
1111 }
1112 
1113 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1114 {
1115 	struct radix_tree_iter iter;
1116 	void __rcu **slot;
1117 	unsigned long found = -1;
1118 	unsigned int checked = 0;
1119 
1120 	rcu_read_lock();
1121 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1122 		void *entry = radix_tree_deref_slot(slot);
1123 
1124 		if (radix_tree_deref_retry(entry)) {
1125 			slot = radix_tree_iter_retry(&iter);
1126 			continue;
1127 		}
1128 		if (entry == item) {
1129 			found = iter.index;
1130 			break;
1131 		}
1132 		checked++;
1133 		if ((checked % 4096) != 0)
1134 			continue;
1135 		slot = radix_tree_iter_resume(slot, &iter);
1136 		cond_resched_rcu();
1137 	}
1138 
1139 	rcu_read_unlock();
1140 	return found;
1141 }
1142 
1143 /*
1144  * If swap found in inode, free it and move page from swapcache to filecache.
1145  */
1146 static int shmem_unuse_inode(struct shmem_inode_info *info,
1147 			     swp_entry_t swap, struct page **pagep)
1148 {
1149 	struct address_space *mapping = info->vfs_inode.i_mapping;
1150 	void *radswap;
1151 	pgoff_t index;
1152 	gfp_t gfp;
1153 	int error = 0;
1154 
1155 	radswap = swp_to_radix_entry(swap);
1156 	index = find_swap_entry(&mapping->i_pages, radswap);
1157 	if (index == -1)
1158 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1159 
1160 	/*
1161 	 * Move _head_ to start search for next from here.
1162 	 * But be careful: shmem_evict_inode checks list_empty without taking
1163 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1164 	 * would appear empty, if it were the only one on shmem_swaplist.
1165 	 */
1166 	if (shmem_swaplist.next != &info->swaplist)
1167 		list_move_tail(&shmem_swaplist, &info->swaplist);
1168 
1169 	gfp = mapping_gfp_mask(mapping);
1170 	if (shmem_should_replace_page(*pagep, gfp)) {
1171 		mutex_unlock(&shmem_swaplist_mutex);
1172 		error = shmem_replace_page(pagep, gfp, info, index);
1173 		mutex_lock(&shmem_swaplist_mutex);
1174 		/*
1175 		 * We needed to drop mutex to make that restrictive page
1176 		 * allocation, but the inode might have been freed while we
1177 		 * dropped it: although a racing shmem_evict_inode() cannot
1178 		 * complete without emptying the radix_tree, our page lock
1179 		 * on this swapcache page is not enough to prevent that -
1180 		 * free_swap_and_cache() of our swap entry will only
1181 		 * trylock_page(), removing swap from radix_tree whatever.
1182 		 *
1183 		 * We must not proceed to shmem_add_to_page_cache() if the
1184 		 * inode has been freed, but of course we cannot rely on
1185 		 * inode or mapping or info to check that.  However, we can
1186 		 * safely check if our swap entry is still in use (and here
1187 		 * it can't have got reused for another page): if it's still
1188 		 * in use, then the inode cannot have been freed yet, and we
1189 		 * can safely proceed (if it's no longer in use, that tells
1190 		 * nothing about the inode, but we don't need to unuse swap).
1191 		 */
1192 		if (!page_swapcount(*pagep))
1193 			error = -ENOENT;
1194 	}
1195 
1196 	/*
1197 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1198 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1199 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1200 	 */
1201 	if (!error)
1202 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1203 						radswap);
1204 	if (error != -ENOMEM) {
1205 		/*
1206 		 * Truncation and eviction use free_swap_and_cache(), which
1207 		 * only does trylock page: if we raced, best clean up here.
1208 		 */
1209 		delete_from_swap_cache(*pagep);
1210 		set_page_dirty(*pagep);
1211 		if (!error) {
1212 			spin_lock_irq(&info->lock);
1213 			info->swapped--;
1214 			spin_unlock_irq(&info->lock);
1215 			swap_free(swap);
1216 		}
1217 	}
1218 	return error;
1219 }
1220 
1221 /*
1222  * Search through swapped inodes to find and replace swap by page.
1223  */
1224 int shmem_unuse(swp_entry_t swap, struct page *page)
1225 {
1226 	struct list_head *this, *next;
1227 	struct shmem_inode_info *info;
1228 	struct mem_cgroup *memcg;
1229 	int error = 0;
1230 
1231 	/*
1232 	 * There's a faint possibility that swap page was replaced before
1233 	 * caller locked it: caller will come back later with the right page.
1234 	 */
1235 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1236 		goto out;
1237 
1238 	/*
1239 	 * Charge page using GFP_KERNEL while we can wait, before taking
1240 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1241 	 * Charged back to the user (not to caller) when swap account is used.
1242 	 */
1243 	error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1244 					    &memcg, false);
1245 	if (error)
1246 		goto out;
1247 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1248 	error = -EAGAIN;
1249 
1250 	mutex_lock(&shmem_swaplist_mutex);
1251 	list_for_each_safe(this, next, &shmem_swaplist) {
1252 		info = list_entry(this, struct shmem_inode_info, swaplist);
1253 		if (info->swapped)
1254 			error = shmem_unuse_inode(info, swap, &page);
1255 		else
1256 			list_del_init(&info->swaplist);
1257 		cond_resched();
1258 		if (error != -EAGAIN)
1259 			break;
1260 		/* found nothing in this: move on to search the next */
1261 	}
1262 	mutex_unlock(&shmem_swaplist_mutex);
1263 
1264 	if (error) {
1265 		if (error != -ENOMEM)
1266 			error = 0;
1267 		mem_cgroup_cancel_charge(page, memcg, false);
1268 	} else
1269 		mem_cgroup_commit_charge(page, memcg, true, false);
1270 out:
1271 	unlock_page(page);
1272 	put_page(page);
1273 	return error;
1274 }
1275 
1276 /*
1277  * Move the page from the page cache to the swap cache.
1278  */
1279 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1280 {
1281 	struct shmem_inode_info *info;
1282 	struct address_space *mapping;
1283 	struct inode *inode;
1284 	swp_entry_t swap;
1285 	pgoff_t index;
1286 
1287 	VM_BUG_ON_PAGE(PageCompound(page), page);
1288 	BUG_ON(!PageLocked(page));
1289 	mapping = page->mapping;
1290 	index = page->index;
1291 	inode = mapping->host;
1292 	info = SHMEM_I(inode);
1293 	if (info->flags & VM_LOCKED)
1294 		goto redirty;
1295 	if (!total_swap_pages)
1296 		goto redirty;
1297 
1298 	/*
1299 	 * Our capabilities prevent regular writeback or sync from ever calling
1300 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1301 	 * its underlying filesystem, in which case tmpfs should write out to
1302 	 * swap only in response to memory pressure, and not for the writeback
1303 	 * threads or sync.
1304 	 */
1305 	if (!wbc->for_reclaim) {
1306 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1307 		goto redirty;
1308 	}
1309 
1310 	/*
1311 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1312 	 * value into swapfile.c, the only way we can correctly account for a
1313 	 * fallocated page arriving here is now to initialize it and write it.
1314 	 *
1315 	 * That's okay for a page already fallocated earlier, but if we have
1316 	 * not yet completed the fallocation, then (a) we want to keep track
1317 	 * of this page in case we have to undo it, and (b) it may not be a
1318 	 * good idea to continue anyway, once we're pushing into swap.  So
1319 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1320 	 */
1321 	if (!PageUptodate(page)) {
1322 		if (inode->i_private) {
1323 			struct shmem_falloc *shmem_falloc;
1324 			spin_lock(&inode->i_lock);
1325 			shmem_falloc = inode->i_private;
1326 			if (shmem_falloc &&
1327 			    !shmem_falloc->waitq &&
1328 			    index >= shmem_falloc->start &&
1329 			    index < shmem_falloc->next)
1330 				shmem_falloc->nr_unswapped++;
1331 			else
1332 				shmem_falloc = NULL;
1333 			spin_unlock(&inode->i_lock);
1334 			if (shmem_falloc)
1335 				goto redirty;
1336 		}
1337 		clear_highpage(page);
1338 		flush_dcache_page(page);
1339 		SetPageUptodate(page);
1340 	}
1341 
1342 	swap = get_swap_page(page);
1343 	if (!swap.val)
1344 		goto redirty;
1345 
1346 	/*
1347 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1348 	 * if it's not already there.  Do it now before the page is
1349 	 * moved to swap cache, when its pagelock no longer protects
1350 	 * the inode from eviction.  But don't unlock the mutex until
1351 	 * we've incremented swapped, because shmem_unuse_inode() will
1352 	 * prune a !swapped inode from the swaplist under this mutex.
1353 	 */
1354 	mutex_lock(&shmem_swaplist_mutex);
1355 	if (list_empty(&info->swaplist))
1356 		list_add_tail(&info->swaplist, &shmem_swaplist);
1357 
1358 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1359 		spin_lock_irq(&info->lock);
1360 		shmem_recalc_inode(inode);
1361 		info->swapped++;
1362 		spin_unlock_irq(&info->lock);
1363 
1364 		swap_shmem_alloc(swap);
1365 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1366 
1367 		mutex_unlock(&shmem_swaplist_mutex);
1368 		BUG_ON(page_mapped(page));
1369 		swap_writepage(page, wbc);
1370 		return 0;
1371 	}
1372 
1373 	mutex_unlock(&shmem_swaplist_mutex);
1374 	put_swap_page(page, swap);
1375 redirty:
1376 	set_page_dirty(page);
1377 	if (wbc->for_reclaim)
1378 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1379 	unlock_page(page);
1380 	return 0;
1381 }
1382 
1383 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1384 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1385 {
1386 	char buffer[64];
1387 
1388 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1389 		return;		/* show nothing */
1390 
1391 	mpol_to_str(buffer, sizeof(buffer), mpol);
1392 
1393 	seq_printf(seq, ",mpol=%s", buffer);
1394 }
1395 
1396 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1397 {
1398 	struct mempolicy *mpol = NULL;
1399 	if (sbinfo->mpol) {
1400 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1401 		mpol = sbinfo->mpol;
1402 		mpol_get(mpol);
1403 		spin_unlock(&sbinfo->stat_lock);
1404 	}
1405 	return mpol;
1406 }
1407 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1408 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1409 {
1410 }
1411 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 {
1413 	return NULL;
1414 }
1415 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1416 #ifndef CONFIG_NUMA
1417 #define vm_policy vm_private_data
1418 #endif
1419 
1420 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1421 		struct shmem_inode_info *info, pgoff_t index)
1422 {
1423 	/* Create a pseudo vma that just contains the policy */
1424 	vma_init(vma, NULL);
1425 	/* Bias interleave by inode number to distribute better across nodes */
1426 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1427 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1428 }
1429 
1430 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1431 {
1432 	/* Drop reference taken by mpol_shared_policy_lookup() */
1433 	mpol_cond_put(vma->vm_policy);
1434 }
1435 
1436 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1437 			struct shmem_inode_info *info, pgoff_t index)
1438 {
1439 	struct vm_area_struct pvma;
1440 	struct page *page;
1441 	struct vm_fault vmf;
1442 
1443 	shmem_pseudo_vma_init(&pvma, info, index);
1444 	vmf.vma = &pvma;
1445 	vmf.address = 0;
1446 	page = swap_cluster_readahead(swap, gfp, &vmf);
1447 	shmem_pseudo_vma_destroy(&pvma);
1448 
1449 	return page;
1450 }
1451 
1452 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1453 		struct shmem_inode_info *info, pgoff_t index)
1454 {
1455 	struct vm_area_struct pvma;
1456 	struct inode *inode = &info->vfs_inode;
1457 	struct address_space *mapping = inode->i_mapping;
1458 	pgoff_t idx, hindex;
1459 	void __rcu **results;
1460 	struct page *page;
1461 
1462 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1463 		return NULL;
1464 
1465 	hindex = round_down(index, HPAGE_PMD_NR);
1466 	rcu_read_lock();
1467 	if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1468 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1469 		rcu_read_unlock();
1470 		return NULL;
1471 	}
1472 	rcu_read_unlock();
1473 
1474 	shmem_pseudo_vma_init(&pvma, info, hindex);
1475 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1476 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1477 	shmem_pseudo_vma_destroy(&pvma);
1478 	if (page)
1479 		prep_transhuge_page(page);
1480 	return page;
1481 }
1482 
1483 static struct page *shmem_alloc_page(gfp_t gfp,
1484 			struct shmem_inode_info *info, pgoff_t index)
1485 {
1486 	struct vm_area_struct pvma;
1487 	struct page *page;
1488 
1489 	shmem_pseudo_vma_init(&pvma, info, index);
1490 	page = alloc_page_vma(gfp, &pvma, 0);
1491 	shmem_pseudo_vma_destroy(&pvma);
1492 
1493 	return page;
1494 }
1495 
1496 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1497 		struct inode *inode,
1498 		pgoff_t index, bool huge)
1499 {
1500 	struct shmem_inode_info *info = SHMEM_I(inode);
1501 	struct page *page;
1502 	int nr;
1503 	int err = -ENOSPC;
1504 
1505 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1506 		huge = false;
1507 	nr = huge ? HPAGE_PMD_NR : 1;
1508 
1509 	if (!shmem_inode_acct_block(inode, nr))
1510 		goto failed;
1511 
1512 	if (huge)
1513 		page = shmem_alloc_hugepage(gfp, info, index);
1514 	else
1515 		page = shmem_alloc_page(gfp, info, index);
1516 	if (page) {
1517 		__SetPageLocked(page);
1518 		__SetPageSwapBacked(page);
1519 		return page;
1520 	}
1521 
1522 	err = -ENOMEM;
1523 	shmem_inode_unacct_blocks(inode, nr);
1524 failed:
1525 	return ERR_PTR(err);
1526 }
1527 
1528 /*
1529  * When a page is moved from swapcache to shmem filecache (either by the
1530  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1531  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1532  * ignorance of the mapping it belongs to.  If that mapping has special
1533  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1534  * we may need to copy to a suitable page before moving to filecache.
1535  *
1536  * In a future release, this may well be extended to respect cpuset and
1537  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1538  * but for now it is a simple matter of zone.
1539  */
1540 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1541 {
1542 	return page_zonenum(page) > gfp_zone(gfp);
1543 }
1544 
1545 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1546 				struct shmem_inode_info *info, pgoff_t index)
1547 {
1548 	struct page *oldpage, *newpage;
1549 	struct address_space *swap_mapping;
1550 	pgoff_t swap_index;
1551 	int error;
1552 
1553 	oldpage = *pagep;
1554 	swap_index = page_private(oldpage);
1555 	swap_mapping = page_mapping(oldpage);
1556 
1557 	/*
1558 	 * We have arrived here because our zones are constrained, so don't
1559 	 * limit chance of success by further cpuset and node constraints.
1560 	 */
1561 	gfp &= ~GFP_CONSTRAINT_MASK;
1562 	newpage = shmem_alloc_page(gfp, info, index);
1563 	if (!newpage)
1564 		return -ENOMEM;
1565 
1566 	get_page(newpage);
1567 	copy_highpage(newpage, oldpage);
1568 	flush_dcache_page(newpage);
1569 
1570 	__SetPageLocked(newpage);
1571 	__SetPageSwapBacked(newpage);
1572 	SetPageUptodate(newpage);
1573 	set_page_private(newpage, swap_index);
1574 	SetPageSwapCache(newpage);
1575 
1576 	/*
1577 	 * Our caller will very soon move newpage out of swapcache, but it's
1578 	 * a nice clean interface for us to replace oldpage by newpage there.
1579 	 */
1580 	xa_lock_irq(&swap_mapping->i_pages);
1581 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1582 								   newpage);
1583 	if (!error) {
1584 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1585 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1586 	}
1587 	xa_unlock_irq(&swap_mapping->i_pages);
1588 
1589 	if (unlikely(error)) {
1590 		/*
1591 		 * Is this possible?  I think not, now that our callers check
1592 		 * both PageSwapCache and page_private after getting page lock;
1593 		 * but be defensive.  Reverse old to newpage for clear and free.
1594 		 */
1595 		oldpage = newpage;
1596 	} else {
1597 		mem_cgroup_migrate(oldpage, newpage);
1598 		lru_cache_add_anon(newpage);
1599 		*pagep = newpage;
1600 	}
1601 
1602 	ClearPageSwapCache(oldpage);
1603 	set_page_private(oldpage, 0);
1604 
1605 	unlock_page(oldpage);
1606 	put_page(oldpage);
1607 	put_page(oldpage);
1608 	return error;
1609 }
1610 
1611 /*
1612  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1613  *
1614  * If we allocate a new one we do not mark it dirty. That's up to the
1615  * vm. If we swap it in we mark it dirty since we also free the swap
1616  * entry since a page cannot live in both the swap and page cache.
1617  *
1618  * fault_mm and fault_type are only supplied by shmem_fault:
1619  * otherwise they are NULL.
1620  */
1621 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1622 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1623 	struct vm_area_struct *vma, struct vm_fault *vmf,
1624 			vm_fault_t *fault_type)
1625 {
1626 	struct address_space *mapping = inode->i_mapping;
1627 	struct shmem_inode_info *info = SHMEM_I(inode);
1628 	struct shmem_sb_info *sbinfo;
1629 	struct mm_struct *charge_mm;
1630 	struct mem_cgroup *memcg;
1631 	struct page *page;
1632 	swp_entry_t swap;
1633 	enum sgp_type sgp_huge = sgp;
1634 	pgoff_t hindex = index;
1635 	int error;
1636 	int once = 0;
1637 	int alloced = 0;
1638 
1639 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1640 		return -EFBIG;
1641 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1642 		sgp = SGP_CACHE;
1643 repeat:
1644 	swap.val = 0;
1645 	page = find_lock_entry(mapping, index);
1646 	if (radix_tree_exceptional_entry(page)) {
1647 		swap = radix_to_swp_entry(page);
1648 		page = NULL;
1649 	}
1650 
1651 	if (sgp <= SGP_CACHE &&
1652 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1653 		error = -EINVAL;
1654 		goto unlock;
1655 	}
1656 
1657 	if (page && sgp == SGP_WRITE)
1658 		mark_page_accessed(page);
1659 
1660 	/* fallocated page? */
1661 	if (page && !PageUptodate(page)) {
1662 		if (sgp != SGP_READ)
1663 			goto clear;
1664 		unlock_page(page);
1665 		put_page(page);
1666 		page = NULL;
1667 	}
1668 	if (page || (sgp == SGP_READ && !swap.val)) {
1669 		*pagep = page;
1670 		return 0;
1671 	}
1672 
1673 	/*
1674 	 * Fast cache lookup did not find it:
1675 	 * bring it back from swap or allocate.
1676 	 */
1677 	sbinfo = SHMEM_SB(inode->i_sb);
1678 	charge_mm = vma ? vma->vm_mm : current->mm;
1679 
1680 	if (swap.val) {
1681 		/* Look it up and read it in.. */
1682 		page = lookup_swap_cache(swap, NULL, 0);
1683 		if (!page) {
1684 			/* Or update major stats only when swapin succeeds?? */
1685 			if (fault_type) {
1686 				*fault_type |= VM_FAULT_MAJOR;
1687 				count_vm_event(PGMAJFAULT);
1688 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1689 			}
1690 			/* Here we actually start the io */
1691 			page = shmem_swapin(swap, gfp, info, index);
1692 			if (!page) {
1693 				error = -ENOMEM;
1694 				goto failed;
1695 			}
1696 		}
1697 
1698 		/* We have to do this with page locked to prevent races */
1699 		lock_page(page);
1700 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1701 		    !shmem_confirm_swap(mapping, index, swap)) {
1702 			error = -EEXIST;	/* try again */
1703 			goto unlock;
1704 		}
1705 		if (!PageUptodate(page)) {
1706 			error = -EIO;
1707 			goto failed;
1708 		}
1709 		wait_on_page_writeback(page);
1710 
1711 		if (shmem_should_replace_page(page, gfp)) {
1712 			error = shmem_replace_page(&page, gfp, info, index);
1713 			if (error)
1714 				goto failed;
1715 		}
1716 
1717 		error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1718 				false);
1719 		if (!error) {
1720 			error = shmem_add_to_page_cache(page, mapping, index,
1721 						swp_to_radix_entry(swap));
1722 			/*
1723 			 * We already confirmed swap under page lock, and make
1724 			 * no memory allocation here, so usually no possibility
1725 			 * of error; but free_swap_and_cache() only trylocks a
1726 			 * page, so it is just possible that the entry has been
1727 			 * truncated or holepunched since swap was confirmed.
1728 			 * shmem_undo_range() will have done some of the
1729 			 * unaccounting, now delete_from_swap_cache() will do
1730 			 * the rest.
1731 			 * Reset swap.val? No, leave it so "failed" goes back to
1732 			 * "repeat": reading a hole and writing should succeed.
1733 			 */
1734 			if (error) {
1735 				mem_cgroup_cancel_charge(page, memcg, false);
1736 				delete_from_swap_cache(page);
1737 			}
1738 		}
1739 		if (error)
1740 			goto failed;
1741 
1742 		mem_cgroup_commit_charge(page, memcg, true, false);
1743 
1744 		spin_lock_irq(&info->lock);
1745 		info->swapped--;
1746 		shmem_recalc_inode(inode);
1747 		spin_unlock_irq(&info->lock);
1748 
1749 		if (sgp == SGP_WRITE)
1750 			mark_page_accessed(page);
1751 
1752 		delete_from_swap_cache(page);
1753 		set_page_dirty(page);
1754 		swap_free(swap);
1755 
1756 	} else {
1757 		if (vma && userfaultfd_missing(vma)) {
1758 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1759 			return 0;
1760 		}
1761 
1762 		/* shmem_symlink() */
1763 		if (mapping->a_ops != &shmem_aops)
1764 			goto alloc_nohuge;
1765 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1766 			goto alloc_nohuge;
1767 		if (shmem_huge == SHMEM_HUGE_FORCE)
1768 			goto alloc_huge;
1769 		switch (sbinfo->huge) {
1770 			loff_t i_size;
1771 			pgoff_t off;
1772 		case SHMEM_HUGE_NEVER:
1773 			goto alloc_nohuge;
1774 		case SHMEM_HUGE_WITHIN_SIZE:
1775 			off = round_up(index, HPAGE_PMD_NR);
1776 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1777 			if (i_size >= HPAGE_PMD_SIZE &&
1778 					i_size >> PAGE_SHIFT >= off)
1779 				goto alloc_huge;
1780 			/* fallthrough */
1781 		case SHMEM_HUGE_ADVISE:
1782 			if (sgp_huge == SGP_HUGE)
1783 				goto alloc_huge;
1784 			/* TODO: implement fadvise() hints */
1785 			goto alloc_nohuge;
1786 		}
1787 
1788 alloc_huge:
1789 		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1790 		if (IS_ERR(page)) {
1791 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1792 					index, false);
1793 		}
1794 		if (IS_ERR(page)) {
1795 			int retry = 5;
1796 			error = PTR_ERR(page);
1797 			page = NULL;
1798 			if (error != -ENOSPC)
1799 				goto failed;
1800 			/*
1801 			 * Try to reclaim some spece by splitting a huge page
1802 			 * beyond i_size on the filesystem.
1803 			 */
1804 			while (retry--) {
1805 				int ret;
1806 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1807 				if (ret == SHRINK_STOP)
1808 					break;
1809 				if (ret)
1810 					goto alloc_nohuge;
1811 			}
1812 			goto failed;
1813 		}
1814 
1815 		if (PageTransHuge(page))
1816 			hindex = round_down(index, HPAGE_PMD_NR);
1817 		else
1818 			hindex = index;
1819 
1820 		if (sgp == SGP_WRITE)
1821 			__SetPageReferenced(page);
1822 
1823 		error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1824 				PageTransHuge(page));
1825 		if (error)
1826 			goto unacct;
1827 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1828 				compound_order(page));
1829 		if (!error) {
1830 			error = shmem_add_to_page_cache(page, mapping, hindex,
1831 							NULL);
1832 			radix_tree_preload_end();
1833 		}
1834 		if (error) {
1835 			mem_cgroup_cancel_charge(page, memcg,
1836 					PageTransHuge(page));
1837 			goto unacct;
1838 		}
1839 		mem_cgroup_commit_charge(page, memcg, false,
1840 				PageTransHuge(page));
1841 		lru_cache_add_anon(page);
1842 
1843 		spin_lock_irq(&info->lock);
1844 		info->alloced += 1 << compound_order(page);
1845 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1846 		shmem_recalc_inode(inode);
1847 		spin_unlock_irq(&info->lock);
1848 		alloced = true;
1849 
1850 		if (PageTransHuge(page) &&
1851 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1852 				hindex + HPAGE_PMD_NR - 1) {
1853 			/*
1854 			 * Part of the huge page is beyond i_size: subject
1855 			 * to shrink under memory pressure.
1856 			 */
1857 			spin_lock(&sbinfo->shrinklist_lock);
1858 			/*
1859 			 * _careful to defend against unlocked access to
1860 			 * ->shrink_list in shmem_unused_huge_shrink()
1861 			 */
1862 			if (list_empty_careful(&info->shrinklist)) {
1863 				list_add_tail(&info->shrinklist,
1864 						&sbinfo->shrinklist);
1865 				sbinfo->shrinklist_len++;
1866 			}
1867 			spin_unlock(&sbinfo->shrinklist_lock);
1868 		}
1869 
1870 		/*
1871 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1872 		 */
1873 		if (sgp == SGP_FALLOC)
1874 			sgp = SGP_WRITE;
1875 clear:
1876 		/*
1877 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1878 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1879 		 * it now, lest undo on failure cancel our earlier guarantee.
1880 		 */
1881 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1882 			struct page *head = compound_head(page);
1883 			int i;
1884 
1885 			for (i = 0; i < (1 << compound_order(head)); i++) {
1886 				clear_highpage(head + i);
1887 				flush_dcache_page(head + i);
1888 			}
1889 			SetPageUptodate(head);
1890 		}
1891 	}
1892 
1893 	/* Perhaps the file has been truncated since we checked */
1894 	if (sgp <= SGP_CACHE &&
1895 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1896 		if (alloced) {
1897 			ClearPageDirty(page);
1898 			delete_from_page_cache(page);
1899 			spin_lock_irq(&info->lock);
1900 			shmem_recalc_inode(inode);
1901 			spin_unlock_irq(&info->lock);
1902 		}
1903 		error = -EINVAL;
1904 		goto unlock;
1905 	}
1906 	*pagep = page + index - hindex;
1907 	return 0;
1908 
1909 	/*
1910 	 * Error recovery.
1911 	 */
1912 unacct:
1913 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1914 
1915 	if (PageTransHuge(page)) {
1916 		unlock_page(page);
1917 		put_page(page);
1918 		goto alloc_nohuge;
1919 	}
1920 failed:
1921 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1922 		error = -EEXIST;
1923 unlock:
1924 	if (page) {
1925 		unlock_page(page);
1926 		put_page(page);
1927 	}
1928 	if (error == -ENOSPC && !once++) {
1929 		spin_lock_irq(&info->lock);
1930 		shmem_recalc_inode(inode);
1931 		spin_unlock_irq(&info->lock);
1932 		goto repeat;
1933 	}
1934 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1935 		goto repeat;
1936 	return error;
1937 }
1938 
1939 /*
1940  * This is like autoremove_wake_function, but it removes the wait queue
1941  * entry unconditionally - even if something else had already woken the
1942  * target.
1943  */
1944 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1945 {
1946 	int ret = default_wake_function(wait, mode, sync, key);
1947 	list_del_init(&wait->entry);
1948 	return ret;
1949 }
1950 
1951 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1952 {
1953 	struct vm_area_struct *vma = vmf->vma;
1954 	struct inode *inode = file_inode(vma->vm_file);
1955 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1956 	enum sgp_type sgp;
1957 	int err;
1958 	vm_fault_t ret = VM_FAULT_LOCKED;
1959 
1960 	/*
1961 	 * Trinity finds that probing a hole which tmpfs is punching can
1962 	 * prevent the hole-punch from ever completing: which in turn
1963 	 * locks writers out with its hold on i_mutex.  So refrain from
1964 	 * faulting pages into the hole while it's being punched.  Although
1965 	 * shmem_undo_range() does remove the additions, it may be unable to
1966 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1967 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1968 	 *
1969 	 * It does not matter if we sometimes reach this check just before the
1970 	 * hole-punch begins, so that one fault then races with the punch:
1971 	 * we just need to make racing faults a rare case.
1972 	 *
1973 	 * The implementation below would be much simpler if we just used a
1974 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1975 	 * and bloating every shmem inode for this unlikely case would be sad.
1976 	 */
1977 	if (unlikely(inode->i_private)) {
1978 		struct shmem_falloc *shmem_falloc;
1979 
1980 		spin_lock(&inode->i_lock);
1981 		shmem_falloc = inode->i_private;
1982 		if (shmem_falloc &&
1983 		    shmem_falloc->waitq &&
1984 		    vmf->pgoff >= shmem_falloc->start &&
1985 		    vmf->pgoff < shmem_falloc->next) {
1986 			wait_queue_head_t *shmem_falloc_waitq;
1987 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1988 
1989 			ret = VM_FAULT_NOPAGE;
1990 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1991 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1992 				/* It's polite to up mmap_sem if we can */
1993 				up_read(&vma->vm_mm->mmap_sem);
1994 				ret = VM_FAULT_RETRY;
1995 			}
1996 
1997 			shmem_falloc_waitq = shmem_falloc->waitq;
1998 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1999 					TASK_UNINTERRUPTIBLE);
2000 			spin_unlock(&inode->i_lock);
2001 			schedule();
2002 
2003 			/*
2004 			 * shmem_falloc_waitq points into the shmem_fallocate()
2005 			 * stack of the hole-punching task: shmem_falloc_waitq
2006 			 * is usually invalid by the time we reach here, but
2007 			 * finish_wait() does not dereference it in that case;
2008 			 * though i_lock needed lest racing with wake_up_all().
2009 			 */
2010 			spin_lock(&inode->i_lock);
2011 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2012 			spin_unlock(&inode->i_lock);
2013 			return ret;
2014 		}
2015 		spin_unlock(&inode->i_lock);
2016 	}
2017 
2018 	sgp = SGP_CACHE;
2019 
2020 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2021 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2022 		sgp = SGP_NOHUGE;
2023 	else if (vma->vm_flags & VM_HUGEPAGE)
2024 		sgp = SGP_HUGE;
2025 
2026 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2027 				  gfp, vma, vmf, &ret);
2028 	if (err)
2029 		return vmf_error(err);
2030 	return ret;
2031 }
2032 
2033 unsigned long shmem_get_unmapped_area(struct file *file,
2034 				      unsigned long uaddr, unsigned long len,
2035 				      unsigned long pgoff, unsigned long flags)
2036 {
2037 	unsigned long (*get_area)(struct file *,
2038 		unsigned long, unsigned long, unsigned long, unsigned long);
2039 	unsigned long addr;
2040 	unsigned long offset;
2041 	unsigned long inflated_len;
2042 	unsigned long inflated_addr;
2043 	unsigned long inflated_offset;
2044 
2045 	if (len > TASK_SIZE)
2046 		return -ENOMEM;
2047 
2048 	get_area = current->mm->get_unmapped_area;
2049 	addr = get_area(file, uaddr, len, pgoff, flags);
2050 
2051 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2052 		return addr;
2053 	if (IS_ERR_VALUE(addr))
2054 		return addr;
2055 	if (addr & ~PAGE_MASK)
2056 		return addr;
2057 	if (addr > TASK_SIZE - len)
2058 		return addr;
2059 
2060 	if (shmem_huge == SHMEM_HUGE_DENY)
2061 		return addr;
2062 	if (len < HPAGE_PMD_SIZE)
2063 		return addr;
2064 	if (flags & MAP_FIXED)
2065 		return addr;
2066 	/*
2067 	 * Our priority is to support MAP_SHARED mapped hugely;
2068 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2069 	 * But if caller specified an address hint, respect that as before.
2070 	 */
2071 	if (uaddr)
2072 		return addr;
2073 
2074 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2075 		struct super_block *sb;
2076 
2077 		if (file) {
2078 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2079 			sb = file_inode(file)->i_sb;
2080 		} else {
2081 			/*
2082 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2083 			 * for "/dev/zero", to create a shared anonymous object.
2084 			 */
2085 			if (IS_ERR(shm_mnt))
2086 				return addr;
2087 			sb = shm_mnt->mnt_sb;
2088 		}
2089 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2090 			return addr;
2091 	}
2092 
2093 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2094 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2095 		return addr;
2096 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2097 		return addr;
2098 
2099 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2100 	if (inflated_len > TASK_SIZE)
2101 		return addr;
2102 	if (inflated_len < len)
2103 		return addr;
2104 
2105 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2106 	if (IS_ERR_VALUE(inflated_addr))
2107 		return addr;
2108 	if (inflated_addr & ~PAGE_MASK)
2109 		return addr;
2110 
2111 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2112 	inflated_addr += offset - inflated_offset;
2113 	if (inflated_offset > offset)
2114 		inflated_addr += HPAGE_PMD_SIZE;
2115 
2116 	if (inflated_addr > TASK_SIZE - len)
2117 		return addr;
2118 	return inflated_addr;
2119 }
2120 
2121 #ifdef CONFIG_NUMA
2122 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2123 {
2124 	struct inode *inode = file_inode(vma->vm_file);
2125 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2126 }
2127 
2128 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2129 					  unsigned long addr)
2130 {
2131 	struct inode *inode = file_inode(vma->vm_file);
2132 	pgoff_t index;
2133 
2134 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2135 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2136 }
2137 #endif
2138 
2139 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2140 {
2141 	struct inode *inode = file_inode(file);
2142 	struct shmem_inode_info *info = SHMEM_I(inode);
2143 	int retval = -ENOMEM;
2144 
2145 	spin_lock_irq(&info->lock);
2146 	if (lock && !(info->flags & VM_LOCKED)) {
2147 		if (!user_shm_lock(inode->i_size, user))
2148 			goto out_nomem;
2149 		info->flags |= VM_LOCKED;
2150 		mapping_set_unevictable(file->f_mapping);
2151 	}
2152 	if (!lock && (info->flags & VM_LOCKED) && user) {
2153 		user_shm_unlock(inode->i_size, user);
2154 		info->flags &= ~VM_LOCKED;
2155 		mapping_clear_unevictable(file->f_mapping);
2156 	}
2157 	retval = 0;
2158 
2159 out_nomem:
2160 	spin_unlock_irq(&info->lock);
2161 	return retval;
2162 }
2163 
2164 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2165 {
2166 	file_accessed(file);
2167 	vma->vm_ops = &shmem_vm_ops;
2168 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2169 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2170 			(vma->vm_end & HPAGE_PMD_MASK)) {
2171 		khugepaged_enter(vma, vma->vm_flags);
2172 	}
2173 	return 0;
2174 }
2175 
2176 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2177 				     umode_t mode, dev_t dev, unsigned long flags)
2178 {
2179 	struct inode *inode;
2180 	struct shmem_inode_info *info;
2181 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2182 
2183 	if (shmem_reserve_inode(sb))
2184 		return NULL;
2185 
2186 	inode = new_inode(sb);
2187 	if (inode) {
2188 		inode->i_ino = get_next_ino();
2189 		inode_init_owner(inode, dir, mode);
2190 		inode->i_blocks = 0;
2191 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2192 		inode->i_generation = prandom_u32();
2193 		info = SHMEM_I(inode);
2194 		memset(info, 0, (char *)inode - (char *)info);
2195 		spin_lock_init(&info->lock);
2196 		info->seals = F_SEAL_SEAL;
2197 		info->flags = flags & VM_NORESERVE;
2198 		INIT_LIST_HEAD(&info->shrinklist);
2199 		INIT_LIST_HEAD(&info->swaplist);
2200 		simple_xattrs_init(&info->xattrs);
2201 		cache_no_acl(inode);
2202 
2203 		switch (mode & S_IFMT) {
2204 		default:
2205 			inode->i_op = &shmem_special_inode_operations;
2206 			init_special_inode(inode, mode, dev);
2207 			break;
2208 		case S_IFREG:
2209 			inode->i_mapping->a_ops = &shmem_aops;
2210 			inode->i_op = &shmem_inode_operations;
2211 			inode->i_fop = &shmem_file_operations;
2212 			mpol_shared_policy_init(&info->policy,
2213 						 shmem_get_sbmpol(sbinfo));
2214 			break;
2215 		case S_IFDIR:
2216 			inc_nlink(inode);
2217 			/* Some things misbehave if size == 0 on a directory */
2218 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2219 			inode->i_op = &shmem_dir_inode_operations;
2220 			inode->i_fop = &simple_dir_operations;
2221 			break;
2222 		case S_IFLNK:
2223 			/*
2224 			 * Must not load anything in the rbtree,
2225 			 * mpol_free_shared_policy will not be called.
2226 			 */
2227 			mpol_shared_policy_init(&info->policy, NULL);
2228 			break;
2229 		}
2230 	} else
2231 		shmem_free_inode(sb);
2232 	return inode;
2233 }
2234 
2235 bool shmem_mapping(struct address_space *mapping)
2236 {
2237 	return mapping->a_ops == &shmem_aops;
2238 }
2239 
2240 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2241 				  pmd_t *dst_pmd,
2242 				  struct vm_area_struct *dst_vma,
2243 				  unsigned long dst_addr,
2244 				  unsigned long src_addr,
2245 				  bool zeropage,
2246 				  struct page **pagep)
2247 {
2248 	struct inode *inode = file_inode(dst_vma->vm_file);
2249 	struct shmem_inode_info *info = SHMEM_I(inode);
2250 	struct address_space *mapping = inode->i_mapping;
2251 	gfp_t gfp = mapping_gfp_mask(mapping);
2252 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2253 	struct mem_cgroup *memcg;
2254 	spinlock_t *ptl;
2255 	void *page_kaddr;
2256 	struct page *page;
2257 	pte_t _dst_pte, *dst_pte;
2258 	int ret;
2259 
2260 	ret = -ENOMEM;
2261 	if (!shmem_inode_acct_block(inode, 1))
2262 		goto out;
2263 
2264 	if (!*pagep) {
2265 		page = shmem_alloc_page(gfp, info, pgoff);
2266 		if (!page)
2267 			goto out_unacct_blocks;
2268 
2269 		if (!zeropage) {	/* mcopy_atomic */
2270 			page_kaddr = kmap_atomic(page);
2271 			ret = copy_from_user(page_kaddr,
2272 					     (const void __user *)src_addr,
2273 					     PAGE_SIZE);
2274 			kunmap_atomic(page_kaddr);
2275 
2276 			/* fallback to copy_from_user outside mmap_sem */
2277 			if (unlikely(ret)) {
2278 				*pagep = page;
2279 				shmem_inode_unacct_blocks(inode, 1);
2280 				/* don't free the page */
2281 				return -EFAULT;
2282 			}
2283 		} else {		/* mfill_zeropage_atomic */
2284 			clear_highpage(page);
2285 		}
2286 	} else {
2287 		page = *pagep;
2288 		*pagep = NULL;
2289 	}
2290 
2291 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2292 	__SetPageLocked(page);
2293 	__SetPageSwapBacked(page);
2294 	__SetPageUptodate(page);
2295 
2296 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2297 	if (ret)
2298 		goto out_release;
2299 
2300 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2301 	if (!ret) {
2302 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2303 		radix_tree_preload_end();
2304 	}
2305 	if (ret)
2306 		goto out_release_uncharge;
2307 
2308 	mem_cgroup_commit_charge(page, memcg, false, false);
2309 
2310 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2311 	if (dst_vma->vm_flags & VM_WRITE)
2312 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2313 
2314 	ret = -EEXIST;
2315 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2316 	if (!pte_none(*dst_pte))
2317 		goto out_release_uncharge_unlock;
2318 
2319 	lru_cache_add_anon(page);
2320 
2321 	spin_lock(&info->lock);
2322 	info->alloced++;
2323 	inode->i_blocks += BLOCKS_PER_PAGE;
2324 	shmem_recalc_inode(inode);
2325 	spin_unlock(&info->lock);
2326 
2327 	inc_mm_counter(dst_mm, mm_counter_file(page));
2328 	page_add_file_rmap(page, false);
2329 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2330 
2331 	/* No need to invalidate - it was non-present before */
2332 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2333 	unlock_page(page);
2334 	pte_unmap_unlock(dst_pte, ptl);
2335 	ret = 0;
2336 out:
2337 	return ret;
2338 out_release_uncharge_unlock:
2339 	pte_unmap_unlock(dst_pte, ptl);
2340 out_release_uncharge:
2341 	mem_cgroup_cancel_charge(page, memcg, false);
2342 out_release:
2343 	unlock_page(page);
2344 	put_page(page);
2345 out_unacct_blocks:
2346 	shmem_inode_unacct_blocks(inode, 1);
2347 	goto out;
2348 }
2349 
2350 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2351 			   pmd_t *dst_pmd,
2352 			   struct vm_area_struct *dst_vma,
2353 			   unsigned long dst_addr,
2354 			   unsigned long src_addr,
2355 			   struct page **pagep)
2356 {
2357 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2358 				      dst_addr, src_addr, false, pagep);
2359 }
2360 
2361 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2362 			     pmd_t *dst_pmd,
2363 			     struct vm_area_struct *dst_vma,
2364 			     unsigned long dst_addr)
2365 {
2366 	struct page *page = NULL;
2367 
2368 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2369 				      dst_addr, 0, true, &page);
2370 }
2371 
2372 #ifdef CONFIG_TMPFS
2373 static const struct inode_operations shmem_symlink_inode_operations;
2374 static const struct inode_operations shmem_short_symlink_operations;
2375 
2376 #ifdef CONFIG_TMPFS_XATTR
2377 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2378 #else
2379 #define shmem_initxattrs NULL
2380 #endif
2381 
2382 static int
2383 shmem_write_begin(struct file *file, struct address_space *mapping,
2384 			loff_t pos, unsigned len, unsigned flags,
2385 			struct page **pagep, void **fsdata)
2386 {
2387 	struct inode *inode = mapping->host;
2388 	struct shmem_inode_info *info = SHMEM_I(inode);
2389 	pgoff_t index = pos >> PAGE_SHIFT;
2390 
2391 	/* i_mutex is held by caller */
2392 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2393 		if (info->seals & F_SEAL_WRITE)
2394 			return -EPERM;
2395 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2396 			return -EPERM;
2397 	}
2398 
2399 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2400 }
2401 
2402 static int
2403 shmem_write_end(struct file *file, struct address_space *mapping,
2404 			loff_t pos, unsigned len, unsigned copied,
2405 			struct page *page, void *fsdata)
2406 {
2407 	struct inode *inode = mapping->host;
2408 
2409 	if (pos + copied > inode->i_size)
2410 		i_size_write(inode, pos + copied);
2411 
2412 	if (!PageUptodate(page)) {
2413 		struct page *head = compound_head(page);
2414 		if (PageTransCompound(page)) {
2415 			int i;
2416 
2417 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2418 				if (head + i == page)
2419 					continue;
2420 				clear_highpage(head + i);
2421 				flush_dcache_page(head + i);
2422 			}
2423 		}
2424 		if (copied < PAGE_SIZE) {
2425 			unsigned from = pos & (PAGE_SIZE - 1);
2426 			zero_user_segments(page, 0, from,
2427 					from + copied, PAGE_SIZE);
2428 		}
2429 		SetPageUptodate(head);
2430 	}
2431 	set_page_dirty(page);
2432 	unlock_page(page);
2433 	put_page(page);
2434 
2435 	return copied;
2436 }
2437 
2438 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2439 {
2440 	struct file *file = iocb->ki_filp;
2441 	struct inode *inode = file_inode(file);
2442 	struct address_space *mapping = inode->i_mapping;
2443 	pgoff_t index;
2444 	unsigned long offset;
2445 	enum sgp_type sgp = SGP_READ;
2446 	int error = 0;
2447 	ssize_t retval = 0;
2448 	loff_t *ppos = &iocb->ki_pos;
2449 
2450 	/*
2451 	 * Might this read be for a stacking filesystem?  Then when reading
2452 	 * holes of a sparse file, we actually need to allocate those pages,
2453 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2454 	 */
2455 	if (!iter_is_iovec(to))
2456 		sgp = SGP_CACHE;
2457 
2458 	index = *ppos >> PAGE_SHIFT;
2459 	offset = *ppos & ~PAGE_MASK;
2460 
2461 	for (;;) {
2462 		struct page *page = NULL;
2463 		pgoff_t end_index;
2464 		unsigned long nr, ret;
2465 		loff_t i_size = i_size_read(inode);
2466 
2467 		end_index = i_size >> PAGE_SHIFT;
2468 		if (index > end_index)
2469 			break;
2470 		if (index == end_index) {
2471 			nr = i_size & ~PAGE_MASK;
2472 			if (nr <= offset)
2473 				break;
2474 		}
2475 
2476 		error = shmem_getpage(inode, index, &page, sgp);
2477 		if (error) {
2478 			if (error == -EINVAL)
2479 				error = 0;
2480 			break;
2481 		}
2482 		if (page) {
2483 			if (sgp == SGP_CACHE)
2484 				set_page_dirty(page);
2485 			unlock_page(page);
2486 		}
2487 
2488 		/*
2489 		 * We must evaluate after, since reads (unlike writes)
2490 		 * are called without i_mutex protection against truncate
2491 		 */
2492 		nr = PAGE_SIZE;
2493 		i_size = i_size_read(inode);
2494 		end_index = i_size >> PAGE_SHIFT;
2495 		if (index == end_index) {
2496 			nr = i_size & ~PAGE_MASK;
2497 			if (nr <= offset) {
2498 				if (page)
2499 					put_page(page);
2500 				break;
2501 			}
2502 		}
2503 		nr -= offset;
2504 
2505 		if (page) {
2506 			/*
2507 			 * If users can be writing to this page using arbitrary
2508 			 * virtual addresses, take care about potential aliasing
2509 			 * before reading the page on the kernel side.
2510 			 */
2511 			if (mapping_writably_mapped(mapping))
2512 				flush_dcache_page(page);
2513 			/*
2514 			 * Mark the page accessed if we read the beginning.
2515 			 */
2516 			if (!offset)
2517 				mark_page_accessed(page);
2518 		} else {
2519 			page = ZERO_PAGE(0);
2520 			get_page(page);
2521 		}
2522 
2523 		/*
2524 		 * Ok, we have the page, and it's up-to-date, so
2525 		 * now we can copy it to user space...
2526 		 */
2527 		ret = copy_page_to_iter(page, offset, nr, to);
2528 		retval += ret;
2529 		offset += ret;
2530 		index += offset >> PAGE_SHIFT;
2531 		offset &= ~PAGE_MASK;
2532 
2533 		put_page(page);
2534 		if (!iov_iter_count(to))
2535 			break;
2536 		if (ret < nr) {
2537 			error = -EFAULT;
2538 			break;
2539 		}
2540 		cond_resched();
2541 	}
2542 
2543 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2544 	file_accessed(file);
2545 	return retval ? retval : error;
2546 }
2547 
2548 /*
2549  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2550  */
2551 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2552 				    pgoff_t index, pgoff_t end, int whence)
2553 {
2554 	struct page *page;
2555 	struct pagevec pvec;
2556 	pgoff_t indices[PAGEVEC_SIZE];
2557 	bool done = false;
2558 	int i;
2559 
2560 	pagevec_init(&pvec);
2561 	pvec.nr = 1;		/* start small: we may be there already */
2562 	while (!done) {
2563 		pvec.nr = find_get_entries(mapping, index,
2564 					pvec.nr, pvec.pages, indices);
2565 		if (!pvec.nr) {
2566 			if (whence == SEEK_DATA)
2567 				index = end;
2568 			break;
2569 		}
2570 		for (i = 0; i < pvec.nr; i++, index++) {
2571 			if (index < indices[i]) {
2572 				if (whence == SEEK_HOLE) {
2573 					done = true;
2574 					break;
2575 				}
2576 				index = indices[i];
2577 			}
2578 			page = pvec.pages[i];
2579 			if (page && !radix_tree_exceptional_entry(page)) {
2580 				if (!PageUptodate(page))
2581 					page = NULL;
2582 			}
2583 			if (index >= end ||
2584 			    (page && whence == SEEK_DATA) ||
2585 			    (!page && whence == SEEK_HOLE)) {
2586 				done = true;
2587 				break;
2588 			}
2589 		}
2590 		pagevec_remove_exceptionals(&pvec);
2591 		pagevec_release(&pvec);
2592 		pvec.nr = PAGEVEC_SIZE;
2593 		cond_resched();
2594 	}
2595 	return index;
2596 }
2597 
2598 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2599 {
2600 	struct address_space *mapping = file->f_mapping;
2601 	struct inode *inode = mapping->host;
2602 	pgoff_t start, end;
2603 	loff_t new_offset;
2604 
2605 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2606 		return generic_file_llseek_size(file, offset, whence,
2607 					MAX_LFS_FILESIZE, i_size_read(inode));
2608 	inode_lock(inode);
2609 	/* We're holding i_mutex so we can access i_size directly */
2610 
2611 	if (offset < 0)
2612 		offset = -EINVAL;
2613 	else if (offset >= inode->i_size)
2614 		offset = -ENXIO;
2615 	else {
2616 		start = offset >> PAGE_SHIFT;
2617 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2618 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2619 		new_offset <<= PAGE_SHIFT;
2620 		if (new_offset > offset) {
2621 			if (new_offset < inode->i_size)
2622 				offset = new_offset;
2623 			else if (whence == SEEK_DATA)
2624 				offset = -ENXIO;
2625 			else
2626 				offset = inode->i_size;
2627 		}
2628 	}
2629 
2630 	if (offset >= 0)
2631 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2632 	inode_unlock(inode);
2633 	return offset;
2634 }
2635 
2636 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2637 							 loff_t len)
2638 {
2639 	struct inode *inode = file_inode(file);
2640 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2641 	struct shmem_inode_info *info = SHMEM_I(inode);
2642 	struct shmem_falloc shmem_falloc;
2643 	pgoff_t start, index, end;
2644 	int error;
2645 
2646 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2647 		return -EOPNOTSUPP;
2648 
2649 	inode_lock(inode);
2650 
2651 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2652 		struct address_space *mapping = file->f_mapping;
2653 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2654 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2655 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2656 
2657 		/* protected by i_mutex */
2658 		if (info->seals & F_SEAL_WRITE) {
2659 			error = -EPERM;
2660 			goto out;
2661 		}
2662 
2663 		shmem_falloc.waitq = &shmem_falloc_waitq;
2664 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2665 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2666 		spin_lock(&inode->i_lock);
2667 		inode->i_private = &shmem_falloc;
2668 		spin_unlock(&inode->i_lock);
2669 
2670 		if ((u64)unmap_end > (u64)unmap_start)
2671 			unmap_mapping_range(mapping, unmap_start,
2672 					    1 + unmap_end - unmap_start, 0);
2673 		shmem_truncate_range(inode, offset, offset + len - 1);
2674 		/* No need to unmap again: hole-punching leaves COWed pages */
2675 
2676 		spin_lock(&inode->i_lock);
2677 		inode->i_private = NULL;
2678 		wake_up_all(&shmem_falloc_waitq);
2679 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2680 		spin_unlock(&inode->i_lock);
2681 		error = 0;
2682 		goto out;
2683 	}
2684 
2685 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2686 	error = inode_newsize_ok(inode, offset + len);
2687 	if (error)
2688 		goto out;
2689 
2690 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2691 		error = -EPERM;
2692 		goto out;
2693 	}
2694 
2695 	start = offset >> PAGE_SHIFT;
2696 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2697 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2698 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2699 		error = -ENOSPC;
2700 		goto out;
2701 	}
2702 
2703 	shmem_falloc.waitq = NULL;
2704 	shmem_falloc.start = start;
2705 	shmem_falloc.next  = start;
2706 	shmem_falloc.nr_falloced = 0;
2707 	shmem_falloc.nr_unswapped = 0;
2708 	spin_lock(&inode->i_lock);
2709 	inode->i_private = &shmem_falloc;
2710 	spin_unlock(&inode->i_lock);
2711 
2712 	for (index = start; index < end; index++) {
2713 		struct page *page;
2714 
2715 		/*
2716 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2717 		 * been interrupted because we are using up too much memory.
2718 		 */
2719 		if (signal_pending(current))
2720 			error = -EINTR;
2721 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2722 			error = -ENOMEM;
2723 		else
2724 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2725 		if (error) {
2726 			/* Remove the !PageUptodate pages we added */
2727 			if (index > start) {
2728 				shmem_undo_range(inode,
2729 				    (loff_t)start << PAGE_SHIFT,
2730 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2731 			}
2732 			goto undone;
2733 		}
2734 
2735 		/*
2736 		 * Inform shmem_writepage() how far we have reached.
2737 		 * No need for lock or barrier: we have the page lock.
2738 		 */
2739 		shmem_falloc.next++;
2740 		if (!PageUptodate(page))
2741 			shmem_falloc.nr_falloced++;
2742 
2743 		/*
2744 		 * If !PageUptodate, leave it that way so that freeable pages
2745 		 * can be recognized if we need to rollback on error later.
2746 		 * But set_page_dirty so that memory pressure will swap rather
2747 		 * than free the pages we are allocating (and SGP_CACHE pages
2748 		 * might still be clean: we now need to mark those dirty too).
2749 		 */
2750 		set_page_dirty(page);
2751 		unlock_page(page);
2752 		put_page(page);
2753 		cond_resched();
2754 	}
2755 
2756 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2757 		i_size_write(inode, offset + len);
2758 	inode->i_ctime = current_time(inode);
2759 undone:
2760 	spin_lock(&inode->i_lock);
2761 	inode->i_private = NULL;
2762 	spin_unlock(&inode->i_lock);
2763 out:
2764 	inode_unlock(inode);
2765 	return error;
2766 }
2767 
2768 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2769 {
2770 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2771 
2772 	buf->f_type = TMPFS_MAGIC;
2773 	buf->f_bsize = PAGE_SIZE;
2774 	buf->f_namelen = NAME_MAX;
2775 	if (sbinfo->max_blocks) {
2776 		buf->f_blocks = sbinfo->max_blocks;
2777 		buf->f_bavail =
2778 		buf->f_bfree  = sbinfo->max_blocks -
2779 				percpu_counter_sum(&sbinfo->used_blocks);
2780 	}
2781 	if (sbinfo->max_inodes) {
2782 		buf->f_files = sbinfo->max_inodes;
2783 		buf->f_ffree = sbinfo->free_inodes;
2784 	}
2785 	/* else leave those fields 0 like simple_statfs */
2786 	return 0;
2787 }
2788 
2789 /*
2790  * File creation. Allocate an inode, and we're done..
2791  */
2792 static int
2793 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2794 {
2795 	struct inode *inode;
2796 	int error = -ENOSPC;
2797 
2798 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2799 	if (inode) {
2800 		error = simple_acl_create(dir, inode);
2801 		if (error)
2802 			goto out_iput;
2803 		error = security_inode_init_security(inode, dir,
2804 						     &dentry->d_name,
2805 						     shmem_initxattrs, NULL);
2806 		if (error && error != -EOPNOTSUPP)
2807 			goto out_iput;
2808 
2809 		error = 0;
2810 		dir->i_size += BOGO_DIRENT_SIZE;
2811 		dir->i_ctime = dir->i_mtime = current_time(dir);
2812 		d_instantiate(dentry, inode);
2813 		dget(dentry); /* Extra count - pin the dentry in core */
2814 	}
2815 	return error;
2816 out_iput:
2817 	iput(inode);
2818 	return error;
2819 }
2820 
2821 static int
2822 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2823 {
2824 	struct inode *inode;
2825 	int error = -ENOSPC;
2826 
2827 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2828 	if (inode) {
2829 		error = security_inode_init_security(inode, dir,
2830 						     NULL,
2831 						     shmem_initxattrs, NULL);
2832 		if (error && error != -EOPNOTSUPP)
2833 			goto out_iput;
2834 		error = simple_acl_create(dir, inode);
2835 		if (error)
2836 			goto out_iput;
2837 		d_tmpfile(dentry, inode);
2838 	}
2839 	return error;
2840 out_iput:
2841 	iput(inode);
2842 	return error;
2843 }
2844 
2845 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2846 {
2847 	int error;
2848 
2849 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2850 		return error;
2851 	inc_nlink(dir);
2852 	return 0;
2853 }
2854 
2855 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2856 		bool excl)
2857 {
2858 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2859 }
2860 
2861 /*
2862  * Link a file..
2863  */
2864 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2865 {
2866 	struct inode *inode = d_inode(old_dentry);
2867 	int ret;
2868 
2869 	/*
2870 	 * No ordinary (disk based) filesystem counts links as inodes;
2871 	 * but each new link needs a new dentry, pinning lowmem, and
2872 	 * tmpfs dentries cannot be pruned until they are unlinked.
2873 	 */
2874 	ret = shmem_reserve_inode(inode->i_sb);
2875 	if (ret)
2876 		goto out;
2877 
2878 	dir->i_size += BOGO_DIRENT_SIZE;
2879 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2880 	inc_nlink(inode);
2881 	ihold(inode);	/* New dentry reference */
2882 	dget(dentry);		/* Extra pinning count for the created dentry */
2883 	d_instantiate(dentry, inode);
2884 out:
2885 	return ret;
2886 }
2887 
2888 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2889 {
2890 	struct inode *inode = d_inode(dentry);
2891 
2892 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2893 		shmem_free_inode(inode->i_sb);
2894 
2895 	dir->i_size -= BOGO_DIRENT_SIZE;
2896 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2897 	drop_nlink(inode);
2898 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2899 	return 0;
2900 }
2901 
2902 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2903 {
2904 	if (!simple_empty(dentry))
2905 		return -ENOTEMPTY;
2906 
2907 	drop_nlink(d_inode(dentry));
2908 	drop_nlink(dir);
2909 	return shmem_unlink(dir, dentry);
2910 }
2911 
2912 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2913 {
2914 	bool old_is_dir = d_is_dir(old_dentry);
2915 	bool new_is_dir = d_is_dir(new_dentry);
2916 
2917 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2918 		if (old_is_dir) {
2919 			drop_nlink(old_dir);
2920 			inc_nlink(new_dir);
2921 		} else {
2922 			drop_nlink(new_dir);
2923 			inc_nlink(old_dir);
2924 		}
2925 	}
2926 	old_dir->i_ctime = old_dir->i_mtime =
2927 	new_dir->i_ctime = new_dir->i_mtime =
2928 	d_inode(old_dentry)->i_ctime =
2929 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2930 
2931 	return 0;
2932 }
2933 
2934 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2935 {
2936 	struct dentry *whiteout;
2937 	int error;
2938 
2939 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2940 	if (!whiteout)
2941 		return -ENOMEM;
2942 
2943 	error = shmem_mknod(old_dir, whiteout,
2944 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2945 	dput(whiteout);
2946 	if (error)
2947 		return error;
2948 
2949 	/*
2950 	 * Cheat and hash the whiteout while the old dentry is still in
2951 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2952 	 *
2953 	 * d_lookup() will consistently find one of them at this point,
2954 	 * not sure which one, but that isn't even important.
2955 	 */
2956 	d_rehash(whiteout);
2957 	return 0;
2958 }
2959 
2960 /*
2961  * The VFS layer already does all the dentry stuff for rename,
2962  * we just have to decrement the usage count for the target if
2963  * it exists so that the VFS layer correctly free's it when it
2964  * gets overwritten.
2965  */
2966 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2967 {
2968 	struct inode *inode = d_inode(old_dentry);
2969 	int they_are_dirs = S_ISDIR(inode->i_mode);
2970 
2971 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2972 		return -EINVAL;
2973 
2974 	if (flags & RENAME_EXCHANGE)
2975 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2976 
2977 	if (!simple_empty(new_dentry))
2978 		return -ENOTEMPTY;
2979 
2980 	if (flags & RENAME_WHITEOUT) {
2981 		int error;
2982 
2983 		error = shmem_whiteout(old_dir, old_dentry);
2984 		if (error)
2985 			return error;
2986 	}
2987 
2988 	if (d_really_is_positive(new_dentry)) {
2989 		(void) shmem_unlink(new_dir, new_dentry);
2990 		if (they_are_dirs) {
2991 			drop_nlink(d_inode(new_dentry));
2992 			drop_nlink(old_dir);
2993 		}
2994 	} else if (they_are_dirs) {
2995 		drop_nlink(old_dir);
2996 		inc_nlink(new_dir);
2997 	}
2998 
2999 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3000 	new_dir->i_size += BOGO_DIRENT_SIZE;
3001 	old_dir->i_ctime = old_dir->i_mtime =
3002 	new_dir->i_ctime = new_dir->i_mtime =
3003 	inode->i_ctime = current_time(old_dir);
3004 	return 0;
3005 }
3006 
3007 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3008 {
3009 	int error;
3010 	int len;
3011 	struct inode *inode;
3012 	struct page *page;
3013 
3014 	len = strlen(symname) + 1;
3015 	if (len > PAGE_SIZE)
3016 		return -ENAMETOOLONG;
3017 
3018 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3019 				VM_NORESERVE);
3020 	if (!inode)
3021 		return -ENOSPC;
3022 
3023 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3024 					     shmem_initxattrs, NULL);
3025 	if (error) {
3026 		if (error != -EOPNOTSUPP) {
3027 			iput(inode);
3028 			return error;
3029 		}
3030 		error = 0;
3031 	}
3032 
3033 	inode->i_size = len-1;
3034 	if (len <= SHORT_SYMLINK_LEN) {
3035 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3036 		if (!inode->i_link) {
3037 			iput(inode);
3038 			return -ENOMEM;
3039 		}
3040 		inode->i_op = &shmem_short_symlink_operations;
3041 	} else {
3042 		inode_nohighmem(inode);
3043 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3044 		if (error) {
3045 			iput(inode);
3046 			return error;
3047 		}
3048 		inode->i_mapping->a_ops = &shmem_aops;
3049 		inode->i_op = &shmem_symlink_inode_operations;
3050 		memcpy(page_address(page), symname, len);
3051 		SetPageUptodate(page);
3052 		set_page_dirty(page);
3053 		unlock_page(page);
3054 		put_page(page);
3055 	}
3056 	dir->i_size += BOGO_DIRENT_SIZE;
3057 	dir->i_ctime = dir->i_mtime = current_time(dir);
3058 	d_instantiate(dentry, inode);
3059 	dget(dentry);
3060 	return 0;
3061 }
3062 
3063 static void shmem_put_link(void *arg)
3064 {
3065 	mark_page_accessed(arg);
3066 	put_page(arg);
3067 }
3068 
3069 static const char *shmem_get_link(struct dentry *dentry,
3070 				  struct inode *inode,
3071 				  struct delayed_call *done)
3072 {
3073 	struct page *page = NULL;
3074 	int error;
3075 	if (!dentry) {
3076 		page = find_get_page(inode->i_mapping, 0);
3077 		if (!page)
3078 			return ERR_PTR(-ECHILD);
3079 		if (!PageUptodate(page)) {
3080 			put_page(page);
3081 			return ERR_PTR(-ECHILD);
3082 		}
3083 	} else {
3084 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3085 		if (error)
3086 			return ERR_PTR(error);
3087 		unlock_page(page);
3088 	}
3089 	set_delayed_call(done, shmem_put_link, page);
3090 	return page_address(page);
3091 }
3092 
3093 #ifdef CONFIG_TMPFS_XATTR
3094 /*
3095  * Superblocks without xattr inode operations may get some security.* xattr
3096  * support from the LSM "for free". As soon as we have any other xattrs
3097  * like ACLs, we also need to implement the security.* handlers at
3098  * filesystem level, though.
3099  */
3100 
3101 /*
3102  * Callback for security_inode_init_security() for acquiring xattrs.
3103  */
3104 static int shmem_initxattrs(struct inode *inode,
3105 			    const struct xattr *xattr_array,
3106 			    void *fs_info)
3107 {
3108 	struct shmem_inode_info *info = SHMEM_I(inode);
3109 	const struct xattr *xattr;
3110 	struct simple_xattr *new_xattr;
3111 	size_t len;
3112 
3113 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3114 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3115 		if (!new_xattr)
3116 			return -ENOMEM;
3117 
3118 		len = strlen(xattr->name) + 1;
3119 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3120 					  GFP_KERNEL);
3121 		if (!new_xattr->name) {
3122 			kfree(new_xattr);
3123 			return -ENOMEM;
3124 		}
3125 
3126 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3127 		       XATTR_SECURITY_PREFIX_LEN);
3128 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3129 		       xattr->name, len);
3130 
3131 		simple_xattr_list_add(&info->xattrs, new_xattr);
3132 	}
3133 
3134 	return 0;
3135 }
3136 
3137 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3138 				   struct dentry *unused, struct inode *inode,
3139 				   const char *name, void *buffer, size_t size)
3140 {
3141 	struct shmem_inode_info *info = SHMEM_I(inode);
3142 
3143 	name = xattr_full_name(handler, name);
3144 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3145 }
3146 
3147 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3148 				   struct dentry *unused, struct inode *inode,
3149 				   const char *name, const void *value,
3150 				   size_t size, int flags)
3151 {
3152 	struct shmem_inode_info *info = SHMEM_I(inode);
3153 
3154 	name = xattr_full_name(handler, name);
3155 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3156 }
3157 
3158 static const struct xattr_handler shmem_security_xattr_handler = {
3159 	.prefix = XATTR_SECURITY_PREFIX,
3160 	.get = shmem_xattr_handler_get,
3161 	.set = shmem_xattr_handler_set,
3162 };
3163 
3164 static const struct xattr_handler shmem_trusted_xattr_handler = {
3165 	.prefix = XATTR_TRUSTED_PREFIX,
3166 	.get = shmem_xattr_handler_get,
3167 	.set = shmem_xattr_handler_set,
3168 };
3169 
3170 static const struct xattr_handler *shmem_xattr_handlers[] = {
3171 #ifdef CONFIG_TMPFS_POSIX_ACL
3172 	&posix_acl_access_xattr_handler,
3173 	&posix_acl_default_xattr_handler,
3174 #endif
3175 	&shmem_security_xattr_handler,
3176 	&shmem_trusted_xattr_handler,
3177 	NULL
3178 };
3179 
3180 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3181 {
3182 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3183 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3184 }
3185 #endif /* CONFIG_TMPFS_XATTR */
3186 
3187 static const struct inode_operations shmem_short_symlink_operations = {
3188 	.get_link	= simple_get_link,
3189 #ifdef CONFIG_TMPFS_XATTR
3190 	.listxattr	= shmem_listxattr,
3191 #endif
3192 };
3193 
3194 static const struct inode_operations shmem_symlink_inode_operations = {
3195 	.get_link	= shmem_get_link,
3196 #ifdef CONFIG_TMPFS_XATTR
3197 	.listxattr	= shmem_listxattr,
3198 #endif
3199 };
3200 
3201 static struct dentry *shmem_get_parent(struct dentry *child)
3202 {
3203 	return ERR_PTR(-ESTALE);
3204 }
3205 
3206 static int shmem_match(struct inode *ino, void *vfh)
3207 {
3208 	__u32 *fh = vfh;
3209 	__u64 inum = fh[2];
3210 	inum = (inum << 32) | fh[1];
3211 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3212 }
3213 
3214 /* Find any alias of inode, but prefer a hashed alias */
3215 static struct dentry *shmem_find_alias(struct inode *inode)
3216 {
3217 	struct dentry *alias = d_find_alias(inode);
3218 
3219 	return alias ?: d_find_any_alias(inode);
3220 }
3221 
3222 
3223 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3224 		struct fid *fid, int fh_len, int fh_type)
3225 {
3226 	struct inode *inode;
3227 	struct dentry *dentry = NULL;
3228 	u64 inum;
3229 
3230 	if (fh_len < 3)
3231 		return NULL;
3232 
3233 	inum = fid->raw[2];
3234 	inum = (inum << 32) | fid->raw[1];
3235 
3236 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3237 			shmem_match, fid->raw);
3238 	if (inode) {
3239 		dentry = shmem_find_alias(inode);
3240 		iput(inode);
3241 	}
3242 
3243 	return dentry;
3244 }
3245 
3246 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3247 				struct inode *parent)
3248 {
3249 	if (*len < 3) {
3250 		*len = 3;
3251 		return FILEID_INVALID;
3252 	}
3253 
3254 	if (inode_unhashed(inode)) {
3255 		/* Unfortunately insert_inode_hash is not idempotent,
3256 		 * so as we hash inodes here rather than at creation
3257 		 * time, we need a lock to ensure we only try
3258 		 * to do it once
3259 		 */
3260 		static DEFINE_SPINLOCK(lock);
3261 		spin_lock(&lock);
3262 		if (inode_unhashed(inode))
3263 			__insert_inode_hash(inode,
3264 					    inode->i_ino + inode->i_generation);
3265 		spin_unlock(&lock);
3266 	}
3267 
3268 	fh[0] = inode->i_generation;
3269 	fh[1] = inode->i_ino;
3270 	fh[2] = ((__u64)inode->i_ino) >> 32;
3271 
3272 	*len = 3;
3273 	return 1;
3274 }
3275 
3276 static const struct export_operations shmem_export_ops = {
3277 	.get_parent     = shmem_get_parent,
3278 	.encode_fh      = shmem_encode_fh,
3279 	.fh_to_dentry	= shmem_fh_to_dentry,
3280 };
3281 
3282 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3283 			       bool remount)
3284 {
3285 	char *this_char, *value, *rest;
3286 	struct mempolicy *mpol = NULL;
3287 	uid_t uid;
3288 	gid_t gid;
3289 
3290 	while (options != NULL) {
3291 		this_char = options;
3292 		for (;;) {
3293 			/*
3294 			 * NUL-terminate this option: unfortunately,
3295 			 * mount options form a comma-separated list,
3296 			 * but mpol's nodelist may also contain commas.
3297 			 */
3298 			options = strchr(options, ',');
3299 			if (options == NULL)
3300 				break;
3301 			options++;
3302 			if (!isdigit(*options)) {
3303 				options[-1] = '\0';
3304 				break;
3305 			}
3306 		}
3307 		if (!*this_char)
3308 			continue;
3309 		if ((value = strchr(this_char,'=')) != NULL) {
3310 			*value++ = 0;
3311 		} else {
3312 			pr_err("tmpfs: No value for mount option '%s'\n",
3313 			       this_char);
3314 			goto error;
3315 		}
3316 
3317 		if (!strcmp(this_char,"size")) {
3318 			unsigned long long size;
3319 			size = memparse(value,&rest);
3320 			if (*rest == '%') {
3321 				size <<= PAGE_SHIFT;
3322 				size *= totalram_pages;
3323 				do_div(size, 100);
3324 				rest++;
3325 			}
3326 			if (*rest)
3327 				goto bad_val;
3328 			sbinfo->max_blocks =
3329 				DIV_ROUND_UP(size, PAGE_SIZE);
3330 		} else if (!strcmp(this_char,"nr_blocks")) {
3331 			sbinfo->max_blocks = memparse(value, &rest);
3332 			if (*rest)
3333 				goto bad_val;
3334 		} else if (!strcmp(this_char,"nr_inodes")) {
3335 			sbinfo->max_inodes = memparse(value, &rest);
3336 			if (*rest)
3337 				goto bad_val;
3338 		} else if (!strcmp(this_char,"mode")) {
3339 			if (remount)
3340 				continue;
3341 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3342 			if (*rest)
3343 				goto bad_val;
3344 		} else if (!strcmp(this_char,"uid")) {
3345 			if (remount)
3346 				continue;
3347 			uid = simple_strtoul(value, &rest, 0);
3348 			if (*rest)
3349 				goto bad_val;
3350 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3351 			if (!uid_valid(sbinfo->uid))
3352 				goto bad_val;
3353 		} else if (!strcmp(this_char,"gid")) {
3354 			if (remount)
3355 				continue;
3356 			gid = simple_strtoul(value, &rest, 0);
3357 			if (*rest)
3358 				goto bad_val;
3359 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3360 			if (!gid_valid(sbinfo->gid))
3361 				goto bad_val;
3362 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3363 		} else if (!strcmp(this_char, "huge")) {
3364 			int huge;
3365 			huge = shmem_parse_huge(value);
3366 			if (huge < 0)
3367 				goto bad_val;
3368 			if (!has_transparent_hugepage() &&
3369 					huge != SHMEM_HUGE_NEVER)
3370 				goto bad_val;
3371 			sbinfo->huge = huge;
3372 #endif
3373 #ifdef CONFIG_NUMA
3374 		} else if (!strcmp(this_char,"mpol")) {
3375 			mpol_put(mpol);
3376 			mpol = NULL;
3377 			if (mpol_parse_str(value, &mpol))
3378 				goto bad_val;
3379 #endif
3380 		} else {
3381 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3382 			goto error;
3383 		}
3384 	}
3385 	sbinfo->mpol = mpol;
3386 	return 0;
3387 
3388 bad_val:
3389 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3390 	       value, this_char);
3391 error:
3392 	mpol_put(mpol);
3393 	return 1;
3394 
3395 }
3396 
3397 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3398 {
3399 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3400 	struct shmem_sb_info config = *sbinfo;
3401 	unsigned long inodes;
3402 	int error = -EINVAL;
3403 
3404 	config.mpol = NULL;
3405 	if (shmem_parse_options(data, &config, true))
3406 		return error;
3407 
3408 	spin_lock(&sbinfo->stat_lock);
3409 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3410 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3411 		goto out;
3412 	if (config.max_inodes < inodes)
3413 		goto out;
3414 	/*
3415 	 * Those tests disallow limited->unlimited while any are in use;
3416 	 * but we must separately disallow unlimited->limited, because
3417 	 * in that case we have no record of how much is already in use.
3418 	 */
3419 	if (config.max_blocks && !sbinfo->max_blocks)
3420 		goto out;
3421 	if (config.max_inodes && !sbinfo->max_inodes)
3422 		goto out;
3423 
3424 	error = 0;
3425 	sbinfo->huge = config.huge;
3426 	sbinfo->max_blocks  = config.max_blocks;
3427 	sbinfo->max_inodes  = config.max_inodes;
3428 	sbinfo->free_inodes = config.max_inodes - inodes;
3429 
3430 	/*
3431 	 * Preserve previous mempolicy unless mpol remount option was specified.
3432 	 */
3433 	if (config.mpol) {
3434 		mpol_put(sbinfo->mpol);
3435 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3436 	}
3437 out:
3438 	spin_unlock(&sbinfo->stat_lock);
3439 	return error;
3440 }
3441 
3442 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3443 {
3444 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3445 
3446 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3447 		seq_printf(seq, ",size=%luk",
3448 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3449 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3450 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3451 	if (sbinfo->mode != (0777 | S_ISVTX))
3452 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3453 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3454 		seq_printf(seq, ",uid=%u",
3455 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3456 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3457 		seq_printf(seq, ",gid=%u",
3458 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3459 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3460 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3461 	if (sbinfo->huge)
3462 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3463 #endif
3464 	shmem_show_mpol(seq, sbinfo->mpol);
3465 	return 0;
3466 }
3467 
3468 #endif /* CONFIG_TMPFS */
3469 
3470 static void shmem_put_super(struct super_block *sb)
3471 {
3472 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3473 
3474 	percpu_counter_destroy(&sbinfo->used_blocks);
3475 	mpol_put(sbinfo->mpol);
3476 	kfree(sbinfo);
3477 	sb->s_fs_info = NULL;
3478 }
3479 
3480 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3481 {
3482 	struct inode *inode;
3483 	struct shmem_sb_info *sbinfo;
3484 	int err = -ENOMEM;
3485 
3486 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3487 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3488 				L1_CACHE_BYTES), GFP_KERNEL);
3489 	if (!sbinfo)
3490 		return -ENOMEM;
3491 
3492 	sbinfo->mode = 0777 | S_ISVTX;
3493 	sbinfo->uid = current_fsuid();
3494 	sbinfo->gid = current_fsgid();
3495 	sb->s_fs_info = sbinfo;
3496 
3497 #ifdef CONFIG_TMPFS
3498 	/*
3499 	 * Per default we only allow half of the physical ram per
3500 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3501 	 * but the internal instance is left unlimited.
3502 	 */
3503 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3504 		sbinfo->max_blocks = shmem_default_max_blocks();
3505 		sbinfo->max_inodes = shmem_default_max_inodes();
3506 		if (shmem_parse_options(data, sbinfo, false)) {
3507 			err = -EINVAL;
3508 			goto failed;
3509 		}
3510 	} else {
3511 		sb->s_flags |= SB_NOUSER;
3512 	}
3513 	sb->s_export_op = &shmem_export_ops;
3514 	sb->s_flags |= SB_NOSEC;
3515 #else
3516 	sb->s_flags |= SB_NOUSER;
3517 #endif
3518 
3519 	spin_lock_init(&sbinfo->stat_lock);
3520 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3521 		goto failed;
3522 	sbinfo->free_inodes = sbinfo->max_inodes;
3523 	spin_lock_init(&sbinfo->shrinklist_lock);
3524 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3525 
3526 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3527 	sb->s_blocksize = PAGE_SIZE;
3528 	sb->s_blocksize_bits = PAGE_SHIFT;
3529 	sb->s_magic = TMPFS_MAGIC;
3530 	sb->s_op = &shmem_ops;
3531 	sb->s_time_gran = 1;
3532 #ifdef CONFIG_TMPFS_XATTR
3533 	sb->s_xattr = shmem_xattr_handlers;
3534 #endif
3535 #ifdef CONFIG_TMPFS_POSIX_ACL
3536 	sb->s_flags |= SB_POSIXACL;
3537 #endif
3538 	uuid_gen(&sb->s_uuid);
3539 
3540 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3541 	if (!inode)
3542 		goto failed;
3543 	inode->i_uid = sbinfo->uid;
3544 	inode->i_gid = sbinfo->gid;
3545 	sb->s_root = d_make_root(inode);
3546 	if (!sb->s_root)
3547 		goto failed;
3548 	return 0;
3549 
3550 failed:
3551 	shmem_put_super(sb);
3552 	return err;
3553 }
3554 
3555 static struct kmem_cache *shmem_inode_cachep;
3556 
3557 static struct inode *shmem_alloc_inode(struct super_block *sb)
3558 {
3559 	struct shmem_inode_info *info;
3560 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3561 	if (!info)
3562 		return NULL;
3563 	return &info->vfs_inode;
3564 }
3565 
3566 static void shmem_destroy_callback(struct rcu_head *head)
3567 {
3568 	struct inode *inode = container_of(head, struct inode, i_rcu);
3569 	if (S_ISLNK(inode->i_mode))
3570 		kfree(inode->i_link);
3571 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3572 }
3573 
3574 static void shmem_destroy_inode(struct inode *inode)
3575 {
3576 	if (S_ISREG(inode->i_mode))
3577 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3578 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3579 }
3580 
3581 static void shmem_init_inode(void *foo)
3582 {
3583 	struct shmem_inode_info *info = foo;
3584 	inode_init_once(&info->vfs_inode);
3585 }
3586 
3587 static void shmem_init_inodecache(void)
3588 {
3589 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3590 				sizeof(struct shmem_inode_info),
3591 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3592 }
3593 
3594 static void shmem_destroy_inodecache(void)
3595 {
3596 	kmem_cache_destroy(shmem_inode_cachep);
3597 }
3598 
3599 static const struct address_space_operations shmem_aops = {
3600 	.writepage	= shmem_writepage,
3601 	.set_page_dirty	= __set_page_dirty_no_writeback,
3602 #ifdef CONFIG_TMPFS
3603 	.write_begin	= shmem_write_begin,
3604 	.write_end	= shmem_write_end,
3605 #endif
3606 #ifdef CONFIG_MIGRATION
3607 	.migratepage	= migrate_page,
3608 #endif
3609 	.error_remove_page = generic_error_remove_page,
3610 };
3611 
3612 static const struct file_operations shmem_file_operations = {
3613 	.mmap		= shmem_mmap,
3614 	.get_unmapped_area = shmem_get_unmapped_area,
3615 #ifdef CONFIG_TMPFS
3616 	.llseek		= shmem_file_llseek,
3617 	.read_iter	= shmem_file_read_iter,
3618 	.write_iter	= generic_file_write_iter,
3619 	.fsync		= noop_fsync,
3620 	.splice_read	= generic_file_splice_read,
3621 	.splice_write	= iter_file_splice_write,
3622 	.fallocate	= shmem_fallocate,
3623 #endif
3624 };
3625 
3626 static const struct inode_operations shmem_inode_operations = {
3627 	.getattr	= shmem_getattr,
3628 	.setattr	= shmem_setattr,
3629 #ifdef CONFIG_TMPFS_XATTR
3630 	.listxattr	= shmem_listxattr,
3631 	.set_acl	= simple_set_acl,
3632 #endif
3633 };
3634 
3635 static const struct inode_operations shmem_dir_inode_operations = {
3636 #ifdef CONFIG_TMPFS
3637 	.create		= shmem_create,
3638 	.lookup		= simple_lookup,
3639 	.link		= shmem_link,
3640 	.unlink		= shmem_unlink,
3641 	.symlink	= shmem_symlink,
3642 	.mkdir		= shmem_mkdir,
3643 	.rmdir		= shmem_rmdir,
3644 	.mknod		= shmem_mknod,
3645 	.rename		= shmem_rename2,
3646 	.tmpfile	= shmem_tmpfile,
3647 #endif
3648 #ifdef CONFIG_TMPFS_XATTR
3649 	.listxattr	= shmem_listxattr,
3650 #endif
3651 #ifdef CONFIG_TMPFS_POSIX_ACL
3652 	.setattr	= shmem_setattr,
3653 	.set_acl	= simple_set_acl,
3654 #endif
3655 };
3656 
3657 static const struct inode_operations shmem_special_inode_operations = {
3658 #ifdef CONFIG_TMPFS_XATTR
3659 	.listxattr	= shmem_listxattr,
3660 #endif
3661 #ifdef CONFIG_TMPFS_POSIX_ACL
3662 	.setattr	= shmem_setattr,
3663 	.set_acl	= simple_set_acl,
3664 #endif
3665 };
3666 
3667 static const struct super_operations shmem_ops = {
3668 	.alloc_inode	= shmem_alloc_inode,
3669 	.destroy_inode	= shmem_destroy_inode,
3670 #ifdef CONFIG_TMPFS
3671 	.statfs		= shmem_statfs,
3672 	.remount_fs	= shmem_remount_fs,
3673 	.show_options	= shmem_show_options,
3674 #endif
3675 	.evict_inode	= shmem_evict_inode,
3676 	.drop_inode	= generic_delete_inode,
3677 	.put_super	= shmem_put_super,
3678 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3679 	.nr_cached_objects	= shmem_unused_huge_count,
3680 	.free_cached_objects	= shmem_unused_huge_scan,
3681 #endif
3682 };
3683 
3684 static const struct vm_operations_struct shmem_vm_ops = {
3685 	.fault		= shmem_fault,
3686 	.map_pages	= filemap_map_pages,
3687 #ifdef CONFIG_NUMA
3688 	.set_policy     = shmem_set_policy,
3689 	.get_policy     = shmem_get_policy,
3690 #endif
3691 };
3692 
3693 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3694 	int flags, const char *dev_name, void *data)
3695 {
3696 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3697 }
3698 
3699 static struct file_system_type shmem_fs_type = {
3700 	.owner		= THIS_MODULE,
3701 	.name		= "tmpfs",
3702 	.mount		= shmem_mount,
3703 	.kill_sb	= kill_litter_super,
3704 	.fs_flags	= FS_USERNS_MOUNT,
3705 };
3706 
3707 int __init shmem_init(void)
3708 {
3709 	int error;
3710 
3711 	/* If rootfs called this, don't re-init */
3712 	if (shmem_inode_cachep)
3713 		return 0;
3714 
3715 	shmem_init_inodecache();
3716 
3717 	error = register_filesystem(&shmem_fs_type);
3718 	if (error) {
3719 		pr_err("Could not register tmpfs\n");
3720 		goto out2;
3721 	}
3722 
3723 	shm_mnt = kern_mount(&shmem_fs_type);
3724 	if (IS_ERR(shm_mnt)) {
3725 		error = PTR_ERR(shm_mnt);
3726 		pr_err("Could not kern_mount tmpfs\n");
3727 		goto out1;
3728 	}
3729 
3730 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3731 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3732 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3733 	else
3734 		shmem_huge = 0; /* just in case it was patched */
3735 #endif
3736 	return 0;
3737 
3738 out1:
3739 	unregister_filesystem(&shmem_fs_type);
3740 out2:
3741 	shmem_destroy_inodecache();
3742 	shm_mnt = ERR_PTR(error);
3743 	return error;
3744 }
3745 
3746 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3747 static ssize_t shmem_enabled_show(struct kobject *kobj,
3748 		struct kobj_attribute *attr, char *buf)
3749 {
3750 	int values[] = {
3751 		SHMEM_HUGE_ALWAYS,
3752 		SHMEM_HUGE_WITHIN_SIZE,
3753 		SHMEM_HUGE_ADVISE,
3754 		SHMEM_HUGE_NEVER,
3755 		SHMEM_HUGE_DENY,
3756 		SHMEM_HUGE_FORCE,
3757 	};
3758 	int i, count;
3759 
3760 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3761 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3762 
3763 		count += sprintf(buf + count, fmt,
3764 				shmem_format_huge(values[i]));
3765 	}
3766 	buf[count - 1] = '\n';
3767 	return count;
3768 }
3769 
3770 static ssize_t shmem_enabled_store(struct kobject *kobj,
3771 		struct kobj_attribute *attr, const char *buf, size_t count)
3772 {
3773 	char tmp[16];
3774 	int huge;
3775 
3776 	if (count + 1 > sizeof(tmp))
3777 		return -EINVAL;
3778 	memcpy(tmp, buf, count);
3779 	tmp[count] = '\0';
3780 	if (count && tmp[count - 1] == '\n')
3781 		tmp[count - 1] = '\0';
3782 
3783 	huge = shmem_parse_huge(tmp);
3784 	if (huge == -EINVAL)
3785 		return -EINVAL;
3786 	if (!has_transparent_hugepage() &&
3787 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3788 		return -EINVAL;
3789 
3790 	shmem_huge = huge;
3791 	if (shmem_huge > SHMEM_HUGE_DENY)
3792 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3793 	return count;
3794 }
3795 
3796 struct kobj_attribute shmem_enabled_attr =
3797 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3798 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3799 
3800 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3801 bool shmem_huge_enabled(struct vm_area_struct *vma)
3802 {
3803 	struct inode *inode = file_inode(vma->vm_file);
3804 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3805 	loff_t i_size;
3806 	pgoff_t off;
3807 
3808 	if (shmem_huge == SHMEM_HUGE_FORCE)
3809 		return true;
3810 	if (shmem_huge == SHMEM_HUGE_DENY)
3811 		return false;
3812 	switch (sbinfo->huge) {
3813 		case SHMEM_HUGE_NEVER:
3814 			return false;
3815 		case SHMEM_HUGE_ALWAYS:
3816 			return true;
3817 		case SHMEM_HUGE_WITHIN_SIZE:
3818 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3819 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3820 			if (i_size >= HPAGE_PMD_SIZE &&
3821 					i_size >> PAGE_SHIFT >= off)
3822 				return true;
3823 			/* fall through */
3824 		case SHMEM_HUGE_ADVISE:
3825 			/* TODO: implement fadvise() hints */
3826 			return (vma->vm_flags & VM_HUGEPAGE);
3827 		default:
3828 			VM_BUG_ON(1);
3829 			return false;
3830 	}
3831 }
3832 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3833 
3834 #else /* !CONFIG_SHMEM */
3835 
3836 /*
3837  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3838  *
3839  * This is intended for small system where the benefits of the full
3840  * shmem code (swap-backed and resource-limited) are outweighed by
3841  * their complexity. On systems without swap this code should be
3842  * effectively equivalent, but much lighter weight.
3843  */
3844 
3845 static struct file_system_type shmem_fs_type = {
3846 	.name		= "tmpfs",
3847 	.mount		= ramfs_mount,
3848 	.kill_sb	= kill_litter_super,
3849 	.fs_flags	= FS_USERNS_MOUNT,
3850 };
3851 
3852 int __init shmem_init(void)
3853 {
3854 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3855 
3856 	shm_mnt = kern_mount(&shmem_fs_type);
3857 	BUG_ON(IS_ERR(shm_mnt));
3858 
3859 	return 0;
3860 }
3861 
3862 int shmem_unuse(swp_entry_t swap, struct page *page)
3863 {
3864 	return 0;
3865 }
3866 
3867 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3868 {
3869 	return 0;
3870 }
3871 
3872 void shmem_unlock_mapping(struct address_space *mapping)
3873 {
3874 }
3875 
3876 #ifdef CONFIG_MMU
3877 unsigned long shmem_get_unmapped_area(struct file *file,
3878 				      unsigned long addr, unsigned long len,
3879 				      unsigned long pgoff, unsigned long flags)
3880 {
3881 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3882 }
3883 #endif
3884 
3885 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3886 {
3887 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3888 }
3889 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3890 
3891 #define shmem_vm_ops				generic_file_vm_ops
3892 #define shmem_file_operations			ramfs_file_operations
3893 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3894 #define shmem_acct_size(flags, size)		0
3895 #define shmem_unacct_size(flags, size)		do {} while (0)
3896 
3897 #endif /* CONFIG_SHMEM */
3898 
3899 /* common code */
3900 
3901 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3902 				       unsigned long flags, unsigned int i_flags)
3903 {
3904 	struct inode *inode;
3905 	struct file *res;
3906 
3907 	if (IS_ERR(mnt))
3908 		return ERR_CAST(mnt);
3909 
3910 	if (size < 0 || size > MAX_LFS_FILESIZE)
3911 		return ERR_PTR(-EINVAL);
3912 
3913 	if (shmem_acct_size(flags, size))
3914 		return ERR_PTR(-ENOMEM);
3915 
3916 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3917 				flags);
3918 	if (unlikely(!inode)) {
3919 		shmem_unacct_size(flags, size);
3920 		return ERR_PTR(-ENOSPC);
3921 	}
3922 	inode->i_flags |= i_flags;
3923 	inode->i_size = size;
3924 	clear_nlink(inode);	/* It is unlinked */
3925 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3926 	if (!IS_ERR(res))
3927 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3928 				&shmem_file_operations);
3929 	if (IS_ERR(res))
3930 		iput(inode);
3931 	return res;
3932 }
3933 
3934 /**
3935  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3936  * 	kernel internal.  There will be NO LSM permission checks against the
3937  * 	underlying inode.  So users of this interface must do LSM checks at a
3938  *	higher layer.  The users are the big_key and shm implementations.  LSM
3939  *	checks are provided at the key or shm level rather than the inode.
3940  * @name: name for dentry (to be seen in /proc/<pid>/maps
3941  * @size: size to be set for the file
3942  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3943  */
3944 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3945 {
3946 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3947 }
3948 
3949 /**
3950  * shmem_file_setup - get an unlinked file living in tmpfs
3951  * @name: name for dentry (to be seen in /proc/<pid>/maps
3952  * @size: size to be set for the file
3953  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3954  */
3955 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3956 {
3957 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3958 }
3959 EXPORT_SYMBOL_GPL(shmem_file_setup);
3960 
3961 /**
3962  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3963  * @mnt: the tmpfs mount where the file will be created
3964  * @name: name for dentry (to be seen in /proc/<pid>/maps
3965  * @size: size to be set for the file
3966  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3967  */
3968 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3969 				       loff_t size, unsigned long flags)
3970 {
3971 	return __shmem_file_setup(mnt, name, size, flags, 0);
3972 }
3973 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3974 
3975 /**
3976  * shmem_zero_setup - setup a shared anonymous mapping
3977  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3978  */
3979 int shmem_zero_setup(struct vm_area_struct *vma)
3980 {
3981 	struct file *file;
3982 	loff_t size = vma->vm_end - vma->vm_start;
3983 
3984 	/*
3985 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3986 	 * between XFS directory reading and selinux: since this file is only
3987 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3988 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3989 	 */
3990 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3991 	if (IS_ERR(file))
3992 		return PTR_ERR(file);
3993 
3994 	if (vma->vm_file)
3995 		fput(vma->vm_file);
3996 	vma->vm_file = file;
3997 	vma->vm_ops = &shmem_vm_ops;
3998 
3999 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4000 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4001 			(vma->vm_end & HPAGE_PMD_MASK)) {
4002 		khugepaged_enter(vma, vma->vm_flags);
4003 	}
4004 
4005 	return 0;
4006 }
4007 
4008 /**
4009  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4010  * @mapping:	the page's address_space
4011  * @index:	the page index
4012  * @gfp:	the page allocator flags to use if allocating
4013  *
4014  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4015  * with any new page allocations done using the specified allocation flags.
4016  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4017  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4018  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4019  *
4020  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4021  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4022  */
4023 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4024 					 pgoff_t index, gfp_t gfp)
4025 {
4026 #ifdef CONFIG_SHMEM
4027 	struct inode *inode = mapping->host;
4028 	struct page *page;
4029 	int error;
4030 
4031 	BUG_ON(mapping->a_ops != &shmem_aops);
4032 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4033 				  gfp, NULL, NULL, NULL);
4034 	if (error)
4035 		page = ERR_PTR(error);
4036 	else
4037 		unlock_page(page);
4038 	return page;
4039 #else
4040 	/*
4041 	 * The tiny !SHMEM case uses ramfs without swap
4042 	 */
4043 	return read_cache_page_gfp(mapping, index, gfp);
4044 #endif
4045 }
4046 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4047