1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/aio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 #include <linux/syscalls.h> 70 #include <linux/fcntl.h> 71 #include <uapi/linux/memfd.h> 72 73 #include <asm/uaccess.h> 74 #include <asm/pgtable.h> 75 76 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 77 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 78 79 /* Pretend that each entry is of this size in directory's i_size */ 80 #define BOGO_DIRENT_SIZE 20 81 82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 83 #define SHORT_SYMLINK_LEN 128 84 85 /* 86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 87 * inode->i_private (with i_mutex making sure that it has only one user at 88 * a time): we would prefer not to enlarge the shmem inode just for that. 89 */ 90 struct shmem_falloc { 91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 92 pgoff_t start; /* start of range currently being fallocated */ 93 pgoff_t next; /* the next page offset to be fallocated */ 94 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 96 }; 97 98 /* Flag allocation requirements to shmem_getpage */ 99 enum sgp_type { 100 SGP_READ, /* don't exceed i_size, don't allocate page */ 101 SGP_CACHE, /* don't exceed i_size, may allocate page */ 102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 105 }; 106 107 #ifdef CONFIG_TMPFS 108 static unsigned long shmem_default_max_blocks(void) 109 { 110 return totalram_pages / 2; 111 } 112 113 static unsigned long shmem_default_max_inodes(void) 114 { 115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 116 } 117 #endif 118 119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 120 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 121 struct shmem_inode_info *info, pgoff_t index); 122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 124 125 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 126 struct page **pagep, enum sgp_type sgp, int *fault_type) 127 { 128 return shmem_getpage_gfp(inode, index, pagep, sgp, 129 mapping_gfp_mask(inode->i_mapping), fault_type); 130 } 131 132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 133 { 134 return sb->s_fs_info; 135 } 136 137 /* 138 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 139 * for shared memory and for shared anonymous (/dev/zero) mappings 140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 141 * consistent with the pre-accounting of private mappings ... 142 */ 143 static inline int shmem_acct_size(unsigned long flags, loff_t size) 144 { 145 return (flags & VM_NORESERVE) ? 146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 147 } 148 149 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 150 { 151 if (!(flags & VM_NORESERVE)) 152 vm_unacct_memory(VM_ACCT(size)); 153 } 154 155 static inline int shmem_reacct_size(unsigned long flags, 156 loff_t oldsize, loff_t newsize) 157 { 158 if (!(flags & VM_NORESERVE)) { 159 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 160 return security_vm_enough_memory_mm(current->mm, 161 VM_ACCT(newsize) - VM_ACCT(oldsize)); 162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 164 } 165 return 0; 166 } 167 168 /* 169 * ... whereas tmpfs objects are accounted incrementally as 170 * pages are allocated, in order to allow huge sparse files. 171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 173 */ 174 static inline int shmem_acct_block(unsigned long flags) 175 { 176 return (flags & VM_NORESERVE) ? 177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 178 } 179 180 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 181 { 182 if (flags & VM_NORESERVE) 183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 184 } 185 186 static const struct super_operations shmem_ops; 187 static const struct address_space_operations shmem_aops; 188 static const struct file_operations shmem_file_operations; 189 static const struct inode_operations shmem_inode_operations; 190 static const struct inode_operations shmem_dir_inode_operations; 191 static const struct inode_operations shmem_special_inode_operations; 192 static const struct vm_operations_struct shmem_vm_ops; 193 194 static LIST_HEAD(shmem_swaplist); 195 static DEFINE_MUTEX(shmem_swaplist_mutex); 196 197 static int shmem_reserve_inode(struct super_block *sb) 198 { 199 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 200 if (sbinfo->max_inodes) { 201 spin_lock(&sbinfo->stat_lock); 202 if (!sbinfo->free_inodes) { 203 spin_unlock(&sbinfo->stat_lock); 204 return -ENOSPC; 205 } 206 sbinfo->free_inodes--; 207 spin_unlock(&sbinfo->stat_lock); 208 } 209 return 0; 210 } 211 212 static void shmem_free_inode(struct super_block *sb) 213 { 214 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 215 if (sbinfo->max_inodes) { 216 spin_lock(&sbinfo->stat_lock); 217 sbinfo->free_inodes++; 218 spin_unlock(&sbinfo->stat_lock); 219 } 220 } 221 222 /** 223 * shmem_recalc_inode - recalculate the block usage of an inode 224 * @inode: inode to recalc 225 * 226 * We have to calculate the free blocks since the mm can drop 227 * undirtied hole pages behind our back. 228 * 229 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 230 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 231 * 232 * It has to be called with the spinlock held. 233 */ 234 static void shmem_recalc_inode(struct inode *inode) 235 { 236 struct shmem_inode_info *info = SHMEM_I(inode); 237 long freed; 238 239 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 240 if (freed > 0) { 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 if (sbinfo->max_blocks) 243 percpu_counter_add(&sbinfo->used_blocks, -freed); 244 info->alloced -= freed; 245 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 246 shmem_unacct_blocks(info->flags, freed); 247 } 248 } 249 250 /* 251 * Replace item expected in radix tree by a new item, while holding tree lock. 252 */ 253 static int shmem_radix_tree_replace(struct address_space *mapping, 254 pgoff_t index, void *expected, void *replacement) 255 { 256 void **pslot; 257 void *item; 258 259 VM_BUG_ON(!expected); 260 VM_BUG_ON(!replacement); 261 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 262 if (!pslot) 263 return -ENOENT; 264 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 265 if (item != expected) 266 return -ENOENT; 267 radix_tree_replace_slot(pslot, replacement); 268 return 0; 269 } 270 271 /* 272 * Sometimes, before we decide whether to proceed or to fail, we must check 273 * that an entry was not already brought back from swap by a racing thread. 274 * 275 * Checking page is not enough: by the time a SwapCache page is locked, it 276 * might be reused, and again be SwapCache, using the same swap as before. 277 */ 278 static bool shmem_confirm_swap(struct address_space *mapping, 279 pgoff_t index, swp_entry_t swap) 280 { 281 void *item; 282 283 rcu_read_lock(); 284 item = radix_tree_lookup(&mapping->page_tree, index); 285 rcu_read_unlock(); 286 return item == swp_to_radix_entry(swap); 287 } 288 289 /* 290 * Like add_to_page_cache_locked, but error if expected item has gone. 291 */ 292 static int shmem_add_to_page_cache(struct page *page, 293 struct address_space *mapping, 294 pgoff_t index, void *expected) 295 { 296 int error; 297 298 VM_BUG_ON_PAGE(!PageLocked(page), page); 299 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 300 301 page_cache_get(page); 302 page->mapping = mapping; 303 page->index = index; 304 305 spin_lock_irq(&mapping->tree_lock); 306 if (!expected) 307 error = radix_tree_insert(&mapping->page_tree, index, page); 308 else 309 error = shmem_radix_tree_replace(mapping, index, expected, 310 page); 311 if (!error) { 312 mapping->nrpages++; 313 __inc_zone_page_state(page, NR_FILE_PAGES); 314 __inc_zone_page_state(page, NR_SHMEM); 315 spin_unlock_irq(&mapping->tree_lock); 316 } else { 317 page->mapping = NULL; 318 spin_unlock_irq(&mapping->tree_lock); 319 page_cache_release(page); 320 } 321 return error; 322 } 323 324 /* 325 * Like delete_from_page_cache, but substitutes swap for page. 326 */ 327 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 328 { 329 struct address_space *mapping = page->mapping; 330 int error; 331 332 spin_lock_irq(&mapping->tree_lock); 333 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 334 page->mapping = NULL; 335 mapping->nrpages--; 336 __dec_zone_page_state(page, NR_FILE_PAGES); 337 __dec_zone_page_state(page, NR_SHMEM); 338 spin_unlock_irq(&mapping->tree_lock); 339 page_cache_release(page); 340 BUG_ON(error); 341 } 342 343 /* 344 * Remove swap entry from radix tree, free the swap and its page cache. 345 */ 346 static int shmem_free_swap(struct address_space *mapping, 347 pgoff_t index, void *radswap) 348 { 349 void *old; 350 351 spin_lock_irq(&mapping->tree_lock); 352 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 353 spin_unlock_irq(&mapping->tree_lock); 354 if (old != radswap) 355 return -ENOENT; 356 free_swap_and_cache(radix_to_swp_entry(radswap)); 357 return 0; 358 } 359 360 /* 361 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 362 */ 363 void shmem_unlock_mapping(struct address_space *mapping) 364 { 365 struct pagevec pvec; 366 pgoff_t indices[PAGEVEC_SIZE]; 367 pgoff_t index = 0; 368 369 pagevec_init(&pvec, 0); 370 /* 371 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 372 */ 373 while (!mapping_unevictable(mapping)) { 374 /* 375 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 376 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 377 */ 378 pvec.nr = find_get_entries(mapping, index, 379 PAGEVEC_SIZE, pvec.pages, indices); 380 if (!pvec.nr) 381 break; 382 index = indices[pvec.nr - 1] + 1; 383 pagevec_remove_exceptionals(&pvec); 384 check_move_unevictable_pages(pvec.pages, pvec.nr); 385 pagevec_release(&pvec); 386 cond_resched(); 387 } 388 } 389 390 /* 391 * Remove range of pages and swap entries from radix tree, and free them. 392 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 393 */ 394 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 395 bool unfalloc) 396 { 397 struct address_space *mapping = inode->i_mapping; 398 struct shmem_inode_info *info = SHMEM_I(inode); 399 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 400 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 401 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 402 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 403 struct pagevec pvec; 404 pgoff_t indices[PAGEVEC_SIZE]; 405 long nr_swaps_freed = 0; 406 pgoff_t index; 407 int i; 408 409 if (lend == -1) 410 end = -1; /* unsigned, so actually very big */ 411 412 pagevec_init(&pvec, 0); 413 index = start; 414 while (index < end) { 415 pvec.nr = find_get_entries(mapping, index, 416 min(end - index, (pgoff_t)PAGEVEC_SIZE), 417 pvec.pages, indices); 418 if (!pvec.nr) 419 break; 420 for (i = 0; i < pagevec_count(&pvec); i++) { 421 struct page *page = pvec.pages[i]; 422 423 index = indices[i]; 424 if (index >= end) 425 break; 426 427 if (radix_tree_exceptional_entry(page)) { 428 if (unfalloc) 429 continue; 430 nr_swaps_freed += !shmem_free_swap(mapping, 431 index, page); 432 continue; 433 } 434 435 if (!trylock_page(page)) 436 continue; 437 if (!unfalloc || !PageUptodate(page)) { 438 if (page->mapping == mapping) { 439 VM_BUG_ON_PAGE(PageWriteback(page), page); 440 truncate_inode_page(mapping, page); 441 } 442 } 443 unlock_page(page); 444 } 445 pagevec_remove_exceptionals(&pvec); 446 pagevec_release(&pvec); 447 cond_resched(); 448 index++; 449 } 450 451 if (partial_start) { 452 struct page *page = NULL; 453 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 454 if (page) { 455 unsigned int top = PAGE_CACHE_SIZE; 456 if (start > end) { 457 top = partial_end; 458 partial_end = 0; 459 } 460 zero_user_segment(page, partial_start, top); 461 set_page_dirty(page); 462 unlock_page(page); 463 page_cache_release(page); 464 } 465 } 466 if (partial_end) { 467 struct page *page = NULL; 468 shmem_getpage(inode, end, &page, SGP_READ, NULL); 469 if (page) { 470 zero_user_segment(page, 0, partial_end); 471 set_page_dirty(page); 472 unlock_page(page); 473 page_cache_release(page); 474 } 475 } 476 if (start >= end) 477 return; 478 479 index = start; 480 while (index < end) { 481 cond_resched(); 482 483 pvec.nr = find_get_entries(mapping, index, 484 min(end - index, (pgoff_t)PAGEVEC_SIZE), 485 pvec.pages, indices); 486 if (!pvec.nr) { 487 /* If all gone or hole-punch or unfalloc, we're done */ 488 if (index == start || end != -1) 489 break; 490 /* But if truncating, restart to make sure all gone */ 491 index = start; 492 continue; 493 } 494 for (i = 0; i < pagevec_count(&pvec); i++) { 495 struct page *page = pvec.pages[i]; 496 497 index = indices[i]; 498 if (index >= end) 499 break; 500 501 if (radix_tree_exceptional_entry(page)) { 502 if (unfalloc) 503 continue; 504 if (shmem_free_swap(mapping, index, page)) { 505 /* Swap was replaced by page: retry */ 506 index--; 507 break; 508 } 509 nr_swaps_freed++; 510 continue; 511 } 512 513 lock_page(page); 514 if (!unfalloc || !PageUptodate(page)) { 515 if (page->mapping == mapping) { 516 VM_BUG_ON_PAGE(PageWriteback(page), page); 517 truncate_inode_page(mapping, page); 518 } else { 519 /* Page was replaced by swap: retry */ 520 unlock_page(page); 521 index--; 522 break; 523 } 524 } 525 unlock_page(page); 526 } 527 pagevec_remove_exceptionals(&pvec); 528 pagevec_release(&pvec); 529 index++; 530 } 531 532 spin_lock(&info->lock); 533 info->swapped -= nr_swaps_freed; 534 shmem_recalc_inode(inode); 535 spin_unlock(&info->lock); 536 } 537 538 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 539 { 540 shmem_undo_range(inode, lstart, lend, false); 541 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 542 } 543 EXPORT_SYMBOL_GPL(shmem_truncate_range); 544 545 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 546 { 547 struct inode *inode = dentry->d_inode; 548 struct shmem_inode_info *info = SHMEM_I(inode); 549 int error; 550 551 error = inode_change_ok(inode, attr); 552 if (error) 553 return error; 554 555 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 556 loff_t oldsize = inode->i_size; 557 loff_t newsize = attr->ia_size; 558 559 /* protected by i_mutex */ 560 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 561 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 562 return -EPERM; 563 564 if (newsize != oldsize) { 565 error = shmem_reacct_size(SHMEM_I(inode)->flags, 566 oldsize, newsize); 567 if (error) 568 return error; 569 i_size_write(inode, newsize); 570 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 571 } 572 if (newsize < oldsize) { 573 loff_t holebegin = round_up(newsize, PAGE_SIZE); 574 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 575 shmem_truncate_range(inode, newsize, (loff_t)-1); 576 /* unmap again to remove racily COWed private pages */ 577 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 578 } 579 } 580 581 setattr_copy(inode, attr); 582 if (attr->ia_valid & ATTR_MODE) 583 error = posix_acl_chmod(inode, inode->i_mode); 584 return error; 585 } 586 587 static void shmem_evict_inode(struct inode *inode) 588 { 589 struct shmem_inode_info *info = SHMEM_I(inode); 590 591 if (inode->i_mapping->a_ops == &shmem_aops) { 592 shmem_unacct_size(info->flags, inode->i_size); 593 inode->i_size = 0; 594 shmem_truncate_range(inode, 0, (loff_t)-1); 595 if (!list_empty(&info->swaplist)) { 596 mutex_lock(&shmem_swaplist_mutex); 597 list_del_init(&info->swaplist); 598 mutex_unlock(&shmem_swaplist_mutex); 599 } 600 } else 601 kfree(info->symlink); 602 603 simple_xattrs_free(&info->xattrs); 604 WARN_ON(inode->i_blocks); 605 shmem_free_inode(inode->i_sb); 606 clear_inode(inode); 607 } 608 609 /* 610 * If swap found in inode, free it and move page from swapcache to filecache. 611 */ 612 static int shmem_unuse_inode(struct shmem_inode_info *info, 613 swp_entry_t swap, struct page **pagep) 614 { 615 struct address_space *mapping = info->vfs_inode.i_mapping; 616 void *radswap; 617 pgoff_t index; 618 gfp_t gfp; 619 int error = 0; 620 621 radswap = swp_to_radix_entry(swap); 622 index = radix_tree_locate_item(&mapping->page_tree, radswap); 623 if (index == -1) 624 return -EAGAIN; /* tell shmem_unuse we found nothing */ 625 626 /* 627 * Move _head_ to start search for next from here. 628 * But be careful: shmem_evict_inode checks list_empty without taking 629 * mutex, and there's an instant in list_move_tail when info->swaplist 630 * would appear empty, if it were the only one on shmem_swaplist. 631 */ 632 if (shmem_swaplist.next != &info->swaplist) 633 list_move_tail(&shmem_swaplist, &info->swaplist); 634 635 gfp = mapping_gfp_mask(mapping); 636 if (shmem_should_replace_page(*pagep, gfp)) { 637 mutex_unlock(&shmem_swaplist_mutex); 638 error = shmem_replace_page(pagep, gfp, info, index); 639 mutex_lock(&shmem_swaplist_mutex); 640 /* 641 * We needed to drop mutex to make that restrictive page 642 * allocation, but the inode might have been freed while we 643 * dropped it: although a racing shmem_evict_inode() cannot 644 * complete without emptying the radix_tree, our page lock 645 * on this swapcache page is not enough to prevent that - 646 * free_swap_and_cache() of our swap entry will only 647 * trylock_page(), removing swap from radix_tree whatever. 648 * 649 * We must not proceed to shmem_add_to_page_cache() if the 650 * inode has been freed, but of course we cannot rely on 651 * inode or mapping or info to check that. However, we can 652 * safely check if our swap entry is still in use (and here 653 * it can't have got reused for another page): if it's still 654 * in use, then the inode cannot have been freed yet, and we 655 * can safely proceed (if it's no longer in use, that tells 656 * nothing about the inode, but we don't need to unuse swap). 657 */ 658 if (!page_swapcount(*pagep)) 659 error = -ENOENT; 660 } 661 662 /* 663 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 664 * but also to hold up shmem_evict_inode(): so inode cannot be freed 665 * beneath us (pagelock doesn't help until the page is in pagecache). 666 */ 667 if (!error) 668 error = shmem_add_to_page_cache(*pagep, mapping, index, 669 radswap); 670 if (error != -ENOMEM) { 671 /* 672 * Truncation and eviction use free_swap_and_cache(), which 673 * only does trylock page: if we raced, best clean up here. 674 */ 675 delete_from_swap_cache(*pagep); 676 set_page_dirty(*pagep); 677 if (!error) { 678 spin_lock(&info->lock); 679 info->swapped--; 680 spin_unlock(&info->lock); 681 swap_free(swap); 682 } 683 } 684 return error; 685 } 686 687 /* 688 * Search through swapped inodes to find and replace swap by page. 689 */ 690 int shmem_unuse(swp_entry_t swap, struct page *page) 691 { 692 struct list_head *this, *next; 693 struct shmem_inode_info *info; 694 struct mem_cgroup *memcg; 695 int error = 0; 696 697 /* 698 * There's a faint possibility that swap page was replaced before 699 * caller locked it: caller will come back later with the right page. 700 */ 701 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 702 goto out; 703 704 /* 705 * Charge page using GFP_KERNEL while we can wait, before taking 706 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 707 * Charged back to the user (not to caller) when swap account is used. 708 */ 709 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg); 710 if (error) 711 goto out; 712 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 713 error = -EAGAIN; 714 715 mutex_lock(&shmem_swaplist_mutex); 716 list_for_each_safe(this, next, &shmem_swaplist) { 717 info = list_entry(this, struct shmem_inode_info, swaplist); 718 if (info->swapped) 719 error = shmem_unuse_inode(info, swap, &page); 720 else 721 list_del_init(&info->swaplist); 722 cond_resched(); 723 if (error != -EAGAIN) 724 break; 725 /* found nothing in this: move on to search the next */ 726 } 727 mutex_unlock(&shmem_swaplist_mutex); 728 729 if (error) { 730 if (error != -ENOMEM) 731 error = 0; 732 mem_cgroup_cancel_charge(page, memcg); 733 } else 734 mem_cgroup_commit_charge(page, memcg, true); 735 out: 736 unlock_page(page); 737 page_cache_release(page); 738 return error; 739 } 740 741 /* 742 * Move the page from the page cache to the swap cache. 743 */ 744 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 745 { 746 struct shmem_inode_info *info; 747 struct address_space *mapping; 748 struct inode *inode; 749 swp_entry_t swap; 750 pgoff_t index; 751 752 BUG_ON(!PageLocked(page)); 753 mapping = page->mapping; 754 index = page->index; 755 inode = mapping->host; 756 info = SHMEM_I(inode); 757 if (info->flags & VM_LOCKED) 758 goto redirty; 759 if (!total_swap_pages) 760 goto redirty; 761 762 /* 763 * Our capabilities prevent regular writeback or sync from ever calling 764 * shmem_writepage; but a stacking filesystem might use ->writepage of 765 * its underlying filesystem, in which case tmpfs should write out to 766 * swap only in response to memory pressure, and not for the writeback 767 * threads or sync. 768 */ 769 if (!wbc->for_reclaim) { 770 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 771 goto redirty; 772 } 773 774 /* 775 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 776 * value into swapfile.c, the only way we can correctly account for a 777 * fallocated page arriving here is now to initialize it and write it. 778 * 779 * That's okay for a page already fallocated earlier, but if we have 780 * not yet completed the fallocation, then (a) we want to keep track 781 * of this page in case we have to undo it, and (b) it may not be a 782 * good idea to continue anyway, once we're pushing into swap. So 783 * reactivate the page, and let shmem_fallocate() quit when too many. 784 */ 785 if (!PageUptodate(page)) { 786 if (inode->i_private) { 787 struct shmem_falloc *shmem_falloc; 788 spin_lock(&inode->i_lock); 789 shmem_falloc = inode->i_private; 790 if (shmem_falloc && 791 !shmem_falloc->waitq && 792 index >= shmem_falloc->start && 793 index < shmem_falloc->next) 794 shmem_falloc->nr_unswapped++; 795 else 796 shmem_falloc = NULL; 797 spin_unlock(&inode->i_lock); 798 if (shmem_falloc) 799 goto redirty; 800 } 801 clear_highpage(page); 802 flush_dcache_page(page); 803 SetPageUptodate(page); 804 } 805 806 swap = get_swap_page(); 807 if (!swap.val) 808 goto redirty; 809 810 /* 811 * Add inode to shmem_unuse()'s list of swapped-out inodes, 812 * if it's not already there. Do it now before the page is 813 * moved to swap cache, when its pagelock no longer protects 814 * the inode from eviction. But don't unlock the mutex until 815 * we've incremented swapped, because shmem_unuse_inode() will 816 * prune a !swapped inode from the swaplist under this mutex. 817 */ 818 mutex_lock(&shmem_swaplist_mutex); 819 if (list_empty(&info->swaplist)) 820 list_add_tail(&info->swaplist, &shmem_swaplist); 821 822 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 823 swap_shmem_alloc(swap); 824 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 825 826 spin_lock(&info->lock); 827 info->swapped++; 828 shmem_recalc_inode(inode); 829 spin_unlock(&info->lock); 830 831 mutex_unlock(&shmem_swaplist_mutex); 832 BUG_ON(page_mapped(page)); 833 swap_writepage(page, wbc); 834 return 0; 835 } 836 837 mutex_unlock(&shmem_swaplist_mutex); 838 swapcache_free(swap); 839 redirty: 840 set_page_dirty(page); 841 if (wbc->for_reclaim) 842 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 843 unlock_page(page); 844 return 0; 845 } 846 847 #ifdef CONFIG_NUMA 848 #ifdef CONFIG_TMPFS 849 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 850 { 851 char buffer[64]; 852 853 if (!mpol || mpol->mode == MPOL_DEFAULT) 854 return; /* show nothing */ 855 856 mpol_to_str(buffer, sizeof(buffer), mpol); 857 858 seq_printf(seq, ",mpol=%s", buffer); 859 } 860 861 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 862 { 863 struct mempolicy *mpol = NULL; 864 if (sbinfo->mpol) { 865 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 866 mpol = sbinfo->mpol; 867 mpol_get(mpol); 868 spin_unlock(&sbinfo->stat_lock); 869 } 870 return mpol; 871 } 872 #endif /* CONFIG_TMPFS */ 873 874 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 875 struct shmem_inode_info *info, pgoff_t index) 876 { 877 struct vm_area_struct pvma; 878 struct page *page; 879 880 /* Create a pseudo vma that just contains the policy */ 881 pvma.vm_start = 0; 882 /* Bias interleave by inode number to distribute better across nodes */ 883 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 884 pvma.vm_ops = NULL; 885 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 886 887 page = swapin_readahead(swap, gfp, &pvma, 0); 888 889 /* Drop reference taken by mpol_shared_policy_lookup() */ 890 mpol_cond_put(pvma.vm_policy); 891 892 return page; 893 } 894 895 static struct page *shmem_alloc_page(gfp_t gfp, 896 struct shmem_inode_info *info, pgoff_t index) 897 { 898 struct vm_area_struct pvma; 899 struct page *page; 900 901 /* Create a pseudo vma that just contains the policy */ 902 pvma.vm_start = 0; 903 /* Bias interleave by inode number to distribute better across nodes */ 904 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 905 pvma.vm_ops = NULL; 906 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 907 908 page = alloc_page_vma(gfp, &pvma, 0); 909 910 /* Drop reference taken by mpol_shared_policy_lookup() */ 911 mpol_cond_put(pvma.vm_policy); 912 913 return page; 914 } 915 #else /* !CONFIG_NUMA */ 916 #ifdef CONFIG_TMPFS 917 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 918 { 919 } 920 #endif /* CONFIG_TMPFS */ 921 922 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 923 struct shmem_inode_info *info, pgoff_t index) 924 { 925 return swapin_readahead(swap, gfp, NULL, 0); 926 } 927 928 static inline struct page *shmem_alloc_page(gfp_t gfp, 929 struct shmem_inode_info *info, pgoff_t index) 930 { 931 return alloc_page(gfp); 932 } 933 #endif /* CONFIG_NUMA */ 934 935 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 936 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 937 { 938 return NULL; 939 } 940 #endif 941 942 /* 943 * When a page is moved from swapcache to shmem filecache (either by the 944 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 945 * shmem_unuse_inode()), it may have been read in earlier from swap, in 946 * ignorance of the mapping it belongs to. If that mapping has special 947 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 948 * we may need to copy to a suitable page before moving to filecache. 949 * 950 * In a future release, this may well be extended to respect cpuset and 951 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 952 * but for now it is a simple matter of zone. 953 */ 954 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 955 { 956 return page_zonenum(page) > gfp_zone(gfp); 957 } 958 959 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 960 struct shmem_inode_info *info, pgoff_t index) 961 { 962 struct page *oldpage, *newpage; 963 struct address_space *swap_mapping; 964 pgoff_t swap_index; 965 int error; 966 967 oldpage = *pagep; 968 swap_index = page_private(oldpage); 969 swap_mapping = page_mapping(oldpage); 970 971 /* 972 * We have arrived here because our zones are constrained, so don't 973 * limit chance of success by further cpuset and node constraints. 974 */ 975 gfp &= ~GFP_CONSTRAINT_MASK; 976 newpage = shmem_alloc_page(gfp, info, index); 977 if (!newpage) 978 return -ENOMEM; 979 980 page_cache_get(newpage); 981 copy_highpage(newpage, oldpage); 982 flush_dcache_page(newpage); 983 984 __set_page_locked(newpage); 985 SetPageUptodate(newpage); 986 SetPageSwapBacked(newpage); 987 set_page_private(newpage, swap_index); 988 SetPageSwapCache(newpage); 989 990 /* 991 * Our caller will very soon move newpage out of swapcache, but it's 992 * a nice clean interface for us to replace oldpage by newpage there. 993 */ 994 spin_lock_irq(&swap_mapping->tree_lock); 995 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 996 newpage); 997 if (!error) { 998 __inc_zone_page_state(newpage, NR_FILE_PAGES); 999 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1000 } 1001 spin_unlock_irq(&swap_mapping->tree_lock); 1002 1003 if (unlikely(error)) { 1004 /* 1005 * Is this possible? I think not, now that our callers check 1006 * both PageSwapCache and page_private after getting page lock; 1007 * but be defensive. Reverse old to newpage for clear and free. 1008 */ 1009 oldpage = newpage; 1010 } else { 1011 mem_cgroup_migrate(oldpage, newpage, true); 1012 lru_cache_add_anon(newpage); 1013 *pagep = newpage; 1014 } 1015 1016 ClearPageSwapCache(oldpage); 1017 set_page_private(oldpage, 0); 1018 1019 unlock_page(oldpage); 1020 page_cache_release(oldpage); 1021 page_cache_release(oldpage); 1022 return error; 1023 } 1024 1025 /* 1026 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1027 * 1028 * If we allocate a new one we do not mark it dirty. That's up to the 1029 * vm. If we swap it in we mark it dirty since we also free the swap 1030 * entry since a page cannot live in both the swap and page cache 1031 */ 1032 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1033 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1034 { 1035 struct address_space *mapping = inode->i_mapping; 1036 struct shmem_inode_info *info; 1037 struct shmem_sb_info *sbinfo; 1038 struct mem_cgroup *memcg; 1039 struct page *page; 1040 swp_entry_t swap; 1041 int error; 1042 int once = 0; 1043 int alloced = 0; 1044 1045 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1046 return -EFBIG; 1047 repeat: 1048 swap.val = 0; 1049 page = find_lock_entry(mapping, index); 1050 if (radix_tree_exceptional_entry(page)) { 1051 swap = radix_to_swp_entry(page); 1052 page = NULL; 1053 } 1054 1055 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1056 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1057 error = -EINVAL; 1058 goto failed; 1059 } 1060 1061 if (page && sgp == SGP_WRITE) 1062 mark_page_accessed(page); 1063 1064 /* fallocated page? */ 1065 if (page && !PageUptodate(page)) { 1066 if (sgp != SGP_READ) 1067 goto clear; 1068 unlock_page(page); 1069 page_cache_release(page); 1070 page = NULL; 1071 } 1072 if (page || (sgp == SGP_READ && !swap.val)) { 1073 *pagep = page; 1074 return 0; 1075 } 1076 1077 /* 1078 * Fast cache lookup did not find it: 1079 * bring it back from swap or allocate. 1080 */ 1081 info = SHMEM_I(inode); 1082 sbinfo = SHMEM_SB(inode->i_sb); 1083 1084 if (swap.val) { 1085 /* Look it up and read it in.. */ 1086 page = lookup_swap_cache(swap); 1087 if (!page) { 1088 /* here we actually do the io */ 1089 if (fault_type) 1090 *fault_type |= VM_FAULT_MAJOR; 1091 page = shmem_swapin(swap, gfp, info, index); 1092 if (!page) { 1093 error = -ENOMEM; 1094 goto failed; 1095 } 1096 } 1097 1098 /* We have to do this with page locked to prevent races */ 1099 lock_page(page); 1100 if (!PageSwapCache(page) || page_private(page) != swap.val || 1101 !shmem_confirm_swap(mapping, index, swap)) { 1102 error = -EEXIST; /* try again */ 1103 goto unlock; 1104 } 1105 if (!PageUptodate(page)) { 1106 error = -EIO; 1107 goto failed; 1108 } 1109 wait_on_page_writeback(page); 1110 1111 if (shmem_should_replace_page(page, gfp)) { 1112 error = shmem_replace_page(&page, gfp, info, index); 1113 if (error) 1114 goto failed; 1115 } 1116 1117 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1118 if (!error) { 1119 error = shmem_add_to_page_cache(page, mapping, index, 1120 swp_to_radix_entry(swap)); 1121 /* 1122 * We already confirmed swap under page lock, and make 1123 * no memory allocation here, so usually no possibility 1124 * of error; but free_swap_and_cache() only trylocks a 1125 * page, so it is just possible that the entry has been 1126 * truncated or holepunched since swap was confirmed. 1127 * shmem_undo_range() will have done some of the 1128 * unaccounting, now delete_from_swap_cache() will do 1129 * the rest. 1130 * Reset swap.val? No, leave it so "failed" goes back to 1131 * "repeat": reading a hole and writing should succeed. 1132 */ 1133 if (error) { 1134 mem_cgroup_cancel_charge(page, memcg); 1135 delete_from_swap_cache(page); 1136 } 1137 } 1138 if (error) 1139 goto failed; 1140 1141 mem_cgroup_commit_charge(page, memcg, true); 1142 1143 spin_lock(&info->lock); 1144 info->swapped--; 1145 shmem_recalc_inode(inode); 1146 spin_unlock(&info->lock); 1147 1148 if (sgp == SGP_WRITE) 1149 mark_page_accessed(page); 1150 1151 delete_from_swap_cache(page); 1152 set_page_dirty(page); 1153 swap_free(swap); 1154 1155 } else { 1156 if (shmem_acct_block(info->flags)) { 1157 error = -ENOSPC; 1158 goto failed; 1159 } 1160 if (sbinfo->max_blocks) { 1161 if (percpu_counter_compare(&sbinfo->used_blocks, 1162 sbinfo->max_blocks) >= 0) { 1163 error = -ENOSPC; 1164 goto unacct; 1165 } 1166 percpu_counter_inc(&sbinfo->used_blocks); 1167 } 1168 1169 page = shmem_alloc_page(gfp, info, index); 1170 if (!page) { 1171 error = -ENOMEM; 1172 goto decused; 1173 } 1174 1175 __SetPageSwapBacked(page); 1176 __set_page_locked(page); 1177 if (sgp == SGP_WRITE) 1178 __SetPageReferenced(page); 1179 1180 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1181 if (error) 1182 goto decused; 1183 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1184 if (!error) { 1185 error = shmem_add_to_page_cache(page, mapping, index, 1186 NULL); 1187 radix_tree_preload_end(); 1188 } 1189 if (error) { 1190 mem_cgroup_cancel_charge(page, memcg); 1191 goto decused; 1192 } 1193 mem_cgroup_commit_charge(page, memcg, false); 1194 lru_cache_add_anon(page); 1195 1196 spin_lock(&info->lock); 1197 info->alloced++; 1198 inode->i_blocks += BLOCKS_PER_PAGE; 1199 shmem_recalc_inode(inode); 1200 spin_unlock(&info->lock); 1201 alloced = true; 1202 1203 /* 1204 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1205 */ 1206 if (sgp == SGP_FALLOC) 1207 sgp = SGP_WRITE; 1208 clear: 1209 /* 1210 * Let SGP_WRITE caller clear ends if write does not fill page; 1211 * but SGP_FALLOC on a page fallocated earlier must initialize 1212 * it now, lest undo on failure cancel our earlier guarantee. 1213 */ 1214 if (sgp != SGP_WRITE) { 1215 clear_highpage(page); 1216 flush_dcache_page(page); 1217 SetPageUptodate(page); 1218 } 1219 if (sgp == SGP_DIRTY) 1220 set_page_dirty(page); 1221 } 1222 1223 /* Perhaps the file has been truncated since we checked */ 1224 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1225 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1226 error = -EINVAL; 1227 if (alloced) 1228 goto trunc; 1229 else 1230 goto failed; 1231 } 1232 *pagep = page; 1233 return 0; 1234 1235 /* 1236 * Error recovery. 1237 */ 1238 trunc: 1239 info = SHMEM_I(inode); 1240 ClearPageDirty(page); 1241 delete_from_page_cache(page); 1242 spin_lock(&info->lock); 1243 info->alloced--; 1244 inode->i_blocks -= BLOCKS_PER_PAGE; 1245 spin_unlock(&info->lock); 1246 decused: 1247 sbinfo = SHMEM_SB(inode->i_sb); 1248 if (sbinfo->max_blocks) 1249 percpu_counter_add(&sbinfo->used_blocks, -1); 1250 unacct: 1251 shmem_unacct_blocks(info->flags, 1); 1252 failed: 1253 if (swap.val && error != -EINVAL && 1254 !shmem_confirm_swap(mapping, index, swap)) 1255 error = -EEXIST; 1256 unlock: 1257 if (page) { 1258 unlock_page(page); 1259 page_cache_release(page); 1260 } 1261 if (error == -ENOSPC && !once++) { 1262 info = SHMEM_I(inode); 1263 spin_lock(&info->lock); 1264 shmem_recalc_inode(inode); 1265 spin_unlock(&info->lock); 1266 goto repeat; 1267 } 1268 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1269 goto repeat; 1270 return error; 1271 } 1272 1273 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1274 { 1275 struct inode *inode = file_inode(vma->vm_file); 1276 int error; 1277 int ret = VM_FAULT_LOCKED; 1278 1279 /* 1280 * Trinity finds that probing a hole which tmpfs is punching can 1281 * prevent the hole-punch from ever completing: which in turn 1282 * locks writers out with its hold on i_mutex. So refrain from 1283 * faulting pages into the hole while it's being punched. Although 1284 * shmem_undo_range() does remove the additions, it may be unable to 1285 * keep up, as each new page needs its own unmap_mapping_range() call, 1286 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1287 * 1288 * It does not matter if we sometimes reach this check just before the 1289 * hole-punch begins, so that one fault then races with the punch: 1290 * we just need to make racing faults a rare case. 1291 * 1292 * The implementation below would be much simpler if we just used a 1293 * standard mutex or completion: but we cannot take i_mutex in fault, 1294 * and bloating every shmem inode for this unlikely case would be sad. 1295 */ 1296 if (unlikely(inode->i_private)) { 1297 struct shmem_falloc *shmem_falloc; 1298 1299 spin_lock(&inode->i_lock); 1300 shmem_falloc = inode->i_private; 1301 if (shmem_falloc && 1302 shmem_falloc->waitq && 1303 vmf->pgoff >= shmem_falloc->start && 1304 vmf->pgoff < shmem_falloc->next) { 1305 wait_queue_head_t *shmem_falloc_waitq; 1306 DEFINE_WAIT(shmem_fault_wait); 1307 1308 ret = VM_FAULT_NOPAGE; 1309 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1310 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1311 /* It's polite to up mmap_sem if we can */ 1312 up_read(&vma->vm_mm->mmap_sem); 1313 ret = VM_FAULT_RETRY; 1314 } 1315 1316 shmem_falloc_waitq = shmem_falloc->waitq; 1317 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1318 TASK_UNINTERRUPTIBLE); 1319 spin_unlock(&inode->i_lock); 1320 schedule(); 1321 1322 /* 1323 * shmem_falloc_waitq points into the shmem_fallocate() 1324 * stack of the hole-punching task: shmem_falloc_waitq 1325 * is usually invalid by the time we reach here, but 1326 * finish_wait() does not dereference it in that case; 1327 * though i_lock needed lest racing with wake_up_all(). 1328 */ 1329 spin_lock(&inode->i_lock); 1330 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1331 spin_unlock(&inode->i_lock); 1332 return ret; 1333 } 1334 spin_unlock(&inode->i_lock); 1335 } 1336 1337 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1338 if (error) 1339 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1340 1341 if (ret & VM_FAULT_MAJOR) { 1342 count_vm_event(PGMAJFAULT); 1343 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1344 } 1345 return ret; 1346 } 1347 1348 #ifdef CONFIG_NUMA 1349 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1350 { 1351 struct inode *inode = file_inode(vma->vm_file); 1352 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1353 } 1354 1355 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1356 unsigned long addr) 1357 { 1358 struct inode *inode = file_inode(vma->vm_file); 1359 pgoff_t index; 1360 1361 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1362 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1363 } 1364 #endif 1365 1366 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1367 { 1368 struct inode *inode = file_inode(file); 1369 struct shmem_inode_info *info = SHMEM_I(inode); 1370 int retval = -ENOMEM; 1371 1372 spin_lock(&info->lock); 1373 if (lock && !(info->flags & VM_LOCKED)) { 1374 if (!user_shm_lock(inode->i_size, user)) 1375 goto out_nomem; 1376 info->flags |= VM_LOCKED; 1377 mapping_set_unevictable(file->f_mapping); 1378 } 1379 if (!lock && (info->flags & VM_LOCKED) && user) { 1380 user_shm_unlock(inode->i_size, user); 1381 info->flags &= ~VM_LOCKED; 1382 mapping_clear_unevictable(file->f_mapping); 1383 } 1384 retval = 0; 1385 1386 out_nomem: 1387 spin_unlock(&info->lock); 1388 return retval; 1389 } 1390 1391 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1392 { 1393 file_accessed(file); 1394 vma->vm_ops = &shmem_vm_ops; 1395 return 0; 1396 } 1397 1398 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1399 umode_t mode, dev_t dev, unsigned long flags) 1400 { 1401 struct inode *inode; 1402 struct shmem_inode_info *info; 1403 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1404 1405 if (shmem_reserve_inode(sb)) 1406 return NULL; 1407 1408 inode = new_inode(sb); 1409 if (inode) { 1410 inode->i_ino = get_next_ino(); 1411 inode_init_owner(inode, dir, mode); 1412 inode->i_blocks = 0; 1413 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1414 inode->i_generation = get_seconds(); 1415 info = SHMEM_I(inode); 1416 memset(info, 0, (char *)inode - (char *)info); 1417 spin_lock_init(&info->lock); 1418 info->seals = F_SEAL_SEAL; 1419 info->flags = flags & VM_NORESERVE; 1420 INIT_LIST_HEAD(&info->swaplist); 1421 simple_xattrs_init(&info->xattrs); 1422 cache_no_acl(inode); 1423 1424 switch (mode & S_IFMT) { 1425 default: 1426 inode->i_op = &shmem_special_inode_operations; 1427 init_special_inode(inode, mode, dev); 1428 break; 1429 case S_IFREG: 1430 inode->i_mapping->a_ops = &shmem_aops; 1431 inode->i_op = &shmem_inode_operations; 1432 inode->i_fop = &shmem_file_operations; 1433 mpol_shared_policy_init(&info->policy, 1434 shmem_get_sbmpol(sbinfo)); 1435 break; 1436 case S_IFDIR: 1437 inc_nlink(inode); 1438 /* Some things misbehave if size == 0 on a directory */ 1439 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1440 inode->i_op = &shmem_dir_inode_operations; 1441 inode->i_fop = &simple_dir_operations; 1442 break; 1443 case S_IFLNK: 1444 /* 1445 * Must not load anything in the rbtree, 1446 * mpol_free_shared_policy will not be called. 1447 */ 1448 mpol_shared_policy_init(&info->policy, NULL); 1449 break; 1450 } 1451 } else 1452 shmem_free_inode(sb); 1453 return inode; 1454 } 1455 1456 bool shmem_mapping(struct address_space *mapping) 1457 { 1458 return mapping->host->i_sb->s_op == &shmem_ops; 1459 } 1460 1461 #ifdef CONFIG_TMPFS 1462 static const struct inode_operations shmem_symlink_inode_operations; 1463 static const struct inode_operations shmem_short_symlink_operations; 1464 1465 #ifdef CONFIG_TMPFS_XATTR 1466 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1467 #else 1468 #define shmem_initxattrs NULL 1469 #endif 1470 1471 static int 1472 shmem_write_begin(struct file *file, struct address_space *mapping, 1473 loff_t pos, unsigned len, unsigned flags, 1474 struct page **pagep, void **fsdata) 1475 { 1476 struct inode *inode = mapping->host; 1477 struct shmem_inode_info *info = SHMEM_I(inode); 1478 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1479 1480 /* i_mutex is held by caller */ 1481 if (unlikely(info->seals)) { 1482 if (info->seals & F_SEAL_WRITE) 1483 return -EPERM; 1484 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1485 return -EPERM; 1486 } 1487 1488 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1489 } 1490 1491 static int 1492 shmem_write_end(struct file *file, struct address_space *mapping, 1493 loff_t pos, unsigned len, unsigned copied, 1494 struct page *page, void *fsdata) 1495 { 1496 struct inode *inode = mapping->host; 1497 1498 if (pos + copied > inode->i_size) 1499 i_size_write(inode, pos + copied); 1500 1501 if (!PageUptodate(page)) { 1502 if (copied < PAGE_CACHE_SIZE) { 1503 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1504 zero_user_segments(page, 0, from, 1505 from + copied, PAGE_CACHE_SIZE); 1506 } 1507 SetPageUptodate(page); 1508 } 1509 set_page_dirty(page); 1510 unlock_page(page); 1511 page_cache_release(page); 1512 1513 return copied; 1514 } 1515 1516 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1517 { 1518 struct file *file = iocb->ki_filp; 1519 struct inode *inode = file_inode(file); 1520 struct address_space *mapping = inode->i_mapping; 1521 pgoff_t index; 1522 unsigned long offset; 1523 enum sgp_type sgp = SGP_READ; 1524 int error = 0; 1525 ssize_t retval = 0; 1526 loff_t *ppos = &iocb->ki_pos; 1527 1528 /* 1529 * Might this read be for a stacking filesystem? Then when reading 1530 * holes of a sparse file, we actually need to allocate those pages, 1531 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1532 */ 1533 if (!iter_is_iovec(to)) 1534 sgp = SGP_DIRTY; 1535 1536 index = *ppos >> PAGE_CACHE_SHIFT; 1537 offset = *ppos & ~PAGE_CACHE_MASK; 1538 1539 for (;;) { 1540 struct page *page = NULL; 1541 pgoff_t end_index; 1542 unsigned long nr, ret; 1543 loff_t i_size = i_size_read(inode); 1544 1545 end_index = i_size >> PAGE_CACHE_SHIFT; 1546 if (index > end_index) 1547 break; 1548 if (index == end_index) { 1549 nr = i_size & ~PAGE_CACHE_MASK; 1550 if (nr <= offset) 1551 break; 1552 } 1553 1554 error = shmem_getpage(inode, index, &page, sgp, NULL); 1555 if (error) { 1556 if (error == -EINVAL) 1557 error = 0; 1558 break; 1559 } 1560 if (page) 1561 unlock_page(page); 1562 1563 /* 1564 * We must evaluate after, since reads (unlike writes) 1565 * are called without i_mutex protection against truncate 1566 */ 1567 nr = PAGE_CACHE_SIZE; 1568 i_size = i_size_read(inode); 1569 end_index = i_size >> PAGE_CACHE_SHIFT; 1570 if (index == end_index) { 1571 nr = i_size & ~PAGE_CACHE_MASK; 1572 if (nr <= offset) { 1573 if (page) 1574 page_cache_release(page); 1575 break; 1576 } 1577 } 1578 nr -= offset; 1579 1580 if (page) { 1581 /* 1582 * If users can be writing to this page using arbitrary 1583 * virtual addresses, take care about potential aliasing 1584 * before reading the page on the kernel side. 1585 */ 1586 if (mapping_writably_mapped(mapping)) 1587 flush_dcache_page(page); 1588 /* 1589 * Mark the page accessed if we read the beginning. 1590 */ 1591 if (!offset) 1592 mark_page_accessed(page); 1593 } else { 1594 page = ZERO_PAGE(0); 1595 page_cache_get(page); 1596 } 1597 1598 /* 1599 * Ok, we have the page, and it's up-to-date, so 1600 * now we can copy it to user space... 1601 */ 1602 ret = copy_page_to_iter(page, offset, nr, to); 1603 retval += ret; 1604 offset += ret; 1605 index += offset >> PAGE_CACHE_SHIFT; 1606 offset &= ~PAGE_CACHE_MASK; 1607 1608 page_cache_release(page); 1609 if (!iov_iter_count(to)) 1610 break; 1611 if (ret < nr) { 1612 error = -EFAULT; 1613 break; 1614 } 1615 cond_resched(); 1616 } 1617 1618 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1619 file_accessed(file); 1620 return retval ? retval : error; 1621 } 1622 1623 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1624 struct pipe_inode_info *pipe, size_t len, 1625 unsigned int flags) 1626 { 1627 struct address_space *mapping = in->f_mapping; 1628 struct inode *inode = mapping->host; 1629 unsigned int loff, nr_pages, req_pages; 1630 struct page *pages[PIPE_DEF_BUFFERS]; 1631 struct partial_page partial[PIPE_DEF_BUFFERS]; 1632 struct page *page; 1633 pgoff_t index, end_index; 1634 loff_t isize, left; 1635 int error, page_nr; 1636 struct splice_pipe_desc spd = { 1637 .pages = pages, 1638 .partial = partial, 1639 .nr_pages_max = PIPE_DEF_BUFFERS, 1640 .flags = flags, 1641 .ops = &page_cache_pipe_buf_ops, 1642 .spd_release = spd_release_page, 1643 }; 1644 1645 isize = i_size_read(inode); 1646 if (unlikely(*ppos >= isize)) 1647 return 0; 1648 1649 left = isize - *ppos; 1650 if (unlikely(left < len)) 1651 len = left; 1652 1653 if (splice_grow_spd(pipe, &spd)) 1654 return -ENOMEM; 1655 1656 index = *ppos >> PAGE_CACHE_SHIFT; 1657 loff = *ppos & ~PAGE_CACHE_MASK; 1658 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1659 nr_pages = min(req_pages, spd.nr_pages_max); 1660 1661 spd.nr_pages = find_get_pages_contig(mapping, index, 1662 nr_pages, spd.pages); 1663 index += spd.nr_pages; 1664 error = 0; 1665 1666 while (spd.nr_pages < nr_pages) { 1667 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1668 if (error) 1669 break; 1670 unlock_page(page); 1671 spd.pages[spd.nr_pages++] = page; 1672 index++; 1673 } 1674 1675 index = *ppos >> PAGE_CACHE_SHIFT; 1676 nr_pages = spd.nr_pages; 1677 spd.nr_pages = 0; 1678 1679 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1680 unsigned int this_len; 1681 1682 if (!len) 1683 break; 1684 1685 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1686 page = spd.pages[page_nr]; 1687 1688 if (!PageUptodate(page) || page->mapping != mapping) { 1689 error = shmem_getpage(inode, index, &page, 1690 SGP_CACHE, NULL); 1691 if (error) 1692 break; 1693 unlock_page(page); 1694 page_cache_release(spd.pages[page_nr]); 1695 spd.pages[page_nr] = page; 1696 } 1697 1698 isize = i_size_read(inode); 1699 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1700 if (unlikely(!isize || index > end_index)) 1701 break; 1702 1703 if (end_index == index) { 1704 unsigned int plen; 1705 1706 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1707 if (plen <= loff) 1708 break; 1709 1710 this_len = min(this_len, plen - loff); 1711 len = this_len; 1712 } 1713 1714 spd.partial[page_nr].offset = loff; 1715 spd.partial[page_nr].len = this_len; 1716 len -= this_len; 1717 loff = 0; 1718 spd.nr_pages++; 1719 index++; 1720 } 1721 1722 while (page_nr < nr_pages) 1723 page_cache_release(spd.pages[page_nr++]); 1724 1725 if (spd.nr_pages) 1726 error = splice_to_pipe(pipe, &spd); 1727 1728 splice_shrink_spd(&spd); 1729 1730 if (error > 0) { 1731 *ppos += error; 1732 file_accessed(in); 1733 } 1734 return error; 1735 } 1736 1737 /* 1738 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1739 */ 1740 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1741 pgoff_t index, pgoff_t end, int whence) 1742 { 1743 struct page *page; 1744 struct pagevec pvec; 1745 pgoff_t indices[PAGEVEC_SIZE]; 1746 bool done = false; 1747 int i; 1748 1749 pagevec_init(&pvec, 0); 1750 pvec.nr = 1; /* start small: we may be there already */ 1751 while (!done) { 1752 pvec.nr = find_get_entries(mapping, index, 1753 pvec.nr, pvec.pages, indices); 1754 if (!pvec.nr) { 1755 if (whence == SEEK_DATA) 1756 index = end; 1757 break; 1758 } 1759 for (i = 0; i < pvec.nr; i++, index++) { 1760 if (index < indices[i]) { 1761 if (whence == SEEK_HOLE) { 1762 done = true; 1763 break; 1764 } 1765 index = indices[i]; 1766 } 1767 page = pvec.pages[i]; 1768 if (page && !radix_tree_exceptional_entry(page)) { 1769 if (!PageUptodate(page)) 1770 page = NULL; 1771 } 1772 if (index >= end || 1773 (page && whence == SEEK_DATA) || 1774 (!page && whence == SEEK_HOLE)) { 1775 done = true; 1776 break; 1777 } 1778 } 1779 pagevec_remove_exceptionals(&pvec); 1780 pagevec_release(&pvec); 1781 pvec.nr = PAGEVEC_SIZE; 1782 cond_resched(); 1783 } 1784 return index; 1785 } 1786 1787 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1788 { 1789 struct address_space *mapping = file->f_mapping; 1790 struct inode *inode = mapping->host; 1791 pgoff_t start, end; 1792 loff_t new_offset; 1793 1794 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1795 return generic_file_llseek_size(file, offset, whence, 1796 MAX_LFS_FILESIZE, i_size_read(inode)); 1797 mutex_lock(&inode->i_mutex); 1798 /* We're holding i_mutex so we can access i_size directly */ 1799 1800 if (offset < 0) 1801 offset = -EINVAL; 1802 else if (offset >= inode->i_size) 1803 offset = -ENXIO; 1804 else { 1805 start = offset >> PAGE_CACHE_SHIFT; 1806 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1807 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1808 new_offset <<= PAGE_CACHE_SHIFT; 1809 if (new_offset > offset) { 1810 if (new_offset < inode->i_size) 1811 offset = new_offset; 1812 else if (whence == SEEK_DATA) 1813 offset = -ENXIO; 1814 else 1815 offset = inode->i_size; 1816 } 1817 } 1818 1819 if (offset >= 0) 1820 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1821 mutex_unlock(&inode->i_mutex); 1822 return offset; 1823 } 1824 1825 /* 1826 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1827 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1828 */ 1829 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1830 #define LAST_SCAN 4 /* about 150ms max */ 1831 1832 static void shmem_tag_pins(struct address_space *mapping) 1833 { 1834 struct radix_tree_iter iter; 1835 void **slot; 1836 pgoff_t start; 1837 struct page *page; 1838 1839 lru_add_drain(); 1840 start = 0; 1841 rcu_read_lock(); 1842 1843 restart: 1844 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1845 page = radix_tree_deref_slot(slot); 1846 if (!page || radix_tree_exception(page)) { 1847 if (radix_tree_deref_retry(page)) 1848 goto restart; 1849 } else if (page_count(page) - page_mapcount(page) > 1) { 1850 spin_lock_irq(&mapping->tree_lock); 1851 radix_tree_tag_set(&mapping->page_tree, iter.index, 1852 SHMEM_TAG_PINNED); 1853 spin_unlock_irq(&mapping->tree_lock); 1854 } 1855 1856 if (need_resched()) { 1857 cond_resched_rcu(); 1858 start = iter.index + 1; 1859 goto restart; 1860 } 1861 } 1862 rcu_read_unlock(); 1863 } 1864 1865 /* 1866 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1867 * via get_user_pages(), drivers might have some pending I/O without any active 1868 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1869 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1870 * them to be dropped. 1871 * The caller must guarantee that no new user will acquire writable references 1872 * to those pages to avoid races. 1873 */ 1874 static int shmem_wait_for_pins(struct address_space *mapping) 1875 { 1876 struct radix_tree_iter iter; 1877 void **slot; 1878 pgoff_t start; 1879 struct page *page; 1880 int error, scan; 1881 1882 shmem_tag_pins(mapping); 1883 1884 error = 0; 1885 for (scan = 0; scan <= LAST_SCAN; scan++) { 1886 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1887 break; 1888 1889 if (!scan) 1890 lru_add_drain_all(); 1891 else if (schedule_timeout_killable((HZ << scan) / 200)) 1892 scan = LAST_SCAN; 1893 1894 start = 0; 1895 rcu_read_lock(); 1896 restart: 1897 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 1898 start, SHMEM_TAG_PINNED) { 1899 1900 page = radix_tree_deref_slot(slot); 1901 if (radix_tree_exception(page)) { 1902 if (radix_tree_deref_retry(page)) 1903 goto restart; 1904 1905 page = NULL; 1906 } 1907 1908 if (page && 1909 page_count(page) - page_mapcount(page) != 1) { 1910 if (scan < LAST_SCAN) 1911 goto continue_resched; 1912 1913 /* 1914 * On the last scan, we clean up all those tags 1915 * we inserted; but make a note that we still 1916 * found pages pinned. 1917 */ 1918 error = -EBUSY; 1919 } 1920 1921 spin_lock_irq(&mapping->tree_lock); 1922 radix_tree_tag_clear(&mapping->page_tree, 1923 iter.index, SHMEM_TAG_PINNED); 1924 spin_unlock_irq(&mapping->tree_lock); 1925 continue_resched: 1926 if (need_resched()) { 1927 cond_resched_rcu(); 1928 start = iter.index + 1; 1929 goto restart; 1930 } 1931 } 1932 rcu_read_unlock(); 1933 } 1934 1935 return error; 1936 } 1937 1938 #define F_ALL_SEALS (F_SEAL_SEAL | \ 1939 F_SEAL_SHRINK | \ 1940 F_SEAL_GROW | \ 1941 F_SEAL_WRITE) 1942 1943 int shmem_add_seals(struct file *file, unsigned int seals) 1944 { 1945 struct inode *inode = file_inode(file); 1946 struct shmem_inode_info *info = SHMEM_I(inode); 1947 int error; 1948 1949 /* 1950 * SEALING 1951 * Sealing allows multiple parties to share a shmem-file but restrict 1952 * access to a specific subset of file operations. Seals can only be 1953 * added, but never removed. This way, mutually untrusted parties can 1954 * share common memory regions with a well-defined policy. A malicious 1955 * peer can thus never perform unwanted operations on a shared object. 1956 * 1957 * Seals are only supported on special shmem-files and always affect 1958 * the whole underlying inode. Once a seal is set, it may prevent some 1959 * kinds of access to the file. Currently, the following seals are 1960 * defined: 1961 * SEAL_SEAL: Prevent further seals from being set on this file 1962 * SEAL_SHRINK: Prevent the file from shrinking 1963 * SEAL_GROW: Prevent the file from growing 1964 * SEAL_WRITE: Prevent write access to the file 1965 * 1966 * As we don't require any trust relationship between two parties, we 1967 * must prevent seals from being removed. Therefore, sealing a file 1968 * only adds a given set of seals to the file, it never touches 1969 * existing seals. Furthermore, the "setting seals"-operation can be 1970 * sealed itself, which basically prevents any further seal from being 1971 * added. 1972 * 1973 * Semantics of sealing are only defined on volatile files. Only 1974 * anonymous shmem files support sealing. More importantly, seals are 1975 * never written to disk. Therefore, there's no plan to support it on 1976 * other file types. 1977 */ 1978 1979 if (file->f_op != &shmem_file_operations) 1980 return -EINVAL; 1981 if (!(file->f_mode & FMODE_WRITE)) 1982 return -EPERM; 1983 if (seals & ~(unsigned int)F_ALL_SEALS) 1984 return -EINVAL; 1985 1986 mutex_lock(&inode->i_mutex); 1987 1988 if (info->seals & F_SEAL_SEAL) { 1989 error = -EPERM; 1990 goto unlock; 1991 } 1992 1993 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 1994 error = mapping_deny_writable(file->f_mapping); 1995 if (error) 1996 goto unlock; 1997 1998 error = shmem_wait_for_pins(file->f_mapping); 1999 if (error) { 2000 mapping_allow_writable(file->f_mapping); 2001 goto unlock; 2002 } 2003 } 2004 2005 info->seals |= seals; 2006 error = 0; 2007 2008 unlock: 2009 mutex_unlock(&inode->i_mutex); 2010 return error; 2011 } 2012 EXPORT_SYMBOL_GPL(shmem_add_seals); 2013 2014 int shmem_get_seals(struct file *file) 2015 { 2016 if (file->f_op != &shmem_file_operations) 2017 return -EINVAL; 2018 2019 return SHMEM_I(file_inode(file))->seals; 2020 } 2021 EXPORT_SYMBOL_GPL(shmem_get_seals); 2022 2023 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2024 { 2025 long error; 2026 2027 switch (cmd) { 2028 case F_ADD_SEALS: 2029 /* disallow upper 32bit */ 2030 if (arg > UINT_MAX) 2031 return -EINVAL; 2032 2033 error = shmem_add_seals(file, arg); 2034 break; 2035 case F_GET_SEALS: 2036 error = shmem_get_seals(file); 2037 break; 2038 default: 2039 error = -EINVAL; 2040 break; 2041 } 2042 2043 return error; 2044 } 2045 2046 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2047 loff_t len) 2048 { 2049 struct inode *inode = file_inode(file); 2050 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2051 struct shmem_inode_info *info = SHMEM_I(inode); 2052 struct shmem_falloc shmem_falloc; 2053 pgoff_t start, index, end; 2054 int error; 2055 2056 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2057 return -EOPNOTSUPP; 2058 2059 mutex_lock(&inode->i_mutex); 2060 2061 if (mode & FALLOC_FL_PUNCH_HOLE) { 2062 struct address_space *mapping = file->f_mapping; 2063 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2064 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2065 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2066 2067 /* protected by i_mutex */ 2068 if (info->seals & F_SEAL_WRITE) { 2069 error = -EPERM; 2070 goto out; 2071 } 2072 2073 shmem_falloc.waitq = &shmem_falloc_waitq; 2074 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2075 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2076 spin_lock(&inode->i_lock); 2077 inode->i_private = &shmem_falloc; 2078 spin_unlock(&inode->i_lock); 2079 2080 if ((u64)unmap_end > (u64)unmap_start) 2081 unmap_mapping_range(mapping, unmap_start, 2082 1 + unmap_end - unmap_start, 0); 2083 shmem_truncate_range(inode, offset, offset + len - 1); 2084 /* No need to unmap again: hole-punching leaves COWed pages */ 2085 2086 spin_lock(&inode->i_lock); 2087 inode->i_private = NULL; 2088 wake_up_all(&shmem_falloc_waitq); 2089 spin_unlock(&inode->i_lock); 2090 error = 0; 2091 goto out; 2092 } 2093 2094 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2095 error = inode_newsize_ok(inode, offset + len); 2096 if (error) 2097 goto out; 2098 2099 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2100 error = -EPERM; 2101 goto out; 2102 } 2103 2104 start = offset >> PAGE_CACHE_SHIFT; 2105 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2106 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2107 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2108 error = -ENOSPC; 2109 goto out; 2110 } 2111 2112 shmem_falloc.waitq = NULL; 2113 shmem_falloc.start = start; 2114 shmem_falloc.next = start; 2115 shmem_falloc.nr_falloced = 0; 2116 shmem_falloc.nr_unswapped = 0; 2117 spin_lock(&inode->i_lock); 2118 inode->i_private = &shmem_falloc; 2119 spin_unlock(&inode->i_lock); 2120 2121 for (index = start; index < end; index++) { 2122 struct page *page; 2123 2124 /* 2125 * Good, the fallocate(2) manpage permits EINTR: we may have 2126 * been interrupted because we are using up too much memory. 2127 */ 2128 if (signal_pending(current)) 2129 error = -EINTR; 2130 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2131 error = -ENOMEM; 2132 else 2133 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 2134 NULL); 2135 if (error) { 2136 /* Remove the !PageUptodate pages we added */ 2137 shmem_undo_range(inode, 2138 (loff_t)start << PAGE_CACHE_SHIFT, 2139 (loff_t)index << PAGE_CACHE_SHIFT, true); 2140 goto undone; 2141 } 2142 2143 /* 2144 * Inform shmem_writepage() how far we have reached. 2145 * No need for lock or barrier: we have the page lock. 2146 */ 2147 shmem_falloc.next++; 2148 if (!PageUptodate(page)) 2149 shmem_falloc.nr_falloced++; 2150 2151 /* 2152 * If !PageUptodate, leave it that way so that freeable pages 2153 * can be recognized if we need to rollback on error later. 2154 * But set_page_dirty so that memory pressure will swap rather 2155 * than free the pages we are allocating (and SGP_CACHE pages 2156 * might still be clean: we now need to mark those dirty too). 2157 */ 2158 set_page_dirty(page); 2159 unlock_page(page); 2160 page_cache_release(page); 2161 cond_resched(); 2162 } 2163 2164 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2165 i_size_write(inode, offset + len); 2166 inode->i_ctime = CURRENT_TIME; 2167 undone: 2168 spin_lock(&inode->i_lock); 2169 inode->i_private = NULL; 2170 spin_unlock(&inode->i_lock); 2171 out: 2172 mutex_unlock(&inode->i_mutex); 2173 return error; 2174 } 2175 2176 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2177 { 2178 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2179 2180 buf->f_type = TMPFS_MAGIC; 2181 buf->f_bsize = PAGE_CACHE_SIZE; 2182 buf->f_namelen = NAME_MAX; 2183 if (sbinfo->max_blocks) { 2184 buf->f_blocks = sbinfo->max_blocks; 2185 buf->f_bavail = 2186 buf->f_bfree = sbinfo->max_blocks - 2187 percpu_counter_sum(&sbinfo->used_blocks); 2188 } 2189 if (sbinfo->max_inodes) { 2190 buf->f_files = sbinfo->max_inodes; 2191 buf->f_ffree = sbinfo->free_inodes; 2192 } 2193 /* else leave those fields 0 like simple_statfs */ 2194 return 0; 2195 } 2196 2197 /* 2198 * File creation. Allocate an inode, and we're done.. 2199 */ 2200 static int 2201 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2202 { 2203 struct inode *inode; 2204 int error = -ENOSPC; 2205 2206 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2207 if (inode) { 2208 error = simple_acl_create(dir, inode); 2209 if (error) 2210 goto out_iput; 2211 error = security_inode_init_security(inode, dir, 2212 &dentry->d_name, 2213 shmem_initxattrs, NULL); 2214 if (error && error != -EOPNOTSUPP) 2215 goto out_iput; 2216 2217 error = 0; 2218 dir->i_size += BOGO_DIRENT_SIZE; 2219 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2220 d_instantiate(dentry, inode); 2221 dget(dentry); /* Extra count - pin the dentry in core */ 2222 } 2223 return error; 2224 out_iput: 2225 iput(inode); 2226 return error; 2227 } 2228 2229 static int 2230 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2231 { 2232 struct inode *inode; 2233 int error = -ENOSPC; 2234 2235 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2236 if (inode) { 2237 error = security_inode_init_security(inode, dir, 2238 NULL, 2239 shmem_initxattrs, NULL); 2240 if (error && error != -EOPNOTSUPP) 2241 goto out_iput; 2242 error = simple_acl_create(dir, inode); 2243 if (error) 2244 goto out_iput; 2245 d_tmpfile(dentry, inode); 2246 } 2247 return error; 2248 out_iput: 2249 iput(inode); 2250 return error; 2251 } 2252 2253 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2254 { 2255 int error; 2256 2257 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2258 return error; 2259 inc_nlink(dir); 2260 return 0; 2261 } 2262 2263 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2264 bool excl) 2265 { 2266 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2267 } 2268 2269 /* 2270 * Link a file.. 2271 */ 2272 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2273 { 2274 struct inode *inode = old_dentry->d_inode; 2275 int ret; 2276 2277 /* 2278 * No ordinary (disk based) filesystem counts links as inodes; 2279 * but each new link needs a new dentry, pinning lowmem, and 2280 * tmpfs dentries cannot be pruned until they are unlinked. 2281 */ 2282 ret = shmem_reserve_inode(inode->i_sb); 2283 if (ret) 2284 goto out; 2285 2286 dir->i_size += BOGO_DIRENT_SIZE; 2287 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2288 inc_nlink(inode); 2289 ihold(inode); /* New dentry reference */ 2290 dget(dentry); /* Extra pinning count for the created dentry */ 2291 d_instantiate(dentry, inode); 2292 out: 2293 return ret; 2294 } 2295 2296 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2297 { 2298 struct inode *inode = dentry->d_inode; 2299 2300 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2301 shmem_free_inode(inode->i_sb); 2302 2303 dir->i_size -= BOGO_DIRENT_SIZE; 2304 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2305 drop_nlink(inode); 2306 dput(dentry); /* Undo the count from "create" - this does all the work */ 2307 return 0; 2308 } 2309 2310 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2311 { 2312 if (!simple_empty(dentry)) 2313 return -ENOTEMPTY; 2314 2315 drop_nlink(dentry->d_inode); 2316 drop_nlink(dir); 2317 return shmem_unlink(dir, dentry); 2318 } 2319 2320 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2321 { 2322 bool old_is_dir = d_is_dir(old_dentry); 2323 bool new_is_dir = d_is_dir(new_dentry); 2324 2325 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2326 if (old_is_dir) { 2327 drop_nlink(old_dir); 2328 inc_nlink(new_dir); 2329 } else { 2330 drop_nlink(new_dir); 2331 inc_nlink(old_dir); 2332 } 2333 } 2334 old_dir->i_ctime = old_dir->i_mtime = 2335 new_dir->i_ctime = new_dir->i_mtime = 2336 old_dentry->d_inode->i_ctime = 2337 new_dentry->d_inode->i_ctime = CURRENT_TIME; 2338 2339 return 0; 2340 } 2341 2342 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2343 { 2344 struct dentry *whiteout; 2345 int error; 2346 2347 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2348 if (!whiteout) 2349 return -ENOMEM; 2350 2351 error = shmem_mknod(old_dir, whiteout, 2352 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2353 dput(whiteout); 2354 if (error) 2355 return error; 2356 2357 /* 2358 * Cheat and hash the whiteout while the old dentry is still in 2359 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2360 * 2361 * d_lookup() will consistently find one of them at this point, 2362 * not sure which one, but that isn't even important. 2363 */ 2364 d_rehash(whiteout); 2365 return 0; 2366 } 2367 2368 /* 2369 * The VFS layer already does all the dentry stuff for rename, 2370 * we just have to decrement the usage count for the target if 2371 * it exists so that the VFS layer correctly free's it when it 2372 * gets overwritten. 2373 */ 2374 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2375 { 2376 struct inode *inode = old_dentry->d_inode; 2377 int they_are_dirs = S_ISDIR(inode->i_mode); 2378 2379 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2380 return -EINVAL; 2381 2382 if (flags & RENAME_EXCHANGE) 2383 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2384 2385 if (!simple_empty(new_dentry)) 2386 return -ENOTEMPTY; 2387 2388 if (flags & RENAME_WHITEOUT) { 2389 int error; 2390 2391 error = shmem_whiteout(old_dir, old_dentry); 2392 if (error) 2393 return error; 2394 } 2395 2396 if (new_dentry->d_inode) { 2397 (void) shmem_unlink(new_dir, new_dentry); 2398 if (they_are_dirs) { 2399 drop_nlink(new_dentry->d_inode); 2400 drop_nlink(old_dir); 2401 } 2402 } else if (they_are_dirs) { 2403 drop_nlink(old_dir); 2404 inc_nlink(new_dir); 2405 } 2406 2407 old_dir->i_size -= BOGO_DIRENT_SIZE; 2408 new_dir->i_size += BOGO_DIRENT_SIZE; 2409 old_dir->i_ctime = old_dir->i_mtime = 2410 new_dir->i_ctime = new_dir->i_mtime = 2411 inode->i_ctime = CURRENT_TIME; 2412 return 0; 2413 } 2414 2415 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2416 { 2417 int error; 2418 int len; 2419 struct inode *inode; 2420 struct page *page; 2421 char *kaddr; 2422 struct shmem_inode_info *info; 2423 2424 len = strlen(symname) + 1; 2425 if (len > PAGE_CACHE_SIZE) 2426 return -ENAMETOOLONG; 2427 2428 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2429 if (!inode) 2430 return -ENOSPC; 2431 2432 error = security_inode_init_security(inode, dir, &dentry->d_name, 2433 shmem_initxattrs, NULL); 2434 if (error) { 2435 if (error != -EOPNOTSUPP) { 2436 iput(inode); 2437 return error; 2438 } 2439 error = 0; 2440 } 2441 2442 info = SHMEM_I(inode); 2443 inode->i_size = len-1; 2444 if (len <= SHORT_SYMLINK_LEN) { 2445 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2446 if (!info->symlink) { 2447 iput(inode); 2448 return -ENOMEM; 2449 } 2450 inode->i_op = &shmem_short_symlink_operations; 2451 } else { 2452 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2453 if (error) { 2454 iput(inode); 2455 return error; 2456 } 2457 inode->i_mapping->a_ops = &shmem_aops; 2458 inode->i_op = &shmem_symlink_inode_operations; 2459 kaddr = kmap_atomic(page); 2460 memcpy(kaddr, symname, len); 2461 kunmap_atomic(kaddr); 2462 SetPageUptodate(page); 2463 set_page_dirty(page); 2464 unlock_page(page); 2465 page_cache_release(page); 2466 } 2467 dir->i_size += BOGO_DIRENT_SIZE; 2468 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2469 d_instantiate(dentry, inode); 2470 dget(dentry); 2471 return 0; 2472 } 2473 2474 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 2475 { 2476 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 2477 return NULL; 2478 } 2479 2480 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2481 { 2482 struct page *page = NULL; 2483 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2484 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 2485 if (page) 2486 unlock_page(page); 2487 return page; 2488 } 2489 2490 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2491 { 2492 if (!IS_ERR(nd_get_link(nd))) { 2493 struct page *page = cookie; 2494 kunmap(page); 2495 mark_page_accessed(page); 2496 page_cache_release(page); 2497 } 2498 } 2499 2500 #ifdef CONFIG_TMPFS_XATTR 2501 /* 2502 * Superblocks without xattr inode operations may get some security.* xattr 2503 * support from the LSM "for free". As soon as we have any other xattrs 2504 * like ACLs, we also need to implement the security.* handlers at 2505 * filesystem level, though. 2506 */ 2507 2508 /* 2509 * Callback for security_inode_init_security() for acquiring xattrs. 2510 */ 2511 static int shmem_initxattrs(struct inode *inode, 2512 const struct xattr *xattr_array, 2513 void *fs_info) 2514 { 2515 struct shmem_inode_info *info = SHMEM_I(inode); 2516 const struct xattr *xattr; 2517 struct simple_xattr *new_xattr; 2518 size_t len; 2519 2520 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2521 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2522 if (!new_xattr) 2523 return -ENOMEM; 2524 2525 len = strlen(xattr->name) + 1; 2526 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2527 GFP_KERNEL); 2528 if (!new_xattr->name) { 2529 kfree(new_xattr); 2530 return -ENOMEM; 2531 } 2532 2533 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2534 XATTR_SECURITY_PREFIX_LEN); 2535 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2536 xattr->name, len); 2537 2538 simple_xattr_list_add(&info->xattrs, new_xattr); 2539 } 2540 2541 return 0; 2542 } 2543 2544 static const struct xattr_handler *shmem_xattr_handlers[] = { 2545 #ifdef CONFIG_TMPFS_POSIX_ACL 2546 &posix_acl_access_xattr_handler, 2547 &posix_acl_default_xattr_handler, 2548 #endif 2549 NULL 2550 }; 2551 2552 static int shmem_xattr_validate(const char *name) 2553 { 2554 struct { const char *prefix; size_t len; } arr[] = { 2555 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2556 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2557 }; 2558 int i; 2559 2560 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2561 size_t preflen = arr[i].len; 2562 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2563 if (!name[preflen]) 2564 return -EINVAL; 2565 return 0; 2566 } 2567 } 2568 return -EOPNOTSUPP; 2569 } 2570 2571 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2572 void *buffer, size_t size) 2573 { 2574 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2575 int err; 2576 2577 /* 2578 * If this is a request for a synthetic attribute in the system.* 2579 * namespace use the generic infrastructure to resolve a handler 2580 * for it via sb->s_xattr. 2581 */ 2582 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2583 return generic_getxattr(dentry, name, buffer, size); 2584 2585 err = shmem_xattr_validate(name); 2586 if (err) 2587 return err; 2588 2589 return simple_xattr_get(&info->xattrs, name, buffer, size); 2590 } 2591 2592 static int shmem_setxattr(struct dentry *dentry, const char *name, 2593 const void *value, size_t size, int flags) 2594 { 2595 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2596 int err; 2597 2598 /* 2599 * If this is a request for a synthetic attribute in the system.* 2600 * namespace use the generic infrastructure to resolve a handler 2601 * for it via sb->s_xattr. 2602 */ 2603 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2604 return generic_setxattr(dentry, name, value, size, flags); 2605 2606 err = shmem_xattr_validate(name); 2607 if (err) 2608 return err; 2609 2610 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2611 } 2612 2613 static int shmem_removexattr(struct dentry *dentry, const char *name) 2614 { 2615 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2616 int err; 2617 2618 /* 2619 * If this is a request for a synthetic attribute in the system.* 2620 * namespace use the generic infrastructure to resolve a handler 2621 * for it via sb->s_xattr. 2622 */ 2623 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2624 return generic_removexattr(dentry, name); 2625 2626 err = shmem_xattr_validate(name); 2627 if (err) 2628 return err; 2629 2630 return simple_xattr_remove(&info->xattrs, name); 2631 } 2632 2633 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2634 { 2635 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2636 return simple_xattr_list(&info->xattrs, buffer, size); 2637 } 2638 #endif /* CONFIG_TMPFS_XATTR */ 2639 2640 static const struct inode_operations shmem_short_symlink_operations = { 2641 .readlink = generic_readlink, 2642 .follow_link = shmem_follow_short_symlink, 2643 #ifdef CONFIG_TMPFS_XATTR 2644 .setxattr = shmem_setxattr, 2645 .getxattr = shmem_getxattr, 2646 .listxattr = shmem_listxattr, 2647 .removexattr = shmem_removexattr, 2648 #endif 2649 }; 2650 2651 static const struct inode_operations shmem_symlink_inode_operations = { 2652 .readlink = generic_readlink, 2653 .follow_link = shmem_follow_link, 2654 .put_link = shmem_put_link, 2655 #ifdef CONFIG_TMPFS_XATTR 2656 .setxattr = shmem_setxattr, 2657 .getxattr = shmem_getxattr, 2658 .listxattr = shmem_listxattr, 2659 .removexattr = shmem_removexattr, 2660 #endif 2661 }; 2662 2663 static struct dentry *shmem_get_parent(struct dentry *child) 2664 { 2665 return ERR_PTR(-ESTALE); 2666 } 2667 2668 static int shmem_match(struct inode *ino, void *vfh) 2669 { 2670 __u32 *fh = vfh; 2671 __u64 inum = fh[2]; 2672 inum = (inum << 32) | fh[1]; 2673 return ino->i_ino == inum && fh[0] == ino->i_generation; 2674 } 2675 2676 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2677 struct fid *fid, int fh_len, int fh_type) 2678 { 2679 struct inode *inode; 2680 struct dentry *dentry = NULL; 2681 u64 inum; 2682 2683 if (fh_len < 3) 2684 return NULL; 2685 2686 inum = fid->raw[2]; 2687 inum = (inum << 32) | fid->raw[1]; 2688 2689 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2690 shmem_match, fid->raw); 2691 if (inode) { 2692 dentry = d_find_alias(inode); 2693 iput(inode); 2694 } 2695 2696 return dentry; 2697 } 2698 2699 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2700 struct inode *parent) 2701 { 2702 if (*len < 3) { 2703 *len = 3; 2704 return FILEID_INVALID; 2705 } 2706 2707 if (inode_unhashed(inode)) { 2708 /* Unfortunately insert_inode_hash is not idempotent, 2709 * so as we hash inodes here rather than at creation 2710 * time, we need a lock to ensure we only try 2711 * to do it once 2712 */ 2713 static DEFINE_SPINLOCK(lock); 2714 spin_lock(&lock); 2715 if (inode_unhashed(inode)) 2716 __insert_inode_hash(inode, 2717 inode->i_ino + inode->i_generation); 2718 spin_unlock(&lock); 2719 } 2720 2721 fh[0] = inode->i_generation; 2722 fh[1] = inode->i_ino; 2723 fh[2] = ((__u64)inode->i_ino) >> 32; 2724 2725 *len = 3; 2726 return 1; 2727 } 2728 2729 static const struct export_operations shmem_export_ops = { 2730 .get_parent = shmem_get_parent, 2731 .encode_fh = shmem_encode_fh, 2732 .fh_to_dentry = shmem_fh_to_dentry, 2733 }; 2734 2735 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2736 bool remount) 2737 { 2738 char *this_char, *value, *rest; 2739 struct mempolicy *mpol = NULL; 2740 uid_t uid; 2741 gid_t gid; 2742 2743 while (options != NULL) { 2744 this_char = options; 2745 for (;;) { 2746 /* 2747 * NUL-terminate this option: unfortunately, 2748 * mount options form a comma-separated list, 2749 * but mpol's nodelist may also contain commas. 2750 */ 2751 options = strchr(options, ','); 2752 if (options == NULL) 2753 break; 2754 options++; 2755 if (!isdigit(*options)) { 2756 options[-1] = '\0'; 2757 break; 2758 } 2759 } 2760 if (!*this_char) 2761 continue; 2762 if ((value = strchr(this_char,'=')) != NULL) { 2763 *value++ = 0; 2764 } else { 2765 printk(KERN_ERR 2766 "tmpfs: No value for mount option '%s'\n", 2767 this_char); 2768 goto error; 2769 } 2770 2771 if (!strcmp(this_char,"size")) { 2772 unsigned long long size; 2773 size = memparse(value,&rest); 2774 if (*rest == '%') { 2775 size <<= PAGE_SHIFT; 2776 size *= totalram_pages; 2777 do_div(size, 100); 2778 rest++; 2779 } 2780 if (*rest) 2781 goto bad_val; 2782 sbinfo->max_blocks = 2783 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2784 } else if (!strcmp(this_char,"nr_blocks")) { 2785 sbinfo->max_blocks = memparse(value, &rest); 2786 if (*rest) 2787 goto bad_val; 2788 } else if (!strcmp(this_char,"nr_inodes")) { 2789 sbinfo->max_inodes = memparse(value, &rest); 2790 if (*rest) 2791 goto bad_val; 2792 } else if (!strcmp(this_char,"mode")) { 2793 if (remount) 2794 continue; 2795 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2796 if (*rest) 2797 goto bad_val; 2798 } else if (!strcmp(this_char,"uid")) { 2799 if (remount) 2800 continue; 2801 uid = simple_strtoul(value, &rest, 0); 2802 if (*rest) 2803 goto bad_val; 2804 sbinfo->uid = make_kuid(current_user_ns(), uid); 2805 if (!uid_valid(sbinfo->uid)) 2806 goto bad_val; 2807 } else if (!strcmp(this_char,"gid")) { 2808 if (remount) 2809 continue; 2810 gid = simple_strtoul(value, &rest, 0); 2811 if (*rest) 2812 goto bad_val; 2813 sbinfo->gid = make_kgid(current_user_ns(), gid); 2814 if (!gid_valid(sbinfo->gid)) 2815 goto bad_val; 2816 } else if (!strcmp(this_char,"mpol")) { 2817 mpol_put(mpol); 2818 mpol = NULL; 2819 if (mpol_parse_str(value, &mpol)) 2820 goto bad_val; 2821 } else { 2822 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2823 this_char); 2824 goto error; 2825 } 2826 } 2827 sbinfo->mpol = mpol; 2828 return 0; 2829 2830 bad_val: 2831 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2832 value, this_char); 2833 error: 2834 mpol_put(mpol); 2835 return 1; 2836 2837 } 2838 2839 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2840 { 2841 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2842 struct shmem_sb_info config = *sbinfo; 2843 unsigned long inodes; 2844 int error = -EINVAL; 2845 2846 config.mpol = NULL; 2847 if (shmem_parse_options(data, &config, true)) 2848 return error; 2849 2850 spin_lock(&sbinfo->stat_lock); 2851 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2852 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2853 goto out; 2854 if (config.max_inodes < inodes) 2855 goto out; 2856 /* 2857 * Those tests disallow limited->unlimited while any are in use; 2858 * but we must separately disallow unlimited->limited, because 2859 * in that case we have no record of how much is already in use. 2860 */ 2861 if (config.max_blocks && !sbinfo->max_blocks) 2862 goto out; 2863 if (config.max_inodes && !sbinfo->max_inodes) 2864 goto out; 2865 2866 error = 0; 2867 sbinfo->max_blocks = config.max_blocks; 2868 sbinfo->max_inodes = config.max_inodes; 2869 sbinfo->free_inodes = config.max_inodes - inodes; 2870 2871 /* 2872 * Preserve previous mempolicy unless mpol remount option was specified. 2873 */ 2874 if (config.mpol) { 2875 mpol_put(sbinfo->mpol); 2876 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2877 } 2878 out: 2879 spin_unlock(&sbinfo->stat_lock); 2880 return error; 2881 } 2882 2883 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2884 { 2885 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2886 2887 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2888 seq_printf(seq, ",size=%luk", 2889 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2890 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2891 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2892 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2893 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2894 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2895 seq_printf(seq, ",uid=%u", 2896 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2897 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2898 seq_printf(seq, ",gid=%u", 2899 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2900 shmem_show_mpol(seq, sbinfo->mpol); 2901 return 0; 2902 } 2903 2904 #define MFD_NAME_PREFIX "memfd:" 2905 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2906 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2907 2908 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2909 2910 SYSCALL_DEFINE2(memfd_create, 2911 const char __user *, uname, 2912 unsigned int, flags) 2913 { 2914 struct shmem_inode_info *info; 2915 struct file *file; 2916 int fd, error; 2917 char *name; 2918 long len; 2919 2920 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2921 return -EINVAL; 2922 2923 /* length includes terminating zero */ 2924 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2925 if (len <= 0) 2926 return -EFAULT; 2927 if (len > MFD_NAME_MAX_LEN + 1) 2928 return -EINVAL; 2929 2930 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2931 if (!name) 2932 return -ENOMEM; 2933 2934 strcpy(name, MFD_NAME_PREFIX); 2935 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2936 error = -EFAULT; 2937 goto err_name; 2938 } 2939 2940 /* terminating-zero may have changed after strnlen_user() returned */ 2941 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 2942 error = -EFAULT; 2943 goto err_name; 2944 } 2945 2946 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 2947 if (fd < 0) { 2948 error = fd; 2949 goto err_name; 2950 } 2951 2952 file = shmem_file_setup(name, 0, VM_NORESERVE); 2953 if (IS_ERR(file)) { 2954 error = PTR_ERR(file); 2955 goto err_fd; 2956 } 2957 info = SHMEM_I(file_inode(file)); 2958 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 2959 file->f_flags |= O_RDWR | O_LARGEFILE; 2960 if (flags & MFD_ALLOW_SEALING) 2961 info->seals &= ~F_SEAL_SEAL; 2962 2963 fd_install(fd, file); 2964 kfree(name); 2965 return fd; 2966 2967 err_fd: 2968 put_unused_fd(fd); 2969 err_name: 2970 kfree(name); 2971 return error; 2972 } 2973 2974 #endif /* CONFIG_TMPFS */ 2975 2976 static void shmem_put_super(struct super_block *sb) 2977 { 2978 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2979 2980 percpu_counter_destroy(&sbinfo->used_blocks); 2981 mpol_put(sbinfo->mpol); 2982 kfree(sbinfo); 2983 sb->s_fs_info = NULL; 2984 } 2985 2986 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2987 { 2988 struct inode *inode; 2989 struct shmem_sb_info *sbinfo; 2990 int err = -ENOMEM; 2991 2992 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2993 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2994 L1_CACHE_BYTES), GFP_KERNEL); 2995 if (!sbinfo) 2996 return -ENOMEM; 2997 2998 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2999 sbinfo->uid = current_fsuid(); 3000 sbinfo->gid = current_fsgid(); 3001 sb->s_fs_info = sbinfo; 3002 3003 #ifdef CONFIG_TMPFS 3004 /* 3005 * Per default we only allow half of the physical ram per 3006 * tmpfs instance, limiting inodes to one per page of lowmem; 3007 * but the internal instance is left unlimited. 3008 */ 3009 if (!(sb->s_flags & MS_KERNMOUNT)) { 3010 sbinfo->max_blocks = shmem_default_max_blocks(); 3011 sbinfo->max_inodes = shmem_default_max_inodes(); 3012 if (shmem_parse_options(data, sbinfo, false)) { 3013 err = -EINVAL; 3014 goto failed; 3015 } 3016 } else { 3017 sb->s_flags |= MS_NOUSER; 3018 } 3019 sb->s_export_op = &shmem_export_ops; 3020 sb->s_flags |= MS_NOSEC; 3021 #else 3022 sb->s_flags |= MS_NOUSER; 3023 #endif 3024 3025 spin_lock_init(&sbinfo->stat_lock); 3026 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3027 goto failed; 3028 sbinfo->free_inodes = sbinfo->max_inodes; 3029 3030 sb->s_maxbytes = MAX_LFS_FILESIZE; 3031 sb->s_blocksize = PAGE_CACHE_SIZE; 3032 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 3033 sb->s_magic = TMPFS_MAGIC; 3034 sb->s_op = &shmem_ops; 3035 sb->s_time_gran = 1; 3036 #ifdef CONFIG_TMPFS_XATTR 3037 sb->s_xattr = shmem_xattr_handlers; 3038 #endif 3039 #ifdef CONFIG_TMPFS_POSIX_ACL 3040 sb->s_flags |= MS_POSIXACL; 3041 #endif 3042 3043 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3044 if (!inode) 3045 goto failed; 3046 inode->i_uid = sbinfo->uid; 3047 inode->i_gid = sbinfo->gid; 3048 sb->s_root = d_make_root(inode); 3049 if (!sb->s_root) 3050 goto failed; 3051 return 0; 3052 3053 failed: 3054 shmem_put_super(sb); 3055 return err; 3056 } 3057 3058 static struct kmem_cache *shmem_inode_cachep; 3059 3060 static struct inode *shmem_alloc_inode(struct super_block *sb) 3061 { 3062 struct shmem_inode_info *info; 3063 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3064 if (!info) 3065 return NULL; 3066 return &info->vfs_inode; 3067 } 3068 3069 static void shmem_destroy_callback(struct rcu_head *head) 3070 { 3071 struct inode *inode = container_of(head, struct inode, i_rcu); 3072 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3073 } 3074 3075 static void shmem_destroy_inode(struct inode *inode) 3076 { 3077 if (S_ISREG(inode->i_mode)) 3078 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3079 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3080 } 3081 3082 static void shmem_init_inode(void *foo) 3083 { 3084 struct shmem_inode_info *info = foo; 3085 inode_init_once(&info->vfs_inode); 3086 } 3087 3088 static int shmem_init_inodecache(void) 3089 { 3090 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3091 sizeof(struct shmem_inode_info), 3092 0, SLAB_PANIC, shmem_init_inode); 3093 return 0; 3094 } 3095 3096 static void shmem_destroy_inodecache(void) 3097 { 3098 kmem_cache_destroy(shmem_inode_cachep); 3099 } 3100 3101 static const struct address_space_operations shmem_aops = { 3102 .writepage = shmem_writepage, 3103 .set_page_dirty = __set_page_dirty_no_writeback, 3104 #ifdef CONFIG_TMPFS 3105 .write_begin = shmem_write_begin, 3106 .write_end = shmem_write_end, 3107 #endif 3108 #ifdef CONFIG_MIGRATION 3109 .migratepage = migrate_page, 3110 #endif 3111 .error_remove_page = generic_error_remove_page, 3112 }; 3113 3114 static const struct file_operations shmem_file_operations = { 3115 .mmap = shmem_mmap, 3116 #ifdef CONFIG_TMPFS 3117 .llseek = shmem_file_llseek, 3118 .read = new_sync_read, 3119 .write = new_sync_write, 3120 .read_iter = shmem_file_read_iter, 3121 .write_iter = generic_file_write_iter, 3122 .fsync = noop_fsync, 3123 .splice_read = shmem_file_splice_read, 3124 .splice_write = iter_file_splice_write, 3125 .fallocate = shmem_fallocate, 3126 #endif 3127 }; 3128 3129 static const struct inode_operations shmem_inode_operations = { 3130 .setattr = shmem_setattr, 3131 #ifdef CONFIG_TMPFS_XATTR 3132 .setxattr = shmem_setxattr, 3133 .getxattr = shmem_getxattr, 3134 .listxattr = shmem_listxattr, 3135 .removexattr = shmem_removexattr, 3136 .set_acl = simple_set_acl, 3137 #endif 3138 }; 3139 3140 static const struct inode_operations shmem_dir_inode_operations = { 3141 #ifdef CONFIG_TMPFS 3142 .create = shmem_create, 3143 .lookup = simple_lookup, 3144 .link = shmem_link, 3145 .unlink = shmem_unlink, 3146 .symlink = shmem_symlink, 3147 .mkdir = shmem_mkdir, 3148 .rmdir = shmem_rmdir, 3149 .mknod = shmem_mknod, 3150 .rename2 = shmem_rename2, 3151 .tmpfile = shmem_tmpfile, 3152 #endif 3153 #ifdef CONFIG_TMPFS_XATTR 3154 .setxattr = shmem_setxattr, 3155 .getxattr = shmem_getxattr, 3156 .listxattr = shmem_listxattr, 3157 .removexattr = shmem_removexattr, 3158 #endif 3159 #ifdef CONFIG_TMPFS_POSIX_ACL 3160 .setattr = shmem_setattr, 3161 .set_acl = simple_set_acl, 3162 #endif 3163 }; 3164 3165 static const struct inode_operations shmem_special_inode_operations = { 3166 #ifdef CONFIG_TMPFS_XATTR 3167 .setxattr = shmem_setxattr, 3168 .getxattr = shmem_getxattr, 3169 .listxattr = shmem_listxattr, 3170 .removexattr = shmem_removexattr, 3171 #endif 3172 #ifdef CONFIG_TMPFS_POSIX_ACL 3173 .setattr = shmem_setattr, 3174 .set_acl = simple_set_acl, 3175 #endif 3176 }; 3177 3178 static const struct super_operations shmem_ops = { 3179 .alloc_inode = shmem_alloc_inode, 3180 .destroy_inode = shmem_destroy_inode, 3181 #ifdef CONFIG_TMPFS 3182 .statfs = shmem_statfs, 3183 .remount_fs = shmem_remount_fs, 3184 .show_options = shmem_show_options, 3185 #endif 3186 .evict_inode = shmem_evict_inode, 3187 .drop_inode = generic_delete_inode, 3188 .put_super = shmem_put_super, 3189 }; 3190 3191 static const struct vm_operations_struct shmem_vm_ops = { 3192 .fault = shmem_fault, 3193 .map_pages = filemap_map_pages, 3194 #ifdef CONFIG_NUMA 3195 .set_policy = shmem_set_policy, 3196 .get_policy = shmem_get_policy, 3197 #endif 3198 }; 3199 3200 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3201 int flags, const char *dev_name, void *data) 3202 { 3203 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3204 } 3205 3206 static struct file_system_type shmem_fs_type = { 3207 .owner = THIS_MODULE, 3208 .name = "tmpfs", 3209 .mount = shmem_mount, 3210 .kill_sb = kill_litter_super, 3211 .fs_flags = FS_USERNS_MOUNT, 3212 }; 3213 3214 int __init shmem_init(void) 3215 { 3216 int error; 3217 3218 /* If rootfs called this, don't re-init */ 3219 if (shmem_inode_cachep) 3220 return 0; 3221 3222 error = shmem_init_inodecache(); 3223 if (error) 3224 goto out3; 3225 3226 error = register_filesystem(&shmem_fs_type); 3227 if (error) { 3228 printk(KERN_ERR "Could not register tmpfs\n"); 3229 goto out2; 3230 } 3231 3232 shm_mnt = kern_mount(&shmem_fs_type); 3233 if (IS_ERR(shm_mnt)) { 3234 error = PTR_ERR(shm_mnt); 3235 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 3236 goto out1; 3237 } 3238 return 0; 3239 3240 out1: 3241 unregister_filesystem(&shmem_fs_type); 3242 out2: 3243 shmem_destroy_inodecache(); 3244 out3: 3245 shm_mnt = ERR_PTR(error); 3246 return error; 3247 } 3248 3249 #else /* !CONFIG_SHMEM */ 3250 3251 /* 3252 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3253 * 3254 * This is intended for small system where the benefits of the full 3255 * shmem code (swap-backed and resource-limited) are outweighed by 3256 * their complexity. On systems without swap this code should be 3257 * effectively equivalent, but much lighter weight. 3258 */ 3259 3260 static struct file_system_type shmem_fs_type = { 3261 .name = "tmpfs", 3262 .mount = ramfs_mount, 3263 .kill_sb = kill_litter_super, 3264 .fs_flags = FS_USERNS_MOUNT, 3265 }; 3266 3267 int __init shmem_init(void) 3268 { 3269 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3270 3271 shm_mnt = kern_mount(&shmem_fs_type); 3272 BUG_ON(IS_ERR(shm_mnt)); 3273 3274 return 0; 3275 } 3276 3277 int shmem_unuse(swp_entry_t swap, struct page *page) 3278 { 3279 return 0; 3280 } 3281 3282 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3283 { 3284 return 0; 3285 } 3286 3287 void shmem_unlock_mapping(struct address_space *mapping) 3288 { 3289 } 3290 3291 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3292 { 3293 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3294 } 3295 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3296 3297 #define shmem_vm_ops generic_file_vm_ops 3298 #define shmem_file_operations ramfs_file_operations 3299 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3300 #define shmem_acct_size(flags, size) 0 3301 #define shmem_unacct_size(flags, size) do {} while (0) 3302 3303 #endif /* CONFIG_SHMEM */ 3304 3305 /* common code */ 3306 3307 static struct dentry_operations anon_ops = { 3308 .d_dname = simple_dname 3309 }; 3310 3311 static struct file *__shmem_file_setup(const char *name, loff_t size, 3312 unsigned long flags, unsigned int i_flags) 3313 { 3314 struct file *res; 3315 struct inode *inode; 3316 struct path path; 3317 struct super_block *sb; 3318 struct qstr this; 3319 3320 if (IS_ERR(shm_mnt)) 3321 return ERR_CAST(shm_mnt); 3322 3323 if (size < 0 || size > MAX_LFS_FILESIZE) 3324 return ERR_PTR(-EINVAL); 3325 3326 if (shmem_acct_size(flags, size)) 3327 return ERR_PTR(-ENOMEM); 3328 3329 res = ERR_PTR(-ENOMEM); 3330 this.name = name; 3331 this.len = strlen(name); 3332 this.hash = 0; /* will go */ 3333 sb = shm_mnt->mnt_sb; 3334 path.mnt = mntget(shm_mnt); 3335 path.dentry = d_alloc_pseudo(sb, &this); 3336 if (!path.dentry) 3337 goto put_memory; 3338 d_set_d_op(path.dentry, &anon_ops); 3339 3340 res = ERR_PTR(-ENOSPC); 3341 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3342 if (!inode) 3343 goto put_memory; 3344 3345 inode->i_flags |= i_flags; 3346 d_instantiate(path.dentry, inode); 3347 inode->i_size = size; 3348 clear_nlink(inode); /* It is unlinked */ 3349 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3350 if (IS_ERR(res)) 3351 goto put_path; 3352 3353 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3354 &shmem_file_operations); 3355 if (IS_ERR(res)) 3356 goto put_path; 3357 3358 return res; 3359 3360 put_memory: 3361 shmem_unacct_size(flags, size); 3362 put_path: 3363 path_put(&path); 3364 return res; 3365 } 3366 3367 /** 3368 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3369 * kernel internal. There will be NO LSM permission checks against the 3370 * underlying inode. So users of this interface must do LSM checks at a 3371 * higher layer. The one user is the big_key implementation. LSM checks 3372 * are provided at the key level rather than the inode level. 3373 * @name: name for dentry (to be seen in /proc/<pid>/maps 3374 * @size: size to be set for the file 3375 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3376 */ 3377 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3378 { 3379 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3380 } 3381 3382 /** 3383 * shmem_file_setup - get an unlinked file living in tmpfs 3384 * @name: name for dentry (to be seen in /proc/<pid>/maps 3385 * @size: size to be set for the file 3386 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3387 */ 3388 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3389 { 3390 return __shmem_file_setup(name, size, flags, 0); 3391 } 3392 EXPORT_SYMBOL_GPL(shmem_file_setup); 3393 3394 /** 3395 * shmem_zero_setup - setup a shared anonymous mapping 3396 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3397 */ 3398 int shmem_zero_setup(struct vm_area_struct *vma) 3399 { 3400 struct file *file; 3401 loff_t size = vma->vm_end - vma->vm_start; 3402 3403 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 3404 if (IS_ERR(file)) 3405 return PTR_ERR(file); 3406 3407 if (vma->vm_file) 3408 fput(vma->vm_file); 3409 vma->vm_file = file; 3410 vma->vm_ops = &shmem_vm_ops; 3411 return 0; 3412 } 3413 3414 /** 3415 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3416 * @mapping: the page's address_space 3417 * @index: the page index 3418 * @gfp: the page allocator flags to use if allocating 3419 * 3420 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3421 * with any new page allocations done using the specified allocation flags. 3422 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3423 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3424 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3425 * 3426 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3427 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3428 */ 3429 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3430 pgoff_t index, gfp_t gfp) 3431 { 3432 #ifdef CONFIG_SHMEM 3433 struct inode *inode = mapping->host; 3434 struct page *page; 3435 int error; 3436 3437 BUG_ON(mapping->a_ops != &shmem_aops); 3438 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3439 if (error) 3440 page = ERR_PTR(error); 3441 else 3442 unlock_page(page); 3443 return page; 3444 #else 3445 /* 3446 * The tiny !SHMEM case uses ramfs without swap 3447 */ 3448 return read_cache_page_gfp(mapping, index, gfp); 3449 #endif 3450 } 3451 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3452