xref: /openbmc/linux/mm/shmem.c (revision d774a589)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36 
37 static struct vfsmount *shm_mnt;
38 
39 #ifdef CONFIG_SHMEM
40 /*
41  * This virtual memory filesystem is heavily based on the ramfs. It
42  * extends ramfs by the ability to use swap and honor resource limits
43  * which makes it a completely usable filesystem.
44  */
45 
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73 
74 #include <linux/uaccess.h>
75 #include <asm/pgtable.h>
76 
77 #include "internal.h"
78 
79 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81 
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84 
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87 
88 /*
89  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90  * inode->i_private (with i_mutex making sure that it has only one user at
91  * a time): we would prefer not to enlarge the shmem inode just for that.
92  */
93 struct shmem_falloc {
94 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 	pgoff_t start;		/* start of range currently being fallocated */
96 	pgoff_t next;		/* the next page offset to be fallocated */
97 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
98 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
99 };
100 
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 	return totalram_pages / 2;
105 }
106 
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112 
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 				struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 		struct page **pagep, enum sgp_type sgp,
118 		gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119 
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 		struct page **pagep, enum sgp_type sgp)
122 {
123 	return shmem_getpage_gfp(inode, index, pagep, sgp,
124 		mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126 
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129 	return sb->s_fs_info;
130 }
131 
132 /*
133  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134  * for shared memory and for shared anonymous (/dev/zero) mappings
135  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136  * consistent with the pre-accounting of private mappings ...
137  */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140 	return (flags & VM_NORESERVE) ?
141 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143 
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146 	if (!(flags & VM_NORESERVE))
147 		vm_unacct_memory(VM_ACCT(size));
148 }
149 
150 static inline int shmem_reacct_size(unsigned long flags,
151 		loff_t oldsize, loff_t newsize)
152 {
153 	if (!(flags & VM_NORESERVE)) {
154 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 			return security_vm_enough_memory_mm(current->mm,
156 					VM_ACCT(newsize) - VM_ACCT(oldsize));
157 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 	}
160 	return 0;
161 }
162 
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow large sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171 	if (!(flags & VM_NORESERVE))
172 		return 0;
173 
174 	return security_vm_enough_memory_mm(current->mm,
175 			pages * VM_ACCT(PAGE_SIZE));
176 }
177 
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180 	if (flags & VM_NORESERVE)
181 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183 
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192 
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195 
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 	if (sbinfo->max_inodes) {
200 		spin_lock(&sbinfo->stat_lock);
201 		if (!sbinfo->free_inodes) {
202 			spin_unlock(&sbinfo->stat_lock);
203 			return -ENOSPC;
204 		}
205 		sbinfo->free_inodes--;
206 		spin_unlock(&sbinfo->stat_lock);
207 	}
208 	return 0;
209 }
210 
211 static void shmem_free_inode(struct super_block *sb)
212 {
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 	if (sbinfo->max_inodes) {
215 		spin_lock(&sbinfo->stat_lock);
216 		sbinfo->free_inodes++;
217 		spin_unlock(&sbinfo->stat_lock);
218 	}
219 }
220 
221 /**
222  * shmem_recalc_inode - recalculate the block usage of an inode
223  * @inode: inode to recalc
224  *
225  * We have to calculate the free blocks since the mm can drop
226  * undirtied hole pages behind our back.
227  *
228  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
229  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230  *
231  * It has to be called with the spinlock held.
232  */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	long freed;
237 
238 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 	if (freed > 0) {
240 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 		if (sbinfo->max_blocks)
242 			percpu_counter_add(&sbinfo->used_blocks, -freed);
243 		info->alloced -= freed;
244 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 		shmem_unacct_blocks(info->flags, freed);
246 	}
247 }
248 
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251 	struct shmem_inode_info *info = SHMEM_I(inode);
252 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 	unsigned long flags;
254 
255 	if (shmem_acct_block(info->flags, pages))
256 		return false;
257 	spin_lock_irqsave(&info->lock, flags);
258 	info->alloced += pages;
259 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 	shmem_recalc_inode(inode);
261 	spin_unlock_irqrestore(&info->lock, flags);
262 	inode->i_mapping->nrpages += pages;
263 
264 	if (!sbinfo->max_blocks)
265 		return true;
266 	if (percpu_counter_compare(&sbinfo->used_blocks,
267 				sbinfo->max_blocks - pages) > 0) {
268 		inode->i_mapping->nrpages -= pages;
269 		spin_lock_irqsave(&info->lock, flags);
270 		info->alloced -= pages;
271 		shmem_recalc_inode(inode);
272 		spin_unlock_irqrestore(&info->lock, flags);
273 		shmem_unacct_blocks(info->flags, pages);
274 		return false;
275 	}
276 	percpu_counter_add(&sbinfo->used_blocks, pages);
277 	return true;
278 }
279 
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282 	struct shmem_inode_info *info = SHMEM_I(inode);
283 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&info->lock, flags);
287 	info->alloced -= pages;
288 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 	shmem_recalc_inode(inode);
290 	spin_unlock_irqrestore(&info->lock, flags);
291 
292 	if (sbinfo->max_blocks)
293 		percpu_counter_sub(&sbinfo->used_blocks, pages);
294 	shmem_unacct_blocks(info->flags, pages);
295 }
296 
297 /*
298  * Replace item expected in radix tree by a new item, while holding tree lock.
299  */
300 static int shmem_radix_tree_replace(struct address_space *mapping,
301 			pgoff_t index, void *expected, void *replacement)
302 {
303 	struct radix_tree_node *node;
304 	void **pslot;
305 	void *item;
306 
307 	VM_BUG_ON(!expected);
308 	VM_BUG_ON(!replacement);
309 	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
310 	if (!item)
311 		return -ENOENT;
312 	if (item != expected)
313 		return -ENOENT;
314 	__radix_tree_replace(&mapping->page_tree, node, pslot,
315 			     replacement, NULL, NULL);
316 	return 0;
317 }
318 
319 /*
320  * Sometimes, before we decide whether to proceed or to fail, we must check
321  * that an entry was not already brought back from swap by a racing thread.
322  *
323  * Checking page is not enough: by the time a SwapCache page is locked, it
324  * might be reused, and again be SwapCache, using the same swap as before.
325  */
326 static bool shmem_confirm_swap(struct address_space *mapping,
327 			       pgoff_t index, swp_entry_t swap)
328 {
329 	void *item;
330 
331 	rcu_read_lock();
332 	item = radix_tree_lookup(&mapping->page_tree, index);
333 	rcu_read_unlock();
334 	return item == swp_to_radix_entry(swap);
335 }
336 
337 /*
338  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
339  *
340  * SHMEM_HUGE_NEVER:
341  *	disables huge pages for the mount;
342  * SHMEM_HUGE_ALWAYS:
343  *	enables huge pages for the mount;
344  * SHMEM_HUGE_WITHIN_SIZE:
345  *	only allocate huge pages if the page will be fully within i_size,
346  *	also respect fadvise()/madvise() hints;
347  * SHMEM_HUGE_ADVISE:
348  *	only allocate huge pages if requested with fadvise()/madvise();
349  */
350 
351 #define SHMEM_HUGE_NEVER	0
352 #define SHMEM_HUGE_ALWAYS	1
353 #define SHMEM_HUGE_WITHIN_SIZE	2
354 #define SHMEM_HUGE_ADVISE	3
355 
356 /*
357  * Special values.
358  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
359  *
360  * SHMEM_HUGE_DENY:
361  *	disables huge on shm_mnt and all mounts, for emergency use;
362  * SHMEM_HUGE_FORCE:
363  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
364  *
365  */
366 #define SHMEM_HUGE_DENY		(-1)
367 #define SHMEM_HUGE_FORCE	(-2)
368 
369 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
370 /* ifdef here to avoid bloating shmem.o when not necessary */
371 
372 int shmem_huge __read_mostly;
373 
374 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
375 static int shmem_parse_huge(const char *str)
376 {
377 	if (!strcmp(str, "never"))
378 		return SHMEM_HUGE_NEVER;
379 	if (!strcmp(str, "always"))
380 		return SHMEM_HUGE_ALWAYS;
381 	if (!strcmp(str, "within_size"))
382 		return SHMEM_HUGE_WITHIN_SIZE;
383 	if (!strcmp(str, "advise"))
384 		return SHMEM_HUGE_ADVISE;
385 	if (!strcmp(str, "deny"))
386 		return SHMEM_HUGE_DENY;
387 	if (!strcmp(str, "force"))
388 		return SHMEM_HUGE_FORCE;
389 	return -EINVAL;
390 }
391 
392 static const char *shmem_format_huge(int huge)
393 {
394 	switch (huge) {
395 	case SHMEM_HUGE_NEVER:
396 		return "never";
397 	case SHMEM_HUGE_ALWAYS:
398 		return "always";
399 	case SHMEM_HUGE_WITHIN_SIZE:
400 		return "within_size";
401 	case SHMEM_HUGE_ADVISE:
402 		return "advise";
403 	case SHMEM_HUGE_DENY:
404 		return "deny";
405 	case SHMEM_HUGE_FORCE:
406 		return "force";
407 	default:
408 		VM_BUG_ON(1);
409 		return "bad_val";
410 	}
411 }
412 #endif
413 
414 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
415 		struct shrink_control *sc, unsigned long nr_to_split)
416 {
417 	LIST_HEAD(list), *pos, *next;
418 	struct inode *inode;
419 	struct shmem_inode_info *info;
420 	struct page *page;
421 	unsigned long batch = sc ? sc->nr_to_scan : 128;
422 	int removed = 0, split = 0;
423 
424 	if (list_empty(&sbinfo->shrinklist))
425 		return SHRINK_STOP;
426 
427 	spin_lock(&sbinfo->shrinklist_lock);
428 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
429 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
430 
431 		/* pin the inode */
432 		inode = igrab(&info->vfs_inode);
433 
434 		/* inode is about to be evicted */
435 		if (!inode) {
436 			list_del_init(&info->shrinklist);
437 			removed++;
438 			goto next;
439 		}
440 
441 		/* Check if there's anything to gain */
442 		if (round_up(inode->i_size, PAGE_SIZE) ==
443 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
444 			list_del_init(&info->shrinklist);
445 			removed++;
446 			iput(inode);
447 			goto next;
448 		}
449 
450 		list_move(&info->shrinklist, &list);
451 next:
452 		if (!--batch)
453 			break;
454 	}
455 	spin_unlock(&sbinfo->shrinklist_lock);
456 
457 	list_for_each_safe(pos, next, &list) {
458 		int ret;
459 
460 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
461 		inode = &info->vfs_inode;
462 
463 		if (nr_to_split && split >= nr_to_split) {
464 			iput(inode);
465 			continue;
466 		}
467 
468 		page = find_lock_page(inode->i_mapping,
469 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
470 		if (!page)
471 			goto drop;
472 
473 		if (!PageTransHuge(page)) {
474 			unlock_page(page);
475 			put_page(page);
476 			goto drop;
477 		}
478 
479 		ret = split_huge_page(page);
480 		unlock_page(page);
481 		put_page(page);
482 
483 		if (ret) {
484 			/* split failed: leave it on the list */
485 			iput(inode);
486 			continue;
487 		}
488 
489 		split++;
490 drop:
491 		list_del_init(&info->shrinklist);
492 		removed++;
493 		iput(inode);
494 	}
495 
496 	spin_lock(&sbinfo->shrinklist_lock);
497 	list_splice_tail(&list, &sbinfo->shrinklist);
498 	sbinfo->shrinklist_len -= removed;
499 	spin_unlock(&sbinfo->shrinklist_lock);
500 
501 	return split;
502 }
503 
504 static long shmem_unused_huge_scan(struct super_block *sb,
505 		struct shrink_control *sc)
506 {
507 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
508 
509 	if (!READ_ONCE(sbinfo->shrinklist_len))
510 		return SHRINK_STOP;
511 
512 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
513 }
514 
515 static long shmem_unused_huge_count(struct super_block *sb,
516 		struct shrink_control *sc)
517 {
518 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
519 	return READ_ONCE(sbinfo->shrinklist_len);
520 }
521 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
522 
523 #define shmem_huge SHMEM_HUGE_DENY
524 
525 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
526 		struct shrink_control *sc, unsigned long nr_to_split)
527 {
528 	return 0;
529 }
530 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
531 
532 /*
533  * Like add_to_page_cache_locked, but error if expected item has gone.
534  */
535 static int shmem_add_to_page_cache(struct page *page,
536 				   struct address_space *mapping,
537 				   pgoff_t index, void *expected)
538 {
539 	int error, nr = hpage_nr_pages(page);
540 
541 	VM_BUG_ON_PAGE(PageTail(page), page);
542 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
543 	VM_BUG_ON_PAGE(!PageLocked(page), page);
544 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
545 	VM_BUG_ON(expected && PageTransHuge(page));
546 
547 	page_ref_add(page, nr);
548 	page->mapping = mapping;
549 	page->index = index;
550 
551 	spin_lock_irq(&mapping->tree_lock);
552 	if (PageTransHuge(page)) {
553 		void __rcu **results;
554 		pgoff_t idx;
555 		int i;
556 
557 		error = 0;
558 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
559 					&results, &idx, index, 1) &&
560 				idx < index + HPAGE_PMD_NR) {
561 			error = -EEXIST;
562 		}
563 
564 		if (!error) {
565 			for (i = 0; i < HPAGE_PMD_NR; i++) {
566 				error = radix_tree_insert(&mapping->page_tree,
567 						index + i, page + i);
568 				VM_BUG_ON(error);
569 			}
570 			count_vm_event(THP_FILE_ALLOC);
571 		}
572 	} else if (!expected) {
573 		error = radix_tree_insert(&mapping->page_tree, index, page);
574 	} else {
575 		error = shmem_radix_tree_replace(mapping, index, expected,
576 								 page);
577 	}
578 
579 	if (!error) {
580 		mapping->nrpages += nr;
581 		if (PageTransHuge(page))
582 			__inc_node_page_state(page, NR_SHMEM_THPS);
583 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
584 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
585 		spin_unlock_irq(&mapping->tree_lock);
586 	} else {
587 		page->mapping = NULL;
588 		spin_unlock_irq(&mapping->tree_lock);
589 		page_ref_sub(page, nr);
590 	}
591 	return error;
592 }
593 
594 /*
595  * Like delete_from_page_cache, but substitutes swap for page.
596  */
597 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
598 {
599 	struct address_space *mapping = page->mapping;
600 	int error;
601 
602 	VM_BUG_ON_PAGE(PageCompound(page), page);
603 
604 	spin_lock_irq(&mapping->tree_lock);
605 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
606 	page->mapping = NULL;
607 	mapping->nrpages--;
608 	__dec_node_page_state(page, NR_FILE_PAGES);
609 	__dec_node_page_state(page, NR_SHMEM);
610 	spin_unlock_irq(&mapping->tree_lock);
611 	put_page(page);
612 	BUG_ON(error);
613 }
614 
615 /*
616  * Remove swap entry from radix tree, free the swap and its page cache.
617  */
618 static int shmem_free_swap(struct address_space *mapping,
619 			   pgoff_t index, void *radswap)
620 {
621 	void *old;
622 
623 	spin_lock_irq(&mapping->tree_lock);
624 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
625 	spin_unlock_irq(&mapping->tree_lock);
626 	if (old != radswap)
627 		return -ENOENT;
628 	free_swap_and_cache(radix_to_swp_entry(radswap));
629 	return 0;
630 }
631 
632 /*
633  * Determine (in bytes) how many of the shmem object's pages mapped by the
634  * given offsets are swapped out.
635  *
636  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
637  * as long as the inode doesn't go away and racy results are not a problem.
638  */
639 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
640 						pgoff_t start, pgoff_t end)
641 {
642 	struct radix_tree_iter iter;
643 	void **slot;
644 	struct page *page;
645 	unsigned long swapped = 0;
646 
647 	rcu_read_lock();
648 
649 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
650 		if (iter.index >= end)
651 			break;
652 
653 		page = radix_tree_deref_slot(slot);
654 
655 		if (radix_tree_deref_retry(page)) {
656 			slot = radix_tree_iter_retry(&iter);
657 			continue;
658 		}
659 
660 		if (radix_tree_exceptional_entry(page))
661 			swapped++;
662 
663 		if (need_resched()) {
664 			slot = radix_tree_iter_resume(slot, &iter);
665 			cond_resched_rcu();
666 		}
667 	}
668 
669 	rcu_read_unlock();
670 
671 	return swapped << PAGE_SHIFT;
672 }
673 
674 /*
675  * Determine (in bytes) how many of the shmem object's pages mapped by the
676  * given vma is swapped out.
677  *
678  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
679  * as long as the inode doesn't go away and racy results are not a problem.
680  */
681 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
682 {
683 	struct inode *inode = file_inode(vma->vm_file);
684 	struct shmem_inode_info *info = SHMEM_I(inode);
685 	struct address_space *mapping = inode->i_mapping;
686 	unsigned long swapped;
687 
688 	/* Be careful as we don't hold info->lock */
689 	swapped = READ_ONCE(info->swapped);
690 
691 	/*
692 	 * The easier cases are when the shmem object has nothing in swap, or
693 	 * the vma maps it whole. Then we can simply use the stats that we
694 	 * already track.
695 	 */
696 	if (!swapped)
697 		return 0;
698 
699 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
700 		return swapped << PAGE_SHIFT;
701 
702 	/* Here comes the more involved part */
703 	return shmem_partial_swap_usage(mapping,
704 			linear_page_index(vma, vma->vm_start),
705 			linear_page_index(vma, vma->vm_end));
706 }
707 
708 /*
709  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
710  */
711 void shmem_unlock_mapping(struct address_space *mapping)
712 {
713 	struct pagevec pvec;
714 	pgoff_t indices[PAGEVEC_SIZE];
715 	pgoff_t index = 0;
716 
717 	pagevec_init(&pvec, 0);
718 	/*
719 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
720 	 */
721 	while (!mapping_unevictable(mapping)) {
722 		/*
723 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
724 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
725 		 */
726 		pvec.nr = find_get_entries(mapping, index,
727 					   PAGEVEC_SIZE, pvec.pages, indices);
728 		if (!pvec.nr)
729 			break;
730 		index = indices[pvec.nr - 1] + 1;
731 		pagevec_remove_exceptionals(&pvec);
732 		check_move_unevictable_pages(pvec.pages, pvec.nr);
733 		pagevec_release(&pvec);
734 		cond_resched();
735 	}
736 }
737 
738 /*
739  * Remove range of pages and swap entries from radix tree, and free them.
740  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
741  */
742 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
743 								 bool unfalloc)
744 {
745 	struct address_space *mapping = inode->i_mapping;
746 	struct shmem_inode_info *info = SHMEM_I(inode);
747 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
748 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
749 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
750 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
751 	struct pagevec pvec;
752 	pgoff_t indices[PAGEVEC_SIZE];
753 	long nr_swaps_freed = 0;
754 	pgoff_t index;
755 	int i;
756 
757 	if (lend == -1)
758 		end = -1;	/* unsigned, so actually very big */
759 
760 	pagevec_init(&pvec, 0);
761 	index = start;
762 	while (index < end) {
763 		pvec.nr = find_get_entries(mapping, index,
764 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
765 			pvec.pages, indices);
766 		if (!pvec.nr)
767 			break;
768 		for (i = 0; i < pagevec_count(&pvec); i++) {
769 			struct page *page = pvec.pages[i];
770 
771 			index = indices[i];
772 			if (index >= end)
773 				break;
774 
775 			if (radix_tree_exceptional_entry(page)) {
776 				if (unfalloc)
777 					continue;
778 				nr_swaps_freed += !shmem_free_swap(mapping,
779 								index, page);
780 				continue;
781 			}
782 
783 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
784 
785 			if (!trylock_page(page))
786 				continue;
787 
788 			if (PageTransTail(page)) {
789 				/* Middle of THP: zero out the page */
790 				clear_highpage(page);
791 				unlock_page(page);
792 				continue;
793 			} else if (PageTransHuge(page)) {
794 				if (index == round_down(end, HPAGE_PMD_NR)) {
795 					/*
796 					 * Range ends in the middle of THP:
797 					 * zero out the page
798 					 */
799 					clear_highpage(page);
800 					unlock_page(page);
801 					continue;
802 				}
803 				index += HPAGE_PMD_NR - 1;
804 				i += HPAGE_PMD_NR - 1;
805 			}
806 
807 			if (!unfalloc || !PageUptodate(page)) {
808 				VM_BUG_ON_PAGE(PageTail(page), page);
809 				if (page_mapping(page) == mapping) {
810 					VM_BUG_ON_PAGE(PageWriteback(page), page);
811 					truncate_inode_page(mapping, page);
812 				}
813 			}
814 			unlock_page(page);
815 		}
816 		pagevec_remove_exceptionals(&pvec);
817 		pagevec_release(&pvec);
818 		cond_resched();
819 		index++;
820 	}
821 
822 	if (partial_start) {
823 		struct page *page = NULL;
824 		shmem_getpage(inode, start - 1, &page, SGP_READ);
825 		if (page) {
826 			unsigned int top = PAGE_SIZE;
827 			if (start > end) {
828 				top = partial_end;
829 				partial_end = 0;
830 			}
831 			zero_user_segment(page, partial_start, top);
832 			set_page_dirty(page);
833 			unlock_page(page);
834 			put_page(page);
835 		}
836 	}
837 	if (partial_end) {
838 		struct page *page = NULL;
839 		shmem_getpage(inode, end, &page, SGP_READ);
840 		if (page) {
841 			zero_user_segment(page, 0, partial_end);
842 			set_page_dirty(page);
843 			unlock_page(page);
844 			put_page(page);
845 		}
846 	}
847 	if (start >= end)
848 		return;
849 
850 	index = start;
851 	while (index < end) {
852 		cond_resched();
853 
854 		pvec.nr = find_get_entries(mapping, index,
855 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
856 				pvec.pages, indices);
857 		if (!pvec.nr) {
858 			/* If all gone or hole-punch or unfalloc, we're done */
859 			if (index == start || end != -1)
860 				break;
861 			/* But if truncating, restart to make sure all gone */
862 			index = start;
863 			continue;
864 		}
865 		for (i = 0; i < pagevec_count(&pvec); i++) {
866 			struct page *page = pvec.pages[i];
867 
868 			index = indices[i];
869 			if (index >= end)
870 				break;
871 
872 			if (radix_tree_exceptional_entry(page)) {
873 				if (unfalloc)
874 					continue;
875 				if (shmem_free_swap(mapping, index, page)) {
876 					/* Swap was replaced by page: retry */
877 					index--;
878 					break;
879 				}
880 				nr_swaps_freed++;
881 				continue;
882 			}
883 
884 			lock_page(page);
885 
886 			if (PageTransTail(page)) {
887 				/* Middle of THP: zero out the page */
888 				clear_highpage(page);
889 				unlock_page(page);
890 				/*
891 				 * Partial thp truncate due 'start' in middle
892 				 * of THP: don't need to look on these pages
893 				 * again on !pvec.nr restart.
894 				 */
895 				if (index != round_down(end, HPAGE_PMD_NR))
896 					start++;
897 				continue;
898 			} else if (PageTransHuge(page)) {
899 				if (index == round_down(end, HPAGE_PMD_NR)) {
900 					/*
901 					 * Range ends in the middle of THP:
902 					 * zero out the page
903 					 */
904 					clear_highpage(page);
905 					unlock_page(page);
906 					continue;
907 				}
908 				index += HPAGE_PMD_NR - 1;
909 				i += HPAGE_PMD_NR - 1;
910 			}
911 
912 			if (!unfalloc || !PageUptodate(page)) {
913 				VM_BUG_ON_PAGE(PageTail(page), page);
914 				if (page_mapping(page) == mapping) {
915 					VM_BUG_ON_PAGE(PageWriteback(page), page);
916 					truncate_inode_page(mapping, page);
917 				} else {
918 					/* Page was replaced by swap: retry */
919 					unlock_page(page);
920 					index--;
921 					break;
922 				}
923 			}
924 			unlock_page(page);
925 		}
926 		pagevec_remove_exceptionals(&pvec);
927 		pagevec_release(&pvec);
928 		index++;
929 	}
930 
931 	spin_lock_irq(&info->lock);
932 	info->swapped -= nr_swaps_freed;
933 	shmem_recalc_inode(inode);
934 	spin_unlock_irq(&info->lock);
935 }
936 
937 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
938 {
939 	shmem_undo_range(inode, lstart, lend, false);
940 	inode->i_ctime = inode->i_mtime = current_time(inode);
941 }
942 EXPORT_SYMBOL_GPL(shmem_truncate_range);
943 
944 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
945 			 struct kstat *stat)
946 {
947 	struct inode *inode = dentry->d_inode;
948 	struct shmem_inode_info *info = SHMEM_I(inode);
949 
950 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
951 		spin_lock_irq(&info->lock);
952 		shmem_recalc_inode(inode);
953 		spin_unlock_irq(&info->lock);
954 	}
955 	generic_fillattr(inode, stat);
956 	return 0;
957 }
958 
959 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
960 {
961 	struct inode *inode = d_inode(dentry);
962 	struct shmem_inode_info *info = SHMEM_I(inode);
963 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
964 	int error;
965 
966 	error = setattr_prepare(dentry, attr);
967 	if (error)
968 		return error;
969 
970 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
971 		loff_t oldsize = inode->i_size;
972 		loff_t newsize = attr->ia_size;
973 
974 		/* protected by i_mutex */
975 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
976 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
977 			return -EPERM;
978 
979 		if (newsize != oldsize) {
980 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
981 					oldsize, newsize);
982 			if (error)
983 				return error;
984 			i_size_write(inode, newsize);
985 			inode->i_ctime = inode->i_mtime = current_time(inode);
986 		}
987 		if (newsize <= oldsize) {
988 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
989 			if (oldsize > holebegin)
990 				unmap_mapping_range(inode->i_mapping,
991 							holebegin, 0, 1);
992 			if (info->alloced)
993 				shmem_truncate_range(inode,
994 							newsize, (loff_t)-1);
995 			/* unmap again to remove racily COWed private pages */
996 			if (oldsize > holebegin)
997 				unmap_mapping_range(inode->i_mapping,
998 							holebegin, 0, 1);
999 
1000 			/*
1001 			 * Part of the huge page can be beyond i_size: subject
1002 			 * to shrink under memory pressure.
1003 			 */
1004 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1005 				spin_lock(&sbinfo->shrinklist_lock);
1006 				if (list_empty(&info->shrinklist)) {
1007 					list_add_tail(&info->shrinklist,
1008 							&sbinfo->shrinklist);
1009 					sbinfo->shrinklist_len++;
1010 				}
1011 				spin_unlock(&sbinfo->shrinklist_lock);
1012 			}
1013 		}
1014 	}
1015 
1016 	setattr_copy(inode, attr);
1017 	if (attr->ia_valid & ATTR_MODE)
1018 		error = posix_acl_chmod(inode, inode->i_mode);
1019 	return error;
1020 }
1021 
1022 static void shmem_evict_inode(struct inode *inode)
1023 {
1024 	struct shmem_inode_info *info = SHMEM_I(inode);
1025 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1026 
1027 	if (inode->i_mapping->a_ops == &shmem_aops) {
1028 		shmem_unacct_size(info->flags, inode->i_size);
1029 		inode->i_size = 0;
1030 		shmem_truncate_range(inode, 0, (loff_t)-1);
1031 		if (!list_empty(&info->shrinklist)) {
1032 			spin_lock(&sbinfo->shrinklist_lock);
1033 			if (!list_empty(&info->shrinklist)) {
1034 				list_del_init(&info->shrinklist);
1035 				sbinfo->shrinklist_len--;
1036 			}
1037 			spin_unlock(&sbinfo->shrinklist_lock);
1038 		}
1039 		if (!list_empty(&info->swaplist)) {
1040 			mutex_lock(&shmem_swaplist_mutex);
1041 			list_del_init(&info->swaplist);
1042 			mutex_unlock(&shmem_swaplist_mutex);
1043 		}
1044 	}
1045 
1046 	simple_xattrs_free(&info->xattrs);
1047 	WARN_ON(inode->i_blocks);
1048 	shmem_free_inode(inode->i_sb);
1049 	clear_inode(inode);
1050 }
1051 
1052 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1053 {
1054 	struct radix_tree_iter iter;
1055 	void **slot;
1056 	unsigned long found = -1;
1057 	unsigned int checked = 0;
1058 
1059 	rcu_read_lock();
1060 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1061 		if (*slot == item) {
1062 			found = iter.index;
1063 			break;
1064 		}
1065 		checked++;
1066 		if ((checked % 4096) != 0)
1067 			continue;
1068 		slot = radix_tree_iter_resume(slot, &iter);
1069 		cond_resched_rcu();
1070 	}
1071 
1072 	rcu_read_unlock();
1073 	return found;
1074 }
1075 
1076 /*
1077  * If swap found in inode, free it and move page from swapcache to filecache.
1078  */
1079 static int shmem_unuse_inode(struct shmem_inode_info *info,
1080 			     swp_entry_t swap, struct page **pagep)
1081 {
1082 	struct address_space *mapping = info->vfs_inode.i_mapping;
1083 	void *radswap;
1084 	pgoff_t index;
1085 	gfp_t gfp;
1086 	int error = 0;
1087 
1088 	radswap = swp_to_radix_entry(swap);
1089 	index = find_swap_entry(&mapping->page_tree, radswap);
1090 	if (index == -1)
1091 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1092 
1093 	/*
1094 	 * Move _head_ to start search for next from here.
1095 	 * But be careful: shmem_evict_inode checks list_empty without taking
1096 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1097 	 * would appear empty, if it were the only one on shmem_swaplist.
1098 	 */
1099 	if (shmem_swaplist.next != &info->swaplist)
1100 		list_move_tail(&shmem_swaplist, &info->swaplist);
1101 
1102 	gfp = mapping_gfp_mask(mapping);
1103 	if (shmem_should_replace_page(*pagep, gfp)) {
1104 		mutex_unlock(&shmem_swaplist_mutex);
1105 		error = shmem_replace_page(pagep, gfp, info, index);
1106 		mutex_lock(&shmem_swaplist_mutex);
1107 		/*
1108 		 * We needed to drop mutex to make that restrictive page
1109 		 * allocation, but the inode might have been freed while we
1110 		 * dropped it: although a racing shmem_evict_inode() cannot
1111 		 * complete without emptying the radix_tree, our page lock
1112 		 * on this swapcache page is not enough to prevent that -
1113 		 * free_swap_and_cache() of our swap entry will only
1114 		 * trylock_page(), removing swap from radix_tree whatever.
1115 		 *
1116 		 * We must not proceed to shmem_add_to_page_cache() if the
1117 		 * inode has been freed, but of course we cannot rely on
1118 		 * inode or mapping or info to check that.  However, we can
1119 		 * safely check if our swap entry is still in use (and here
1120 		 * it can't have got reused for another page): if it's still
1121 		 * in use, then the inode cannot have been freed yet, and we
1122 		 * can safely proceed (if it's no longer in use, that tells
1123 		 * nothing about the inode, but we don't need to unuse swap).
1124 		 */
1125 		if (!page_swapcount(*pagep))
1126 			error = -ENOENT;
1127 	}
1128 
1129 	/*
1130 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1131 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1132 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1133 	 */
1134 	if (!error)
1135 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1136 						radswap);
1137 	if (error != -ENOMEM) {
1138 		/*
1139 		 * Truncation and eviction use free_swap_and_cache(), which
1140 		 * only does trylock page: if we raced, best clean up here.
1141 		 */
1142 		delete_from_swap_cache(*pagep);
1143 		set_page_dirty(*pagep);
1144 		if (!error) {
1145 			spin_lock_irq(&info->lock);
1146 			info->swapped--;
1147 			spin_unlock_irq(&info->lock);
1148 			swap_free(swap);
1149 		}
1150 	}
1151 	return error;
1152 }
1153 
1154 /*
1155  * Search through swapped inodes to find and replace swap by page.
1156  */
1157 int shmem_unuse(swp_entry_t swap, struct page *page)
1158 {
1159 	struct list_head *this, *next;
1160 	struct shmem_inode_info *info;
1161 	struct mem_cgroup *memcg;
1162 	int error = 0;
1163 
1164 	/*
1165 	 * There's a faint possibility that swap page was replaced before
1166 	 * caller locked it: caller will come back later with the right page.
1167 	 */
1168 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1169 		goto out;
1170 
1171 	/*
1172 	 * Charge page using GFP_KERNEL while we can wait, before taking
1173 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1174 	 * Charged back to the user (not to caller) when swap account is used.
1175 	 */
1176 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1177 			false);
1178 	if (error)
1179 		goto out;
1180 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1181 	error = -EAGAIN;
1182 
1183 	mutex_lock(&shmem_swaplist_mutex);
1184 	list_for_each_safe(this, next, &shmem_swaplist) {
1185 		info = list_entry(this, struct shmem_inode_info, swaplist);
1186 		if (info->swapped)
1187 			error = shmem_unuse_inode(info, swap, &page);
1188 		else
1189 			list_del_init(&info->swaplist);
1190 		cond_resched();
1191 		if (error != -EAGAIN)
1192 			break;
1193 		/* found nothing in this: move on to search the next */
1194 	}
1195 	mutex_unlock(&shmem_swaplist_mutex);
1196 
1197 	if (error) {
1198 		if (error != -ENOMEM)
1199 			error = 0;
1200 		mem_cgroup_cancel_charge(page, memcg, false);
1201 	} else
1202 		mem_cgroup_commit_charge(page, memcg, true, false);
1203 out:
1204 	unlock_page(page);
1205 	put_page(page);
1206 	return error;
1207 }
1208 
1209 /*
1210  * Move the page from the page cache to the swap cache.
1211  */
1212 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1213 {
1214 	struct shmem_inode_info *info;
1215 	struct address_space *mapping;
1216 	struct inode *inode;
1217 	swp_entry_t swap;
1218 	pgoff_t index;
1219 
1220 	VM_BUG_ON_PAGE(PageCompound(page), page);
1221 	BUG_ON(!PageLocked(page));
1222 	mapping = page->mapping;
1223 	index = page->index;
1224 	inode = mapping->host;
1225 	info = SHMEM_I(inode);
1226 	if (info->flags & VM_LOCKED)
1227 		goto redirty;
1228 	if (!total_swap_pages)
1229 		goto redirty;
1230 
1231 	/*
1232 	 * Our capabilities prevent regular writeback or sync from ever calling
1233 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1234 	 * its underlying filesystem, in which case tmpfs should write out to
1235 	 * swap only in response to memory pressure, and not for the writeback
1236 	 * threads or sync.
1237 	 */
1238 	if (!wbc->for_reclaim) {
1239 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1240 		goto redirty;
1241 	}
1242 
1243 	/*
1244 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1245 	 * value into swapfile.c, the only way we can correctly account for a
1246 	 * fallocated page arriving here is now to initialize it and write it.
1247 	 *
1248 	 * That's okay for a page already fallocated earlier, but if we have
1249 	 * not yet completed the fallocation, then (a) we want to keep track
1250 	 * of this page in case we have to undo it, and (b) it may not be a
1251 	 * good idea to continue anyway, once we're pushing into swap.  So
1252 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1253 	 */
1254 	if (!PageUptodate(page)) {
1255 		if (inode->i_private) {
1256 			struct shmem_falloc *shmem_falloc;
1257 			spin_lock(&inode->i_lock);
1258 			shmem_falloc = inode->i_private;
1259 			if (shmem_falloc &&
1260 			    !shmem_falloc->waitq &&
1261 			    index >= shmem_falloc->start &&
1262 			    index < shmem_falloc->next)
1263 				shmem_falloc->nr_unswapped++;
1264 			else
1265 				shmem_falloc = NULL;
1266 			spin_unlock(&inode->i_lock);
1267 			if (shmem_falloc)
1268 				goto redirty;
1269 		}
1270 		clear_highpage(page);
1271 		flush_dcache_page(page);
1272 		SetPageUptodate(page);
1273 	}
1274 
1275 	swap = get_swap_page();
1276 	if (!swap.val)
1277 		goto redirty;
1278 
1279 	if (mem_cgroup_try_charge_swap(page, swap))
1280 		goto free_swap;
1281 
1282 	/*
1283 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1284 	 * if it's not already there.  Do it now before the page is
1285 	 * moved to swap cache, when its pagelock no longer protects
1286 	 * the inode from eviction.  But don't unlock the mutex until
1287 	 * we've incremented swapped, because shmem_unuse_inode() will
1288 	 * prune a !swapped inode from the swaplist under this mutex.
1289 	 */
1290 	mutex_lock(&shmem_swaplist_mutex);
1291 	if (list_empty(&info->swaplist))
1292 		list_add_tail(&info->swaplist, &shmem_swaplist);
1293 
1294 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1295 		spin_lock_irq(&info->lock);
1296 		shmem_recalc_inode(inode);
1297 		info->swapped++;
1298 		spin_unlock_irq(&info->lock);
1299 
1300 		swap_shmem_alloc(swap);
1301 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1302 
1303 		mutex_unlock(&shmem_swaplist_mutex);
1304 		BUG_ON(page_mapped(page));
1305 		swap_writepage(page, wbc);
1306 		return 0;
1307 	}
1308 
1309 	mutex_unlock(&shmem_swaplist_mutex);
1310 free_swap:
1311 	swapcache_free(swap);
1312 redirty:
1313 	set_page_dirty(page);
1314 	if (wbc->for_reclaim)
1315 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1316 	unlock_page(page);
1317 	return 0;
1318 }
1319 
1320 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1321 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1322 {
1323 	char buffer[64];
1324 
1325 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1326 		return;		/* show nothing */
1327 
1328 	mpol_to_str(buffer, sizeof(buffer), mpol);
1329 
1330 	seq_printf(seq, ",mpol=%s", buffer);
1331 }
1332 
1333 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1334 {
1335 	struct mempolicy *mpol = NULL;
1336 	if (sbinfo->mpol) {
1337 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1338 		mpol = sbinfo->mpol;
1339 		mpol_get(mpol);
1340 		spin_unlock(&sbinfo->stat_lock);
1341 	}
1342 	return mpol;
1343 }
1344 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1345 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1346 {
1347 }
1348 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1349 {
1350 	return NULL;
1351 }
1352 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1353 #ifndef CONFIG_NUMA
1354 #define vm_policy vm_private_data
1355 #endif
1356 
1357 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1358 		struct shmem_inode_info *info, pgoff_t index)
1359 {
1360 	/* Create a pseudo vma that just contains the policy */
1361 	vma->vm_start = 0;
1362 	/* Bias interleave by inode number to distribute better across nodes */
1363 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1364 	vma->vm_ops = NULL;
1365 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1366 }
1367 
1368 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1369 {
1370 	/* Drop reference taken by mpol_shared_policy_lookup() */
1371 	mpol_cond_put(vma->vm_policy);
1372 }
1373 
1374 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1375 			struct shmem_inode_info *info, pgoff_t index)
1376 {
1377 	struct vm_area_struct pvma;
1378 	struct page *page;
1379 
1380 	shmem_pseudo_vma_init(&pvma, info, index);
1381 	page = swapin_readahead(swap, gfp, &pvma, 0);
1382 	shmem_pseudo_vma_destroy(&pvma);
1383 
1384 	return page;
1385 }
1386 
1387 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1388 		struct shmem_inode_info *info, pgoff_t index)
1389 {
1390 	struct vm_area_struct pvma;
1391 	struct inode *inode = &info->vfs_inode;
1392 	struct address_space *mapping = inode->i_mapping;
1393 	pgoff_t idx, hindex;
1394 	void __rcu **results;
1395 	struct page *page;
1396 
1397 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1398 		return NULL;
1399 
1400 	hindex = round_down(index, HPAGE_PMD_NR);
1401 	rcu_read_lock();
1402 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1403 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1404 		rcu_read_unlock();
1405 		return NULL;
1406 	}
1407 	rcu_read_unlock();
1408 
1409 	shmem_pseudo_vma_init(&pvma, info, hindex);
1410 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1411 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1412 	shmem_pseudo_vma_destroy(&pvma);
1413 	if (page)
1414 		prep_transhuge_page(page);
1415 	return page;
1416 }
1417 
1418 static struct page *shmem_alloc_page(gfp_t gfp,
1419 			struct shmem_inode_info *info, pgoff_t index)
1420 {
1421 	struct vm_area_struct pvma;
1422 	struct page *page;
1423 
1424 	shmem_pseudo_vma_init(&pvma, info, index);
1425 	page = alloc_page_vma(gfp, &pvma, 0);
1426 	shmem_pseudo_vma_destroy(&pvma);
1427 
1428 	return page;
1429 }
1430 
1431 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1432 		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1433 		pgoff_t index, bool huge)
1434 {
1435 	struct page *page;
1436 	int nr;
1437 	int err = -ENOSPC;
1438 
1439 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1440 		huge = false;
1441 	nr = huge ? HPAGE_PMD_NR : 1;
1442 
1443 	if (shmem_acct_block(info->flags, nr))
1444 		goto failed;
1445 	if (sbinfo->max_blocks) {
1446 		if (percpu_counter_compare(&sbinfo->used_blocks,
1447 					sbinfo->max_blocks - nr) > 0)
1448 			goto unacct;
1449 		percpu_counter_add(&sbinfo->used_blocks, nr);
1450 	}
1451 
1452 	if (huge)
1453 		page = shmem_alloc_hugepage(gfp, info, index);
1454 	else
1455 		page = shmem_alloc_page(gfp, info, index);
1456 	if (page) {
1457 		__SetPageLocked(page);
1458 		__SetPageSwapBacked(page);
1459 		return page;
1460 	}
1461 
1462 	err = -ENOMEM;
1463 	if (sbinfo->max_blocks)
1464 		percpu_counter_add(&sbinfo->used_blocks, -nr);
1465 unacct:
1466 	shmem_unacct_blocks(info->flags, nr);
1467 failed:
1468 	return ERR_PTR(err);
1469 }
1470 
1471 /*
1472  * When a page is moved from swapcache to shmem filecache (either by the
1473  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1474  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1475  * ignorance of the mapping it belongs to.  If that mapping has special
1476  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1477  * we may need to copy to a suitable page before moving to filecache.
1478  *
1479  * In a future release, this may well be extended to respect cpuset and
1480  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1481  * but for now it is a simple matter of zone.
1482  */
1483 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1484 {
1485 	return page_zonenum(page) > gfp_zone(gfp);
1486 }
1487 
1488 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1489 				struct shmem_inode_info *info, pgoff_t index)
1490 {
1491 	struct page *oldpage, *newpage;
1492 	struct address_space *swap_mapping;
1493 	pgoff_t swap_index;
1494 	int error;
1495 
1496 	oldpage = *pagep;
1497 	swap_index = page_private(oldpage);
1498 	swap_mapping = page_mapping(oldpage);
1499 
1500 	/*
1501 	 * We have arrived here because our zones are constrained, so don't
1502 	 * limit chance of success by further cpuset and node constraints.
1503 	 */
1504 	gfp &= ~GFP_CONSTRAINT_MASK;
1505 	newpage = shmem_alloc_page(gfp, info, index);
1506 	if (!newpage)
1507 		return -ENOMEM;
1508 
1509 	get_page(newpage);
1510 	copy_highpage(newpage, oldpage);
1511 	flush_dcache_page(newpage);
1512 
1513 	__SetPageLocked(newpage);
1514 	__SetPageSwapBacked(newpage);
1515 	SetPageUptodate(newpage);
1516 	set_page_private(newpage, swap_index);
1517 	SetPageSwapCache(newpage);
1518 
1519 	/*
1520 	 * Our caller will very soon move newpage out of swapcache, but it's
1521 	 * a nice clean interface for us to replace oldpage by newpage there.
1522 	 */
1523 	spin_lock_irq(&swap_mapping->tree_lock);
1524 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1525 								   newpage);
1526 	if (!error) {
1527 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1528 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1529 	}
1530 	spin_unlock_irq(&swap_mapping->tree_lock);
1531 
1532 	if (unlikely(error)) {
1533 		/*
1534 		 * Is this possible?  I think not, now that our callers check
1535 		 * both PageSwapCache and page_private after getting page lock;
1536 		 * but be defensive.  Reverse old to newpage for clear and free.
1537 		 */
1538 		oldpage = newpage;
1539 	} else {
1540 		mem_cgroup_migrate(oldpage, newpage);
1541 		lru_cache_add_anon(newpage);
1542 		*pagep = newpage;
1543 	}
1544 
1545 	ClearPageSwapCache(oldpage);
1546 	set_page_private(oldpage, 0);
1547 
1548 	unlock_page(oldpage);
1549 	put_page(oldpage);
1550 	put_page(oldpage);
1551 	return error;
1552 }
1553 
1554 /*
1555  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1556  *
1557  * If we allocate a new one we do not mark it dirty. That's up to the
1558  * vm. If we swap it in we mark it dirty since we also free the swap
1559  * entry since a page cannot live in both the swap and page cache.
1560  *
1561  * fault_mm and fault_type are only supplied by shmem_fault:
1562  * otherwise they are NULL.
1563  */
1564 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1565 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1566 	struct mm_struct *fault_mm, int *fault_type)
1567 {
1568 	struct address_space *mapping = inode->i_mapping;
1569 	struct shmem_inode_info *info = SHMEM_I(inode);
1570 	struct shmem_sb_info *sbinfo;
1571 	struct mm_struct *charge_mm;
1572 	struct mem_cgroup *memcg;
1573 	struct page *page;
1574 	swp_entry_t swap;
1575 	enum sgp_type sgp_huge = sgp;
1576 	pgoff_t hindex = index;
1577 	int error;
1578 	int once = 0;
1579 	int alloced = 0;
1580 
1581 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1582 		return -EFBIG;
1583 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1584 		sgp = SGP_CACHE;
1585 repeat:
1586 	swap.val = 0;
1587 	page = find_lock_entry(mapping, index);
1588 	if (radix_tree_exceptional_entry(page)) {
1589 		swap = radix_to_swp_entry(page);
1590 		page = NULL;
1591 	}
1592 
1593 	if (sgp <= SGP_CACHE &&
1594 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1595 		error = -EINVAL;
1596 		goto unlock;
1597 	}
1598 
1599 	if (page && sgp == SGP_WRITE)
1600 		mark_page_accessed(page);
1601 
1602 	/* fallocated page? */
1603 	if (page && !PageUptodate(page)) {
1604 		if (sgp != SGP_READ)
1605 			goto clear;
1606 		unlock_page(page);
1607 		put_page(page);
1608 		page = NULL;
1609 	}
1610 	if (page || (sgp == SGP_READ && !swap.val)) {
1611 		*pagep = page;
1612 		return 0;
1613 	}
1614 
1615 	/*
1616 	 * Fast cache lookup did not find it:
1617 	 * bring it back from swap or allocate.
1618 	 */
1619 	sbinfo = SHMEM_SB(inode->i_sb);
1620 	charge_mm = fault_mm ? : current->mm;
1621 
1622 	if (swap.val) {
1623 		/* Look it up and read it in.. */
1624 		page = lookup_swap_cache(swap);
1625 		if (!page) {
1626 			/* Or update major stats only when swapin succeeds?? */
1627 			if (fault_type) {
1628 				*fault_type |= VM_FAULT_MAJOR;
1629 				count_vm_event(PGMAJFAULT);
1630 				mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1631 			}
1632 			/* Here we actually start the io */
1633 			page = shmem_swapin(swap, gfp, info, index);
1634 			if (!page) {
1635 				error = -ENOMEM;
1636 				goto failed;
1637 			}
1638 		}
1639 
1640 		/* We have to do this with page locked to prevent races */
1641 		lock_page(page);
1642 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1643 		    !shmem_confirm_swap(mapping, index, swap)) {
1644 			error = -EEXIST;	/* try again */
1645 			goto unlock;
1646 		}
1647 		if (!PageUptodate(page)) {
1648 			error = -EIO;
1649 			goto failed;
1650 		}
1651 		wait_on_page_writeback(page);
1652 
1653 		if (shmem_should_replace_page(page, gfp)) {
1654 			error = shmem_replace_page(&page, gfp, info, index);
1655 			if (error)
1656 				goto failed;
1657 		}
1658 
1659 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1660 				false);
1661 		if (!error) {
1662 			error = shmem_add_to_page_cache(page, mapping, index,
1663 						swp_to_radix_entry(swap));
1664 			/*
1665 			 * We already confirmed swap under page lock, and make
1666 			 * no memory allocation here, so usually no possibility
1667 			 * of error; but free_swap_and_cache() only trylocks a
1668 			 * page, so it is just possible that the entry has been
1669 			 * truncated or holepunched since swap was confirmed.
1670 			 * shmem_undo_range() will have done some of the
1671 			 * unaccounting, now delete_from_swap_cache() will do
1672 			 * the rest.
1673 			 * Reset swap.val? No, leave it so "failed" goes back to
1674 			 * "repeat": reading a hole and writing should succeed.
1675 			 */
1676 			if (error) {
1677 				mem_cgroup_cancel_charge(page, memcg, false);
1678 				delete_from_swap_cache(page);
1679 			}
1680 		}
1681 		if (error)
1682 			goto failed;
1683 
1684 		mem_cgroup_commit_charge(page, memcg, true, false);
1685 
1686 		spin_lock_irq(&info->lock);
1687 		info->swapped--;
1688 		shmem_recalc_inode(inode);
1689 		spin_unlock_irq(&info->lock);
1690 
1691 		if (sgp == SGP_WRITE)
1692 			mark_page_accessed(page);
1693 
1694 		delete_from_swap_cache(page);
1695 		set_page_dirty(page);
1696 		swap_free(swap);
1697 
1698 	} else {
1699 		/* shmem_symlink() */
1700 		if (mapping->a_ops != &shmem_aops)
1701 			goto alloc_nohuge;
1702 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1703 			goto alloc_nohuge;
1704 		if (shmem_huge == SHMEM_HUGE_FORCE)
1705 			goto alloc_huge;
1706 		switch (sbinfo->huge) {
1707 			loff_t i_size;
1708 			pgoff_t off;
1709 		case SHMEM_HUGE_NEVER:
1710 			goto alloc_nohuge;
1711 		case SHMEM_HUGE_WITHIN_SIZE:
1712 			off = round_up(index, HPAGE_PMD_NR);
1713 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1714 			if (i_size >= HPAGE_PMD_SIZE &&
1715 					i_size >> PAGE_SHIFT >= off)
1716 				goto alloc_huge;
1717 			/* fallthrough */
1718 		case SHMEM_HUGE_ADVISE:
1719 			if (sgp_huge == SGP_HUGE)
1720 				goto alloc_huge;
1721 			/* TODO: implement fadvise() hints */
1722 			goto alloc_nohuge;
1723 		}
1724 
1725 alloc_huge:
1726 		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1727 				index, true);
1728 		if (IS_ERR(page)) {
1729 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1730 					index, false);
1731 		}
1732 		if (IS_ERR(page)) {
1733 			int retry = 5;
1734 			error = PTR_ERR(page);
1735 			page = NULL;
1736 			if (error != -ENOSPC)
1737 				goto failed;
1738 			/*
1739 			 * Try to reclaim some spece by splitting a huge page
1740 			 * beyond i_size on the filesystem.
1741 			 */
1742 			while (retry--) {
1743 				int ret;
1744 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1745 				if (ret == SHRINK_STOP)
1746 					break;
1747 				if (ret)
1748 					goto alloc_nohuge;
1749 			}
1750 			goto failed;
1751 		}
1752 
1753 		if (PageTransHuge(page))
1754 			hindex = round_down(index, HPAGE_PMD_NR);
1755 		else
1756 			hindex = index;
1757 
1758 		if (sgp == SGP_WRITE)
1759 			__SetPageReferenced(page);
1760 
1761 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1762 				PageTransHuge(page));
1763 		if (error)
1764 			goto unacct;
1765 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1766 				compound_order(page));
1767 		if (!error) {
1768 			error = shmem_add_to_page_cache(page, mapping, hindex,
1769 							NULL);
1770 			radix_tree_preload_end();
1771 		}
1772 		if (error) {
1773 			mem_cgroup_cancel_charge(page, memcg,
1774 					PageTransHuge(page));
1775 			goto unacct;
1776 		}
1777 		mem_cgroup_commit_charge(page, memcg, false,
1778 				PageTransHuge(page));
1779 		lru_cache_add_anon(page);
1780 
1781 		spin_lock_irq(&info->lock);
1782 		info->alloced += 1 << compound_order(page);
1783 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1784 		shmem_recalc_inode(inode);
1785 		spin_unlock_irq(&info->lock);
1786 		alloced = true;
1787 
1788 		if (PageTransHuge(page) &&
1789 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1790 				hindex + HPAGE_PMD_NR - 1) {
1791 			/*
1792 			 * Part of the huge page is beyond i_size: subject
1793 			 * to shrink under memory pressure.
1794 			 */
1795 			spin_lock(&sbinfo->shrinklist_lock);
1796 			if (list_empty(&info->shrinklist)) {
1797 				list_add_tail(&info->shrinklist,
1798 						&sbinfo->shrinklist);
1799 				sbinfo->shrinklist_len++;
1800 			}
1801 			spin_unlock(&sbinfo->shrinklist_lock);
1802 		}
1803 
1804 		/*
1805 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1806 		 */
1807 		if (sgp == SGP_FALLOC)
1808 			sgp = SGP_WRITE;
1809 clear:
1810 		/*
1811 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1812 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1813 		 * it now, lest undo on failure cancel our earlier guarantee.
1814 		 */
1815 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1816 			struct page *head = compound_head(page);
1817 			int i;
1818 
1819 			for (i = 0; i < (1 << compound_order(head)); i++) {
1820 				clear_highpage(head + i);
1821 				flush_dcache_page(head + i);
1822 			}
1823 			SetPageUptodate(head);
1824 		}
1825 	}
1826 
1827 	/* Perhaps the file has been truncated since we checked */
1828 	if (sgp <= SGP_CACHE &&
1829 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1830 		if (alloced) {
1831 			ClearPageDirty(page);
1832 			delete_from_page_cache(page);
1833 			spin_lock_irq(&info->lock);
1834 			shmem_recalc_inode(inode);
1835 			spin_unlock_irq(&info->lock);
1836 		}
1837 		error = -EINVAL;
1838 		goto unlock;
1839 	}
1840 	*pagep = page + index - hindex;
1841 	return 0;
1842 
1843 	/*
1844 	 * Error recovery.
1845 	 */
1846 unacct:
1847 	if (sbinfo->max_blocks)
1848 		percpu_counter_sub(&sbinfo->used_blocks,
1849 				1 << compound_order(page));
1850 	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1851 
1852 	if (PageTransHuge(page)) {
1853 		unlock_page(page);
1854 		put_page(page);
1855 		goto alloc_nohuge;
1856 	}
1857 failed:
1858 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1859 		error = -EEXIST;
1860 unlock:
1861 	if (page) {
1862 		unlock_page(page);
1863 		put_page(page);
1864 	}
1865 	if (error == -ENOSPC && !once++) {
1866 		spin_lock_irq(&info->lock);
1867 		shmem_recalc_inode(inode);
1868 		spin_unlock_irq(&info->lock);
1869 		goto repeat;
1870 	}
1871 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1872 		goto repeat;
1873 	return error;
1874 }
1875 
1876 /*
1877  * This is like autoremove_wake_function, but it removes the wait queue
1878  * entry unconditionally - even if something else had already woken the
1879  * target.
1880  */
1881 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1882 {
1883 	int ret = default_wake_function(wait, mode, sync, key);
1884 	list_del_init(&wait->task_list);
1885 	return ret;
1886 }
1887 
1888 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1889 {
1890 	struct inode *inode = file_inode(vma->vm_file);
1891 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1892 	enum sgp_type sgp;
1893 	int error;
1894 	int ret = VM_FAULT_LOCKED;
1895 
1896 	/*
1897 	 * Trinity finds that probing a hole which tmpfs is punching can
1898 	 * prevent the hole-punch from ever completing: which in turn
1899 	 * locks writers out with its hold on i_mutex.  So refrain from
1900 	 * faulting pages into the hole while it's being punched.  Although
1901 	 * shmem_undo_range() does remove the additions, it may be unable to
1902 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1903 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1904 	 *
1905 	 * It does not matter if we sometimes reach this check just before the
1906 	 * hole-punch begins, so that one fault then races with the punch:
1907 	 * we just need to make racing faults a rare case.
1908 	 *
1909 	 * The implementation below would be much simpler if we just used a
1910 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1911 	 * and bloating every shmem inode for this unlikely case would be sad.
1912 	 */
1913 	if (unlikely(inode->i_private)) {
1914 		struct shmem_falloc *shmem_falloc;
1915 
1916 		spin_lock(&inode->i_lock);
1917 		shmem_falloc = inode->i_private;
1918 		if (shmem_falloc &&
1919 		    shmem_falloc->waitq &&
1920 		    vmf->pgoff >= shmem_falloc->start &&
1921 		    vmf->pgoff < shmem_falloc->next) {
1922 			wait_queue_head_t *shmem_falloc_waitq;
1923 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1924 
1925 			ret = VM_FAULT_NOPAGE;
1926 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1927 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1928 				/* It's polite to up mmap_sem if we can */
1929 				up_read(&vma->vm_mm->mmap_sem);
1930 				ret = VM_FAULT_RETRY;
1931 			}
1932 
1933 			shmem_falloc_waitq = shmem_falloc->waitq;
1934 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1935 					TASK_UNINTERRUPTIBLE);
1936 			spin_unlock(&inode->i_lock);
1937 			schedule();
1938 
1939 			/*
1940 			 * shmem_falloc_waitq points into the shmem_fallocate()
1941 			 * stack of the hole-punching task: shmem_falloc_waitq
1942 			 * is usually invalid by the time we reach here, but
1943 			 * finish_wait() does not dereference it in that case;
1944 			 * though i_lock needed lest racing with wake_up_all().
1945 			 */
1946 			spin_lock(&inode->i_lock);
1947 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1948 			spin_unlock(&inode->i_lock);
1949 			return ret;
1950 		}
1951 		spin_unlock(&inode->i_lock);
1952 	}
1953 
1954 	sgp = SGP_CACHE;
1955 	if (vma->vm_flags & VM_HUGEPAGE)
1956 		sgp = SGP_HUGE;
1957 	else if (vma->vm_flags & VM_NOHUGEPAGE)
1958 		sgp = SGP_NOHUGE;
1959 
1960 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1961 				  gfp, vma->vm_mm, &ret);
1962 	if (error)
1963 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1964 	return ret;
1965 }
1966 
1967 unsigned long shmem_get_unmapped_area(struct file *file,
1968 				      unsigned long uaddr, unsigned long len,
1969 				      unsigned long pgoff, unsigned long flags)
1970 {
1971 	unsigned long (*get_area)(struct file *,
1972 		unsigned long, unsigned long, unsigned long, unsigned long);
1973 	unsigned long addr;
1974 	unsigned long offset;
1975 	unsigned long inflated_len;
1976 	unsigned long inflated_addr;
1977 	unsigned long inflated_offset;
1978 
1979 	if (len > TASK_SIZE)
1980 		return -ENOMEM;
1981 
1982 	get_area = current->mm->get_unmapped_area;
1983 	addr = get_area(file, uaddr, len, pgoff, flags);
1984 
1985 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1986 		return addr;
1987 	if (IS_ERR_VALUE(addr))
1988 		return addr;
1989 	if (addr & ~PAGE_MASK)
1990 		return addr;
1991 	if (addr > TASK_SIZE - len)
1992 		return addr;
1993 
1994 	if (shmem_huge == SHMEM_HUGE_DENY)
1995 		return addr;
1996 	if (len < HPAGE_PMD_SIZE)
1997 		return addr;
1998 	if (flags & MAP_FIXED)
1999 		return addr;
2000 	/*
2001 	 * Our priority is to support MAP_SHARED mapped hugely;
2002 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2003 	 * But if caller specified an address hint, respect that as before.
2004 	 */
2005 	if (uaddr)
2006 		return addr;
2007 
2008 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2009 		struct super_block *sb;
2010 
2011 		if (file) {
2012 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2013 			sb = file_inode(file)->i_sb;
2014 		} else {
2015 			/*
2016 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2017 			 * for "/dev/zero", to create a shared anonymous object.
2018 			 */
2019 			if (IS_ERR(shm_mnt))
2020 				return addr;
2021 			sb = shm_mnt->mnt_sb;
2022 		}
2023 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2024 			return addr;
2025 	}
2026 
2027 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2028 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2029 		return addr;
2030 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2031 		return addr;
2032 
2033 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2034 	if (inflated_len > TASK_SIZE)
2035 		return addr;
2036 	if (inflated_len < len)
2037 		return addr;
2038 
2039 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2040 	if (IS_ERR_VALUE(inflated_addr))
2041 		return addr;
2042 	if (inflated_addr & ~PAGE_MASK)
2043 		return addr;
2044 
2045 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2046 	inflated_addr += offset - inflated_offset;
2047 	if (inflated_offset > offset)
2048 		inflated_addr += HPAGE_PMD_SIZE;
2049 
2050 	if (inflated_addr > TASK_SIZE - len)
2051 		return addr;
2052 	return inflated_addr;
2053 }
2054 
2055 #ifdef CONFIG_NUMA
2056 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2057 {
2058 	struct inode *inode = file_inode(vma->vm_file);
2059 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2060 }
2061 
2062 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2063 					  unsigned long addr)
2064 {
2065 	struct inode *inode = file_inode(vma->vm_file);
2066 	pgoff_t index;
2067 
2068 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2069 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2070 }
2071 #endif
2072 
2073 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2074 {
2075 	struct inode *inode = file_inode(file);
2076 	struct shmem_inode_info *info = SHMEM_I(inode);
2077 	int retval = -ENOMEM;
2078 
2079 	spin_lock_irq(&info->lock);
2080 	if (lock && !(info->flags & VM_LOCKED)) {
2081 		if (!user_shm_lock(inode->i_size, user))
2082 			goto out_nomem;
2083 		info->flags |= VM_LOCKED;
2084 		mapping_set_unevictable(file->f_mapping);
2085 	}
2086 	if (!lock && (info->flags & VM_LOCKED) && user) {
2087 		user_shm_unlock(inode->i_size, user);
2088 		info->flags &= ~VM_LOCKED;
2089 		mapping_clear_unevictable(file->f_mapping);
2090 	}
2091 	retval = 0;
2092 
2093 out_nomem:
2094 	spin_unlock_irq(&info->lock);
2095 	return retval;
2096 }
2097 
2098 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2099 {
2100 	file_accessed(file);
2101 	vma->vm_ops = &shmem_vm_ops;
2102 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2103 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2104 			(vma->vm_end & HPAGE_PMD_MASK)) {
2105 		khugepaged_enter(vma, vma->vm_flags);
2106 	}
2107 	return 0;
2108 }
2109 
2110 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2111 				     umode_t mode, dev_t dev, unsigned long flags)
2112 {
2113 	struct inode *inode;
2114 	struct shmem_inode_info *info;
2115 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2116 
2117 	if (shmem_reserve_inode(sb))
2118 		return NULL;
2119 
2120 	inode = new_inode(sb);
2121 	if (inode) {
2122 		inode->i_ino = get_next_ino();
2123 		inode_init_owner(inode, dir, mode);
2124 		inode->i_blocks = 0;
2125 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2126 		inode->i_generation = get_seconds();
2127 		info = SHMEM_I(inode);
2128 		memset(info, 0, (char *)inode - (char *)info);
2129 		spin_lock_init(&info->lock);
2130 		info->seals = F_SEAL_SEAL;
2131 		info->flags = flags & VM_NORESERVE;
2132 		INIT_LIST_HEAD(&info->shrinklist);
2133 		INIT_LIST_HEAD(&info->swaplist);
2134 		simple_xattrs_init(&info->xattrs);
2135 		cache_no_acl(inode);
2136 
2137 		switch (mode & S_IFMT) {
2138 		default:
2139 			inode->i_op = &shmem_special_inode_operations;
2140 			init_special_inode(inode, mode, dev);
2141 			break;
2142 		case S_IFREG:
2143 			inode->i_mapping->a_ops = &shmem_aops;
2144 			inode->i_op = &shmem_inode_operations;
2145 			inode->i_fop = &shmem_file_operations;
2146 			mpol_shared_policy_init(&info->policy,
2147 						 shmem_get_sbmpol(sbinfo));
2148 			break;
2149 		case S_IFDIR:
2150 			inc_nlink(inode);
2151 			/* Some things misbehave if size == 0 on a directory */
2152 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2153 			inode->i_op = &shmem_dir_inode_operations;
2154 			inode->i_fop = &simple_dir_operations;
2155 			break;
2156 		case S_IFLNK:
2157 			/*
2158 			 * Must not load anything in the rbtree,
2159 			 * mpol_free_shared_policy will not be called.
2160 			 */
2161 			mpol_shared_policy_init(&info->policy, NULL);
2162 			break;
2163 		}
2164 	} else
2165 		shmem_free_inode(sb);
2166 	return inode;
2167 }
2168 
2169 bool shmem_mapping(struct address_space *mapping)
2170 {
2171 	if (!mapping->host)
2172 		return false;
2173 
2174 	return mapping->host->i_sb->s_op == &shmem_ops;
2175 }
2176 
2177 #ifdef CONFIG_TMPFS
2178 static const struct inode_operations shmem_symlink_inode_operations;
2179 static const struct inode_operations shmem_short_symlink_operations;
2180 
2181 #ifdef CONFIG_TMPFS_XATTR
2182 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2183 #else
2184 #define shmem_initxattrs NULL
2185 #endif
2186 
2187 static int
2188 shmem_write_begin(struct file *file, struct address_space *mapping,
2189 			loff_t pos, unsigned len, unsigned flags,
2190 			struct page **pagep, void **fsdata)
2191 {
2192 	struct inode *inode = mapping->host;
2193 	struct shmem_inode_info *info = SHMEM_I(inode);
2194 	pgoff_t index = pos >> PAGE_SHIFT;
2195 
2196 	/* i_mutex is held by caller */
2197 	if (unlikely(info->seals)) {
2198 		if (info->seals & F_SEAL_WRITE)
2199 			return -EPERM;
2200 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2201 			return -EPERM;
2202 	}
2203 
2204 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2205 }
2206 
2207 static int
2208 shmem_write_end(struct file *file, struct address_space *mapping,
2209 			loff_t pos, unsigned len, unsigned copied,
2210 			struct page *page, void *fsdata)
2211 {
2212 	struct inode *inode = mapping->host;
2213 
2214 	if (pos + copied > inode->i_size)
2215 		i_size_write(inode, pos + copied);
2216 
2217 	if (!PageUptodate(page)) {
2218 		struct page *head = compound_head(page);
2219 		if (PageTransCompound(page)) {
2220 			int i;
2221 
2222 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2223 				if (head + i == page)
2224 					continue;
2225 				clear_highpage(head + i);
2226 				flush_dcache_page(head + i);
2227 			}
2228 		}
2229 		if (copied < PAGE_SIZE) {
2230 			unsigned from = pos & (PAGE_SIZE - 1);
2231 			zero_user_segments(page, 0, from,
2232 					from + copied, PAGE_SIZE);
2233 		}
2234 		SetPageUptodate(head);
2235 	}
2236 	set_page_dirty(page);
2237 	unlock_page(page);
2238 	put_page(page);
2239 
2240 	return copied;
2241 }
2242 
2243 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2244 {
2245 	struct file *file = iocb->ki_filp;
2246 	struct inode *inode = file_inode(file);
2247 	struct address_space *mapping = inode->i_mapping;
2248 	pgoff_t index;
2249 	unsigned long offset;
2250 	enum sgp_type sgp = SGP_READ;
2251 	int error = 0;
2252 	ssize_t retval = 0;
2253 	loff_t *ppos = &iocb->ki_pos;
2254 
2255 	/*
2256 	 * Might this read be for a stacking filesystem?  Then when reading
2257 	 * holes of a sparse file, we actually need to allocate those pages,
2258 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2259 	 */
2260 	if (!iter_is_iovec(to))
2261 		sgp = SGP_CACHE;
2262 
2263 	index = *ppos >> PAGE_SHIFT;
2264 	offset = *ppos & ~PAGE_MASK;
2265 
2266 	for (;;) {
2267 		struct page *page = NULL;
2268 		pgoff_t end_index;
2269 		unsigned long nr, ret;
2270 		loff_t i_size = i_size_read(inode);
2271 
2272 		end_index = i_size >> PAGE_SHIFT;
2273 		if (index > end_index)
2274 			break;
2275 		if (index == end_index) {
2276 			nr = i_size & ~PAGE_MASK;
2277 			if (nr <= offset)
2278 				break;
2279 		}
2280 
2281 		error = shmem_getpage(inode, index, &page, sgp);
2282 		if (error) {
2283 			if (error == -EINVAL)
2284 				error = 0;
2285 			break;
2286 		}
2287 		if (page) {
2288 			if (sgp == SGP_CACHE)
2289 				set_page_dirty(page);
2290 			unlock_page(page);
2291 		}
2292 
2293 		/*
2294 		 * We must evaluate after, since reads (unlike writes)
2295 		 * are called without i_mutex protection against truncate
2296 		 */
2297 		nr = PAGE_SIZE;
2298 		i_size = i_size_read(inode);
2299 		end_index = i_size >> PAGE_SHIFT;
2300 		if (index == end_index) {
2301 			nr = i_size & ~PAGE_MASK;
2302 			if (nr <= offset) {
2303 				if (page)
2304 					put_page(page);
2305 				break;
2306 			}
2307 		}
2308 		nr -= offset;
2309 
2310 		if (page) {
2311 			/*
2312 			 * If users can be writing to this page using arbitrary
2313 			 * virtual addresses, take care about potential aliasing
2314 			 * before reading the page on the kernel side.
2315 			 */
2316 			if (mapping_writably_mapped(mapping))
2317 				flush_dcache_page(page);
2318 			/*
2319 			 * Mark the page accessed if we read the beginning.
2320 			 */
2321 			if (!offset)
2322 				mark_page_accessed(page);
2323 		} else {
2324 			page = ZERO_PAGE(0);
2325 			get_page(page);
2326 		}
2327 
2328 		/*
2329 		 * Ok, we have the page, and it's up-to-date, so
2330 		 * now we can copy it to user space...
2331 		 */
2332 		ret = copy_page_to_iter(page, offset, nr, to);
2333 		retval += ret;
2334 		offset += ret;
2335 		index += offset >> PAGE_SHIFT;
2336 		offset &= ~PAGE_MASK;
2337 
2338 		put_page(page);
2339 		if (!iov_iter_count(to))
2340 			break;
2341 		if (ret < nr) {
2342 			error = -EFAULT;
2343 			break;
2344 		}
2345 		cond_resched();
2346 	}
2347 
2348 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2349 	file_accessed(file);
2350 	return retval ? retval : error;
2351 }
2352 
2353 /*
2354  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2355  */
2356 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2357 				    pgoff_t index, pgoff_t end, int whence)
2358 {
2359 	struct page *page;
2360 	struct pagevec pvec;
2361 	pgoff_t indices[PAGEVEC_SIZE];
2362 	bool done = false;
2363 	int i;
2364 
2365 	pagevec_init(&pvec, 0);
2366 	pvec.nr = 1;		/* start small: we may be there already */
2367 	while (!done) {
2368 		pvec.nr = find_get_entries(mapping, index,
2369 					pvec.nr, pvec.pages, indices);
2370 		if (!pvec.nr) {
2371 			if (whence == SEEK_DATA)
2372 				index = end;
2373 			break;
2374 		}
2375 		for (i = 0; i < pvec.nr; i++, index++) {
2376 			if (index < indices[i]) {
2377 				if (whence == SEEK_HOLE) {
2378 					done = true;
2379 					break;
2380 				}
2381 				index = indices[i];
2382 			}
2383 			page = pvec.pages[i];
2384 			if (page && !radix_tree_exceptional_entry(page)) {
2385 				if (!PageUptodate(page))
2386 					page = NULL;
2387 			}
2388 			if (index >= end ||
2389 			    (page && whence == SEEK_DATA) ||
2390 			    (!page && whence == SEEK_HOLE)) {
2391 				done = true;
2392 				break;
2393 			}
2394 		}
2395 		pagevec_remove_exceptionals(&pvec);
2396 		pagevec_release(&pvec);
2397 		pvec.nr = PAGEVEC_SIZE;
2398 		cond_resched();
2399 	}
2400 	return index;
2401 }
2402 
2403 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2404 {
2405 	struct address_space *mapping = file->f_mapping;
2406 	struct inode *inode = mapping->host;
2407 	pgoff_t start, end;
2408 	loff_t new_offset;
2409 
2410 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2411 		return generic_file_llseek_size(file, offset, whence,
2412 					MAX_LFS_FILESIZE, i_size_read(inode));
2413 	inode_lock(inode);
2414 	/* We're holding i_mutex so we can access i_size directly */
2415 
2416 	if (offset < 0)
2417 		offset = -EINVAL;
2418 	else if (offset >= inode->i_size)
2419 		offset = -ENXIO;
2420 	else {
2421 		start = offset >> PAGE_SHIFT;
2422 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2423 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2424 		new_offset <<= PAGE_SHIFT;
2425 		if (new_offset > offset) {
2426 			if (new_offset < inode->i_size)
2427 				offset = new_offset;
2428 			else if (whence == SEEK_DATA)
2429 				offset = -ENXIO;
2430 			else
2431 				offset = inode->i_size;
2432 		}
2433 	}
2434 
2435 	if (offset >= 0)
2436 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2437 	inode_unlock(inode);
2438 	return offset;
2439 }
2440 
2441 /*
2442  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2443  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2444  */
2445 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2446 #define LAST_SCAN               4       /* about 150ms max */
2447 
2448 static void shmem_tag_pins(struct address_space *mapping)
2449 {
2450 	struct radix_tree_iter iter;
2451 	void **slot;
2452 	pgoff_t start;
2453 	struct page *page;
2454 
2455 	lru_add_drain();
2456 	start = 0;
2457 	rcu_read_lock();
2458 
2459 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2460 		page = radix_tree_deref_slot(slot);
2461 		if (!page || radix_tree_exception(page)) {
2462 			if (radix_tree_deref_retry(page)) {
2463 				slot = radix_tree_iter_retry(&iter);
2464 				continue;
2465 			}
2466 		} else if (page_count(page) - page_mapcount(page) > 1) {
2467 			spin_lock_irq(&mapping->tree_lock);
2468 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2469 					   SHMEM_TAG_PINNED);
2470 			spin_unlock_irq(&mapping->tree_lock);
2471 		}
2472 
2473 		if (need_resched()) {
2474 			slot = radix_tree_iter_resume(slot, &iter);
2475 			cond_resched_rcu();
2476 		}
2477 	}
2478 	rcu_read_unlock();
2479 }
2480 
2481 /*
2482  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2483  * via get_user_pages(), drivers might have some pending I/O without any active
2484  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2485  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2486  * them to be dropped.
2487  * The caller must guarantee that no new user will acquire writable references
2488  * to those pages to avoid races.
2489  */
2490 static int shmem_wait_for_pins(struct address_space *mapping)
2491 {
2492 	struct radix_tree_iter iter;
2493 	void **slot;
2494 	pgoff_t start;
2495 	struct page *page;
2496 	int error, scan;
2497 
2498 	shmem_tag_pins(mapping);
2499 
2500 	error = 0;
2501 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2502 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2503 			break;
2504 
2505 		if (!scan)
2506 			lru_add_drain_all();
2507 		else if (schedule_timeout_killable((HZ << scan) / 200))
2508 			scan = LAST_SCAN;
2509 
2510 		start = 0;
2511 		rcu_read_lock();
2512 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2513 					   start, SHMEM_TAG_PINNED) {
2514 
2515 			page = radix_tree_deref_slot(slot);
2516 			if (radix_tree_exception(page)) {
2517 				if (radix_tree_deref_retry(page)) {
2518 					slot = radix_tree_iter_retry(&iter);
2519 					continue;
2520 				}
2521 
2522 				page = NULL;
2523 			}
2524 
2525 			if (page &&
2526 			    page_count(page) - page_mapcount(page) != 1) {
2527 				if (scan < LAST_SCAN)
2528 					goto continue_resched;
2529 
2530 				/*
2531 				 * On the last scan, we clean up all those tags
2532 				 * we inserted; but make a note that we still
2533 				 * found pages pinned.
2534 				 */
2535 				error = -EBUSY;
2536 			}
2537 
2538 			spin_lock_irq(&mapping->tree_lock);
2539 			radix_tree_tag_clear(&mapping->page_tree,
2540 					     iter.index, SHMEM_TAG_PINNED);
2541 			spin_unlock_irq(&mapping->tree_lock);
2542 continue_resched:
2543 			if (need_resched()) {
2544 				slot = radix_tree_iter_resume(slot, &iter);
2545 				cond_resched_rcu();
2546 			}
2547 		}
2548 		rcu_read_unlock();
2549 	}
2550 
2551 	return error;
2552 }
2553 
2554 #define F_ALL_SEALS (F_SEAL_SEAL | \
2555 		     F_SEAL_SHRINK | \
2556 		     F_SEAL_GROW | \
2557 		     F_SEAL_WRITE)
2558 
2559 int shmem_add_seals(struct file *file, unsigned int seals)
2560 {
2561 	struct inode *inode = file_inode(file);
2562 	struct shmem_inode_info *info = SHMEM_I(inode);
2563 	int error;
2564 
2565 	/*
2566 	 * SEALING
2567 	 * Sealing allows multiple parties to share a shmem-file but restrict
2568 	 * access to a specific subset of file operations. Seals can only be
2569 	 * added, but never removed. This way, mutually untrusted parties can
2570 	 * share common memory regions with a well-defined policy. A malicious
2571 	 * peer can thus never perform unwanted operations on a shared object.
2572 	 *
2573 	 * Seals are only supported on special shmem-files and always affect
2574 	 * the whole underlying inode. Once a seal is set, it may prevent some
2575 	 * kinds of access to the file. Currently, the following seals are
2576 	 * defined:
2577 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2578 	 *   SEAL_SHRINK: Prevent the file from shrinking
2579 	 *   SEAL_GROW: Prevent the file from growing
2580 	 *   SEAL_WRITE: Prevent write access to the file
2581 	 *
2582 	 * As we don't require any trust relationship between two parties, we
2583 	 * must prevent seals from being removed. Therefore, sealing a file
2584 	 * only adds a given set of seals to the file, it never touches
2585 	 * existing seals. Furthermore, the "setting seals"-operation can be
2586 	 * sealed itself, which basically prevents any further seal from being
2587 	 * added.
2588 	 *
2589 	 * Semantics of sealing are only defined on volatile files. Only
2590 	 * anonymous shmem files support sealing. More importantly, seals are
2591 	 * never written to disk. Therefore, there's no plan to support it on
2592 	 * other file types.
2593 	 */
2594 
2595 	if (file->f_op != &shmem_file_operations)
2596 		return -EINVAL;
2597 	if (!(file->f_mode & FMODE_WRITE))
2598 		return -EPERM;
2599 	if (seals & ~(unsigned int)F_ALL_SEALS)
2600 		return -EINVAL;
2601 
2602 	inode_lock(inode);
2603 
2604 	if (info->seals & F_SEAL_SEAL) {
2605 		error = -EPERM;
2606 		goto unlock;
2607 	}
2608 
2609 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2610 		error = mapping_deny_writable(file->f_mapping);
2611 		if (error)
2612 			goto unlock;
2613 
2614 		error = shmem_wait_for_pins(file->f_mapping);
2615 		if (error) {
2616 			mapping_allow_writable(file->f_mapping);
2617 			goto unlock;
2618 		}
2619 	}
2620 
2621 	info->seals |= seals;
2622 	error = 0;
2623 
2624 unlock:
2625 	inode_unlock(inode);
2626 	return error;
2627 }
2628 EXPORT_SYMBOL_GPL(shmem_add_seals);
2629 
2630 int shmem_get_seals(struct file *file)
2631 {
2632 	if (file->f_op != &shmem_file_operations)
2633 		return -EINVAL;
2634 
2635 	return SHMEM_I(file_inode(file))->seals;
2636 }
2637 EXPORT_SYMBOL_GPL(shmem_get_seals);
2638 
2639 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2640 {
2641 	long error;
2642 
2643 	switch (cmd) {
2644 	case F_ADD_SEALS:
2645 		/* disallow upper 32bit */
2646 		if (arg > UINT_MAX)
2647 			return -EINVAL;
2648 
2649 		error = shmem_add_seals(file, arg);
2650 		break;
2651 	case F_GET_SEALS:
2652 		error = shmem_get_seals(file);
2653 		break;
2654 	default:
2655 		error = -EINVAL;
2656 		break;
2657 	}
2658 
2659 	return error;
2660 }
2661 
2662 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2663 							 loff_t len)
2664 {
2665 	struct inode *inode = file_inode(file);
2666 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2667 	struct shmem_inode_info *info = SHMEM_I(inode);
2668 	struct shmem_falloc shmem_falloc;
2669 	pgoff_t start, index, end;
2670 	int error;
2671 
2672 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2673 		return -EOPNOTSUPP;
2674 
2675 	inode_lock(inode);
2676 
2677 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2678 		struct address_space *mapping = file->f_mapping;
2679 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2680 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2681 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2682 
2683 		/* protected by i_mutex */
2684 		if (info->seals & F_SEAL_WRITE) {
2685 			error = -EPERM;
2686 			goto out;
2687 		}
2688 
2689 		shmem_falloc.waitq = &shmem_falloc_waitq;
2690 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2691 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2692 		spin_lock(&inode->i_lock);
2693 		inode->i_private = &shmem_falloc;
2694 		spin_unlock(&inode->i_lock);
2695 
2696 		if ((u64)unmap_end > (u64)unmap_start)
2697 			unmap_mapping_range(mapping, unmap_start,
2698 					    1 + unmap_end - unmap_start, 0);
2699 		shmem_truncate_range(inode, offset, offset + len - 1);
2700 		/* No need to unmap again: hole-punching leaves COWed pages */
2701 
2702 		spin_lock(&inode->i_lock);
2703 		inode->i_private = NULL;
2704 		wake_up_all(&shmem_falloc_waitq);
2705 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2706 		spin_unlock(&inode->i_lock);
2707 		error = 0;
2708 		goto out;
2709 	}
2710 
2711 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2712 	error = inode_newsize_ok(inode, offset + len);
2713 	if (error)
2714 		goto out;
2715 
2716 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2717 		error = -EPERM;
2718 		goto out;
2719 	}
2720 
2721 	start = offset >> PAGE_SHIFT;
2722 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2723 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2724 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2725 		error = -ENOSPC;
2726 		goto out;
2727 	}
2728 
2729 	shmem_falloc.waitq = NULL;
2730 	shmem_falloc.start = start;
2731 	shmem_falloc.next  = start;
2732 	shmem_falloc.nr_falloced = 0;
2733 	shmem_falloc.nr_unswapped = 0;
2734 	spin_lock(&inode->i_lock);
2735 	inode->i_private = &shmem_falloc;
2736 	spin_unlock(&inode->i_lock);
2737 
2738 	for (index = start; index < end; index++) {
2739 		struct page *page;
2740 
2741 		/*
2742 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2743 		 * been interrupted because we are using up too much memory.
2744 		 */
2745 		if (signal_pending(current))
2746 			error = -EINTR;
2747 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2748 			error = -ENOMEM;
2749 		else
2750 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2751 		if (error) {
2752 			/* Remove the !PageUptodate pages we added */
2753 			if (index > start) {
2754 				shmem_undo_range(inode,
2755 				    (loff_t)start << PAGE_SHIFT,
2756 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2757 			}
2758 			goto undone;
2759 		}
2760 
2761 		/*
2762 		 * Inform shmem_writepage() how far we have reached.
2763 		 * No need for lock or barrier: we have the page lock.
2764 		 */
2765 		shmem_falloc.next++;
2766 		if (!PageUptodate(page))
2767 			shmem_falloc.nr_falloced++;
2768 
2769 		/*
2770 		 * If !PageUptodate, leave it that way so that freeable pages
2771 		 * can be recognized if we need to rollback on error later.
2772 		 * But set_page_dirty so that memory pressure will swap rather
2773 		 * than free the pages we are allocating (and SGP_CACHE pages
2774 		 * might still be clean: we now need to mark those dirty too).
2775 		 */
2776 		set_page_dirty(page);
2777 		unlock_page(page);
2778 		put_page(page);
2779 		cond_resched();
2780 	}
2781 
2782 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2783 		i_size_write(inode, offset + len);
2784 	inode->i_ctime = current_time(inode);
2785 undone:
2786 	spin_lock(&inode->i_lock);
2787 	inode->i_private = NULL;
2788 	spin_unlock(&inode->i_lock);
2789 out:
2790 	inode_unlock(inode);
2791 	return error;
2792 }
2793 
2794 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2795 {
2796 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2797 
2798 	buf->f_type = TMPFS_MAGIC;
2799 	buf->f_bsize = PAGE_SIZE;
2800 	buf->f_namelen = NAME_MAX;
2801 	if (sbinfo->max_blocks) {
2802 		buf->f_blocks = sbinfo->max_blocks;
2803 		buf->f_bavail =
2804 		buf->f_bfree  = sbinfo->max_blocks -
2805 				percpu_counter_sum(&sbinfo->used_blocks);
2806 	}
2807 	if (sbinfo->max_inodes) {
2808 		buf->f_files = sbinfo->max_inodes;
2809 		buf->f_ffree = sbinfo->free_inodes;
2810 	}
2811 	/* else leave those fields 0 like simple_statfs */
2812 	return 0;
2813 }
2814 
2815 /*
2816  * File creation. Allocate an inode, and we're done..
2817  */
2818 static int
2819 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2820 {
2821 	struct inode *inode;
2822 	int error = -ENOSPC;
2823 
2824 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2825 	if (inode) {
2826 		error = simple_acl_create(dir, inode);
2827 		if (error)
2828 			goto out_iput;
2829 		error = security_inode_init_security(inode, dir,
2830 						     &dentry->d_name,
2831 						     shmem_initxattrs, NULL);
2832 		if (error && error != -EOPNOTSUPP)
2833 			goto out_iput;
2834 
2835 		error = 0;
2836 		dir->i_size += BOGO_DIRENT_SIZE;
2837 		dir->i_ctime = dir->i_mtime = current_time(dir);
2838 		d_instantiate(dentry, inode);
2839 		dget(dentry); /* Extra count - pin the dentry in core */
2840 	}
2841 	return error;
2842 out_iput:
2843 	iput(inode);
2844 	return error;
2845 }
2846 
2847 static int
2848 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2849 {
2850 	struct inode *inode;
2851 	int error = -ENOSPC;
2852 
2853 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2854 	if (inode) {
2855 		error = security_inode_init_security(inode, dir,
2856 						     NULL,
2857 						     shmem_initxattrs, NULL);
2858 		if (error && error != -EOPNOTSUPP)
2859 			goto out_iput;
2860 		error = simple_acl_create(dir, inode);
2861 		if (error)
2862 			goto out_iput;
2863 		d_tmpfile(dentry, inode);
2864 	}
2865 	return error;
2866 out_iput:
2867 	iput(inode);
2868 	return error;
2869 }
2870 
2871 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2872 {
2873 	int error;
2874 
2875 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2876 		return error;
2877 	inc_nlink(dir);
2878 	return 0;
2879 }
2880 
2881 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2882 		bool excl)
2883 {
2884 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2885 }
2886 
2887 /*
2888  * Link a file..
2889  */
2890 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2891 {
2892 	struct inode *inode = d_inode(old_dentry);
2893 	int ret;
2894 
2895 	/*
2896 	 * No ordinary (disk based) filesystem counts links as inodes;
2897 	 * but each new link needs a new dentry, pinning lowmem, and
2898 	 * tmpfs dentries cannot be pruned until they are unlinked.
2899 	 */
2900 	ret = shmem_reserve_inode(inode->i_sb);
2901 	if (ret)
2902 		goto out;
2903 
2904 	dir->i_size += BOGO_DIRENT_SIZE;
2905 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2906 	inc_nlink(inode);
2907 	ihold(inode);	/* New dentry reference */
2908 	dget(dentry);		/* Extra pinning count for the created dentry */
2909 	d_instantiate(dentry, inode);
2910 out:
2911 	return ret;
2912 }
2913 
2914 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2915 {
2916 	struct inode *inode = d_inode(dentry);
2917 
2918 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2919 		shmem_free_inode(inode->i_sb);
2920 
2921 	dir->i_size -= BOGO_DIRENT_SIZE;
2922 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2923 	drop_nlink(inode);
2924 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2925 	return 0;
2926 }
2927 
2928 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2929 {
2930 	if (!simple_empty(dentry))
2931 		return -ENOTEMPTY;
2932 
2933 	drop_nlink(d_inode(dentry));
2934 	drop_nlink(dir);
2935 	return shmem_unlink(dir, dentry);
2936 }
2937 
2938 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2939 {
2940 	bool old_is_dir = d_is_dir(old_dentry);
2941 	bool new_is_dir = d_is_dir(new_dentry);
2942 
2943 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2944 		if (old_is_dir) {
2945 			drop_nlink(old_dir);
2946 			inc_nlink(new_dir);
2947 		} else {
2948 			drop_nlink(new_dir);
2949 			inc_nlink(old_dir);
2950 		}
2951 	}
2952 	old_dir->i_ctime = old_dir->i_mtime =
2953 	new_dir->i_ctime = new_dir->i_mtime =
2954 	d_inode(old_dentry)->i_ctime =
2955 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2956 
2957 	return 0;
2958 }
2959 
2960 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2961 {
2962 	struct dentry *whiteout;
2963 	int error;
2964 
2965 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2966 	if (!whiteout)
2967 		return -ENOMEM;
2968 
2969 	error = shmem_mknod(old_dir, whiteout,
2970 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2971 	dput(whiteout);
2972 	if (error)
2973 		return error;
2974 
2975 	/*
2976 	 * Cheat and hash the whiteout while the old dentry is still in
2977 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2978 	 *
2979 	 * d_lookup() will consistently find one of them at this point,
2980 	 * not sure which one, but that isn't even important.
2981 	 */
2982 	d_rehash(whiteout);
2983 	return 0;
2984 }
2985 
2986 /*
2987  * The VFS layer already does all the dentry stuff for rename,
2988  * we just have to decrement the usage count for the target if
2989  * it exists so that the VFS layer correctly free's it when it
2990  * gets overwritten.
2991  */
2992 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2993 {
2994 	struct inode *inode = d_inode(old_dentry);
2995 	int they_are_dirs = S_ISDIR(inode->i_mode);
2996 
2997 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2998 		return -EINVAL;
2999 
3000 	if (flags & RENAME_EXCHANGE)
3001 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3002 
3003 	if (!simple_empty(new_dentry))
3004 		return -ENOTEMPTY;
3005 
3006 	if (flags & RENAME_WHITEOUT) {
3007 		int error;
3008 
3009 		error = shmem_whiteout(old_dir, old_dentry);
3010 		if (error)
3011 			return error;
3012 	}
3013 
3014 	if (d_really_is_positive(new_dentry)) {
3015 		(void) shmem_unlink(new_dir, new_dentry);
3016 		if (they_are_dirs) {
3017 			drop_nlink(d_inode(new_dentry));
3018 			drop_nlink(old_dir);
3019 		}
3020 	} else if (they_are_dirs) {
3021 		drop_nlink(old_dir);
3022 		inc_nlink(new_dir);
3023 	}
3024 
3025 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3026 	new_dir->i_size += BOGO_DIRENT_SIZE;
3027 	old_dir->i_ctime = old_dir->i_mtime =
3028 	new_dir->i_ctime = new_dir->i_mtime =
3029 	inode->i_ctime = current_time(old_dir);
3030 	return 0;
3031 }
3032 
3033 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3034 {
3035 	int error;
3036 	int len;
3037 	struct inode *inode;
3038 	struct page *page;
3039 	struct shmem_inode_info *info;
3040 
3041 	len = strlen(symname) + 1;
3042 	if (len > PAGE_SIZE)
3043 		return -ENAMETOOLONG;
3044 
3045 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3046 	if (!inode)
3047 		return -ENOSPC;
3048 
3049 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3050 					     shmem_initxattrs, NULL);
3051 	if (error) {
3052 		if (error != -EOPNOTSUPP) {
3053 			iput(inode);
3054 			return error;
3055 		}
3056 		error = 0;
3057 	}
3058 
3059 	info = SHMEM_I(inode);
3060 	inode->i_size = len-1;
3061 	if (len <= SHORT_SYMLINK_LEN) {
3062 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3063 		if (!inode->i_link) {
3064 			iput(inode);
3065 			return -ENOMEM;
3066 		}
3067 		inode->i_op = &shmem_short_symlink_operations;
3068 	} else {
3069 		inode_nohighmem(inode);
3070 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3071 		if (error) {
3072 			iput(inode);
3073 			return error;
3074 		}
3075 		inode->i_mapping->a_ops = &shmem_aops;
3076 		inode->i_op = &shmem_symlink_inode_operations;
3077 		memcpy(page_address(page), symname, len);
3078 		SetPageUptodate(page);
3079 		set_page_dirty(page);
3080 		unlock_page(page);
3081 		put_page(page);
3082 	}
3083 	dir->i_size += BOGO_DIRENT_SIZE;
3084 	dir->i_ctime = dir->i_mtime = current_time(dir);
3085 	d_instantiate(dentry, inode);
3086 	dget(dentry);
3087 	return 0;
3088 }
3089 
3090 static void shmem_put_link(void *arg)
3091 {
3092 	mark_page_accessed(arg);
3093 	put_page(arg);
3094 }
3095 
3096 static const char *shmem_get_link(struct dentry *dentry,
3097 				  struct inode *inode,
3098 				  struct delayed_call *done)
3099 {
3100 	struct page *page = NULL;
3101 	int error;
3102 	if (!dentry) {
3103 		page = find_get_page(inode->i_mapping, 0);
3104 		if (!page)
3105 			return ERR_PTR(-ECHILD);
3106 		if (!PageUptodate(page)) {
3107 			put_page(page);
3108 			return ERR_PTR(-ECHILD);
3109 		}
3110 	} else {
3111 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3112 		if (error)
3113 			return ERR_PTR(error);
3114 		unlock_page(page);
3115 	}
3116 	set_delayed_call(done, shmem_put_link, page);
3117 	return page_address(page);
3118 }
3119 
3120 #ifdef CONFIG_TMPFS_XATTR
3121 /*
3122  * Superblocks without xattr inode operations may get some security.* xattr
3123  * support from the LSM "for free". As soon as we have any other xattrs
3124  * like ACLs, we also need to implement the security.* handlers at
3125  * filesystem level, though.
3126  */
3127 
3128 /*
3129  * Callback for security_inode_init_security() for acquiring xattrs.
3130  */
3131 static int shmem_initxattrs(struct inode *inode,
3132 			    const struct xattr *xattr_array,
3133 			    void *fs_info)
3134 {
3135 	struct shmem_inode_info *info = SHMEM_I(inode);
3136 	const struct xattr *xattr;
3137 	struct simple_xattr *new_xattr;
3138 	size_t len;
3139 
3140 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3141 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3142 		if (!new_xattr)
3143 			return -ENOMEM;
3144 
3145 		len = strlen(xattr->name) + 1;
3146 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3147 					  GFP_KERNEL);
3148 		if (!new_xattr->name) {
3149 			kfree(new_xattr);
3150 			return -ENOMEM;
3151 		}
3152 
3153 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3154 		       XATTR_SECURITY_PREFIX_LEN);
3155 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3156 		       xattr->name, len);
3157 
3158 		simple_xattr_list_add(&info->xattrs, new_xattr);
3159 	}
3160 
3161 	return 0;
3162 }
3163 
3164 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3165 				   struct dentry *unused, struct inode *inode,
3166 				   const char *name, void *buffer, size_t size)
3167 {
3168 	struct shmem_inode_info *info = SHMEM_I(inode);
3169 
3170 	name = xattr_full_name(handler, name);
3171 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3172 }
3173 
3174 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3175 				   struct dentry *unused, struct inode *inode,
3176 				   const char *name, const void *value,
3177 				   size_t size, int flags)
3178 {
3179 	struct shmem_inode_info *info = SHMEM_I(inode);
3180 
3181 	name = xattr_full_name(handler, name);
3182 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3183 }
3184 
3185 static const struct xattr_handler shmem_security_xattr_handler = {
3186 	.prefix = XATTR_SECURITY_PREFIX,
3187 	.get = shmem_xattr_handler_get,
3188 	.set = shmem_xattr_handler_set,
3189 };
3190 
3191 static const struct xattr_handler shmem_trusted_xattr_handler = {
3192 	.prefix = XATTR_TRUSTED_PREFIX,
3193 	.get = shmem_xattr_handler_get,
3194 	.set = shmem_xattr_handler_set,
3195 };
3196 
3197 static const struct xattr_handler *shmem_xattr_handlers[] = {
3198 #ifdef CONFIG_TMPFS_POSIX_ACL
3199 	&posix_acl_access_xattr_handler,
3200 	&posix_acl_default_xattr_handler,
3201 #endif
3202 	&shmem_security_xattr_handler,
3203 	&shmem_trusted_xattr_handler,
3204 	NULL
3205 };
3206 
3207 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3208 {
3209 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3210 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3211 }
3212 #endif /* CONFIG_TMPFS_XATTR */
3213 
3214 static const struct inode_operations shmem_short_symlink_operations = {
3215 	.get_link	= simple_get_link,
3216 #ifdef CONFIG_TMPFS_XATTR
3217 	.listxattr	= shmem_listxattr,
3218 #endif
3219 };
3220 
3221 static const struct inode_operations shmem_symlink_inode_operations = {
3222 	.get_link	= shmem_get_link,
3223 #ifdef CONFIG_TMPFS_XATTR
3224 	.listxattr	= shmem_listxattr,
3225 #endif
3226 };
3227 
3228 static struct dentry *shmem_get_parent(struct dentry *child)
3229 {
3230 	return ERR_PTR(-ESTALE);
3231 }
3232 
3233 static int shmem_match(struct inode *ino, void *vfh)
3234 {
3235 	__u32 *fh = vfh;
3236 	__u64 inum = fh[2];
3237 	inum = (inum << 32) | fh[1];
3238 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3239 }
3240 
3241 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3242 		struct fid *fid, int fh_len, int fh_type)
3243 {
3244 	struct inode *inode;
3245 	struct dentry *dentry = NULL;
3246 	u64 inum;
3247 
3248 	if (fh_len < 3)
3249 		return NULL;
3250 
3251 	inum = fid->raw[2];
3252 	inum = (inum << 32) | fid->raw[1];
3253 
3254 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3255 			shmem_match, fid->raw);
3256 	if (inode) {
3257 		dentry = d_find_alias(inode);
3258 		iput(inode);
3259 	}
3260 
3261 	return dentry;
3262 }
3263 
3264 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3265 				struct inode *parent)
3266 {
3267 	if (*len < 3) {
3268 		*len = 3;
3269 		return FILEID_INVALID;
3270 	}
3271 
3272 	if (inode_unhashed(inode)) {
3273 		/* Unfortunately insert_inode_hash is not idempotent,
3274 		 * so as we hash inodes here rather than at creation
3275 		 * time, we need a lock to ensure we only try
3276 		 * to do it once
3277 		 */
3278 		static DEFINE_SPINLOCK(lock);
3279 		spin_lock(&lock);
3280 		if (inode_unhashed(inode))
3281 			__insert_inode_hash(inode,
3282 					    inode->i_ino + inode->i_generation);
3283 		spin_unlock(&lock);
3284 	}
3285 
3286 	fh[0] = inode->i_generation;
3287 	fh[1] = inode->i_ino;
3288 	fh[2] = ((__u64)inode->i_ino) >> 32;
3289 
3290 	*len = 3;
3291 	return 1;
3292 }
3293 
3294 static const struct export_operations shmem_export_ops = {
3295 	.get_parent     = shmem_get_parent,
3296 	.encode_fh      = shmem_encode_fh,
3297 	.fh_to_dentry	= shmem_fh_to_dentry,
3298 };
3299 
3300 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3301 			       bool remount)
3302 {
3303 	char *this_char, *value, *rest;
3304 	struct mempolicy *mpol = NULL;
3305 	uid_t uid;
3306 	gid_t gid;
3307 
3308 	while (options != NULL) {
3309 		this_char = options;
3310 		for (;;) {
3311 			/*
3312 			 * NUL-terminate this option: unfortunately,
3313 			 * mount options form a comma-separated list,
3314 			 * but mpol's nodelist may also contain commas.
3315 			 */
3316 			options = strchr(options, ',');
3317 			if (options == NULL)
3318 				break;
3319 			options++;
3320 			if (!isdigit(*options)) {
3321 				options[-1] = '\0';
3322 				break;
3323 			}
3324 		}
3325 		if (!*this_char)
3326 			continue;
3327 		if ((value = strchr(this_char,'=')) != NULL) {
3328 			*value++ = 0;
3329 		} else {
3330 			pr_err("tmpfs: No value for mount option '%s'\n",
3331 			       this_char);
3332 			goto error;
3333 		}
3334 
3335 		if (!strcmp(this_char,"size")) {
3336 			unsigned long long size;
3337 			size = memparse(value,&rest);
3338 			if (*rest == '%') {
3339 				size <<= PAGE_SHIFT;
3340 				size *= totalram_pages;
3341 				do_div(size, 100);
3342 				rest++;
3343 			}
3344 			if (*rest)
3345 				goto bad_val;
3346 			sbinfo->max_blocks =
3347 				DIV_ROUND_UP(size, PAGE_SIZE);
3348 		} else if (!strcmp(this_char,"nr_blocks")) {
3349 			sbinfo->max_blocks = memparse(value, &rest);
3350 			if (*rest)
3351 				goto bad_val;
3352 		} else if (!strcmp(this_char,"nr_inodes")) {
3353 			sbinfo->max_inodes = memparse(value, &rest);
3354 			if (*rest)
3355 				goto bad_val;
3356 		} else if (!strcmp(this_char,"mode")) {
3357 			if (remount)
3358 				continue;
3359 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3360 			if (*rest)
3361 				goto bad_val;
3362 		} else if (!strcmp(this_char,"uid")) {
3363 			if (remount)
3364 				continue;
3365 			uid = simple_strtoul(value, &rest, 0);
3366 			if (*rest)
3367 				goto bad_val;
3368 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3369 			if (!uid_valid(sbinfo->uid))
3370 				goto bad_val;
3371 		} else if (!strcmp(this_char,"gid")) {
3372 			if (remount)
3373 				continue;
3374 			gid = simple_strtoul(value, &rest, 0);
3375 			if (*rest)
3376 				goto bad_val;
3377 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3378 			if (!gid_valid(sbinfo->gid))
3379 				goto bad_val;
3380 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3381 		} else if (!strcmp(this_char, "huge")) {
3382 			int huge;
3383 			huge = shmem_parse_huge(value);
3384 			if (huge < 0)
3385 				goto bad_val;
3386 			if (!has_transparent_hugepage() &&
3387 					huge != SHMEM_HUGE_NEVER)
3388 				goto bad_val;
3389 			sbinfo->huge = huge;
3390 #endif
3391 #ifdef CONFIG_NUMA
3392 		} else if (!strcmp(this_char,"mpol")) {
3393 			mpol_put(mpol);
3394 			mpol = NULL;
3395 			if (mpol_parse_str(value, &mpol))
3396 				goto bad_val;
3397 #endif
3398 		} else {
3399 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3400 			goto error;
3401 		}
3402 	}
3403 	sbinfo->mpol = mpol;
3404 	return 0;
3405 
3406 bad_val:
3407 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3408 	       value, this_char);
3409 error:
3410 	mpol_put(mpol);
3411 	return 1;
3412 
3413 }
3414 
3415 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3416 {
3417 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3418 	struct shmem_sb_info config = *sbinfo;
3419 	unsigned long inodes;
3420 	int error = -EINVAL;
3421 
3422 	config.mpol = NULL;
3423 	if (shmem_parse_options(data, &config, true))
3424 		return error;
3425 
3426 	spin_lock(&sbinfo->stat_lock);
3427 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3428 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3429 		goto out;
3430 	if (config.max_inodes < inodes)
3431 		goto out;
3432 	/*
3433 	 * Those tests disallow limited->unlimited while any are in use;
3434 	 * but we must separately disallow unlimited->limited, because
3435 	 * in that case we have no record of how much is already in use.
3436 	 */
3437 	if (config.max_blocks && !sbinfo->max_blocks)
3438 		goto out;
3439 	if (config.max_inodes && !sbinfo->max_inodes)
3440 		goto out;
3441 
3442 	error = 0;
3443 	sbinfo->huge = config.huge;
3444 	sbinfo->max_blocks  = config.max_blocks;
3445 	sbinfo->max_inodes  = config.max_inodes;
3446 	sbinfo->free_inodes = config.max_inodes - inodes;
3447 
3448 	/*
3449 	 * Preserve previous mempolicy unless mpol remount option was specified.
3450 	 */
3451 	if (config.mpol) {
3452 		mpol_put(sbinfo->mpol);
3453 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3454 	}
3455 out:
3456 	spin_unlock(&sbinfo->stat_lock);
3457 	return error;
3458 }
3459 
3460 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3461 {
3462 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3463 
3464 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3465 		seq_printf(seq, ",size=%luk",
3466 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3467 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3468 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3469 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3470 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3471 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3472 		seq_printf(seq, ",uid=%u",
3473 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3474 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3475 		seq_printf(seq, ",gid=%u",
3476 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3477 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3478 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3479 	if (sbinfo->huge)
3480 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3481 #endif
3482 	shmem_show_mpol(seq, sbinfo->mpol);
3483 	return 0;
3484 }
3485 
3486 #define MFD_NAME_PREFIX "memfd:"
3487 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3488 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3489 
3490 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3491 
3492 SYSCALL_DEFINE2(memfd_create,
3493 		const char __user *, uname,
3494 		unsigned int, flags)
3495 {
3496 	struct shmem_inode_info *info;
3497 	struct file *file;
3498 	int fd, error;
3499 	char *name;
3500 	long len;
3501 
3502 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3503 		return -EINVAL;
3504 
3505 	/* length includes terminating zero */
3506 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3507 	if (len <= 0)
3508 		return -EFAULT;
3509 	if (len > MFD_NAME_MAX_LEN + 1)
3510 		return -EINVAL;
3511 
3512 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3513 	if (!name)
3514 		return -ENOMEM;
3515 
3516 	strcpy(name, MFD_NAME_PREFIX);
3517 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3518 		error = -EFAULT;
3519 		goto err_name;
3520 	}
3521 
3522 	/* terminating-zero may have changed after strnlen_user() returned */
3523 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3524 		error = -EFAULT;
3525 		goto err_name;
3526 	}
3527 
3528 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3529 	if (fd < 0) {
3530 		error = fd;
3531 		goto err_name;
3532 	}
3533 
3534 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3535 	if (IS_ERR(file)) {
3536 		error = PTR_ERR(file);
3537 		goto err_fd;
3538 	}
3539 	info = SHMEM_I(file_inode(file));
3540 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3541 	file->f_flags |= O_RDWR | O_LARGEFILE;
3542 	if (flags & MFD_ALLOW_SEALING)
3543 		info->seals &= ~F_SEAL_SEAL;
3544 
3545 	fd_install(fd, file);
3546 	kfree(name);
3547 	return fd;
3548 
3549 err_fd:
3550 	put_unused_fd(fd);
3551 err_name:
3552 	kfree(name);
3553 	return error;
3554 }
3555 
3556 #endif /* CONFIG_TMPFS */
3557 
3558 static void shmem_put_super(struct super_block *sb)
3559 {
3560 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3561 
3562 	percpu_counter_destroy(&sbinfo->used_blocks);
3563 	mpol_put(sbinfo->mpol);
3564 	kfree(sbinfo);
3565 	sb->s_fs_info = NULL;
3566 }
3567 
3568 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3569 {
3570 	struct inode *inode;
3571 	struct shmem_sb_info *sbinfo;
3572 	int err = -ENOMEM;
3573 
3574 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3575 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3576 				L1_CACHE_BYTES), GFP_KERNEL);
3577 	if (!sbinfo)
3578 		return -ENOMEM;
3579 
3580 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3581 	sbinfo->uid = current_fsuid();
3582 	sbinfo->gid = current_fsgid();
3583 	sb->s_fs_info = sbinfo;
3584 
3585 #ifdef CONFIG_TMPFS
3586 	/*
3587 	 * Per default we only allow half of the physical ram per
3588 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3589 	 * but the internal instance is left unlimited.
3590 	 */
3591 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3592 		sbinfo->max_blocks = shmem_default_max_blocks();
3593 		sbinfo->max_inodes = shmem_default_max_inodes();
3594 		if (shmem_parse_options(data, sbinfo, false)) {
3595 			err = -EINVAL;
3596 			goto failed;
3597 		}
3598 	} else {
3599 		sb->s_flags |= MS_NOUSER;
3600 	}
3601 	sb->s_export_op = &shmem_export_ops;
3602 	sb->s_flags |= MS_NOSEC;
3603 #else
3604 	sb->s_flags |= MS_NOUSER;
3605 #endif
3606 
3607 	spin_lock_init(&sbinfo->stat_lock);
3608 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3609 		goto failed;
3610 	sbinfo->free_inodes = sbinfo->max_inodes;
3611 	spin_lock_init(&sbinfo->shrinklist_lock);
3612 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3613 
3614 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3615 	sb->s_blocksize = PAGE_SIZE;
3616 	sb->s_blocksize_bits = PAGE_SHIFT;
3617 	sb->s_magic = TMPFS_MAGIC;
3618 	sb->s_op = &shmem_ops;
3619 	sb->s_time_gran = 1;
3620 #ifdef CONFIG_TMPFS_XATTR
3621 	sb->s_xattr = shmem_xattr_handlers;
3622 #endif
3623 #ifdef CONFIG_TMPFS_POSIX_ACL
3624 	sb->s_flags |= MS_POSIXACL;
3625 #endif
3626 
3627 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3628 	if (!inode)
3629 		goto failed;
3630 	inode->i_uid = sbinfo->uid;
3631 	inode->i_gid = sbinfo->gid;
3632 	sb->s_root = d_make_root(inode);
3633 	if (!sb->s_root)
3634 		goto failed;
3635 	return 0;
3636 
3637 failed:
3638 	shmem_put_super(sb);
3639 	return err;
3640 }
3641 
3642 static struct kmem_cache *shmem_inode_cachep;
3643 
3644 static struct inode *shmem_alloc_inode(struct super_block *sb)
3645 {
3646 	struct shmem_inode_info *info;
3647 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3648 	if (!info)
3649 		return NULL;
3650 	return &info->vfs_inode;
3651 }
3652 
3653 static void shmem_destroy_callback(struct rcu_head *head)
3654 {
3655 	struct inode *inode = container_of(head, struct inode, i_rcu);
3656 	if (S_ISLNK(inode->i_mode))
3657 		kfree(inode->i_link);
3658 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3659 }
3660 
3661 static void shmem_destroy_inode(struct inode *inode)
3662 {
3663 	if (S_ISREG(inode->i_mode))
3664 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3665 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3666 }
3667 
3668 static void shmem_init_inode(void *foo)
3669 {
3670 	struct shmem_inode_info *info = foo;
3671 	inode_init_once(&info->vfs_inode);
3672 }
3673 
3674 static int shmem_init_inodecache(void)
3675 {
3676 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3677 				sizeof(struct shmem_inode_info),
3678 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3679 	return 0;
3680 }
3681 
3682 static void shmem_destroy_inodecache(void)
3683 {
3684 	kmem_cache_destroy(shmem_inode_cachep);
3685 }
3686 
3687 static const struct address_space_operations shmem_aops = {
3688 	.writepage	= shmem_writepage,
3689 	.set_page_dirty	= __set_page_dirty_no_writeback,
3690 #ifdef CONFIG_TMPFS
3691 	.write_begin	= shmem_write_begin,
3692 	.write_end	= shmem_write_end,
3693 #endif
3694 #ifdef CONFIG_MIGRATION
3695 	.migratepage	= migrate_page,
3696 #endif
3697 	.error_remove_page = generic_error_remove_page,
3698 };
3699 
3700 static const struct file_operations shmem_file_operations = {
3701 	.mmap		= shmem_mmap,
3702 	.get_unmapped_area = shmem_get_unmapped_area,
3703 #ifdef CONFIG_TMPFS
3704 	.llseek		= shmem_file_llseek,
3705 	.read_iter	= shmem_file_read_iter,
3706 	.write_iter	= generic_file_write_iter,
3707 	.fsync		= noop_fsync,
3708 	.splice_read	= generic_file_splice_read,
3709 	.splice_write	= iter_file_splice_write,
3710 	.fallocate	= shmem_fallocate,
3711 #endif
3712 };
3713 
3714 static const struct inode_operations shmem_inode_operations = {
3715 	.getattr	= shmem_getattr,
3716 	.setattr	= shmem_setattr,
3717 #ifdef CONFIG_TMPFS_XATTR
3718 	.listxattr	= shmem_listxattr,
3719 	.set_acl	= simple_set_acl,
3720 #endif
3721 };
3722 
3723 static const struct inode_operations shmem_dir_inode_operations = {
3724 #ifdef CONFIG_TMPFS
3725 	.create		= shmem_create,
3726 	.lookup		= simple_lookup,
3727 	.link		= shmem_link,
3728 	.unlink		= shmem_unlink,
3729 	.symlink	= shmem_symlink,
3730 	.mkdir		= shmem_mkdir,
3731 	.rmdir		= shmem_rmdir,
3732 	.mknod		= shmem_mknod,
3733 	.rename		= shmem_rename2,
3734 	.tmpfile	= shmem_tmpfile,
3735 #endif
3736 #ifdef CONFIG_TMPFS_XATTR
3737 	.listxattr	= shmem_listxattr,
3738 #endif
3739 #ifdef CONFIG_TMPFS_POSIX_ACL
3740 	.setattr	= shmem_setattr,
3741 	.set_acl	= simple_set_acl,
3742 #endif
3743 };
3744 
3745 static const struct inode_operations shmem_special_inode_operations = {
3746 #ifdef CONFIG_TMPFS_XATTR
3747 	.listxattr	= shmem_listxattr,
3748 #endif
3749 #ifdef CONFIG_TMPFS_POSIX_ACL
3750 	.setattr	= shmem_setattr,
3751 	.set_acl	= simple_set_acl,
3752 #endif
3753 };
3754 
3755 static const struct super_operations shmem_ops = {
3756 	.alloc_inode	= shmem_alloc_inode,
3757 	.destroy_inode	= shmem_destroy_inode,
3758 #ifdef CONFIG_TMPFS
3759 	.statfs		= shmem_statfs,
3760 	.remount_fs	= shmem_remount_fs,
3761 	.show_options	= shmem_show_options,
3762 #endif
3763 	.evict_inode	= shmem_evict_inode,
3764 	.drop_inode	= generic_delete_inode,
3765 	.put_super	= shmem_put_super,
3766 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3767 	.nr_cached_objects	= shmem_unused_huge_count,
3768 	.free_cached_objects	= shmem_unused_huge_scan,
3769 #endif
3770 };
3771 
3772 static const struct vm_operations_struct shmem_vm_ops = {
3773 	.fault		= shmem_fault,
3774 	.map_pages	= filemap_map_pages,
3775 #ifdef CONFIG_NUMA
3776 	.set_policy     = shmem_set_policy,
3777 	.get_policy     = shmem_get_policy,
3778 #endif
3779 };
3780 
3781 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3782 	int flags, const char *dev_name, void *data)
3783 {
3784 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3785 }
3786 
3787 static struct file_system_type shmem_fs_type = {
3788 	.owner		= THIS_MODULE,
3789 	.name		= "tmpfs",
3790 	.mount		= shmem_mount,
3791 	.kill_sb	= kill_litter_super,
3792 	.fs_flags	= FS_USERNS_MOUNT,
3793 };
3794 
3795 int __init shmem_init(void)
3796 {
3797 	int error;
3798 
3799 	/* If rootfs called this, don't re-init */
3800 	if (shmem_inode_cachep)
3801 		return 0;
3802 
3803 	error = shmem_init_inodecache();
3804 	if (error)
3805 		goto out3;
3806 
3807 	error = register_filesystem(&shmem_fs_type);
3808 	if (error) {
3809 		pr_err("Could not register tmpfs\n");
3810 		goto out2;
3811 	}
3812 
3813 	shm_mnt = kern_mount(&shmem_fs_type);
3814 	if (IS_ERR(shm_mnt)) {
3815 		error = PTR_ERR(shm_mnt);
3816 		pr_err("Could not kern_mount tmpfs\n");
3817 		goto out1;
3818 	}
3819 
3820 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3821 	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3822 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3823 	else
3824 		shmem_huge = 0; /* just in case it was patched */
3825 #endif
3826 	return 0;
3827 
3828 out1:
3829 	unregister_filesystem(&shmem_fs_type);
3830 out2:
3831 	shmem_destroy_inodecache();
3832 out3:
3833 	shm_mnt = ERR_PTR(error);
3834 	return error;
3835 }
3836 
3837 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3838 static ssize_t shmem_enabled_show(struct kobject *kobj,
3839 		struct kobj_attribute *attr, char *buf)
3840 {
3841 	int values[] = {
3842 		SHMEM_HUGE_ALWAYS,
3843 		SHMEM_HUGE_WITHIN_SIZE,
3844 		SHMEM_HUGE_ADVISE,
3845 		SHMEM_HUGE_NEVER,
3846 		SHMEM_HUGE_DENY,
3847 		SHMEM_HUGE_FORCE,
3848 	};
3849 	int i, count;
3850 
3851 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3852 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3853 
3854 		count += sprintf(buf + count, fmt,
3855 				shmem_format_huge(values[i]));
3856 	}
3857 	buf[count - 1] = '\n';
3858 	return count;
3859 }
3860 
3861 static ssize_t shmem_enabled_store(struct kobject *kobj,
3862 		struct kobj_attribute *attr, const char *buf, size_t count)
3863 {
3864 	char tmp[16];
3865 	int huge;
3866 
3867 	if (count + 1 > sizeof(tmp))
3868 		return -EINVAL;
3869 	memcpy(tmp, buf, count);
3870 	tmp[count] = '\0';
3871 	if (count && tmp[count - 1] == '\n')
3872 		tmp[count - 1] = '\0';
3873 
3874 	huge = shmem_parse_huge(tmp);
3875 	if (huge == -EINVAL)
3876 		return -EINVAL;
3877 	if (!has_transparent_hugepage() &&
3878 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3879 		return -EINVAL;
3880 
3881 	shmem_huge = huge;
3882 	if (shmem_huge < SHMEM_HUGE_DENY)
3883 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3884 	return count;
3885 }
3886 
3887 struct kobj_attribute shmem_enabled_attr =
3888 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3889 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3890 
3891 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3892 bool shmem_huge_enabled(struct vm_area_struct *vma)
3893 {
3894 	struct inode *inode = file_inode(vma->vm_file);
3895 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3896 	loff_t i_size;
3897 	pgoff_t off;
3898 
3899 	if (shmem_huge == SHMEM_HUGE_FORCE)
3900 		return true;
3901 	if (shmem_huge == SHMEM_HUGE_DENY)
3902 		return false;
3903 	switch (sbinfo->huge) {
3904 		case SHMEM_HUGE_NEVER:
3905 			return false;
3906 		case SHMEM_HUGE_ALWAYS:
3907 			return true;
3908 		case SHMEM_HUGE_WITHIN_SIZE:
3909 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3910 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3911 			if (i_size >= HPAGE_PMD_SIZE &&
3912 					i_size >> PAGE_SHIFT >= off)
3913 				return true;
3914 		case SHMEM_HUGE_ADVISE:
3915 			/* TODO: implement fadvise() hints */
3916 			return (vma->vm_flags & VM_HUGEPAGE);
3917 		default:
3918 			VM_BUG_ON(1);
3919 			return false;
3920 	}
3921 }
3922 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3923 
3924 #else /* !CONFIG_SHMEM */
3925 
3926 /*
3927  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3928  *
3929  * This is intended for small system where the benefits of the full
3930  * shmem code (swap-backed and resource-limited) are outweighed by
3931  * their complexity. On systems without swap this code should be
3932  * effectively equivalent, but much lighter weight.
3933  */
3934 
3935 static struct file_system_type shmem_fs_type = {
3936 	.name		= "tmpfs",
3937 	.mount		= ramfs_mount,
3938 	.kill_sb	= kill_litter_super,
3939 	.fs_flags	= FS_USERNS_MOUNT,
3940 };
3941 
3942 int __init shmem_init(void)
3943 {
3944 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3945 
3946 	shm_mnt = kern_mount(&shmem_fs_type);
3947 	BUG_ON(IS_ERR(shm_mnt));
3948 
3949 	return 0;
3950 }
3951 
3952 int shmem_unuse(swp_entry_t swap, struct page *page)
3953 {
3954 	return 0;
3955 }
3956 
3957 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3958 {
3959 	return 0;
3960 }
3961 
3962 void shmem_unlock_mapping(struct address_space *mapping)
3963 {
3964 }
3965 
3966 #ifdef CONFIG_MMU
3967 unsigned long shmem_get_unmapped_area(struct file *file,
3968 				      unsigned long addr, unsigned long len,
3969 				      unsigned long pgoff, unsigned long flags)
3970 {
3971 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3972 }
3973 #endif
3974 
3975 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3976 {
3977 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3978 }
3979 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3980 
3981 #define shmem_vm_ops				generic_file_vm_ops
3982 #define shmem_file_operations			ramfs_file_operations
3983 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3984 #define shmem_acct_size(flags, size)		0
3985 #define shmem_unacct_size(flags, size)		do {} while (0)
3986 
3987 #endif /* CONFIG_SHMEM */
3988 
3989 /* common code */
3990 
3991 static const struct dentry_operations anon_ops = {
3992 	.d_dname = simple_dname
3993 };
3994 
3995 static struct file *__shmem_file_setup(const char *name, loff_t size,
3996 				       unsigned long flags, unsigned int i_flags)
3997 {
3998 	struct file *res;
3999 	struct inode *inode;
4000 	struct path path;
4001 	struct super_block *sb;
4002 	struct qstr this;
4003 
4004 	if (IS_ERR(shm_mnt))
4005 		return ERR_CAST(shm_mnt);
4006 
4007 	if (size < 0 || size > MAX_LFS_FILESIZE)
4008 		return ERR_PTR(-EINVAL);
4009 
4010 	if (shmem_acct_size(flags, size))
4011 		return ERR_PTR(-ENOMEM);
4012 
4013 	res = ERR_PTR(-ENOMEM);
4014 	this.name = name;
4015 	this.len = strlen(name);
4016 	this.hash = 0; /* will go */
4017 	sb = shm_mnt->mnt_sb;
4018 	path.mnt = mntget(shm_mnt);
4019 	path.dentry = d_alloc_pseudo(sb, &this);
4020 	if (!path.dentry)
4021 		goto put_memory;
4022 	d_set_d_op(path.dentry, &anon_ops);
4023 
4024 	res = ERR_PTR(-ENOSPC);
4025 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4026 	if (!inode)
4027 		goto put_memory;
4028 
4029 	inode->i_flags |= i_flags;
4030 	d_instantiate(path.dentry, inode);
4031 	inode->i_size = size;
4032 	clear_nlink(inode);	/* It is unlinked */
4033 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4034 	if (IS_ERR(res))
4035 		goto put_path;
4036 
4037 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4038 		  &shmem_file_operations);
4039 	if (IS_ERR(res))
4040 		goto put_path;
4041 
4042 	return res;
4043 
4044 put_memory:
4045 	shmem_unacct_size(flags, size);
4046 put_path:
4047 	path_put(&path);
4048 	return res;
4049 }
4050 
4051 /**
4052  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4053  * 	kernel internal.  There will be NO LSM permission checks against the
4054  * 	underlying inode.  So users of this interface must do LSM checks at a
4055  *	higher layer.  The users are the big_key and shm implementations.  LSM
4056  *	checks are provided at the key or shm level rather than the inode.
4057  * @name: name for dentry (to be seen in /proc/<pid>/maps
4058  * @size: size to be set for the file
4059  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4060  */
4061 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4062 {
4063 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4064 }
4065 
4066 /**
4067  * shmem_file_setup - get an unlinked file living in tmpfs
4068  * @name: name for dentry (to be seen in /proc/<pid>/maps
4069  * @size: size to be set for the file
4070  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4071  */
4072 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4073 {
4074 	return __shmem_file_setup(name, size, flags, 0);
4075 }
4076 EXPORT_SYMBOL_GPL(shmem_file_setup);
4077 
4078 /**
4079  * shmem_zero_setup - setup a shared anonymous mapping
4080  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4081  */
4082 int shmem_zero_setup(struct vm_area_struct *vma)
4083 {
4084 	struct file *file;
4085 	loff_t size = vma->vm_end - vma->vm_start;
4086 
4087 	/*
4088 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4089 	 * between XFS directory reading and selinux: since this file is only
4090 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4091 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4092 	 */
4093 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4094 	if (IS_ERR(file))
4095 		return PTR_ERR(file);
4096 
4097 	if (vma->vm_file)
4098 		fput(vma->vm_file);
4099 	vma->vm_file = file;
4100 	vma->vm_ops = &shmem_vm_ops;
4101 
4102 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4103 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4104 			(vma->vm_end & HPAGE_PMD_MASK)) {
4105 		khugepaged_enter(vma, vma->vm_flags);
4106 	}
4107 
4108 	return 0;
4109 }
4110 
4111 /**
4112  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4113  * @mapping:	the page's address_space
4114  * @index:	the page index
4115  * @gfp:	the page allocator flags to use if allocating
4116  *
4117  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4118  * with any new page allocations done using the specified allocation flags.
4119  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4120  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4121  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4122  *
4123  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4124  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4125  */
4126 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4127 					 pgoff_t index, gfp_t gfp)
4128 {
4129 #ifdef CONFIG_SHMEM
4130 	struct inode *inode = mapping->host;
4131 	struct page *page;
4132 	int error;
4133 
4134 	BUG_ON(mapping->a_ops != &shmem_aops);
4135 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4136 				  gfp, NULL, NULL);
4137 	if (error)
4138 		page = ERR_PTR(error);
4139 	else
4140 		unlock_page(page);
4141 	return page;
4142 #else
4143 	/*
4144 	 * The tiny !SHMEM case uses ramfs without swap
4145 	 */
4146 	return read_cache_page_gfp(mapping, index, gfp);
4147 #endif
4148 }
4149 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4150