xref: /openbmc/linux/mm/shmem.c (revision d623f60d)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38 
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40 
41 static struct vfsmount *shm_mnt;
42 
43 #ifdef CONFIG_SHMEM
44 /*
45  * This virtual memory filesystem is heavily based on the ramfs. It
46  * extends ramfs by the ability to use swap and honor resource limits
47  * which makes it a completely usable filesystem.
48  */
49 
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_mutex making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 		struct page **pagep, enum sgp_type sgp,
125 		gfp_t gfp, struct vm_area_struct *vma,
126 		struct vm_fault *vmf, int *fault_type);
127 
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 		struct page **pagep, enum sgp_type sgp)
130 {
131 	return shmem_getpage_gfp(inode, index, pagep, sgp,
132 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134 
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137 	return sb->s_fs_info;
138 }
139 
140 /*
141  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142  * for shared memory and for shared anonymous (/dev/zero) mappings
143  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144  * consistent with the pre-accounting of private mappings ...
145  */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148 	return (flags & VM_NORESERVE) ?
149 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151 
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154 	if (!(flags & VM_NORESERVE))
155 		vm_unacct_memory(VM_ACCT(size));
156 }
157 
158 static inline int shmem_reacct_size(unsigned long flags,
159 		loff_t oldsize, loff_t newsize)
160 {
161 	if (!(flags & VM_NORESERVE)) {
162 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 			return security_vm_enough_memory_mm(current->mm,
164 					VM_ACCT(newsize) - VM_ACCT(oldsize));
165 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 	}
168 	return 0;
169 }
170 
171 /*
172  * ... whereas tmpfs objects are accounted incrementally as
173  * pages are allocated, in order to allow large sparse files.
174  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176  */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		return 0;
181 
182 	return security_vm_enough_memory_mm(current->mm,
183 			pages * VM_ACCT(PAGE_SIZE));
184 }
185 
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 	if (flags & VM_NORESERVE)
189 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191 
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194 	struct shmem_inode_info *info = SHMEM_I(inode);
195 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196 
197 	if (shmem_acct_block(info->flags, pages))
198 		return false;
199 
200 	if (sbinfo->max_blocks) {
201 		if (percpu_counter_compare(&sbinfo->used_blocks,
202 					   sbinfo->max_blocks - pages) > 0)
203 			goto unacct;
204 		percpu_counter_add(&sbinfo->used_blocks, pages);
205 	}
206 
207 	return true;
208 
209 unacct:
210 	shmem_unacct_blocks(info->flags, pages);
211 	return false;
212 }
213 
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216 	struct shmem_inode_info *info = SHMEM_I(inode);
217 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 
219 	if (sbinfo->max_blocks)
220 		percpu_counter_sub(&sbinfo->used_blocks, pages);
221 	shmem_unacct_blocks(info->flags, pages);
222 }
223 
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232 
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235 	return vma->vm_ops == &shmem_vm_ops;
236 }
237 
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240 
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 	if (sbinfo->max_inodes) {
245 		spin_lock(&sbinfo->stat_lock);
246 		if (!sbinfo->free_inodes) {
247 			spin_unlock(&sbinfo->stat_lock);
248 			return -ENOSPC;
249 		}
250 		sbinfo->free_inodes--;
251 		spin_unlock(&sbinfo->stat_lock);
252 	}
253 	return 0;
254 }
255 
256 static void shmem_free_inode(struct super_block *sb)
257 {
258 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 	if (sbinfo->max_inodes) {
260 		spin_lock(&sbinfo->stat_lock);
261 		sbinfo->free_inodes++;
262 		spin_unlock(&sbinfo->stat_lock);
263 	}
264 }
265 
266 /**
267  * shmem_recalc_inode - recalculate the block usage of an inode
268  * @inode: inode to recalc
269  *
270  * We have to calculate the free blocks since the mm can drop
271  * undirtied hole pages behind our back.
272  *
273  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
274  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275  *
276  * It has to be called with the spinlock held.
277  */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280 	struct shmem_inode_info *info = SHMEM_I(inode);
281 	long freed;
282 
283 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 	if (freed > 0) {
285 		info->alloced -= freed;
286 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 		shmem_inode_unacct_blocks(inode, freed);
288 	}
289 }
290 
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293 	struct shmem_inode_info *info = SHMEM_I(inode);
294 	unsigned long flags;
295 
296 	if (!shmem_inode_acct_block(inode, pages))
297 		return false;
298 
299 	spin_lock_irqsave(&info->lock, flags);
300 	info->alloced += pages;
301 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 	shmem_recalc_inode(inode);
303 	spin_unlock_irqrestore(&info->lock, flags);
304 	inode->i_mapping->nrpages += pages;
305 
306 	return true;
307 }
308 
309 void shmem_uncharge(struct inode *inode, long pages)
310 {
311 	struct shmem_inode_info *info = SHMEM_I(inode);
312 	unsigned long flags;
313 
314 	spin_lock_irqsave(&info->lock, flags);
315 	info->alloced -= pages;
316 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 	shmem_recalc_inode(inode);
318 	spin_unlock_irqrestore(&info->lock, flags);
319 
320 	shmem_inode_unacct_blocks(inode, pages);
321 }
322 
323 /*
324  * Replace item expected in radix tree by a new item, while holding tree lock.
325  */
326 static int shmem_radix_tree_replace(struct address_space *mapping,
327 			pgoff_t index, void *expected, void *replacement)
328 {
329 	struct radix_tree_node *node;
330 	void __rcu **pslot;
331 	void *item;
332 
333 	VM_BUG_ON(!expected);
334 	VM_BUG_ON(!replacement);
335 	item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
336 	if (!item)
337 		return -ENOENT;
338 	if (item != expected)
339 		return -ENOENT;
340 	__radix_tree_replace(&mapping->i_pages, node, pslot,
341 			     replacement, NULL);
342 	return 0;
343 }
344 
345 /*
346  * Sometimes, before we decide whether to proceed or to fail, we must check
347  * that an entry was not already brought back from swap by a racing thread.
348  *
349  * Checking page is not enough: by the time a SwapCache page is locked, it
350  * might be reused, and again be SwapCache, using the same swap as before.
351  */
352 static bool shmem_confirm_swap(struct address_space *mapping,
353 			       pgoff_t index, swp_entry_t swap)
354 {
355 	void *item;
356 
357 	rcu_read_lock();
358 	item = radix_tree_lookup(&mapping->i_pages, index);
359 	rcu_read_unlock();
360 	return item == swp_to_radix_entry(swap);
361 }
362 
363 /*
364  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365  *
366  * SHMEM_HUGE_NEVER:
367  *	disables huge pages for the mount;
368  * SHMEM_HUGE_ALWAYS:
369  *	enables huge pages for the mount;
370  * SHMEM_HUGE_WITHIN_SIZE:
371  *	only allocate huge pages if the page will be fully within i_size,
372  *	also respect fadvise()/madvise() hints;
373  * SHMEM_HUGE_ADVISE:
374  *	only allocate huge pages if requested with fadvise()/madvise();
375  */
376 
377 #define SHMEM_HUGE_NEVER	0
378 #define SHMEM_HUGE_ALWAYS	1
379 #define SHMEM_HUGE_WITHIN_SIZE	2
380 #define SHMEM_HUGE_ADVISE	3
381 
382 /*
383  * Special values.
384  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385  *
386  * SHMEM_HUGE_DENY:
387  *	disables huge on shm_mnt and all mounts, for emergency use;
388  * SHMEM_HUGE_FORCE:
389  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390  *
391  */
392 #define SHMEM_HUGE_DENY		(-1)
393 #define SHMEM_HUGE_FORCE	(-2)
394 
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
397 
398 static int shmem_huge __read_mostly;
399 
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str)
402 {
403 	if (!strcmp(str, "never"))
404 		return SHMEM_HUGE_NEVER;
405 	if (!strcmp(str, "always"))
406 		return SHMEM_HUGE_ALWAYS;
407 	if (!strcmp(str, "within_size"))
408 		return SHMEM_HUGE_WITHIN_SIZE;
409 	if (!strcmp(str, "advise"))
410 		return SHMEM_HUGE_ADVISE;
411 	if (!strcmp(str, "deny"))
412 		return SHMEM_HUGE_DENY;
413 	if (!strcmp(str, "force"))
414 		return SHMEM_HUGE_FORCE;
415 	return -EINVAL;
416 }
417 
418 static const char *shmem_format_huge(int huge)
419 {
420 	switch (huge) {
421 	case SHMEM_HUGE_NEVER:
422 		return "never";
423 	case SHMEM_HUGE_ALWAYS:
424 		return "always";
425 	case SHMEM_HUGE_WITHIN_SIZE:
426 		return "within_size";
427 	case SHMEM_HUGE_ADVISE:
428 		return "advise";
429 	case SHMEM_HUGE_DENY:
430 		return "deny";
431 	case SHMEM_HUGE_FORCE:
432 		return "force";
433 	default:
434 		VM_BUG_ON(1);
435 		return "bad_val";
436 	}
437 }
438 #endif
439 
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 		struct shrink_control *sc, unsigned long nr_to_split)
442 {
443 	LIST_HEAD(list), *pos, *next;
444 	LIST_HEAD(to_remove);
445 	struct inode *inode;
446 	struct shmem_inode_info *info;
447 	struct page *page;
448 	unsigned long batch = sc ? sc->nr_to_scan : 128;
449 	int removed = 0, split = 0;
450 
451 	if (list_empty(&sbinfo->shrinklist))
452 		return SHRINK_STOP;
453 
454 	spin_lock(&sbinfo->shrinklist_lock);
455 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
457 
458 		/* pin the inode */
459 		inode = igrab(&info->vfs_inode);
460 
461 		/* inode is about to be evicted */
462 		if (!inode) {
463 			list_del_init(&info->shrinklist);
464 			removed++;
465 			goto next;
466 		}
467 
468 		/* Check if there's anything to gain */
469 		if (round_up(inode->i_size, PAGE_SIZE) ==
470 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
471 			list_move(&info->shrinklist, &to_remove);
472 			removed++;
473 			goto next;
474 		}
475 
476 		list_move(&info->shrinklist, &list);
477 next:
478 		if (!--batch)
479 			break;
480 	}
481 	spin_unlock(&sbinfo->shrinklist_lock);
482 
483 	list_for_each_safe(pos, next, &to_remove) {
484 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 		inode = &info->vfs_inode;
486 		list_del_init(&info->shrinklist);
487 		iput(inode);
488 	}
489 
490 	list_for_each_safe(pos, next, &list) {
491 		int ret;
492 
493 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 		inode = &info->vfs_inode;
495 
496 		if (nr_to_split && split >= nr_to_split)
497 			goto leave;
498 
499 		page = find_get_page(inode->i_mapping,
500 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 		if (!page)
502 			goto drop;
503 
504 		/* No huge page at the end of the file: nothing to split */
505 		if (!PageTransHuge(page)) {
506 			put_page(page);
507 			goto drop;
508 		}
509 
510 		/*
511 		 * Leave the inode on the list if we failed to lock
512 		 * the page at this time.
513 		 *
514 		 * Waiting for the lock may lead to deadlock in the
515 		 * reclaim path.
516 		 */
517 		if (!trylock_page(page)) {
518 			put_page(page);
519 			goto leave;
520 		}
521 
522 		ret = split_huge_page(page);
523 		unlock_page(page);
524 		put_page(page);
525 
526 		/* If split failed leave the inode on the list */
527 		if (ret)
528 			goto leave;
529 
530 		split++;
531 drop:
532 		list_del_init(&info->shrinklist);
533 		removed++;
534 leave:
535 		iput(inode);
536 	}
537 
538 	spin_lock(&sbinfo->shrinklist_lock);
539 	list_splice_tail(&list, &sbinfo->shrinklist);
540 	sbinfo->shrinklist_len -= removed;
541 	spin_unlock(&sbinfo->shrinklist_lock);
542 
543 	return split;
544 }
545 
546 static long shmem_unused_huge_scan(struct super_block *sb,
547 		struct shrink_control *sc)
548 {
549 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550 
551 	if (!READ_ONCE(sbinfo->shrinklist_len))
552 		return SHRINK_STOP;
553 
554 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
555 }
556 
557 static long shmem_unused_huge_count(struct super_block *sb,
558 		struct shrink_control *sc)
559 {
560 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 	return READ_ONCE(sbinfo->shrinklist_len);
562 }
563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
564 
565 #define shmem_huge SHMEM_HUGE_DENY
566 
567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 		struct shrink_control *sc, unsigned long nr_to_split)
569 {
570 	return 0;
571 }
572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
573 
574 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
575 {
576 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
577 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
578 	    shmem_huge != SHMEM_HUGE_DENY)
579 		return true;
580 	return false;
581 }
582 
583 /*
584  * Like add_to_page_cache_locked, but error if expected item has gone.
585  */
586 static int shmem_add_to_page_cache(struct page *page,
587 				   struct address_space *mapping,
588 				   pgoff_t index, void *expected)
589 {
590 	int error, nr = hpage_nr_pages(page);
591 
592 	VM_BUG_ON_PAGE(PageTail(page), page);
593 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
594 	VM_BUG_ON_PAGE(!PageLocked(page), page);
595 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
596 	VM_BUG_ON(expected && PageTransHuge(page));
597 
598 	page_ref_add(page, nr);
599 	page->mapping = mapping;
600 	page->index = index;
601 
602 	xa_lock_irq(&mapping->i_pages);
603 	if (PageTransHuge(page)) {
604 		void __rcu **results;
605 		pgoff_t idx;
606 		int i;
607 
608 		error = 0;
609 		if (radix_tree_gang_lookup_slot(&mapping->i_pages,
610 					&results, &idx, index, 1) &&
611 				idx < index + HPAGE_PMD_NR) {
612 			error = -EEXIST;
613 		}
614 
615 		if (!error) {
616 			for (i = 0; i < HPAGE_PMD_NR; i++) {
617 				error = radix_tree_insert(&mapping->i_pages,
618 						index + i, page + i);
619 				VM_BUG_ON(error);
620 			}
621 			count_vm_event(THP_FILE_ALLOC);
622 		}
623 	} else if (!expected) {
624 		error = radix_tree_insert(&mapping->i_pages, index, page);
625 	} else {
626 		error = shmem_radix_tree_replace(mapping, index, expected,
627 								 page);
628 	}
629 
630 	if (!error) {
631 		mapping->nrpages += nr;
632 		if (PageTransHuge(page))
633 			__inc_node_page_state(page, NR_SHMEM_THPS);
634 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
635 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
636 		xa_unlock_irq(&mapping->i_pages);
637 	} else {
638 		page->mapping = NULL;
639 		xa_unlock_irq(&mapping->i_pages);
640 		page_ref_sub(page, nr);
641 	}
642 	return error;
643 }
644 
645 /*
646  * Like delete_from_page_cache, but substitutes swap for page.
647  */
648 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
649 {
650 	struct address_space *mapping = page->mapping;
651 	int error;
652 
653 	VM_BUG_ON_PAGE(PageCompound(page), page);
654 
655 	xa_lock_irq(&mapping->i_pages);
656 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
657 	page->mapping = NULL;
658 	mapping->nrpages--;
659 	__dec_node_page_state(page, NR_FILE_PAGES);
660 	__dec_node_page_state(page, NR_SHMEM);
661 	xa_unlock_irq(&mapping->i_pages);
662 	put_page(page);
663 	BUG_ON(error);
664 }
665 
666 /*
667  * Remove swap entry from radix tree, free the swap and its page cache.
668  */
669 static int shmem_free_swap(struct address_space *mapping,
670 			   pgoff_t index, void *radswap)
671 {
672 	void *old;
673 
674 	xa_lock_irq(&mapping->i_pages);
675 	old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
676 	xa_unlock_irq(&mapping->i_pages);
677 	if (old != radswap)
678 		return -ENOENT;
679 	free_swap_and_cache(radix_to_swp_entry(radswap));
680 	return 0;
681 }
682 
683 /*
684  * Determine (in bytes) how many of the shmem object's pages mapped by the
685  * given offsets are swapped out.
686  *
687  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
688  * as long as the inode doesn't go away and racy results are not a problem.
689  */
690 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
691 						pgoff_t start, pgoff_t end)
692 {
693 	struct radix_tree_iter iter;
694 	void __rcu **slot;
695 	struct page *page;
696 	unsigned long swapped = 0;
697 
698 	rcu_read_lock();
699 
700 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
701 		if (iter.index >= end)
702 			break;
703 
704 		page = radix_tree_deref_slot(slot);
705 
706 		if (radix_tree_deref_retry(page)) {
707 			slot = radix_tree_iter_retry(&iter);
708 			continue;
709 		}
710 
711 		if (radix_tree_exceptional_entry(page))
712 			swapped++;
713 
714 		if (need_resched()) {
715 			slot = radix_tree_iter_resume(slot, &iter);
716 			cond_resched_rcu();
717 		}
718 	}
719 
720 	rcu_read_unlock();
721 
722 	return swapped << PAGE_SHIFT;
723 }
724 
725 /*
726  * Determine (in bytes) how many of the shmem object's pages mapped by the
727  * given vma is swapped out.
728  *
729  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
730  * as long as the inode doesn't go away and racy results are not a problem.
731  */
732 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
733 {
734 	struct inode *inode = file_inode(vma->vm_file);
735 	struct shmem_inode_info *info = SHMEM_I(inode);
736 	struct address_space *mapping = inode->i_mapping;
737 	unsigned long swapped;
738 
739 	/* Be careful as we don't hold info->lock */
740 	swapped = READ_ONCE(info->swapped);
741 
742 	/*
743 	 * The easier cases are when the shmem object has nothing in swap, or
744 	 * the vma maps it whole. Then we can simply use the stats that we
745 	 * already track.
746 	 */
747 	if (!swapped)
748 		return 0;
749 
750 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
751 		return swapped << PAGE_SHIFT;
752 
753 	/* Here comes the more involved part */
754 	return shmem_partial_swap_usage(mapping,
755 			linear_page_index(vma, vma->vm_start),
756 			linear_page_index(vma, vma->vm_end));
757 }
758 
759 /*
760  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
761  */
762 void shmem_unlock_mapping(struct address_space *mapping)
763 {
764 	struct pagevec pvec;
765 	pgoff_t indices[PAGEVEC_SIZE];
766 	pgoff_t index = 0;
767 
768 	pagevec_init(&pvec);
769 	/*
770 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
771 	 */
772 	while (!mapping_unevictable(mapping)) {
773 		/*
774 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
775 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
776 		 */
777 		pvec.nr = find_get_entries(mapping, index,
778 					   PAGEVEC_SIZE, pvec.pages, indices);
779 		if (!pvec.nr)
780 			break;
781 		index = indices[pvec.nr - 1] + 1;
782 		pagevec_remove_exceptionals(&pvec);
783 		check_move_unevictable_pages(pvec.pages, pvec.nr);
784 		pagevec_release(&pvec);
785 		cond_resched();
786 	}
787 }
788 
789 /*
790  * Remove range of pages and swap entries from radix tree, and free them.
791  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
792  */
793 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
794 								 bool unfalloc)
795 {
796 	struct address_space *mapping = inode->i_mapping;
797 	struct shmem_inode_info *info = SHMEM_I(inode);
798 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
799 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
800 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
801 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
802 	struct pagevec pvec;
803 	pgoff_t indices[PAGEVEC_SIZE];
804 	long nr_swaps_freed = 0;
805 	pgoff_t index;
806 	int i;
807 
808 	if (lend == -1)
809 		end = -1;	/* unsigned, so actually very big */
810 
811 	pagevec_init(&pvec);
812 	index = start;
813 	while (index < end) {
814 		pvec.nr = find_get_entries(mapping, index,
815 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
816 			pvec.pages, indices);
817 		if (!pvec.nr)
818 			break;
819 		for (i = 0; i < pagevec_count(&pvec); i++) {
820 			struct page *page = pvec.pages[i];
821 
822 			index = indices[i];
823 			if (index >= end)
824 				break;
825 
826 			if (radix_tree_exceptional_entry(page)) {
827 				if (unfalloc)
828 					continue;
829 				nr_swaps_freed += !shmem_free_swap(mapping,
830 								index, page);
831 				continue;
832 			}
833 
834 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
835 
836 			if (!trylock_page(page))
837 				continue;
838 
839 			if (PageTransTail(page)) {
840 				/* Middle of THP: zero out the page */
841 				clear_highpage(page);
842 				unlock_page(page);
843 				continue;
844 			} else if (PageTransHuge(page)) {
845 				if (index == round_down(end, HPAGE_PMD_NR)) {
846 					/*
847 					 * Range ends in the middle of THP:
848 					 * zero out the page
849 					 */
850 					clear_highpage(page);
851 					unlock_page(page);
852 					continue;
853 				}
854 				index += HPAGE_PMD_NR - 1;
855 				i += HPAGE_PMD_NR - 1;
856 			}
857 
858 			if (!unfalloc || !PageUptodate(page)) {
859 				VM_BUG_ON_PAGE(PageTail(page), page);
860 				if (page_mapping(page) == mapping) {
861 					VM_BUG_ON_PAGE(PageWriteback(page), page);
862 					truncate_inode_page(mapping, page);
863 				}
864 			}
865 			unlock_page(page);
866 		}
867 		pagevec_remove_exceptionals(&pvec);
868 		pagevec_release(&pvec);
869 		cond_resched();
870 		index++;
871 	}
872 
873 	if (partial_start) {
874 		struct page *page = NULL;
875 		shmem_getpage(inode, start - 1, &page, SGP_READ);
876 		if (page) {
877 			unsigned int top = PAGE_SIZE;
878 			if (start > end) {
879 				top = partial_end;
880 				partial_end = 0;
881 			}
882 			zero_user_segment(page, partial_start, top);
883 			set_page_dirty(page);
884 			unlock_page(page);
885 			put_page(page);
886 		}
887 	}
888 	if (partial_end) {
889 		struct page *page = NULL;
890 		shmem_getpage(inode, end, &page, SGP_READ);
891 		if (page) {
892 			zero_user_segment(page, 0, partial_end);
893 			set_page_dirty(page);
894 			unlock_page(page);
895 			put_page(page);
896 		}
897 	}
898 	if (start >= end)
899 		return;
900 
901 	index = start;
902 	while (index < end) {
903 		cond_resched();
904 
905 		pvec.nr = find_get_entries(mapping, index,
906 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
907 				pvec.pages, indices);
908 		if (!pvec.nr) {
909 			/* If all gone or hole-punch or unfalloc, we're done */
910 			if (index == start || end != -1)
911 				break;
912 			/* But if truncating, restart to make sure all gone */
913 			index = start;
914 			continue;
915 		}
916 		for (i = 0; i < pagevec_count(&pvec); i++) {
917 			struct page *page = pvec.pages[i];
918 
919 			index = indices[i];
920 			if (index >= end)
921 				break;
922 
923 			if (radix_tree_exceptional_entry(page)) {
924 				if (unfalloc)
925 					continue;
926 				if (shmem_free_swap(mapping, index, page)) {
927 					/* Swap was replaced by page: retry */
928 					index--;
929 					break;
930 				}
931 				nr_swaps_freed++;
932 				continue;
933 			}
934 
935 			lock_page(page);
936 
937 			if (PageTransTail(page)) {
938 				/* Middle of THP: zero out the page */
939 				clear_highpage(page);
940 				unlock_page(page);
941 				/*
942 				 * Partial thp truncate due 'start' in middle
943 				 * of THP: don't need to look on these pages
944 				 * again on !pvec.nr restart.
945 				 */
946 				if (index != round_down(end, HPAGE_PMD_NR))
947 					start++;
948 				continue;
949 			} else if (PageTransHuge(page)) {
950 				if (index == round_down(end, HPAGE_PMD_NR)) {
951 					/*
952 					 * Range ends in the middle of THP:
953 					 * zero out the page
954 					 */
955 					clear_highpage(page);
956 					unlock_page(page);
957 					continue;
958 				}
959 				index += HPAGE_PMD_NR - 1;
960 				i += HPAGE_PMD_NR - 1;
961 			}
962 
963 			if (!unfalloc || !PageUptodate(page)) {
964 				VM_BUG_ON_PAGE(PageTail(page), page);
965 				if (page_mapping(page) == mapping) {
966 					VM_BUG_ON_PAGE(PageWriteback(page), page);
967 					truncate_inode_page(mapping, page);
968 				} else {
969 					/* Page was replaced by swap: retry */
970 					unlock_page(page);
971 					index--;
972 					break;
973 				}
974 			}
975 			unlock_page(page);
976 		}
977 		pagevec_remove_exceptionals(&pvec);
978 		pagevec_release(&pvec);
979 		index++;
980 	}
981 
982 	spin_lock_irq(&info->lock);
983 	info->swapped -= nr_swaps_freed;
984 	shmem_recalc_inode(inode);
985 	spin_unlock_irq(&info->lock);
986 }
987 
988 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
989 {
990 	shmem_undo_range(inode, lstart, lend, false);
991 	inode->i_ctime = inode->i_mtime = current_time(inode);
992 }
993 EXPORT_SYMBOL_GPL(shmem_truncate_range);
994 
995 static int shmem_getattr(const struct path *path, struct kstat *stat,
996 			 u32 request_mask, unsigned int query_flags)
997 {
998 	struct inode *inode = path->dentry->d_inode;
999 	struct shmem_inode_info *info = SHMEM_I(inode);
1000 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1001 
1002 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1003 		spin_lock_irq(&info->lock);
1004 		shmem_recalc_inode(inode);
1005 		spin_unlock_irq(&info->lock);
1006 	}
1007 	generic_fillattr(inode, stat);
1008 
1009 	if (is_huge_enabled(sb_info))
1010 		stat->blksize = HPAGE_PMD_SIZE;
1011 
1012 	return 0;
1013 }
1014 
1015 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1016 {
1017 	struct inode *inode = d_inode(dentry);
1018 	struct shmem_inode_info *info = SHMEM_I(inode);
1019 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1020 	int error;
1021 
1022 	error = setattr_prepare(dentry, attr);
1023 	if (error)
1024 		return error;
1025 
1026 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1027 		loff_t oldsize = inode->i_size;
1028 		loff_t newsize = attr->ia_size;
1029 
1030 		/* protected by i_mutex */
1031 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1032 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1033 			return -EPERM;
1034 
1035 		if (newsize != oldsize) {
1036 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1037 					oldsize, newsize);
1038 			if (error)
1039 				return error;
1040 			i_size_write(inode, newsize);
1041 			inode->i_ctime = inode->i_mtime = current_time(inode);
1042 		}
1043 		if (newsize <= oldsize) {
1044 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1045 			if (oldsize > holebegin)
1046 				unmap_mapping_range(inode->i_mapping,
1047 							holebegin, 0, 1);
1048 			if (info->alloced)
1049 				shmem_truncate_range(inode,
1050 							newsize, (loff_t)-1);
1051 			/* unmap again to remove racily COWed private pages */
1052 			if (oldsize > holebegin)
1053 				unmap_mapping_range(inode->i_mapping,
1054 							holebegin, 0, 1);
1055 
1056 			/*
1057 			 * Part of the huge page can be beyond i_size: subject
1058 			 * to shrink under memory pressure.
1059 			 */
1060 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1061 				spin_lock(&sbinfo->shrinklist_lock);
1062 				/*
1063 				 * _careful to defend against unlocked access to
1064 				 * ->shrink_list in shmem_unused_huge_shrink()
1065 				 */
1066 				if (list_empty_careful(&info->shrinklist)) {
1067 					list_add_tail(&info->shrinklist,
1068 							&sbinfo->shrinklist);
1069 					sbinfo->shrinklist_len++;
1070 				}
1071 				spin_unlock(&sbinfo->shrinklist_lock);
1072 			}
1073 		}
1074 	}
1075 
1076 	setattr_copy(inode, attr);
1077 	if (attr->ia_valid & ATTR_MODE)
1078 		error = posix_acl_chmod(inode, inode->i_mode);
1079 	return error;
1080 }
1081 
1082 static void shmem_evict_inode(struct inode *inode)
1083 {
1084 	struct shmem_inode_info *info = SHMEM_I(inode);
1085 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1086 
1087 	if (inode->i_mapping->a_ops == &shmem_aops) {
1088 		shmem_unacct_size(info->flags, inode->i_size);
1089 		inode->i_size = 0;
1090 		shmem_truncate_range(inode, 0, (loff_t)-1);
1091 		if (!list_empty(&info->shrinklist)) {
1092 			spin_lock(&sbinfo->shrinklist_lock);
1093 			if (!list_empty(&info->shrinklist)) {
1094 				list_del_init(&info->shrinklist);
1095 				sbinfo->shrinklist_len--;
1096 			}
1097 			spin_unlock(&sbinfo->shrinklist_lock);
1098 		}
1099 		if (!list_empty(&info->swaplist)) {
1100 			mutex_lock(&shmem_swaplist_mutex);
1101 			list_del_init(&info->swaplist);
1102 			mutex_unlock(&shmem_swaplist_mutex);
1103 		}
1104 	}
1105 
1106 	simple_xattrs_free(&info->xattrs);
1107 	WARN_ON(inode->i_blocks);
1108 	shmem_free_inode(inode->i_sb);
1109 	clear_inode(inode);
1110 }
1111 
1112 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1113 {
1114 	struct radix_tree_iter iter;
1115 	void __rcu **slot;
1116 	unsigned long found = -1;
1117 	unsigned int checked = 0;
1118 
1119 	rcu_read_lock();
1120 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1121 		void *entry = radix_tree_deref_slot(slot);
1122 
1123 		if (radix_tree_deref_retry(entry)) {
1124 			slot = radix_tree_iter_retry(&iter);
1125 			continue;
1126 		}
1127 		if (entry == item) {
1128 			found = iter.index;
1129 			break;
1130 		}
1131 		checked++;
1132 		if ((checked % 4096) != 0)
1133 			continue;
1134 		slot = radix_tree_iter_resume(slot, &iter);
1135 		cond_resched_rcu();
1136 	}
1137 
1138 	rcu_read_unlock();
1139 	return found;
1140 }
1141 
1142 /*
1143  * If swap found in inode, free it and move page from swapcache to filecache.
1144  */
1145 static int shmem_unuse_inode(struct shmem_inode_info *info,
1146 			     swp_entry_t swap, struct page **pagep)
1147 {
1148 	struct address_space *mapping = info->vfs_inode.i_mapping;
1149 	void *radswap;
1150 	pgoff_t index;
1151 	gfp_t gfp;
1152 	int error = 0;
1153 
1154 	radswap = swp_to_radix_entry(swap);
1155 	index = find_swap_entry(&mapping->i_pages, radswap);
1156 	if (index == -1)
1157 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1158 
1159 	/*
1160 	 * Move _head_ to start search for next from here.
1161 	 * But be careful: shmem_evict_inode checks list_empty without taking
1162 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1163 	 * would appear empty, if it were the only one on shmem_swaplist.
1164 	 */
1165 	if (shmem_swaplist.next != &info->swaplist)
1166 		list_move_tail(&shmem_swaplist, &info->swaplist);
1167 
1168 	gfp = mapping_gfp_mask(mapping);
1169 	if (shmem_should_replace_page(*pagep, gfp)) {
1170 		mutex_unlock(&shmem_swaplist_mutex);
1171 		error = shmem_replace_page(pagep, gfp, info, index);
1172 		mutex_lock(&shmem_swaplist_mutex);
1173 		/*
1174 		 * We needed to drop mutex to make that restrictive page
1175 		 * allocation, but the inode might have been freed while we
1176 		 * dropped it: although a racing shmem_evict_inode() cannot
1177 		 * complete without emptying the radix_tree, our page lock
1178 		 * on this swapcache page is not enough to prevent that -
1179 		 * free_swap_and_cache() of our swap entry will only
1180 		 * trylock_page(), removing swap from radix_tree whatever.
1181 		 *
1182 		 * We must not proceed to shmem_add_to_page_cache() if the
1183 		 * inode has been freed, but of course we cannot rely on
1184 		 * inode or mapping or info to check that.  However, we can
1185 		 * safely check if our swap entry is still in use (and here
1186 		 * it can't have got reused for another page): if it's still
1187 		 * in use, then the inode cannot have been freed yet, and we
1188 		 * can safely proceed (if it's no longer in use, that tells
1189 		 * nothing about the inode, but we don't need to unuse swap).
1190 		 */
1191 		if (!page_swapcount(*pagep))
1192 			error = -ENOENT;
1193 	}
1194 
1195 	/*
1196 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1197 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1198 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1199 	 */
1200 	if (!error)
1201 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1202 						radswap);
1203 	if (error != -ENOMEM) {
1204 		/*
1205 		 * Truncation and eviction use free_swap_and_cache(), which
1206 		 * only does trylock page: if we raced, best clean up here.
1207 		 */
1208 		delete_from_swap_cache(*pagep);
1209 		set_page_dirty(*pagep);
1210 		if (!error) {
1211 			spin_lock_irq(&info->lock);
1212 			info->swapped--;
1213 			spin_unlock_irq(&info->lock);
1214 			swap_free(swap);
1215 		}
1216 	}
1217 	return error;
1218 }
1219 
1220 /*
1221  * Search through swapped inodes to find and replace swap by page.
1222  */
1223 int shmem_unuse(swp_entry_t swap, struct page *page)
1224 {
1225 	struct list_head *this, *next;
1226 	struct shmem_inode_info *info;
1227 	struct mem_cgroup *memcg;
1228 	int error = 0;
1229 
1230 	/*
1231 	 * There's a faint possibility that swap page was replaced before
1232 	 * caller locked it: caller will come back later with the right page.
1233 	 */
1234 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1235 		goto out;
1236 
1237 	/*
1238 	 * Charge page using GFP_KERNEL while we can wait, before taking
1239 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1240 	 * Charged back to the user (not to caller) when swap account is used.
1241 	 */
1242 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1243 			false);
1244 	if (error)
1245 		goto out;
1246 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1247 	error = -EAGAIN;
1248 
1249 	mutex_lock(&shmem_swaplist_mutex);
1250 	list_for_each_safe(this, next, &shmem_swaplist) {
1251 		info = list_entry(this, struct shmem_inode_info, swaplist);
1252 		if (info->swapped)
1253 			error = shmem_unuse_inode(info, swap, &page);
1254 		else
1255 			list_del_init(&info->swaplist);
1256 		cond_resched();
1257 		if (error != -EAGAIN)
1258 			break;
1259 		/* found nothing in this: move on to search the next */
1260 	}
1261 	mutex_unlock(&shmem_swaplist_mutex);
1262 
1263 	if (error) {
1264 		if (error != -ENOMEM)
1265 			error = 0;
1266 		mem_cgroup_cancel_charge(page, memcg, false);
1267 	} else
1268 		mem_cgroup_commit_charge(page, memcg, true, false);
1269 out:
1270 	unlock_page(page);
1271 	put_page(page);
1272 	return error;
1273 }
1274 
1275 /*
1276  * Move the page from the page cache to the swap cache.
1277  */
1278 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1279 {
1280 	struct shmem_inode_info *info;
1281 	struct address_space *mapping;
1282 	struct inode *inode;
1283 	swp_entry_t swap;
1284 	pgoff_t index;
1285 
1286 	VM_BUG_ON_PAGE(PageCompound(page), page);
1287 	BUG_ON(!PageLocked(page));
1288 	mapping = page->mapping;
1289 	index = page->index;
1290 	inode = mapping->host;
1291 	info = SHMEM_I(inode);
1292 	if (info->flags & VM_LOCKED)
1293 		goto redirty;
1294 	if (!total_swap_pages)
1295 		goto redirty;
1296 
1297 	/*
1298 	 * Our capabilities prevent regular writeback or sync from ever calling
1299 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 	 * its underlying filesystem, in which case tmpfs should write out to
1301 	 * swap only in response to memory pressure, and not for the writeback
1302 	 * threads or sync.
1303 	 */
1304 	if (!wbc->for_reclaim) {
1305 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1306 		goto redirty;
1307 	}
1308 
1309 	/*
1310 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 	 * value into swapfile.c, the only way we can correctly account for a
1312 	 * fallocated page arriving here is now to initialize it and write it.
1313 	 *
1314 	 * That's okay for a page already fallocated earlier, but if we have
1315 	 * not yet completed the fallocation, then (a) we want to keep track
1316 	 * of this page in case we have to undo it, and (b) it may not be a
1317 	 * good idea to continue anyway, once we're pushing into swap.  So
1318 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1319 	 */
1320 	if (!PageUptodate(page)) {
1321 		if (inode->i_private) {
1322 			struct shmem_falloc *shmem_falloc;
1323 			spin_lock(&inode->i_lock);
1324 			shmem_falloc = inode->i_private;
1325 			if (shmem_falloc &&
1326 			    !shmem_falloc->waitq &&
1327 			    index >= shmem_falloc->start &&
1328 			    index < shmem_falloc->next)
1329 				shmem_falloc->nr_unswapped++;
1330 			else
1331 				shmem_falloc = NULL;
1332 			spin_unlock(&inode->i_lock);
1333 			if (shmem_falloc)
1334 				goto redirty;
1335 		}
1336 		clear_highpage(page);
1337 		flush_dcache_page(page);
1338 		SetPageUptodate(page);
1339 	}
1340 
1341 	swap = get_swap_page(page);
1342 	if (!swap.val)
1343 		goto redirty;
1344 
1345 	/*
1346 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1347 	 * if it's not already there.  Do it now before the page is
1348 	 * moved to swap cache, when its pagelock no longer protects
1349 	 * the inode from eviction.  But don't unlock the mutex until
1350 	 * we've incremented swapped, because shmem_unuse_inode() will
1351 	 * prune a !swapped inode from the swaplist under this mutex.
1352 	 */
1353 	mutex_lock(&shmem_swaplist_mutex);
1354 	if (list_empty(&info->swaplist))
1355 		list_add_tail(&info->swaplist, &shmem_swaplist);
1356 
1357 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1358 		spin_lock_irq(&info->lock);
1359 		shmem_recalc_inode(inode);
1360 		info->swapped++;
1361 		spin_unlock_irq(&info->lock);
1362 
1363 		swap_shmem_alloc(swap);
1364 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1365 
1366 		mutex_unlock(&shmem_swaplist_mutex);
1367 		BUG_ON(page_mapped(page));
1368 		swap_writepage(page, wbc);
1369 		return 0;
1370 	}
1371 
1372 	mutex_unlock(&shmem_swaplist_mutex);
1373 	put_swap_page(page, swap);
1374 redirty:
1375 	set_page_dirty(page);
1376 	if (wbc->for_reclaim)
1377 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1378 	unlock_page(page);
1379 	return 0;
1380 }
1381 
1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1383 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1384 {
1385 	char buffer[64];
1386 
1387 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1388 		return;		/* show nothing */
1389 
1390 	mpol_to_str(buffer, sizeof(buffer), mpol);
1391 
1392 	seq_printf(seq, ",mpol=%s", buffer);
1393 }
1394 
1395 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1396 {
1397 	struct mempolicy *mpol = NULL;
1398 	if (sbinfo->mpol) {
1399 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1400 		mpol = sbinfo->mpol;
1401 		mpol_get(mpol);
1402 		spin_unlock(&sbinfo->stat_lock);
1403 	}
1404 	return mpol;
1405 }
1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1408 {
1409 }
1410 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411 {
1412 	return NULL;
1413 }
1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1415 #ifndef CONFIG_NUMA
1416 #define vm_policy vm_private_data
1417 #endif
1418 
1419 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1420 		struct shmem_inode_info *info, pgoff_t index)
1421 {
1422 	/* Create a pseudo vma that just contains the policy */
1423 	memset(vma, 0, sizeof(*vma));
1424 	/* Bias interleave by inode number to distribute better across nodes */
1425 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1426 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1427 }
1428 
1429 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1430 {
1431 	/* Drop reference taken by mpol_shared_policy_lookup() */
1432 	mpol_cond_put(vma->vm_policy);
1433 }
1434 
1435 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1436 			struct shmem_inode_info *info, pgoff_t index)
1437 {
1438 	struct vm_area_struct pvma;
1439 	struct page *page;
1440 	struct vm_fault vmf;
1441 
1442 	shmem_pseudo_vma_init(&pvma, info, index);
1443 	vmf.vma = &pvma;
1444 	vmf.address = 0;
1445 	page = swap_cluster_readahead(swap, gfp, &vmf);
1446 	shmem_pseudo_vma_destroy(&pvma);
1447 
1448 	return page;
1449 }
1450 
1451 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1452 		struct shmem_inode_info *info, pgoff_t index)
1453 {
1454 	struct vm_area_struct pvma;
1455 	struct inode *inode = &info->vfs_inode;
1456 	struct address_space *mapping = inode->i_mapping;
1457 	pgoff_t idx, hindex;
1458 	void __rcu **results;
1459 	struct page *page;
1460 
1461 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1462 		return NULL;
1463 
1464 	hindex = round_down(index, HPAGE_PMD_NR);
1465 	rcu_read_lock();
1466 	if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1467 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1468 		rcu_read_unlock();
1469 		return NULL;
1470 	}
1471 	rcu_read_unlock();
1472 
1473 	shmem_pseudo_vma_init(&pvma, info, hindex);
1474 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1475 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1476 	shmem_pseudo_vma_destroy(&pvma);
1477 	if (page)
1478 		prep_transhuge_page(page);
1479 	return page;
1480 }
1481 
1482 static struct page *shmem_alloc_page(gfp_t gfp,
1483 			struct shmem_inode_info *info, pgoff_t index)
1484 {
1485 	struct vm_area_struct pvma;
1486 	struct page *page;
1487 
1488 	shmem_pseudo_vma_init(&pvma, info, index);
1489 	page = alloc_page_vma(gfp, &pvma, 0);
1490 	shmem_pseudo_vma_destroy(&pvma);
1491 
1492 	return page;
1493 }
1494 
1495 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1496 		struct inode *inode,
1497 		pgoff_t index, bool huge)
1498 {
1499 	struct shmem_inode_info *info = SHMEM_I(inode);
1500 	struct page *page;
1501 	int nr;
1502 	int err = -ENOSPC;
1503 
1504 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1505 		huge = false;
1506 	nr = huge ? HPAGE_PMD_NR : 1;
1507 
1508 	if (!shmem_inode_acct_block(inode, nr))
1509 		goto failed;
1510 
1511 	if (huge)
1512 		page = shmem_alloc_hugepage(gfp, info, index);
1513 	else
1514 		page = shmem_alloc_page(gfp, info, index);
1515 	if (page) {
1516 		__SetPageLocked(page);
1517 		__SetPageSwapBacked(page);
1518 		return page;
1519 	}
1520 
1521 	err = -ENOMEM;
1522 	shmem_inode_unacct_blocks(inode, nr);
1523 failed:
1524 	return ERR_PTR(err);
1525 }
1526 
1527 /*
1528  * When a page is moved from swapcache to shmem filecache (either by the
1529  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1530  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1531  * ignorance of the mapping it belongs to.  If that mapping has special
1532  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1533  * we may need to copy to a suitable page before moving to filecache.
1534  *
1535  * In a future release, this may well be extended to respect cpuset and
1536  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1537  * but for now it is a simple matter of zone.
1538  */
1539 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1540 {
1541 	return page_zonenum(page) > gfp_zone(gfp);
1542 }
1543 
1544 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1545 				struct shmem_inode_info *info, pgoff_t index)
1546 {
1547 	struct page *oldpage, *newpage;
1548 	struct address_space *swap_mapping;
1549 	pgoff_t swap_index;
1550 	int error;
1551 
1552 	oldpage = *pagep;
1553 	swap_index = page_private(oldpage);
1554 	swap_mapping = page_mapping(oldpage);
1555 
1556 	/*
1557 	 * We have arrived here because our zones are constrained, so don't
1558 	 * limit chance of success by further cpuset and node constraints.
1559 	 */
1560 	gfp &= ~GFP_CONSTRAINT_MASK;
1561 	newpage = shmem_alloc_page(gfp, info, index);
1562 	if (!newpage)
1563 		return -ENOMEM;
1564 
1565 	get_page(newpage);
1566 	copy_highpage(newpage, oldpage);
1567 	flush_dcache_page(newpage);
1568 
1569 	__SetPageLocked(newpage);
1570 	__SetPageSwapBacked(newpage);
1571 	SetPageUptodate(newpage);
1572 	set_page_private(newpage, swap_index);
1573 	SetPageSwapCache(newpage);
1574 
1575 	/*
1576 	 * Our caller will very soon move newpage out of swapcache, but it's
1577 	 * a nice clean interface for us to replace oldpage by newpage there.
1578 	 */
1579 	xa_lock_irq(&swap_mapping->i_pages);
1580 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1581 								   newpage);
1582 	if (!error) {
1583 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1584 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1585 	}
1586 	xa_unlock_irq(&swap_mapping->i_pages);
1587 
1588 	if (unlikely(error)) {
1589 		/*
1590 		 * Is this possible?  I think not, now that our callers check
1591 		 * both PageSwapCache and page_private after getting page lock;
1592 		 * but be defensive.  Reverse old to newpage for clear and free.
1593 		 */
1594 		oldpage = newpage;
1595 	} else {
1596 		mem_cgroup_migrate(oldpage, newpage);
1597 		lru_cache_add_anon(newpage);
1598 		*pagep = newpage;
1599 	}
1600 
1601 	ClearPageSwapCache(oldpage);
1602 	set_page_private(oldpage, 0);
1603 
1604 	unlock_page(oldpage);
1605 	put_page(oldpage);
1606 	put_page(oldpage);
1607 	return error;
1608 }
1609 
1610 /*
1611  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1612  *
1613  * If we allocate a new one we do not mark it dirty. That's up to the
1614  * vm. If we swap it in we mark it dirty since we also free the swap
1615  * entry since a page cannot live in both the swap and page cache.
1616  *
1617  * fault_mm and fault_type are only supplied by shmem_fault:
1618  * otherwise they are NULL.
1619  */
1620 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1621 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1622 	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1623 {
1624 	struct address_space *mapping = inode->i_mapping;
1625 	struct shmem_inode_info *info = SHMEM_I(inode);
1626 	struct shmem_sb_info *sbinfo;
1627 	struct mm_struct *charge_mm;
1628 	struct mem_cgroup *memcg;
1629 	struct page *page;
1630 	swp_entry_t swap;
1631 	enum sgp_type sgp_huge = sgp;
1632 	pgoff_t hindex = index;
1633 	int error;
1634 	int once = 0;
1635 	int alloced = 0;
1636 
1637 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1638 		return -EFBIG;
1639 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1640 		sgp = SGP_CACHE;
1641 repeat:
1642 	swap.val = 0;
1643 	page = find_lock_entry(mapping, index);
1644 	if (radix_tree_exceptional_entry(page)) {
1645 		swap = radix_to_swp_entry(page);
1646 		page = NULL;
1647 	}
1648 
1649 	if (sgp <= SGP_CACHE &&
1650 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1651 		error = -EINVAL;
1652 		goto unlock;
1653 	}
1654 
1655 	if (page && sgp == SGP_WRITE)
1656 		mark_page_accessed(page);
1657 
1658 	/* fallocated page? */
1659 	if (page && !PageUptodate(page)) {
1660 		if (sgp != SGP_READ)
1661 			goto clear;
1662 		unlock_page(page);
1663 		put_page(page);
1664 		page = NULL;
1665 	}
1666 	if (page || (sgp == SGP_READ && !swap.val)) {
1667 		*pagep = page;
1668 		return 0;
1669 	}
1670 
1671 	/*
1672 	 * Fast cache lookup did not find it:
1673 	 * bring it back from swap or allocate.
1674 	 */
1675 	sbinfo = SHMEM_SB(inode->i_sb);
1676 	charge_mm = vma ? vma->vm_mm : current->mm;
1677 
1678 	if (swap.val) {
1679 		/* Look it up and read it in.. */
1680 		page = lookup_swap_cache(swap, NULL, 0);
1681 		if (!page) {
1682 			/* Or update major stats only when swapin succeeds?? */
1683 			if (fault_type) {
1684 				*fault_type |= VM_FAULT_MAJOR;
1685 				count_vm_event(PGMAJFAULT);
1686 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1687 			}
1688 			/* Here we actually start the io */
1689 			page = shmem_swapin(swap, gfp, info, index);
1690 			if (!page) {
1691 				error = -ENOMEM;
1692 				goto failed;
1693 			}
1694 		}
1695 
1696 		/* We have to do this with page locked to prevent races */
1697 		lock_page(page);
1698 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1699 		    !shmem_confirm_swap(mapping, index, swap)) {
1700 			error = -EEXIST;	/* try again */
1701 			goto unlock;
1702 		}
1703 		if (!PageUptodate(page)) {
1704 			error = -EIO;
1705 			goto failed;
1706 		}
1707 		wait_on_page_writeback(page);
1708 
1709 		if (shmem_should_replace_page(page, gfp)) {
1710 			error = shmem_replace_page(&page, gfp, info, index);
1711 			if (error)
1712 				goto failed;
1713 		}
1714 
1715 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1716 				false);
1717 		if (!error) {
1718 			error = shmem_add_to_page_cache(page, mapping, index,
1719 						swp_to_radix_entry(swap));
1720 			/*
1721 			 * We already confirmed swap under page lock, and make
1722 			 * no memory allocation here, so usually no possibility
1723 			 * of error; but free_swap_and_cache() only trylocks a
1724 			 * page, so it is just possible that the entry has been
1725 			 * truncated or holepunched since swap was confirmed.
1726 			 * shmem_undo_range() will have done some of the
1727 			 * unaccounting, now delete_from_swap_cache() will do
1728 			 * the rest.
1729 			 * Reset swap.val? No, leave it so "failed" goes back to
1730 			 * "repeat": reading a hole and writing should succeed.
1731 			 */
1732 			if (error) {
1733 				mem_cgroup_cancel_charge(page, memcg, false);
1734 				delete_from_swap_cache(page);
1735 			}
1736 		}
1737 		if (error)
1738 			goto failed;
1739 
1740 		mem_cgroup_commit_charge(page, memcg, true, false);
1741 
1742 		spin_lock_irq(&info->lock);
1743 		info->swapped--;
1744 		shmem_recalc_inode(inode);
1745 		spin_unlock_irq(&info->lock);
1746 
1747 		if (sgp == SGP_WRITE)
1748 			mark_page_accessed(page);
1749 
1750 		delete_from_swap_cache(page);
1751 		set_page_dirty(page);
1752 		swap_free(swap);
1753 
1754 	} else {
1755 		if (vma && userfaultfd_missing(vma)) {
1756 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1757 			return 0;
1758 		}
1759 
1760 		/* shmem_symlink() */
1761 		if (mapping->a_ops != &shmem_aops)
1762 			goto alloc_nohuge;
1763 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1764 			goto alloc_nohuge;
1765 		if (shmem_huge == SHMEM_HUGE_FORCE)
1766 			goto alloc_huge;
1767 		switch (sbinfo->huge) {
1768 			loff_t i_size;
1769 			pgoff_t off;
1770 		case SHMEM_HUGE_NEVER:
1771 			goto alloc_nohuge;
1772 		case SHMEM_HUGE_WITHIN_SIZE:
1773 			off = round_up(index, HPAGE_PMD_NR);
1774 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1775 			if (i_size >= HPAGE_PMD_SIZE &&
1776 					i_size >> PAGE_SHIFT >= off)
1777 				goto alloc_huge;
1778 			/* fallthrough */
1779 		case SHMEM_HUGE_ADVISE:
1780 			if (sgp_huge == SGP_HUGE)
1781 				goto alloc_huge;
1782 			/* TODO: implement fadvise() hints */
1783 			goto alloc_nohuge;
1784 		}
1785 
1786 alloc_huge:
1787 		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1788 		if (IS_ERR(page)) {
1789 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1790 					index, false);
1791 		}
1792 		if (IS_ERR(page)) {
1793 			int retry = 5;
1794 			error = PTR_ERR(page);
1795 			page = NULL;
1796 			if (error != -ENOSPC)
1797 				goto failed;
1798 			/*
1799 			 * Try to reclaim some spece by splitting a huge page
1800 			 * beyond i_size on the filesystem.
1801 			 */
1802 			while (retry--) {
1803 				int ret;
1804 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1805 				if (ret == SHRINK_STOP)
1806 					break;
1807 				if (ret)
1808 					goto alloc_nohuge;
1809 			}
1810 			goto failed;
1811 		}
1812 
1813 		if (PageTransHuge(page))
1814 			hindex = round_down(index, HPAGE_PMD_NR);
1815 		else
1816 			hindex = index;
1817 
1818 		if (sgp == SGP_WRITE)
1819 			__SetPageReferenced(page);
1820 
1821 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1822 				PageTransHuge(page));
1823 		if (error)
1824 			goto unacct;
1825 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1826 				compound_order(page));
1827 		if (!error) {
1828 			error = shmem_add_to_page_cache(page, mapping, hindex,
1829 							NULL);
1830 			radix_tree_preload_end();
1831 		}
1832 		if (error) {
1833 			mem_cgroup_cancel_charge(page, memcg,
1834 					PageTransHuge(page));
1835 			goto unacct;
1836 		}
1837 		mem_cgroup_commit_charge(page, memcg, false,
1838 				PageTransHuge(page));
1839 		lru_cache_add_anon(page);
1840 
1841 		spin_lock_irq(&info->lock);
1842 		info->alloced += 1 << compound_order(page);
1843 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1844 		shmem_recalc_inode(inode);
1845 		spin_unlock_irq(&info->lock);
1846 		alloced = true;
1847 
1848 		if (PageTransHuge(page) &&
1849 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1850 				hindex + HPAGE_PMD_NR - 1) {
1851 			/*
1852 			 * Part of the huge page is beyond i_size: subject
1853 			 * to shrink under memory pressure.
1854 			 */
1855 			spin_lock(&sbinfo->shrinklist_lock);
1856 			/*
1857 			 * _careful to defend against unlocked access to
1858 			 * ->shrink_list in shmem_unused_huge_shrink()
1859 			 */
1860 			if (list_empty_careful(&info->shrinklist)) {
1861 				list_add_tail(&info->shrinklist,
1862 						&sbinfo->shrinklist);
1863 				sbinfo->shrinklist_len++;
1864 			}
1865 			spin_unlock(&sbinfo->shrinklist_lock);
1866 		}
1867 
1868 		/*
1869 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1870 		 */
1871 		if (sgp == SGP_FALLOC)
1872 			sgp = SGP_WRITE;
1873 clear:
1874 		/*
1875 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1876 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1877 		 * it now, lest undo on failure cancel our earlier guarantee.
1878 		 */
1879 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1880 			struct page *head = compound_head(page);
1881 			int i;
1882 
1883 			for (i = 0; i < (1 << compound_order(head)); i++) {
1884 				clear_highpage(head + i);
1885 				flush_dcache_page(head + i);
1886 			}
1887 			SetPageUptodate(head);
1888 		}
1889 	}
1890 
1891 	/* Perhaps the file has been truncated since we checked */
1892 	if (sgp <= SGP_CACHE &&
1893 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1894 		if (alloced) {
1895 			ClearPageDirty(page);
1896 			delete_from_page_cache(page);
1897 			spin_lock_irq(&info->lock);
1898 			shmem_recalc_inode(inode);
1899 			spin_unlock_irq(&info->lock);
1900 		}
1901 		error = -EINVAL;
1902 		goto unlock;
1903 	}
1904 	*pagep = page + index - hindex;
1905 	return 0;
1906 
1907 	/*
1908 	 * Error recovery.
1909 	 */
1910 unacct:
1911 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1912 
1913 	if (PageTransHuge(page)) {
1914 		unlock_page(page);
1915 		put_page(page);
1916 		goto alloc_nohuge;
1917 	}
1918 failed:
1919 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1920 		error = -EEXIST;
1921 unlock:
1922 	if (page) {
1923 		unlock_page(page);
1924 		put_page(page);
1925 	}
1926 	if (error == -ENOSPC && !once++) {
1927 		spin_lock_irq(&info->lock);
1928 		shmem_recalc_inode(inode);
1929 		spin_unlock_irq(&info->lock);
1930 		goto repeat;
1931 	}
1932 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1933 		goto repeat;
1934 	return error;
1935 }
1936 
1937 /*
1938  * This is like autoremove_wake_function, but it removes the wait queue
1939  * entry unconditionally - even if something else had already woken the
1940  * target.
1941  */
1942 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1943 {
1944 	int ret = default_wake_function(wait, mode, sync, key);
1945 	list_del_init(&wait->entry);
1946 	return ret;
1947 }
1948 
1949 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1950 {
1951 	struct vm_area_struct *vma = vmf->vma;
1952 	struct inode *inode = file_inode(vma->vm_file);
1953 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1954 	enum sgp_type sgp;
1955 	int err;
1956 	vm_fault_t ret = VM_FAULT_LOCKED;
1957 
1958 	/*
1959 	 * Trinity finds that probing a hole which tmpfs is punching can
1960 	 * prevent the hole-punch from ever completing: which in turn
1961 	 * locks writers out with its hold on i_mutex.  So refrain from
1962 	 * faulting pages into the hole while it's being punched.  Although
1963 	 * shmem_undo_range() does remove the additions, it may be unable to
1964 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1965 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1966 	 *
1967 	 * It does not matter if we sometimes reach this check just before the
1968 	 * hole-punch begins, so that one fault then races with the punch:
1969 	 * we just need to make racing faults a rare case.
1970 	 *
1971 	 * The implementation below would be much simpler if we just used a
1972 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1973 	 * and bloating every shmem inode for this unlikely case would be sad.
1974 	 */
1975 	if (unlikely(inode->i_private)) {
1976 		struct shmem_falloc *shmem_falloc;
1977 
1978 		spin_lock(&inode->i_lock);
1979 		shmem_falloc = inode->i_private;
1980 		if (shmem_falloc &&
1981 		    shmem_falloc->waitq &&
1982 		    vmf->pgoff >= shmem_falloc->start &&
1983 		    vmf->pgoff < shmem_falloc->next) {
1984 			wait_queue_head_t *shmem_falloc_waitq;
1985 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1986 
1987 			ret = VM_FAULT_NOPAGE;
1988 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1989 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1990 				/* It's polite to up mmap_sem if we can */
1991 				up_read(&vma->vm_mm->mmap_sem);
1992 				ret = VM_FAULT_RETRY;
1993 			}
1994 
1995 			shmem_falloc_waitq = shmem_falloc->waitq;
1996 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1997 					TASK_UNINTERRUPTIBLE);
1998 			spin_unlock(&inode->i_lock);
1999 			schedule();
2000 
2001 			/*
2002 			 * shmem_falloc_waitq points into the shmem_fallocate()
2003 			 * stack of the hole-punching task: shmem_falloc_waitq
2004 			 * is usually invalid by the time we reach here, but
2005 			 * finish_wait() does not dereference it in that case;
2006 			 * though i_lock needed lest racing with wake_up_all().
2007 			 */
2008 			spin_lock(&inode->i_lock);
2009 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2010 			spin_unlock(&inode->i_lock);
2011 			return ret;
2012 		}
2013 		spin_unlock(&inode->i_lock);
2014 	}
2015 
2016 	sgp = SGP_CACHE;
2017 
2018 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2019 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2020 		sgp = SGP_NOHUGE;
2021 	else if (vma->vm_flags & VM_HUGEPAGE)
2022 		sgp = SGP_HUGE;
2023 
2024 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2025 				  gfp, vma, vmf, &ret);
2026 	if (err)
2027 		return vmf_error(err);
2028 	return ret;
2029 }
2030 
2031 unsigned long shmem_get_unmapped_area(struct file *file,
2032 				      unsigned long uaddr, unsigned long len,
2033 				      unsigned long pgoff, unsigned long flags)
2034 {
2035 	unsigned long (*get_area)(struct file *,
2036 		unsigned long, unsigned long, unsigned long, unsigned long);
2037 	unsigned long addr;
2038 	unsigned long offset;
2039 	unsigned long inflated_len;
2040 	unsigned long inflated_addr;
2041 	unsigned long inflated_offset;
2042 
2043 	if (len > TASK_SIZE)
2044 		return -ENOMEM;
2045 
2046 	get_area = current->mm->get_unmapped_area;
2047 	addr = get_area(file, uaddr, len, pgoff, flags);
2048 
2049 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2050 		return addr;
2051 	if (IS_ERR_VALUE(addr))
2052 		return addr;
2053 	if (addr & ~PAGE_MASK)
2054 		return addr;
2055 	if (addr > TASK_SIZE - len)
2056 		return addr;
2057 
2058 	if (shmem_huge == SHMEM_HUGE_DENY)
2059 		return addr;
2060 	if (len < HPAGE_PMD_SIZE)
2061 		return addr;
2062 	if (flags & MAP_FIXED)
2063 		return addr;
2064 	/*
2065 	 * Our priority is to support MAP_SHARED mapped hugely;
2066 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2067 	 * But if caller specified an address hint, respect that as before.
2068 	 */
2069 	if (uaddr)
2070 		return addr;
2071 
2072 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2073 		struct super_block *sb;
2074 
2075 		if (file) {
2076 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2077 			sb = file_inode(file)->i_sb;
2078 		} else {
2079 			/*
2080 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2081 			 * for "/dev/zero", to create a shared anonymous object.
2082 			 */
2083 			if (IS_ERR(shm_mnt))
2084 				return addr;
2085 			sb = shm_mnt->mnt_sb;
2086 		}
2087 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2088 			return addr;
2089 	}
2090 
2091 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2092 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2093 		return addr;
2094 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2095 		return addr;
2096 
2097 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2098 	if (inflated_len > TASK_SIZE)
2099 		return addr;
2100 	if (inflated_len < len)
2101 		return addr;
2102 
2103 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2104 	if (IS_ERR_VALUE(inflated_addr))
2105 		return addr;
2106 	if (inflated_addr & ~PAGE_MASK)
2107 		return addr;
2108 
2109 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2110 	inflated_addr += offset - inflated_offset;
2111 	if (inflated_offset > offset)
2112 		inflated_addr += HPAGE_PMD_SIZE;
2113 
2114 	if (inflated_addr > TASK_SIZE - len)
2115 		return addr;
2116 	return inflated_addr;
2117 }
2118 
2119 #ifdef CONFIG_NUMA
2120 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2121 {
2122 	struct inode *inode = file_inode(vma->vm_file);
2123 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2124 }
2125 
2126 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2127 					  unsigned long addr)
2128 {
2129 	struct inode *inode = file_inode(vma->vm_file);
2130 	pgoff_t index;
2131 
2132 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2133 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2134 }
2135 #endif
2136 
2137 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2138 {
2139 	struct inode *inode = file_inode(file);
2140 	struct shmem_inode_info *info = SHMEM_I(inode);
2141 	int retval = -ENOMEM;
2142 
2143 	spin_lock_irq(&info->lock);
2144 	if (lock && !(info->flags & VM_LOCKED)) {
2145 		if (!user_shm_lock(inode->i_size, user))
2146 			goto out_nomem;
2147 		info->flags |= VM_LOCKED;
2148 		mapping_set_unevictable(file->f_mapping);
2149 	}
2150 	if (!lock && (info->flags & VM_LOCKED) && user) {
2151 		user_shm_unlock(inode->i_size, user);
2152 		info->flags &= ~VM_LOCKED;
2153 		mapping_clear_unevictable(file->f_mapping);
2154 	}
2155 	retval = 0;
2156 
2157 out_nomem:
2158 	spin_unlock_irq(&info->lock);
2159 	return retval;
2160 }
2161 
2162 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2163 {
2164 	file_accessed(file);
2165 	vma->vm_ops = &shmem_vm_ops;
2166 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2167 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2168 			(vma->vm_end & HPAGE_PMD_MASK)) {
2169 		khugepaged_enter(vma, vma->vm_flags);
2170 	}
2171 	return 0;
2172 }
2173 
2174 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2175 				     umode_t mode, dev_t dev, unsigned long flags)
2176 {
2177 	struct inode *inode;
2178 	struct shmem_inode_info *info;
2179 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2180 
2181 	if (shmem_reserve_inode(sb))
2182 		return NULL;
2183 
2184 	inode = new_inode(sb);
2185 	if (inode) {
2186 		inode->i_ino = get_next_ino();
2187 		inode_init_owner(inode, dir, mode);
2188 		inode->i_blocks = 0;
2189 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2190 		inode->i_generation = get_seconds();
2191 		info = SHMEM_I(inode);
2192 		memset(info, 0, (char *)inode - (char *)info);
2193 		spin_lock_init(&info->lock);
2194 		info->seals = F_SEAL_SEAL;
2195 		info->flags = flags & VM_NORESERVE;
2196 		INIT_LIST_HEAD(&info->shrinklist);
2197 		INIT_LIST_HEAD(&info->swaplist);
2198 		simple_xattrs_init(&info->xattrs);
2199 		cache_no_acl(inode);
2200 
2201 		switch (mode & S_IFMT) {
2202 		default:
2203 			inode->i_op = &shmem_special_inode_operations;
2204 			init_special_inode(inode, mode, dev);
2205 			break;
2206 		case S_IFREG:
2207 			inode->i_mapping->a_ops = &shmem_aops;
2208 			inode->i_op = &shmem_inode_operations;
2209 			inode->i_fop = &shmem_file_operations;
2210 			mpol_shared_policy_init(&info->policy,
2211 						 shmem_get_sbmpol(sbinfo));
2212 			break;
2213 		case S_IFDIR:
2214 			inc_nlink(inode);
2215 			/* Some things misbehave if size == 0 on a directory */
2216 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2217 			inode->i_op = &shmem_dir_inode_operations;
2218 			inode->i_fop = &simple_dir_operations;
2219 			break;
2220 		case S_IFLNK:
2221 			/*
2222 			 * Must not load anything in the rbtree,
2223 			 * mpol_free_shared_policy will not be called.
2224 			 */
2225 			mpol_shared_policy_init(&info->policy, NULL);
2226 			break;
2227 		}
2228 	} else
2229 		shmem_free_inode(sb);
2230 	return inode;
2231 }
2232 
2233 bool shmem_mapping(struct address_space *mapping)
2234 {
2235 	return mapping->a_ops == &shmem_aops;
2236 }
2237 
2238 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2239 				  pmd_t *dst_pmd,
2240 				  struct vm_area_struct *dst_vma,
2241 				  unsigned long dst_addr,
2242 				  unsigned long src_addr,
2243 				  bool zeropage,
2244 				  struct page **pagep)
2245 {
2246 	struct inode *inode = file_inode(dst_vma->vm_file);
2247 	struct shmem_inode_info *info = SHMEM_I(inode);
2248 	struct address_space *mapping = inode->i_mapping;
2249 	gfp_t gfp = mapping_gfp_mask(mapping);
2250 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2251 	struct mem_cgroup *memcg;
2252 	spinlock_t *ptl;
2253 	void *page_kaddr;
2254 	struct page *page;
2255 	pte_t _dst_pte, *dst_pte;
2256 	int ret;
2257 
2258 	ret = -ENOMEM;
2259 	if (!shmem_inode_acct_block(inode, 1))
2260 		goto out;
2261 
2262 	if (!*pagep) {
2263 		page = shmem_alloc_page(gfp, info, pgoff);
2264 		if (!page)
2265 			goto out_unacct_blocks;
2266 
2267 		if (!zeropage) {	/* mcopy_atomic */
2268 			page_kaddr = kmap_atomic(page);
2269 			ret = copy_from_user(page_kaddr,
2270 					     (const void __user *)src_addr,
2271 					     PAGE_SIZE);
2272 			kunmap_atomic(page_kaddr);
2273 
2274 			/* fallback to copy_from_user outside mmap_sem */
2275 			if (unlikely(ret)) {
2276 				*pagep = page;
2277 				shmem_inode_unacct_blocks(inode, 1);
2278 				/* don't free the page */
2279 				return -EFAULT;
2280 			}
2281 		} else {		/* mfill_zeropage_atomic */
2282 			clear_highpage(page);
2283 		}
2284 	} else {
2285 		page = *pagep;
2286 		*pagep = NULL;
2287 	}
2288 
2289 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2290 	__SetPageLocked(page);
2291 	__SetPageSwapBacked(page);
2292 	__SetPageUptodate(page);
2293 
2294 	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2295 	if (ret)
2296 		goto out_release;
2297 
2298 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2299 	if (!ret) {
2300 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2301 		radix_tree_preload_end();
2302 	}
2303 	if (ret)
2304 		goto out_release_uncharge;
2305 
2306 	mem_cgroup_commit_charge(page, memcg, false, false);
2307 
2308 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2309 	if (dst_vma->vm_flags & VM_WRITE)
2310 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2311 
2312 	ret = -EEXIST;
2313 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2314 	if (!pte_none(*dst_pte))
2315 		goto out_release_uncharge_unlock;
2316 
2317 	lru_cache_add_anon(page);
2318 
2319 	spin_lock(&info->lock);
2320 	info->alloced++;
2321 	inode->i_blocks += BLOCKS_PER_PAGE;
2322 	shmem_recalc_inode(inode);
2323 	spin_unlock(&info->lock);
2324 
2325 	inc_mm_counter(dst_mm, mm_counter_file(page));
2326 	page_add_file_rmap(page, false);
2327 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2328 
2329 	/* No need to invalidate - it was non-present before */
2330 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2331 	unlock_page(page);
2332 	pte_unmap_unlock(dst_pte, ptl);
2333 	ret = 0;
2334 out:
2335 	return ret;
2336 out_release_uncharge_unlock:
2337 	pte_unmap_unlock(dst_pte, ptl);
2338 out_release_uncharge:
2339 	mem_cgroup_cancel_charge(page, memcg, false);
2340 out_release:
2341 	unlock_page(page);
2342 	put_page(page);
2343 out_unacct_blocks:
2344 	shmem_inode_unacct_blocks(inode, 1);
2345 	goto out;
2346 }
2347 
2348 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2349 			   pmd_t *dst_pmd,
2350 			   struct vm_area_struct *dst_vma,
2351 			   unsigned long dst_addr,
2352 			   unsigned long src_addr,
2353 			   struct page **pagep)
2354 {
2355 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2356 				      dst_addr, src_addr, false, pagep);
2357 }
2358 
2359 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2360 			     pmd_t *dst_pmd,
2361 			     struct vm_area_struct *dst_vma,
2362 			     unsigned long dst_addr)
2363 {
2364 	struct page *page = NULL;
2365 
2366 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2367 				      dst_addr, 0, true, &page);
2368 }
2369 
2370 #ifdef CONFIG_TMPFS
2371 static const struct inode_operations shmem_symlink_inode_operations;
2372 static const struct inode_operations shmem_short_symlink_operations;
2373 
2374 #ifdef CONFIG_TMPFS_XATTR
2375 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2376 #else
2377 #define shmem_initxattrs NULL
2378 #endif
2379 
2380 static int
2381 shmem_write_begin(struct file *file, struct address_space *mapping,
2382 			loff_t pos, unsigned len, unsigned flags,
2383 			struct page **pagep, void **fsdata)
2384 {
2385 	struct inode *inode = mapping->host;
2386 	struct shmem_inode_info *info = SHMEM_I(inode);
2387 	pgoff_t index = pos >> PAGE_SHIFT;
2388 
2389 	/* i_mutex is held by caller */
2390 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2391 		if (info->seals & F_SEAL_WRITE)
2392 			return -EPERM;
2393 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2394 			return -EPERM;
2395 	}
2396 
2397 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2398 }
2399 
2400 static int
2401 shmem_write_end(struct file *file, struct address_space *mapping,
2402 			loff_t pos, unsigned len, unsigned copied,
2403 			struct page *page, void *fsdata)
2404 {
2405 	struct inode *inode = mapping->host;
2406 
2407 	if (pos + copied > inode->i_size)
2408 		i_size_write(inode, pos + copied);
2409 
2410 	if (!PageUptodate(page)) {
2411 		struct page *head = compound_head(page);
2412 		if (PageTransCompound(page)) {
2413 			int i;
2414 
2415 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2416 				if (head + i == page)
2417 					continue;
2418 				clear_highpage(head + i);
2419 				flush_dcache_page(head + i);
2420 			}
2421 		}
2422 		if (copied < PAGE_SIZE) {
2423 			unsigned from = pos & (PAGE_SIZE - 1);
2424 			zero_user_segments(page, 0, from,
2425 					from + copied, PAGE_SIZE);
2426 		}
2427 		SetPageUptodate(head);
2428 	}
2429 	set_page_dirty(page);
2430 	unlock_page(page);
2431 	put_page(page);
2432 
2433 	return copied;
2434 }
2435 
2436 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2437 {
2438 	struct file *file = iocb->ki_filp;
2439 	struct inode *inode = file_inode(file);
2440 	struct address_space *mapping = inode->i_mapping;
2441 	pgoff_t index;
2442 	unsigned long offset;
2443 	enum sgp_type sgp = SGP_READ;
2444 	int error = 0;
2445 	ssize_t retval = 0;
2446 	loff_t *ppos = &iocb->ki_pos;
2447 
2448 	/*
2449 	 * Might this read be for a stacking filesystem?  Then when reading
2450 	 * holes of a sparse file, we actually need to allocate those pages,
2451 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2452 	 */
2453 	if (!iter_is_iovec(to))
2454 		sgp = SGP_CACHE;
2455 
2456 	index = *ppos >> PAGE_SHIFT;
2457 	offset = *ppos & ~PAGE_MASK;
2458 
2459 	for (;;) {
2460 		struct page *page = NULL;
2461 		pgoff_t end_index;
2462 		unsigned long nr, ret;
2463 		loff_t i_size = i_size_read(inode);
2464 
2465 		end_index = i_size >> PAGE_SHIFT;
2466 		if (index > end_index)
2467 			break;
2468 		if (index == end_index) {
2469 			nr = i_size & ~PAGE_MASK;
2470 			if (nr <= offset)
2471 				break;
2472 		}
2473 
2474 		error = shmem_getpage(inode, index, &page, sgp);
2475 		if (error) {
2476 			if (error == -EINVAL)
2477 				error = 0;
2478 			break;
2479 		}
2480 		if (page) {
2481 			if (sgp == SGP_CACHE)
2482 				set_page_dirty(page);
2483 			unlock_page(page);
2484 		}
2485 
2486 		/*
2487 		 * We must evaluate after, since reads (unlike writes)
2488 		 * are called without i_mutex protection against truncate
2489 		 */
2490 		nr = PAGE_SIZE;
2491 		i_size = i_size_read(inode);
2492 		end_index = i_size >> PAGE_SHIFT;
2493 		if (index == end_index) {
2494 			nr = i_size & ~PAGE_MASK;
2495 			if (nr <= offset) {
2496 				if (page)
2497 					put_page(page);
2498 				break;
2499 			}
2500 		}
2501 		nr -= offset;
2502 
2503 		if (page) {
2504 			/*
2505 			 * If users can be writing to this page using arbitrary
2506 			 * virtual addresses, take care about potential aliasing
2507 			 * before reading the page on the kernel side.
2508 			 */
2509 			if (mapping_writably_mapped(mapping))
2510 				flush_dcache_page(page);
2511 			/*
2512 			 * Mark the page accessed if we read the beginning.
2513 			 */
2514 			if (!offset)
2515 				mark_page_accessed(page);
2516 		} else {
2517 			page = ZERO_PAGE(0);
2518 			get_page(page);
2519 		}
2520 
2521 		/*
2522 		 * Ok, we have the page, and it's up-to-date, so
2523 		 * now we can copy it to user space...
2524 		 */
2525 		ret = copy_page_to_iter(page, offset, nr, to);
2526 		retval += ret;
2527 		offset += ret;
2528 		index += offset >> PAGE_SHIFT;
2529 		offset &= ~PAGE_MASK;
2530 
2531 		put_page(page);
2532 		if (!iov_iter_count(to))
2533 			break;
2534 		if (ret < nr) {
2535 			error = -EFAULT;
2536 			break;
2537 		}
2538 		cond_resched();
2539 	}
2540 
2541 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2542 	file_accessed(file);
2543 	return retval ? retval : error;
2544 }
2545 
2546 /*
2547  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2548  */
2549 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2550 				    pgoff_t index, pgoff_t end, int whence)
2551 {
2552 	struct page *page;
2553 	struct pagevec pvec;
2554 	pgoff_t indices[PAGEVEC_SIZE];
2555 	bool done = false;
2556 	int i;
2557 
2558 	pagevec_init(&pvec);
2559 	pvec.nr = 1;		/* start small: we may be there already */
2560 	while (!done) {
2561 		pvec.nr = find_get_entries(mapping, index,
2562 					pvec.nr, pvec.pages, indices);
2563 		if (!pvec.nr) {
2564 			if (whence == SEEK_DATA)
2565 				index = end;
2566 			break;
2567 		}
2568 		for (i = 0; i < pvec.nr; i++, index++) {
2569 			if (index < indices[i]) {
2570 				if (whence == SEEK_HOLE) {
2571 					done = true;
2572 					break;
2573 				}
2574 				index = indices[i];
2575 			}
2576 			page = pvec.pages[i];
2577 			if (page && !radix_tree_exceptional_entry(page)) {
2578 				if (!PageUptodate(page))
2579 					page = NULL;
2580 			}
2581 			if (index >= end ||
2582 			    (page && whence == SEEK_DATA) ||
2583 			    (!page && whence == SEEK_HOLE)) {
2584 				done = true;
2585 				break;
2586 			}
2587 		}
2588 		pagevec_remove_exceptionals(&pvec);
2589 		pagevec_release(&pvec);
2590 		pvec.nr = PAGEVEC_SIZE;
2591 		cond_resched();
2592 	}
2593 	return index;
2594 }
2595 
2596 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2597 {
2598 	struct address_space *mapping = file->f_mapping;
2599 	struct inode *inode = mapping->host;
2600 	pgoff_t start, end;
2601 	loff_t new_offset;
2602 
2603 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2604 		return generic_file_llseek_size(file, offset, whence,
2605 					MAX_LFS_FILESIZE, i_size_read(inode));
2606 	inode_lock(inode);
2607 	/* We're holding i_mutex so we can access i_size directly */
2608 
2609 	if (offset < 0)
2610 		offset = -EINVAL;
2611 	else if (offset >= inode->i_size)
2612 		offset = -ENXIO;
2613 	else {
2614 		start = offset >> PAGE_SHIFT;
2615 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2616 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2617 		new_offset <<= PAGE_SHIFT;
2618 		if (new_offset > offset) {
2619 			if (new_offset < inode->i_size)
2620 				offset = new_offset;
2621 			else if (whence == SEEK_DATA)
2622 				offset = -ENXIO;
2623 			else
2624 				offset = inode->i_size;
2625 		}
2626 	}
2627 
2628 	if (offset >= 0)
2629 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2630 	inode_unlock(inode);
2631 	return offset;
2632 }
2633 
2634 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2635 							 loff_t len)
2636 {
2637 	struct inode *inode = file_inode(file);
2638 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2639 	struct shmem_inode_info *info = SHMEM_I(inode);
2640 	struct shmem_falloc shmem_falloc;
2641 	pgoff_t start, index, end;
2642 	int error;
2643 
2644 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2645 		return -EOPNOTSUPP;
2646 
2647 	inode_lock(inode);
2648 
2649 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2650 		struct address_space *mapping = file->f_mapping;
2651 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2652 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2653 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2654 
2655 		/* protected by i_mutex */
2656 		if (info->seals & F_SEAL_WRITE) {
2657 			error = -EPERM;
2658 			goto out;
2659 		}
2660 
2661 		shmem_falloc.waitq = &shmem_falloc_waitq;
2662 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2663 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2664 		spin_lock(&inode->i_lock);
2665 		inode->i_private = &shmem_falloc;
2666 		spin_unlock(&inode->i_lock);
2667 
2668 		if ((u64)unmap_end > (u64)unmap_start)
2669 			unmap_mapping_range(mapping, unmap_start,
2670 					    1 + unmap_end - unmap_start, 0);
2671 		shmem_truncate_range(inode, offset, offset + len - 1);
2672 		/* No need to unmap again: hole-punching leaves COWed pages */
2673 
2674 		spin_lock(&inode->i_lock);
2675 		inode->i_private = NULL;
2676 		wake_up_all(&shmem_falloc_waitq);
2677 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2678 		spin_unlock(&inode->i_lock);
2679 		error = 0;
2680 		goto out;
2681 	}
2682 
2683 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2684 	error = inode_newsize_ok(inode, offset + len);
2685 	if (error)
2686 		goto out;
2687 
2688 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2689 		error = -EPERM;
2690 		goto out;
2691 	}
2692 
2693 	start = offset >> PAGE_SHIFT;
2694 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2695 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2696 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2697 		error = -ENOSPC;
2698 		goto out;
2699 	}
2700 
2701 	shmem_falloc.waitq = NULL;
2702 	shmem_falloc.start = start;
2703 	shmem_falloc.next  = start;
2704 	shmem_falloc.nr_falloced = 0;
2705 	shmem_falloc.nr_unswapped = 0;
2706 	spin_lock(&inode->i_lock);
2707 	inode->i_private = &shmem_falloc;
2708 	spin_unlock(&inode->i_lock);
2709 
2710 	for (index = start; index < end; index++) {
2711 		struct page *page;
2712 
2713 		/*
2714 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2715 		 * been interrupted because we are using up too much memory.
2716 		 */
2717 		if (signal_pending(current))
2718 			error = -EINTR;
2719 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2720 			error = -ENOMEM;
2721 		else
2722 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2723 		if (error) {
2724 			/* Remove the !PageUptodate pages we added */
2725 			if (index > start) {
2726 				shmem_undo_range(inode,
2727 				    (loff_t)start << PAGE_SHIFT,
2728 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2729 			}
2730 			goto undone;
2731 		}
2732 
2733 		/*
2734 		 * Inform shmem_writepage() how far we have reached.
2735 		 * No need for lock or barrier: we have the page lock.
2736 		 */
2737 		shmem_falloc.next++;
2738 		if (!PageUptodate(page))
2739 			shmem_falloc.nr_falloced++;
2740 
2741 		/*
2742 		 * If !PageUptodate, leave it that way so that freeable pages
2743 		 * can be recognized if we need to rollback on error later.
2744 		 * But set_page_dirty so that memory pressure will swap rather
2745 		 * than free the pages we are allocating (and SGP_CACHE pages
2746 		 * might still be clean: we now need to mark those dirty too).
2747 		 */
2748 		set_page_dirty(page);
2749 		unlock_page(page);
2750 		put_page(page);
2751 		cond_resched();
2752 	}
2753 
2754 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2755 		i_size_write(inode, offset + len);
2756 	inode->i_ctime = current_time(inode);
2757 undone:
2758 	spin_lock(&inode->i_lock);
2759 	inode->i_private = NULL;
2760 	spin_unlock(&inode->i_lock);
2761 out:
2762 	inode_unlock(inode);
2763 	return error;
2764 }
2765 
2766 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2767 {
2768 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2769 
2770 	buf->f_type = TMPFS_MAGIC;
2771 	buf->f_bsize = PAGE_SIZE;
2772 	buf->f_namelen = NAME_MAX;
2773 	if (sbinfo->max_blocks) {
2774 		buf->f_blocks = sbinfo->max_blocks;
2775 		buf->f_bavail =
2776 		buf->f_bfree  = sbinfo->max_blocks -
2777 				percpu_counter_sum(&sbinfo->used_blocks);
2778 	}
2779 	if (sbinfo->max_inodes) {
2780 		buf->f_files = sbinfo->max_inodes;
2781 		buf->f_ffree = sbinfo->free_inodes;
2782 	}
2783 	/* else leave those fields 0 like simple_statfs */
2784 	return 0;
2785 }
2786 
2787 /*
2788  * File creation. Allocate an inode, and we're done..
2789  */
2790 static int
2791 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2792 {
2793 	struct inode *inode;
2794 	int error = -ENOSPC;
2795 
2796 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2797 	if (inode) {
2798 		error = simple_acl_create(dir, inode);
2799 		if (error)
2800 			goto out_iput;
2801 		error = security_inode_init_security(inode, dir,
2802 						     &dentry->d_name,
2803 						     shmem_initxattrs, NULL);
2804 		if (error && error != -EOPNOTSUPP)
2805 			goto out_iput;
2806 
2807 		error = 0;
2808 		dir->i_size += BOGO_DIRENT_SIZE;
2809 		dir->i_ctime = dir->i_mtime = current_time(dir);
2810 		d_instantiate(dentry, inode);
2811 		dget(dentry); /* Extra count - pin the dentry in core */
2812 	}
2813 	return error;
2814 out_iput:
2815 	iput(inode);
2816 	return error;
2817 }
2818 
2819 static int
2820 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2821 {
2822 	struct inode *inode;
2823 	int error = -ENOSPC;
2824 
2825 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2826 	if (inode) {
2827 		error = security_inode_init_security(inode, dir,
2828 						     NULL,
2829 						     shmem_initxattrs, NULL);
2830 		if (error && error != -EOPNOTSUPP)
2831 			goto out_iput;
2832 		error = simple_acl_create(dir, inode);
2833 		if (error)
2834 			goto out_iput;
2835 		d_tmpfile(dentry, inode);
2836 	}
2837 	return error;
2838 out_iput:
2839 	iput(inode);
2840 	return error;
2841 }
2842 
2843 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2844 {
2845 	int error;
2846 
2847 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2848 		return error;
2849 	inc_nlink(dir);
2850 	return 0;
2851 }
2852 
2853 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2854 		bool excl)
2855 {
2856 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2857 }
2858 
2859 /*
2860  * Link a file..
2861  */
2862 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2863 {
2864 	struct inode *inode = d_inode(old_dentry);
2865 	int ret;
2866 
2867 	/*
2868 	 * No ordinary (disk based) filesystem counts links as inodes;
2869 	 * but each new link needs a new dentry, pinning lowmem, and
2870 	 * tmpfs dentries cannot be pruned until they are unlinked.
2871 	 */
2872 	ret = shmem_reserve_inode(inode->i_sb);
2873 	if (ret)
2874 		goto out;
2875 
2876 	dir->i_size += BOGO_DIRENT_SIZE;
2877 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2878 	inc_nlink(inode);
2879 	ihold(inode);	/* New dentry reference */
2880 	dget(dentry);		/* Extra pinning count for the created dentry */
2881 	d_instantiate(dentry, inode);
2882 out:
2883 	return ret;
2884 }
2885 
2886 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2887 {
2888 	struct inode *inode = d_inode(dentry);
2889 
2890 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2891 		shmem_free_inode(inode->i_sb);
2892 
2893 	dir->i_size -= BOGO_DIRENT_SIZE;
2894 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2895 	drop_nlink(inode);
2896 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2897 	return 0;
2898 }
2899 
2900 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2901 {
2902 	if (!simple_empty(dentry))
2903 		return -ENOTEMPTY;
2904 
2905 	drop_nlink(d_inode(dentry));
2906 	drop_nlink(dir);
2907 	return shmem_unlink(dir, dentry);
2908 }
2909 
2910 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2911 {
2912 	bool old_is_dir = d_is_dir(old_dentry);
2913 	bool new_is_dir = d_is_dir(new_dentry);
2914 
2915 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2916 		if (old_is_dir) {
2917 			drop_nlink(old_dir);
2918 			inc_nlink(new_dir);
2919 		} else {
2920 			drop_nlink(new_dir);
2921 			inc_nlink(old_dir);
2922 		}
2923 	}
2924 	old_dir->i_ctime = old_dir->i_mtime =
2925 	new_dir->i_ctime = new_dir->i_mtime =
2926 	d_inode(old_dentry)->i_ctime =
2927 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2928 
2929 	return 0;
2930 }
2931 
2932 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2933 {
2934 	struct dentry *whiteout;
2935 	int error;
2936 
2937 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2938 	if (!whiteout)
2939 		return -ENOMEM;
2940 
2941 	error = shmem_mknod(old_dir, whiteout,
2942 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2943 	dput(whiteout);
2944 	if (error)
2945 		return error;
2946 
2947 	/*
2948 	 * Cheat and hash the whiteout while the old dentry is still in
2949 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2950 	 *
2951 	 * d_lookup() will consistently find one of them at this point,
2952 	 * not sure which one, but that isn't even important.
2953 	 */
2954 	d_rehash(whiteout);
2955 	return 0;
2956 }
2957 
2958 /*
2959  * The VFS layer already does all the dentry stuff for rename,
2960  * we just have to decrement the usage count for the target if
2961  * it exists so that the VFS layer correctly free's it when it
2962  * gets overwritten.
2963  */
2964 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2965 {
2966 	struct inode *inode = d_inode(old_dentry);
2967 	int they_are_dirs = S_ISDIR(inode->i_mode);
2968 
2969 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2970 		return -EINVAL;
2971 
2972 	if (flags & RENAME_EXCHANGE)
2973 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2974 
2975 	if (!simple_empty(new_dentry))
2976 		return -ENOTEMPTY;
2977 
2978 	if (flags & RENAME_WHITEOUT) {
2979 		int error;
2980 
2981 		error = shmem_whiteout(old_dir, old_dentry);
2982 		if (error)
2983 			return error;
2984 	}
2985 
2986 	if (d_really_is_positive(new_dentry)) {
2987 		(void) shmem_unlink(new_dir, new_dentry);
2988 		if (they_are_dirs) {
2989 			drop_nlink(d_inode(new_dentry));
2990 			drop_nlink(old_dir);
2991 		}
2992 	} else if (they_are_dirs) {
2993 		drop_nlink(old_dir);
2994 		inc_nlink(new_dir);
2995 	}
2996 
2997 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2998 	new_dir->i_size += BOGO_DIRENT_SIZE;
2999 	old_dir->i_ctime = old_dir->i_mtime =
3000 	new_dir->i_ctime = new_dir->i_mtime =
3001 	inode->i_ctime = current_time(old_dir);
3002 	return 0;
3003 }
3004 
3005 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3006 {
3007 	int error;
3008 	int len;
3009 	struct inode *inode;
3010 	struct page *page;
3011 
3012 	len = strlen(symname) + 1;
3013 	if (len > PAGE_SIZE)
3014 		return -ENAMETOOLONG;
3015 
3016 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3017 				VM_NORESERVE);
3018 	if (!inode)
3019 		return -ENOSPC;
3020 
3021 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3022 					     shmem_initxattrs, NULL);
3023 	if (error) {
3024 		if (error != -EOPNOTSUPP) {
3025 			iput(inode);
3026 			return error;
3027 		}
3028 		error = 0;
3029 	}
3030 
3031 	inode->i_size = len-1;
3032 	if (len <= SHORT_SYMLINK_LEN) {
3033 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3034 		if (!inode->i_link) {
3035 			iput(inode);
3036 			return -ENOMEM;
3037 		}
3038 		inode->i_op = &shmem_short_symlink_operations;
3039 	} else {
3040 		inode_nohighmem(inode);
3041 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3042 		if (error) {
3043 			iput(inode);
3044 			return error;
3045 		}
3046 		inode->i_mapping->a_ops = &shmem_aops;
3047 		inode->i_op = &shmem_symlink_inode_operations;
3048 		memcpy(page_address(page), symname, len);
3049 		SetPageUptodate(page);
3050 		set_page_dirty(page);
3051 		unlock_page(page);
3052 		put_page(page);
3053 	}
3054 	dir->i_size += BOGO_DIRENT_SIZE;
3055 	dir->i_ctime = dir->i_mtime = current_time(dir);
3056 	d_instantiate(dentry, inode);
3057 	dget(dentry);
3058 	return 0;
3059 }
3060 
3061 static void shmem_put_link(void *arg)
3062 {
3063 	mark_page_accessed(arg);
3064 	put_page(arg);
3065 }
3066 
3067 static const char *shmem_get_link(struct dentry *dentry,
3068 				  struct inode *inode,
3069 				  struct delayed_call *done)
3070 {
3071 	struct page *page = NULL;
3072 	int error;
3073 	if (!dentry) {
3074 		page = find_get_page(inode->i_mapping, 0);
3075 		if (!page)
3076 			return ERR_PTR(-ECHILD);
3077 		if (!PageUptodate(page)) {
3078 			put_page(page);
3079 			return ERR_PTR(-ECHILD);
3080 		}
3081 	} else {
3082 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3083 		if (error)
3084 			return ERR_PTR(error);
3085 		unlock_page(page);
3086 	}
3087 	set_delayed_call(done, shmem_put_link, page);
3088 	return page_address(page);
3089 }
3090 
3091 #ifdef CONFIG_TMPFS_XATTR
3092 /*
3093  * Superblocks without xattr inode operations may get some security.* xattr
3094  * support from the LSM "for free". As soon as we have any other xattrs
3095  * like ACLs, we also need to implement the security.* handlers at
3096  * filesystem level, though.
3097  */
3098 
3099 /*
3100  * Callback for security_inode_init_security() for acquiring xattrs.
3101  */
3102 static int shmem_initxattrs(struct inode *inode,
3103 			    const struct xattr *xattr_array,
3104 			    void *fs_info)
3105 {
3106 	struct shmem_inode_info *info = SHMEM_I(inode);
3107 	const struct xattr *xattr;
3108 	struct simple_xattr *new_xattr;
3109 	size_t len;
3110 
3111 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3112 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3113 		if (!new_xattr)
3114 			return -ENOMEM;
3115 
3116 		len = strlen(xattr->name) + 1;
3117 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3118 					  GFP_KERNEL);
3119 		if (!new_xattr->name) {
3120 			kfree(new_xattr);
3121 			return -ENOMEM;
3122 		}
3123 
3124 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3125 		       XATTR_SECURITY_PREFIX_LEN);
3126 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3127 		       xattr->name, len);
3128 
3129 		simple_xattr_list_add(&info->xattrs, new_xattr);
3130 	}
3131 
3132 	return 0;
3133 }
3134 
3135 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3136 				   struct dentry *unused, struct inode *inode,
3137 				   const char *name, void *buffer, size_t size)
3138 {
3139 	struct shmem_inode_info *info = SHMEM_I(inode);
3140 
3141 	name = xattr_full_name(handler, name);
3142 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3143 }
3144 
3145 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3146 				   struct dentry *unused, struct inode *inode,
3147 				   const char *name, const void *value,
3148 				   size_t size, int flags)
3149 {
3150 	struct shmem_inode_info *info = SHMEM_I(inode);
3151 
3152 	name = xattr_full_name(handler, name);
3153 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3154 }
3155 
3156 static const struct xattr_handler shmem_security_xattr_handler = {
3157 	.prefix = XATTR_SECURITY_PREFIX,
3158 	.get = shmem_xattr_handler_get,
3159 	.set = shmem_xattr_handler_set,
3160 };
3161 
3162 static const struct xattr_handler shmem_trusted_xattr_handler = {
3163 	.prefix = XATTR_TRUSTED_PREFIX,
3164 	.get = shmem_xattr_handler_get,
3165 	.set = shmem_xattr_handler_set,
3166 };
3167 
3168 static const struct xattr_handler *shmem_xattr_handlers[] = {
3169 #ifdef CONFIG_TMPFS_POSIX_ACL
3170 	&posix_acl_access_xattr_handler,
3171 	&posix_acl_default_xattr_handler,
3172 #endif
3173 	&shmem_security_xattr_handler,
3174 	&shmem_trusted_xattr_handler,
3175 	NULL
3176 };
3177 
3178 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3179 {
3180 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3181 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3182 }
3183 #endif /* CONFIG_TMPFS_XATTR */
3184 
3185 static const struct inode_operations shmem_short_symlink_operations = {
3186 	.get_link	= simple_get_link,
3187 #ifdef CONFIG_TMPFS_XATTR
3188 	.listxattr	= shmem_listxattr,
3189 #endif
3190 };
3191 
3192 static const struct inode_operations shmem_symlink_inode_operations = {
3193 	.get_link	= shmem_get_link,
3194 #ifdef CONFIG_TMPFS_XATTR
3195 	.listxattr	= shmem_listxattr,
3196 #endif
3197 };
3198 
3199 static struct dentry *shmem_get_parent(struct dentry *child)
3200 {
3201 	return ERR_PTR(-ESTALE);
3202 }
3203 
3204 static int shmem_match(struct inode *ino, void *vfh)
3205 {
3206 	__u32 *fh = vfh;
3207 	__u64 inum = fh[2];
3208 	inum = (inum << 32) | fh[1];
3209 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3210 }
3211 
3212 /* Find any alias of inode, but prefer a hashed alias */
3213 static struct dentry *shmem_find_alias(struct inode *inode)
3214 {
3215 	struct dentry *alias = d_find_alias(inode);
3216 
3217 	return alias ?: d_find_any_alias(inode);
3218 }
3219 
3220 
3221 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3222 		struct fid *fid, int fh_len, int fh_type)
3223 {
3224 	struct inode *inode;
3225 	struct dentry *dentry = NULL;
3226 	u64 inum;
3227 
3228 	if (fh_len < 3)
3229 		return NULL;
3230 
3231 	inum = fid->raw[2];
3232 	inum = (inum << 32) | fid->raw[1];
3233 
3234 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3235 			shmem_match, fid->raw);
3236 	if (inode) {
3237 		dentry = shmem_find_alias(inode);
3238 		iput(inode);
3239 	}
3240 
3241 	return dentry;
3242 }
3243 
3244 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3245 				struct inode *parent)
3246 {
3247 	if (*len < 3) {
3248 		*len = 3;
3249 		return FILEID_INVALID;
3250 	}
3251 
3252 	if (inode_unhashed(inode)) {
3253 		/* Unfortunately insert_inode_hash is not idempotent,
3254 		 * so as we hash inodes here rather than at creation
3255 		 * time, we need a lock to ensure we only try
3256 		 * to do it once
3257 		 */
3258 		static DEFINE_SPINLOCK(lock);
3259 		spin_lock(&lock);
3260 		if (inode_unhashed(inode))
3261 			__insert_inode_hash(inode,
3262 					    inode->i_ino + inode->i_generation);
3263 		spin_unlock(&lock);
3264 	}
3265 
3266 	fh[0] = inode->i_generation;
3267 	fh[1] = inode->i_ino;
3268 	fh[2] = ((__u64)inode->i_ino) >> 32;
3269 
3270 	*len = 3;
3271 	return 1;
3272 }
3273 
3274 static const struct export_operations shmem_export_ops = {
3275 	.get_parent     = shmem_get_parent,
3276 	.encode_fh      = shmem_encode_fh,
3277 	.fh_to_dentry	= shmem_fh_to_dentry,
3278 };
3279 
3280 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3281 			       bool remount)
3282 {
3283 	char *this_char, *value, *rest;
3284 	struct mempolicy *mpol = NULL;
3285 	uid_t uid;
3286 	gid_t gid;
3287 
3288 	while (options != NULL) {
3289 		this_char = options;
3290 		for (;;) {
3291 			/*
3292 			 * NUL-terminate this option: unfortunately,
3293 			 * mount options form a comma-separated list,
3294 			 * but mpol's nodelist may also contain commas.
3295 			 */
3296 			options = strchr(options, ',');
3297 			if (options == NULL)
3298 				break;
3299 			options++;
3300 			if (!isdigit(*options)) {
3301 				options[-1] = '\0';
3302 				break;
3303 			}
3304 		}
3305 		if (!*this_char)
3306 			continue;
3307 		if ((value = strchr(this_char,'=')) != NULL) {
3308 			*value++ = 0;
3309 		} else {
3310 			pr_err("tmpfs: No value for mount option '%s'\n",
3311 			       this_char);
3312 			goto error;
3313 		}
3314 
3315 		if (!strcmp(this_char,"size")) {
3316 			unsigned long long size;
3317 			size = memparse(value,&rest);
3318 			if (*rest == '%') {
3319 				size <<= PAGE_SHIFT;
3320 				size *= totalram_pages;
3321 				do_div(size, 100);
3322 				rest++;
3323 			}
3324 			if (*rest)
3325 				goto bad_val;
3326 			sbinfo->max_blocks =
3327 				DIV_ROUND_UP(size, PAGE_SIZE);
3328 		} else if (!strcmp(this_char,"nr_blocks")) {
3329 			sbinfo->max_blocks = memparse(value, &rest);
3330 			if (*rest)
3331 				goto bad_val;
3332 		} else if (!strcmp(this_char,"nr_inodes")) {
3333 			sbinfo->max_inodes = memparse(value, &rest);
3334 			if (*rest)
3335 				goto bad_val;
3336 		} else if (!strcmp(this_char,"mode")) {
3337 			if (remount)
3338 				continue;
3339 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3340 			if (*rest)
3341 				goto bad_val;
3342 		} else if (!strcmp(this_char,"uid")) {
3343 			if (remount)
3344 				continue;
3345 			uid = simple_strtoul(value, &rest, 0);
3346 			if (*rest)
3347 				goto bad_val;
3348 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3349 			if (!uid_valid(sbinfo->uid))
3350 				goto bad_val;
3351 		} else if (!strcmp(this_char,"gid")) {
3352 			if (remount)
3353 				continue;
3354 			gid = simple_strtoul(value, &rest, 0);
3355 			if (*rest)
3356 				goto bad_val;
3357 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3358 			if (!gid_valid(sbinfo->gid))
3359 				goto bad_val;
3360 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3361 		} else if (!strcmp(this_char, "huge")) {
3362 			int huge;
3363 			huge = shmem_parse_huge(value);
3364 			if (huge < 0)
3365 				goto bad_val;
3366 			if (!has_transparent_hugepage() &&
3367 					huge != SHMEM_HUGE_NEVER)
3368 				goto bad_val;
3369 			sbinfo->huge = huge;
3370 #endif
3371 #ifdef CONFIG_NUMA
3372 		} else if (!strcmp(this_char,"mpol")) {
3373 			mpol_put(mpol);
3374 			mpol = NULL;
3375 			if (mpol_parse_str(value, &mpol))
3376 				goto bad_val;
3377 #endif
3378 		} else {
3379 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3380 			goto error;
3381 		}
3382 	}
3383 	sbinfo->mpol = mpol;
3384 	return 0;
3385 
3386 bad_val:
3387 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3388 	       value, this_char);
3389 error:
3390 	mpol_put(mpol);
3391 	return 1;
3392 
3393 }
3394 
3395 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3396 {
3397 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3398 	struct shmem_sb_info config = *sbinfo;
3399 	unsigned long inodes;
3400 	int error = -EINVAL;
3401 
3402 	config.mpol = NULL;
3403 	if (shmem_parse_options(data, &config, true))
3404 		return error;
3405 
3406 	spin_lock(&sbinfo->stat_lock);
3407 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3408 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3409 		goto out;
3410 	if (config.max_inodes < inodes)
3411 		goto out;
3412 	/*
3413 	 * Those tests disallow limited->unlimited while any are in use;
3414 	 * but we must separately disallow unlimited->limited, because
3415 	 * in that case we have no record of how much is already in use.
3416 	 */
3417 	if (config.max_blocks && !sbinfo->max_blocks)
3418 		goto out;
3419 	if (config.max_inodes && !sbinfo->max_inodes)
3420 		goto out;
3421 
3422 	error = 0;
3423 	sbinfo->huge = config.huge;
3424 	sbinfo->max_blocks  = config.max_blocks;
3425 	sbinfo->max_inodes  = config.max_inodes;
3426 	sbinfo->free_inodes = config.max_inodes - inodes;
3427 
3428 	/*
3429 	 * Preserve previous mempolicy unless mpol remount option was specified.
3430 	 */
3431 	if (config.mpol) {
3432 		mpol_put(sbinfo->mpol);
3433 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3434 	}
3435 out:
3436 	spin_unlock(&sbinfo->stat_lock);
3437 	return error;
3438 }
3439 
3440 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3441 {
3442 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3443 
3444 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3445 		seq_printf(seq, ",size=%luk",
3446 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3447 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3448 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3449 	if (sbinfo->mode != (0777 | S_ISVTX))
3450 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3451 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3452 		seq_printf(seq, ",uid=%u",
3453 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3454 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3455 		seq_printf(seq, ",gid=%u",
3456 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3457 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3458 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3459 	if (sbinfo->huge)
3460 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3461 #endif
3462 	shmem_show_mpol(seq, sbinfo->mpol);
3463 	return 0;
3464 }
3465 
3466 #endif /* CONFIG_TMPFS */
3467 
3468 static void shmem_put_super(struct super_block *sb)
3469 {
3470 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3471 
3472 	percpu_counter_destroy(&sbinfo->used_blocks);
3473 	mpol_put(sbinfo->mpol);
3474 	kfree(sbinfo);
3475 	sb->s_fs_info = NULL;
3476 }
3477 
3478 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3479 {
3480 	struct inode *inode;
3481 	struct shmem_sb_info *sbinfo;
3482 	int err = -ENOMEM;
3483 
3484 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3485 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3486 				L1_CACHE_BYTES), GFP_KERNEL);
3487 	if (!sbinfo)
3488 		return -ENOMEM;
3489 
3490 	sbinfo->mode = 0777 | S_ISVTX;
3491 	sbinfo->uid = current_fsuid();
3492 	sbinfo->gid = current_fsgid();
3493 	sb->s_fs_info = sbinfo;
3494 
3495 #ifdef CONFIG_TMPFS
3496 	/*
3497 	 * Per default we only allow half of the physical ram per
3498 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3499 	 * but the internal instance is left unlimited.
3500 	 */
3501 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3502 		sbinfo->max_blocks = shmem_default_max_blocks();
3503 		sbinfo->max_inodes = shmem_default_max_inodes();
3504 		if (shmem_parse_options(data, sbinfo, false)) {
3505 			err = -EINVAL;
3506 			goto failed;
3507 		}
3508 	} else {
3509 		sb->s_flags |= SB_NOUSER;
3510 	}
3511 	sb->s_export_op = &shmem_export_ops;
3512 	sb->s_flags |= SB_NOSEC;
3513 #else
3514 	sb->s_flags |= SB_NOUSER;
3515 #endif
3516 
3517 	spin_lock_init(&sbinfo->stat_lock);
3518 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3519 		goto failed;
3520 	sbinfo->free_inodes = sbinfo->max_inodes;
3521 	spin_lock_init(&sbinfo->shrinklist_lock);
3522 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3523 
3524 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3525 	sb->s_blocksize = PAGE_SIZE;
3526 	sb->s_blocksize_bits = PAGE_SHIFT;
3527 	sb->s_magic = TMPFS_MAGIC;
3528 	sb->s_op = &shmem_ops;
3529 	sb->s_time_gran = 1;
3530 #ifdef CONFIG_TMPFS_XATTR
3531 	sb->s_xattr = shmem_xattr_handlers;
3532 #endif
3533 #ifdef CONFIG_TMPFS_POSIX_ACL
3534 	sb->s_flags |= SB_POSIXACL;
3535 #endif
3536 	uuid_gen(&sb->s_uuid);
3537 
3538 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3539 	if (!inode)
3540 		goto failed;
3541 	inode->i_uid = sbinfo->uid;
3542 	inode->i_gid = sbinfo->gid;
3543 	sb->s_root = d_make_root(inode);
3544 	if (!sb->s_root)
3545 		goto failed;
3546 	return 0;
3547 
3548 failed:
3549 	shmem_put_super(sb);
3550 	return err;
3551 }
3552 
3553 static struct kmem_cache *shmem_inode_cachep;
3554 
3555 static struct inode *shmem_alloc_inode(struct super_block *sb)
3556 {
3557 	struct shmem_inode_info *info;
3558 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3559 	if (!info)
3560 		return NULL;
3561 	return &info->vfs_inode;
3562 }
3563 
3564 static void shmem_destroy_callback(struct rcu_head *head)
3565 {
3566 	struct inode *inode = container_of(head, struct inode, i_rcu);
3567 	if (S_ISLNK(inode->i_mode))
3568 		kfree(inode->i_link);
3569 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3570 }
3571 
3572 static void shmem_destroy_inode(struct inode *inode)
3573 {
3574 	if (S_ISREG(inode->i_mode))
3575 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3576 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3577 }
3578 
3579 static void shmem_init_inode(void *foo)
3580 {
3581 	struct shmem_inode_info *info = foo;
3582 	inode_init_once(&info->vfs_inode);
3583 }
3584 
3585 static void shmem_init_inodecache(void)
3586 {
3587 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3588 				sizeof(struct shmem_inode_info),
3589 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3590 }
3591 
3592 static void shmem_destroy_inodecache(void)
3593 {
3594 	kmem_cache_destroy(shmem_inode_cachep);
3595 }
3596 
3597 static const struct address_space_operations shmem_aops = {
3598 	.writepage	= shmem_writepage,
3599 	.set_page_dirty	= __set_page_dirty_no_writeback,
3600 #ifdef CONFIG_TMPFS
3601 	.write_begin	= shmem_write_begin,
3602 	.write_end	= shmem_write_end,
3603 #endif
3604 #ifdef CONFIG_MIGRATION
3605 	.migratepage	= migrate_page,
3606 #endif
3607 	.error_remove_page = generic_error_remove_page,
3608 };
3609 
3610 static const struct file_operations shmem_file_operations = {
3611 	.mmap		= shmem_mmap,
3612 	.get_unmapped_area = shmem_get_unmapped_area,
3613 #ifdef CONFIG_TMPFS
3614 	.llseek		= shmem_file_llseek,
3615 	.read_iter	= shmem_file_read_iter,
3616 	.write_iter	= generic_file_write_iter,
3617 	.fsync		= noop_fsync,
3618 	.splice_read	= generic_file_splice_read,
3619 	.splice_write	= iter_file_splice_write,
3620 	.fallocate	= shmem_fallocate,
3621 #endif
3622 };
3623 
3624 static const struct inode_operations shmem_inode_operations = {
3625 	.getattr	= shmem_getattr,
3626 	.setattr	= shmem_setattr,
3627 #ifdef CONFIG_TMPFS_XATTR
3628 	.listxattr	= shmem_listxattr,
3629 	.set_acl	= simple_set_acl,
3630 #endif
3631 };
3632 
3633 static const struct inode_operations shmem_dir_inode_operations = {
3634 #ifdef CONFIG_TMPFS
3635 	.create		= shmem_create,
3636 	.lookup		= simple_lookup,
3637 	.link		= shmem_link,
3638 	.unlink		= shmem_unlink,
3639 	.symlink	= shmem_symlink,
3640 	.mkdir		= shmem_mkdir,
3641 	.rmdir		= shmem_rmdir,
3642 	.mknod		= shmem_mknod,
3643 	.rename		= shmem_rename2,
3644 	.tmpfile	= shmem_tmpfile,
3645 #endif
3646 #ifdef CONFIG_TMPFS_XATTR
3647 	.listxattr	= shmem_listxattr,
3648 #endif
3649 #ifdef CONFIG_TMPFS_POSIX_ACL
3650 	.setattr	= shmem_setattr,
3651 	.set_acl	= simple_set_acl,
3652 #endif
3653 };
3654 
3655 static const struct inode_operations shmem_special_inode_operations = {
3656 #ifdef CONFIG_TMPFS_XATTR
3657 	.listxattr	= shmem_listxattr,
3658 #endif
3659 #ifdef CONFIG_TMPFS_POSIX_ACL
3660 	.setattr	= shmem_setattr,
3661 	.set_acl	= simple_set_acl,
3662 #endif
3663 };
3664 
3665 static const struct super_operations shmem_ops = {
3666 	.alloc_inode	= shmem_alloc_inode,
3667 	.destroy_inode	= shmem_destroy_inode,
3668 #ifdef CONFIG_TMPFS
3669 	.statfs		= shmem_statfs,
3670 	.remount_fs	= shmem_remount_fs,
3671 	.show_options	= shmem_show_options,
3672 #endif
3673 	.evict_inode	= shmem_evict_inode,
3674 	.drop_inode	= generic_delete_inode,
3675 	.put_super	= shmem_put_super,
3676 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3677 	.nr_cached_objects	= shmem_unused_huge_count,
3678 	.free_cached_objects	= shmem_unused_huge_scan,
3679 #endif
3680 };
3681 
3682 static const struct vm_operations_struct shmem_vm_ops = {
3683 	.fault		= shmem_fault,
3684 	.map_pages	= filemap_map_pages,
3685 #ifdef CONFIG_NUMA
3686 	.set_policy     = shmem_set_policy,
3687 	.get_policy     = shmem_get_policy,
3688 #endif
3689 };
3690 
3691 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3692 	int flags, const char *dev_name, void *data)
3693 {
3694 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3695 }
3696 
3697 static struct file_system_type shmem_fs_type = {
3698 	.owner		= THIS_MODULE,
3699 	.name		= "tmpfs",
3700 	.mount		= shmem_mount,
3701 	.kill_sb	= kill_litter_super,
3702 	.fs_flags	= FS_USERNS_MOUNT,
3703 };
3704 
3705 int __init shmem_init(void)
3706 {
3707 	int error;
3708 
3709 	/* If rootfs called this, don't re-init */
3710 	if (shmem_inode_cachep)
3711 		return 0;
3712 
3713 	shmem_init_inodecache();
3714 
3715 	error = register_filesystem(&shmem_fs_type);
3716 	if (error) {
3717 		pr_err("Could not register tmpfs\n");
3718 		goto out2;
3719 	}
3720 
3721 	shm_mnt = kern_mount(&shmem_fs_type);
3722 	if (IS_ERR(shm_mnt)) {
3723 		error = PTR_ERR(shm_mnt);
3724 		pr_err("Could not kern_mount tmpfs\n");
3725 		goto out1;
3726 	}
3727 
3728 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3729 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3730 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3731 	else
3732 		shmem_huge = 0; /* just in case it was patched */
3733 #endif
3734 	return 0;
3735 
3736 out1:
3737 	unregister_filesystem(&shmem_fs_type);
3738 out2:
3739 	shmem_destroy_inodecache();
3740 	shm_mnt = ERR_PTR(error);
3741 	return error;
3742 }
3743 
3744 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3745 static ssize_t shmem_enabled_show(struct kobject *kobj,
3746 		struct kobj_attribute *attr, char *buf)
3747 {
3748 	int values[] = {
3749 		SHMEM_HUGE_ALWAYS,
3750 		SHMEM_HUGE_WITHIN_SIZE,
3751 		SHMEM_HUGE_ADVISE,
3752 		SHMEM_HUGE_NEVER,
3753 		SHMEM_HUGE_DENY,
3754 		SHMEM_HUGE_FORCE,
3755 	};
3756 	int i, count;
3757 
3758 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3759 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3760 
3761 		count += sprintf(buf + count, fmt,
3762 				shmem_format_huge(values[i]));
3763 	}
3764 	buf[count - 1] = '\n';
3765 	return count;
3766 }
3767 
3768 static ssize_t shmem_enabled_store(struct kobject *kobj,
3769 		struct kobj_attribute *attr, const char *buf, size_t count)
3770 {
3771 	char tmp[16];
3772 	int huge;
3773 
3774 	if (count + 1 > sizeof(tmp))
3775 		return -EINVAL;
3776 	memcpy(tmp, buf, count);
3777 	tmp[count] = '\0';
3778 	if (count && tmp[count - 1] == '\n')
3779 		tmp[count - 1] = '\0';
3780 
3781 	huge = shmem_parse_huge(tmp);
3782 	if (huge == -EINVAL)
3783 		return -EINVAL;
3784 	if (!has_transparent_hugepage() &&
3785 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3786 		return -EINVAL;
3787 
3788 	shmem_huge = huge;
3789 	if (shmem_huge > SHMEM_HUGE_DENY)
3790 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3791 	return count;
3792 }
3793 
3794 struct kobj_attribute shmem_enabled_attr =
3795 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3796 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3797 
3798 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3799 bool shmem_huge_enabled(struct vm_area_struct *vma)
3800 {
3801 	struct inode *inode = file_inode(vma->vm_file);
3802 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3803 	loff_t i_size;
3804 	pgoff_t off;
3805 
3806 	if (shmem_huge == SHMEM_HUGE_FORCE)
3807 		return true;
3808 	if (shmem_huge == SHMEM_HUGE_DENY)
3809 		return false;
3810 	switch (sbinfo->huge) {
3811 		case SHMEM_HUGE_NEVER:
3812 			return false;
3813 		case SHMEM_HUGE_ALWAYS:
3814 			return true;
3815 		case SHMEM_HUGE_WITHIN_SIZE:
3816 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3817 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3818 			if (i_size >= HPAGE_PMD_SIZE &&
3819 					i_size >> PAGE_SHIFT >= off)
3820 				return true;
3821 			/* fall through */
3822 		case SHMEM_HUGE_ADVISE:
3823 			/* TODO: implement fadvise() hints */
3824 			return (vma->vm_flags & VM_HUGEPAGE);
3825 		default:
3826 			VM_BUG_ON(1);
3827 			return false;
3828 	}
3829 }
3830 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3831 
3832 #else /* !CONFIG_SHMEM */
3833 
3834 /*
3835  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3836  *
3837  * This is intended for small system where the benefits of the full
3838  * shmem code (swap-backed and resource-limited) are outweighed by
3839  * their complexity. On systems without swap this code should be
3840  * effectively equivalent, but much lighter weight.
3841  */
3842 
3843 static struct file_system_type shmem_fs_type = {
3844 	.name		= "tmpfs",
3845 	.mount		= ramfs_mount,
3846 	.kill_sb	= kill_litter_super,
3847 	.fs_flags	= FS_USERNS_MOUNT,
3848 };
3849 
3850 int __init shmem_init(void)
3851 {
3852 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3853 
3854 	shm_mnt = kern_mount(&shmem_fs_type);
3855 	BUG_ON(IS_ERR(shm_mnt));
3856 
3857 	return 0;
3858 }
3859 
3860 int shmem_unuse(swp_entry_t swap, struct page *page)
3861 {
3862 	return 0;
3863 }
3864 
3865 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3866 {
3867 	return 0;
3868 }
3869 
3870 void shmem_unlock_mapping(struct address_space *mapping)
3871 {
3872 }
3873 
3874 #ifdef CONFIG_MMU
3875 unsigned long shmem_get_unmapped_area(struct file *file,
3876 				      unsigned long addr, unsigned long len,
3877 				      unsigned long pgoff, unsigned long flags)
3878 {
3879 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3880 }
3881 #endif
3882 
3883 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3884 {
3885 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3886 }
3887 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3888 
3889 #define shmem_vm_ops				generic_file_vm_ops
3890 #define shmem_file_operations			ramfs_file_operations
3891 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3892 #define shmem_acct_size(flags, size)		0
3893 #define shmem_unacct_size(flags, size)		do {} while (0)
3894 
3895 #endif /* CONFIG_SHMEM */
3896 
3897 /* common code */
3898 
3899 static const struct dentry_operations anon_ops = {
3900 	.d_dname = simple_dname
3901 };
3902 
3903 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3904 				       unsigned long flags, unsigned int i_flags)
3905 {
3906 	struct file *res;
3907 	struct inode *inode;
3908 	struct path path;
3909 	struct super_block *sb;
3910 	struct qstr this;
3911 
3912 	if (IS_ERR(mnt))
3913 		return ERR_CAST(mnt);
3914 
3915 	if (size < 0 || size > MAX_LFS_FILESIZE)
3916 		return ERR_PTR(-EINVAL);
3917 
3918 	if (shmem_acct_size(flags, size))
3919 		return ERR_PTR(-ENOMEM);
3920 
3921 	res = ERR_PTR(-ENOMEM);
3922 	this.name = name;
3923 	this.len = strlen(name);
3924 	this.hash = 0; /* will go */
3925 	sb = mnt->mnt_sb;
3926 	path.mnt = mntget(mnt);
3927 	path.dentry = d_alloc_pseudo(sb, &this);
3928 	if (!path.dentry)
3929 		goto put_memory;
3930 	d_set_d_op(path.dentry, &anon_ops);
3931 
3932 	res = ERR_PTR(-ENOSPC);
3933 	inode = shmem_get_inode(sb, NULL, S_IFREG | 0777, 0, flags);
3934 	if (!inode)
3935 		goto put_memory;
3936 
3937 	inode->i_flags |= i_flags;
3938 	d_instantiate(path.dentry, inode);
3939 	inode->i_size = size;
3940 	clear_nlink(inode);	/* It is unlinked */
3941 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3942 	if (IS_ERR(res))
3943 		goto put_path;
3944 
3945 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3946 		  &shmem_file_operations);
3947 	if (IS_ERR(res))
3948 		goto put_path;
3949 
3950 	return res;
3951 
3952 put_memory:
3953 	shmem_unacct_size(flags, size);
3954 put_path:
3955 	path_put(&path);
3956 	return res;
3957 }
3958 
3959 /**
3960  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3961  * 	kernel internal.  There will be NO LSM permission checks against the
3962  * 	underlying inode.  So users of this interface must do LSM checks at a
3963  *	higher layer.  The users are the big_key and shm implementations.  LSM
3964  *	checks are provided at the key or shm level rather than the inode.
3965  * @name: name for dentry (to be seen in /proc/<pid>/maps
3966  * @size: size to be set for the file
3967  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3968  */
3969 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3970 {
3971 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3972 }
3973 
3974 /**
3975  * shmem_file_setup - get an unlinked file living in tmpfs
3976  * @name: name for dentry (to be seen in /proc/<pid>/maps
3977  * @size: size to be set for the file
3978  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3979  */
3980 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3981 {
3982 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3983 }
3984 EXPORT_SYMBOL_GPL(shmem_file_setup);
3985 
3986 /**
3987  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3988  * @mnt: the tmpfs mount where the file will be created
3989  * @name: name for dentry (to be seen in /proc/<pid>/maps
3990  * @size: size to be set for the file
3991  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3992  */
3993 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3994 				       loff_t size, unsigned long flags)
3995 {
3996 	return __shmem_file_setup(mnt, name, size, flags, 0);
3997 }
3998 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3999 
4000 /**
4001  * shmem_zero_setup - setup a shared anonymous mapping
4002  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4003  */
4004 int shmem_zero_setup(struct vm_area_struct *vma)
4005 {
4006 	struct file *file;
4007 	loff_t size = vma->vm_end - vma->vm_start;
4008 
4009 	/*
4010 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4011 	 * between XFS directory reading and selinux: since this file is only
4012 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4013 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4014 	 */
4015 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4016 	if (IS_ERR(file))
4017 		return PTR_ERR(file);
4018 
4019 	if (vma->vm_file)
4020 		fput(vma->vm_file);
4021 	vma->vm_file = file;
4022 	vma->vm_ops = &shmem_vm_ops;
4023 
4024 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4025 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4026 			(vma->vm_end & HPAGE_PMD_MASK)) {
4027 		khugepaged_enter(vma, vma->vm_flags);
4028 	}
4029 
4030 	return 0;
4031 }
4032 
4033 /**
4034  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4035  * @mapping:	the page's address_space
4036  * @index:	the page index
4037  * @gfp:	the page allocator flags to use if allocating
4038  *
4039  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4040  * with any new page allocations done using the specified allocation flags.
4041  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4042  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4043  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4044  *
4045  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4046  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4047  */
4048 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4049 					 pgoff_t index, gfp_t gfp)
4050 {
4051 #ifdef CONFIG_SHMEM
4052 	struct inode *inode = mapping->host;
4053 	struct page *page;
4054 	int error;
4055 
4056 	BUG_ON(mapping->a_ops != &shmem_aops);
4057 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4058 				  gfp, NULL, NULL, NULL);
4059 	if (error)
4060 		page = ERR_PTR(error);
4061 	else
4062 		unlock_page(page);
4063 	return page;
4064 #else
4065 	/*
4066 	 * The tiny !SHMEM case uses ramfs without swap
4067 	 */
4068 	return read_cache_page_gfp(mapping, index, gfp);
4069 #endif
4070 }
4071 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4072