1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Pretend that one inode + its dentry occupy this much memory */ 94 #define BOGO_INODE_SIZE 1024 95 96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 97 #define SHORT_SYMLINK_LEN 128 98 99 /* 100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 101 * inode->i_private (with i_rwsem making sure that it has only one user at 102 * a time): we would prefer not to enlarge the shmem inode just for that. 103 */ 104 struct shmem_falloc { 105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 106 pgoff_t start; /* start of range currently being fallocated */ 107 pgoff_t next; /* the next page offset to be fallocated */ 108 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 110 }; 111 112 struct shmem_options { 113 unsigned long long blocks; 114 unsigned long long inodes; 115 struct mempolicy *mpol; 116 kuid_t uid; 117 kgid_t gid; 118 umode_t mode; 119 bool full_inums; 120 int huge; 121 int seen; 122 bool noswap; 123 unsigned short quota_types; 124 struct shmem_quota_limits qlimits; 125 #define SHMEM_SEEN_BLOCKS 1 126 #define SHMEM_SEEN_INODES 2 127 #define SHMEM_SEEN_HUGE 4 128 #define SHMEM_SEEN_INUMS 8 129 #define SHMEM_SEEN_NOSWAP 16 130 #define SHMEM_SEEN_QUOTA 32 131 }; 132 133 #ifdef CONFIG_TMPFS 134 static unsigned long shmem_default_max_blocks(void) 135 { 136 return totalram_pages() / 2; 137 } 138 139 static unsigned long shmem_default_max_inodes(void) 140 { 141 unsigned long nr_pages = totalram_pages(); 142 143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 144 ULONG_MAX / BOGO_INODE_SIZE); 145 } 146 #endif 147 148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 149 struct folio **foliop, enum sgp_type sgp, 150 gfp_t gfp, struct vm_area_struct *vma, 151 vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_block(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (percpu_counter_compare(&sbinfo->used_blocks, 222 sbinfo->max_blocks - pages) > 0) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) 227 goto unacct; 228 229 percpu_counter_add(&sbinfo->used_blocks, pages); 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool vma_is_anon_shmem(struct vm_area_struct *vma) 267 { 268 return vma->vm_ops == &shmem_anon_vm_ops; 269 } 270 271 bool vma_is_shmem(struct vm_area_struct *vma) 272 { 273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 274 } 275 276 static LIST_HEAD(shmem_swaplist); 277 static DEFINE_MUTEX(shmem_swaplist_mutex); 278 279 #ifdef CONFIG_TMPFS_QUOTA 280 281 static int shmem_enable_quotas(struct super_block *sb, 282 unsigned short quota_types) 283 { 284 int type, err = 0; 285 286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 288 if (!(quota_types & (1 << type))) 289 continue; 290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 291 DQUOT_USAGE_ENABLED | 292 DQUOT_LIMITS_ENABLED); 293 if (err) 294 goto out_err; 295 } 296 return 0; 297 298 out_err: 299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 300 type, err); 301 for (type--; type >= 0; type--) 302 dquot_quota_off(sb, type); 303 return err; 304 } 305 306 static void shmem_disable_quotas(struct super_block *sb) 307 { 308 int type; 309 310 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 311 dquot_quota_off(sb, type); 312 } 313 314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 315 { 316 return SHMEM_I(inode)->i_dquot; 317 } 318 #endif /* CONFIG_TMPFS_QUOTA */ 319 320 /* 321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 322 * produces a novel ino for the newly allocated inode. 323 * 324 * It may also be called when making a hard link to permit the space needed by 325 * each dentry. However, in that case, no new inode number is needed since that 326 * internally draws from another pool of inode numbers (currently global 327 * get_next_ino()). This case is indicated by passing NULL as inop. 328 */ 329 #define SHMEM_INO_BATCH 1024 330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 331 { 332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 333 ino_t ino; 334 335 if (!(sb->s_flags & SB_KERNMOUNT)) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 if (sbinfo->max_inodes) { 338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 339 raw_spin_unlock(&sbinfo->stat_lock); 340 return -ENOSPC; 341 } 342 sbinfo->free_ispace -= BOGO_INODE_SIZE; 343 } 344 if (inop) { 345 ino = sbinfo->next_ino++; 346 if (unlikely(is_zero_ino(ino))) 347 ino = sbinfo->next_ino++; 348 if (unlikely(!sbinfo->full_inums && 349 ino > UINT_MAX)) { 350 /* 351 * Emulate get_next_ino uint wraparound for 352 * compatibility 353 */ 354 if (IS_ENABLED(CONFIG_64BIT)) 355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 356 __func__, MINOR(sb->s_dev)); 357 sbinfo->next_ino = 1; 358 ino = sbinfo->next_ino++; 359 } 360 *inop = ino; 361 } 362 raw_spin_unlock(&sbinfo->stat_lock); 363 } else if (inop) { 364 /* 365 * __shmem_file_setup, one of our callers, is lock-free: it 366 * doesn't hold stat_lock in shmem_reserve_inode since 367 * max_inodes is always 0, and is called from potentially 368 * unknown contexts. As such, use a per-cpu batched allocator 369 * which doesn't require the per-sb stat_lock unless we are at 370 * the batch boundary. 371 * 372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 373 * shmem mounts are not exposed to userspace, so we don't need 374 * to worry about things like glibc compatibility. 375 */ 376 ino_t *next_ino; 377 378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 379 ino = *next_ino; 380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 381 raw_spin_lock(&sbinfo->stat_lock); 382 ino = sbinfo->next_ino; 383 sbinfo->next_ino += SHMEM_INO_BATCH; 384 raw_spin_unlock(&sbinfo->stat_lock); 385 if (unlikely(is_zero_ino(ino))) 386 ino++; 387 } 388 *inop = ino; 389 *next_ino = ++ino; 390 put_cpu(); 391 } 392 393 return 0; 394 } 395 396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 397 { 398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 399 if (sbinfo->max_inodes) { 400 raw_spin_lock(&sbinfo->stat_lock); 401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 } 404 } 405 406 /** 407 * shmem_recalc_inode - recalculate the block usage of an inode 408 * @inode: inode to recalc 409 * @alloced: the change in number of pages allocated to inode 410 * @swapped: the change in number of pages swapped from inode 411 * 412 * We have to calculate the free blocks since the mm can drop 413 * undirtied hole pages behind our back. 414 * 415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 417 */ 418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 419 { 420 struct shmem_inode_info *info = SHMEM_I(inode); 421 long freed; 422 423 spin_lock(&info->lock); 424 info->alloced += alloced; 425 info->swapped += swapped; 426 freed = info->alloced - info->swapped - 427 READ_ONCE(inode->i_mapping->nrpages); 428 /* 429 * Special case: whereas normally shmem_recalc_inode() is called 430 * after i_mapping->nrpages has already been adjusted (up or down), 431 * shmem_writepage() has to raise swapped before nrpages is lowered - 432 * to stop a racing shmem_recalc_inode() from thinking that a page has 433 * been freed. Compensate here, to avoid the need for a followup call. 434 */ 435 if (swapped > 0) 436 freed += swapped; 437 if (freed > 0) 438 info->alloced -= freed; 439 spin_unlock(&info->lock); 440 441 /* The quota case may block */ 442 if (freed > 0) 443 shmem_inode_unacct_blocks(inode, freed); 444 } 445 446 bool shmem_charge(struct inode *inode, long pages) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 450 if (shmem_inode_acct_block(inode, pages)) 451 return false; 452 453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 454 xa_lock_irq(&mapping->i_pages); 455 mapping->nrpages += pages; 456 xa_unlock_irq(&mapping->i_pages); 457 458 shmem_recalc_inode(inode, pages, 0); 459 return true; 460 } 461 462 void shmem_uncharge(struct inode *inode, long pages) 463 { 464 /* pages argument is currently unused: keep it to help debugging */ 465 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 466 467 shmem_recalc_inode(inode, 0, 0); 468 } 469 470 /* 471 * Replace item expected in xarray by a new item, while holding xa_lock. 472 */ 473 static int shmem_replace_entry(struct address_space *mapping, 474 pgoff_t index, void *expected, void *replacement) 475 { 476 XA_STATE(xas, &mapping->i_pages, index); 477 void *item; 478 479 VM_BUG_ON(!expected); 480 VM_BUG_ON(!replacement); 481 item = xas_load(&xas); 482 if (item != expected) 483 return -ENOENT; 484 xas_store(&xas, replacement); 485 return 0; 486 } 487 488 /* 489 * Sometimes, before we decide whether to proceed or to fail, we must check 490 * that an entry was not already brought back from swap by a racing thread. 491 * 492 * Checking page is not enough: by the time a SwapCache page is locked, it 493 * might be reused, and again be SwapCache, using the same swap as before. 494 */ 495 static bool shmem_confirm_swap(struct address_space *mapping, 496 pgoff_t index, swp_entry_t swap) 497 { 498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 499 } 500 501 /* 502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 503 * 504 * SHMEM_HUGE_NEVER: 505 * disables huge pages for the mount; 506 * SHMEM_HUGE_ALWAYS: 507 * enables huge pages for the mount; 508 * SHMEM_HUGE_WITHIN_SIZE: 509 * only allocate huge pages if the page will be fully within i_size, 510 * also respect fadvise()/madvise() hints; 511 * SHMEM_HUGE_ADVISE: 512 * only allocate huge pages if requested with fadvise()/madvise(); 513 */ 514 515 #define SHMEM_HUGE_NEVER 0 516 #define SHMEM_HUGE_ALWAYS 1 517 #define SHMEM_HUGE_WITHIN_SIZE 2 518 #define SHMEM_HUGE_ADVISE 3 519 520 /* 521 * Special values. 522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 523 * 524 * SHMEM_HUGE_DENY: 525 * disables huge on shm_mnt and all mounts, for emergency use; 526 * SHMEM_HUGE_FORCE: 527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 528 * 529 */ 530 #define SHMEM_HUGE_DENY (-1) 531 #define SHMEM_HUGE_FORCE (-2) 532 533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 534 /* ifdef here to avoid bloating shmem.o when not necessary */ 535 536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 537 538 static bool __shmem_is_huge(struct inode *inode, pgoff_t index, 539 bool shmem_huge_force, struct mm_struct *mm, 540 unsigned long vm_flags) 541 { 542 loff_t i_size; 543 544 if (!S_ISREG(inode->i_mode)) 545 return false; 546 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 547 return false; 548 if (shmem_huge == SHMEM_HUGE_DENY) 549 return false; 550 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 551 return true; 552 553 switch (SHMEM_SB(inode->i_sb)->huge) { 554 case SHMEM_HUGE_ALWAYS: 555 return true; 556 case SHMEM_HUGE_WITHIN_SIZE: 557 index = round_up(index + 1, HPAGE_PMD_NR); 558 i_size = round_up(i_size_read(inode), PAGE_SIZE); 559 if (i_size >> PAGE_SHIFT >= index) 560 return true; 561 fallthrough; 562 case SHMEM_HUGE_ADVISE: 563 if (mm && (vm_flags & VM_HUGEPAGE)) 564 return true; 565 fallthrough; 566 default: 567 return false; 568 } 569 } 570 571 bool shmem_is_huge(struct inode *inode, pgoff_t index, 572 bool shmem_huge_force, struct mm_struct *mm, 573 unsigned long vm_flags) 574 { 575 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER) 576 return false; 577 578 return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags); 579 } 580 581 #if defined(CONFIG_SYSFS) 582 static int shmem_parse_huge(const char *str) 583 { 584 if (!strcmp(str, "never")) 585 return SHMEM_HUGE_NEVER; 586 if (!strcmp(str, "always")) 587 return SHMEM_HUGE_ALWAYS; 588 if (!strcmp(str, "within_size")) 589 return SHMEM_HUGE_WITHIN_SIZE; 590 if (!strcmp(str, "advise")) 591 return SHMEM_HUGE_ADVISE; 592 if (!strcmp(str, "deny")) 593 return SHMEM_HUGE_DENY; 594 if (!strcmp(str, "force")) 595 return SHMEM_HUGE_FORCE; 596 return -EINVAL; 597 } 598 #endif 599 600 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 601 static const char *shmem_format_huge(int huge) 602 { 603 switch (huge) { 604 case SHMEM_HUGE_NEVER: 605 return "never"; 606 case SHMEM_HUGE_ALWAYS: 607 return "always"; 608 case SHMEM_HUGE_WITHIN_SIZE: 609 return "within_size"; 610 case SHMEM_HUGE_ADVISE: 611 return "advise"; 612 case SHMEM_HUGE_DENY: 613 return "deny"; 614 case SHMEM_HUGE_FORCE: 615 return "force"; 616 default: 617 VM_BUG_ON(1); 618 return "bad_val"; 619 } 620 } 621 #endif 622 623 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 624 struct shrink_control *sc, unsigned long nr_to_split) 625 { 626 LIST_HEAD(list), *pos, *next; 627 LIST_HEAD(to_remove); 628 struct inode *inode; 629 struct shmem_inode_info *info; 630 struct folio *folio; 631 unsigned long batch = sc ? sc->nr_to_scan : 128; 632 int split = 0; 633 634 if (list_empty(&sbinfo->shrinklist)) 635 return SHRINK_STOP; 636 637 spin_lock(&sbinfo->shrinklist_lock); 638 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 639 info = list_entry(pos, struct shmem_inode_info, shrinklist); 640 641 /* pin the inode */ 642 inode = igrab(&info->vfs_inode); 643 644 /* inode is about to be evicted */ 645 if (!inode) { 646 list_del_init(&info->shrinklist); 647 goto next; 648 } 649 650 /* Check if there's anything to gain */ 651 if (round_up(inode->i_size, PAGE_SIZE) == 652 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 653 list_move(&info->shrinklist, &to_remove); 654 goto next; 655 } 656 657 list_move(&info->shrinklist, &list); 658 next: 659 sbinfo->shrinklist_len--; 660 if (!--batch) 661 break; 662 } 663 spin_unlock(&sbinfo->shrinklist_lock); 664 665 list_for_each_safe(pos, next, &to_remove) { 666 info = list_entry(pos, struct shmem_inode_info, shrinklist); 667 inode = &info->vfs_inode; 668 list_del_init(&info->shrinklist); 669 iput(inode); 670 } 671 672 list_for_each_safe(pos, next, &list) { 673 int ret; 674 pgoff_t index; 675 676 info = list_entry(pos, struct shmem_inode_info, shrinklist); 677 inode = &info->vfs_inode; 678 679 if (nr_to_split && split >= nr_to_split) 680 goto move_back; 681 682 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 683 folio = filemap_get_folio(inode->i_mapping, index); 684 if (IS_ERR(folio)) 685 goto drop; 686 687 /* No huge page at the end of the file: nothing to split */ 688 if (!folio_test_large(folio)) { 689 folio_put(folio); 690 goto drop; 691 } 692 693 /* 694 * Move the inode on the list back to shrinklist if we failed 695 * to lock the page at this time. 696 * 697 * Waiting for the lock may lead to deadlock in the 698 * reclaim path. 699 */ 700 if (!folio_trylock(folio)) { 701 folio_put(folio); 702 goto move_back; 703 } 704 705 ret = split_folio(folio); 706 folio_unlock(folio); 707 folio_put(folio); 708 709 /* If split failed move the inode on the list back to shrinklist */ 710 if (ret) 711 goto move_back; 712 713 split++; 714 drop: 715 list_del_init(&info->shrinklist); 716 goto put; 717 move_back: 718 /* 719 * Make sure the inode is either on the global list or deleted 720 * from any local list before iput() since it could be deleted 721 * in another thread once we put the inode (then the local list 722 * is corrupted). 723 */ 724 spin_lock(&sbinfo->shrinklist_lock); 725 list_move(&info->shrinklist, &sbinfo->shrinklist); 726 sbinfo->shrinklist_len++; 727 spin_unlock(&sbinfo->shrinklist_lock); 728 put: 729 iput(inode); 730 } 731 732 return split; 733 } 734 735 static long shmem_unused_huge_scan(struct super_block *sb, 736 struct shrink_control *sc) 737 { 738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 739 740 if (!READ_ONCE(sbinfo->shrinklist_len)) 741 return SHRINK_STOP; 742 743 return shmem_unused_huge_shrink(sbinfo, sc, 0); 744 } 745 746 static long shmem_unused_huge_count(struct super_block *sb, 747 struct shrink_control *sc) 748 { 749 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 750 return READ_ONCE(sbinfo->shrinklist_len); 751 } 752 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 753 754 #define shmem_huge SHMEM_HUGE_DENY 755 756 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 757 struct shrink_control *sc, unsigned long nr_to_split) 758 { 759 return 0; 760 } 761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 762 763 /* 764 * Like filemap_add_folio, but error if expected item has gone. 765 */ 766 static int shmem_add_to_page_cache(struct folio *folio, 767 struct address_space *mapping, 768 pgoff_t index, void *expected, gfp_t gfp, 769 struct mm_struct *charge_mm) 770 { 771 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 772 long nr = folio_nr_pages(folio); 773 int error; 774 775 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 776 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 777 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 778 VM_BUG_ON(expected && folio_test_large(folio)); 779 780 folio_ref_add(folio, nr); 781 folio->mapping = mapping; 782 folio->index = index; 783 784 if (!folio_test_swapcache(folio)) { 785 error = mem_cgroup_charge(folio, charge_mm, gfp); 786 if (error) { 787 if (folio_test_pmd_mappable(folio)) { 788 count_vm_event(THP_FILE_FALLBACK); 789 count_vm_event(THP_FILE_FALLBACK_CHARGE); 790 } 791 goto error; 792 } 793 } 794 folio_throttle_swaprate(folio, gfp); 795 796 do { 797 xas_lock_irq(&xas); 798 if (expected != xas_find_conflict(&xas)) { 799 xas_set_err(&xas, -EEXIST); 800 goto unlock; 801 } 802 if (expected && xas_find_conflict(&xas)) { 803 xas_set_err(&xas, -EEXIST); 804 goto unlock; 805 } 806 xas_store(&xas, folio); 807 if (xas_error(&xas)) 808 goto unlock; 809 if (folio_test_pmd_mappable(folio)) { 810 count_vm_event(THP_FILE_ALLOC); 811 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 812 } 813 mapping->nrpages += nr; 814 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 815 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 816 unlock: 817 xas_unlock_irq(&xas); 818 } while (xas_nomem(&xas, gfp)); 819 820 if (xas_error(&xas)) { 821 error = xas_error(&xas); 822 goto error; 823 } 824 825 return 0; 826 error: 827 folio->mapping = NULL; 828 folio_ref_sub(folio, nr); 829 return error; 830 } 831 832 /* 833 * Like delete_from_page_cache, but substitutes swap for @folio. 834 */ 835 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 836 { 837 struct address_space *mapping = folio->mapping; 838 long nr = folio_nr_pages(folio); 839 int error; 840 841 xa_lock_irq(&mapping->i_pages); 842 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 843 folio->mapping = NULL; 844 mapping->nrpages -= nr; 845 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 846 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 847 xa_unlock_irq(&mapping->i_pages); 848 folio_put(folio); 849 BUG_ON(error); 850 } 851 852 /* 853 * Remove swap entry from page cache, free the swap and its page cache. 854 */ 855 static int shmem_free_swap(struct address_space *mapping, 856 pgoff_t index, void *radswap) 857 { 858 void *old; 859 860 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 861 if (old != radswap) 862 return -ENOENT; 863 free_swap_and_cache(radix_to_swp_entry(radswap)); 864 return 0; 865 } 866 867 /* 868 * Determine (in bytes) how many of the shmem object's pages mapped by the 869 * given offsets are swapped out. 870 * 871 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 872 * as long as the inode doesn't go away and racy results are not a problem. 873 */ 874 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 875 pgoff_t start, pgoff_t end) 876 { 877 XA_STATE(xas, &mapping->i_pages, start); 878 struct page *page; 879 unsigned long swapped = 0; 880 unsigned long max = end - 1; 881 882 rcu_read_lock(); 883 xas_for_each(&xas, page, max) { 884 if (xas_retry(&xas, page)) 885 continue; 886 if (xa_is_value(page)) 887 swapped++; 888 if (xas.xa_index == max) 889 break; 890 if (need_resched()) { 891 xas_pause(&xas); 892 cond_resched_rcu(); 893 } 894 } 895 896 rcu_read_unlock(); 897 898 return swapped << PAGE_SHIFT; 899 } 900 901 /* 902 * Determine (in bytes) how many of the shmem object's pages mapped by the 903 * given vma is swapped out. 904 * 905 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 906 * as long as the inode doesn't go away and racy results are not a problem. 907 */ 908 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 909 { 910 struct inode *inode = file_inode(vma->vm_file); 911 struct shmem_inode_info *info = SHMEM_I(inode); 912 struct address_space *mapping = inode->i_mapping; 913 unsigned long swapped; 914 915 /* Be careful as we don't hold info->lock */ 916 swapped = READ_ONCE(info->swapped); 917 918 /* 919 * The easier cases are when the shmem object has nothing in swap, or 920 * the vma maps it whole. Then we can simply use the stats that we 921 * already track. 922 */ 923 if (!swapped) 924 return 0; 925 926 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 927 return swapped << PAGE_SHIFT; 928 929 /* Here comes the more involved part */ 930 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 931 vma->vm_pgoff + vma_pages(vma)); 932 } 933 934 /* 935 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 936 */ 937 void shmem_unlock_mapping(struct address_space *mapping) 938 { 939 struct folio_batch fbatch; 940 pgoff_t index = 0; 941 942 folio_batch_init(&fbatch); 943 /* 944 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 945 */ 946 while (!mapping_unevictable(mapping) && 947 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 948 check_move_unevictable_folios(&fbatch); 949 folio_batch_release(&fbatch); 950 cond_resched(); 951 } 952 } 953 954 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 955 { 956 struct folio *folio; 957 958 /* 959 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 960 * beyond i_size, and reports fallocated folios as holes. 961 */ 962 folio = filemap_get_entry(inode->i_mapping, index); 963 if (!folio) 964 return folio; 965 if (!xa_is_value(folio)) { 966 folio_lock(folio); 967 if (folio->mapping == inode->i_mapping) 968 return folio; 969 /* The folio has been swapped out */ 970 folio_unlock(folio); 971 folio_put(folio); 972 } 973 /* 974 * But read a folio back from swap if any of it is within i_size 975 * (although in some cases this is just a waste of time). 976 */ 977 folio = NULL; 978 shmem_get_folio(inode, index, &folio, SGP_READ); 979 return folio; 980 } 981 982 /* 983 * Remove range of pages and swap entries from page cache, and free them. 984 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 985 */ 986 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 987 bool unfalloc) 988 { 989 struct address_space *mapping = inode->i_mapping; 990 struct shmem_inode_info *info = SHMEM_I(inode); 991 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 992 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 993 struct folio_batch fbatch; 994 pgoff_t indices[PAGEVEC_SIZE]; 995 struct folio *folio; 996 bool same_folio; 997 long nr_swaps_freed = 0; 998 pgoff_t index; 999 int i; 1000 1001 if (lend == -1) 1002 end = -1; /* unsigned, so actually very big */ 1003 1004 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1005 info->fallocend = start; 1006 1007 folio_batch_init(&fbatch); 1008 index = start; 1009 while (index < end && find_lock_entries(mapping, &index, end - 1, 1010 &fbatch, indices)) { 1011 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1012 folio = fbatch.folios[i]; 1013 1014 if (xa_is_value(folio)) { 1015 if (unfalloc) 1016 continue; 1017 nr_swaps_freed += !shmem_free_swap(mapping, 1018 indices[i], folio); 1019 continue; 1020 } 1021 1022 if (!unfalloc || !folio_test_uptodate(folio)) 1023 truncate_inode_folio(mapping, folio); 1024 folio_unlock(folio); 1025 } 1026 folio_batch_remove_exceptionals(&fbatch); 1027 folio_batch_release(&fbatch); 1028 cond_resched(); 1029 } 1030 1031 /* 1032 * When undoing a failed fallocate, we want none of the partial folio 1033 * zeroing and splitting below, but shall want to truncate the whole 1034 * folio when !uptodate indicates that it was added by this fallocate, 1035 * even when [lstart, lend] covers only a part of the folio. 1036 */ 1037 if (unfalloc) 1038 goto whole_folios; 1039 1040 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1041 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1042 if (folio) { 1043 same_folio = lend < folio_pos(folio) + folio_size(folio); 1044 folio_mark_dirty(folio); 1045 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1046 start = folio_next_index(folio); 1047 if (same_folio) 1048 end = folio->index; 1049 } 1050 folio_unlock(folio); 1051 folio_put(folio); 1052 folio = NULL; 1053 } 1054 1055 if (!same_folio) 1056 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1057 if (folio) { 1058 folio_mark_dirty(folio); 1059 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1060 end = folio->index; 1061 folio_unlock(folio); 1062 folio_put(folio); 1063 } 1064 1065 whole_folios: 1066 1067 index = start; 1068 while (index < end) { 1069 cond_resched(); 1070 1071 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1072 indices)) { 1073 /* If all gone or hole-punch or unfalloc, we're done */ 1074 if (index == start || end != -1) 1075 break; 1076 /* But if truncating, restart to make sure all gone */ 1077 index = start; 1078 continue; 1079 } 1080 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1081 folio = fbatch.folios[i]; 1082 1083 if (xa_is_value(folio)) { 1084 if (unfalloc) 1085 continue; 1086 if (shmem_free_swap(mapping, indices[i], folio)) { 1087 /* Swap was replaced by page: retry */ 1088 index = indices[i]; 1089 break; 1090 } 1091 nr_swaps_freed++; 1092 continue; 1093 } 1094 1095 folio_lock(folio); 1096 1097 if (!unfalloc || !folio_test_uptodate(folio)) { 1098 if (folio_mapping(folio) != mapping) { 1099 /* Page was replaced by swap: retry */ 1100 folio_unlock(folio); 1101 index = indices[i]; 1102 break; 1103 } 1104 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1105 folio); 1106 1107 if (!folio_test_large(folio)) { 1108 truncate_inode_folio(mapping, folio); 1109 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1110 /* 1111 * If we split a page, reset the loop so 1112 * that we pick up the new sub pages. 1113 * Otherwise the THP was entirely 1114 * dropped or the target range was 1115 * zeroed, so just continue the loop as 1116 * is. 1117 */ 1118 if (!folio_test_large(folio)) { 1119 folio_unlock(folio); 1120 index = start; 1121 break; 1122 } 1123 } 1124 } 1125 folio_unlock(folio); 1126 } 1127 folio_batch_remove_exceptionals(&fbatch); 1128 folio_batch_release(&fbatch); 1129 } 1130 1131 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1132 } 1133 1134 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1135 { 1136 shmem_undo_range(inode, lstart, lend, false); 1137 inode->i_mtime = inode_set_ctime_current(inode); 1138 inode_inc_iversion(inode); 1139 } 1140 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1141 1142 static int shmem_getattr(struct mnt_idmap *idmap, 1143 const struct path *path, struct kstat *stat, 1144 u32 request_mask, unsigned int query_flags) 1145 { 1146 struct inode *inode = path->dentry->d_inode; 1147 struct shmem_inode_info *info = SHMEM_I(inode); 1148 1149 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1150 shmem_recalc_inode(inode, 0, 0); 1151 1152 if (info->fsflags & FS_APPEND_FL) 1153 stat->attributes |= STATX_ATTR_APPEND; 1154 if (info->fsflags & FS_IMMUTABLE_FL) 1155 stat->attributes |= STATX_ATTR_IMMUTABLE; 1156 if (info->fsflags & FS_NODUMP_FL) 1157 stat->attributes |= STATX_ATTR_NODUMP; 1158 stat->attributes_mask |= (STATX_ATTR_APPEND | 1159 STATX_ATTR_IMMUTABLE | 1160 STATX_ATTR_NODUMP); 1161 generic_fillattr(idmap, request_mask, inode, stat); 1162 1163 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1164 stat->blksize = HPAGE_PMD_SIZE; 1165 1166 if (request_mask & STATX_BTIME) { 1167 stat->result_mask |= STATX_BTIME; 1168 stat->btime.tv_sec = info->i_crtime.tv_sec; 1169 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1170 } 1171 1172 return 0; 1173 } 1174 1175 static int shmem_setattr(struct mnt_idmap *idmap, 1176 struct dentry *dentry, struct iattr *attr) 1177 { 1178 struct inode *inode = d_inode(dentry); 1179 struct shmem_inode_info *info = SHMEM_I(inode); 1180 int error; 1181 bool update_mtime = false; 1182 bool update_ctime = true; 1183 1184 error = setattr_prepare(idmap, dentry, attr); 1185 if (error) 1186 return error; 1187 1188 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1189 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1190 return -EPERM; 1191 } 1192 } 1193 1194 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1195 loff_t oldsize = inode->i_size; 1196 loff_t newsize = attr->ia_size; 1197 1198 /* protected by i_rwsem */ 1199 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1200 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1201 return -EPERM; 1202 1203 if (newsize != oldsize) { 1204 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1205 oldsize, newsize); 1206 if (error) 1207 return error; 1208 i_size_write(inode, newsize); 1209 update_mtime = true; 1210 } else { 1211 update_ctime = false; 1212 } 1213 if (newsize <= oldsize) { 1214 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1215 if (oldsize > holebegin) 1216 unmap_mapping_range(inode->i_mapping, 1217 holebegin, 0, 1); 1218 if (info->alloced) 1219 shmem_truncate_range(inode, 1220 newsize, (loff_t)-1); 1221 /* unmap again to remove racily COWed private pages */ 1222 if (oldsize > holebegin) 1223 unmap_mapping_range(inode->i_mapping, 1224 holebegin, 0, 1); 1225 } 1226 } 1227 1228 if (is_quota_modification(idmap, inode, attr)) { 1229 error = dquot_initialize(inode); 1230 if (error) 1231 return error; 1232 } 1233 1234 /* Transfer quota accounting */ 1235 if (i_uid_needs_update(idmap, attr, inode) || 1236 i_gid_needs_update(idmap, attr, inode)) { 1237 error = dquot_transfer(idmap, inode, attr); 1238 1239 if (error) 1240 return error; 1241 } 1242 1243 setattr_copy(idmap, inode, attr); 1244 if (attr->ia_valid & ATTR_MODE) 1245 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1246 if (!error && update_ctime) { 1247 inode_set_ctime_current(inode); 1248 if (update_mtime) 1249 inode->i_mtime = inode_get_ctime(inode); 1250 inode_inc_iversion(inode); 1251 } 1252 return error; 1253 } 1254 1255 static void shmem_evict_inode(struct inode *inode) 1256 { 1257 struct shmem_inode_info *info = SHMEM_I(inode); 1258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1259 size_t freed = 0; 1260 1261 if (shmem_mapping(inode->i_mapping)) { 1262 shmem_unacct_size(info->flags, inode->i_size); 1263 inode->i_size = 0; 1264 mapping_set_exiting(inode->i_mapping); 1265 shmem_truncate_range(inode, 0, (loff_t)-1); 1266 if (!list_empty(&info->shrinklist)) { 1267 spin_lock(&sbinfo->shrinklist_lock); 1268 if (!list_empty(&info->shrinklist)) { 1269 list_del_init(&info->shrinklist); 1270 sbinfo->shrinklist_len--; 1271 } 1272 spin_unlock(&sbinfo->shrinklist_lock); 1273 } 1274 while (!list_empty(&info->swaplist)) { 1275 /* Wait while shmem_unuse() is scanning this inode... */ 1276 wait_var_event(&info->stop_eviction, 1277 !atomic_read(&info->stop_eviction)); 1278 mutex_lock(&shmem_swaplist_mutex); 1279 /* ...but beware of the race if we peeked too early */ 1280 if (!atomic_read(&info->stop_eviction)) 1281 list_del_init(&info->swaplist); 1282 mutex_unlock(&shmem_swaplist_mutex); 1283 } 1284 } 1285 1286 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1287 shmem_free_inode(inode->i_sb, freed); 1288 WARN_ON(inode->i_blocks); 1289 clear_inode(inode); 1290 #ifdef CONFIG_TMPFS_QUOTA 1291 dquot_free_inode(inode); 1292 dquot_drop(inode); 1293 #endif 1294 } 1295 1296 static int shmem_find_swap_entries(struct address_space *mapping, 1297 pgoff_t start, struct folio_batch *fbatch, 1298 pgoff_t *indices, unsigned int type) 1299 { 1300 XA_STATE(xas, &mapping->i_pages, start); 1301 struct folio *folio; 1302 swp_entry_t entry; 1303 1304 rcu_read_lock(); 1305 xas_for_each(&xas, folio, ULONG_MAX) { 1306 if (xas_retry(&xas, folio)) 1307 continue; 1308 1309 if (!xa_is_value(folio)) 1310 continue; 1311 1312 entry = radix_to_swp_entry(folio); 1313 /* 1314 * swapin error entries can be found in the mapping. But they're 1315 * deliberately ignored here as we've done everything we can do. 1316 */ 1317 if (swp_type(entry) != type) 1318 continue; 1319 1320 indices[folio_batch_count(fbatch)] = xas.xa_index; 1321 if (!folio_batch_add(fbatch, folio)) 1322 break; 1323 1324 if (need_resched()) { 1325 xas_pause(&xas); 1326 cond_resched_rcu(); 1327 } 1328 } 1329 rcu_read_unlock(); 1330 1331 return xas.xa_index; 1332 } 1333 1334 /* 1335 * Move the swapped pages for an inode to page cache. Returns the count 1336 * of pages swapped in, or the error in case of failure. 1337 */ 1338 static int shmem_unuse_swap_entries(struct inode *inode, 1339 struct folio_batch *fbatch, pgoff_t *indices) 1340 { 1341 int i = 0; 1342 int ret = 0; 1343 int error = 0; 1344 struct address_space *mapping = inode->i_mapping; 1345 1346 for (i = 0; i < folio_batch_count(fbatch); i++) { 1347 struct folio *folio = fbatch->folios[i]; 1348 1349 if (!xa_is_value(folio)) 1350 continue; 1351 error = shmem_swapin_folio(inode, indices[i], 1352 &folio, SGP_CACHE, 1353 mapping_gfp_mask(mapping), 1354 NULL, NULL); 1355 if (error == 0) { 1356 folio_unlock(folio); 1357 folio_put(folio); 1358 ret++; 1359 } 1360 if (error == -ENOMEM) 1361 break; 1362 error = 0; 1363 } 1364 return error ? error : ret; 1365 } 1366 1367 /* 1368 * If swap found in inode, free it and move page from swapcache to filecache. 1369 */ 1370 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1371 { 1372 struct address_space *mapping = inode->i_mapping; 1373 pgoff_t start = 0; 1374 struct folio_batch fbatch; 1375 pgoff_t indices[PAGEVEC_SIZE]; 1376 int ret = 0; 1377 1378 do { 1379 folio_batch_init(&fbatch); 1380 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1381 if (folio_batch_count(&fbatch) == 0) { 1382 ret = 0; 1383 break; 1384 } 1385 1386 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1387 if (ret < 0) 1388 break; 1389 1390 start = indices[folio_batch_count(&fbatch) - 1]; 1391 } while (true); 1392 1393 return ret; 1394 } 1395 1396 /* 1397 * Read all the shared memory data that resides in the swap 1398 * device 'type' back into memory, so the swap device can be 1399 * unused. 1400 */ 1401 int shmem_unuse(unsigned int type) 1402 { 1403 struct shmem_inode_info *info, *next; 1404 int error = 0; 1405 1406 if (list_empty(&shmem_swaplist)) 1407 return 0; 1408 1409 mutex_lock(&shmem_swaplist_mutex); 1410 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1411 if (!info->swapped) { 1412 list_del_init(&info->swaplist); 1413 continue; 1414 } 1415 /* 1416 * Drop the swaplist mutex while searching the inode for swap; 1417 * but before doing so, make sure shmem_evict_inode() will not 1418 * remove placeholder inode from swaplist, nor let it be freed 1419 * (igrab() would protect from unlink, but not from unmount). 1420 */ 1421 atomic_inc(&info->stop_eviction); 1422 mutex_unlock(&shmem_swaplist_mutex); 1423 1424 error = shmem_unuse_inode(&info->vfs_inode, type); 1425 cond_resched(); 1426 1427 mutex_lock(&shmem_swaplist_mutex); 1428 next = list_next_entry(info, swaplist); 1429 if (!info->swapped) 1430 list_del_init(&info->swaplist); 1431 if (atomic_dec_and_test(&info->stop_eviction)) 1432 wake_up_var(&info->stop_eviction); 1433 if (error) 1434 break; 1435 } 1436 mutex_unlock(&shmem_swaplist_mutex); 1437 1438 return error; 1439 } 1440 1441 /* 1442 * Move the page from the page cache to the swap cache. 1443 */ 1444 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1445 { 1446 struct folio *folio = page_folio(page); 1447 struct address_space *mapping = folio->mapping; 1448 struct inode *inode = mapping->host; 1449 struct shmem_inode_info *info = SHMEM_I(inode); 1450 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1451 swp_entry_t swap; 1452 pgoff_t index; 1453 1454 /* 1455 * Our capabilities prevent regular writeback or sync from ever calling 1456 * shmem_writepage; but a stacking filesystem might use ->writepage of 1457 * its underlying filesystem, in which case tmpfs should write out to 1458 * swap only in response to memory pressure, and not for the writeback 1459 * threads or sync. 1460 */ 1461 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1462 goto redirty; 1463 1464 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1465 goto redirty; 1466 1467 if (!total_swap_pages) 1468 goto redirty; 1469 1470 /* 1471 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1472 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1473 * and its shmem_writeback() needs them to be split when swapping. 1474 */ 1475 if (folio_test_large(folio)) { 1476 /* Ensure the subpages are still dirty */ 1477 folio_test_set_dirty(folio); 1478 if (split_huge_page(page) < 0) 1479 goto redirty; 1480 folio = page_folio(page); 1481 folio_clear_dirty(folio); 1482 } 1483 1484 index = folio->index; 1485 1486 /* 1487 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1488 * value into swapfile.c, the only way we can correctly account for a 1489 * fallocated folio arriving here is now to initialize it and write it. 1490 * 1491 * That's okay for a folio already fallocated earlier, but if we have 1492 * not yet completed the fallocation, then (a) we want to keep track 1493 * of this folio in case we have to undo it, and (b) it may not be a 1494 * good idea to continue anyway, once we're pushing into swap. So 1495 * reactivate the folio, and let shmem_fallocate() quit when too many. 1496 */ 1497 if (!folio_test_uptodate(folio)) { 1498 if (inode->i_private) { 1499 struct shmem_falloc *shmem_falloc; 1500 spin_lock(&inode->i_lock); 1501 shmem_falloc = inode->i_private; 1502 if (shmem_falloc && 1503 !shmem_falloc->waitq && 1504 index >= shmem_falloc->start && 1505 index < shmem_falloc->next) 1506 shmem_falloc->nr_unswapped++; 1507 else 1508 shmem_falloc = NULL; 1509 spin_unlock(&inode->i_lock); 1510 if (shmem_falloc) 1511 goto redirty; 1512 } 1513 folio_zero_range(folio, 0, folio_size(folio)); 1514 flush_dcache_folio(folio); 1515 folio_mark_uptodate(folio); 1516 } 1517 1518 swap = folio_alloc_swap(folio); 1519 if (!swap.val) 1520 goto redirty; 1521 1522 /* 1523 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1524 * if it's not already there. Do it now before the folio is 1525 * moved to swap cache, when its pagelock no longer protects 1526 * the inode from eviction. But don't unlock the mutex until 1527 * we've incremented swapped, because shmem_unuse_inode() will 1528 * prune a !swapped inode from the swaplist under this mutex. 1529 */ 1530 mutex_lock(&shmem_swaplist_mutex); 1531 if (list_empty(&info->swaplist)) 1532 list_add(&info->swaplist, &shmem_swaplist); 1533 1534 if (add_to_swap_cache(folio, swap, 1535 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1536 NULL) == 0) { 1537 shmem_recalc_inode(inode, 0, 1); 1538 swap_shmem_alloc(swap); 1539 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1540 1541 mutex_unlock(&shmem_swaplist_mutex); 1542 BUG_ON(folio_mapped(folio)); 1543 swap_writepage(&folio->page, wbc); 1544 return 0; 1545 } 1546 1547 mutex_unlock(&shmem_swaplist_mutex); 1548 put_swap_folio(folio, swap); 1549 redirty: 1550 folio_mark_dirty(folio); 1551 if (wbc->for_reclaim) 1552 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1553 folio_unlock(folio); 1554 return 0; 1555 } 1556 1557 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1558 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1559 { 1560 char buffer[64]; 1561 1562 if (!mpol || mpol->mode == MPOL_DEFAULT) 1563 return; /* show nothing */ 1564 1565 mpol_to_str(buffer, sizeof(buffer), mpol); 1566 1567 seq_printf(seq, ",mpol=%s", buffer); 1568 } 1569 1570 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1571 { 1572 struct mempolicy *mpol = NULL; 1573 if (sbinfo->mpol) { 1574 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1575 mpol = sbinfo->mpol; 1576 mpol_get(mpol); 1577 raw_spin_unlock(&sbinfo->stat_lock); 1578 } 1579 return mpol; 1580 } 1581 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1582 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1583 { 1584 } 1585 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1586 { 1587 return NULL; 1588 } 1589 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1590 #ifndef CONFIG_NUMA 1591 #define vm_policy vm_private_data 1592 #endif 1593 1594 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1595 struct shmem_inode_info *info, pgoff_t index) 1596 { 1597 /* Create a pseudo vma that just contains the policy */ 1598 vma_init(vma, NULL); 1599 /* Bias interleave by inode number to distribute better across nodes */ 1600 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1601 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1602 } 1603 1604 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1605 { 1606 /* Drop reference taken by mpol_shared_policy_lookup() */ 1607 mpol_cond_put(vma->vm_policy); 1608 } 1609 1610 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1611 struct shmem_inode_info *info, pgoff_t index) 1612 { 1613 struct vm_area_struct pvma; 1614 struct page *page; 1615 struct vm_fault vmf = { 1616 .vma = &pvma, 1617 }; 1618 1619 shmem_pseudo_vma_init(&pvma, info, index); 1620 page = swap_cluster_readahead(swap, gfp, &vmf); 1621 shmem_pseudo_vma_destroy(&pvma); 1622 1623 if (!page) 1624 return NULL; 1625 return page_folio(page); 1626 } 1627 1628 /* 1629 * Make sure huge_gfp is always more limited than limit_gfp. 1630 * Some of the flags set permissions, while others set limitations. 1631 */ 1632 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1633 { 1634 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1635 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1636 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1637 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1638 1639 /* Allow allocations only from the originally specified zones. */ 1640 result |= zoneflags; 1641 1642 /* 1643 * Minimize the result gfp by taking the union with the deny flags, 1644 * and the intersection of the allow flags. 1645 */ 1646 result |= (limit_gfp & denyflags); 1647 result |= (huge_gfp & limit_gfp) & allowflags; 1648 1649 return result; 1650 } 1651 1652 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1653 struct shmem_inode_info *info, pgoff_t index) 1654 { 1655 struct vm_area_struct pvma; 1656 struct address_space *mapping = info->vfs_inode.i_mapping; 1657 pgoff_t hindex; 1658 struct folio *folio; 1659 1660 hindex = round_down(index, HPAGE_PMD_NR); 1661 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1662 XA_PRESENT)) 1663 return NULL; 1664 1665 shmem_pseudo_vma_init(&pvma, info, hindex); 1666 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1667 shmem_pseudo_vma_destroy(&pvma); 1668 if (!folio) 1669 count_vm_event(THP_FILE_FALLBACK); 1670 return folio; 1671 } 1672 1673 static struct folio *shmem_alloc_folio(gfp_t gfp, 1674 struct shmem_inode_info *info, pgoff_t index) 1675 { 1676 struct vm_area_struct pvma; 1677 struct folio *folio; 1678 1679 shmem_pseudo_vma_init(&pvma, info, index); 1680 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1681 shmem_pseudo_vma_destroy(&pvma); 1682 1683 return folio; 1684 } 1685 1686 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1687 pgoff_t index, bool huge) 1688 { 1689 struct shmem_inode_info *info = SHMEM_I(inode); 1690 struct folio *folio; 1691 int nr; 1692 int err; 1693 1694 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1695 huge = false; 1696 nr = huge ? HPAGE_PMD_NR : 1; 1697 1698 err = shmem_inode_acct_block(inode, nr); 1699 if (err) 1700 goto failed; 1701 1702 if (huge) 1703 folio = shmem_alloc_hugefolio(gfp, info, index); 1704 else 1705 folio = shmem_alloc_folio(gfp, info, index); 1706 if (folio) { 1707 __folio_set_locked(folio); 1708 __folio_set_swapbacked(folio); 1709 return folio; 1710 } 1711 1712 err = -ENOMEM; 1713 shmem_inode_unacct_blocks(inode, nr); 1714 failed: 1715 return ERR_PTR(err); 1716 } 1717 1718 /* 1719 * When a page is moved from swapcache to shmem filecache (either by the 1720 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1721 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1722 * ignorance of the mapping it belongs to. If that mapping has special 1723 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1724 * we may need to copy to a suitable page before moving to filecache. 1725 * 1726 * In a future release, this may well be extended to respect cpuset and 1727 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1728 * but for now it is a simple matter of zone. 1729 */ 1730 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1731 { 1732 return folio_zonenum(folio) > gfp_zone(gfp); 1733 } 1734 1735 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1736 struct shmem_inode_info *info, pgoff_t index) 1737 { 1738 struct folio *old, *new; 1739 struct address_space *swap_mapping; 1740 swp_entry_t entry; 1741 pgoff_t swap_index; 1742 int error; 1743 1744 old = *foliop; 1745 entry = old->swap; 1746 swap_index = swp_offset(entry); 1747 swap_mapping = swap_address_space(entry); 1748 1749 /* 1750 * We have arrived here because our zones are constrained, so don't 1751 * limit chance of success by further cpuset and node constraints. 1752 */ 1753 gfp &= ~GFP_CONSTRAINT_MASK; 1754 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1755 new = shmem_alloc_folio(gfp, info, index); 1756 if (!new) 1757 return -ENOMEM; 1758 1759 folio_get(new); 1760 folio_copy(new, old); 1761 flush_dcache_folio(new); 1762 1763 __folio_set_locked(new); 1764 __folio_set_swapbacked(new); 1765 folio_mark_uptodate(new); 1766 new->swap = entry; 1767 folio_set_swapcache(new); 1768 1769 /* 1770 * Our caller will very soon move newpage out of swapcache, but it's 1771 * a nice clean interface for us to replace oldpage by newpage there. 1772 */ 1773 xa_lock_irq(&swap_mapping->i_pages); 1774 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1775 if (!error) { 1776 mem_cgroup_migrate(old, new); 1777 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1778 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1779 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1780 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1781 } 1782 xa_unlock_irq(&swap_mapping->i_pages); 1783 1784 if (unlikely(error)) { 1785 /* 1786 * Is this possible? I think not, now that our callers check 1787 * both PageSwapCache and page_private after getting page lock; 1788 * but be defensive. Reverse old to newpage for clear and free. 1789 */ 1790 old = new; 1791 } else { 1792 folio_add_lru(new); 1793 *foliop = new; 1794 } 1795 1796 folio_clear_swapcache(old); 1797 old->private = NULL; 1798 1799 folio_unlock(old); 1800 folio_put_refs(old, 2); 1801 return error; 1802 } 1803 1804 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1805 struct folio *folio, swp_entry_t swap) 1806 { 1807 struct address_space *mapping = inode->i_mapping; 1808 swp_entry_t swapin_error; 1809 void *old; 1810 1811 swapin_error = make_poisoned_swp_entry(); 1812 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1813 swp_to_radix_entry(swap), 1814 swp_to_radix_entry(swapin_error), 0); 1815 if (old != swp_to_radix_entry(swap)) 1816 return; 1817 1818 folio_wait_writeback(folio); 1819 delete_from_swap_cache(folio); 1820 /* 1821 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1822 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1823 * in shmem_evict_inode(). 1824 */ 1825 shmem_recalc_inode(inode, -1, -1); 1826 swap_free(swap); 1827 } 1828 1829 /* 1830 * Swap in the folio pointed to by *foliop. 1831 * Caller has to make sure that *foliop contains a valid swapped folio. 1832 * Returns 0 and the folio in foliop if success. On failure, returns the 1833 * error code and NULL in *foliop. 1834 */ 1835 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1836 struct folio **foliop, enum sgp_type sgp, 1837 gfp_t gfp, struct vm_area_struct *vma, 1838 vm_fault_t *fault_type) 1839 { 1840 struct address_space *mapping = inode->i_mapping; 1841 struct shmem_inode_info *info = SHMEM_I(inode); 1842 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1843 struct swap_info_struct *si; 1844 struct folio *folio = NULL; 1845 swp_entry_t swap; 1846 int error; 1847 1848 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1849 swap = radix_to_swp_entry(*foliop); 1850 *foliop = NULL; 1851 1852 if (is_poisoned_swp_entry(swap)) 1853 return -EIO; 1854 1855 si = get_swap_device(swap); 1856 if (!si) { 1857 if (!shmem_confirm_swap(mapping, index, swap)) 1858 return -EEXIST; 1859 else 1860 return -EINVAL; 1861 } 1862 1863 /* Look it up and read it in.. */ 1864 folio = swap_cache_get_folio(swap, NULL, 0); 1865 if (!folio) { 1866 /* Or update major stats only when swapin succeeds?? */ 1867 if (fault_type) { 1868 *fault_type |= VM_FAULT_MAJOR; 1869 count_vm_event(PGMAJFAULT); 1870 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1871 } 1872 /* Here we actually start the io */ 1873 folio = shmem_swapin(swap, gfp, info, index); 1874 if (!folio) { 1875 error = -ENOMEM; 1876 goto failed; 1877 } 1878 } 1879 1880 /* We have to do this with folio locked to prevent races */ 1881 folio_lock(folio); 1882 if (!folio_test_swapcache(folio) || 1883 folio->swap.val != swap.val || 1884 !shmem_confirm_swap(mapping, index, swap)) { 1885 error = -EEXIST; 1886 goto unlock; 1887 } 1888 if (!folio_test_uptodate(folio)) { 1889 error = -EIO; 1890 goto failed; 1891 } 1892 folio_wait_writeback(folio); 1893 1894 /* 1895 * Some architectures may have to restore extra metadata to the 1896 * folio after reading from swap. 1897 */ 1898 arch_swap_restore(swap, folio); 1899 1900 if (shmem_should_replace_folio(folio, gfp)) { 1901 error = shmem_replace_folio(&folio, gfp, info, index); 1902 if (error) 1903 goto failed; 1904 } 1905 1906 error = shmem_add_to_page_cache(folio, mapping, index, 1907 swp_to_radix_entry(swap), gfp, 1908 charge_mm); 1909 if (error) 1910 goto failed; 1911 1912 shmem_recalc_inode(inode, 0, -1); 1913 1914 if (sgp == SGP_WRITE) 1915 folio_mark_accessed(folio); 1916 1917 delete_from_swap_cache(folio); 1918 folio_mark_dirty(folio); 1919 swap_free(swap); 1920 put_swap_device(si); 1921 1922 *foliop = folio; 1923 return 0; 1924 failed: 1925 if (!shmem_confirm_swap(mapping, index, swap)) 1926 error = -EEXIST; 1927 if (error == -EIO) 1928 shmem_set_folio_swapin_error(inode, index, folio, swap); 1929 unlock: 1930 if (folio) { 1931 folio_unlock(folio); 1932 folio_put(folio); 1933 } 1934 put_swap_device(si); 1935 1936 return error; 1937 } 1938 1939 /* 1940 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1941 * 1942 * If we allocate a new one we do not mark it dirty. That's up to the 1943 * vm. If we swap it in we mark it dirty since we also free the swap 1944 * entry since a page cannot live in both the swap and page cache. 1945 * 1946 * vma, vmf, and fault_type are only supplied by shmem_fault: 1947 * otherwise they are NULL. 1948 */ 1949 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1950 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1951 struct vm_area_struct *vma, struct vm_fault *vmf, 1952 vm_fault_t *fault_type) 1953 { 1954 struct address_space *mapping = inode->i_mapping; 1955 struct shmem_inode_info *info = SHMEM_I(inode); 1956 struct shmem_sb_info *sbinfo; 1957 struct mm_struct *charge_mm; 1958 struct folio *folio; 1959 pgoff_t hindex; 1960 gfp_t huge_gfp; 1961 int error; 1962 int once = 0; 1963 int alloced = 0; 1964 1965 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1966 return -EFBIG; 1967 repeat: 1968 if (sgp <= SGP_CACHE && 1969 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1970 return -EINVAL; 1971 } 1972 1973 sbinfo = SHMEM_SB(inode->i_sb); 1974 charge_mm = vma ? vma->vm_mm : NULL; 1975 1976 folio = filemap_get_entry(mapping, index); 1977 if (folio && vma && userfaultfd_minor(vma)) { 1978 if (!xa_is_value(folio)) 1979 folio_put(folio); 1980 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1981 return 0; 1982 } 1983 1984 if (xa_is_value(folio)) { 1985 error = shmem_swapin_folio(inode, index, &folio, 1986 sgp, gfp, vma, fault_type); 1987 if (error == -EEXIST) 1988 goto repeat; 1989 1990 *foliop = folio; 1991 return error; 1992 } 1993 1994 if (folio) { 1995 folio_lock(folio); 1996 1997 /* Has the folio been truncated or swapped out? */ 1998 if (unlikely(folio->mapping != mapping)) { 1999 folio_unlock(folio); 2000 folio_put(folio); 2001 goto repeat; 2002 } 2003 if (sgp == SGP_WRITE) 2004 folio_mark_accessed(folio); 2005 if (folio_test_uptodate(folio)) 2006 goto out; 2007 /* fallocated folio */ 2008 if (sgp != SGP_READ) 2009 goto clear; 2010 folio_unlock(folio); 2011 folio_put(folio); 2012 } 2013 2014 /* 2015 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2016 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2017 */ 2018 *foliop = NULL; 2019 if (sgp == SGP_READ) 2020 return 0; 2021 if (sgp == SGP_NOALLOC) 2022 return -ENOENT; 2023 2024 /* 2025 * Fast cache lookup and swap lookup did not find it: allocate. 2026 */ 2027 2028 if (vma && userfaultfd_missing(vma)) { 2029 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2030 return 0; 2031 } 2032 2033 if (!shmem_is_huge(inode, index, false, 2034 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0)) 2035 goto alloc_nohuge; 2036 2037 huge_gfp = vma_thp_gfp_mask(vma); 2038 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2039 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 2040 if (IS_ERR(folio)) { 2041 alloc_nohuge: 2042 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 2043 } 2044 if (IS_ERR(folio)) { 2045 int retry = 5; 2046 2047 error = PTR_ERR(folio); 2048 folio = NULL; 2049 if (error != -ENOSPC) 2050 goto unlock; 2051 /* 2052 * Try to reclaim some space by splitting a large folio 2053 * beyond i_size on the filesystem. 2054 */ 2055 while (retry--) { 2056 int ret; 2057 2058 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 2059 if (ret == SHRINK_STOP) 2060 break; 2061 if (ret) 2062 goto alloc_nohuge; 2063 } 2064 goto unlock; 2065 } 2066 2067 hindex = round_down(index, folio_nr_pages(folio)); 2068 2069 if (sgp == SGP_WRITE) 2070 __folio_set_referenced(folio); 2071 2072 error = shmem_add_to_page_cache(folio, mapping, hindex, 2073 NULL, gfp & GFP_RECLAIM_MASK, 2074 charge_mm); 2075 if (error) 2076 goto unacct; 2077 2078 folio_add_lru(folio); 2079 shmem_recalc_inode(inode, folio_nr_pages(folio), 0); 2080 alloced = true; 2081 2082 if (folio_test_pmd_mappable(folio) && 2083 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2084 folio_next_index(folio) - 1) { 2085 /* 2086 * Part of the large folio is beyond i_size: subject 2087 * to shrink under memory pressure. 2088 */ 2089 spin_lock(&sbinfo->shrinklist_lock); 2090 /* 2091 * _careful to defend against unlocked access to 2092 * ->shrink_list in shmem_unused_huge_shrink() 2093 */ 2094 if (list_empty_careful(&info->shrinklist)) { 2095 list_add_tail(&info->shrinklist, 2096 &sbinfo->shrinklist); 2097 sbinfo->shrinklist_len++; 2098 } 2099 spin_unlock(&sbinfo->shrinklist_lock); 2100 } 2101 2102 /* 2103 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2104 */ 2105 if (sgp == SGP_FALLOC) 2106 sgp = SGP_WRITE; 2107 clear: 2108 /* 2109 * Let SGP_WRITE caller clear ends if write does not fill folio; 2110 * but SGP_FALLOC on a folio fallocated earlier must initialize 2111 * it now, lest undo on failure cancel our earlier guarantee. 2112 */ 2113 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2114 long i, n = folio_nr_pages(folio); 2115 2116 for (i = 0; i < n; i++) 2117 clear_highpage(folio_page(folio, i)); 2118 flush_dcache_folio(folio); 2119 folio_mark_uptodate(folio); 2120 } 2121 2122 /* Perhaps the file has been truncated since we checked */ 2123 if (sgp <= SGP_CACHE && 2124 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2125 if (alloced) { 2126 folio_clear_dirty(folio); 2127 filemap_remove_folio(folio); 2128 shmem_recalc_inode(inode, 0, 0); 2129 } 2130 error = -EINVAL; 2131 goto unlock; 2132 } 2133 out: 2134 *foliop = folio; 2135 return 0; 2136 2137 /* 2138 * Error recovery. 2139 */ 2140 unacct: 2141 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2142 2143 if (folio_test_large(folio)) { 2144 folio_unlock(folio); 2145 folio_put(folio); 2146 goto alloc_nohuge; 2147 } 2148 unlock: 2149 if (folio) { 2150 folio_unlock(folio); 2151 folio_put(folio); 2152 } 2153 if (error == -ENOSPC && !once++) { 2154 shmem_recalc_inode(inode, 0, 0); 2155 goto repeat; 2156 } 2157 if (error == -EEXIST) 2158 goto repeat; 2159 return error; 2160 } 2161 2162 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2163 enum sgp_type sgp) 2164 { 2165 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2166 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2167 } 2168 2169 /* 2170 * This is like autoremove_wake_function, but it removes the wait queue 2171 * entry unconditionally - even if something else had already woken the 2172 * target. 2173 */ 2174 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2175 { 2176 int ret = default_wake_function(wait, mode, sync, key); 2177 list_del_init(&wait->entry); 2178 return ret; 2179 } 2180 2181 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2182 { 2183 struct vm_area_struct *vma = vmf->vma; 2184 struct inode *inode = file_inode(vma->vm_file); 2185 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2186 struct folio *folio = NULL; 2187 int err; 2188 vm_fault_t ret = VM_FAULT_LOCKED; 2189 2190 /* 2191 * Trinity finds that probing a hole which tmpfs is punching can 2192 * prevent the hole-punch from ever completing: which in turn 2193 * locks writers out with its hold on i_rwsem. So refrain from 2194 * faulting pages into the hole while it's being punched. Although 2195 * shmem_undo_range() does remove the additions, it may be unable to 2196 * keep up, as each new page needs its own unmap_mapping_range() call, 2197 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2198 * 2199 * It does not matter if we sometimes reach this check just before the 2200 * hole-punch begins, so that one fault then races with the punch: 2201 * we just need to make racing faults a rare case. 2202 * 2203 * The implementation below would be much simpler if we just used a 2204 * standard mutex or completion: but we cannot take i_rwsem in fault, 2205 * and bloating every shmem inode for this unlikely case would be sad. 2206 */ 2207 if (unlikely(inode->i_private)) { 2208 struct shmem_falloc *shmem_falloc; 2209 2210 spin_lock(&inode->i_lock); 2211 shmem_falloc = inode->i_private; 2212 if (shmem_falloc && 2213 shmem_falloc->waitq && 2214 vmf->pgoff >= shmem_falloc->start && 2215 vmf->pgoff < shmem_falloc->next) { 2216 struct file *fpin; 2217 wait_queue_head_t *shmem_falloc_waitq; 2218 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2219 2220 ret = VM_FAULT_NOPAGE; 2221 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2222 if (fpin) 2223 ret = VM_FAULT_RETRY; 2224 2225 shmem_falloc_waitq = shmem_falloc->waitq; 2226 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2227 TASK_UNINTERRUPTIBLE); 2228 spin_unlock(&inode->i_lock); 2229 schedule(); 2230 2231 /* 2232 * shmem_falloc_waitq points into the shmem_fallocate() 2233 * stack of the hole-punching task: shmem_falloc_waitq 2234 * is usually invalid by the time we reach here, but 2235 * finish_wait() does not dereference it in that case; 2236 * though i_lock needed lest racing with wake_up_all(). 2237 */ 2238 spin_lock(&inode->i_lock); 2239 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2240 spin_unlock(&inode->i_lock); 2241 2242 if (fpin) 2243 fput(fpin); 2244 return ret; 2245 } 2246 spin_unlock(&inode->i_lock); 2247 } 2248 2249 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2250 gfp, vma, vmf, &ret); 2251 if (err) 2252 return vmf_error(err); 2253 if (folio) 2254 vmf->page = folio_file_page(folio, vmf->pgoff); 2255 return ret; 2256 } 2257 2258 unsigned long shmem_get_unmapped_area(struct file *file, 2259 unsigned long uaddr, unsigned long len, 2260 unsigned long pgoff, unsigned long flags) 2261 { 2262 unsigned long (*get_area)(struct file *, 2263 unsigned long, unsigned long, unsigned long, unsigned long); 2264 unsigned long addr; 2265 unsigned long offset; 2266 unsigned long inflated_len; 2267 unsigned long inflated_addr; 2268 unsigned long inflated_offset; 2269 2270 if (len > TASK_SIZE) 2271 return -ENOMEM; 2272 2273 get_area = current->mm->get_unmapped_area; 2274 addr = get_area(file, uaddr, len, pgoff, flags); 2275 2276 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2277 return addr; 2278 if (IS_ERR_VALUE(addr)) 2279 return addr; 2280 if (addr & ~PAGE_MASK) 2281 return addr; 2282 if (addr > TASK_SIZE - len) 2283 return addr; 2284 2285 if (shmem_huge == SHMEM_HUGE_DENY) 2286 return addr; 2287 if (len < HPAGE_PMD_SIZE) 2288 return addr; 2289 if (flags & MAP_FIXED) 2290 return addr; 2291 /* 2292 * Our priority is to support MAP_SHARED mapped hugely; 2293 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2294 * But if caller specified an address hint and we allocated area there 2295 * successfully, respect that as before. 2296 */ 2297 if (uaddr == addr) 2298 return addr; 2299 2300 if (shmem_huge != SHMEM_HUGE_FORCE) { 2301 struct super_block *sb; 2302 2303 if (file) { 2304 VM_BUG_ON(file->f_op != &shmem_file_operations); 2305 sb = file_inode(file)->i_sb; 2306 } else { 2307 /* 2308 * Called directly from mm/mmap.c, or drivers/char/mem.c 2309 * for "/dev/zero", to create a shared anonymous object. 2310 */ 2311 if (IS_ERR(shm_mnt)) 2312 return addr; 2313 sb = shm_mnt->mnt_sb; 2314 } 2315 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2316 return addr; 2317 } 2318 2319 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2320 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2321 return addr; 2322 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2323 return addr; 2324 2325 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2326 if (inflated_len > TASK_SIZE) 2327 return addr; 2328 if (inflated_len < len) 2329 return addr; 2330 2331 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2332 if (IS_ERR_VALUE(inflated_addr)) 2333 return addr; 2334 if (inflated_addr & ~PAGE_MASK) 2335 return addr; 2336 2337 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2338 inflated_addr += offset - inflated_offset; 2339 if (inflated_offset > offset) 2340 inflated_addr += HPAGE_PMD_SIZE; 2341 2342 if (inflated_addr > TASK_SIZE - len) 2343 return addr; 2344 return inflated_addr; 2345 } 2346 2347 #ifdef CONFIG_NUMA 2348 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2349 { 2350 struct inode *inode = file_inode(vma->vm_file); 2351 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2352 } 2353 2354 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2355 unsigned long addr) 2356 { 2357 struct inode *inode = file_inode(vma->vm_file); 2358 pgoff_t index; 2359 2360 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2361 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2362 } 2363 #endif 2364 2365 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2366 { 2367 struct inode *inode = file_inode(file); 2368 struct shmem_inode_info *info = SHMEM_I(inode); 2369 int retval = -ENOMEM; 2370 2371 /* 2372 * What serializes the accesses to info->flags? 2373 * ipc_lock_object() when called from shmctl_do_lock(), 2374 * no serialization needed when called from shm_destroy(). 2375 */ 2376 if (lock && !(info->flags & VM_LOCKED)) { 2377 if (!user_shm_lock(inode->i_size, ucounts)) 2378 goto out_nomem; 2379 info->flags |= VM_LOCKED; 2380 mapping_set_unevictable(file->f_mapping); 2381 } 2382 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2383 user_shm_unlock(inode->i_size, ucounts); 2384 info->flags &= ~VM_LOCKED; 2385 mapping_clear_unevictable(file->f_mapping); 2386 } 2387 retval = 0; 2388 2389 out_nomem: 2390 return retval; 2391 } 2392 2393 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2394 { 2395 struct inode *inode = file_inode(file); 2396 struct shmem_inode_info *info = SHMEM_I(inode); 2397 int ret; 2398 2399 ret = seal_check_future_write(info->seals, vma); 2400 if (ret) 2401 return ret; 2402 2403 /* arm64 - allow memory tagging on RAM-based files */ 2404 vm_flags_set(vma, VM_MTE_ALLOWED); 2405 2406 file_accessed(file); 2407 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2408 if (inode->i_nlink) 2409 vma->vm_ops = &shmem_vm_ops; 2410 else 2411 vma->vm_ops = &shmem_anon_vm_ops; 2412 return 0; 2413 } 2414 2415 static int shmem_file_open(struct inode *inode, struct file *file) 2416 { 2417 file->f_mode |= FMODE_CAN_ODIRECT; 2418 return generic_file_open(inode, file); 2419 } 2420 2421 #ifdef CONFIG_TMPFS_XATTR 2422 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2423 2424 /* 2425 * chattr's fsflags are unrelated to extended attributes, 2426 * but tmpfs has chosen to enable them under the same config option. 2427 */ 2428 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2429 { 2430 unsigned int i_flags = 0; 2431 2432 if (fsflags & FS_NOATIME_FL) 2433 i_flags |= S_NOATIME; 2434 if (fsflags & FS_APPEND_FL) 2435 i_flags |= S_APPEND; 2436 if (fsflags & FS_IMMUTABLE_FL) 2437 i_flags |= S_IMMUTABLE; 2438 /* 2439 * But FS_NODUMP_FL does not require any action in i_flags. 2440 */ 2441 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2442 } 2443 #else 2444 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2445 { 2446 } 2447 #define shmem_initxattrs NULL 2448 #endif 2449 2450 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2451 { 2452 return &SHMEM_I(inode)->dir_offsets; 2453 } 2454 2455 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2456 struct super_block *sb, 2457 struct inode *dir, umode_t mode, 2458 dev_t dev, unsigned long flags) 2459 { 2460 struct inode *inode; 2461 struct shmem_inode_info *info; 2462 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2463 ino_t ino; 2464 int err; 2465 2466 err = shmem_reserve_inode(sb, &ino); 2467 if (err) 2468 return ERR_PTR(err); 2469 2470 2471 inode = new_inode(sb); 2472 if (!inode) { 2473 shmem_free_inode(sb, 0); 2474 return ERR_PTR(-ENOSPC); 2475 } 2476 2477 inode->i_ino = ino; 2478 inode_init_owner(idmap, inode, dir, mode); 2479 inode->i_blocks = 0; 2480 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 2481 inode->i_generation = get_random_u32(); 2482 info = SHMEM_I(inode); 2483 memset(info, 0, (char *)inode - (char *)info); 2484 spin_lock_init(&info->lock); 2485 atomic_set(&info->stop_eviction, 0); 2486 info->seals = F_SEAL_SEAL; 2487 info->flags = flags & VM_NORESERVE; 2488 info->i_crtime = inode->i_mtime; 2489 info->fsflags = (dir == NULL) ? 0 : 2490 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2491 if (info->fsflags) 2492 shmem_set_inode_flags(inode, info->fsflags); 2493 INIT_LIST_HEAD(&info->shrinklist); 2494 INIT_LIST_HEAD(&info->swaplist); 2495 INIT_LIST_HEAD(&info->swaplist); 2496 if (sbinfo->noswap) 2497 mapping_set_unevictable(inode->i_mapping); 2498 simple_xattrs_init(&info->xattrs); 2499 cache_no_acl(inode); 2500 mapping_set_large_folios(inode->i_mapping); 2501 2502 switch (mode & S_IFMT) { 2503 default: 2504 inode->i_op = &shmem_special_inode_operations; 2505 init_special_inode(inode, mode, dev); 2506 break; 2507 case S_IFREG: 2508 inode->i_mapping->a_ops = &shmem_aops; 2509 inode->i_op = &shmem_inode_operations; 2510 inode->i_fop = &shmem_file_operations; 2511 mpol_shared_policy_init(&info->policy, 2512 shmem_get_sbmpol(sbinfo)); 2513 break; 2514 case S_IFDIR: 2515 inc_nlink(inode); 2516 /* Some things misbehave if size == 0 on a directory */ 2517 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2518 inode->i_op = &shmem_dir_inode_operations; 2519 inode->i_fop = &simple_offset_dir_operations; 2520 simple_offset_init(shmem_get_offset_ctx(inode)); 2521 break; 2522 case S_IFLNK: 2523 /* 2524 * Must not load anything in the rbtree, 2525 * mpol_free_shared_policy will not be called. 2526 */ 2527 mpol_shared_policy_init(&info->policy, NULL); 2528 break; 2529 } 2530 2531 lockdep_annotate_inode_mutex_key(inode); 2532 return inode; 2533 } 2534 2535 #ifdef CONFIG_TMPFS_QUOTA 2536 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2537 struct super_block *sb, struct inode *dir, 2538 umode_t mode, dev_t dev, unsigned long flags) 2539 { 2540 int err; 2541 struct inode *inode; 2542 2543 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2544 if (IS_ERR(inode)) 2545 return inode; 2546 2547 err = dquot_initialize(inode); 2548 if (err) 2549 goto errout; 2550 2551 err = dquot_alloc_inode(inode); 2552 if (err) { 2553 dquot_drop(inode); 2554 goto errout; 2555 } 2556 return inode; 2557 2558 errout: 2559 inode->i_flags |= S_NOQUOTA; 2560 iput(inode); 2561 return ERR_PTR(err); 2562 } 2563 #else 2564 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2565 struct super_block *sb, struct inode *dir, 2566 umode_t mode, dev_t dev, unsigned long flags) 2567 { 2568 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2569 } 2570 #endif /* CONFIG_TMPFS_QUOTA */ 2571 2572 #ifdef CONFIG_USERFAULTFD 2573 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2574 struct vm_area_struct *dst_vma, 2575 unsigned long dst_addr, 2576 unsigned long src_addr, 2577 uffd_flags_t flags, 2578 struct folio **foliop) 2579 { 2580 struct inode *inode = file_inode(dst_vma->vm_file); 2581 struct shmem_inode_info *info = SHMEM_I(inode); 2582 struct address_space *mapping = inode->i_mapping; 2583 gfp_t gfp = mapping_gfp_mask(mapping); 2584 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2585 void *page_kaddr; 2586 struct folio *folio; 2587 int ret; 2588 pgoff_t max_off; 2589 2590 if (shmem_inode_acct_block(inode, 1)) { 2591 /* 2592 * We may have got a page, returned -ENOENT triggering a retry, 2593 * and now we find ourselves with -ENOMEM. Release the page, to 2594 * avoid a BUG_ON in our caller. 2595 */ 2596 if (unlikely(*foliop)) { 2597 folio_put(*foliop); 2598 *foliop = NULL; 2599 } 2600 return -ENOMEM; 2601 } 2602 2603 if (!*foliop) { 2604 ret = -ENOMEM; 2605 folio = shmem_alloc_folio(gfp, info, pgoff); 2606 if (!folio) 2607 goto out_unacct_blocks; 2608 2609 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2610 page_kaddr = kmap_local_folio(folio, 0); 2611 /* 2612 * The read mmap_lock is held here. Despite the 2613 * mmap_lock being read recursive a deadlock is still 2614 * possible if a writer has taken a lock. For example: 2615 * 2616 * process A thread 1 takes read lock on own mmap_lock 2617 * process A thread 2 calls mmap, blocks taking write lock 2618 * process B thread 1 takes page fault, read lock on own mmap lock 2619 * process B thread 2 calls mmap, blocks taking write lock 2620 * process A thread 1 blocks taking read lock on process B 2621 * process B thread 1 blocks taking read lock on process A 2622 * 2623 * Disable page faults to prevent potential deadlock 2624 * and retry the copy outside the mmap_lock. 2625 */ 2626 pagefault_disable(); 2627 ret = copy_from_user(page_kaddr, 2628 (const void __user *)src_addr, 2629 PAGE_SIZE); 2630 pagefault_enable(); 2631 kunmap_local(page_kaddr); 2632 2633 /* fallback to copy_from_user outside mmap_lock */ 2634 if (unlikely(ret)) { 2635 *foliop = folio; 2636 ret = -ENOENT; 2637 /* don't free the page */ 2638 goto out_unacct_blocks; 2639 } 2640 2641 flush_dcache_folio(folio); 2642 } else { /* ZEROPAGE */ 2643 clear_user_highpage(&folio->page, dst_addr); 2644 } 2645 } else { 2646 folio = *foliop; 2647 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2648 *foliop = NULL; 2649 } 2650 2651 VM_BUG_ON(folio_test_locked(folio)); 2652 VM_BUG_ON(folio_test_swapbacked(folio)); 2653 __folio_set_locked(folio); 2654 __folio_set_swapbacked(folio); 2655 __folio_mark_uptodate(folio); 2656 2657 ret = -EFAULT; 2658 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2659 if (unlikely(pgoff >= max_off)) 2660 goto out_release; 2661 2662 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2663 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm); 2664 if (ret) 2665 goto out_release; 2666 2667 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2668 &folio->page, true, flags); 2669 if (ret) 2670 goto out_delete_from_cache; 2671 2672 shmem_recalc_inode(inode, 1, 0); 2673 folio_unlock(folio); 2674 return 0; 2675 out_delete_from_cache: 2676 filemap_remove_folio(folio); 2677 out_release: 2678 folio_unlock(folio); 2679 folio_put(folio); 2680 out_unacct_blocks: 2681 shmem_inode_unacct_blocks(inode, 1); 2682 return ret; 2683 } 2684 #endif /* CONFIG_USERFAULTFD */ 2685 2686 #ifdef CONFIG_TMPFS 2687 static const struct inode_operations shmem_symlink_inode_operations; 2688 static const struct inode_operations shmem_short_symlink_operations; 2689 2690 static int 2691 shmem_write_begin(struct file *file, struct address_space *mapping, 2692 loff_t pos, unsigned len, 2693 struct page **pagep, void **fsdata) 2694 { 2695 struct inode *inode = mapping->host; 2696 struct shmem_inode_info *info = SHMEM_I(inode); 2697 pgoff_t index = pos >> PAGE_SHIFT; 2698 struct folio *folio; 2699 int ret = 0; 2700 2701 /* i_rwsem is held by caller */ 2702 if (unlikely(info->seals & (F_SEAL_GROW | 2703 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2704 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2705 return -EPERM; 2706 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2707 return -EPERM; 2708 } 2709 2710 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2711 2712 if (ret) 2713 return ret; 2714 2715 *pagep = folio_file_page(folio, index); 2716 if (PageHWPoison(*pagep)) { 2717 folio_unlock(folio); 2718 folio_put(folio); 2719 *pagep = NULL; 2720 return -EIO; 2721 } 2722 2723 return 0; 2724 } 2725 2726 static int 2727 shmem_write_end(struct file *file, struct address_space *mapping, 2728 loff_t pos, unsigned len, unsigned copied, 2729 struct page *page, void *fsdata) 2730 { 2731 struct folio *folio = page_folio(page); 2732 struct inode *inode = mapping->host; 2733 2734 if (pos + copied > inode->i_size) 2735 i_size_write(inode, pos + copied); 2736 2737 if (!folio_test_uptodate(folio)) { 2738 if (copied < folio_size(folio)) { 2739 size_t from = offset_in_folio(folio, pos); 2740 folio_zero_segments(folio, 0, from, 2741 from + copied, folio_size(folio)); 2742 } 2743 folio_mark_uptodate(folio); 2744 } 2745 folio_mark_dirty(folio); 2746 folio_unlock(folio); 2747 folio_put(folio); 2748 2749 return copied; 2750 } 2751 2752 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2753 { 2754 struct file *file = iocb->ki_filp; 2755 struct inode *inode = file_inode(file); 2756 struct address_space *mapping = inode->i_mapping; 2757 pgoff_t index; 2758 unsigned long offset; 2759 int error = 0; 2760 ssize_t retval = 0; 2761 loff_t *ppos = &iocb->ki_pos; 2762 2763 index = *ppos >> PAGE_SHIFT; 2764 offset = *ppos & ~PAGE_MASK; 2765 2766 for (;;) { 2767 struct folio *folio = NULL; 2768 struct page *page = NULL; 2769 pgoff_t end_index; 2770 unsigned long nr, ret; 2771 loff_t i_size = i_size_read(inode); 2772 2773 end_index = i_size >> PAGE_SHIFT; 2774 if (index > end_index) 2775 break; 2776 if (index == end_index) { 2777 nr = i_size & ~PAGE_MASK; 2778 if (nr <= offset) 2779 break; 2780 } 2781 2782 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2783 if (error) { 2784 if (error == -EINVAL) 2785 error = 0; 2786 break; 2787 } 2788 if (folio) { 2789 folio_unlock(folio); 2790 2791 page = folio_file_page(folio, index); 2792 if (PageHWPoison(page)) { 2793 folio_put(folio); 2794 error = -EIO; 2795 break; 2796 } 2797 } 2798 2799 /* 2800 * We must evaluate after, since reads (unlike writes) 2801 * are called without i_rwsem protection against truncate 2802 */ 2803 nr = PAGE_SIZE; 2804 i_size = i_size_read(inode); 2805 end_index = i_size >> PAGE_SHIFT; 2806 if (index == end_index) { 2807 nr = i_size & ~PAGE_MASK; 2808 if (nr <= offset) { 2809 if (folio) 2810 folio_put(folio); 2811 break; 2812 } 2813 } 2814 nr -= offset; 2815 2816 if (folio) { 2817 /* 2818 * If users can be writing to this page using arbitrary 2819 * virtual addresses, take care about potential aliasing 2820 * before reading the page on the kernel side. 2821 */ 2822 if (mapping_writably_mapped(mapping)) 2823 flush_dcache_page(page); 2824 /* 2825 * Mark the page accessed if we read the beginning. 2826 */ 2827 if (!offset) 2828 folio_mark_accessed(folio); 2829 /* 2830 * Ok, we have the page, and it's up-to-date, so 2831 * now we can copy it to user space... 2832 */ 2833 ret = copy_page_to_iter(page, offset, nr, to); 2834 folio_put(folio); 2835 2836 } else if (user_backed_iter(to)) { 2837 /* 2838 * Copy to user tends to be so well optimized, but 2839 * clear_user() not so much, that it is noticeably 2840 * faster to copy the zero page instead of clearing. 2841 */ 2842 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2843 } else { 2844 /* 2845 * But submitting the same page twice in a row to 2846 * splice() - or others? - can result in confusion: 2847 * so don't attempt that optimization on pipes etc. 2848 */ 2849 ret = iov_iter_zero(nr, to); 2850 } 2851 2852 retval += ret; 2853 offset += ret; 2854 index += offset >> PAGE_SHIFT; 2855 offset &= ~PAGE_MASK; 2856 2857 if (!iov_iter_count(to)) 2858 break; 2859 if (ret < nr) { 2860 error = -EFAULT; 2861 break; 2862 } 2863 cond_resched(); 2864 } 2865 2866 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2867 file_accessed(file); 2868 return retval ? retval : error; 2869 } 2870 2871 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2872 { 2873 struct file *file = iocb->ki_filp; 2874 struct inode *inode = file->f_mapping->host; 2875 ssize_t ret; 2876 2877 inode_lock(inode); 2878 ret = generic_write_checks(iocb, from); 2879 if (ret <= 0) 2880 goto unlock; 2881 ret = file_remove_privs(file); 2882 if (ret) 2883 goto unlock; 2884 ret = file_update_time(file); 2885 if (ret) 2886 goto unlock; 2887 ret = generic_perform_write(iocb, from); 2888 unlock: 2889 inode_unlock(inode); 2890 return ret; 2891 } 2892 2893 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2894 struct pipe_buffer *buf) 2895 { 2896 return true; 2897 } 2898 2899 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2900 struct pipe_buffer *buf) 2901 { 2902 } 2903 2904 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2905 struct pipe_buffer *buf) 2906 { 2907 return false; 2908 } 2909 2910 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2911 .release = zero_pipe_buf_release, 2912 .try_steal = zero_pipe_buf_try_steal, 2913 .get = zero_pipe_buf_get, 2914 }; 2915 2916 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2917 loff_t fpos, size_t size) 2918 { 2919 size_t offset = fpos & ~PAGE_MASK; 2920 2921 size = min_t(size_t, size, PAGE_SIZE - offset); 2922 2923 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2924 struct pipe_buffer *buf = pipe_head_buf(pipe); 2925 2926 *buf = (struct pipe_buffer) { 2927 .ops = &zero_pipe_buf_ops, 2928 .page = ZERO_PAGE(0), 2929 .offset = offset, 2930 .len = size, 2931 }; 2932 pipe->head++; 2933 } 2934 2935 return size; 2936 } 2937 2938 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2939 struct pipe_inode_info *pipe, 2940 size_t len, unsigned int flags) 2941 { 2942 struct inode *inode = file_inode(in); 2943 struct address_space *mapping = inode->i_mapping; 2944 struct folio *folio = NULL; 2945 size_t total_spliced = 0, used, npages, n, part; 2946 loff_t isize; 2947 int error = 0; 2948 2949 /* Work out how much data we can actually add into the pipe */ 2950 used = pipe_occupancy(pipe->head, pipe->tail); 2951 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2952 len = min_t(size_t, len, npages * PAGE_SIZE); 2953 2954 do { 2955 if (*ppos >= i_size_read(inode)) 2956 break; 2957 2958 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2959 SGP_READ); 2960 if (error) { 2961 if (error == -EINVAL) 2962 error = 0; 2963 break; 2964 } 2965 if (folio) { 2966 folio_unlock(folio); 2967 2968 if (folio_test_hwpoison(folio) || 2969 (folio_test_large(folio) && 2970 folio_test_has_hwpoisoned(folio))) { 2971 error = -EIO; 2972 break; 2973 } 2974 } 2975 2976 /* 2977 * i_size must be checked after we know the pages are Uptodate. 2978 * 2979 * Checking i_size after the check allows us to calculate 2980 * the correct value for "nr", which means the zero-filled 2981 * part of the page is not copied back to userspace (unless 2982 * another truncate extends the file - this is desired though). 2983 */ 2984 isize = i_size_read(inode); 2985 if (unlikely(*ppos >= isize)) 2986 break; 2987 part = min_t(loff_t, isize - *ppos, len); 2988 2989 if (folio) { 2990 /* 2991 * If users can be writing to this page using arbitrary 2992 * virtual addresses, take care about potential aliasing 2993 * before reading the page on the kernel side. 2994 */ 2995 if (mapping_writably_mapped(mapping)) 2996 flush_dcache_folio(folio); 2997 folio_mark_accessed(folio); 2998 /* 2999 * Ok, we have the page, and it's up-to-date, so we can 3000 * now splice it into the pipe. 3001 */ 3002 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3003 folio_put(folio); 3004 folio = NULL; 3005 } else { 3006 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3007 } 3008 3009 if (!n) 3010 break; 3011 len -= n; 3012 total_spliced += n; 3013 *ppos += n; 3014 in->f_ra.prev_pos = *ppos; 3015 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3016 break; 3017 3018 cond_resched(); 3019 } while (len); 3020 3021 if (folio) 3022 folio_put(folio); 3023 3024 file_accessed(in); 3025 return total_spliced ? total_spliced : error; 3026 } 3027 3028 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3029 { 3030 struct address_space *mapping = file->f_mapping; 3031 struct inode *inode = mapping->host; 3032 3033 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3034 return generic_file_llseek_size(file, offset, whence, 3035 MAX_LFS_FILESIZE, i_size_read(inode)); 3036 if (offset < 0) 3037 return -ENXIO; 3038 3039 inode_lock(inode); 3040 /* We're holding i_rwsem so we can access i_size directly */ 3041 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3042 if (offset >= 0) 3043 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3044 inode_unlock(inode); 3045 return offset; 3046 } 3047 3048 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3049 loff_t len) 3050 { 3051 struct inode *inode = file_inode(file); 3052 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3053 struct shmem_inode_info *info = SHMEM_I(inode); 3054 struct shmem_falloc shmem_falloc; 3055 pgoff_t start, index, end, undo_fallocend; 3056 int error; 3057 3058 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3059 return -EOPNOTSUPP; 3060 3061 inode_lock(inode); 3062 3063 if (mode & FALLOC_FL_PUNCH_HOLE) { 3064 struct address_space *mapping = file->f_mapping; 3065 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3066 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3067 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3068 3069 /* protected by i_rwsem */ 3070 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3071 error = -EPERM; 3072 goto out; 3073 } 3074 3075 shmem_falloc.waitq = &shmem_falloc_waitq; 3076 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3077 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3078 spin_lock(&inode->i_lock); 3079 inode->i_private = &shmem_falloc; 3080 spin_unlock(&inode->i_lock); 3081 3082 if ((u64)unmap_end > (u64)unmap_start) 3083 unmap_mapping_range(mapping, unmap_start, 3084 1 + unmap_end - unmap_start, 0); 3085 shmem_truncate_range(inode, offset, offset + len - 1); 3086 /* No need to unmap again: hole-punching leaves COWed pages */ 3087 3088 spin_lock(&inode->i_lock); 3089 inode->i_private = NULL; 3090 wake_up_all(&shmem_falloc_waitq); 3091 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3092 spin_unlock(&inode->i_lock); 3093 error = 0; 3094 goto out; 3095 } 3096 3097 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3098 error = inode_newsize_ok(inode, offset + len); 3099 if (error) 3100 goto out; 3101 3102 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3103 error = -EPERM; 3104 goto out; 3105 } 3106 3107 start = offset >> PAGE_SHIFT; 3108 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3109 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3110 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3111 error = -ENOSPC; 3112 goto out; 3113 } 3114 3115 shmem_falloc.waitq = NULL; 3116 shmem_falloc.start = start; 3117 shmem_falloc.next = start; 3118 shmem_falloc.nr_falloced = 0; 3119 shmem_falloc.nr_unswapped = 0; 3120 spin_lock(&inode->i_lock); 3121 inode->i_private = &shmem_falloc; 3122 spin_unlock(&inode->i_lock); 3123 3124 /* 3125 * info->fallocend is only relevant when huge pages might be 3126 * involved: to prevent split_huge_page() freeing fallocated 3127 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3128 */ 3129 undo_fallocend = info->fallocend; 3130 if (info->fallocend < end) 3131 info->fallocend = end; 3132 3133 for (index = start; index < end; ) { 3134 struct folio *folio; 3135 3136 /* 3137 * Good, the fallocate(2) manpage permits EINTR: we may have 3138 * been interrupted because we are using up too much memory. 3139 */ 3140 if (signal_pending(current)) 3141 error = -EINTR; 3142 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3143 error = -ENOMEM; 3144 else 3145 error = shmem_get_folio(inode, index, &folio, 3146 SGP_FALLOC); 3147 if (error) { 3148 info->fallocend = undo_fallocend; 3149 /* Remove the !uptodate folios we added */ 3150 if (index > start) { 3151 shmem_undo_range(inode, 3152 (loff_t)start << PAGE_SHIFT, 3153 ((loff_t)index << PAGE_SHIFT) - 1, true); 3154 } 3155 goto undone; 3156 } 3157 3158 /* 3159 * Here is a more important optimization than it appears: 3160 * a second SGP_FALLOC on the same large folio will clear it, 3161 * making it uptodate and un-undoable if we fail later. 3162 */ 3163 index = folio_next_index(folio); 3164 /* Beware 32-bit wraparound */ 3165 if (!index) 3166 index--; 3167 3168 /* 3169 * Inform shmem_writepage() how far we have reached. 3170 * No need for lock or barrier: we have the page lock. 3171 */ 3172 if (!folio_test_uptodate(folio)) 3173 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3174 shmem_falloc.next = index; 3175 3176 /* 3177 * If !uptodate, leave it that way so that freeable folios 3178 * can be recognized if we need to rollback on error later. 3179 * But mark it dirty so that memory pressure will swap rather 3180 * than free the folios we are allocating (and SGP_CACHE folios 3181 * might still be clean: we now need to mark those dirty too). 3182 */ 3183 folio_mark_dirty(folio); 3184 folio_unlock(folio); 3185 folio_put(folio); 3186 cond_resched(); 3187 } 3188 3189 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3190 i_size_write(inode, offset + len); 3191 undone: 3192 spin_lock(&inode->i_lock); 3193 inode->i_private = NULL; 3194 spin_unlock(&inode->i_lock); 3195 out: 3196 if (!error) 3197 file_modified(file); 3198 inode_unlock(inode); 3199 return error; 3200 } 3201 3202 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3203 { 3204 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3205 3206 buf->f_type = TMPFS_MAGIC; 3207 buf->f_bsize = PAGE_SIZE; 3208 buf->f_namelen = NAME_MAX; 3209 if (sbinfo->max_blocks) { 3210 buf->f_blocks = sbinfo->max_blocks; 3211 buf->f_bavail = 3212 buf->f_bfree = sbinfo->max_blocks - 3213 percpu_counter_sum(&sbinfo->used_blocks); 3214 } 3215 if (sbinfo->max_inodes) { 3216 buf->f_files = sbinfo->max_inodes; 3217 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3218 } 3219 /* else leave those fields 0 like simple_statfs */ 3220 3221 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3222 3223 return 0; 3224 } 3225 3226 /* 3227 * File creation. Allocate an inode, and we're done.. 3228 */ 3229 static int 3230 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3231 struct dentry *dentry, umode_t mode, dev_t dev) 3232 { 3233 struct inode *inode; 3234 int error; 3235 3236 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3237 if (IS_ERR(inode)) 3238 return PTR_ERR(inode); 3239 3240 error = simple_acl_create(dir, inode); 3241 if (error) 3242 goto out_iput; 3243 error = security_inode_init_security(inode, dir, 3244 &dentry->d_name, 3245 shmem_initxattrs, NULL); 3246 if (error && error != -EOPNOTSUPP) 3247 goto out_iput; 3248 3249 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3250 if (error) 3251 goto out_iput; 3252 3253 dir->i_size += BOGO_DIRENT_SIZE; 3254 dir->i_mtime = inode_set_ctime_current(dir); 3255 inode_inc_iversion(dir); 3256 d_instantiate(dentry, inode); 3257 dget(dentry); /* Extra count - pin the dentry in core */ 3258 return error; 3259 3260 out_iput: 3261 iput(inode); 3262 return error; 3263 } 3264 3265 static int 3266 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3267 struct file *file, umode_t mode) 3268 { 3269 struct inode *inode; 3270 int error; 3271 3272 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3273 3274 if (IS_ERR(inode)) { 3275 error = PTR_ERR(inode); 3276 goto err_out; 3277 } 3278 3279 error = security_inode_init_security(inode, dir, 3280 NULL, 3281 shmem_initxattrs, NULL); 3282 if (error && error != -EOPNOTSUPP) 3283 goto out_iput; 3284 error = simple_acl_create(dir, inode); 3285 if (error) 3286 goto out_iput; 3287 d_tmpfile(file, inode); 3288 3289 err_out: 3290 return finish_open_simple(file, error); 3291 out_iput: 3292 iput(inode); 3293 return error; 3294 } 3295 3296 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3297 struct dentry *dentry, umode_t mode) 3298 { 3299 int error; 3300 3301 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3302 if (error) 3303 return error; 3304 inc_nlink(dir); 3305 return 0; 3306 } 3307 3308 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3309 struct dentry *dentry, umode_t mode, bool excl) 3310 { 3311 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3312 } 3313 3314 /* 3315 * Link a file.. 3316 */ 3317 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3318 { 3319 struct inode *inode = d_inode(old_dentry); 3320 int ret = 0; 3321 3322 /* 3323 * No ordinary (disk based) filesystem counts links as inodes; 3324 * but each new link needs a new dentry, pinning lowmem, and 3325 * tmpfs dentries cannot be pruned until they are unlinked. 3326 * But if an O_TMPFILE file is linked into the tmpfs, the 3327 * first link must skip that, to get the accounting right. 3328 */ 3329 if (inode->i_nlink) { 3330 ret = shmem_reserve_inode(inode->i_sb, NULL); 3331 if (ret) 3332 goto out; 3333 } 3334 3335 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3336 if (ret) { 3337 if (inode->i_nlink) 3338 shmem_free_inode(inode->i_sb, 0); 3339 goto out; 3340 } 3341 3342 dir->i_size += BOGO_DIRENT_SIZE; 3343 dir->i_mtime = inode_set_ctime_to_ts(dir, 3344 inode_set_ctime_current(inode)); 3345 inode_inc_iversion(dir); 3346 inc_nlink(inode); 3347 ihold(inode); /* New dentry reference */ 3348 dget(dentry); /* Extra pinning count for the created dentry */ 3349 d_instantiate(dentry, inode); 3350 out: 3351 return ret; 3352 } 3353 3354 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3355 { 3356 struct inode *inode = d_inode(dentry); 3357 3358 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3359 shmem_free_inode(inode->i_sb, 0); 3360 3361 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3362 3363 dir->i_size -= BOGO_DIRENT_SIZE; 3364 dir->i_mtime = inode_set_ctime_to_ts(dir, 3365 inode_set_ctime_current(inode)); 3366 inode_inc_iversion(dir); 3367 drop_nlink(inode); 3368 dput(dentry); /* Undo the count from "create" - this does all the work */ 3369 return 0; 3370 } 3371 3372 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3373 { 3374 if (!simple_empty(dentry)) 3375 return -ENOTEMPTY; 3376 3377 drop_nlink(d_inode(dentry)); 3378 drop_nlink(dir); 3379 return shmem_unlink(dir, dentry); 3380 } 3381 3382 static int shmem_whiteout(struct mnt_idmap *idmap, 3383 struct inode *old_dir, struct dentry *old_dentry) 3384 { 3385 struct dentry *whiteout; 3386 int error; 3387 3388 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3389 if (!whiteout) 3390 return -ENOMEM; 3391 3392 error = shmem_mknod(idmap, old_dir, whiteout, 3393 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3394 dput(whiteout); 3395 if (error) 3396 return error; 3397 3398 /* 3399 * Cheat and hash the whiteout while the old dentry is still in 3400 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3401 * 3402 * d_lookup() will consistently find one of them at this point, 3403 * not sure which one, but that isn't even important. 3404 */ 3405 d_rehash(whiteout); 3406 return 0; 3407 } 3408 3409 /* 3410 * The VFS layer already does all the dentry stuff for rename, 3411 * we just have to decrement the usage count for the target if 3412 * it exists so that the VFS layer correctly free's it when it 3413 * gets overwritten. 3414 */ 3415 static int shmem_rename2(struct mnt_idmap *idmap, 3416 struct inode *old_dir, struct dentry *old_dentry, 3417 struct inode *new_dir, struct dentry *new_dentry, 3418 unsigned int flags) 3419 { 3420 struct inode *inode = d_inode(old_dentry); 3421 int they_are_dirs = S_ISDIR(inode->i_mode); 3422 int error; 3423 3424 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3425 return -EINVAL; 3426 3427 if (flags & RENAME_EXCHANGE) 3428 return simple_offset_rename_exchange(old_dir, old_dentry, 3429 new_dir, new_dentry); 3430 3431 if (!simple_empty(new_dentry)) 3432 return -ENOTEMPTY; 3433 3434 if (flags & RENAME_WHITEOUT) { 3435 error = shmem_whiteout(idmap, old_dir, old_dentry); 3436 if (error) 3437 return error; 3438 } 3439 3440 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3441 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3442 if (error) 3443 return error; 3444 3445 if (d_really_is_positive(new_dentry)) { 3446 (void) shmem_unlink(new_dir, new_dentry); 3447 if (they_are_dirs) { 3448 drop_nlink(d_inode(new_dentry)); 3449 drop_nlink(old_dir); 3450 } 3451 } else if (they_are_dirs) { 3452 drop_nlink(old_dir); 3453 inc_nlink(new_dir); 3454 } 3455 3456 old_dir->i_size -= BOGO_DIRENT_SIZE; 3457 new_dir->i_size += BOGO_DIRENT_SIZE; 3458 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3459 inode_inc_iversion(old_dir); 3460 inode_inc_iversion(new_dir); 3461 return 0; 3462 } 3463 3464 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3465 struct dentry *dentry, const char *symname) 3466 { 3467 int error; 3468 int len; 3469 struct inode *inode; 3470 struct folio *folio; 3471 3472 len = strlen(symname) + 1; 3473 if (len > PAGE_SIZE) 3474 return -ENAMETOOLONG; 3475 3476 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3477 VM_NORESERVE); 3478 3479 if (IS_ERR(inode)) 3480 return PTR_ERR(inode); 3481 3482 error = security_inode_init_security(inode, dir, &dentry->d_name, 3483 shmem_initxattrs, NULL); 3484 if (error && error != -EOPNOTSUPP) 3485 goto out_iput; 3486 3487 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3488 if (error) 3489 goto out_iput; 3490 3491 inode->i_size = len-1; 3492 if (len <= SHORT_SYMLINK_LEN) { 3493 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3494 if (!inode->i_link) { 3495 error = -ENOMEM; 3496 goto out_remove_offset; 3497 } 3498 inode->i_op = &shmem_short_symlink_operations; 3499 } else { 3500 inode_nohighmem(inode); 3501 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3502 if (error) 3503 goto out_remove_offset; 3504 inode->i_mapping->a_ops = &shmem_aops; 3505 inode->i_op = &shmem_symlink_inode_operations; 3506 memcpy(folio_address(folio), symname, len); 3507 folio_mark_uptodate(folio); 3508 folio_mark_dirty(folio); 3509 folio_unlock(folio); 3510 folio_put(folio); 3511 } 3512 dir->i_size += BOGO_DIRENT_SIZE; 3513 dir->i_mtime = inode_set_ctime_current(dir); 3514 inode_inc_iversion(dir); 3515 d_instantiate(dentry, inode); 3516 dget(dentry); 3517 return 0; 3518 3519 out_remove_offset: 3520 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3521 out_iput: 3522 iput(inode); 3523 return error; 3524 } 3525 3526 static void shmem_put_link(void *arg) 3527 { 3528 folio_mark_accessed(arg); 3529 folio_put(arg); 3530 } 3531 3532 static const char *shmem_get_link(struct dentry *dentry, 3533 struct inode *inode, 3534 struct delayed_call *done) 3535 { 3536 struct folio *folio = NULL; 3537 int error; 3538 3539 if (!dentry) { 3540 folio = filemap_get_folio(inode->i_mapping, 0); 3541 if (IS_ERR(folio)) 3542 return ERR_PTR(-ECHILD); 3543 if (PageHWPoison(folio_page(folio, 0)) || 3544 !folio_test_uptodate(folio)) { 3545 folio_put(folio); 3546 return ERR_PTR(-ECHILD); 3547 } 3548 } else { 3549 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3550 if (error) 3551 return ERR_PTR(error); 3552 if (!folio) 3553 return ERR_PTR(-ECHILD); 3554 if (PageHWPoison(folio_page(folio, 0))) { 3555 folio_unlock(folio); 3556 folio_put(folio); 3557 return ERR_PTR(-ECHILD); 3558 } 3559 folio_unlock(folio); 3560 } 3561 set_delayed_call(done, shmem_put_link, folio); 3562 return folio_address(folio); 3563 } 3564 3565 #ifdef CONFIG_TMPFS_XATTR 3566 3567 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3568 { 3569 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3570 3571 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3572 3573 return 0; 3574 } 3575 3576 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3577 struct dentry *dentry, struct fileattr *fa) 3578 { 3579 struct inode *inode = d_inode(dentry); 3580 struct shmem_inode_info *info = SHMEM_I(inode); 3581 3582 if (fileattr_has_fsx(fa)) 3583 return -EOPNOTSUPP; 3584 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3585 return -EOPNOTSUPP; 3586 3587 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3588 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3589 3590 shmem_set_inode_flags(inode, info->fsflags); 3591 inode_set_ctime_current(inode); 3592 inode_inc_iversion(inode); 3593 return 0; 3594 } 3595 3596 /* 3597 * Superblocks without xattr inode operations may get some security.* xattr 3598 * support from the LSM "for free". As soon as we have any other xattrs 3599 * like ACLs, we also need to implement the security.* handlers at 3600 * filesystem level, though. 3601 */ 3602 3603 /* 3604 * Callback for security_inode_init_security() for acquiring xattrs. 3605 */ 3606 static int shmem_initxattrs(struct inode *inode, 3607 const struct xattr *xattr_array, 3608 void *fs_info) 3609 { 3610 struct shmem_inode_info *info = SHMEM_I(inode); 3611 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3612 const struct xattr *xattr; 3613 struct simple_xattr *new_xattr; 3614 size_t ispace = 0; 3615 size_t len; 3616 3617 if (sbinfo->max_inodes) { 3618 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3619 ispace += simple_xattr_space(xattr->name, 3620 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3621 } 3622 if (ispace) { 3623 raw_spin_lock(&sbinfo->stat_lock); 3624 if (sbinfo->free_ispace < ispace) 3625 ispace = 0; 3626 else 3627 sbinfo->free_ispace -= ispace; 3628 raw_spin_unlock(&sbinfo->stat_lock); 3629 if (!ispace) 3630 return -ENOSPC; 3631 } 3632 } 3633 3634 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3635 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3636 if (!new_xattr) 3637 break; 3638 3639 len = strlen(xattr->name) + 1; 3640 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3641 GFP_KERNEL_ACCOUNT); 3642 if (!new_xattr->name) { 3643 kvfree(new_xattr); 3644 break; 3645 } 3646 3647 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3648 XATTR_SECURITY_PREFIX_LEN); 3649 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3650 xattr->name, len); 3651 3652 simple_xattr_add(&info->xattrs, new_xattr); 3653 } 3654 3655 if (xattr->name != NULL) { 3656 if (ispace) { 3657 raw_spin_lock(&sbinfo->stat_lock); 3658 sbinfo->free_ispace += ispace; 3659 raw_spin_unlock(&sbinfo->stat_lock); 3660 } 3661 simple_xattrs_free(&info->xattrs, NULL); 3662 return -ENOMEM; 3663 } 3664 3665 return 0; 3666 } 3667 3668 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3669 struct dentry *unused, struct inode *inode, 3670 const char *name, void *buffer, size_t size) 3671 { 3672 struct shmem_inode_info *info = SHMEM_I(inode); 3673 3674 name = xattr_full_name(handler, name); 3675 return simple_xattr_get(&info->xattrs, name, buffer, size); 3676 } 3677 3678 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3679 struct mnt_idmap *idmap, 3680 struct dentry *unused, struct inode *inode, 3681 const char *name, const void *value, 3682 size_t size, int flags) 3683 { 3684 struct shmem_inode_info *info = SHMEM_I(inode); 3685 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3686 struct simple_xattr *old_xattr; 3687 size_t ispace = 0; 3688 3689 name = xattr_full_name(handler, name); 3690 if (value && sbinfo->max_inodes) { 3691 ispace = simple_xattr_space(name, size); 3692 raw_spin_lock(&sbinfo->stat_lock); 3693 if (sbinfo->free_ispace < ispace) 3694 ispace = 0; 3695 else 3696 sbinfo->free_ispace -= ispace; 3697 raw_spin_unlock(&sbinfo->stat_lock); 3698 if (!ispace) 3699 return -ENOSPC; 3700 } 3701 3702 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3703 if (!IS_ERR(old_xattr)) { 3704 ispace = 0; 3705 if (old_xattr && sbinfo->max_inodes) 3706 ispace = simple_xattr_space(old_xattr->name, 3707 old_xattr->size); 3708 simple_xattr_free(old_xattr); 3709 old_xattr = NULL; 3710 inode_set_ctime_current(inode); 3711 inode_inc_iversion(inode); 3712 } 3713 if (ispace) { 3714 raw_spin_lock(&sbinfo->stat_lock); 3715 sbinfo->free_ispace += ispace; 3716 raw_spin_unlock(&sbinfo->stat_lock); 3717 } 3718 return PTR_ERR(old_xattr); 3719 } 3720 3721 static const struct xattr_handler shmem_security_xattr_handler = { 3722 .prefix = XATTR_SECURITY_PREFIX, 3723 .get = shmem_xattr_handler_get, 3724 .set = shmem_xattr_handler_set, 3725 }; 3726 3727 static const struct xattr_handler shmem_trusted_xattr_handler = { 3728 .prefix = XATTR_TRUSTED_PREFIX, 3729 .get = shmem_xattr_handler_get, 3730 .set = shmem_xattr_handler_set, 3731 }; 3732 3733 static const struct xattr_handler shmem_user_xattr_handler = { 3734 .prefix = XATTR_USER_PREFIX, 3735 .get = shmem_xattr_handler_get, 3736 .set = shmem_xattr_handler_set, 3737 }; 3738 3739 static const struct xattr_handler *shmem_xattr_handlers[] = { 3740 &shmem_security_xattr_handler, 3741 &shmem_trusted_xattr_handler, 3742 &shmem_user_xattr_handler, 3743 NULL 3744 }; 3745 3746 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3747 { 3748 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3749 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3750 } 3751 #endif /* CONFIG_TMPFS_XATTR */ 3752 3753 static const struct inode_operations shmem_short_symlink_operations = { 3754 .getattr = shmem_getattr, 3755 .setattr = shmem_setattr, 3756 .get_link = simple_get_link, 3757 #ifdef CONFIG_TMPFS_XATTR 3758 .listxattr = shmem_listxattr, 3759 #endif 3760 }; 3761 3762 static const struct inode_operations shmem_symlink_inode_operations = { 3763 .getattr = shmem_getattr, 3764 .setattr = shmem_setattr, 3765 .get_link = shmem_get_link, 3766 #ifdef CONFIG_TMPFS_XATTR 3767 .listxattr = shmem_listxattr, 3768 #endif 3769 }; 3770 3771 static struct dentry *shmem_get_parent(struct dentry *child) 3772 { 3773 return ERR_PTR(-ESTALE); 3774 } 3775 3776 static int shmem_match(struct inode *ino, void *vfh) 3777 { 3778 __u32 *fh = vfh; 3779 __u64 inum = fh[2]; 3780 inum = (inum << 32) | fh[1]; 3781 return ino->i_ino == inum && fh[0] == ino->i_generation; 3782 } 3783 3784 /* Find any alias of inode, but prefer a hashed alias */ 3785 static struct dentry *shmem_find_alias(struct inode *inode) 3786 { 3787 struct dentry *alias = d_find_alias(inode); 3788 3789 return alias ?: d_find_any_alias(inode); 3790 } 3791 3792 3793 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3794 struct fid *fid, int fh_len, int fh_type) 3795 { 3796 struct inode *inode; 3797 struct dentry *dentry = NULL; 3798 u64 inum; 3799 3800 if (fh_len < 3) 3801 return NULL; 3802 3803 inum = fid->raw[2]; 3804 inum = (inum << 32) | fid->raw[1]; 3805 3806 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3807 shmem_match, fid->raw); 3808 if (inode) { 3809 dentry = shmem_find_alias(inode); 3810 iput(inode); 3811 } 3812 3813 return dentry; 3814 } 3815 3816 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3817 struct inode *parent) 3818 { 3819 if (*len < 3) { 3820 *len = 3; 3821 return FILEID_INVALID; 3822 } 3823 3824 if (inode_unhashed(inode)) { 3825 /* Unfortunately insert_inode_hash is not idempotent, 3826 * so as we hash inodes here rather than at creation 3827 * time, we need a lock to ensure we only try 3828 * to do it once 3829 */ 3830 static DEFINE_SPINLOCK(lock); 3831 spin_lock(&lock); 3832 if (inode_unhashed(inode)) 3833 __insert_inode_hash(inode, 3834 inode->i_ino + inode->i_generation); 3835 spin_unlock(&lock); 3836 } 3837 3838 fh[0] = inode->i_generation; 3839 fh[1] = inode->i_ino; 3840 fh[2] = ((__u64)inode->i_ino) >> 32; 3841 3842 *len = 3; 3843 return 1; 3844 } 3845 3846 static const struct export_operations shmem_export_ops = { 3847 .get_parent = shmem_get_parent, 3848 .encode_fh = shmem_encode_fh, 3849 .fh_to_dentry = shmem_fh_to_dentry, 3850 }; 3851 3852 enum shmem_param { 3853 Opt_gid, 3854 Opt_huge, 3855 Opt_mode, 3856 Opt_mpol, 3857 Opt_nr_blocks, 3858 Opt_nr_inodes, 3859 Opt_size, 3860 Opt_uid, 3861 Opt_inode32, 3862 Opt_inode64, 3863 Opt_noswap, 3864 Opt_quota, 3865 Opt_usrquota, 3866 Opt_grpquota, 3867 Opt_usrquota_block_hardlimit, 3868 Opt_usrquota_inode_hardlimit, 3869 Opt_grpquota_block_hardlimit, 3870 Opt_grpquota_inode_hardlimit, 3871 }; 3872 3873 static const struct constant_table shmem_param_enums_huge[] = { 3874 {"never", SHMEM_HUGE_NEVER }, 3875 {"always", SHMEM_HUGE_ALWAYS }, 3876 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3877 {"advise", SHMEM_HUGE_ADVISE }, 3878 {} 3879 }; 3880 3881 const struct fs_parameter_spec shmem_fs_parameters[] = { 3882 fsparam_u32 ("gid", Opt_gid), 3883 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3884 fsparam_u32oct("mode", Opt_mode), 3885 fsparam_string("mpol", Opt_mpol), 3886 fsparam_string("nr_blocks", Opt_nr_blocks), 3887 fsparam_string("nr_inodes", Opt_nr_inodes), 3888 fsparam_string("size", Opt_size), 3889 fsparam_u32 ("uid", Opt_uid), 3890 fsparam_flag ("inode32", Opt_inode32), 3891 fsparam_flag ("inode64", Opt_inode64), 3892 fsparam_flag ("noswap", Opt_noswap), 3893 #ifdef CONFIG_TMPFS_QUOTA 3894 fsparam_flag ("quota", Opt_quota), 3895 fsparam_flag ("usrquota", Opt_usrquota), 3896 fsparam_flag ("grpquota", Opt_grpquota), 3897 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3898 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3899 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3900 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3901 #endif 3902 {} 3903 }; 3904 3905 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3906 { 3907 struct shmem_options *ctx = fc->fs_private; 3908 struct fs_parse_result result; 3909 unsigned long long size; 3910 char *rest; 3911 int opt; 3912 kuid_t kuid; 3913 kgid_t kgid; 3914 3915 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3916 if (opt < 0) 3917 return opt; 3918 3919 switch (opt) { 3920 case Opt_size: 3921 size = memparse(param->string, &rest); 3922 if (*rest == '%') { 3923 size <<= PAGE_SHIFT; 3924 size *= totalram_pages(); 3925 do_div(size, 100); 3926 rest++; 3927 } 3928 if (*rest) 3929 goto bad_value; 3930 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3931 ctx->seen |= SHMEM_SEEN_BLOCKS; 3932 break; 3933 case Opt_nr_blocks: 3934 ctx->blocks = memparse(param->string, &rest); 3935 if (*rest || ctx->blocks > LONG_MAX) 3936 goto bad_value; 3937 ctx->seen |= SHMEM_SEEN_BLOCKS; 3938 break; 3939 case Opt_nr_inodes: 3940 ctx->inodes = memparse(param->string, &rest); 3941 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3942 goto bad_value; 3943 ctx->seen |= SHMEM_SEEN_INODES; 3944 break; 3945 case Opt_mode: 3946 ctx->mode = result.uint_32 & 07777; 3947 break; 3948 case Opt_uid: 3949 kuid = make_kuid(current_user_ns(), result.uint_32); 3950 if (!uid_valid(kuid)) 3951 goto bad_value; 3952 3953 /* 3954 * The requested uid must be representable in the 3955 * filesystem's idmapping. 3956 */ 3957 if (!kuid_has_mapping(fc->user_ns, kuid)) 3958 goto bad_value; 3959 3960 ctx->uid = kuid; 3961 break; 3962 case Opt_gid: 3963 kgid = make_kgid(current_user_ns(), result.uint_32); 3964 if (!gid_valid(kgid)) 3965 goto bad_value; 3966 3967 /* 3968 * The requested gid must be representable in the 3969 * filesystem's idmapping. 3970 */ 3971 if (!kgid_has_mapping(fc->user_ns, kgid)) 3972 goto bad_value; 3973 3974 ctx->gid = kgid; 3975 break; 3976 case Opt_huge: 3977 ctx->huge = result.uint_32; 3978 if (ctx->huge != SHMEM_HUGE_NEVER && 3979 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3980 has_transparent_hugepage())) 3981 goto unsupported_parameter; 3982 ctx->seen |= SHMEM_SEEN_HUGE; 3983 break; 3984 case Opt_mpol: 3985 if (IS_ENABLED(CONFIG_NUMA)) { 3986 mpol_put(ctx->mpol); 3987 ctx->mpol = NULL; 3988 if (mpol_parse_str(param->string, &ctx->mpol)) 3989 goto bad_value; 3990 break; 3991 } 3992 goto unsupported_parameter; 3993 case Opt_inode32: 3994 ctx->full_inums = false; 3995 ctx->seen |= SHMEM_SEEN_INUMS; 3996 break; 3997 case Opt_inode64: 3998 if (sizeof(ino_t) < 8) { 3999 return invalfc(fc, 4000 "Cannot use inode64 with <64bit inums in kernel\n"); 4001 } 4002 ctx->full_inums = true; 4003 ctx->seen |= SHMEM_SEEN_INUMS; 4004 break; 4005 case Opt_noswap: 4006 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4007 return invalfc(fc, 4008 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4009 } 4010 ctx->noswap = true; 4011 ctx->seen |= SHMEM_SEEN_NOSWAP; 4012 break; 4013 case Opt_quota: 4014 if (fc->user_ns != &init_user_ns) 4015 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4016 ctx->seen |= SHMEM_SEEN_QUOTA; 4017 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4018 break; 4019 case Opt_usrquota: 4020 if (fc->user_ns != &init_user_ns) 4021 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4022 ctx->seen |= SHMEM_SEEN_QUOTA; 4023 ctx->quota_types |= QTYPE_MASK_USR; 4024 break; 4025 case Opt_grpquota: 4026 if (fc->user_ns != &init_user_ns) 4027 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4028 ctx->seen |= SHMEM_SEEN_QUOTA; 4029 ctx->quota_types |= QTYPE_MASK_GRP; 4030 break; 4031 case Opt_usrquota_block_hardlimit: 4032 size = memparse(param->string, &rest); 4033 if (*rest || !size) 4034 goto bad_value; 4035 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4036 return invalfc(fc, 4037 "User quota block hardlimit too large."); 4038 ctx->qlimits.usrquota_bhardlimit = size; 4039 break; 4040 case Opt_grpquota_block_hardlimit: 4041 size = memparse(param->string, &rest); 4042 if (*rest || !size) 4043 goto bad_value; 4044 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4045 return invalfc(fc, 4046 "Group quota block hardlimit too large."); 4047 ctx->qlimits.grpquota_bhardlimit = size; 4048 break; 4049 case Opt_usrquota_inode_hardlimit: 4050 size = memparse(param->string, &rest); 4051 if (*rest || !size) 4052 goto bad_value; 4053 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4054 return invalfc(fc, 4055 "User quota inode hardlimit too large."); 4056 ctx->qlimits.usrquota_ihardlimit = size; 4057 break; 4058 case Opt_grpquota_inode_hardlimit: 4059 size = memparse(param->string, &rest); 4060 if (*rest || !size) 4061 goto bad_value; 4062 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4063 return invalfc(fc, 4064 "Group quota inode hardlimit too large."); 4065 ctx->qlimits.grpquota_ihardlimit = size; 4066 break; 4067 } 4068 return 0; 4069 4070 unsupported_parameter: 4071 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4072 bad_value: 4073 return invalfc(fc, "Bad value for '%s'", param->key); 4074 } 4075 4076 static int shmem_parse_options(struct fs_context *fc, void *data) 4077 { 4078 char *options = data; 4079 4080 if (options) { 4081 int err = security_sb_eat_lsm_opts(options, &fc->security); 4082 if (err) 4083 return err; 4084 } 4085 4086 while (options != NULL) { 4087 char *this_char = options; 4088 for (;;) { 4089 /* 4090 * NUL-terminate this option: unfortunately, 4091 * mount options form a comma-separated list, 4092 * but mpol's nodelist may also contain commas. 4093 */ 4094 options = strchr(options, ','); 4095 if (options == NULL) 4096 break; 4097 options++; 4098 if (!isdigit(*options)) { 4099 options[-1] = '\0'; 4100 break; 4101 } 4102 } 4103 if (*this_char) { 4104 char *value = strchr(this_char, '='); 4105 size_t len = 0; 4106 int err; 4107 4108 if (value) { 4109 *value++ = '\0'; 4110 len = strlen(value); 4111 } 4112 err = vfs_parse_fs_string(fc, this_char, value, len); 4113 if (err < 0) 4114 return err; 4115 } 4116 } 4117 return 0; 4118 } 4119 4120 /* 4121 * Reconfigure a shmem filesystem. 4122 */ 4123 static int shmem_reconfigure(struct fs_context *fc) 4124 { 4125 struct shmem_options *ctx = fc->fs_private; 4126 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4127 unsigned long used_isp; 4128 struct mempolicy *mpol = NULL; 4129 const char *err; 4130 4131 raw_spin_lock(&sbinfo->stat_lock); 4132 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4133 4134 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4135 if (!sbinfo->max_blocks) { 4136 err = "Cannot retroactively limit size"; 4137 goto out; 4138 } 4139 if (percpu_counter_compare(&sbinfo->used_blocks, 4140 ctx->blocks) > 0) { 4141 err = "Too small a size for current use"; 4142 goto out; 4143 } 4144 } 4145 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4146 if (!sbinfo->max_inodes) { 4147 err = "Cannot retroactively limit inodes"; 4148 goto out; 4149 } 4150 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4151 err = "Too few inodes for current use"; 4152 goto out; 4153 } 4154 } 4155 4156 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4157 sbinfo->next_ino > UINT_MAX) { 4158 err = "Current inum too high to switch to 32-bit inums"; 4159 goto out; 4160 } 4161 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4162 err = "Cannot disable swap on remount"; 4163 goto out; 4164 } 4165 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4166 err = "Cannot enable swap on remount if it was disabled on first mount"; 4167 goto out; 4168 } 4169 4170 if (ctx->seen & SHMEM_SEEN_QUOTA && 4171 !sb_any_quota_loaded(fc->root->d_sb)) { 4172 err = "Cannot enable quota on remount"; 4173 goto out; 4174 } 4175 4176 #ifdef CONFIG_TMPFS_QUOTA 4177 #define CHANGED_LIMIT(name) \ 4178 (ctx->qlimits.name## hardlimit && \ 4179 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4180 4181 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4182 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4183 err = "Cannot change global quota limit on remount"; 4184 goto out; 4185 } 4186 #endif /* CONFIG_TMPFS_QUOTA */ 4187 4188 if (ctx->seen & SHMEM_SEEN_HUGE) 4189 sbinfo->huge = ctx->huge; 4190 if (ctx->seen & SHMEM_SEEN_INUMS) 4191 sbinfo->full_inums = ctx->full_inums; 4192 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4193 sbinfo->max_blocks = ctx->blocks; 4194 if (ctx->seen & SHMEM_SEEN_INODES) { 4195 sbinfo->max_inodes = ctx->inodes; 4196 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4197 } 4198 4199 /* 4200 * Preserve previous mempolicy unless mpol remount option was specified. 4201 */ 4202 if (ctx->mpol) { 4203 mpol = sbinfo->mpol; 4204 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4205 ctx->mpol = NULL; 4206 } 4207 4208 if (ctx->noswap) 4209 sbinfo->noswap = true; 4210 4211 raw_spin_unlock(&sbinfo->stat_lock); 4212 mpol_put(mpol); 4213 return 0; 4214 out: 4215 raw_spin_unlock(&sbinfo->stat_lock); 4216 return invalfc(fc, "%s", err); 4217 } 4218 4219 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4220 { 4221 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4222 struct mempolicy *mpol; 4223 4224 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4225 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4226 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4227 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4228 if (sbinfo->mode != (0777 | S_ISVTX)) 4229 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4230 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4231 seq_printf(seq, ",uid=%u", 4232 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4233 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4234 seq_printf(seq, ",gid=%u", 4235 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4236 4237 /* 4238 * Showing inode{64,32} might be useful even if it's the system default, 4239 * since then people don't have to resort to checking both here and 4240 * /proc/config.gz to confirm 64-bit inums were successfully applied 4241 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4242 * 4243 * We hide it when inode64 isn't the default and we are using 32-bit 4244 * inodes, since that probably just means the feature isn't even under 4245 * consideration. 4246 * 4247 * As such: 4248 * 4249 * +-----------------+-----------------+ 4250 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4251 * +------------------+-----------------+-----------------+ 4252 * | full_inums=true | show | show | 4253 * | full_inums=false | show | hide | 4254 * +------------------+-----------------+-----------------+ 4255 * 4256 */ 4257 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4258 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4260 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4261 if (sbinfo->huge) 4262 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4263 #endif 4264 mpol = shmem_get_sbmpol(sbinfo); 4265 shmem_show_mpol(seq, mpol); 4266 mpol_put(mpol); 4267 if (sbinfo->noswap) 4268 seq_printf(seq, ",noswap"); 4269 return 0; 4270 } 4271 4272 #endif /* CONFIG_TMPFS */ 4273 4274 static void shmem_put_super(struct super_block *sb) 4275 { 4276 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4277 4278 #ifdef CONFIG_TMPFS_QUOTA 4279 shmem_disable_quotas(sb); 4280 #endif 4281 free_percpu(sbinfo->ino_batch); 4282 percpu_counter_destroy(&sbinfo->used_blocks); 4283 mpol_put(sbinfo->mpol); 4284 kfree(sbinfo); 4285 sb->s_fs_info = NULL; 4286 } 4287 4288 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4289 { 4290 struct shmem_options *ctx = fc->fs_private; 4291 struct inode *inode; 4292 struct shmem_sb_info *sbinfo; 4293 int error = -ENOMEM; 4294 4295 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4296 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4297 L1_CACHE_BYTES), GFP_KERNEL); 4298 if (!sbinfo) 4299 return error; 4300 4301 sb->s_fs_info = sbinfo; 4302 4303 #ifdef CONFIG_TMPFS 4304 /* 4305 * Per default we only allow half of the physical ram per 4306 * tmpfs instance, limiting inodes to one per page of lowmem; 4307 * but the internal instance is left unlimited. 4308 */ 4309 if (!(sb->s_flags & SB_KERNMOUNT)) { 4310 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4311 ctx->blocks = shmem_default_max_blocks(); 4312 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4313 ctx->inodes = shmem_default_max_inodes(); 4314 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4315 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4316 sbinfo->noswap = ctx->noswap; 4317 } else { 4318 sb->s_flags |= SB_NOUSER; 4319 } 4320 sb->s_export_op = &shmem_export_ops; 4321 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4322 #else 4323 sb->s_flags |= SB_NOUSER; 4324 #endif 4325 sbinfo->max_blocks = ctx->blocks; 4326 sbinfo->max_inodes = ctx->inodes; 4327 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4328 if (sb->s_flags & SB_KERNMOUNT) { 4329 sbinfo->ino_batch = alloc_percpu(ino_t); 4330 if (!sbinfo->ino_batch) 4331 goto failed; 4332 } 4333 sbinfo->uid = ctx->uid; 4334 sbinfo->gid = ctx->gid; 4335 sbinfo->full_inums = ctx->full_inums; 4336 sbinfo->mode = ctx->mode; 4337 sbinfo->huge = ctx->huge; 4338 sbinfo->mpol = ctx->mpol; 4339 ctx->mpol = NULL; 4340 4341 raw_spin_lock_init(&sbinfo->stat_lock); 4342 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4343 goto failed; 4344 spin_lock_init(&sbinfo->shrinklist_lock); 4345 INIT_LIST_HEAD(&sbinfo->shrinklist); 4346 4347 sb->s_maxbytes = MAX_LFS_FILESIZE; 4348 sb->s_blocksize = PAGE_SIZE; 4349 sb->s_blocksize_bits = PAGE_SHIFT; 4350 sb->s_magic = TMPFS_MAGIC; 4351 sb->s_op = &shmem_ops; 4352 sb->s_time_gran = 1; 4353 #ifdef CONFIG_TMPFS_XATTR 4354 sb->s_xattr = shmem_xattr_handlers; 4355 #endif 4356 #ifdef CONFIG_TMPFS_POSIX_ACL 4357 sb->s_flags |= SB_POSIXACL; 4358 #endif 4359 uuid_gen(&sb->s_uuid); 4360 4361 #ifdef CONFIG_TMPFS_QUOTA 4362 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4363 sb->dq_op = &shmem_quota_operations; 4364 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4365 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4366 4367 /* Copy the default limits from ctx into sbinfo */ 4368 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4369 sizeof(struct shmem_quota_limits)); 4370 4371 if (shmem_enable_quotas(sb, ctx->quota_types)) 4372 goto failed; 4373 } 4374 #endif /* CONFIG_TMPFS_QUOTA */ 4375 4376 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 4377 VM_NORESERVE); 4378 if (IS_ERR(inode)) { 4379 error = PTR_ERR(inode); 4380 goto failed; 4381 } 4382 inode->i_uid = sbinfo->uid; 4383 inode->i_gid = sbinfo->gid; 4384 sb->s_root = d_make_root(inode); 4385 if (!sb->s_root) 4386 goto failed; 4387 return 0; 4388 4389 failed: 4390 shmem_put_super(sb); 4391 return error; 4392 } 4393 4394 static int shmem_get_tree(struct fs_context *fc) 4395 { 4396 return get_tree_nodev(fc, shmem_fill_super); 4397 } 4398 4399 static void shmem_free_fc(struct fs_context *fc) 4400 { 4401 struct shmem_options *ctx = fc->fs_private; 4402 4403 if (ctx) { 4404 mpol_put(ctx->mpol); 4405 kfree(ctx); 4406 } 4407 } 4408 4409 static const struct fs_context_operations shmem_fs_context_ops = { 4410 .free = shmem_free_fc, 4411 .get_tree = shmem_get_tree, 4412 #ifdef CONFIG_TMPFS 4413 .parse_monolithic = shmem_parse_options, 4414 .parse_param = shmem_parse_one, 4415 .reconfigure = shmem_reconfigure, 4416 #endif 4417 }; 4418 4419 static struct kmem_cache *shmem_inode_cachep; 4420 4421 static struct inode *shmem_alloc_inode(struct super_block *sb) 4422 { 4423 struct shmem_inode_info *info; 4424 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4425 if (!info) 4426 return NULL; 4427 return &info->vfs_inode; 4428 } 4429 4430 static void shmem_free_in_core_inode(struct inode *inode) 4431 { 4432 if (S_ISLNK(inode->i_mode)) 4433 kfree(inode->i_link); 4434 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4435 } 4436 4437 static void shmem_destroy_inode(struct inode *inode) 4438 { 4439 if (S_ISREG(inode->i_mode)) 4440 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4441 if (S_ISDIR(inode->i_mode)) 4442 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4443 } 4444 4445 static void shmem_init_inode(void *foo) 4446 { 4447 struct shmem_inode_info *info = foo; 4448 inode_init_once(&info->vfs_inode); 4449 } 4450 4451 static void shmem_init_inodecache(void) 4452 { 4453 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4454 sizeof(struct shmem_inode_info), 4455 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4456 } 4457 4458 static void shmem_destroy_inodecache(void) 4459 { 4460 kmem_cache_destroy(shmem_inode_cachep); 4461 } 4462 4463 /* Keep the page in page cache instead of truncating it */ 4464 static int shmem_error_remove_page(struct address_space *mapping, 4465 struct page *page) 4466 { 4467 return 0; 4468 } 4469 4470 const struct address_space_operations shmem_aops = { 4471 .writepage = shmem_writepage, 4472 .dirty_folio = noop_dirty_folio, 4473 #ifdef CONFIG_TMPFS 4474 .write_begin = shmem_write_begin, 4475 .write_end = shmem_write_end, 4476 #endif 4477 #ifdef CONFIG_MIGRATION 4478 .migrate_folio = migrate_folio, 4479 #endif 4480 .error_remove_page = shmem_error_remove_page, 4481 }; 4482 EXPORT_SYMBOL(shmem_aops); 4483 4484 static const struct file_operations shmem_file_operations = { 4485 .mmap = shmem_mmap, 4486 .open = shmem_file_open, 4487 .get_unmapped_area = shmem_get_unmapped_area, 4488 #ifdef CONFIG_TMPFS 4489 .llseek = shmem_file_llseek, 4490 .read_iter = shmem_file_read_iter, 4491 .write_iter = shmem_file_write_iter, 4492 .fsync = noop_fsync, 4493 .splice_read = shmem_file_splice_read, 4494 .splice_write = iter_file_splice_write, 4495 .fallocate = shmem_fallocate, 4496 #endif 4497 }; 4498 4499 static const struct inode_operations shmem_inode_operations = { 4500 .getattr = shmem_getattr, 4501 .setattr = shmem_setattr, 4502 #ifdef CONFIG_TMPFS_XATTR 4503 .listxattr = shmem_listxattr, 4504 .set_acl = simple_set_acl, 4505 .fileattr_get = shmem_fileattr_get, 4506 .fileattr_set = shmem_fileattr_set, 4507 #endif 4508 }; 4509 4510 static const struct inode_operations shmem_dir_inode_operations = { 4511 #ifdef CONFIG_TMPFS 4512 .getattr = shmem_getattr, 4513 .create = shmem_create, 4514 .lookup = simple_lookup, 4515 .link = shmem_link, 4516 .unlink = shmem_unlink, 4517 .symlink = shmem_symlink, 4518 .mkdir = shmem_mkdir, 4519 .rmdir = shmem_rmdir, 4520 .mknod = shmem_mknod, 4521 .rename = shmem_rename2, 4522 .tmpfile = shmem_tmpfile, 4523 .get_offset_ctx = shmem_get_offset_ctx, 4524 #endif 4525 #ifdef CONFIG_TMPFS_XATTR 4526 .listxattr = shmem_listxattr, 4527 .fileattr_get = shmem_fileattr_get, 4528 .fileattr_set = shmem_fileattr_set, 4529 #endif 4530 #ifdef CONFIG_TMPFS_POSIX_ACL 4531 .setattr = shmem_setattr, 4532 .set_acl = simple_set_acl, 4533 #endif 4534 }; 4535 4536 static const struct inode_operations shmem_special_inode_operations = { 4537 .getattr = shmem_getattr, 4538 #ifdef CONFIG_TMPFS_XATTR 4539 .listxattr = shmem_listxattr, 4540 #endif 4541 #ifdef CONFIG_TMPFS_POSIX_ACL 4542 .setattr = shmem_setattr, 4543 .set_acl = simple_set_acl, 4544 #endif 4545 }; 4546 4547 static const struct super_operations shmem_ops = { 4548 .alloc_inode = shmem_alloc_inode, 4549 .free_inode = shmem_free_in_core_inode, 4550 .destroy_inode = shmem_destroy_inode, 4551 #ifdef CONFIG_TMPFS 4552 .statfs = shmem_statfs, 4553 .show_options = shmem_show_options, 4554 #endif 4555 #ifdef CONFIG_TMPFS_QUOTA 4556 .get_dquots = shmem_get_dquots, 4557 #endif 4558 .evict_inode = shmem_evict_inode, 4559 .drop_inode = generic_delete_inode, 4560 .put_super = shmem_put_super, 4561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4562 .nr_cached_objects = shmem_unused_huge_count, 4563 .free_cached_objects = shmem_unused_huge_scan, 4564 #endif 4565 }; 4566 4567 static const struct vm_operations_struct shmem_vm_ops = { 4568 .fault = shmem_fault, 4569 .map_pages = filemap_map_pages, 4570 #ifdef CONFIG_NUMA 4571 .set_policy = shmem_set_policy, 4572 .get_policy = shmem_get_policy, 4573 #endif 4574 }; 4575 4576 static const struct vm_operations_struct shmem_anon_vm_ops = { 4577 .fault = shmem_fault, 4578 .map_pages = filemap_map_pages, 4579 #ifdef CONFIG_NUMA 4580 .set_policy = shmem_set_policy, 4581 .get_policy = shmem_get_policy, 4582 #endif 4583 }; 4584 4585 int shmem_init_fs_context(struct fs_context *fc) 4586 { 4587 struct shmem_options *ctx; 4588 4589 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4590 if (!ctx) 4591 return -ENOMEM; 4592 4593 ctx->mode = 0777 | S_ISVTX; 4594 ctx->uid = current_fsuid(); 4595 ctx->gid = current_fsgid(); 4596 4597 fc->fs_private = ctx; 4598 fc->ops = &shmem_fs_context_ops; 4599 return 0; 4600 } 4601 4602 static struct file_system_type shmem_fs_type = { 4603 .owner = THIS_MODULE, 4604 .name = "tmpfs", 4605 .init_fs_context = shmem_init_fs_context, 4606 #ifdef CONFIG_TMPFS 4607 .parameters = shmem_fs_parameters, 4608 #endif 4609 .kill_sb = kill_litter_super, 4610 #ifdef CONFIG_SHMEM 4611 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4612 #else 4613 .fs_flags = FS_USERNS_MOUNT, 4614 #endif 4615 }; 4616 4617 void __init shmem_init(void) 4618 { 4619 int error; 4620 4621 shmem_init_inodecache(); 4622 4623 #ifdef CONFIG_TMPFS_QUOTA 4624 error = register_quota_format(&shmem_quota_format); 4625 if (error < 0) { 4626 pr_err("Could not register quota format\n"); 4627 goto out3; 4628 } 4629 #endif 4630 4631 error = register_filesystem(&shmem_fs_type); 4632 if (error) { 4633 pr_err("Could not register tmpfs\n"); 4634 goto out2; 4635 } 4636 4637 shm_mnt = kern_mount(&shmem_fs_type); 4638 if (IS_ERR(shm_mnt)) { 4639 error = PTR_ERR(shm_mnt); 4640 pr_err("Could not kern_mount tmpfs\n"); 4641 goto out1; 4642 } 4643 4644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4645 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4646 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4647 else 4648 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4649 #endif 4650 return; 4651 4652 out1: 4653 unregister_filesystem(&shmem_fs_type); 4654 out2: 4655 #ifdef CONFIG_TMPFS_QUOTA 4656 unregister_quota_format(&shmem_quota_format); 4657 out3: 4658 #endif 4659 shmem_destroy_inodecache(); 4660 shm_mnt = ERR_PTR(error); 4661 } 4662 4663 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4664 static ssize_t shmem_enabled_show(struct kobject *kobj, 4665 struct kobj_attribute *attr, char *buf) 4666 { 4667 static const int values[] = { 4668 SHMEM_HUGE_ALWAYS, 4669 SHMEM_HUGE_WITHIN_SIZE, 4670 SHMEM_HUGE_ADVISE, 4671 SHMEM_HUGE_NEVER, 4672 SHMEM_HUGE_DENY, 4673 SHMEM_HUGE_FORCE, 4674 }; 4675 int len = 0; 4676 int i; 4677 4678 for (i = 0; i < ARRAY_SIZE(values); i++) { 4679 len += sysfs_emit_at(buf, len, 4680 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4681 i ? " " : "", 4682 shmem_format_huge(values[i])); 4683 } 4684 4685 len += sysfs_emit_at(buf, len, "\n"); 4686 4687 return len; 4688 } 4689 4690 static ssize_t shmem_enabled_store(struct kobject *kobj, 4691 struct kobj_attribute *attr, const char *buf, size_t count) 4692 { 4693 char tmp[16]; 4694 int huge; 4695 4696 if (count + 1 > sizeof(tmp)) 4697 return -EINVAL; 4698 memcpy(tmp, buf, count); 4699 tmp[count] = '\0'; 4700 if (count && tmp[count - 1] == '\n') 4701 tmp[count - 1] = '\0'; 4702 4703 huge = shmem_parse_huge(tmp); 4704 if (huge == -EINVAL) 4705 return -EINVAL; 4706 if (!has_transparent_hugepage() && 4707 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4708 return -EINVAL; 4709 4710 shmem_huge = huge; 4711 if (shmem_huge > SHMEM_HUGE_DENY) 4712 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4713 return count; 4714 } 4715 4716 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4717 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4718 4719 #else /* !CONFIG_SHMEM */ 4720 4721 /* 4722 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4723 * 4724 * This is intended for small system where the benefits of the full 4725 * shmem code (swap-backed and resource-limited) are outweighed by 4726 * their complexity. On systems without swap this code should be 4727 * effectively equivalent, but much lighter weight. 4728 */ 4729 4730 static struct file_system_type shmem_fs_type = { 4731 .name = "tmpfs", 4732 .init_fs_context = ramfs_init_fs_context, 4733 .parameters = ramfs_fs_parameters, 4734 .kill_sb = ramfs_kill_sb, 4735 .fs_flags = FS_USERNS_MOUNT, 4736 }; 4737 4738 void __init shmem_init(void) 4739 { 4740 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4741 4742 shm_mnt = kern_mount(&shmem_fs_type); 4743 BUG_ON(IS_ERR(shm_mnt)); 4744 } 4745 4746 int shmem_unuse(unsigned int type) 4747 { 4748 return 0; 4749 } 4750 4751 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4752 { 4753 return 0; 4754 } 4755 4756 void shmem_unlock_mapping(struct address_space *mapping) 4757 { 4758 } 4759 4760 #ifdef CONFIG_MMU 4761 unsigned long shmem_get_unmapped_area(struct file *file, 4762 unsigned long addr, unsigned long len, 4763 unsigned long pgoff, unsigned long flags) 4764 { 4765 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4766 } 4767 #endif 4768 4769 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4770 { 4771 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4772 } 4773 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4774 4775 #define shmem_vm_ops generic_file_vm_ops 4776 #define shmem_anon_vm_ops generic_file_vm_ops 4777 #define shmem_file_operations ramfs_file_operations 4778 #define shmem_acct_size(flags, size) 0 4779 #define shmem_unacct_size(flags, size) do {} while (0) 4780 4781 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir, 4782 umode_t mode, dev_t dev, unsigned long flags) 4783 { 4784 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4785 return inode ? inode : ERR_PTR(-ENOSPC); 4786 } 4787 4788 #endif /* CONFIG_SHMEM */ 4789 4790 /* common code */ 4791 4792 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4793 unsigned long flags, unsigned int i_flags) 4794 { 4795 struct inode *inode; 4796 struct file *res; 4797 4798 if (IS_ERR(mnt)) 4799 return ERR_CAST(mnt); 4800 4801 if (size < 0 || size > MAX_LFS_FILESIZE) 4802 return ERR_PTR(-EINVAL); 4803 4804 if (shmem_acct_size(flags, size)) 4805 return ERR_PTR(-ENOMEM); 4806 4807 if (is_idmapped_mnt(mnt)) 4808 return ERR_PTR(-EINVAL); 4809 4810 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4811 S_IFREG | S_IRWXUGO, 0, flags); 4812 4813 if (IS_ERR(inode)) { 4814 shmem_unacct_size(flags, size); 4815 return ERR_CAST(inode); 4816 } 4817 inode->i_flags |= i_flags; 4818 inode->i_size = size; 4819 clear_nlink(inode); /* It is unlinked */ 4820 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4821 if (!IS_ERR(res)) 4822 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4823 &shmem_file_operations); 4824 if (IS_ERR(res)) 4825 iput(inode); 4826 return res; 4827 } 4828 4829 /** 4830 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4831 * kernel internal. There will be NO LSM permission checks against the 4832 * underlying inode. So users of this interface must do LSM checks at a 4833 * higher layer. The users are the big_key and shm implementations. LSM 4834 * checks are provided at the key or shm level rather than the inode. 4835 * @name: name for dentry (to be seen in /proc/<pid>/maps 4836 * @size: size to be set for the file 4837 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4838 */ 4839 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4840 { 4841 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4842 } 4843 4844 /** 4845 * shmem_file_setup - get an unlinked file living in tmpfs 4846 * @name: name for dentry (to be seen in /proc/<pid>/maps 4847 * @size: size to be set for the file 4848 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4849 */ 4850 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4851 { 4852 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4853 } 4854 EXPORT_SYMBOL_GPL(shmem_file_setup); 4855 4856 /** 4857 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4858 * @mnt: the tmpfs mount where the file will be created 4859 * @name: name for dentry (to be seen in /proc/<pid>/maps 4860 * @size: size to be set for the file 4861 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4862 */ 4863 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4864 loff_t size, unsigned long flags) 4865 { 4866 return __shmem_file_setup(mnt, name, size, flags, 0); 4867 } 4868 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4869 4870 /** 4871 * shmem_zero_setup - setup a shared anonymous mapping 4872 * @vma: the vma to be mmapped is prepared by do_mmap 4873 */ 4874 int shmem_zero_setup(struct vm_area_struct *vma) 4875 { 4876 struct file *file; 4877 loff_t size = vma->vm_end - vma->vm_start; 4878 4879 /* 4880 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4881 * between XFS directory reading and selinux: since this file is only 4882 * accessible to the user through its mapping, use S_PRIVATE flag to 4883 * bypass file security, in the same way as shmem_kernel_file_setup(). 4884 */ 4885 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4886 if (IS_ERR(file)) 4887 return PTR_ERR(file); 4888 4889 if (vma->vm_file) 4890 fput(vma->vm_file); 4891 vma->vm_file = file; 4892 vma->vm_ops = &shmem_anon_vm_ops; 4893 4894 return 0; 4895 } 4896 4897 /** 4898 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4899 * @mapping: the folio's address_space 4900 * @index: the folio index 4901 * @gfp: the page allocator flags to use if allocating 4902 * 4903 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4904 * with any new page allocations done using the specified allocation flags. 4905 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4906 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4907 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4908 * 4909 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4910 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4911 */ 4912 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4913 pgoff_t index, gfp_t gfp) 4914 { 4915 #ifdef CONFIG_SHMEM 4916 struct inode *inode = mapping->host; 4917 struct folio *folio; 4918 int error; 4919 4920 BUG_ON(!shmem_mapping(mapping)); 4921 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4922 gfp, NULL, NULL, NULL); 4923 if (error) 4924 return ERR_PTR(error); 4925 4926 folio_unlock(folio); 4927 return folio; 4928 #else 4929 /* 4930 * The tiny !SHMEM case uses ramfs without swap 4931 */ 4932 return mapping_read_folio_gfp(mapping, index, gfp); 4933 #endif 4934 } 4935 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4936 4937 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4938 pgoff_t index, gfp_t gfp) 4939 { 4940 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4941 struct page *page; 4942 4943 if (IS_ERR(folio)) 4944 return &folio->page; 4945 4946 page = folio_file_page(folio, index); 4947 if (PageHWPoison(page)) { 4948 folio_put(folio); 4949 return ERR_PTR(-EIO); 4950 } 4951 4952 return page; 4953 } 4954 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4955