xref: /openbmc/linux/mm/shmem.c (revision d0054a470c33902f5ae88835ed8a8ecc3cf8faa4)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 
83 #include "internal.h"
84 
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87 
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90 
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93 
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_rwsem making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 	pgoff_t start;		/* start of range currently being fallocated */
102 	pgoff_t next;		/* the next page offset to be fallocated */
103 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
104 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
105 };
106 
107 struct shmem_options {
108 	unsigned long long blocks;
109 	unsigned long long inodes;
110 	struct mempolicy *mpol;
111 	kuid_t uid;
112 	kgid_t gid;
113 	umode_t mode;
114 	bool full_inums;
115 	int huge;
116 	int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122 
123 #ifdef CONFIG_TMPFS
124 static unsigned long shmem_default_max_blocks(void)
125 {
126 	return totalram_pages() / 2;
127 }
128 
129 static unsigned long shmem_default_max_inodes(void)
130 {
131 	unsigned long nr_pages = totalram_pages();
132 
133 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136 
137 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
138 			     struct page **pagep, enum sgp_type sgp,
139 			     gfp_t gfp, struct vm_area_struct *vma,
140 			     vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 		struct page **pagep, enum sgp_type sgp,
143 		gfp_t gfp, struct vm_area_struct *vma,
144 		struct vm_fault *vmf, vm_fault_t *fault_type);
145 
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp)
148 {
149 	return shmem_getpage_gfp(inode, index, pagep, sgp,
150 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 
215 	if (shmem_acct_block(info->flags, pages))
216 		return false;
217 
218 	if (sbinfo->max_blocks) {
219 		if (percpu_counter_compare(&sbinfo->used_blocks,
220 					   sbinfo->max_blocks - pages) > 0)
221 			goto unacct;
222 		percpu_counter_add(&sbinfo->used_blocks, pages);
223 	}
224 
225 	return true;
226 
227 unacct:
228 	shmem_unacct_blocks(info->flags, pages);
229 	return false;
230 }
231 
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234 	struct shmem_inode_info *info = SHMEM_I(inode);
235 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236 
237 	if (sbinfo->max_blocks)
238 		percpu_counter_sub(&sbinfo->used_blocks, pages);
239 	shmem_unacct_blocks(info->flags, pages);
240 }
241 
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250 
251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253 	return vma->vm_ops == &shmem_vm_ops;
254 }
255 
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258 
259 /*
260  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261  * produces a novel ino for the newly allocated inode.
262  *
263  * It may also be called when making a hard link to permit the space needed by
264  * each dentry. However, in that case, no new inode number is needed since that
265  * internally draws from another pool of inode numbers (currently global
266  * get_next_ino()). This case is indicated by passing NULL as inop.
267  */
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272 	ino_t ino;
273 
274 	if (!(sb->s_flags & SB_KERNMOUNT)) {
275 		raw_spin_lock(&sbinfo->stat_lock);
276 		if (sbinfo->max_inodes) {
277 			if (!sbinfo->free_inodes) {
278 				raw_spin_unlock(&sbinfo->stat_lock);
279 				return -ENOSPC;
280 			}
281 			sbinfo->free_inodes--;
282 		}
283 		if (inop) {
284 			ino = sbinfo->next_ino++;
285 			if (unlikely(is_zero_ino(ino)))
286 				ino = sbinfo->next_ino++;
287 			if (unlikely(!sbinfo->full_inums &&
288 				     ino > UINT_MAX)) {
289 				/*
290 				 * Emulate get_next_ino uint wraparound for
291 				 * compatibility
292 				 */
293 				if (IS_ENABLED(CONFIG_64BIT))
294 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 						__func__, MINOR(sb->s_dev));
296 				sbinfo->next_ino = 1;
297 				ino = sbinfo->next_ino++;
298 			}
299 			*inop = ino;
300 		}
301 		raw_spin_unlock(&sbinfo->stat_lock);
302 	} else if (inop) {
303 		/*
304 		 * __shmem_file_setup, one of our callers, is lock-free: it
305 		 * doesn't hold stat_lock in shmem_reserve_inode since
306 		 * max_inodes is always 0, and is called from potentially
307 		 * unknown contexts. As such, use a per-cpu batched allocator
308 		 * which doesn't require the per-sb stat_lock unless we are at
309 		 * the batch boundary.
310 		 *
311 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 		 * shmem mounts are not exposed to userspace, so we don't need
313 		 * to worry about things like glibc compatibility.
314 		 */
315 		ino_t *next_ino;
316 
317 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 		ino = *next_ino;
319 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 			raw_spin_lock(&sbinfo->stat_lock);
321 			ino = sbinfo->next_ino;
322 			sbinfo->next_ino += SHMEM_INO_BATCH;
323 			raw_spin_unlock(&sbinfo->stat_lock);
324 			if (unlikely(is_zero_ino(ino)))
325 				ino++;
326 		}
327 		*inop = ino;
328 		*next_ino = ++ino;
329 		put_cpu();
330 	}
331 
332 	return 0;
333 }
334 
335 static void shmem_free_inode(struct super_block *sb)
336 {
337 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 	if (sbinfo->max_inodes) {
339 		raw_spin_lock(&sbinfo->stat_lock);
340 		sbinfo->free_inodes++;
341 		raw_spin_unlock(&sbinfo->stat_lock);
342 	}
343 }
344 
345 /**
346  * shmem_recalc_inode - recalculate the block usage of an inode
347  * @inode: inode to recalc
348  *
349  * We have to calculate the free blocks since the mm can drop
350  * undirtied hole pages behind our back.
351  *
352  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
353  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354  *
355  * It has to be called with the spinlock held.
356  */
357 static void shmem_recalc_inode(struct inode *inode)
358 {
359 	struct shmem_inode_info *info = SHMEM_I(inode);
360 	long freed;
361 
362 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 	if (freed > 0) {
364 		info->alloced -= freed;
365 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 		shmem_inode_unacct_blocks(inode, freed);
367 	}
368 }
369 
370 bool shmem_charge(struct inode *inode, long pages)
371 {
372 	struct shmem_inode_info *info = SHMEM_I(inode);
373 	unsigned long flags;
374 
375 	if (!shmem_inode_acct_block(inode, pages))
376 		return false;
377 
378 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 	inode->i_mapping->nrpages += pages;
380 
381 	spin_lock_irqsave(&info->lock, flags);
382 	info->alloced += pages;
383 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 	shmem_recalc_inode(inode);
385 	spin_unlock_irqrestore(&info->lock, flags);
386 
387 	return true;
388 }
389 
390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392 	struct shmem_inode_info *info = SHMEM_I(inode);
393 	unsigned long flags;
394 
395 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
396 
397 	spin_lock_irqsave(&info->lock, flags);
398 	info->alloced -= pages;
399 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 	shmem_recalc_inode(inode);
401 	spin_unlock_irqrestore(&info->lock, flags);
402 
403 	shmem_inode_unacct_blocks(inode, pages);
404 }
405 
406 /*
407  * Replace item expected in xarray by a new item, while holding xa_lock.
408  */
409 static int shmem_replace_entry(struct address_space *mapping,
410 			pgoff_t index, void *expected, void *replacement)
411 {
412 	XA_STATE(xas, &mapping->i_pages, index);
413 	void *item;
414 
415 	VM_BUG_ON(!expected);
416 	VM_BUG_ON(!replacement);
417 	item = xas_load(&xas);
418 	if (item != expected)
419 		return -ENOENT;
420 	xas_store(&xas, replacement);
421 	return 0;
422 }
423 
424 /*
425  * Sometimes, before we decide whether to proceed or to fail, we must check
426  * that an entry was not already brought back from swap by a racing thread.
427  *
428  * Checking page is not enough: by the time a SwapCache page is locked, it
429  * might be reused, and again be SwapCache, using the same swap as before.
430  */
431 static bool shmem_confirm_swap(struct address_space *mapping,
432 			       pgoff_t index, swp_entry_t swap)
433 {
434 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436 
437 /*
438  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439  *
440  * SHMEM_HUGE_NEVER:
441  *	disables huge pages for the mount;
442  * SHMEM_HUGE_ALWAYS:
443  *	enables huge pages for the mount;
444  * SHMEM_HUGE_WITHIN_SIZE:
445  *	only allocate huge pages if the page will be fully within i_size,
446  *	also respect fadvise()/madvise() hints;
447  * SHMEM_HUGE_ADVISE:
448  *	only allocate huge pages if requested with fadvise()/madvise();
449  */
450 
451 #define SHMEM_HUGE_NEVER	0
452 #define SHMEM_HUGE_ALWAYS	1
453 #define SHMEM_HUGE_WITHIN_SIZE	2
454 #define SHMEM_HUGE_ADVISE	3
455 
456 /*
457  * Special values.
458  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459  *
460  * SHMEM_HUGE_DENY:
461  *	disables huge on shm_mnt and all mounts, for emergency use;
462  * SHMEM_HUGE_FORCE:
463  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464  *
465  */
466 #define SHMEM_HUGE_DENY		(-1)
467 #define SHMEM_HUGE_FORCE	(-2)
468 
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471 
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473 
474 bool shmem_is_huge(struct vm_area_struct *vma,
475 		   struct inode *inode, pgoff_t index)
476 {
477 	loff_t i_size;
478 
479 	if (shmem_huge == SHMEM_HUGE_DENY)
480 		return false;
481 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
482 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
483 		return false;
484 	if (shmem_huge == SHMEM_HUGE_FORCE)
485 		return true;
486 
487 	switch (SHMEM_SB(inode->i_sb)->huge) {
488 	case SHMEM_HUGE_ALWAYS:
489 		return true;
490 	case SHMEM_HUGE_WITHIN_SIZE:
491 		index = round_up(index + 1, HPAGE_PMD_NR);
492 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
493 		if (i_size >> PAGE_SHIFT >= index)
494 			return true;
495 		fallthrough;
496 	case SHMEM_HUGE_ADVISE:
497 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
498 			return true;
499 		fallthrough;
500 	default:
501 		return false;
502 	}
503 }
504 
505 #if defined(CONFIG_SYSFS)
506 static int shmem_parse_huge(const char *str)
507 {
508 	if (!strcmp(str, "never"))
509 		return SHMEM_HUGE_NEVER;
510 	if (!strcmp(str, "always"))
511 		return SHMEM_HUGE_ALWAYS;
512 	if (!strcmp(str, "within_size"))
513 		return SHMEM_HUGE_WITHIN_SIZE;
514 	if (!strcmp(str, "advise"))
515 		return SHMEM_HUGE_ADVISE;
516 	if (!strcmp(str, "deny"))
517 		return SHMEM_HUGE_DENY;
518 	if (!strcmp(str, "force"))
519 		return SHMEM_HUGE_FORCE;
520 	return -EINVAL;
521 }
522 #endif
523 
524 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
525 static const char *shmem_format_huge(int huge)
526 {
527 	switch (huge) {
528 	case SHMEM_HUGE_NEVER:
529 		return "never";
530 	case SHMEM_HUGE_ALWAYS:
531 		return "always";
532 	case SHMEM_HUGE_WITHIN_SIZE:
533 		return "within_size";
534 	case SHMEM_HUGE_ADVISE:
535 		return "advise";
536 	case SHMEM_HUGE_DENY:
537 		return "deny";
538 	case SHMEM_HUGE_FORCE:
539 		return "force";
540 	default:
541 		VM_BUG_ON(1);
542 		return "bad_val";
543 	}
544 }
545 #endif
546 
547 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
548 		struct shrink_control *sc, unsigned long nr_to_split)
549 {
550 	LIST_HEAD(list), *pos, *next;
551 	LIST_HEAD(to_remove);
552 	struct inode *inode;
553 	struct shmem_inode_info *info;
554 	struct page *page;
555 	unsigned long batch = sc ? sc->nr_to_scan : 128;
556 	int split = 0;
557 
558 	if (list_empty(&sbinfo->shrinklist))
559 		return SHRINK_STOP;
560 
561 	spin_lock(&sbinfo->shrinklist_lock);
562 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
563 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
564 
565 		/* pin the inode */
566 		inode = igrab(&info->vfs_inode);
567 
568 		/* inode is about to be evicted */
569 		if (!inode) {
570 			list_del_init(&info->shrinklist);
571 			goto next;
572 		}
573 
574 		/* Check if there's anything to gain */
575 		if (round_up(inode->i_size, PAGE_SIZE) ==
576 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
577 			list_move(&info->shrinklist, &to_remove);
578 			goto next;
579 		}
580 
581 		list_move(&info->shrinklist, &list);
582 next:
583 		sbinfo->shrinklist_len--;
584 		if (!--batch)
585 			break;
586 	}
587 	spin_unlock(&sbinfo->shrinklist_lock);
588 
589 	list_for_each_safe(pos, next, &to_remove) {
590 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
591 		inode = &info->vfs_inode;
592 		list_del_init(&info->shrinklist);
593 		iput(inode);
594 	}
595 
596 	list_for_each_safe(pos, next, &list) {
597 		int ret;
598 
599 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
600 		inode = &info->vfs_inode;
601 
602 		if (nr_to_split && split >= nr_to_split)
603 			goto move_back;
604 
605 		page = find_get_page(inode->i_mapping,
606 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
607 		if (!page)
608 			goto drop;
609 
610 		/* No huge page at the end of the file: nothing to split */
611 		if (!PageTransHuge(page)) {
612 			put_page(page);
613 			goto drop;
614 		}
615 
616 		/*
617 		 * Move the inode on the list back to shrinklist if we failed
618 		 * to lock the page at this time.
619 		 *
620 		 * Waiting for the lock may lead to deadlock in the
621 		 * reclaim path.
622 		 */
623 		if (!trylock_page(page)) {
624 			put_page(page);
625 			goto move_back;
626 		}
627 
628 		ret = split_huge_page(page);
629 		unlock_page(page);
630 		put_page(page);
631 
632 		/* If split failed move the inode on the list back to shrinklist */
633 		if (ret)
634 			goto move_back;
635 
636 		split++;
637 drop:
638 		list_del_init(&info->shrinklist);
639 		goto put;
640 move_back:
641 		/*
642 		 * Make sure the inode is either on the global list or deleted
643 		 * from any local list before iput() since it could be deleted
644 		 * in another thread once we put the inode (then the local list
645 		 * is corrupted).
646 		 */
647 		spin_lock(&sbinfo->shrinklist_lock);
648 		list_move(&info->shrinklist, &sbinfo->shrinklist);
649 		sbinfo->shrinklist_len++;
650 		spin_unlock(&sbinfo->shrinklist_lock);
651 put:
652 		iput(inode);
653 	}
654 
655 	return split;
656 }
657 
658 static long shmem_unused_huge_scan(struct super_block *sb,
659 		struct shrink_control *sc)
660 {
661 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
662 
663 	if (!READ_ONCE(sbinfo->shrinklist_len))
664 		return SHRINK_STOP;
665 
666 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
667 }
668 
669 static long shmem_unused_huge_count(struct super_block *sb,
670 		struct shrink_control *sc)
671 {
672 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
673 	return READ_ONCE(sbinfo->shrinklist_len);
674 }
675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
676 
677 #define shmem_huge SHMEM_HUGE_DENY
678 
679 bool shmem_is_huge(struct vm_area_struct *vma,
680 		   struct inode *inode, pgoff_t index)
681 {
682 	return false;
683 }
684 
685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
686 		struct shrink_control *sc, unsigned long nr_to_split)
687 {
688 	return 0;
689 }
690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
691 
692 /*
693  * Like add_to_page_cache_locked, but error if expected item has gone.
694  */
695 static int shmem_add_to_page_cache(struct page *page,
696 				   struct address_space *mapping,
697 				   pgoff_t index, void *expected, gfp_t gfp,
698 				   struct mm_struct *charge_mm)
699 {
700 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
701 	unsigned long nr = compound_nr(page);
702 	int error;
703 
704 	VM_BUG_ON_PAGE(PageTail(page), page);
705 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
706 	VM_BUG_ON_PAGE(!PageLocked(page), page);
707 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
708 	VM_BUG_ON(expected && PageTransHuge(page));
709 
710 	page_ref_add(page, nr);
711 	page->mapping = mapping;
712 	page->index = index;
713 
714 	if (!PageSwapCache(page)) {
715 		error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
716 		if (error) {
717 			if (PageTransHuge(page)) {
718 				count_vm_event(THP_FILE_FALLBACK);
719 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
720 			}
721 			goto error;
722 		}
723 	}
724 	cgroup_throttle_swaprate(page, gfp);
725 
726 	do {
727 		xas_lock_irq(&xas);
728 		if (expected != xas_find_conflict(&xas)) {
729 			xas_set_err(&xas, -EEXIST);
730 			goto unlock;
731 		}
732 		if (expected && xas_find_conflict(&xas)) {
733 			xas_set_err(&xas, -EEXIST);
734 			goto unlock;
735 		}
736 		xas_store(&xas, page);
737 		if (xas_error(&xas))
738 			goto unlock;
739 		if (PageTransHuge(page)) {
740 			count_vm_event(THP_FILE_ALLOC);
741 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
742 		}
743 		mapping->nrpages += nr;
744 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
745 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
746 unlock:
747 		xas_unlock_irq(&xas);
748 	} while (xas_nomem(&xas, gfp));
749 
750 	if (xas_error(&xas)) {
751 		error = xas_error(&xas);
752 		goto error;
753 	}
754 
755 	return 0;
756 error:
757 	page->mapping = NULL;
758 	page_ref_sub(page, nr);
759 	return error;
760 }
761 
762 /*
763  * Like delete_from_page_cache, but substitutes swap for page.
764  */
765 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
766 {
767 	struct address_space *mapping = page->mapping;
768 	int error;
769 
770 	VM_BUG_ON_PAGE(PageCompound(page), page);
771 
772 	xa_lock_irq(&mapping->i_pages);
773 	error = shmem_replace_entry(mapping, page->index, page, radswap);
774 	page->mapping = NULL;
775 	mapping->nrpages--;
776 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
777 	__dec_lruvec_page_state(page, NR_SHMEM);
778 	xa_unlock_irq(&mapping->i_pages);
779 	put_page(page);
780 	BUG_ON(error);
781 }
782 
783 /*
784  * Remove swap entry from page cache, free the swap and its page cache.
785  */
786 static int shmem_free_swap(struct address_space *mapping,
787 			   pgoff_t index, void *radswap)
788 {
789 	void *old;
790 
791 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
792 	if (old != radswap)
793 		return -ENOENT;
794 	free_swap_and_cache(radix_to_swp_entry(radswap));
795 	return 0;
796 }
797 
798 /*
799  * Determine (in bytes) how many of the shmem object's pages mapped by the
800  * given offsets are swapped out.
801  *
802  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
803  * as long as the inode doesn't go away and racy results are not a problem.
804  */
805 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
806 						pgoff_t start, pgoff_t end)
807 {
808 	XA_STATE(xas, &mapping->i_pages, start);
809 	struct page *page;
810 	unsigned long swapped = 0;
811 
812 	rcu_read_lock();
813 	xas_for_each(&xas, page, end - 1) {
814 		if (xas_retry(&xas, page))
815 			continue;
816 		if (xa_is_value(page))
817 			swapped++;
818 
819 		if (need_resched()) {
820 			xas_pause(&xas);
821 			cond_resched_rcu();
822 		}
823 	}
824 
825 	rcu_read_unlock();
826 
827 	return swapped << PAGE_SHIFT;
828 }
829 
830 /*
831  * Determine (in bytes) how many of the shmem object's pages mapped by the
832  * given vma is swapped out.
833  *
834  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
835  * as long as the inode doesn't go away and racy results are not a problem.
836  */
837 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
838 {
839 	struct inode *inode = file_inode(vma->vm_file);
840 	struct shmem_inode_info *info = SHMEM_I(inode);
841 	struct address_space *mapping = inode->i_mapping;
842 	unsigned long swapped;
843 
844 	/* Be careful as we don't hold info->lock */
845 	swapped = READ_ONCE(info->swapped);
846 
847 	/*
848 	 * The easier cases are when the shmem object has nothing in swap, or
849 	 * the vma maps it whole. Then we can simply use the stats that we
850 	 * already track.
851 	 */
852 	if (!swapped)
853 		return 0;
854 
855 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856 		return swapped << PAGE_SHIFT;
857 
858 	/* Here comes the more involved part */
859 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
860 					vma->vm_pgoff + vma_pages(vma));
861 }
862 
863 /*
864  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865  */
866 void shmem_unlock_mapping(struct address_space *mapping)
867 {
868 	struct pagevec pvec;
869 	pgoff_t index = 0;
870 
871 	pagevec_init(&pvec);
872 	/*
873 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874 	 */
875 	while (!mapping_unevictable(mapping)) {
876 		if (!pagevec_lookup(&pvec, mapping, &index))
877 			break;
878 		check_move_unevictable_pages(&pvec);
879 		pagevec_release(&pvec);
880 		cond_resched();
881 	}
882 }
883 
884 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
885 {
886 	struct folio *folio;
887 	struct page *page;
888 
889 	/*
890 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
891 	 * beyond i_size, and reports fallocated pages as holes.
892 	 */
893 	folio = __filemap_get_folio(inode->i_mapping, index,
894 					FGP_ENTRY | FGP_LOCK, 0);
895 	if (!xa_is_value(folio))
896 		return folio;
897 	/*
898 	 * But read a page back from swap if any of it is within i_size
899 	 * (although in some cases this is just a waste of time).
900 	 */
901 	page = NULL;
902 	shmem_getpage(inode, index, &page, SGP_READ);
903 	return page ? page_folio(page) : NULL;
904 }
905 
906 /*
907  * Remove range of pages and swap entries from page cache, and free them.
908  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
909  */
910 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
911 								 bool unfalloc)
912 {
913 	struct address_space *mapping = inode->i_mapping;
914 	struct shmem_inode_info *info = SHMEM_I(inode);
915 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
916 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
917 	struct folio_batch fbatch;
918 	pgoff_t indices[PAGEVEC_SIZE];
919 	struct folio *folio;
920 	bool same_folio;
921 	long nr_swaps_freed = 0;
922 	pgoff_t index;
923 	int i;
924 
925 	if (lend == -1)
926 		end = -1;	/* unsigned, so actually very big */
927 
928 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
929 		info->fallocend = start;
930 
931 	folio_batch_init(&fbatch);
932 	index = start;
933 	while (index < end && find_lock_entries(mapping, index, end - 1,
934 			&fbatch, indices)) {
935 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
936 			folio = fbatch.folios[i];
937 
938 			index = indices[i];
939 
940 			if (xa_is_value(folio)) {
941 				if (unfalloc)
942 					continue;
943 				nr_swaps_freed += !shmem_free_swap(mapping,
944 								index, folio);
945 				continue;
946 			}
947 			index += folio_nr_pages(folio) - 1;
948 
949 			if (!unfalloc || !folio_test_uptodate(folio))
950 				truncate_inode_folio(mapping, folio);
951 			folio_unlock(folio);
952 		}
953 		folio_batch_remove_exceptionals(&fbatch);
954 		folio_batch_release(&fbatch);
955 		cond_resched();
956 		index++;
957 	}
958 
959 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
960 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
961 	if (folio) {
962 		same_folio = lend < folio_pos(folio) + folio_size(folio);
963 		folio_mark_dirty(folio);
964 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
965 			start = folio->index + folio_nr_pages(folio);
966 			if (same_folio)
967 				end = folio->index;
968 		}
969 		folio_unlock(folio);
970 		folio_put(folio);
971 		folio = NULL;
972 	}
973 
974 	if (!same_folio)
975 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
976 	if (folio) {
977 		folio_mark_dirty(folio);
978 		if (!truncate_inode_partial_folio(folio, lstart, lend))
979 			end = folio->index;
980 		folio_unlock(folio);
981 		folio_put(folio);
982 	}
983 
984 	index = start;
985 	while (index < end) {
986 		cond_resched();
987 
988 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
989 				indices)) {
990 			/* If all gone or hole-punch or unfalloc, we're done */
991 			if (index == start || end != -1)
992 				break;
993 			/* But if truncating, restart to make sure all gone */
994 			index = start;
995 			continue;
996 		}
997 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
998 			folio = fbatch.folios[i];
999 
1000 			index = indices[i];
1001 			if (xa_is_value(folio)) {
1002 				if (unfalloc)
1003 					continue;
1004 				if (shmem_free_swap(mapping, index, folio)) {
1005 					/* Swap was replaced by page: retry */
1006 					index--;
1007 					break;
1008 				}
1009 				nr_swaps_freed++;
1010 				continue;
1011 			}
1012 
1013 			folio_lock(folio);
1014 
1015 			if (!unfalloc || !folio_test_uptodate(folio)) {
1016 				if (folio_mapping(folio) != mapping) {
1017 					/* Page was replaced by swap: retry */
1018 					folio_unlock(folio);
1019 					index--;
1020 					break;
1021 				}
1022 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1023 						folio);
1024 				truncate_inode_folio(mapping, folio);
1025 			}
1026 			index = folio->index + folio_nr_pages(folio) - 1;
1027 			folio_unlock(folio);
1028 		}
1029 		folio_batch_remove_exceptionals(&fbatch);
1030 		folio_batch_release(&fbatch);
1031 		index++;
1032 	}
1033 
1034 	spin_lock_irq(&info->lock);
1035 	info->swapped -= nr_swaps_freed;
1036 	shmem_recalc_inode(inode);
1037 	spin_unlock_irq(&info->lock);
1038 }
1039 
1040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1041 {
1042 	shmem_undo_range(inode, lstart, lend, false);
1043 	inode->i_ctime = inode->i_mtime = current_time(inode);
1044 }
1045 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1046 
1047 static int shmem_getattr(struct user_namespace *mnt_userns,
1048 			 const struct path *path, struct kstat *stat,
1049 			 u32 request_mask, unsigned int query_flags)
1050 {
1051 	struct inode *inode = path->dentry->d_inode;
1052 	struct shmem_inode_info *info = SHMEM_I(inode);
1053 
1054 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1055 		spin_lock_irq(&info->lock);
1056 		shmem_recalc_inode(inode);
1057 		spin_unlock_irq(&info->lock);
1058 	}
1059 	generic_fillattr(&init_user_ns, inode, stat);
1060 
1061 	if (shmem_is_huge(NULL, inode, 0))
1062 		stat->blksize = HPAGE_PMD_SIZE;
1063 
1064 	return 0;
1065 }
1066 
1067 static int shmem_setattr(struct user_namespace *mnt_userns,
1068 			 struct dentry *dentry, struct iattr *attr)
1069 {
1070 	struct inode *inode = d_inode(dentry);
1071 	struct shmem_inode_info *info = SHMEM_I(inode);
1072 	int error;
1073 
1074 	error = setattr_prepare(&init_user_ns, dentry, attr);
1075 	if (error)
1076 		return error;
1077 
1078 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1079 		loff_t oldsize = inode->i_size;
1080 		loff_t newsize = attr->ia_size;
1081 
1082 		/* protected by i_rwsem */
1083 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1084 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1085 			return -EPERM;
1086 
1087 		if (newsize != oldsize) {
1088 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1089 					oldsize, newsize);
1090 			if (error)
1091 				return error;
1092 			i_size_write(inode, newsize);
1093 			inode->i_ctime = inode->i_mtime = current_time(inode);
1094 		}
1095 		if (newsize <= oldsize) {
1096 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1097 			if (oldsize > holebegin)
1098 				unmap_mapping_range(inode->i_mapping,
1099 							holebegin, 0, 1);
1100 			if (info->alloced)
1101 				shmem_truncate_range(inode,
1102 							newsize, (loff_t)-1);
1103 			/* unmap again to remove racily COWed private pages */
1104 			if (oldsize > holebegin)
1105 				unmap_mapping_range(inode->i_mapping,
1106 							holebegin, 0, 1);
1107 		}
1108 	}
1109 
1110 	setattr_copy(&init_user_ns, inode, attr);
1111 	if (attr->ia_valid & ATTR_MODE)
1112 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1113 	return error;
1114 }
1115 
1116 static void shmem_evict_inode(struct inode *inode)
1117 {
1118 	struct shmem_inode_info *info = SHMEM_I(inode);
1119 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1120 
1121 	if (shmem_mapping(inode->i_mapping)) {
1122 		shmem_unacct_size(info->flags, inode->i_size);
1123 		inode->i_size = 0;
1124 		shmem_truncate_range(inode, 0, (loff_t)-1);
1125 		if (!list_empty(&info->shrinklist)) {
1126 			spin_lock(&sbinfo->shrinklist_lock);
1127 			if (!list_empty(&info->shrinklist)) {
1128 				list_del_init(&info->shrinklist);
1129 				sbinfo->shrinklist_len--;
1130 			}
1131 			spin_unlock(&sbinfo->shrinklist_lock);
1132 		}
1133 		while (!list_empty(&info->swaplist)) {
1134 			/* Wait while shmem_unuse() is scanning this inode... */
1135 			wait_var_event(&info->stop_eviction,
1136 				       !atomic_read(&info->stop_eviction));
1137 			mutex_lock(&shmem_swaplist_mutex);
1138 			/* ...but beware of the race if we peeked too early */
1139 			if (!atomic_read(&info->stop_eviction))
1140 				list_del_init(&info->swaplist);
1141 			mutex_unlock(&shmem_swaplist_mutex);
1142 		}
1143 	}
1144 
1145 	simple_xattrs_free(&info->xattrs);
1146 	WARN_ON(inode->i_blocks);
1147 	shmem_free_inode(inode->i_sb);
1148 	clear_inode(inode);
1149 }
1150 
1151 static int shmem_find_swap_entries(struct address_space *mapping,
1152 				   pgoff_t start, unsigned int nr_entries,
1153 				   struct page **entries, pgoff_t *indices,
1154 				   unsigned int type)
1155 {
1156 	XA_STATE(xas, &mapping->i_pages, start);
1157 	struct page *page;
1158 	swp_entry_t entry;
1159 	unsigned int ret = 0;
1160 
1161 	if (!nr_entries)
1162 		return 0;
1163 
1164 	rcu_read_lock();
1165 	xas_for_each(&xas, page, ULONG_MAX) {
1166 		if (xas_retry(&xas, page))
1167 			continue;
1168 
1169 		if (!xa_is_value(page))
1170 			continue;
1171 
1172 		entry = radix_to_swp_entry(page);
1173 		if (swp_type(entry) != type)
1174 			continue;
1175 
1176 		indices[ret] = xas.xa_index;
1177 		entries[ret] = page;
1178 
1179 		if (need_resched()) {
1180 			xas_pause(&xas);
1181 			cond_resched_rcu();
1182 		}
1183 		if (++ret == nr_entries)
1184 			break;
1185 	}
1186 	rcu_read_unlock();
1187 
1188 	return ret;
1189 }
1190 
1191 /*
1192  * Move the swapped pages for an inode to page cache. Returns the count
1193  * of pages swapped in, or the error in case of failure.
1194  */
1195 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1196 				    pgoff_t *indices)
1197 {
1198 	int i = 0;
1199 	int ret = 0;
1200 	int error = 0;
1201 	struct address_space *mapping = inode->i_mapping;
1202 
1203 	for (i = 0; i < pvec.nr; i++) {
1204 		struct page *page = pvec.pages[i];
1205 
1206 		if (!xa_is_value(page))
1207 			continue;
1208 		error = shmem_swapin_page(inode, indices[i],
1209 					  &page, SGP_CACHE,
1210 					  mapping_gfp_mask(mapping),
1211 					  NULL, NULL);
1212 		if (error == 0) {
1213 			unlock_page(page);
1214 			put_page(page);
1215 			ret++;
1216 		}
1217 		if (error == -ENOMEM)
1218 			break;
1219 		error = 0;
1220 	}
1221 	return error ? error : ret;
1222 }
1223 
1224 /*
1225  * If swap found in inode, free it and move page from swapcache to filecache.
1226  */
1227 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1228 {
1229 	struct address_space *mapping = inode->i_mapping;
1230 	pgoff_t start = 0;
1231 	struct pagevec pvec;
1232 	pgoff_t indices[PAGEVEC_SIZE];
1233 	int ret = 0;
1234 
1235 	pagevec_init(&pvec);
1236 	do {
1237 		unsigned int nr_entries = PAGEVEC_SIZE;
1238 
1239 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1240 						  pvec.pages, indices, type);
1241 		if (pvec.nr == 0) {
1242 			ret = 0;
1243 			break;
1244 		}
1245 
1246 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1247 		if (ret < 0)
1248 			break;
1249 
1250 		start = indices[pvec.nr - 1];
1251 	} while (true);
1252 
1253 	return ret;
1254 }
1255 
1256 /*
1257  * Read all the shared memory data that resides in the swap
1258  * device 'type' back into memory, so the swap device can be
1259  * unused.
1260  */
1261 int shmem_unuse(unsigned int type)
1262 {
1263 	struct shmem_inode_info *info, *next;
1264 	int error = 0;
1265 
1266 	if (list_empty(&shmem_swaplist))
1267 		return 0;
1268 
1269 	mutex_lock(&shmem_swaplist_mutex);
1270 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1271 		if (!info->swapped) {
1272 			list_del_init(&info->swaplist);
1273 			continue;
1274 		}
1275 		/*
1276 		 * Drop the swaplist mutex while searching the inode for swap;
1277 		 * but before doing so, make sure shmem_evict_inode() will not
1278 		 * remove placeholder inode from swaplist, nor let it be freed
1279 		 * (igrab() would protect from unlink, but not from unmount).
1280 		 */
1281 		atomic_inc(&info->stop_eviction);
1282 		mutex_unlock(&shmem_swaplist_mutex);
1283 
1284 		error = shmem_unuse_inode(&info->vfs_inode, type);
1285 		cond_resched();
1286 
1287 		mutex_lock(&shmem_swaplist_mutex);
1288 		next = list_next_entry(info, swaplist);
1289 		if (!info->swapped)
1290 			list_del_init(&info->swaplist);
1291 		if (atomic_dec_and_test(&info->stop_eviction))
1292 			wake_up_var(&info->stop_eviction);
1293 		if (error)
1294 			break;
1295 	}
1296 	mutex_unlock(&shmem_swaplist_mutex);
1297 
1298 	return error;
1299 }
1300 
1301 /*
1302  * Move the page from the page cache to the swap cache.
1303  */
1304 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1305 {
1306 	struct shmem_inode_info *info;
1307 	struct address_space *mapping;
1308 	struct inode *inode;
1309 	swp_entry_t swap;
1310 	pgoff_t index;
1311 
1312 	/*
1313 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1314 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1315 	 * and its shmem_writeback() needs them to be split when swapping.
1316 	 */
1317 	if (PageTransCompound(page)) {
1318 		/* Ensure the subpages are still dirty */
1319 		SetPageDirty(page);
1320 		if (split_huge_page(page) < 0)
1321 			goto redirty;
1322 		ClearPageDirty(page);
1323 	}
1324 
1325 	BUG_ON(!PageLocked(page));
1326 	mapping = page->mapping;
1327 	index = page->index;
1328 	inode = mapping->host;
1329 	info = SHMEM_I(inode);
1330 	if (info->flags & VM_LOCKED)
1331 		goto redirty;
1332 	if (!total_swap_pages)
1333 		goto redirty;
1334 
1335 	/*
1336 	 * Our capabilities prevent regular writeback or sync from ever calling
1337 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1338 	 * its underlying filesystem, in which case tmpfs should write out to
1339 	 * swap only in response to memory pressure, and not for the writeback
1340 	 * threads or sync.
1341 	 */
1342 	if (!wbc->for_reclaim) {
1343 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1344 		goto redirty;
1345 	}
1346 
1347 	/*
1348 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1349 	 * value into swapfile.c, the only way we can correctly account for a
1350 	 * fallocated page arriving here is now to initialize it and write it.
1351 	 *
1352 	 * That's okay for a page already fallocated earlier, but if we have
1353 	 * not yet completed the fallocation, then (a) we want to keep track
1354 	 * of this page in case we have to undo it, and (b) it may not be a
1355 	 * good idea to continue anyway, once we're pushing into swap.  So
1356 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1357 	 */
1358 	if (!PageUptodate(page)) {
1359 		if (inode->i_private) {
1360 			struct shmem_falloc *shmem_falloc;
1361 			spin_lock(&inode->i_lock);
1362 			shmem_falloc = inode->i_private;
1363 			if (shmem_falloc &&
1364 			    !shmem_falloc->waitq &&
1365 			    index >= shmem_falloc->start &&
1366 			    index < shmem_falloc->next)
1367 				shmem_falloc->nr_unswapped++;
1368 			else
1369 				shmem_falloc = NULL;
1370 			spin_unlock(&inode->i_lock);
1371 			if (shmem_falloc)
1372 				goto redirty;
1373 		}
1374 		clear_highpage(page);
1375 		flush_dcache_page(page);
1376 		SetPageUptodate(page);
1377 	}
1378 
1379 	swap = get_swap_page(page);
1380 	if (!swap.val)
1381 		goto redirty;
1382 
1383 	/*
1384 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1385 	 * if it's not already there.  Do it now before the page is
1386 	 * moved to swap cache, when its pagelock no longer protects
1387 	 * the inode from eviction.  But don't unlock the mutex until
1388 	 * we've incremented swapped, because shmem_unuse_inode() will
1389 	 * prune a !swapped inode from the swaplist under this mutex.
1390 	 */
1391 	mutex_lock(&shmem_swaplist_mutex);
1392 	if (list_empty(&info->swaplist))
1393 		list_add(&info->swaplist, &shmem_swaplist);
1394 
1395 	if (add_to_swap_cache(page, swap,
1396 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1397 			NULL) == 0) {
1398 		spin_lock_irq(&info->lock);
1399 		shmem_recalc_inode(inode);
1400 		info->swapped++;
1401 		spin_unlock_irq(&info->lock);
1402 
1403 		swap_shmem_alloc(swap);
1404 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1405 
1406 		mutex_unlock(&shmem_swaplist_mutex);
1407 		BUG_ON(page_mapped(page));
1408 		swap_writepage(page, wbc);
1409 		return 0;
1410 	}
1411 
1412 	mutex_unlock(&shmem_swaplist_mutex);
1413 	put_swap_page(page, swap);
1414 redirty:
1415 	set_page_dirty(page);
1416 	if (wbc->for_reclaim)
1417 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1418 	unlock_page(page);
1419 	return 0;
1420 }
1421 
1422 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1423 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1424 {
1425 	char buffer[64];
1426 
1427 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1428 		return;		/* show nothing */
1429 
1430 	mpol_to_str(buffer, sizeof(buffer), mpol);
1431 
1432 	seq_printf(seq, ",mpol=%s", buffer);
1433 }
1434 
1435 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1436 {
1437 	struct mempolicy *mpol = NULL;
1438 	if (sbinfo->mpol) {
1439 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1440 		mpol = sbinfo->mpol;
1441 		mpol_get(mpol);
1442 		raw_spin_unlock(&sbinfo->stat_lock);
1443 	}
1444 	return mpol;
1445 }
1446 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1447 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1448 {
1449 }
1450 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1451 {
1452 	return NULL;
1453 }
1454 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1455 #ifndef CONFIG_NUMA
1456 #define vm_policy vm_private_data
1457 #endif
1458 
1459 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1460 		struct shmem_inode_info *info, pgoff_t index)
1461 {
1462 	/* Create a pseudo vma that just contains the policy */
1463 	vma_init(vma, NULL);
1464 	/* Bias interleave by inode number to distribute better across nodes */
1465 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1466 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1467 }
1468 
1469 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1470 {
1471 	/* Drop reference taken by mpol_shared_policy_lookup() */
1472 	mpol_cond_put(vma->vm_policy);
1473 }
1474 
1475 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1476 			struct shmem_inode_info *info, pgoff_t index)
1477 {
1478 	struct vm_area_struct pvma;
1479 	struct page *page;
1480 	struct vm_fault vmf = {
1481 		.vma = &pvma,
1482 	};
1483 
1484 	shmem_pseudo_vma_init(&pvma, info, index);
1485 	page = swap_cluster_readahead(swap, gfp, &vmf);
1486 	shmem_pseudo_vma_destroy(&pvma);
1487 
1488 	return page;
1489 }
1490 
1491 /*
1492  * Make sure huge_gfp is always more limited than limit_gfp.
1493  * Some of the flags set permissions, while others set limitations.
1494  */
1495 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1496 {
1497 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1498 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1499 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1500 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1501 
1502 	/* Allow allocations only from the originally specified zones. */
1503 	result |= zoneflags;
1504 
1505 	/*
1506 	 * Minimize the result gfp by taking the union with the deny flags,
1507 	 * and the intersection of the allow flags.
1508 	 */
1509 	result |= (limit_gfp & denyflags);
1510 	result |= (huge_gfp & limit_gfp) & allowflags;
1511 
1512 	return result;
1513 }
1514 
1515 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1516 		struct shmem_inode_info *info, pgoff_t index)
1517 {
1518 	struct vm_area_struct pvma;
1519 	struct address_space *mapping = info->vfs_inode.i_mapping;
1520 	pgoff_t hindex;
1521 	struct page *page;
1522 
1523 	hindex = round_down(index, HPAGE_PMD_NR);
1524 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1525 								XA_PRESENT))
1526 		return NULL;
1527 
1528 	shmem_pseudo_vma_init(&pvma, info, hindex);
1529 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1530 	shmem_pseudo_vma_destroy(&pvma);
1531 	if (page)
1532 		prep_transhuge_page(page);
1533 	else
1534 		count_vm_event(THP_FILE_FALLBACK);
1535 	return page;
1536 }
1537 
1538 static struct page *shmem_alloc_page(gfp_t gfp,
1539 			struct shmem_inode_info *info, pgoff_t index)
1540 {
1541 	struct vm_area_struct pvma;
1542 	struct page *page;
1543 
1544 	shmem_pseudo_vma_init(&pvma, info, index);
1545 	page = alloc_page_vma(gfp, &pvma, 0);
1546 	shmem_pseudo_vma_destroy(&pvma);
1547 
1548 	return page;
1549 }
1550 
1551 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1552 		struct inode *inode,
1553 		pgoff_t index, bool huge)
1554 {
1555 	struct shmem_inode_info *info = SHMEM_I(inode);
1556 	struct page *page;
1557 	int nr;
1558 	int err = -ENOSPC;
1559 
1560 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1561 		huge = false;
1562 	nr = huge ? HPAGE_PMD_NR : 1;
1563 
1564 	if (!shmem_inode_acct_block(inode, nr))
1565 		goto failed;
1566 
1567 	if (huge)
1568 		page = shmem_alloc_hugepage(gfp, info, index);
1569 	else
1570 		page = shmem_alloc_page(gfp, info, index);
1571 	if (page) {
1572 		__SetPageLocked(page);
1573 		__SetPageSwapBacked(page);
1574 		return page;
1575 	}
1576 
1577 	err = -ENOMEM;
1578 	shmem_inode_unacct_blocks(inode, nr);
1579 failed:
1580 	return ERR_PTR(err);
1581 }
1582 
1583 /*
1584  * When a page is moved from swapcache to shmem filecache (either by the
1585  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1586  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1587  * ignorance of the mapping it belongs to.  If that mapping has special
1588  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1589  * we may need to copy to a suitable page before moving to filecache.
1590  *
1591  * In a future release, this may well be extended to respect cpuset and
1592  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1593  * but for now it is a simple matter of zone.
1594  */
1595 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1596 {
1597 	return page_zonenum(page) > gfp_zone(gfp);
1598 }
1599 
1600 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1601 				struct shmem_inode_info *info, pgoff_t index)
1602 {
1603 	struct page *oldpage, *newpage;
1604 	struct folio *old, *new;
1605 	struct address_space *swap_mapping;
1606 	swp_entry_t entry;
1607 	pgoff_t swap_index;
1608 	int error;
1609 
1610 	oldpage = *pagep;
1611 	entry.val = page_private(oldpage);
1612 	swap_index = swp_offset(entry);
1613 	swap_mapping = page_mapping(oldpage);
1614 
1615 	/*
1616 	 * We have arrived here because our zones are constrained, so don't
1617 	 * limit chance of success by further cpuset and node constraints.
1618 	 */
1619 	gfp &= ~GFP_CONSTRAINT_MASK;
1620 	newpage = shmem_alloc_page(gfp, info, index);
1621 	if (!newpage)
1622 		return -ENOMEM;
1623 
1624 	get_page(newpage);
1625 	copy_highpage(newpage, oldpage);
1626 	flush_dcache_page(newpage);
1627 
1628 	__SetPageLocked(newpage);
1629 	__SetPageSwapBacked(newpage);
1630 	SetPageUptodate(newpage);
1631 	set_page_private(newpage, entry.val);
1632 	SetPageSwapCache(newpage);
1633 
1634 	/*
1635 	 * Our caller will very soon move newpage out of swapcache, but it's
1636 	 * a nice clean interface for us to replace oldpage by newpage there.
1637 	 */
1638 	xa_lock_irq(&swap_mapping->i_pages);
1639 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1640 	if (!error) {
1641 		old = page_folio(oldpage);
1642 		new = page_folio(newpage);
1643 		mem_cgroup_migrate(old, new);
1644 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1645 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1646 	}
1647 	xa_unlock_irq(&swap_mapping->i_pages);
1648 
1649 	if (unlikely(error)) {
1650 		/*
1651 		 * Is this possible?  I think not, now that our callers check
1652 		 * both PageSwapCache and page_private after getting page lock;
1653 		 * but be defensive.  Reverse old to newpage for clear and free.
1654 		 */
1655 		oldpage = newpage;
1656 	} else {
1657 		lru_cache_add(newpage);
1658 		*pagep = newpage;
1659 	}
1660 
1661 	ClearPageSwapCache(oldpage);
1662 	set_page_private(oldpage, 0);
1663 
1664 	unlock_page(oldpage);
1665 	put_page(oldpage);
1666 	put_page(oldpage);
1667 	return error;
1668 }
1669 
1670 /*
1671  * Swap in the page pointed to by *pagep.
1672  * Caller has to make sure that *pagep contains a valid swapped page.
1673  * Returns 0 and the page in pagep if success. On failure, returns the
1674  * error code and NULL in *pagep.
1675  */
1676 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1677 			     struct page **pagep, enum sgp_type sgp,
1678 			     gfp_t gfp, struct vm_area_struct *vma,
1679 			     vm_fault_t *fault_type)
1680 {
1681 	struct address_space *mapping = inode->i_mapping;
1682 	struct shmem_inode_info *info = SHMEM_I(inode);
1683 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1684 	struct page *page;
1685 	swp_entry_t swap;
1686 	int error;
1687 
1688 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1689 	swap = radix_to_swp_entry(*pagep);
1690 	*pagep = NULL;
1691 
1692 	/* Look it up and read it in.. */
1693 	page = lookup_swap_cache(swap, NULL, 0);
1694 	if (!page) {
1695 		/* Or update major stats only when swapin succeeds?? */
1696 		if (fault_type) {
1697 			*fault_type |= VM_FAULT_MAJOR;
1698 			count_vm_event(PGMAJFAULT);
1699 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1700 		}
1701 		/* Here we actually start the io */
1702 		page = shmem_swapin(swap, gfp, info, index);
1703 		if (!page) {
1704 			error = -ENOMEM;
1705 			goto failed;
1706 		}
1707 	}
1708 
1709 	/* We have to do this with page locked to prevent races */
1710 	lock_page(page);
1711 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1712 	    !shmem_confirm_swap(mapping, index, swap)) {
1713 		error = -EEXIST;
1714 		goto unlock;
1715 	}
1716 	if (!PageUptodate(page)) {
1717 		error = -EIO;
1718 		goto failed;
1719 	}
1720 	wait_on_page_writeback(page);
1721 
1722 	/*
1723 	 * Some architectures may have to restore extra metadata to the
1724 	 * physical page after reading from swap.
1725 	 */
1726 	arch_swap_restore(swap, page);
1727 
1728 	if (shmem_should_replace_page(page, gfp)) {
1729 		error = shmem_replace_page(&page, gfp, info, index);
1730 		if (error)
1731 			goto failed;
1732 	}
1733 
1734 	error = shmem_add_to_page_cache(page, mapping, index,
1735 					swp_to_radix_entry(swap), gfp,
1736 					charge_mm);
1737 	if (error)
1738 		goto failed;
1739 
1740 	spin_lock_irq(&info->lock);
1741 	info->swapped--;
1742 	shmem_recalc_inode(inode);
1743 	spin_unlock_irq(&info->lock);
1744 
1745 	if (sgp == SGP_WRITE)
1746 		mark_page_accessed(page);
1747 
1748 	delete_from_swap_cache(page);
1749 	set_page_dirty(page);
1750 	swap_free(swap);
1751 
1752 	*pagep = page;
1753 	return 0;
1754 failed:
1755 	if (!shmem_confirm_swap(mapping, index, swap))
1756 		error = -EEXIST;
1757 unlock:
1758 	if (page) {
1759 		unlock_page(page);
1760 		put_page(page);
1761 	}
1762 
1763 	return error;
1764 }
1765 
1766 /*
1767  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1768  *
1769  * If we allocate a new one we do not mark it dirty. That's up to the
1770  * vm. If we swap it in we mark it dirty since we also free the swap
1771  * entry since a page cannot live in both the swap and page cache.
1772  *
1773  * vma, vmf, and fault_type are only supplied by shmem_fault:
1774  * otherwise they are NULL.
1775  */
1776 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1777 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1778 	struct vm_area_struct *vma, struct vm_fault *vmf,
1779 			vm_fault_t *fault_type)
1780 {
1781 	struct address_space *mapping = inode->i_mapping;
1782 	struct shmem_inode_info *info = SHMEM_I(inode);
1783 	struct shmem_sb_info *sbinfo;
1784 	struct mm_struct *charge_mm;
1785 	struct page *page;
1786 	pgoff_t hindex = index;
1787 	gfp_t huge_gfp;
1788 	int error;
1789 	int once = 0;
1790 	int alloced = 0;
1791 
1792 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1793 		return -EFBIG;
1794 repeat:
1795 	if (sgp <= SGP_CACHE &&
1796 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1797 		return -EINVAL;
1798 	}
1799 
1800 	sbinfo = SHMEM_SB(inode->i_sb);
1801 	charge_mm = vma ? vma->vm_mm : NULL;
1802 
1803 	page = pagecache_get_page(mapping, index,
1804 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1805 
1806 	if (page && vma && userfaultfd_minor(vma)) {
1807 		if (!xa_is_value(page)) {
1808 			unlock_page(page);
1809 			put_page(page);
1810 		}
1811 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1812 		return 0;
1813 	}
1814 
1815 	if (xa_is_value(page)) {
1816 		error = shmem_swapin_page(inode, index, &page,
1817 					  sgp, gfp, vma, fault_type);
1818 		if (error == -EEXIST)
1819 			goto repeat;
1820 
1821 		*pagep = page;
1822 		return error;
1823 	}
1824 
1825 	if (page) {
1826 		hindex = page->index;
1827 		if (sgp == SGP_WRITE)
1828 			mark_page_accessed(page);
1829 		if (PageUptodate(page))
1830 			goto out;
1831 		/* fallocated page */
1832 		if (sgp != SGP_READ)
1833 			goto clear;
1834 		unlock_page(page);
1835 		put_page(page);
1836 	}
1837 
1838 	/*
1839 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1840 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1841 	 */
1842 	*pagep = NULL;
1843 	if (sgp == SGP_READ)
1844 		return 0;
1845 	if (sgp == SGP_NOALLOC)
1846 		return -ENOENT;
1847 
1848 	/*
1849 	 * Fast cache lookup and swap lookup did not find it: allocate.
1850 	 */
1851 
1852 	if (vma && userfaultfd_missing(vma)) {
1853 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1854 		return 0;
1855 	}
1856 
1857 	/* Never use a huge page for shmem_symlink() */
1858 	if (S_ISLNK(inode->i_mode))
1859 		goto alloc_nohuge;
1860 	if (!shmem_is_huge(vma, inode, index))
1861 		goto alloc_nohuge;
1862 
1863 	huge_gfp = vma_thp_gfp_mask(vma);
1864 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1865 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1866 	if (IS_ERR(page)) {
1867 alloc_nohuge:
1868 		page = shmem_alloc_and_acct_page(gfp, inode,
1869 						 index, false);
1870 	}
1871 	if (IS_ERR(page)) {
1872 		int retry = 5;
1873 
1874 		error = PTR_ERR(page);
1875 		page = NULL;
1876 		if (error != -ENOSPC)
1877 			goto unlock;
1878 		/*
1879 		 * Try to reclaim some space by splitting a huge page
1880 		 * beyond i_size on the filesystem.
1881 		 */
1882 		while (retry--) {
1883 			int ret;
1884 
1885 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1886 			if (ret == SHRINK_STOP)
1887 				break;
1888 			if (ret)
1889 				goto alloc_nohuge;
1890 		}
1891 		goto unlock;
1892 	}
1893 
1894 	if (PageTransHuge(page))
1895 		hindex = round_down(index, HPAGE_PMD_NR);
1896 	else
1897 		hindex = index;
1898 
1899 	if (sgp == SGP_WRITE)
1900 		__SetPageReferenced(page);
1901 
1902 	error = shmem_add_to_page_cache(page, mapping, hindex,
1903 					NULL, gfp & GFP_RECLAIM_MASK,
1904 					charge_mm);
1905 	if (error)
1906 		goto unacct;
1907 	lru_cache_add(page);
1908 
1909 	spin_lock_irq(&info->lock);
1910 	info->alloced += compound_nr(page);
1911 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1912 	shmem_recalc_inode(inode);
1913 	spin_unlock_irq(&info->lock);
1914 	alloced = true;
1915 
1916 	if (PageTransHuge(page) &&
1917 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1918 			hindex + HPAGE_PMD_NR - 1) {
1919 		/*
1920 		 * Part of the huge page is beyond i_size: subject
1921 		 * to shrink under memory pressure.
1922 		 */
1923 		spin_lock(&sbinfo->shrinklist_lock);
1924 		/*
1925 		 * _careful to defend against unlocked access to
1926 		 * ->shrink_list in shmem_unused_huge_shrink()
1927 		 */
1928 		if (list_empty_careful(&info->shrinklist)) {
1929 			list_add_tail(&info->shrinklist,
1930 				      &sbinfo->shrinklist);
1931 			sbinfo->shrinklist_len++;
1932 		}
1933 		spin_unlock(&sbinfo->shrinklist_lock);
1934 	}
1935 
1936 	/*
1937 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1938 	 */
1939 	if (sgp == SGP_FALLOC)
1940 		sgp = SGP_WRITE;
1941 clear:
1942 	/*
1943 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1944 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1945 	 * it now, lest undo on failure cancel our earlier guarantee.
1946 	 */
1947 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1948 		int i;
1949 
1950 		for (i = 0; i < compound_nr(page); i++) {
1951 			clear_highpage(page + i);
1952 			flush_dcache_page(page + i);
1953 		}
1954 		SetPageUptodate(page);
1955 	}
1956 
1957 	/* Perhaps the file has been truncated since we checked */
1958 	if (sgp <= SGP_CACHE &&
1959 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1960 		if (alloced) {
1961 			ClearPageDirty(page);
1962 			delete_from_page_cache(page);
1963 			spin_lock_irq(&info->lock);
1964 			shmem_recalc_inode(inode);
1965 			spin_unlock_irq(&info->lock);
1966 		}
1967 		error = -EINVAL;
1968 		goto unlock;
1969 	}
1970 out:
1971 	*pagep = page + index - hindex;
1972 	return 0;
1973 
1974 	/*
1975 	 * Error recovery.
1976 	 */
1977 unacct:
1978 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1979 
1980 	if (PageTransHuge(page)) {
1981 		unlock_page(page);
1982 		put_page(page);
1983 		goto alloc_nohuge;
1984 	}
1985 unlock:
1986 	if (page) {
1987 		unlock_page(page);
1988 		put_page(page);
1989 	}
1990 	if (error == -ENOSPC && !once++) {
1991 		spin_lock_irq(&info->lock);
1992 		shmem_recalc_inode(inode);
1993 		spin_unlock_irq(&info->lock);
1994 		goto repeat;
1995 	}
1996 	if (error == -EEXIST)
1997 		goto repeat;
1998 	return error;
1999 }
2000 
2001 /*
2002  * This is like autoremove_wake_function, but it removes the wait queue
2003  * entry unconditionally - even if something else had already woken the
2004  * target.
2005  */
2006 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2007 {
2008 	int ret = default_wake_function(wait, mode, sync, key);
2009 	list_del_init(&wait->entry);
2010 	return ret;
2011 }
2012 
2013 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2014 {
2015 	struct vm_area_struct *vma = vmf->vma;
2016 	struct inode *inode = file_inode(vma->vm_file);
2017 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2018 	int err;
2019 	vm_fault_t ret = VM_FAULT_LOCKED;
2020 
2021 	/*
2022 	 * Trinity finds that probing a hole which tmpfs is punching can
2023 	 * prevent the hole-punch from ever completing: which in turn
2024 	 * locks writers out with its hold on i_rwsem.  So refrain from
2025 	 * faulting pages into the hole while it's being punched.  Although
2026 	 * shmem_undo_range() does remove the additions, it may be unable to
2027 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2028 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2029 	 *
2030 	 * It does not matter if we sometimes reach this check just before the
2031 	 * hole-punch begins, so that one fault then races with the punch:
2032 	 * we just need to make racing faults a rare case.
2033 	 *
2034 	 * The implementation below would be much simpler if we just used a
2035 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2036 	 * and bloating every shmem inode for this unlikely case would be sad.
2037 	 */
2038 	if (unlikely(inode->i_private)) {
2039 		struct shmem_falloc *shmem_falloc;
2040 
2041 		spin_lock(&inode->i_lock);
2042 		shmem_falloc = inode->i_private;
2043 		if (shmem_falloc &&
2044 		    shmem_falloc->waitq &&
2045 		    vmf->pgoff >= shmem_falloc->start &&
2046 		    vmf->pgoff < shmem_falloc->next) {
2047 			struct file *fpin;
2048 			wait_queue_head_t *shmem_falloc_waitq;
2049 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2050 
2051 			ret = VM_FAULT_NOPAGE;
2052 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2053 			if (fpin)
2054 				ret = VM_FAULT_RETRY;
2055 
2056 			shmem_falloc_waitq = shmem_falloc->waitq;
2057 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2058 					TASK_UNINTERRUPTIBLE);
2059 			spin_unlock(&inode->i_lock);
2060 			schedule();
2061 
2062 			/*
2063 			 * shmem_falloc_waitq points into the shmem_fallocate()
2064 			 * stack of the hole-punching task: shmem_falloc_waitq
2065 			 * is usually invalid by the time we reach here, but
2066 			 * finish_wait() does not dereference it in that case;
2067 			 * though i_lock needed lest racing with wake_up_all().
2068 			 */
2069 			spin_lock(&inode->i_lock);
2070 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2071 			spin_unlock(&inode->i_lock);
2072 
2073 			if (fpin)
2074 				fput(fpin);
2075 			return ret;
2076 		}
2077 		spin_unlock(&inode->i_lock);
2078 	}
2079 
2080 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2081 				  gfp, vma, vmf, &ret);
2082 	if (err)
2083 		return vmf_error(err);
2084 	return ret;
2085 }
2086 
2087 unsigned long shmem_get_unmapped_area(struct file *file,
2088 				      unsigned long uaddr, unsigned long len,
2089 				      unsigned long pgoff, unsigned long flags)
2090 {
2091 	unsigned long (*get_area)(struct file *,
2092 		unsigned long, unsigned long, unsigned long, unsigned long);
2093 	unsigned long addr;
2094 	unsigned long offset;
2095 	unsigned long inflated_len;
2096 	unsigned long inflated_addr;
2097 	unsigned long inflated_offset;
2098 
2099 	if (len > TASK_SIZE)
2100 		return -ENOMEM;
2101 
2102 	get_area = current->mm->get_unmapped_area;
2103 	addr = get_area(file, uaddr, len, pgoff, flags);
2104 
2105 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2106 		return addr;
2107 	if (IS_ERR_VALUE(addr))
2108 		return addr;
2109 	if (addr & ~PAGE_MASK)
2110 		return addr;
2111 	if (addr > TASK_SIZE - len)
2112 		return addr;
2113 
2114 	if (shmem_huge == SHMEM_HUGE_DENY)
2115 		return addr;
2116 	if (len < HPAGE_PMD_SIZE)
2117 		return addr;
2118 	if (flags & MAP_FIXED)
2119 		return addr;
2120 	/*
2121 	 * Our priority is to support MAP_SHARED mapped hugely;
2122 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2123 	 * But if caller specified an address hint and we allocated area there
2124 	 * successfully, respect that as before.
2125 	 */
2126 	if (uaddr == addr)
2127 		return addr;
2128 
2129 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2130 		struct super_block *sb;
2131 
2132 		if (file) {
2133 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2134 			sb = file_inode(file)->i_sb;
2135 		} else {
2136 			/*
2137 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2138 			 * for "/dev/zero", to create a shared anonymous object.
2139 			 */
2140 			if (IS_ERR(shm_mnt))
2141 				return addr;
2142 			sb = shm_mnt->mnt_sb;
2143 		}
2144 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2145 			return addr;
2146 	}
2147 
2148 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2149 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2150 		return addr;
2151 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2152 		return addr;
2153 
2154 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2155 	if (inflated_len > TASK_SIZE)
2156 		return addr;
2157 	if (inflated_len < len)
2158 		return addr;
2159 
2160 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2161 	if (IS_ERR_VALUE(inflated_addr))
2162 		return addr;
2163 	if (inflated_addr & ~PAGE_MASK)
2164 		return addr;
2165 
2166 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2167 	inflated_addr += offset - inflated_offset;
2168 	if (inflated_offset > offset)
2169 		inflated_addr += HPAGE_PMD_SIZE;
2170 
2171 	if (inflated_addr > TASK_SIZE - len)
2172 		return addr;
2173 	return inflated_addr;
2174 }
2175 
2176 #ifdef CONFIG_NUMA
2177 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2178 {
2179 	struct inode *inode = file_inode(vma->vm_file);
2180 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2181 }
2182 
2183 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2184 					  unsigned long addr)
2185 {
2186 	struct inode *inode = file_inode(vma->vm_file);
2187 	pgoff_t index;
2188 
2189 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2190 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2191 }
2192 #endif
2193 
2194 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2195 {
2196 	struct inode *inode = file_inode(file);
2197 	struct shmem_inode_info *info = SHMEM_I(inode);
2198 	int retval = -ENOMEM;
2199 
2200 	/*
2201 	 * What serializes the accesses to info->flags?
2202 	 * ipc_lock_object() when called from shmctl_do_lock(),
2203 	 * no serialization needed when called from shm_destroy().
2204 	 */
2205 	if (lock && !(info->flags & VM_LOCKED)) {
2206 		if (!user_shm_lock(inode->i_size, ucounts))
2207 			goto out_nomem;
2208 		info->flags |= VM_LOCKED;
2209 		mapping_set_unevictable(file->f_mapping);
2210 	}
2211 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2212 		user_shm_unlock(inode->i_size, ucounts);
2213 		info->flags &= ~VM_LOCKED;
2214 		mapping_clear_unevictable(file->f_mapping);
2215 	}
2216 	retval = 0;
2217 
2218 out_nomem:
2219 	return retval;
2220 }
2221 
2222 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2223 {
2224 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2225 	int ret;
2226 
2227 	ret = seal_check_future_write(info->seals, vma);
2228 	if (ret)
2229 		return ret;
2230 
2231 	/* arm64 - allow memory tagging on RAM-based files */
2232 	vma->vm_flags |= VM_MTE_ALLOWED;
2233 
2234 	file_accessed(file);
2235 	vma->vm_ops = &shmem_vm_ops;
2236 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2237 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2238 			(vma->vm_end & HPAGE_PMD_MASK)) {
2239 		khugepaged_enter(vma, vma->vm_flags);
2240 	}
2241 	return 0;
2242 }
2243 
2244 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2245 				     umode_t mode, dev_t dev, unsigned long flags)
2246 {
2247 	struct inode *inode;
2248 	struct shmem_inode_info *info;
2249 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2250 	ino_t ino;
2251 
2252 	if (shmem_reserve_inode(sb, &ino))
2253 		return NULL;
2254 
2255 	inode = new_inode(sb);
2256 	if (inode) {
2257 		inode->i_ino = ino;
2258 		inode_init_owner(&init_user_ns, inode, dir, mode);
2259 		inode->i_blocks = 0;
2260 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2261 		inode->i_generation = prandom_u32();
2262 		info = SHMEM_I(inode);
2263 		memset(info, 0, (char *)inode - (char *)info);
2264 		spin_lock_init(&info->lock);
2265 		atomic_set(&info->stop_eviction, 0);
2266 		info->seals = F_SEAL_SEAL;
2267 		info->flags = flags & VM_NORESERVE;
2268 		INIT_LIST_HEAD(&info->shrinklist);
2269 		INIT_LIST_HEAD(&info->swaplist);
2270 		simple_xattrs_init(&info->xattrs);
2271 		cache_no_acl(inode);
2272 		mapping_set_large_folios(inode->i_mapping);
2273 
2274 		switch (mode & S_IFMT) {
2275 		default:
2276 			inode->i_op = &shmem_special_inode_operations;
2277 			init_special_inode(inode, mode, dev);
2278 			break;
2279 		case S_IFREG:
2280 			inode->i_mapping->a_ops = &shmem_aops;
2281 			inode->i_op = &shmem_inode_operations;
2282 			inode->i_fop = &shmem_file_operations;
2283 			mpol_shared_policy_init(&info->policy,
2284 						 shmem_get_sbmpol(sbinfo));
2285 			break;
2286 		case S_IFDIR:
2287 			inc_nlink(inode);
2288 			/* Some things misbehave if size == 0 on a directory */
2289 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2290 			inode->i_op = &shmem_dir_inode_operations;
2291 			inode->i_fop = &simple_dir_operations;
2292 			break;
2293 		case S_IFLNK:
2294 			/*
2295 			 * Must not load anything in the rbtree,
2296 			 * mpol_free_shared_policy will not be called.
2297 			 */
2298 			mpol_shared_policy_init(&info->policy, NULL);
2299 			break;
2300 		}
2301 
2302 		lockdep_annotate_inode_mutex_key(inode);
2303 	} else
2304 		shmem_free_inode(sb);
2305 	return inode;
2306 }
2307 
2308 #ifdef CONFIG_USERFAULTFD
2309 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2310 			   pmd_t *dst_pmd,
2311 			   struct vm_area_struct *dst_vma,
2312 			   unsigned long dst_addr,
2313 			   unsigned long src_addr,
2314 			   bool zeropage,
2315 			   struct page **pagep)
2316 {
2317 	struct inode *inode = file_inode(dst_vma->vm_file);
2318 	struct shmem_inode_info *info = SHMEM_I(inode);
2319 	struct address_space *mapping = inode->i_mapping;
2320 	gfp_t gfp = mapping_gfp_mask(mapping);
2321 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2322 	void *page_kaddr;
2323 	struct page *page;
2324 	int ret;
2325 	pgoff_t max_off;
2326 
2327 	if (!shmem_inode_acct_block(inode, 1)) {
2328 		/*
2329 		 * We may have got a page, returned -ENOENT triggering a retry,
2330 		 * and now we find ourselves with -ENOMEM. Release the page, to
2331 		 * avoid a BUG_ON in our caller.
2332 		 */
2333 		if (unlikely(*pagep)) {
2334 			put_page(*pagep);
2335 			*pagep = NULL;
2336 		}
2337 		return -ENOMEM;
2338 	}
2339 
2340 	if (!*pagep) {
2341 		ret = -ENOMEM;
2342 		page = shmem_alloc_page(gfp, info, pgoff);
2343 		if (!page)
2344 			goto out_unacct_blocks;
2345 
2346 		if (!zeropage) {	/* COPY */
2347 			page_kaddr = kmap_atomic(page);
2348 			ret = copy_from_user(page_kaddr,
2349 					     (const void __user *)src_addr,
2350 					     PAGE_SIZE);
2351 			kunmap_atomic(page_kaddr);
2352 
2353 			/* fallback to copy_from_user outside mmap_lock */
2354 			if (unlikely(ret)) {
2355 				*pagep = page;
2356 				ret = -ENOENT;
2357 				/* don't free the page */
2358 				goto out_unacct_blocks;
2359 			}
2360 		} else {		/* ZEROPAGE */
2361 			clear_highpage(page);
2362 		}
2363 	} else {
2364 		page = *pagep;
2365 		*pagep = NULL;
2366 	}
2367 
2368 	VM_BUG_ON(PageLocked(page));
2369 	VM_BUG_ON(PageSwapBacked(page));
2370 	__SetPageLocked(page);
2371 	__SetPageSwapBacked(page);
2372 	__SetPageUptodate(page);
2373 
2374 	ret = -EFAULT;
2375 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2376 	if (unlikely(pgoff >= max_off))
2377 		goto out_release;
2378 
2379 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2380 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2381 	if (ret)
2382 		goto out_release;
2383 
2384 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2385 				       page, true, false);
2386 	if (ret)
2387 		goto out_delete_from_cache;
2388 
2389 	spin_lock_irq(&info->lock);
2390 	info->alloced++;
2391 	inode->i_blocks += BLOCKS_PER_PAGE;
2392 	shmem_recalc_inode(inode);
2393 	spin_unlock_irq(&info->lock);
2394 
2395 	unlock_page(page);
2396 	return 0;
2397 out_delete_from_cache:
2398 	delete_from_page_cache(page);
2399 out_release:
2400 	unlock_page(page);
2401 	put_page(page);
2402 out_unacct_blocks:
2403 	shmem_inode_unacct_blocks(inode, 1);
2404 	return ret;
2405 }
2406 #endif /* CONFIG_USERFAULTFD */
2407 
2408 #ifdef CONFIG_TMPFS
2409 static const struct inode_operations shmem_symlink_inode_operations;
2410 static const struct inode_operations shmem_short_symlink_operations;
2411 
2412 #ifdef CONFIG_TMPFS_XATTR
2413 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2414 #else
2415 #define shmem_initxattrs NULL
2416 #endif
2417 
2418 static int
2419 shmem_write_begin(struct file *file, struct address_space *mapping,
2420 			loff_t pos, unsigned len, unsigned flags,
2421 			struct page **pagep, void **fsdata)
2422 {
2423 	struct inode *inode = mapping->host;
2424 	struct shmem_inode_info *info = SHMEM_I(inode);
2425 	pgoff_t index = pos >> PAGE_SHIFT;
2426 	int ret = 0;
2427 
2428 	/* i_rwsem is held by caller */
2429 	if (unlikely(info->seals & (F_SEAL_GROW |
2430 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2431 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2432 			return -EPERM;
2433 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2434 			return -EPERM;
2435 	}
2436 
2437 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2438 
2439 	if (ret)
2440 		return ret;
2441 
2442 	if (PageHWPoison(*pagep)) {
2443 		unlock_page(*pagep);
2444 		put_page(*pagep);
2445 		*pagep = NULL;
2446 		return -EIO;
2447 	}
2448 
2449 	return 0;
2450 }
2451 
2452 static int
2453 shmem_write_end(struct file *file, struct address_space *mapping,
2454 			loff_t pos, unsigned len, unsigned copied,
2455 			struct page *page, void *fsdata)
2456 {
2457 	struct inode *inode = mapping->host;
2458 
2459 	if (pos + copied > inode->i_size)
2460 		i_size_write(inode, pos + copied);
2461 
2462 	if (!PageUptodate(page)) {
2463 		struct page *head = compound_head(page);
2464 		if (PageTransCompound(page)) {
2465 			int i;
2466 
2467 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2468 				if (head + i == page)
2469 					continue;
2470 				clear_highpage(head + i);
2471 				flush_dcache_page(head + i);
2472 			}
2473 		}
2474 		if (copied < PAGE_SIZE) {
2475 			unsigned from = pos & (PAGE_SIZE - 1);
2476 			zero_user_segments(page, 0, from,
2477 					from + copied, PAGE_SIZE);
2478 		}
2479 		SetPageUptodate(head);
2480 	}
2481 	set_page_dirty(page);
2482 	unlock_page(page);
2483 	put_page(page);
2484 
2485 	return copied;
2486 }
2487 
2488 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2489 {
2490 	struct file *file = iocb->ki_filp;
2491 	struct inode *inode = file_inode(file);
2492 	struct address_space *mapping = inode->i_mapping;
2493 	pgoff_t index;
2494 	unsigned long offset;
2495 	enum sgp_type sgp = SGP_READ;
2496 	int error = 0;
2497 	ssize_t retval = 0;
2498 	loff_t *ppos = &iocb->ki_pos;
2499 
2500 	/*
2501 	 * Might this read be for a stacking filesystem?  Then when reading
2502 	 * holes of a sparse file, we actually need to allocate those pages,
2503 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2504 	 */
2505 	if (!iter_is_iovec(to))
2506 		sgp = SGP_CACHE;
2507 
2508 	index = *ppos >> PAGE_SHIFT;
2509 	offset = *ppos & ~PAGE_MASK;
2510 
2511 	for (;;) {
2512 		struct page *page = NULL;
2513 		pgoff_t end_index;
2514 		unsigned long nr, ret;
2515 		loff_t i_size = i_size_read(inode);
2516 
2517 		end_index = i_size >> PAGE_SHIFT;
2518 		if (index > end_index)
2519 			break;
2520 		if (index == end_index) {
2521 			nr = i_size & ~PAGE_MASK;
2522 			if (nr <= offset)
2523 				break;
2524 		}
2525 
2526 		error = shmem_getpage(inode, index, &page, sgp);
2527 		if (error) {
2528 			if (error == -EINVAL)
2529 				error = 0;
2530 			break;
2531 		}
2532 		if (page) {
2533 			if (sgp == SGP_CACHE)
2534 				set_page_dirty(page);
2535 			unlock_page(page);
2536 
2537 			if (PageHWPoison(page)) {
2538 				put_page(page);
2539 				error = -EIO;
2540 				break;
2541 			}
2542 		}
2543 
2544 		/*
2545 		 * We must evaluate after, since reads (unlike writes)
2546 		 * are called without i_rwsem protection against truncate
2547 		 */
2548 		nr = PAGE_SIZE;
2549 		i_size = i_size_read(inode);
2550 		end_index = i_size >> PAGE_SHIFT;
2551 		if (index == end_index) {
2552 			nr = i_size & ~PAGE_MASK;
2553 			if (nr <= offset) {
2554 				if (page)
2555 					put_page(page);
2556 				break;
2557 			}
2558 		}
2559 		nr -= offset;
2560 
2561 		if (page) {
2562 			/*
2563 			 * If users can be writing to this page using arbitrary
2564 			 * virtual addresses, take care about potential aliasing
2565 			 * before reading the page on the kernel side.
2566 			 */
2567 			if (mapping_writably_mapped(mapping))
2568 				flush_dcache_page(page);
2569 			/*
2570 			 * Mark the page accessed if we read the beginning.
2571 			 */
2572 			if (!offset)
2573 				mark_page_accessed(page);
2574 		} else {
2575 			page = ZERO_PAGE(0);
2576 			get_page(page);
2577 		}
2578 
2579 		/*
2580 		 * Ok, we have the page, and it's up-to-date, so
2581 		 * now we can copy it to user space...
2582 		 */
2583 		ret = copy_page_to_iter(page, offset, nr, to);
2584 		retval += ret;
2585 		offset += ret;
2586 		index += offset >> PAGE_SHIFT;
2587 		offset &= ~PAGE_MASK;
2588 
2589 		put_page(page);
2590 		if (!iov_iter_count(to))
2591 			break;
2592 		if (ret < nr) {
2593 			error = -EFAULT;
2594 			break;
2595 		}
2596 		cond_resched();
2597 	}
2598 
2599 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2600 	file_accessed(file);
2601 	return retval ? retval : error;
2602 }
2603 
2604 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2605 {
2606 	struct address_space *mapping = file->f_mapping;
2607 	struct inode *inode = mapping->host;
2608 
2609 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2610 		return generic_file_llseek_size(file, offset, whence,
2611 					MAX_LFS_FILESIZE, i_size_read(inode));
2612 	if (offset < 0)
2613 		return -ENXIO;
2614 
2615 	inode_lock(inode);
2616 	/* We're holding i_rwsem so we can access i_size directly */
2617 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2618 	if (offset >= 0)
2619 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2620 	inode_unlock(inode);
2621 	return offset;
2622 }
2623 
2624 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2625 							 loff_t len)
2626 {
2627 	struct inode *inode = file_inode(file);
2628 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2629 	struct shmem_inode_info *info = SHMEM_I(inode);
2630 	struct shmem_falloc shmem_falloc;
2631 	pgoff_t start, index, end, undo_fallocend;
2632 	int error;
2633 
2634 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2635 		return -EOPNOTSUPP;
2636 
2637 	inode_lock(inode);
2638 
2639 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2640 		struct address_space *mapping = file->f_mapping;
2641 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2642 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2643 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2644 
2645 		/* protected by i_rwsem */
2646 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2647 			error = -EPERM;
2648 			goto out;
2649 		}
2650 
2651 		shmem_falloc.waitq = &shmem_falloc_waitq;
2652 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2653 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2654 		spin_lock(&inode->i_lock);
2655 		inode->i_private = &shmem_falloc;
2656 		spin_unlock(&inode->i_lock);
2657 
2658 		if ((u64)unmap_end > (u64)unmap_start)
2659 			unmap_mapping_range(mapping, unmap_start,
2660 					    1 + unmap_end - unmap_start, 0);
2661 		shmem_truncate_range(inode, offset, offset + len - 1);
2662 		/* No need to unmap again: hole-punching leaves COWed pages */
2663 
2664 		spin_lock(&inode->i_lock);
2665 		inode->i_private = NULL;
2666 		wake_up_all(&shmem_falloc_waitq);
2667 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2668 		spin_unlock(&inode->i_lock);
2669 		error = 0;
2670 		goto out;
2671 	}
2672 
2673 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2674 	error = inode_newsize_ok(inode, offset + len);
2675 	if (error)
2676 		goto out;
2677 
2678 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2679 		error = -EPERM;
2680 		goto out;
2681 	}
2682 
2683 	start = offset >> PAGE_SHIFT;
2684 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2685 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2686 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2687 		error = -ENOSPC;
2688 		goto out;
2689 	}
2690 
2691 	shmem_falloc.waitq = NULL;
2692 	shmem_falloc.start = start;
2693 	shmem_falloc.next  = start;
2694 	shmem_falloc.nr_falloced = 0;
2695 	shmem_falloc.nr_unswapped = 0;
2696 	spin_lock(&inode->i_lock);
2697 	inode->i_private = &shmem_falloc;
2698 	spin_unlock(&inode->i_lock);
2699 
2700 	/*
2701 	 * info->fallocend is only relevant when huge pages might be
2702 	 * involved: to prevent split_huge_page() freeing fallocated
2703 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2704 	 */
2705 	undo_fallocend = info->fallocend;
2706 	if (info->fallocend < end)
2707 		info->fallocend = end;
2708 
2709 	for (index = start; index < end; ) {
2710 		struct page *page;
2711 
2712 		/*
2713 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2714 		 * been interrupted because we are using up too much memory.
2715 		 */
2716 		if (signal_pending(current))
2717 			error = -EINTR;
2718 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2719 			error = -ENOMEM;
2720 		else
2721 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2722 		if (error) {
2723 			info->fallocend = undo_fallocend;
2724 			/* Remove the !PageUptodate pages we added */
2725 			if (index > start) {
2726 				shmem_undo_range(inode,
2727 				    (loff_t)start << PAGE_SHIFT,
2728 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2729 			}
2730 			goto undone;
2731 		}
2732 
2733 		index++;
2734 		/*
2735 		 * Here is a more important optimization than it appears:
2736 		 * a second SGP_FALLOC on the same huge page will clear it,
2737 		 * making it PageUptodate and un-undoable if we fail later.
2738 		 */
2739 		if (PageTransCompound(page)) {
2740 			index = round_up(index, HPAGE_PMD_NR);
2741 			/* Beware 32-bit wraparound */
2742 			if (!index)
2743 				index--;
2744 		}
2745 
2746 		/*
2747 		 * Inform shmem_writepage() how far we have reached.
2748 		 * No need for lock or barrier: we have the page lock.
2749 		 */
2750 		if (!PageUptodate(page))
2751 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2752 		shmem_falloc.next = index;
2753 
2754 		/*
2755 		 * If !PageUptodate, leave it that way so that freeable pages
2756 		 * can be recognized if we need to rollback on error later.
2757 		 * But set_page_dirty so that memory pressure will swap rather
2758 		 * than free the pages we are allocating (and SGP_CACHE pages
2759 		 * might still be clean: we now need to mark those dirty too).
2760 		 */
2761 		set_page_dirty(page);
2762 		unlock_page(page);
2763 		put_page(page);
2764 		cond_resched();
2765 	}
2766 
2767 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2768 		i_size_write(inode, offset + len);
2769 	inode->i_ctime = current_time(inode);
2770 undone:
2771 	spin_lock(&inode->i_lock);
2772 	inode->i_private = NULL;
2773 	spin_unlock(&inode->i_lock);
2774 out:
2775 	inode_unlock(inode);
2776 	return error;
2777 }
2778 
2779 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2780 {
2781 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2782 
2783 	buf->f_type = TMPFS_MAGIC;
2784 	buf->f_bsize = PAGE_SIZE;
2785 	buf->f_namelen = NAME_MAX;
2786 	if (sbinfo->max_blocks) {
2787 		buf->f_blocks = sbinfo->max_blocks;
2788 		buf->f_bavail =
2789 		buf->f_bfree  = sbinfo->max_blocks -
2790 				percpu_counter_sum(&sbinfo->used_blocks);
2791 	}
2792 	if (sbinfo->max_inodes) {
2793 		buf->f_files = sbinfo->max_inodes;
2794 		buf->f_ffree = sbinfo->free_inodes;
2795 	}
2796 	/* else leave those fields 0 like simple_statfs */
2797 
2798 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2799 
2800 	return 0;
2801 }
2802 
2803 /*
2804  * File creation. Allocate an inode, and we're done..
2805  */
2806 static int
2807 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2808 	    struct dentry *dentry, umode_t mode, dev_t dev)
2809 {
2810 	struct inode *inode;
2811 	int error = -ENOSPC;
2812 
2813 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2814 	if (inode) {
2815 		error = simple_acl_create(dir, inode);
2816 		if (error)
2817 			goto out_iput;
2818 		error = security_inode_init_security(inode, dir,
2819 						     &dentry->d_name,
2820 						     shmem_initxattrs, NULL);
2821 		if (error && error != -EOPNOTSUPP)
2822 			goto out_iput;
2823 
2824 		error = 0;
2825 		dir->i_size += BOGO_DIRENT_SIZE;
2826 		dir->i_ctime = dir->i_mtime = current_time(dir);
2827 		d_instantiate(dentry, inode);
2828 		dget(dentry); /* Extra count - pin the dentry in core */
2829 	}
2830 	return error;
2831 out_iput:
2832 	iput(inode);
2833 	return error;
2834 }
2835 
2836 static int
2837 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2838 	      struct dentry *dentry, umode_t mode)
2839 {
2840 	struct inode *inode;
2841 	int error = -ENOSPC;
2842 
2843 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2844 	if (inode) {
2845 		error = security_inode_init_security(inode, dir,
2846 						     NULL,
2847 						     shmem_initxattrs, NULL);
2848 		if (error && error != -EOPNOTSUPP)
2849 			goto out_iput;
2850 		error = simple_acl_create(dir, inode);
2851 		if (error)
2852 			goto out_iput;
2853 		d_tmpfile(dentry, inode);
2854 	}
2855 	return error;
2856 out_iput:
2857 	iput(inode);
2858 	return error;
2859 }
2860 
2861 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2862 		       struct dentry *dentry, umode_t mode)
2863 {
2864 	int error;
2865 
2866 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2867 				 mode | S_IFDIR, 0)))
2868 		return error;
2869 	inc_nlink(dir);
2870 	return 0;
2871 }
2872 
2873 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2874 			struct dentry *dentry, umode_t mode, bool excl)
2875 {
2876 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2877 }
2878 
2879 /*
2880  * Link a file..
2881  */
2882 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2883 {
2884 	struct inode *inode = d_inode(old_dentry);
2885 	int ret = 0;
2886 
2887 	/*
2888 	 * No ordinary (disk based) filesystem counts links as inodes;
2889 	 * but each new link needs a new dentry, pinning lowmem, and
2890 	 * tmpfs dentries cannot be pruned until they are unlinked.
2891 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2892 	 * first link must skip that, to get the accounting right.
2893 	 */
2894 	if (inode->i_nlink) {
2895 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2896 		if (ret)
2897 			goto out;
2898 	}
2899 
2900 	dir->i_size += BOGO_DIRENT_SIZE;
2901 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2902 	inc_nlink(inode);
2903 	ihold(inode);	/* New dentry reference */
2904 	dget(dentry);		/* Extra pinning count for the created dentry */
2905 	d_instantiate(dentry, inode);
2906 out:
2907 	return ret;
2908 }
2909 
2910 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2911 {
2912 	struct inode *inode = d_inode(dentry);
2913 
2914 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2915 		shmem_free_inode(inode->i_sb);
2916 
2917 	dir->i_size -= BOGO_DIRENT_SIZE;
2918 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2919 	drop_nlink(inode);
2920 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2921 	return 0;
2922 }
2923 
2924 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2925 {
2926 	if (!simple_empty(dentry))
2927 		return -ENOTEMPTY;
2928 
2929 	drop_nlink(d_inode(dentry));
2930 	drop_nlink(dir);
2931 	return shmem_unlink(dir, dentry);
2932 }
2933 
2934 static int shmem_whiteout(struct user_namespace *mnt_userns,
2935 			  struct inode *old_dir, struct dentry *old_dentry)
2936 {
2937 	struct dentry *whiteout;
2938 	int error;
2939 
2940 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2941 	if (!whiteout)
2942 		return -ENOMEM;
2943 
2944 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2945 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2946 	dput(whiteout);
2947 	if (error)
2948 		return error;
2949 
2950 	/*
2951 	 * Cheat and hash the whiteout while the old dentry is still in
2952 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2953 	 *
2954 	 * d_lookup() will consistently find one of them at this point,
2955 	 * not sure which one, but that isn't even important.
2956 	 */
2957 	d_rehash(whiteout);
2958 	return 0;
2959 }
2960 
2961 /*
2962  * The VFS layer already does all the dentry stuff for rename,
2963  * we just have to decrement the usage count for the target if
2964  * it exists so that the VFS layer correctly free's it when it
2965  * gets overwritten.
2966  */
2967 static int shmem_rename2(struct user_namespace *mnt_userns,
2968 			 struct inode *old_dir, struct dentry *old_dentry,
2969 			 struct inode *new_dir, struct dentry *new_dentry,
2970 			 unsigned int flags)
2971 {
2972 	struct inode *inode = d_inode(old_dentry);
2973 	int they_are_dirs = S_ISDIR(inode->i_mode);
2974 
2975 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2976 		return -EINVAL;
2977 
2978 	if (flags & RENAME_EXCHANGE)
2979 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2980 
2981 	if (!simple_empty(new_dentry))
2982 		return -ENOTEMPTY;
2983 
2984 	if (flags & RENAME_WHITEOUT) {
2985 		int error;
2986 
2987 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
2988 		if (error)
2989 			return error;
2990 	}
2991 
2992 	if (d_really_is_positive(new_dentry)) {
2993 		(void) shmem_unlink(new_dir, new_dentry);
2994 		if (they_are_dirs) {
2995 			drop_nlink(d_inode(new_dentry));
2996 			drop_nlink(old_dir);
2997 		}
2998 	} else if (they_are_dirs) {
2999 		drop_nlink(old_dir);
3000 		inc_nlink(new_dir);
3001 	}
3002 
3003 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3004 	new_dir->i_size += BOGO_DIRENT_SIZE;
3005 	old_dir->i_ctime = old_dir->i_mtime =
3006 	new_dir->i_ctime = new_dir->i_mtime =
3007 	inode->i_ctime = current_time(old_dir);
3008 	return 0;
3009 }
3010 
3011 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3012 			 struct dentry *dentry, const char *symname)
3013 {
3014 	int error;
3015 	int len;
3016 	struct inode *inode;
3017 	struct page *page;
3018 
3019 	len = strlen(symname) + 1;
3020 	if (len > PAGE_SIZE)
3021 		return -ENAMETOOLONG;
3022 
3023 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3024 				VM_NORESERVE);
3025 	if (!inode)
3026 		return -ENOSPC;
3027 
3028 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3029 					     shmem_initxattrs, NULL);
3030 	if (error && error != -EOPNOTSUPP) {
3031 		iput(inode);
3032 		return error;
3033 	}
3034 
3035 	inode->i_size = len-1;
3036 	if (len <= SHORT_SYMLINK_LEN) {
3037 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3038 		if (!inode->i_link) {
3039 			iput(inode);
3040 			return -ENOMEM;
3041 		}
3042 		inode->i_op = &shmem_short_symlink_operations;
3043 	} else {
3044 		inode_nohighmem(inode);
3045 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3046 		if (error) {
3047 			iput(inode);
3048 			return error;
3049 		}
3050 		inode->i_mapping->a_ops = &shmem_aops;
3051 		inode->i_op = &shmem_symlink_inode_operations;
3052 		memcpy(page_address(page), symname, len);
3053 		SetPageUptodate(page);
3054 		set_page_dirty(page);
3055 		unlock_page(page);
3056 		put_page(page);
3057 	}
3058 	dir->i_size += BOGO_DIRENT_SIZE;
3059 	dir->i_ctime = dir->i_mtime = current_time(dir);
3060 	d_instantiate(dentry, inode);
3061 	dget(dentry);
3062 	return 0;
3063 }
3064 
3065 static void shmem_put_link(void *arg)
3066 {
3067 	mark_page_accessed(arg);
3068 	put_page(arg);
3069 }
3070 
3071 static const char *shmem_get_link(struct dentry *dentry,
3072 				  struct inode *inode,
3073 				  struct delayed_call *done)
3074 {
3075 	struct page *page = NULL;
3076 	int error;
3077 	if (!dentry) {
3078 		page = find_get_page(inode->i_mapping, 0);
3079 		if (!page)
3080 			return ERR_PTR(-ECHILD);
3081 		if (PageHWPoison(page) ||
3082 		    !PageUptodate(page)) {
3083 			put_page(page);
3084 			return ERR_PTR(-ECHILD);
3085 		}
3086 	} else {
3087 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3088 		if (error)
3089 			return ERR_PTR(error);
3090 		if (!page)
3091 			return ERR_PTR(-ECHILD);
3092 		if (PageHWPoison(page)) {
3093 			unlock_page(page);
3094 			put_page(page);
3095 			return ERR_PTR(-ECHILD);
3096 		}
3097 		unlock_page(page);
3098 	}
3099 	set_delayed_call(done, shmem_put_link, page);
3100 	return page_address(page);
3101 }
3102 
3103 #ifdef CONFIG_TMPFS_XATTR
3104 /*
3105  * Superblocks without xattr inode operations may get some security.* xattr
3106  * support from the LSM "for free". As soon as we have any other xattrs
3107  * like ACLs, we also need to implement the security.* handlers at
3108  * filesystem level, though.
3109  */
3110 
3111 /*
3112  * Callback for security_inode_init_security() for acquiring xattrs.
3113  */
3114 static int shmem_initxattrs(struct inode *inode,
3115 			    const struct xattr *xattr_array,
3116 			    void *fs_info)
3117 {
3118 	struct shmem_inode_info *info = SHMEM_I(inode);
3119 	const struct xattr *xattr;
3120 	struct simple_xattr *new_xattr;
3121 	size_t len;
3122 
3123 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3124 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3125 		if (!new_xattr)
3126 			return -ENOMEM;
3127 
3128 		len = strlen(xattr->name) + 1;
3129 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3130 					  GFP_KERNEL);
3131 		if (!new_xattr->name) {
3132 			kvfree(new_xattr);
3133 			return -ENOMEM;
3134 		}
3135 
3136 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3137 		       XATTR_SECURITY_PREFIX_LEN);
3138 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3139 		       xattr->name, len);
3140 
3141 		simple_xattr_list_add(&info->xattrs, new_xattr);
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3148 				   struct dentry *unused, struct inode *inode,
3149 				   const char *name, void *buffer, size_t size)
3150 {
3151 	struct shmem_inode_info *info = SHMEM_I(inode);
3152 
3153 	name = xattr_full_name(handler, name);
3154 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3155 }
3156 
3157 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3158 				   struct user_namespace *mnt_userns,
3159 				   struct dentry *unused, struct inode *inode,
3160 				   const char *name, const void *value,
3161 				   size_t size, int flags)
3162 {
3163 	struct shmem_inode_info *info = SHMEM_I(inode);
3164 
3165 	name = xattr_full_name(handler, name);
3166 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3167 }
3168 
3169 static const struct xattr_handler shmem_security_xattr_handler = {
3170 	.prefix = XATTR_SECURITY_PREFIX,
3171 	.get = shmem_xattr_handler_get,
3172 	.set = shmem_xattr_handler_set,
3173 };
3174 
3175 static const struct xattr_handler shmem_trusted_xattr_handler = {
3176 	.prefix = XATTR_TRUSTED_PREFIX,
3177 	.get = shmem_xattr_handler_get,
3178 	.set = shmem_xattr_handler_set,
3179 };
3180 
3181 static const struct xattr_handler *shmem_xattr_handlers[] = {
3182 #ifdef CONFIG_TMPFS_POSIX_ACL
3183 	&posix_acl_access_xattr_handler,
3184 	&posix_acl_default_xattr_handler,
3185 #endif
3186 	&shmem_security_xattr_handler,
3187 	&shmem_trusted_xattr_handler,
3188 	NULL
3189 };
3190 
3191 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3192 {
3193 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3194 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3195 }
3196 #endif /* CONFIG_TMPFS_XATTR */
3197 
3198 static const struct inode_operations shmem_short_symlink_operations = {
3199 	.get_link	= simple_get_link,
3200 #ifdef CONFIG_TMPFS_XATTR
3201 	.listxattr	= shmem_listxattr,
3202 #endif
3203 };
3204 
3205 static const struct inode_operations shmem_symlink_inode_operations = {
3206 	.get_link	= shmem_get_link,
3207 #ifdef CONFIG_TMPFS_XATTR
3208 	.listxattr	= shmem_listxattr,
3209 #endif
3210 };
3211 
3212 static struct dentry *shmem_get_parent(struct dentry *child)
3213 {
3214 	return ERR_PTR(-ESTALE);
3215 }
3216 
3217 static int shmem_match(struct inode *ino, void *vfh)
3218 {
3219 	__u32 *fh = vfh;
3220 	__u64 inum = fh[2];
3221 	inum = (inum << 32) | fh[1];
3222 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3223 }
3224 
3225 /* Find any alias of inode, but prefer a hashed alias */
3226 static struct dentry *shmem_find_alias(struct inode *inode)
3227 {
3228 	struct dentry *alias = d_find_alias(inode);
3229 
3230 	return alias ?: d_find_any_alias(inode);
3231 }
3232 
3233 
3234 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3235 		struct fid *fid, int fh_len, int fh_type)
3236 {
3237 	struct inode *inode;
3238 	struct dentry *dentry = NULL;
3239 	u64 inum;
3240 
3241 	if (fh_len < 3)
3242 		return NULL;
3243 
3244 	inum = fid->raw[2];
3245 	inum = (inum << 32) | fid->raw[1];
3246 
3247 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3248 			shmem_match, fid->raw);
3249 	if (inode) {
3250 		dentry = shmem_find_alias(inode);
3251 		iput(inode);
3252 	}
3253 
3254 	return dentry;
3255 }
3256 
3257 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3258 				struct inode *parent)
3259 {
3260 	if (*len < 3) {
3261 		*len = 3;
3262 		return FILEID_INVALID;
3263 	}
3264 
3265 	if (inode_unhashed(inode)) {
3266 		/* Unfortunately insert_inode_hash is not idempotent,
3267 		 * so as we hash inodes here rather than at creation
3268 		 * time, we need a lock to ensure we only try
3269 		 * to do it once
3270 		 */
3271 		static DEFINE_SPINLOCK(lock);
3272 		spin_lock(&lock);
3273 		if (inode_unhashed(inode))
3274 			__insert_inode_hash(inode,
3275 					    inode->i_ino + inode->i_generation);
3276 		spin_unlock(&lock);
3277 	}
3278 
3279 	fh[0] = inode->i_generation;
3280 	fh[1] = inode->i_ino;
3281 	fh[2] = ((__u64)inode->i_ino) >> 32;
3282 
3283 	*len = 3;
3284 	return 1;
3285 }
3286 
3287 static const struct export_operations shmem_export_ops = {
3288 	.get_parent     = shmem_get_parent,
3289 	.encode_fh      = shmem_encode_fh,
3290 	.fh_to_dentry	= shmem_fh_to_dentry,
3291 };
3292 
3293 enum shmem_param {
3294 	Opt_gid,
3295 	Opt_huge,
3296 	Opt_mode,
3297 	Opt_mpol,
3298 	Opt_nr_blocks,
3299 	Opt_nr_inodes,
3300 	Opt_size,
3301 	Opt_uid,
3302 	Opt_inode32,
3303 	Opt_inode64,
3304 };
3305 
3306 static const struct constant_table shmem_param_enums_huge[] = {
3307 	{"never",	SHMEM_HUGE_NEVER },
3308 	{"always",	SHMEM_HUGE_ALWAYS },
3309 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3310 	{"advise",	SHMEM_HUGE_ADVISE },
3311 	{}
3312 };
3313 
3314 const struct fs_parameter_spec shmem_fs_parameters[] = {
3315 	fsparam_u32   ("gid",		Opt_gid),
3316 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3317 	fsparam_u32oct("mode",		Opt_mode),
3318 	fsparam_string("mpol",		Opt_mpol),
3319 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3320 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3321 	fsparam_string("size",		Opt_size),
3322 	fsparam_u32   ("uid",		Opt_uid),
3323 	fsparam_flag  ("inode32",	Opt_inode32),
3324 	fsparam_flag  ("inode64",	Opt_inode64),
3325 	{}
3326 };
3327 
3328 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3329 {
3330 	struct shmem_options *ctx = fc->fs_private;
3331 	struct fs_parse_result result;
3332 	unsigned long long size;
3333 	char *rest;
3334 	int opt;
3335 
3336 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3337 	if (opt < 0)
3338 		return opt;
3339 
3340 	switch (opt) {
3341 	case Opt_size:
3342 		size = memparse(param->string, &rest);
3343 		if (*rest == '%') {
3344 			size <<= PAGE_SHIFT;
3345 			size *= totalram_pages();
3346 			do_div(size, 100);
3347 			rest++;
3348 		}
3349 		if (*rest)
3350 			goto bad_value;
3351 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3352 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3353 		break;
3354 	case Opt_nr_blocks:
3355 		ctx->blocks = memparse(param->string, &rest);
3356 		if (*rest)
3357 			goto bad_value;
3358 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3359 		break;
3360 	case Opt_nr_inodes:
3361 		ctx->inodes = memparse(param->string, &rest);
3362 		if (*rest)
3363 			goto bad_value;
3364 		ctx->seen |= SHMEM_SEEN_INODES;
3365 		break;
3366 	case Opt_mode:
3367 		ctx->mode = result.uint_32 & 07777;
3368 		break;
3369 	case Opt_uid:
3370 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3371 		if (!uid_valid(ctx->uid))
3372 			goto bad_value;
3373 		break;
3374 	case Opt_gid:
3375 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3376 		if (!gid_valid(ctx->gid))
3377 			goto bad_value;
3378 		break;
3379 	case Opt_huge:
3380 		ctx->huge = result.uint_32;
3381 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3382 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3383 		      has_transparent_hugepage()))
3384 			goto unsupported_parameter;
3385 		ctx->seen |= SHMEM_SEEN_HUGE;
3386 		break;
3387 	case Opt_mpol:
3388 		if (IS_ENABLED(CONFIG_NUMA)) {
3389 			mpol_put(ctx->mpol);
3390 			ctx->mpol = NULL;
3391 			if (mpol_parse_str(param->string, &ctx->mpol))
3392 				goto bad_value;
3393 			break;
3394 		}
3395 		goto unsupported_parameter;
3396 	case Opt_inode32:
3397 		ctx->full_inums = false;
3398 		ctx->seen |= SHMEM_SEEN_INUMS;
3399 		break;
3400 	case Opt_inode64:
3401 		if (sizeof(ino_t) < 8) {
3402 			return invalfc(fc,
3403 				       "Cannot use inode64 with <64bit inums in kernel\n");
3404 		}
3405 		ctx->full_inums = true;
3406 		ctx->seen |= SHMEM_SEEN_INUMS;
3407 		break;
3408 	}
3409 	return 0;
3410 
3411 unsupported_parameter:
3412 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3413 bad_value:
3414 	return invalfc(fc, "Bad value for '%s'", param->key);
3415 }
3416 
3417 static int shmem_parse_options(struct fs_context *fc, void *data)
3418 {
3419 	char *options = data;
3420 
3421 	if (options) {
3422 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3423 		if (err)
3424 			return err;
3425 	}
3426 
3427 	while (options != NULL) {
3428 		char *this_char = options;
3429 		for (;;) {
3430 			/*
3431 			 * NUL-terminate this option: unfortunately,
3432 			 * mount options form a comma-separated list,
3433 			 * but mpol's nodelist may also contain commas.
3434 			 */
3435 			options = strchr(options, ',');
3436 			if (options == NULL)
3437 				break;
3438 			options++;
3439 			if (!isdigit(*options)) {
3440 				options[-1] = '\0';
3441 				break;
3442 			}
3443 		}
3444 		if (*this_char) {
3445 			char *value = strchr(this_char, '=');
3446 			size_t len = 0;
3447 			int err;
3448 
3449 			if (value) {
3450 				*value++ = '\0';
3451 				len = strlen(value);
3452 			}
3453 			err = vfs_parse_fs_string(fc, this_char, value, len);
3454 			if (err < 0)
3455 				return err;
3456 		}
3457 	}
3458 	return 0;
3459 }
3460 
3461 /*
3462  * Reconfigure a shmem filesystem.
3463  *
3464  * Note that we disallow change from limited->unlimited blocks/inodes while any
3465  * are in use; but we must separately disallow unlimited->limited, because in
3466  * that case we have no record of how much is already in use.
3467  */
3468 static int shmem_reconfigure(struct fs_context *fc)
3469 {
3470 	struct shmem_options *ctx = fc->fs_private;
3471 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3472 	unsigned long inodes;
3473 	struct mempolicy *mpol = NULL;
3474 	const char *err;
3475 
3476 	raw_spin_lock(&sbinfo->stat_lock);
3477 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3478 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3479 		if (!sbinfo->max_blocks) {
3480 			err = "Cannot retroactively limit size";
3481 			goto out;
3482 		}
3483 		if (percpu_counter_compare(&sbinfo->used_blocks,
3484 					   ctx->blocks) > 0) {
3485 			err = "Too small a size for current use";
3486 			goto out;
3487 		}
3488 	}
3489 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3490 		if (!sbinfo->max_inodes) {
3491 			err = "Cannot retroactively limit inodes";
3492 			goto out;
3493 		}
3494 		if (ctx->inodes < inodes) {
3495 			err = "Too few inodes for current use";
3496 			goto out;
3497 		}
3498 	}
3499 
3500 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3501 	    sbinfo->next_ino > UINT_MAX) {
3502 		err = "Current inum too high to switch to 32-bit inums";
3503 		goto out;
3504 	}
3505 
3506 	if (ctx->seen & SHMEM_SEEN_HUGE)
3507 		sbinfo->huge = ctx->huge;
3508 	if (ctx->seen & SHMEM_SEEN_INUMS)
3509 		sbinfo->full_inums = ctx->full_inums;
3510 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3511 		sbinfo->max_blocks  = ctx->blocks;
3512 	if (ctx->seen & SHMEM_SEEN_INODES) {
3513 		sbinfo->max_inodes  = ctx->inodes;
3514 		sbinfo->free_inodes = ctx->inodes - inodes;
3515 	}
3516 
3517 	/*
3518 	 * Preserve previous mempolicy unless mpol remount option was specified.
3519 	 */
3520 	if (ctx->mpol) {
3521 		mpol = sbinfo->mpol;
3522 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3523 		ctx->mpol = NULL;
3524 	}
3525 	raw_spin_unlock(&sbinfo->stat_lock);
3526 	mpol_put(mpol);
3527 	return 0;
3528 out:
3529 	raw_spin_unlock(&sbinfo->stat_lock);
3530 	return invalfc(fc, "%s", err);
3531 }
3532 
3533 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3534 {
3535 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3536 
3537 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3538 		seq_printf(seq, ",size=%luk",
3539 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3540 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3541 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3542 	if (sbinfo->mode != (0777 | S_ISVTX))
3543 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3544 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3545 		seq_printf(seq, ",uid=%u",
3546 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3547 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3548 		seq_printf(seq, ",gid=%u",
3549 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3550 
3551 	/*
3552 	 * Showing inode{64,32} might be useful even if it's the system default,
3553 	 * since then people don't have to resort to checking both here and
3554 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3555 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3556 	 *
3557 	 * We hide it when inode64 isn't the default and we are using 32-bit
3558 	 * inodes, since that probably just means the feature isn't even under
3559 	 * consideration.
3560 	 *
3561 	 * As such:
3562 	 *
3563 	 *                     +-----------------+-----------------+
3564 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3565 	 *  +------------------+-----------------+-----------------+
3566 	 *  | full_inums=true  | show            | show            |
3567 	 *  | full_inums=false | show            | hide            |
3568 	 *  +------------------+-----------------+-----------------+
3569 	 *
3570 	 */
3571 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3572 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3574 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3575 	if (sbinfo->huge)
3576 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3577 #endif
3578 	shmem_show_mpol(seq, sbinfo->mpol);
3579 	return 0;
3580 }
3581 
3582 #endif /* CONFIG_TMPFS */
3583 
3584 static void shmem_put_super(struct super_block *sb)
3585 {
3586 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3587 
3588 	free_percpu(sbinfo->ino_batch);
3589 	percpu_counter_destroy(&sbinfo->used_blocks);
3590 	mpol_put(sbinfo->mpol);
3591 	kfree(sbinfo);
3592 	sb->s_fs_info = NULL;
3593 }
3594 
3595 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3596 {
3597 	struct shmem_options *ctx = fc->fs_private;
3598 	struct inode *inode;
3599 	struct shmem_sb_info *sbinfo;
3600 
3601 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3602 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3603 				L1_CACHE_BYTES), GFP_KERNEL);
3604 	if (!sbinfo)
3605 		return -ENOMEM;
3606 
3607 	sb->s_fs_info = sbinfo;
3608 
3609 #ifdef CONFIG_TMPFS
3610 	/*
3611 	 * Per default we only allow half of the physical ram per
3612 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3613 	 * but the internal instance is left unlimited.
3614 	 */
3615 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3616 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3617 			ctx->blocks = shmem_default_max_blocks();
3618 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3619 			ctx->inodes = shmem_default_max_inodes();
3620 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3621 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3622 	} else {
3623 		sb->s_flags |= SB_NOUSER;
3624 	}
3625 	sb->s_export_op = &shmem_export_ops;
3626 	sb->s_flags |= SB_NOSEC;
3627 #else
3628 	sb->s_flags |= SB_NOUSER;
3629 #endif
3630 	sbinfo->max_blocks = ctx->blocks;
3631 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3632 	if (sb->s_flags & SB_KERNMOUNT) {
3633 		sbinfo->ino_batch = alloc_percpu(ino_t);
3634 		if (!sbinfo->ino_batch)
3635 			goto failed;
3636 	}
3637 	sbinfo->uid = ctx->uid;
3638 	sbinfo->gid = ctx->gid;
3639 	sbinfo->full_inums = ctx->full_inums;
3640 	sbinfo->mode = ctx->mode;
3641 	sbinfo->huge = ctx->huge;
3642 	sbinfo->mpol = ctx->mpol;
3643 	ctx->mpol = NULL;
3644 
3645 	raw_spin_lock_init(&sbinfo->stat_lock);
3646 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3647 		goto failed;
3648 	spin_lock_init(&sbinfo->shrinklist_lock);
3649 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3650 
3651 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3652 	sb->s_blocksize = PAGE_SIZE;
3653 	sb->s_blocksize_bits = PAGE_SHIFT;
3654 	sb->s_magic = TMPFS_MAGIC;
3655 	sb->s_op = &shmem_ops;
3656 	sb->s_time_gran = 1;
3657 #ifdef CONFIG_TMPFS_XATTR
3658 	sb->s_xattr = shmem_xattr_handlers;
3659 #endif
3660 #ifdef CONFIG_TMPFS_POSIX_ACL
3661 	sb->s_flags |= SB_POSIXACL;
3662 #endif
3663 	uuid_gen(&sb->s_uuid);
3664 
3665 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3666 	if (!inode)
3667 		goto failed;
3668 	inode->i_uid = sbinfo->uid;
3669 	inode->i_gid = sbinfo->gid;
3670 	sb->s_root = d_make_root(inode);
3671 	if (!sb->s_root)
3672 		goto failed;
3673 	return 0;
3674 
3675 failed:
3676 	shmem_put_super(sb);
3677 	return -ENOMEM;
3678 }
3679 
3680 static int shmem_get_tree(struct fs_context *fc)
3681 {
3682 	return get_tree_nodev(fc, shmem_fill_super);
3683 }
3684 
3685 static void shmem_free_fc(struct fs_context *fc)
3686 {
3687 	struct shmem_options *ctx = fc->fs_private;
3688 
3689 	if (ctx) {
3690 		mpol_put(ctx->mpol);
3691 		kfree(ctx);
3692 	}
3693 }
3694 
3695 static const struct fs_context_operations shmem_fs_context_ops = {
3696 	.free			= shmem_free_fc,
3697 	.get_tree		= shmem_get_tree,
3698 #ifdef CONFIG_TMPFS
3699 	.parse_monolithic	= shmem_parse_options,
3700 	.parse_param		= shmem_parse_one,
3701 	.reconfigure		= shmem_reconfigure,
3702 #endif
3703 };
3704 
3705 static struct kmem_cache *shmem_inode_cachep;
3706 
3707 static struct inode *shmem_alloc_inode(struct super_block *sb)
3708 {
3709 	struct shmem_inode_info *info;
3710 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3711 	if (!info)
3712 		return NULL;
3713 	return &info->vfs_inode;
3714 }
3715 
3716 static void shmem_free_in_core_inode(struct inode *inode)
3717 {
3718 	if (S_ISLNK(inode->i_mode))
3719 		kfree(inode->i_link);
3720 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3721 }
3722 
3723 static void shmem_destroy_inode(struct inode *inode)
3724 {
3725 	if (S_ISREG(inode->i_mode))
3726 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3727 }
3728 
3729 static void shmem_init_inode(void *foo)
3730 {
3731 	struct shmem_inode_info *info = foo;
3732 	inode_init_once(&info->vfs_inode);
3733 }
3734 
3735 static void shmem_init_inodecache(void)
3736 {
3737 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3738 				sizeof(struct shmem_inode_info),
3739 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3740 }
3741 
3742 static void shmem_destroy_inodecache(void)
3743 {
3744 	kmem_cache_destroy(shmem_inode_cachep);
3745 }
3746 
3747 /* Keep the page in page cache instead of truncating it */
3748 static int shmem_error_remove_page(struct address_space *mapping,
3749 				   struct page *page)
3750 {
3751 	return 0;
3752 }
3753 
3754 const struct address_space_operations shmem_aops = {
3755 	.writepage	= shmem_writepage,
3756 	.set_page_dirty	= __set_page_dirty_no_writeback,
3757 #ifdef CONFIG_TMPFS
3758 	.write_begin	= shmem_write_begin,
3759 	.write_end	= shmem_write_end,
3760 #endif
3761 #ifdef CONFIG_MIGRATION
3762 	.migratepage	= migrate_page,
3763 #endif
3764 	.error_remove_page = shmem_error_remove_page,
3765 };
3766 EXPORT_SYMBOL(shmem_aops);
3767 
3768 static const struct file_operations shmem_file_operations = {
3769 	.mmap		= shmem_mmap,
3770 	.get_unmapped_area = shmem_get_unmapped_area,
3771 #ifdef CONFIG_TMPFS
3772 	.llseek		= shmem_file_llseek,
3773 	.read_iter	= shmem_file_read_iter,
3774 	.write_iter	= generic_file_write_iter,
3775 	.fsync		= noop_fsync,
3776 	.splice_read	= generic_file_splice_read,
3777 	.splice_write	= iter_file_splice_write,
3778 	.fallocate	= shmem_fallocate,
3779 #endif
3780 };
3781 
3782 static const struct inode_operations shmem_inode_operations = {
3783 	.getattr	= shmem_getattr,
3784 	.setattr	= shmem_setattr,
3785 #ifdef CONFIG_TMPFS_XATTR
3786 	.listxattr	= shmem_listxattr,
3787 	.set_acl	= simple_set_acl,
3788 #endif
3789 };
3790 
3791 static const struct inode_operations shmem_dir_inode_operations = {
3792 #ifdef CONFIG_TMPFS
3793 	.create		= shmem_create,
3794 	.lookup		= simple_lookup,
3795 	.link		= shmem_link,
3796 	.unlink		= shmem_unlink,
3797 	.symlink	= shmem_symlink,
3798 	.mkdir		= shmem_mkdir,
3799 	.rmdir		= shmem_rmdir,
3800 	.mknod		= shmem_mknod,
3801 	.rename		= shmem_rename2,
3802 	.tmpfile	= shmem_tmpfile,
3803 #endif
3804 #ifdef CONFIG_TMPFS_XATTR
3805 	.listxattr	= shmem_listxattr,
3806 #endif
3807 #ifdef CONFIG_TMPFS_POSIX_ACL
3808 	.setattr	= shmem_setattr,
3809 	.set_acl	= simple_set_acl,
3810 #endif
3811 };
3812 
3813 static const struct inode_operations shmem_special_inode_operations = {
3814 #ifdef CONFIG_TMPFS_XATTR
3815 	.listxattr	= shmem_listxattr,
3816 #endif
3817 #ifdef CONFIG_TMPFS_POSIX_ACL
3818 	.setattr	= shmem_setattr,
3819 	.set_acl	= simple_set_acl,
3820 #endif
3821 };
3822 
3823 static const struct super_operations shmem_ops = {
3824 	.alloc_inode	= shmem_alloc_inode,
3825 	.free_inode	= shmem_free_in_core_inode,
3826 	.destroy_inode	= shmem_destroy_inode,
3827 #ifdef CONFIG_TMPFS
3828 	.statfs		= shmem_statfs,
3829 	.show_options	= shmem_show_options,
3830 #endif
3831 	.evict_inode	= shmem_evict_inode,
3832 	.drop_inode	= generic_delete_inode,
3833 	.put_super	= shmem_put_super,
3834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3835 	.nr_cached_objects	= shmem_unused_huge_count,
3836 	.free_cached_objects	= shmem_unused_huge_scan,
3837 #endif
3838 };
3839 
3840 static const struct vm_operations_struct shmem_vm_ops = {
3841 	.fault		= shmem_fault,
3842 	.map_pages	= filemap_map_pages,
3843 #ifdef CONFIG_NUMA
3844 	.set_policy     = shmem_set_policy,
3845 	.get_policy     = shmem_get_policy,
3846 #endif
3847 };
3848 
3849 int shmem_init_fs_context(struct fs_context *fc)
3850 {
3851 	struct shmem_options *ctx;
3852 
3853 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3854 	if (!ctx)
3855 		return -ENOMEM;
3856 
3857 	ctx->mode = 0777 | S_ISVTX;
3858 	ctx->uid = current_fsuid();
3859 	ctx->gid = current_fsgid();
3860 
3861 	fc->fs_private = ctx;
3862 	fc->ops = &shmem_fs_context_ops;
3863 	return 0;
3864 }
3865 
3866 static struct file_system_type shmem_fs_type = {
3867 	.owner		= THIS_MODULE,
3868 	.name		= "tmpfs",
3869 	.init_fs_context = shmem_init_fs_context,
3870 #ifdef CONFIG_TMPFS
3871 	.parameters	= shmem_fs_parameters,
3872 #endif
3873 	.kill_sb	= kill_litter_super,
3874 	.fs_flags	= FS_USERNS_MOUNT,
3875 };
3876 
3877 int __init shmem_init(void)
3878 {
3879 	int error;
3880 
3881 	shmem_init_inodecache();
3882 
3883 	error = register_filesystem(&shmem_fs_type);
3884 	if (error) {
3885 		pr_err("Could not register tmpfs\n");
3886 		goto out2;
3887 	}
3888 
3889 	shm_mnt = kern_mount(&shmem_fs_type);
3890 	if (IS_ERR(shm_mnt)) {
3891 		error = PTR_ERR(shm_mnt);
3892 		pr_err("Could not kern_mount tmpfs\n");
3893 		goto out1;
3894 	}
3895 
3896 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3897 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3898 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3899 	else
3900 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3901 #endif
3902 	return 0;
3903 
3904 out1:
3905 	unregister_filesystem(&shmem_fs_type);
3906 out2:
3907 	shmem_destroy_inodecache();
3908 	shm_mnt = ERR_PTR(error);
3909 	return error;
3910 }
3911 
3912 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3913 static ssize_t shmem_enabled_show(struct kobject *kobj,
3914 				  struct kobj_attribute *attr, char *buf)
3915 {
3916 	static const int values[] = {
3917 		SHMEM_HUGE_ALWAYS,
3918 		SHMEM_HUGE_WITHIN_SIZE,
3919 		SHMEM_HUGE_ADVISE,
3920 		SHMEM_HUGE_NEVER,
3921 		SHMEM_HUGE_DENY,
3922 		SHMEM_HUGE_FORCE,
3923 	};
3924 	int len = 0;
3925 	int i;
3926 
3927 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3928 		len += sysfs_emit_at(buf, len,
3929 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3930 				     i ? " " : "",
3931 				     shmem_format_huge(values[i]));
3932 	}
3933 
3934 	len += sysfs_emit_at(buf, len, "\n");
3935 
3936 	return len;
3937 }
3938 
3939 static ssize_t shmem_enabled_store(struct kobject *kobj,
3940 		struct kobj_attribute *attr, const char *buf, size_t count)
3941 {
3942 	char tmp[16];
3943 	int huge;
3944 
3945 	if (count + 1 > sizeof(tmp))
3946 		return -EINVAL;
3947 	memcpy(tmp, buf, count);
3948 	tmp[count] = '\0';
3949 	if (count && tmp[count - 1] == '\n')
3950 		tmp[count - 1] = '\0';
3951 
3952 	huge = shmem_parse_huge(tmp);
3953 	if (huge == -EINVAL)
3954 		return -EINVAL;
3955 	if (!has_transparent_hugepage() &&
3956 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3957 		return -EINVAL;
3958 
3959 	shmem_huge = huge;
3960 	if (shmem_huge > SHMEM_HUGE_DENY)
3961 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3962 	return count;
3963 }
3964 
3965 struct kobj_attribute shmem_enabled_attr =
3966 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3967 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3968 
3969 #else /* !CONFIG_SHMEM */
3970 
3971 /*
3972  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3973  *
3974  * This is intended for small system where the benefits of the full
3975  * shmem code (swap-backed and resource-limited) are outweighed by
3976  * their complexity. On systems without swap this code should be
3977  * effectively equivalent, but much lighter weight.
3978  */
3979 
3980 static struct file_system_type shmem_fs_type = {
3981 	.name		= "tmpfs",
3982 	.init_fs_context = ramfs_init_fs_context,
3983 	.parameters	= ramfs_fs_parameters,
3984 	.kill_sb	= kill_litter_super,
3985 	.fs_flags	= FS_USERNS_MOUNT,
3986 };
3987 
3988 int __init shmem_init(void)
3989 {
3990 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3991 
3992 	shm_mnt = kern_mount(&shmem_fs_type);
3993 	BUG_ON(IS_ERR(shm_mnt));
3994 
3995 	return 0;
3996 }
3997 
3998 int shmem_unuse(unsigned int type)
3999 {
4000 	return 0;
4001 }
4002 
4003 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4004 {
4005 	return 0;
4006 }
4007 
4008 void shmem_unlock_mapping(struct address_space *mapping)
4009 {
4010 }
4011 
4012 #ifdef CONFIG_MMU
4013 unsigned long shmem_get_unmapped_area(struct file *file,
4014 				      unsigned long addr, unsigned long len,
4015 				      unsigned long pgoff, unsigned long flags)
4016 {
4017 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4018 }
4019 #endif
4020 
4021 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4022 {
4023 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4024 }
4025 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4026 
4027 #define shmem_vm_ops				generic_file_vm_ops
4028 #define shmem_file_operations			ramfs_file_operations
4029 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4030 #define shmem_acct_size(flags, size)		0
4031 #define shmem_unacct_size(flags, size)		do {} while (0)
4032 
4033 #endif /* CONFIG_SHMEM */
4034 
4035 /* common code */
4036 
4037 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4038 				       unsigned long flags, unsigned int i_flags)
4039 {
4040 	struct inode *inode;
4041 	struct file *res;
4042 
4043 	if (IS_ERR(mnt))
4044 		return ERR_CAST(mnt);
4045 
4046 	if (size < 0 || size > MAX_LFS_FILESIZE)
4047 		return ERR_PTR(-EINVAL);
4048 
4049 	if (shmem_acct_size(flags, size))
4050 		return ERR_PTR(-ENOMEM);
4051 
4052 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4053 				flags);
4054 	if (unlikely(!inode)) {
4055 		shmem_unacct_size(flags, size);
4056 		return ERR_PTR(-ENOSPC);
4057 	}
4058 	inode->i_flags |= i_flags;
4059 	inode->i_size = size;
4060 	clear_nlink(inode);	/* It is unlinked */
4061 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4062 	if (!IS_ERR(res))
4063 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4064 				&shmem_file_operations);
4065 	if (IS_ERR(res))
4066 		iput(inode);
4067 	return res;
4068 }
4069 
4070 /**
4071  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4072  * 	kernel internal.  There will be NO LSM permission checks against the
4073  * 	underlying inode.  So users of this interface must do LSM checks at a
4074  *	higher layer.  The users are the big_key and shm implementations.  LSM
4075  *	checks are provided at the key or shm level rather than the inode.
4076  * @name: name for dentry (to be seen in /proc/<pid>/maps
4077  * @size: size to be set for the file
4078  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4079  */
4080 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4081 {
4082 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4083 }
4084 
4085 /**
4086  * shmem_file_setup - get an unlinked file living in tmpfs
4087  * @name: name for dentry (to be seen in /proc/<pid>/maps
4088  * @size: size to be set for the file
4089  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4090  */
4091 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4092 {
4093 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4094 }
4095 EXPORT_SYMBOL_GPL(shmem_file_setup);
4096 
4097 /**
4098  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4099  * @mnt: the tmpfs mount where the file will be created
4100  * @name: name for dentry (to be seen in /proc/<pid>/maps
4101  * @size: size to be set for the file
4102  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4103  */
4104 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4105 				       loff_t size, unsigned long flags)
4106 {
4107 	return __shmem_file_setup(mnt, name, size, flags, 0);
4108 }
4109 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4110 
4111 /**
4112  * shmem_zero_setup - setup a shared anonymous mapping
4113  * @vma: the vma to be mmapped is prepared by do_mmap
4114  */
4115 int shmem_zero_setup(struct vm_area_struct *vma)
4116 {
4117 	struct file *file;
4118 	loff_t size = vma->vm_end - vma->vm_start;
4119 
4120 	/*
4121 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4122 	 * between XFS directory reading and selinux: since this file is only
4123 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4124 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4125 	 */
4126 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4127 	if (IS_ERR(file))
4128 		return PTR_ERR(file);
4129 
4130 	if (vma->vm_file)
4131 		fput(vma->vm_file);
4132 	vma->vm_file = file;
4133 	vma->vm_ops = &shmem_vm_ops;
4134 
4135 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4136 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4137 			(vma->vm_end & HPAGE_PMD_MASK)) {
4138 		khugepaged_enter(vma, vma->vm_flags);
4139 	}
4140 
4141 	return 0;
4142 }
4143 
4144 /**
4145  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4146  * @mapping:	the page's address_space
4147  * @index:	the page index
4148  * @gfp:	the page allocator flags to use if allocating
4149  *
4150  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4151  * with any new page allocations done using the specified allocation flags.
4152  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4153  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4154  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4155  *
4156  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4157  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4158  */
4159 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4160 					 pgoff_t index, gfp_t gfp)
4161 {
4162 #ifdef CONFIG_SHMEM
4163 	struct inode *inode = mapping->host;
4164 	struct page *page;
4165 	int error;
4166 
4167 	BUG_ON(!shmem_mapping(mapping));
4168 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4169 				  gfp, NULL, NULL, NULL);
4170 	if (error)
4171 		return ERR_PTR(error);
4172 
4173 	unlock_page(page);
4174 	if (PageHWPoison(page)) {
4175 		put_page(page);
4176 		return ERR_PTR(-EIO);
4177 	}
4178 
4179 	return page;
4180 #else
4181 	/*
4182 	 * The tiny !SHMEM case uses ramfs without swap
4183 	 */
4184 	return read_cache_page_gfp(mapping, index, gfp);
4185 #endif
4186 }
4187 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4188