1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 42 43 static struct vfsmount *shm_mnt; 44 45 #ifdef CONFIG_SHMEM 46 /* 47 * This virtual memory filesystem is heavily based on the ramfs. It 48 * extends ramfs by the ability to use swap and honor resource limits 49 * which makes it a completely usable filesystem. 50 */ 51 52 #include <linux/xattr.h> 53 #include <linux/exportfs.h> 54 #include <linux/posix_acl.h> 55 #include <linux/posix_acl_xattr.h> 56 #include <linux/mman.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/backing-dev.h> 60 #include <linux/shmem_fs.h> 61 #include <linux/writeback.h> 62 #include <linux/blkdev.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 #include <asm/pgtable.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 #ifdef CONFIG_TMPFS 111 static unsigned long shmem_default_max_blocks(void) 112 { 113 return totalram_pages() / 2; 114 } 115 116 static unsigned long shmem_default_max_inodes(void) 117 { 118 unsigned long nr_pages = totalram_pages(); 119 120 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 121 } 122 #endif 123 124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 125 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 126 struct shmem_inode_info *info, pgoff_t index); 127 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp, 129 gfp_t gfp, struct vm_area_struct *vma, 130 vm_fault_t *fault_type); 131 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 132 struct page **pagep, enum sgp_type sgp, 133 gfp_t gfp, struct vm_area_struct *vma, 134 struct vm_fault *vmf, vm_fault_t *fault_type); 135 136 int shmem_getpage(struct inode *inode, pgoff_t index, 137 struct page **pagep, enum sgp_type sgp) 138 { 139 return shmem_getpage_gfp(inode, index, pagep, sgp, 140 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 141 } 142 143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 144 { 145 return sb->s_fs_info; 146 } 147 148 /* 149 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 150 * for shared memory and for shared anonymous (/dev/zero) mappings 151 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 152 * consistent with the pre-accounting of private mappings ... 153 */ 154 static inline int shmem_acct_size(unsigned long flags, loff_t size) 155 { 156 return (flags & VM_NORESERVE) ? 157 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 158 } 159 160 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 161 { 162 if (!(flags & VM_NORESERVE)) 163 vm_unacct_memory(VM_ACCT(size)); 164 } 165 166 static inline int shmem_reacct_size(unsigned long flags, 167 loff_t oldsize, loff_t newsize) 168 { 169 if (!(flags & VM_NORESERVE)) { 170 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 171 return security_vm_enough_memory_mm(current->mm, 172 VM_ACCT(newsize) - VM_ACCT(oldsize)); 173 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 174 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 175 } 176 return 0; 177 } 178 179 /* 180 * ... whereas tmpfs objects are accounted incrementally as 181 * pages are allocated, in order to allow large sparse files. 182 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 183 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 184 */ 185 static inline int shmem_acct_block(unsigned long flags, long pages) 186 { 187 if (!(flags & VM_NORESERVE)) 188 return 0; 189 190 return security_vm_enough_memory_mm(current->mm, 191 pages * VM_ACCT(PAGE_SIZE)); 192 } 193 194 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 195 { 196 if (flags & VM_NORESERVE) 197 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 198 } 199 200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 201 { 202 struct shmem_inode_info *info = SHMEM_I(inode); 203 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 204 205 if (shmem_acct_block(info->flags, pages)) 206 return false; 207 208 if (sbinfo->max_blocks) { 209 if (percpu_counter_compare(&sbinfo->used_blocks, 210 sbinfo->max_blocks - pages) > 0) 211 goto unacct; 212 percpu_counter_add(&sbinfo->used_blocks, pages); 213 } 214 215 return true; 216 217 unacct: 218 shmem_unacct_blocks(info->flags, pages); 219 return false; 220 } 221 222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 227 if (sbinfo->max_blocks) 228 percpu_counter_sub(&sbinfo->used_blocks, pages); 229 shmem_unacct_blocks(info->flags, pages); 230 } 231 232 static const struct super_operations shmem_ops; 233 static const struct address_space_operations shmem_aops; 234 static const struct file_operations shmem_file_operations; 235 static const struct inode_operations shmem_inode_operations; 236 static const struct inode_operations shmem_dir_inode_operations; 237 static const struct inode_operations shmem_special_inode_operations; 238 static const struct vm_operations_struct shmem_vm_ops; 239 static struct file_system_type shmem_fs_type; 240 241 bool vma_is_shmem(struct vm_area_struct *vma) 242 { 243 return vma->vm_ops == &shmem_vm_ops; 244 } 245 246 static LIST_HEAD(shmem_swaplist); 247 static DEFINE_MUTEX(shmem_swaplist_mutex); 248 249 static int shmem_reserve_inode(struct super_block *sb) 250 { 251 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 252 if (sbinfo->max_inodes) { 253 spin_lock(&sbinfo->stat_lock); 254 if (!sbinfo->free_inodes) { 255 spin_unlock(&sbinfo->stat_lock); 256 return -ENOSPC; 257 } 258 sbinfo->free_inodes--; 259 spin_unlock(&sbinfo->stat_lock); 260 } 261 return 0; 262 } 263 264 static void shmem_free_inode(struct super_block *sb) 265 { 266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 267 if (sbinfo->max_inodes) { 268 spin_lock(&sbinfo->stat_lock); 269 sbinfo->free_inodes++; 270 spin_unlock(&sbinfo->stat_lock); 271 } 272 } 273 274 /** 275 * shmem_recalc_inode - recalculate the block usage of an inode 276 * @inode: inode to recalc 277 * 278 * We have to calculate the free blocks since the mm can drop 279 * undirtied hole pages behind our back. 280 * 281 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 282 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 283 * 284 * It has to be called with the spinlock held. 285 */ 286 static void shmem_recalc_inode(struct inode *inode) 287 { 288 struct shmem_inode_info *info = SHMEM_I(inode); 289 long freed; 290 291 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 292 if (freed > 0) { 293 info->alloced -= freed; 294 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 295 shmem_inode_unacct_blocks(inode, freed); 296 } 297 } 298 299 bool shmem_charge(struct inode *inode, long pages) 300 { 301 struct shmem_inode_info *info = SHMEM_I(inode); 302 unsigned long flags; 303 304 if (!shmem_inode_acct_block(inode, pages)) 305 return false; 306 307 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 308 inode->i_mapping->nrpages += pages; 309 310 spin_lock_irqsave(&info->lock, flags); 311 info->alloced += pages; 312 inode->i_blocks += pages * BLOCKS_PER_PAGE; 313 shmem_recalc_inode(inode); 314 spin_unlock_irqrestore(&info->lock, flags); 315 316 return true; 317 } 318 319 void shmem_uncharge(struct inode *inode, long pages) 320 { 321 struct shmem_inode_info *info = SHMEM_I(inode); 322 unsigned long flags; 323 324 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 325 326 spin_lock_irqsave(&info->lock, flags); 327 info->alloced -= pages; 328 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 329 shmem_recalc_inode(inode); 330 spin_unlock_irqrestore(&info->lock, flags); 331 332 shmem_inode_unacct_blocks(inode, pages); 333 } 334 335 /* 336 * Replace item expected in xarray by a new item, while holding xa_lock. 337 */ 338 static int shmem_replace_entry(struct address_space *mapping, 339 pgoff_t index, void *expected, void *replacement) 340 { 341 XA_STATE(xas, &mapping->i_pages, index); 342 void *item; 343 344 VM_BUG_ON(!expected); 345 VM_BUG_ON(!replacement); 346 item = xas_load(&xas); 347 if (item != expected) 348 return -ENOENT; 349 xas_store(&xas, replacement); 350 return 0; 351 } 352 353 /* 354 * Sometimes, before we decide whether to proceed or to fail, we must check 355 * that an entry was not already brought back from swap by a racing thread. 356 * 357 * Checking page is not enough: by the time a SwapCache page is locked, it 358 * might be reused, and again be SwapCache, using the same swap as before. 359 */ 360 static bool shmem_confirm_swap(struct address_space *mapping, 361 pgoff_t index, swp_entry_t swap) 362 { 363 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 364 } 365 366 /* 367 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 368 * 369 * SHMEM_HUGE_NEVER: 370 * disables huge pages for the mount; 371 * SHMEM_HUGE_ALWAYS: 372 * enables huge pages for the mount; 373 * SHMEM_HUGE_WITHIN_SIZE: 374 * only allocate huge pages if the page will be fully within i_size, 375 * also respect fadvise()/madvise() hints; 376 * SHMEM_HUGE_ADVISE: 377 * only allocate huge pages if requested with fadvise()/madvise(); 378 */ 379 380 #define SHMEM_HUGE_NEVER 0 381 #define SHMEM_HUGE_ALWAYS 1 382 #define SHMEM_HUGE_WITHIN_SIZE 2 383 #define SHMEM_HUGE_ADVISE 3 384 385 /* 386 * Special values. 387 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 388 * 389 * SHMEM_HUGE_DENY: 390 * disables huge on shm_mnt and all mounts, for emergency use; 391 * SHMEM_HUGE_FORCE: 392 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 393 * 394 */ 395 #define SHMEM_HUGE_DENY (-1) 396 #define SHMEM_HUGE_FORCE (-2) 397 398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 399 /* ifdef here to avoid bloating shmem.o when not necessary */ 400 401 static int shmem_huge __read_mostly; 402 403 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 404 static int shmem_parse_huge(const char *str) 405 { 406 if (!strcmp(str, "never")) 407 return SHMEM_HUGE_NEVER; 408 if (!strcmp(str, "always")) 409 return SHMEM_HUGE_ALWAYS; 410 if (!strcmp(str, "within_size")) 411 return SHMEM_HUGE_WITHIN_SIZE; 412 if (!strcmp(str, "advise")) 413 return SHMEM_HUGE_ADVISE; 414 if (!strcmp(str, "deny")) 415 return SHMEM_HUGE_DENY; 416 if (!strcmp(str, "force")) 417 return SHMEM_HUGE_FORCE; 418 return -EINVAL; 419 } 420 421 static const char *shmem_format_huge(int huge) 422 { 423 switch (huge) { 424 case SHMEM_HUGE_NEVER: 425 return "never"; 426 case SHMEM_HUGE_ALWAYS: 427 return "always"; 428 case SHMEM_HUGE_WITHIN_SIZE: 429 return "within_size"; 430 case SHMEM_HUGE_ADVISE: 431 return "advise"; 432 case SHMEM_HUGE_DENY: 433 return "deny"; 434 case SHMEM_HUGE_FORCE: 435 return "force"; 436 default: 437 VM_BUG_ON(1); 438 return "bad_val"; 439 } 440 } 441 #endif 442 443 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 444 struct shrink_control *sc, unsigned long nr_to_split) 445 { 446 LIST_HEAD(list), *pos, *next; 447 LIST_HEAD(to_remove); 448 struct inode *inode; 449 struct shmem_inode_info *info; 450 struct page *page; 451 unsigned long batch = sc ? sc->nr_to_scan : 128; 452 int removed = 0, split = 0; 453 454 if (list_empty(&sbinfo->shrinklist)) 455 return SHRINK_STOP; 456 457 spin_lock(&sbinfo->shrinklist_lock); 458 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 459 info = list_entry(pos, struct shmem_inode_info, shrinklist); 460 461 /* pin the inode */ 462 inode = igrab(&info->vfs_inode); 463 464 /* inode is about to be evicted */ 465 if (!inode) { 466 list_del_init(&info->shrinklist); 467 removed++; 468 goto next; 469 } 470 471 /* Check if there's anything to gain */ 472 if (round_up(inode->i_size, PAGE_SIZE) == 473 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 474 list_move(&info->shrinklist, &to_remove); 475 removed++; 476 goto next; 477 } 478 479 list_move(&info->shrinklist, &list); 480 next: 481 if (!--batch) 482 break; 483 } 484 spin_unlock(&sbinfo->shrinklist_lock); 485 486 list_for_each_safe(pos, next, &to_remove) { 487 info = list_entry(pos, struct shmem_inode_info, shrinklist); 488 inode = &info->vfs_inode; 489 list_del_init(&info->shrinklist); 490 iput(inode); 491 } 492 493 list_for_each_safe(pos, next, &list) { 494 int ret; 495 496 info = list_entry(pos, struct shmem_inode_info, shrinklist); 497 inode = &info->vfs_inode; 498 499 if (nr_to_split && split >= nr_to_split) 500 goto leave; 501 502 page = find_get_page(inode->i_mapping, 503 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 504 if (!page) 505 goto drop; 506 507 /* No huge page at the end of the file: nothing to split */ 508 if (!PageTransHuge(page)) { 509 put_page(page); 510 goto drop; 511 } 512 513 /* 514 * Leave the inode on the list if we failed to lock 515 * the page at this time. 516 * 517 * Waiting for the lock may lead to deadlock in the 518 * reclaim path. 519 */ 520 if (!trylock_page(page)) { 521 put_page(page); 522 goto leave; 523 } 524 525 ret = split_huge_page(page); 526 unlock_page(page); 527 put_page(page); 528 529 /* If split failed leave the inode on the list */ 530 if (ret) 531 goto leave; 532 533 split++; 534 drop: 535 list_del_init(&info->shrinklist); 536 removed++; 537 leave: 538 iput(inode); 539 } 540 541 spin_lock(&sbinfo->shrinklist_lock); 542 list_splice_tail(&list, &sbinfo->shrinklist); 543 sbinfo->shrinklist_len -= removed; 544 spin_unlock(&sbinfo->shrinklist_lock); 545 546 return split; 547 } 548 549 static long shmem_unused_huge_scan(struct super_block *sb, 550 struct shrink_control *sc) 551 { 552 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 553 554 if (!READ_ONCE(sbinfo->shrinklist_len)) 555 return SHRINK_STOP; 556 557 return shmem_unused_huge_shrink(sbinfo, sc, 0); 558 } 559 560 static long shmem_unused_huge_count(struct super_block *sb, 561 struct shrink_control *sc) 562 { 563 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 564 return READ_ONCE(sbinfo->shrinklist_len); 565 } 566 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 567 568 #define shmem_huge SHMEM_HUGE_DENY 569 570 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 571 struct shrink_control *sc, unsigned long nr_to_split) 572 { 573 return 0; 574 } 575 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 576 577 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 578 { 579 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 580 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 581 shmem_huge != SHMEM_HUGE_DENY) 582 return true; 583 return false; 584 } 585 586 /* 587 * Like add_to_page_cache_locked, but error if expected item has gone. 588 */ 589 static int shmem_add_to_page_cache(struct page *page, 590 struct address_space *mapping, 591 pgoff_t index, void *expected, gfp_t gfp) 592 { 593 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 594 unsigned long i = 0; 595 unsigned long nr = 1UL << compound_order(page); 596 597 VM_BUG_ON_PAGE(PageTail(page), page); 598 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 599 VM_BUG_ON_PAGE(!PageLocked(page), page); 600 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 601 VM_BUG_ON(expected && PageTransHuge(page)); 602 603 page_ref_add(page, nr); 604 page->mapping = mapping; 605 page->index = index; 606 607 do { 608 void *entry; 609 xas_lock_irq(&xas); 610 entry = xas_find_conflict(&xas); 611 if (entry != expected) 612 xas_set_err(&xas, -EEXIST); 613 xas_create_range(&xas); 614 if (xas_error(&xas)) 615 goto unlock; 616 next: 617 xas_store(&xas, page + i); 618 if (++i < nr) { 619 xas_next(&xas); 620 goto next; 621 } 622 if (PageTransHuge(page)) { 623 count_vm_event(THP_FILE_ALLOC); 624 __inc_node_page_state(page, NR_SHMEM_THPS); 625 } 626 mapping->nrpages += nr; 627 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 628 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 629 unlock: 630 xas_unlock_irq(&xas); 631 } while (xas_nomem(&xas, gfp)); 632 633 if (xas_error(&xas)) { 634 page->mapping = NULL; 635 page_ref_sub(page, nr); 636 return xas_error(&xas); 637 } 638 639 return 0; 640 } 641 642 /* 643 * Like delete_from_page_cache, but substitutes swap for page. 644 */ 645 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 646 { 647 struct address_space *mapping = page->mapping; 648 int error; 649 650 VM_BUG_ON_PAGE(PageCompound(page), page); 651 652 xa_lock_irq(&mapping->i_pages); 653 error = shmem_replace_entry(mapping, page->index, page, radswap); 654 page->mapping = NULL; 655 mapping->nrpages--; 656 __dec_node_page_state(page, NR_FILE_PAGES); 657 __dec_node_page_state(page, NR_SHMEM); 658 xa_unlock_irq(&mapping->i_pages); 659 put_page(page); 660 BUG_ON(error); 661 } 662 663 /* 664 * Remove swap entry from page cache, free the swap and its page cache. 665 */ 666 static int shmem_free_swap(struct address_space *mapping, 667 pgoff_t index, void *radswap) 668 { 669 void *old; 670 671 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 672 if (old != radswap) 673 return -ENOENT; 674 free_swap_and_cache(radix_to_swp_entry(radswap)); 675 return 0; 676 } 677 678 /* 679 * Determine (in bytes) how many of the shmem object's pages mapped by the 680 * given offsets are swapped out. 681 * 682 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 683 * as long as the inode doesn't go away and racy results are not a problem. 684 */ 685 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 686 pgoff_t start, pgoff_t end) 687 { 688 XA_STATE(xas, &mapping->i_pages, start); 689 struct page *page; 690 unsigned long swapped = 0; 691 692 rcu_read_lock(); 693 xas_for_each(&xas, page, end - 1) { 694 if (xas_retry(&xas, page)) 695 continue; 696 if (xa_is_value(page)) 697 swapped++; 698 699 if (need_resched()) { 700 xas_pause(&xas); 701 cond_resched_rcu(); 702 } 703 } 704 705 rcu_read_unlock(); 706 707 return swapped << PAGE_SHIFT; 708 } 709 710 /* 711 * Determine (in bytes) how many of the shmem object's pages mapped by the 712 * given vma is swapped out. 713 * 714 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 715 * as long as the inode doesn't go away and racy results are not a problem. 716 */ 717 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 718 { 719 struct inode *inode = file_inode(vma->vm_file); 720 struct shmem_inode_info *info = SHMEM_I(inode); 721 struct address_space *mapping = inode->i_mapping; 722 unsigned long swapped; 723 724 /* Be careful as we don't hold info->lock */ 725 swapped = READ_ONCE(info->swapped); 726 727 /* 728 * The easier cases are when the shmem object has nothing in swap, or 729 * the vma maps it whole. Then we can simply use the stats that we 730 * already track. 731 */ 732 if (!swapped) 733 return 0; 734 735 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 736 return swapped << PAGE_SHIFT; 737 738 /* Here comes the more involved part */ 739 return shmem_partial_swap_usage(mapping, 740 linear_page_index(vma, vma->vm_start), 741 linear_page_index(vma, vma->vm_end)); 742 } 743 744 /* 745 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 746 */ 747 void shmem_unlock_mapping(struct address_space *mapping) 748 { 749 struct pagevec pvec; 750 pgoff_t indices[PAGEVEC_SIZE]; 751 pgoff_t index = 0; 752 753 pagevec_init(&pvec); 754 /* 755 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 756 */ 757 while (!mapping_unevictable(mapping)) { 758 /* 759 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 760 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 761 */ 762 pvec.nr = find_get_entries(mapping, index, 763 PAGEVEC_SIZE, pvec.pages, indices); 764 if (!pvec.nr) 765 break; 766 index = indices[pvec.nr - 1] + 1; 767 pagevec_remove_exceptionals(&pvec); 768 check_move_unevictable_pages(&pvec); 769 pagevec_release(&pvec); 770 cond_resched(); 771 } 772 } 773 774 /* 775 * Remove range of pages and swap entries from page cache, and free them. 776 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 777 */ 778 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 779 bool unfalloc) 780 { 781 struct address_space *mapping = inode->i_mapping; 782 struct shmem_inode_info *info = SHMEM_I(inode); 783 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 784 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 785 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 786 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 787 struct pagevec pvec; 788 pgoff_t indices[PAGEVEC_SIZE]; 789 long nr_swaps_freed = 0; 790 pgoff_t index; 791 int i; 792 793 if (lend == -1) 794 end = -1; /* unsigned, so actually very big */ 795 796 pagevec_init(&pvec); 797 index = start; 798 while (index < end) { 799 pvec.nr = find_get_entries(mapping, index, 800 min(end - index, (pgoff_t)PAGEVEC_SIZE), 801 pvec.pages, indices); 802 if (!pvec.nr) 803 break; 804 for (i = 0; i < pagevec_count(&pvec); i++) { 805 struct page *page = pvec.pages[i]; 806 807 index = indices[i]; 808 if (index >= end) 809 break; 810 811 if (xa_is_value(page)) { 812 if (unfalloc) 813 continue; 814 nr_swaps_freed += !shmem_free_swap(mapping, 815 index, page); 816 continue; 817 } 818 819 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 820 821 if (!trylock_page(page)) 822 continue; 823 824 if (PageTransTail(page)) { 825 /* Middle of THP: zero out the page */ 826 clear_highpage(page); 827 unlock_page(page); 828 continue; 829 } else if (PageTransHuge(page)) { 830 if (index == round_down(end, HPAGE_PMD_NR)) { 831 /* 832 * Range ends in the middle of THP: 833 * zero out the page 834 */ 835 clear_highpage(page); 836 unlock_page(page); 837 continue; 838 } 839 index += HPAGE_PMD_NR - 1; 840 i += HPAGE_PMD_NR - 1; 841 } 842 843 if (!unfalloc || !PageUptodate(page)) { 844 VM_BUG_ON_PAGE(PageTail(page), page); 845 if (page_mapping(page) == mapping) { 846 VM_BUG_ON_PAGE(PageWriteback(page), page); 847 truncate_inode_page(mapping, page); 848 } 849 } 850 unlock_page(page); 851 } 852 pagevec_remove_exceptionals(&pvec); 853 pagevec_release(&pvec); 854 cond_resched(); 855 index++; 856 } 857 858 if (partial_start) { 859 struct page *page = NULL; 860 shmem_getpage(inode, start - 1, &page, SGP_READ); 861 if (page) { 862 unsigned int top = PAGE_SIZE; 863 if (start > end) { 864 top = partial_end; 865 partial_end = 0; 866 } 867 zero_user_segment(page, partial_start, top); 868 set_page_dirty(page); 869 unlock_page(page); 870 put_page(page); 871 } 872 } 873 if (partial_end) { 874 struct page *page = NULL; 875 shmem_getpage(inode, end, &page, SGP_READ); 876 if (page) { 877 zero_user_segment(page, 0, partial_end); 878 set_page_dirty(page); 879 unlock_page(page); 880 put_page(page); 881 } 882 } 883 if (start >= end) 884 return; 885 886 index = start; 887 while (index < end) { 888 cond_resched(); 889 890 pvec.nr = find_get_entries(mapping, index, 891 min(end - index, (pgoff_t)PAGEVEC_SIZE), 892 pvec.pages, indices); 893 if (!pvec.nr) { 894 /* If all gone or hole-punch or unfalloc, we're done */ 895 if (index == start || end != -1) 896 break; 897 /* But if truncating, restart to make sure all gone */ 898 index = start; 899 continue; 900 } 901 for (i = 0; i < pagevec_count(&pvec); i++) { 902 struct page *page = pvec.pages[i]; 903 904 index = indices[i]; 905 if (index >= end) 906 break; 907 908 if (xa_is_value(page)) { 909 if (unfalloc) 910 continue; 911 if (shmem_free_swap(mapping, index, page)) { 912 /* Swap was replaced by page: retry */ 913 index--; 914 break; 915 } 916 nr_swaps_freed++; 917 continue; 918 } 919 920 lock_page(page); 921 922 if (PageTransTail(page)) { 923 /* Middle of THP: zero out the page */ 924 clear_highpage(page); 925 unlock_page(page); 926 /* 927 * Partial thp truncate due 'start' in middle 928 * of THP: don't need to look on these pages 929 * again on !pvec.nr restart. 930 */ 931 if (index != round_down(end, HPAGE_PMD_NR)) 932 start++; 933 continue; 934 } else if (PageTransHuge(page)) { 935 if (index == round_down(end, HPAGE_PMD_NR)) { 936 /* 937 * Range ends in the middle of THP: 938 * zero out the page 939 */ 940 clear_highpage(page); 941 unlock_page(page); 942 continue; 943 } 944 index += HPAGE_PMD_NR - 1; 945 i += HPAGE_PMD_NR - 1; 946 } 947 948 if (!unfalloc || !PageUptodate(page)) { 949 VM_BUG_ON_PAGE(PageTail(page), page); 950 if (page_mapping(page) == mapping) { 951 VM_BUG_ON_PAGE(PageWriteback(page), page); 952 truncate_inode_page(mapping, page); 953 } else { 954 /* Page was replaced by swap: retry */ 955 unlock_page(page); 956 index--; 957 break; 958 } 959 } 960 unlock_page(page); 961 } 962 pagevec_remove_exceptionals(&pvec); 963 pagevec_release(&pvec); 964 index++; 965 } 966 967 spin_lock_irq(&info->lock); 968 info->swapped -= nr_swaps_freed; 969 shmem_recalc_inode(inode); 970 spin_unlock_irq(&info->lock); 971 } 972 973 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 974 { 975 shmem_undo_range(inode, lstart, lend, false); 976 inode->i_ctime = inode->i_mtime = current_time(inode); 977 } 978 EXPORT_SYMBOL_GPL(shmem_truncate_range); 979 980 static int shmem_getattr(const struct path *path, struct kstat *stat, 981 u32 request_mask, unsigned int query_flags) 982 { 983 struct inode *inode = path->dentry->d_inode; 984 struct shmem_inode_info *info = SHMEM_I(inode); 985 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 986 987 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 988 spin_lock_irq(&info->lock); 989 shmem_recalc_inode(inode); 990 spin_unlock_irq(&info->lock); 991 } 992 generic_fillattr(inode, stat); 993 994 if (is_huge_enabled(sb_info)) 995 stat->blksize = HPAGE_PMD_SIZE; 996 997 return 0; 998 } 999 1000 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1001 { 1002 struct inode *inode = d_inode(dentry); 1003 struct shmem_inode_info *info = SHMEM_I(inode); 1004 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1005 int error; 1006 1007 error = setattr_prepare(dentry, attr); 1008 if (error) 1009 return error; 1010 1011 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1012 loff_t oldsize = inode->i_size; 1013 loff_t newsize = attr->ia_size; 1014 1015 /* protected by i_mutex */ 1016 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1017 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1018 return -EPERM; 1019 1020 if (newsize != oldsize) { 1021 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1022 oldsize, newsize); 1023 if (error) 1024 return error; 1025 i_size_write(inode, newsize); 1026 inode->i_ctime = inode->i_mtime = current_time(inode); 1027 } 1028 if (newsize <= oldsize) { 1029 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1030 if (oldsize > holebegin) 1031 unmap_mapping_range(inode->i_mapping, 1032 holebegin, 0, 1); 1033 if (info->alloced) 1034 shmem_truncate_range(inode, 1035 newsize, (loff_t)-1); 1036 /* unmap again to remove racily COWed private pages */ 1037 if (oldsize > holebegin) 1038 unmap_mapping_range(inode->i_mapping, 1039 holebegin, 0, 1); 1040 1041 /* 1042 * Part of the huge page can be beyond i_size: subject 1043 * to shrink under memory pressure. 1044 */ 1045 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1046 spin_lock(&sbinfo->shrinklist_lock); 1047 /* 1048 * _careful to defend against unlocked access to 1049 * ->shrink_list in shmem_unused_huge_shrink() 1050 */ 1051 if (list_empty_careful(&info->shrinklist)) { 1052 list_add_tail(&info->shrinklist, 1053 &sbinfo->shrinklist); 1054 sbinfo->shrinklist_len++; 1055 } 1056 spin_unlock(&sbinfo->shrinklist_lock); 1057 } 1058 } 1059 } 1060 1061 setattr_copy(inode, attr); 1062 if (attr->ia_valid & ATTR_MODE) 1063 error = posix_acl_chmod(inode, inode->i_mode); 1064 return error; 1065 } 1066 1067 static void shmem_evict_inode(struct inode *inode) 1068 { 1069 struct shmem_inode_info *info = SHMEM_I(inode); 1070 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1071 1072 if (inode->i_mapping->a_ops == &shmem_aops) { 1073 shmem_unacct_size(info->flags, inode->i_size); 1074 inode->i_size = 0; 1075 shmem_truncate_range(inode, 0, (loff_t)-1); 1076 if (!list_empty(&info->shrinklist)) { 1077 spin_lock(&sbinfo->shrinklist_lock); 1078 if (!list_empty(&info->shrinklist)) { 1079 list_del_init(&info->shrinklist); 1080 sbinfo->shrinklist_len--; 1081 } 1082 spin_unlock(&sbinfo->shrinklist_lock); 1083 } 1084 if (!list_empty(&info->swaplist)) { 1085 mutex_lock(&shmem_swaplist_mutex); 1086 list_del_init(&info->swaplist); 1087 mutex_unlock(&shmem_swaplist_mutex); 1088 } 1089 } 1090 1091 simple_xattrs_free(&info->xattrs); 1092 WARN_ON(inode->i_blocks); 1093 shmem_free_inode(inode->i_sb); 1094 clear_inode(inode); 1095 } 1096 1097 extern struct swap_info_struct *swap_info[]; 1098 1099 static int shmem_find_swap_entries(struct address_space *mapping, 1100 pgoff_t start, unsigned int nr_entries, 1101 struct page **entries, pgoff_t *indices, 1102 bool frontswap) 1103 { 1104 XA_STATE(xas, &mapping->i_pages, start); 1105 struct page *page; 1106 unsigned int ret = 0; 1107 1108 if (!nr_entries) 1109 return 0; 1110 1111 rcu_read_lock(); 1112 xas_for_each(&xas, page, ULONG_MAX) { 1113 if (xas_retry(&xas, page)) 1114 continue; 1115 1116 if (!xa_is_value(page)) 1117 continue; 1118 1119 if (frontswap) { 1120 swp_entry_t entry = radix_to_swp_entry(page); 1121 1122 if (!frontswap_test(swap_info[swp_type(entry)], 1123 swp_offset(entry))) 1124 continue; 1125 } 1126 1127 indices[ret] = xas.xa_index; 1128 entries[ret] = page; 1129 1130 if (need_resched()) { 1131 xas_pause(&xas); 1132 cond_resched_rcu(); 1133 } 1134 if (++ret == nr_entries) 1135 break; 1136 } 1137 rcu_read_unlock(); 1138 1139 return ret; 1140 } 1141 1142 /* 1143 * Move the swapped pages for an inode to page cache. Returns the count 1144 * of pages swapped in, or the error in case of failure. 1145 */ 1146 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1147 pgoff_t *indices) 1148 { 1149 int i = 0; 1150 int ret = 0; 1151 int error = 0; 1152 struct address_space *mapping = inode->i_mapping; 1153 1154 for (i = 0; i < pvec.nr; i++) { 1155 struct page *page = pvec.pages[i]; 1156 1157 if (!xa_is_value(page)) 1158 continue; 1159 error = shmem_swapin_page(inode, indices[i], 1160 &page, SGP_CACHE, 1161 mapping_gfp_mask(mapping), 1162 NULL, NULL); 1163 if (error == 0) { 1164 unlock_page(page); 1165 put_page(page); 1166 ret++; 1167 } 1168 if (error == -ENOMEM) 1169 break; 1170 error = 0; 1171 } 1172 return error ? error : ret; 1173 } 1174 1175 /* 1176 * If swap found in inode, free it and move page from swapcache to filecache. 1177 */ 1178 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1179 bool frontswap, unsigned long *fs_pages_to_unuse) 1180 { 1181 struct address_space *mapping = inode->i_mapping; 1182 pgoff_t start = 0; 1183 struct pagevec pvec; 1184 pgoff_t indices[PAGEVEC_SIZE]; 1185 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1186 int ret = 0; 1187 1188 pagevec_init(&pvec); 1189 do { 1190 unsigned int nr_entries = PAGEVEC_SIZE; 1191 1192 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1193 nr_entries = *fs_pages_to_unuse; 1194 1195 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1196 pvec.pages, indices, 1197 frontswap); 1198 if (pvec.nr == 0) { 1199 ret = 0; 1200 break; 1201 } 1202 1203 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1204 if (ret < 0) 1205 break; 1206 1207 if (frontswap_partial) { 1208 *fs_pages_to_unuse -= ret; 1209 if (*fs_pages_to_unuse == 0) { 1210 ret = FRONTSWAP_PAGES_UNUSED; 1211 break; 1212 } 1213 } 1214 1215 start = indices[pvec.nr - 1]; 1216 } while (true); 1217 1218 return ret; 1219 } 1220 1221 /* 1222 * Read all the shared memory data that resides in the swap 1223 * device 'type' back into memory, so the swap device can be 1224 * unused. 1225 */ 1226 int shmem_unuse(unsigned int type, bool frontswap, 1227 unsigned long *fs_pages_to_unuse) 1228 { 1229 struct shmem_inode_info *info, *next; 1230 struct inode *inode; 1231 struct inode *prev_inode = NULL; 1232 int error = 0; 1233 1234 if (list_empty(&shmem_swaplist)) 1235 return 0; 1236 1237 mutex_lock(&shmem_swaplist_mutex); 1238 1239 /* 1240 * The extra refcount on the inode is necessary to safely dereference 1241 * p->next after re-acquiring the lock. New shmem inodes with swap 1242 * get added to the end of the list and we will scan them all. 1243 */ 1244 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1245 if (!info->swapped) { 1246 list_del_init(&info->swaplist); 1247 continue; 1248 } 1249 1250 inode = igrab(&info->vfs_inode); 1251 if (!inode) 1252 continue; 1253 1254 mutex_unlock(&shmem_swaplist_mutex); 1255 if (prev_inode) 1256 iput(prev_inode); 1257 prev_inode = inode; 1258 1259 error = shmem_unuse_inode(inode, type, frontswap, 1260 fs_pages_to_unuse); 1261 cond_resched(); 1262 1263 mutex_lock(&shmem_swaplist_mutex); 1264 next = list_next_entry(info, swaplist); 1265 if (!info->swapped) 1266 list_del_init(&info->swaplist); 1267 if (error) 1268 break; 1269 } 1270 mutex_unlock(&shmem_swaplist_mutex); 1271 1272 if (prev_inode) 1273 iput(prev_inode); 1274 1275 return error; 1276 } 1277 1278 /* 1279 * Move the page from the page cache to the swap cache. 1280 */ 1281 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1282 { 1283 struct shmem_inode_info *info; 1284 struct address_space *mapping; 1285 struct inode *inode; 1286 swp_entry_t swap; 1287 pgoff_t index; 1288 1289 VM_BUG_ON_PAGE(PageCompound(page), page); 1290 BUG_ON(!PageLocked(page)); 1291 mapping = page->mapping; 1292 index = page->index; 1293 inode = mapping->host; 1294 info = SHMEM_I(inode); 1295 if (info->flags & VM_LOCKED) 1296 goto redirty; 1297 if (!total_swap_pages) 1298 goto redirty; 1299 1300 /* 1301 * Our capabilities prevent regular writeback or sync from ever calling 1302 * shmem_writepage; but a stacking filesystem might use ->writepage of 1303 * its underlying filesystem, in which case tmpfs should write out to 1304 * swap only in response to memory pressure, and not for the writeback 1305 * threads or sync. 1306 */ 1307 if (!wbc->for_reclaim) { 1308 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1309 goto redirty; 1310 } 1311 1312 /* 1313 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1314 * value into swapfile.c, the only way we can correctly account for a 1315 * fallocated page arriving here is now to initialize it and write it. 1316 * 1317 * That's okay for a page already fallocated earlier, but if we have 1318 * not yet completed the fallocation, then (a) we want to keep track 1319 * of this page in case we have to undo it, and (b) it may not be a 1320 * good idea to continue anyway, once we're pushing into swap. So 1321 * reactivate the page, and let shmem_fallocate() quit when too many. 1322 */ 1323 if (!PageUptodate(page)) { 1324 if (inode->i_private) { 1325 struct shmem_falloc *shmem_falloc; 1326 spin_lock(&inode->i_lock); 1327 shmem_falloc = inode->i_private; 1328 if (shmem_falloc && 1329 !shmem_falloc->waitq && 1330 index >= shmem_falloc->start && 1331 index < shmem_falloc->next) 1332 shmem_falloc->nr_unswapped++; 1333 else 1334 shmem_falloc = NULL; 1335 spin_unlock(&inode->i_lock); 1336 if (shmem_falloc) 1337 goto redirty; 1338 } 1339 clear_highpage(page); 1340 flush_dcache_page(page); 1341 SetPageUptodate(page); 1342 } 1343 1344 swap = get_swap_page(page); 1345 if (!swap.val) 1346 goto redirty; 1347 1348 /* 1349 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1350 * if it's not already there. Do it now before the page is 1351 * moved to swap cache, when its pagelock no longer protects 1352 * the inode from eviction. But don't unlock the mutex until 1353 * we've incremented swapped, because shmem_unuse_inode() will 1354 * prune a !swapped inode from the swaplist under this mutex. 1355 */ 1356 mutex_lock(&shmem_swaplist_mutex); 1357 if (list_empty(&info->swaplist)) 1358 list_add(&info->swaplist, &shmem_swaplist); 1359 1360 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1361 spin_lock_irq(&info->lock); 1362 shmem_recalc_inode(inode); 1363 info->swapped++; 1364 spin_unlock_irq(&info->lock); 1365 1366 swap_shmem_alloc(swap); 1367 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1368 1369 mutex_unlock(&shmem_swaplist_mutex); 1370 BUG_ON(page_mapped(page)); 1371 swap_writepage(page, wbc); 1372 return 0; 1373 } 1374 1375 mutex_unlock(&shmem_swaplist_mutex); 1376 put_swap_page(page, swap); 1377 redirty: 1378 set_page_dirty(page); 1379 if (wbc->for_reclaim) 1380 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1381 unlock_page(page); 1382 return 0; 1383 } 1384 1385 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1386 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1387 { 1388 char buffer[64]; 1389 1390 if (!mpol || mpol->mode == MPOL_DEFAULT) 1391 return; /* show nothing */ 1392 1393 mpol_to_str(buffer, sizeof(buffer), mpol); 1394 1395 seq_printf(seq, ",mpol=%s", buffer); 1396 } 1397 1398 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1399 { 1400 struct mempolicy *mpol = NULL; 1401 if (sbinfo->mpol) { 1402 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1403 mpol = sbinfo->mpol; 1404 mpol_get(mpol); 1405 spin_unlock(&sbinfo->stat_lock); 1406 } 1407 return mpol; 1408 } 1409 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1410 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1411 { 1412 } 1413 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1414 { 1415 return NULL; 1416 } 1417 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1418 #ifndef CONFIG_NUMA 1419 #define vm_policy vm_private_data 1420 #endif 1421 1422 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1423 struct shmem_inode_info *info, pgoff_t index) 1424 { 1425 /* Create a pseudo vma that just contains the policy */ 1426 vma_init(vma, NULL); 1427 /* Bias interleave by inode number to distribute better across nodes */ 1428 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1429 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1430 } 1431 1432 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1433 { 1434 /* Drop reference taken by mpol_shared_policy_lookup() */ 1435 mpol_cond_put(vma->vm_policy); 1436 } 1437 1438 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1439 struct shmem_inode_info *info, pgoff_t index) 1440 { 1441 struct vm_area_struct pvma; 1442 struct page *page; 1443 struct vm_fault vmf; 1444 1445 shmem_pseudo_vma_init(&pvma, info, index); 1446 vmf.vma = &pvma; 1447 vmf.address = 0; 1448 page = swap_cluster_readahead(swap, gfp, &vmf); 1449 shmem_pseudo_vma_destroy(&pvma); 1450 1451 return page; 1452 } 1453 1454 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1455 struct shmem_inode_info *info, pgoff_t index) 1456 { 1457 struct vm_area_struct pvma; 1458 struct address_space *mapping = info->vfs_inode.i_mapping; 1459 pgoff_t hindex; 1460 struct page *page; 1461 1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1463 return NULL; 1464 1465 hindex = round_down(index, HPAGE_PMD_NR); 1466 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1467 XA_PRESENT)) 1468 return NULL; 1469 1470 shmem_pseudo_vma_init(&pvma, info, hindex); 1471 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1472 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1473 shmem_pseudo_vma_destroy(&pvma); 1474 if (page) 1475 prep_transhuge_page(page); 1476 return page; 1477 } 1478 1479 static struct page *shmem_alloc_page(gfp_t gfp, 1480 struct shmem_inode_info *info, pgoff_t index) 1481 { 1482 struct vm_area_struct pvma; 1483 struct page *page; 1484 1485 shmem_pseudo_vma_init(&pvma, info, index); 1486 page = alloc_page_vma(gfp, &pvma, 0); 1487 shmem_pseudo_vma_destroy(&pvma); 1488 1489 return page; 1490 } 1491 1492 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1493 struct inode *inode, 1494 pgoff_t index, bool huge) 1495 { 1496 struct shmem_inode_info *info = SHMEM_I(inode); 1497 struct page *page; 1498 int nr; 1499 int err = -ENOSPC; 1500 1501 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1502 huge = false; 1503 nr = huge ? HPAGE_PMD_NR : 1; 1504 1505 if (!shmem_inode_acct_block(inode, nr)) 1506 goto failed; 1507 1508 if (huge) 1509 page = shmem_alloc_hugepage(gfp, info, index); 1510 else 1511 page = shmem_alloc_page(gfp, info, index); 1512 if (page) { 1513 __SetPageLocked(page); 1514 __SetPageSwapBacked(page); 1515 return page; 1516 } 1517 1518 err = -ENOMEM; 1519 shmem_inode_unacct_blocks(inode, nr); 1520 failed: 1521 return ERR_PTR(err); 1522 } 1523 1524 /* 1525 * When a page is moved from swapcache to shmem filecache (either by the 1526 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1527 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1528 * ignorance of the mapping it belongs to. If that mapping has special 1529 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1530 * we may need to copy to a suitable page before moving to filecache. 1531 * 1532 * In a future release, this may well be extended to respect cpuset and 1533 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1534 * but for now it is a simple matter of zone. 1535 */ 1536 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1537 { 1538 return page_zonenum(page) > gfp_zone(gfp); 1539 } 1540 1541 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1542 struct shmem_inode_info *info, pgoff_t index) 1543 { 1544 struct page *oldpage, *newpage; 1545 struct address_space *swap_mapping; 1546 swp_entry_t entry; 1547 pgoff_t swap_index; 1548 int error; 1549 1550 oldpage = *pagep; 1551 entry.val = page_private(oldpage); 1552 swap_index = swp_offset(entry); 1553 swap_mapping = page_mapping(oldpage); 1554 1555 /* 1556 * We have arrived here because our zones are constrained, so don't 1557 * limit chance of success by further cpuset and node constraints. 1558 */ 1559 gfp &= ~GFP_CONSTRAINT_MASK; 1560 newpage = shmem_alloc_page(gfp, info, index); 1561 if (!newpage) 1562 return -ENOMEM; 1563 1564 get_page(newpage); 1565 copy_highpage(newpage, oldpage); 1566 flush_dcache_page(newpage); 1567 1568 __SetPageLocked(newpage); 1569 __SetPageSwapBacked(newpage); 1570 SetPageUptodate(newpage); 1571 set_page_private(newpage, entry.val); 1572 SetPageSwapCache(newpage); 1573 1574 /* 1575 * Our caller will very soon move newpage out of swapcache, but it's 1576 * a nice clean interface for us to replace oldpage by newpage there. 1577 */ 1578 xa_lock_irq(&swap_mapping->i_pages); 1579 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1580 if (!error) { 1581 __inc_node_page_state(newpage, NR_FILE_PAGES); 1582 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1583 } 1584 xa_unlock_irq(&swap_mapping->i_pages); 1585 1586 if (unlikely(error)) { 1587 /* 1588 * Is this possible? I think not, now that our callers check 1589 * both PageSwapCache and page_private after getting page lock; 1590 * but be defensive. Reverse old to newpage for clear and free. 1591 */ 1592 oldpage = newpage; 1593 } else { 1594 mem_cgroup_migrate(oldpage, newpage); 1595 lru_cache_add_anon(newpage); 1596 *pagep = newpage; 1597 } 1598 1599 ClearPageSwapCache(oldpage); 1600 set_page_private(oldpage, 0); 1601 1602 unlock_page(oldpage); 1603 put_page(oldpage); 1604 put_page(oldpage); 1605 return error; 1606 } 1607 1608 /* 1609 * Swap in the page pointed to by *pagep. 1610 * Caller has to make sure that *pagep contains a valid swapped page. 1611 * Returns 0 and the page in pagep if success. On failure, returns the 1612 * the error code and NULL in *pagep. 1613 */ 1614 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1615 struct page **pagep, enum sgp_type sgp, 1616 gfp_t gfp, struct vm_area_struct *vma, 1617 vm_fault_t *fault_type) 1618 { 1619 struct address_space *mapping = inode->i_mapping; 1620 struct shmem_inode_info *info = SHMEM_I(inode); 1621 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1622 struct mem_cgroup *memcg; 1623 struct page *page; 1624 swp_entry_t swap; 1625 int error; 1626 1627 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1628 swap = radix_to_swp_entry(*pagep); 1629 *pagep = NULL; 1630 1631 /* Look it up and read it in.. */ 1632 page = lookup_swap_cache(swap, NULL, 0); 1633 if (!page) { 1634 /* Or update major stats only when swapin succeeds?? */ 1635 if (fault_type) { 1636 *fault_type |= VM_FAULT_MAJOR; 1637 count_vm_event(PGMAJFAULT); 1638 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1639 } 1640 /* Here we actually start the io */ 1641 page = shmem_swapin(swap, gfp, info, index); 1642 if (!page) { 1643 error = -ENOMEM; 1644 goto failed; 1645 } 1646 } 1647 1648 /* We have to do this with page locked to prevent races */ 1649 lock_page(page); 1650 if (!PageSwapCache(page) || page_private(page) != swap.val || 1651 !shmem_confirm_swap(mapping, index, swap)) { 1652 error = -EEXIST; 1653 goto unlock; 1654 } 1655 if (!PageUptodate(page)) { 1656 error = -EIO; 1657 goto failed; 1658 } 1659 wait_on_page_writeback(page); 1660 1661 if (shmem_should_replace_page(page, gfp)) { 1662 error = shmem_replace_page(&page, gfp, info, index); 1663 if (error) 1664 goto failed; 1665 } 1666 1667 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1668 false); 1669 if (!error) { 1670 error = shmem_add_to_page_cache(page, mapping, index, 1671 swp_to_radix_entry(swap), gfp); 1672 /* 1673 * We already confirmed swap under page lock, and make 1674 * no memory allocation here, so usually no possibility 1675 * of error; but free_swap_and_cache() only trylocks a 1676 * page, so it is just possible that the entry has been 1677 * truncated or holepunched since swap was confirmed. 1678 * shmem_undo_range() will have done some of the 1679 * unaccounting, now delete_from_swap_cache() will do 1680 * the rest. 1681 */ 1682 if (error) { 1683 mem_cgroup_cancel_charge(page, memcg, false); 1684 delete_from_swap_cache(page); 1685 } 1686 } 1687 if (error) 1688 goto failed; 1689 1690 mem_cgroup_commit_charge(page, memcg, true, false); 1691 1692 spin_lock_irq(&info->lock); 1693 info->swapped--; 1694 shmem_recalc_inode(inode); 1695 spin_unlock_irq(&info->lock); 1696 1697 if (sgp == SGP_WRITE) 1698 mark_page_accessed(page); 1699 1700 delete_from_swap_cache(page); 1701 set_page_dirty(page); 1702 swap_free(swap); 1703 1704 *pagep = page; 1705 return 0; 1706 failed: 1707 if (!shmem_confirm_swap(mapping, index, swap)) 1708 error = -EEXIST; 1709 unlock: 1710 if (page) { 1711 unlock_page(page); 1712 put_page(page); 1713 } 1714 1715 return error; 1716 } 1717 1718 /* 1719 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1720 * 1721 * If we allocate a new one we do not mark it dirty. That's up to the 1722 * vm. If we swap it in we mark it dirty since we also free the swap 1723 * entry since a page cannot live in both the swap and page cache. 1724 * 1725 * fault_mm and fault_type are only supplied by shmem_fault: 1726 * otherwise they are NULL. 1727 */ 1728 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1729 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1730 struct vm_area_struct *vma, struct vm_fault *vmf, 1731 vm_fault_t *fault_type) 1732 { 1733 struct address_space *mapping = inode->i_mapping; 1734 struct shmem_inode_info *info = SHMEM_I(inode); 1735 struct shmem_sb_info *sbinfo; 1736 struct mm_struct *charge_mm; 1737 struct mem_cgroup *memcg; 1738 struct page *page; 1739 enum sgp_type sgp_huge = sgp; 1740 pgoff_t hindex = index; 1741 int error; 1742 int once = 0; 1743 int alloced = 0; 1744 1745 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1746 return -EFBIG; 1747 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1748 sgp = SGP_CACHE; 1749 repeat: 1750 if (sgp <= SGP_CACHE && 1751 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1752 return -EINVAL; 1753 } 1754 1755 sbinfo = SHMEM_SB(inode->i_sb); 1756 charge_mm = vma ? vma->vm_mm : current->mm; 1757 1758 page = find_lock_entry(mapping, index); 1759 if (xa_is_value(page)) { 1760 error = shmem_swapin_page(inode, index, &page, 1761 sgp, gfp, vma, fault_type); 1762 if (error == -EEXIST) 1763 goto repeat; 1764 1765 *pagep = page; 1766 return error; 1767 } 1768 1769 if (page && sgp == SGP_WRITE) 1770 mark_page_accessed(page); 1771 1772 /* fallocated page? */ 1773 if (page && !PageUptodate(page)) { 1774 if (sgp != SGP_READ) 1775 goto clear; 1776 unlock_page(page); 1777 put_page(page); 1778 page = NULL; 1779 } 1780 if (page || sgp == SGP_READ) { 1781 *pagep = page; 1782 return 0; 1783 } 1784 1785 /* 1786 * Fast cache lookup did not find it: 1787 * bring it back from swap or allocate. 1788 */ 1789 1790 if (vma && userfaultfd_missing(vma)) { 1791 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1792 return 0; 1793 } 1794 1795 /* shmem_symlink() */ 1796 if (mapping->a_ops != &shmem_aops) 1797 goto alloc_nohuge; 1798 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1799 goto alloc_nohuge; 1800 if (shmem_huge == SHMEM_HUGE_FORCE) 1801 goto alloc_huge; 1802 switch (sbinfo->huge) { 1803 loff_t i_size; 1804 pgoff_t off; 1805 case SHMEM_HUGE_NEVER: 1806 goto alloc_nohuge; 1807 case SHMEM_HUGE_WITHIN_SIZE: 1808 off = round_up(index, HPAGE_PMD_NR); 1809 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1810 if (i_size >= HPAGE_PMD_SIZE && 1811 i_size >> PAGE_SHIFT >= off) 1812 goto alloc_huge; 1813 /* fallthrough */ 1814 case SHMEM_HUGE_ADVISE: 1815 if (sgp_huge == SGP_HUGE) 1816 goto alloc_huge; 1817 /* TODO: implement fadvise() hints */ 1818 goto alloc_nohuge; 1819 } 1820 1821 alloc_huge: 1822 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1823 if (IS_ERR(page)) { 1824 alloc_nohuge: 1825 page = shmem_alloc_and_acct_page(gfp, inode, 1826 index, false); 1827 } 1828 if (IS_ERR(page)) { 1829 int retry = 5; 1830 1831 error = PTR_ERR(page); 1832 page = NULL; 1833 if (error != -ENOSPC) 1834 goto unlock; 1835 /* 1836 * Try to reclaim some space by splitting a huge page 1837 * beyond i_size on the filesystem. 1838 */ 1839 while (retry--) { 1840 int ret; 1841 1842 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1843 if (ret == SHRINK_STOP) 1844 break; 1845 if (ret) 1846 goto alloc_nohuge; 1847 } 1848 goto unlock; 1849 } 1850 1851 if (PageTransHuge(page)) 1852 hindex = round_down(index, HPAGE_PMD_NR); 1853 else 1854 hindex = index; 1855 1856 if (sgp == SGP_WRITE) 1857 __SetPageReferenced(page); 1858 1859 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1860 PageTransHuge(page)); 1861 if (error) 1862 goto unacct; 1863 error = shmem_add_to_page_cache(page, mapping, hindex, 1864 NULL, gfp & GFP_RECLAIM_MASK); 1865 if (error) { 1866 mem_cgroup_cancel_charge(page, memcg, 1867 PageTransHuge(page)); 1868 goto unacct; 1869 } 1870 mem_cgroup_commit_charge(page, memcg, false, 1871 PageTransHuge(page)); 1872 lru_cache_add_anon(page); 1873 1874 spin_lock_irq(&info->lock); 1875 info->alloced += 1 << compound_order(page); 1876 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1877 shmem_recalc_inode(inode); 1878 spin_unlock_irq(&info->lock); 1879 alloced = true; 1880 1881 if (PageTransHuge(page) && 1882 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1883 hindex + HPAGE_PMD_NR - 1) { 1884 /* 1885 * Part of the huge page is beyond i_size: subject 1886 * to shrink under memory pressure. 1887 */ 1888 spin_lock(&sbinfo->shrinklist_lock); 1889 /* 1890 * _careful to defend against unlocked access to 1891 * ->shrink_list in shmem_unused_huge_shrink() 1892 */ 1893 if (list_empty_careful(&info->shrinklist)) { 1894 list_add_tail(&info->shrinklist, 1895 &sbinfo->shrinklist); 1896 sbinfo->shrinklist_len++; 1897 } 1898 spin_unlock(&sbinfo->shrinklist_lock); 1899 } 1900 1901 /* 1902 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1903 */ 1904 if (sgp == SGP_FALLOC) 1905 sgp = SGP_WRITE; 1906 clear: 1907 /* 1908 * Let SGP_WRITE caller clear ends if write does not fill page; 1909 * but SGP_FALLOC on a page fallocated earlier must initialize 1910 * it now, lest undo on failure cancel our earlier guarantee. 1911 */ 1912 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1913 struct page *head = compound_head(page); 1914 int i; 1915 1916 for (i = 0; i < (1 << compound_order(head)); i++) { 1917 clear_highpage(head + i); 1918 flush_dcache_page(head + i); 1919 } 1920 SetPageUptodate(head); 1921 } 1922 1923 /* Perhaps the file has been truncated since we checked */ 1924 if (sgp <= SGP_CACHE && 1925 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1926 if (alloced) { 1927 ClearPageDirty(page); 1928 delete_from_page_cache(page); 1929 spin_lock_irq(&info->lock); 1930 shmem_recalc_inode(inode); 1931 spin_unlock_irq(&info->lock); 1932 } 1933 error = -EINVAL; 1934 goto unlock; 1935 } 1936 *pagep = page + index - hindex; 1937 return 0; 1938 1939 /* 1940 * Error recovery. 1941 */ 1942 unacct: 1943 shmem_inode_unacct_blocks(inode, 1 << compound_order(page)); 1944 1945 if (PageTransHuge(page)) { 1946 unlock_page(page); 1947 put_page(page); 1948 goto alloc_nohuge; 1949 } 1950 unlock: 1951 if (page) { 1952 unlock_page(page); 1953 put_page(page); 1954 } 1955 if (error == -ENOSPC && !once++) { 1956 spin_lock_irq(&info->lock); 1957 shmem_recalc_inode(inode); 1958 spin_unlock_irq(&info->lock); 1959 goto repeat; 1960 } 1961 if (error == -EEXIST) 1962 goto repeat; 1963 return error; 1964 } 1965 1966 /* 1967 * This is like autoremove_wake_function, but it removes the wait queue 1968 * entry unconditionally - even if something else had already woken the 1969 * target. 1970 */ 1971 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1972 { 1973 int ret = default_wake_function(wait, mode, sync, key); 1974 list_del_init(&wait->entry); 1975 return ret; 1976 } 1977 1978 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1979 { 1980 struct vm_area_struct *vma = vmf->vma; 1981 struct inode *inode = file_inode(vma->vm_file); 1982 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1983 enum sgp_type sgp; 1984 int err; 1985 vm_fault_t ret = VM_FAULT_LOCKED; 1986 1987 /* 1988 * Trinity finds that probing a hole which tmpfs is punching can 1989 * prevent the hole-punch from ever completing: which in turn 1990 * locks writers out with its hold on i_mutex. So refrain from 1991 * faulting pages into the hole while it's being punched. Although 1992 * shmem_undo_range() does remove the additions, it may be unable to 1993 * keep up, as each new page needs its own unmap_mapping_range() call, 1994 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1995 * 1996 * It does not matter if we sometimes reach this check just before the 1997 * hole-punch begins, so that one fault then races with the punch: 1998 * we just need to make racing faults a rare case. 1999 * 2000 * The implementation below would be much simpler if we just used a 2001 * standard mutex or completion: but we cannot take i_mutex in fault, 2002 * and bloating every shmem inode for this unlikely case would be sad. 2003 */ 2004 if (unlikely(inode->i_private)) { 2005 struct shmem_falloc *shmem_falloc; 2006 2007 spin_lock(&inode->i_lock); 2008 shmem_falloc = inode->i_private; 2009 if (shmem_falloc && 2010 shmem_falloc->waitq && 2011 vmf->pgoff >= shmem_falloc->start && 2012 vmf->pgoff < shmem_falloc->next) { 2013 wait_queue_head_t *shmem_falloc_waitq; 2014 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2015 2016 ret = VM_FAULT_NOPAGE; 2017 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 2018 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 2019 /* It's polite to up mmap_sem if we can */ 2020 up_read(&vma->vm_mm->mmap_sem); 2021 ret = VM_FAULT_RETRY; 2022 } 2023 2024 shmem_falloc_waitq = shmem_falloc->waitq; 2025 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2026 TASK_UNINTERRUPTIBLE); 2027 spin_unlock(&inode->i_lock); 2028 schedule(); 2029 2030 /* 2031 * shmem_falloc_waitq points into the shmem_fallocate() 2032 * stack of the hole-punching task: shmem_falloc_waitq 2033 * is usually invalid by the time we reach here, but 2034 * finish_wait() does not dereference it in that case; 2035 * though i_lock needed lest racing with wake_up_all(). 2036 */ 2037 spin_lock(&inode->i_lock); 2038 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2039 spin_unlock(&inode->i_lock); 2040 return ret; 2041 } 2042 spin_unlock(&inode->i_lock); 2043 } 2044 2045 sgp = SGP_CACHE; 2046 2047 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2048 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2049 sgp = SGP_NOHUGE; 2050 else if (vma->vm_flags & VM_HUGEPAGE) 2051 sgp = SGP_HUGE; 2052 2053 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2054 gfp, vma, vmf, &ret); 2055 if (err) 2056 return vmf_error(err); 2057 return ret; 2058 } 2059 2060 unsigned long shmem_get_unmapped_area(struct file *file, 2061 unsigned long uaddr, unsigned long len, 2062 unsigned long pgoff, unsigned long flags) 2063 { 2064 unsigned long (*get_area)(struct file *, 2065 unsigned long, unsigned long, unsigned long, unsigned long); 2066 unsigned long addr; 2067 unsigned long offset; 2068 unsigned long inflated_len; 2069 unsigned long inflated_addr; 2070 unsigned long inflated_offset; 2071 2072 if (len > TASK_SIZE) 2073 return -ENOMEM; 2074 2075 get_area = current->mm->get_unmapped_area; 2076 addr = get_area(file, uaddr, len, pgoff, flags); 2077 2078 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2079 return addr; 2080 if (IS_ERR_VALUE(addr)) 2081 return addr; 2082 if (addr & ~PAGE_MASK) 2083 return addr; 2084 if (addr > TASK_SIZE - len) 2085 return addr; 2086 2087 if (shmem_huge == SHMEM_HUGE_DENY) 2088 return addr; 2089 if (len < HPAGE_PMD_SIZE) 2090 return addr; 2091 if (flags & MAP_FIXED) 2092 return addr; 2093 /* 2094 * Our priority is to support MAP_SHARED mapped hugely; 2095 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2096 * But if caller specified an address hint, respect that as before. 2097 */ 2098 if (uaddr) 2099 return addr; 2100 2101 if (shmem_huge != SHMEM_HUGE_FORCE) { 2102 struct super_block *sb; 2103 2104 if (file) { 2105 VM_BUG_ON(file->f_op != &shmem_file_operations); 2106 sb = file_inode(file)->i_sb; 2107 } else { 2108 /* 2109 * Called directly from mm/mmap.c, or drivers/char/mem.c 2110 * for "/dev/zero", to create a shared anonymous object. 2111 */ 2112 if (IS_ERR(shm_mnt)) 2113 return addr; 2114 sb = shm_mnt->mnt_sb; 2115 } 2116 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2117 return addr; 2118 } 2119 2120 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2121 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2122 return addr; 2123 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2124 return addr; 2125 2126 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2127 if (inflated_len > TASK_SIZE) 2128 return addr; 2129 if (inflated_len < len) 2130 return addr; 2131 2132 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2133 if (IS_ERR_VALUE(inflated_addr)) 2134 return addr; 2135 if (inflated_addr & ~PAGE_MASK) 2136 return addr; 2137 2138 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2139 inflated_addr += offset - inflated_offset; 2140 if (inflated_offset > offset) 2141 inflated_addr += HPAGE_PMD_SIZE; 2142 2143 if (inflated_addr > TASK_SIZE - len) 2144 return addr; 2145 return inflated_addr; 2146 } 2147 2148 #ifdef CONFIG_NUMA 2149 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2150 { 2151 struct inode *inode = file_inode(vma->vm_file); 2152 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2153 } 2154 2155 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2156 unsigned long addr) 2157 { 2158 struct inode *inode = file_inode(vma->vm_file); 2159 pgoff_t index; 2160 2161 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2162 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2163 } 2164 #endif 2165 2166 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2167 { 2168 struct inode *inode = file_inode(file); 2169 struct shmem_inode_info *info = SHMEM_I(inode); 2170 int retval = -ENOMEM; 2171 2172 spin_lock_irq(&info->lock); 2173 if (lock && !(info->flags & VM_LOCKED)) { 2174 if (!user_shm_lock(inode->i_size, user)) 2175 goto out_nomem; 2176 info->flags |= VM_LOCKED; 2177 mapping_set_unevictable(file->f_mapping); 2178 } 2179 if (!lock && (info->flags & VM_LOCKED) && user) { 2180 user_shm_unlock(inode->i_size, user); 2181 info->flags &= ~VM_LOCKED; 2182 mapping_clear_unevictable(file->f_mapping); 2183 } 2184 retval = 0; 2185 2186 out_nomem: 2187 spin_unlock_irq(&info->lock); 2188 return retval; 2189 } 2190 2191 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2192 { 2193 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2194 2195 if (info->seals & F_SEAL_FUTURE_WRITE) { 2196 /* 2197 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2198 * "future write" seal active. 2199 */ 2200 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2201 return -EPERM; 2202 2203 /* 2204 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED 2205 * read-only mapping, take care to not allow mprotect to revert 2206 * protections. 2207 */ 2208 vma->vm_flags &= ~(VM_MAYWRITE); 2209 } 2210 2211 file_accessed(file); 2212 vma->vm_ops = &shmem_vm_ops; 2213 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2214 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2215 (vma->vm_end & HPAGE_PMD_MASK)) { 2216 khugepaged_enter(vma, vma->vm_flags); 2217 } 2218 return 0; 2219 } 2220 2221 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2222 umode_t mode, dev_t dev, unsigned long flags) 2223 { 2224 struct inode *inode; 2225 struct shmem_inode_info *info; 2226 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2227 2228 if (shmem_reserve_inode(sb)) 2229 return NULL; 2230 2231 inode = new_inode(sb); 2232 if (inode) { 2233 inode->i_ino = get_next_ino(); 2234 inode_init_owner(inode, dir, mode); 2235 inode->i_blocks = 0; 2236 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2237 inode->i_generation = prandom_u32(); 2238 info = SHMEM_I(inode); 2239 memset(info, 0, (char *)inode - (char *)info); 2240 spin_lock_init(&info->lock); 2241 info->seals = F_SEAL_SEAL; 2242 info->flags = flags & VM_NORESERVE; 2243 INIT_LIST_HEAD(&info->shrinklist); 2244 INIT_LIST_HEAD(&info->swaplist); 2245 simple_xattrs_init(&info->xattrs); 2246 cache_no_acl(inode); 2247 2248 switch (mode & S_IFMT) { 2249 default: 2250 inode->i_op = &shmem_special_inode_operations; 2251 init_special_inode(inode, mode, dev); 2252 break; 2253 case S_IFREG: 2254 inode->i_mapping->a_ops = &shmem_aops; 2255 inode->i_op = &shmem_inode_operations; 2256 inode->i_fop = &shmem_file_operations; 2257 mpol_shared_policy_init(&info->policy, 2258 shmem_get_sbmpol(sbinfo)); 2259 break; 2260 case S_IFDIR: 2261 inc_nlink(inode); 2262 /* Some things misbehave if size == 0 on a directory */ 2263 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2264 inode->i_op = &shmem_dir_inode_operations; 2265 inode->i_fop = &simple_dir_operations; 2266 break; 2267 case S_IFLNK: 2268 /* 2269 * Must not load anything in the rbtree, 2270 * mpol_free_shared_policy will not be called. 2271 */ 2272 mpol_shared_policy_init(&info->policy, NULL); 2273 break; 2274 } 2275 2276 lockdep_annotate_inode_mutex_key(inode); 2277 } else 2278 shmem_free_inode(sb); 2279 return inode; 2280 } 2281 2282 bool shmem_mapping(struct address_space *mapping) 2283 { 2284 return mapping->a_ops == &shmem_aops; 2285 } 2286 2287 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2288 pmd_t *dst_pmd, 2289 struct vm_area_struct *dst_vma, 2290 unsigned long dst_addr, 2291 unsigned long src_addr, 2292 bool zeropage, 2293 struct page **pagep) 2294 { 2295 struct inode *inode = file_inode(dst_vma->vm_file); 2296 struct shmem_inode_info *info = SHMEM_I(inode); 2297 struct address_space *mapping = inode->i_mapping; 2298 gfp_t gfp = mapping_gfp_mask(mapping); 2299 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2300 struct mem_cgroup *memcg; 2301 spinlock_t *ptl; 2302 void *page_kaddr; 2303 struct page *page; 2304 pte_t _dst_pte, *dst_pte; 2305 int ret; 2306 pgoff_t offset, max_off; 2307 2308 ret = -ENOMEM; 2309 if (!shmem_inode_acct_block(inode, 1)) 2310 goto out; 2311 2312 if (!*pagep) { 2313 page = shmem_alloc_page(gfp, info, pgoff); 2314 if (!page) 2315 goto out_unacct_blocks; 2316 2317 if (!zeropage) { /* mcopy_atomic */ 2318 page_kaddr = kmap_atomic(page); 2319 ret = copy_from_user(page_kaddr, 2320 (const void __user *)src_addr, 2321 PAGE_SIZE); 2322 kunmap_atomic(page_kaddr); 2323 2324 /* fallback to copy_from_user outside mmap_sem */ 2325 if (unlikely(ret)) { 2326 *pagep = page; 2327 shmem_inode_unacct_blocks(inode, 1); 2328 /* don't free the page */ 2329 return -ENOENT; 2330 } 2331 } else { /* mfill_zeropage_atomic */ 2332 clear_highpage(page); 2333 } 2334 } else { 2335 page = *pagep; 2336 *pagep = NULL; 2337 } 2338 2339 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2340 __SetPageLocked(page); 2341 __SetPageSwapBacked(page); 2342 __SetPageUptodate(page); 2343 2344 ret = -EFAULT; 2345 offset = linear_page_index(dst_vma, dst_addr); 2346 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2347 if (unlikely(offset >= max_off)) 2348 goto out_release; 2349 2350 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false); 2351 if (ret) 2352 goto out_release; 2353 2354 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2355 gfp & GFP_RECLAIM_MASK); 2356 if (ret) 2357 goto out_release_uncharge; 2358 2359 mem_cgroup_commit_charge(page, memcg, false, false); 2360 2361 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2362 if (dst_vma->vm_flags & VM_WRITE) 2363 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2364 else { 2365 /* 2366 * We don't set the pte dirty if the vma has no 2367 * VM_WRITE permission, so mark the page dirty or it 2368 * could be freed from under us. We could do it 2369 * unconditionally before unlock_page(), but doing it 2370 * only if VM_WRITE is not set is faster. 2371 */ 2372 set_page_dirty(page); 2373 } 2374 2375 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2376 2377 ret = -EFAULT; 2378 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2379 if (unlikely(offset >= max_off)) 2380 goto out_release_uncharge_unlock; 2381 2382 ret = -EEXIST; 2383 if (!pte_none(*dst_pte)) 2384 goto out_release_uncharge_unlock; 2385 2386 lru_cache_add_anon(page); 2387 2388 spin_lock(&info->lock); 2389 info->alloced++; 2390 inode->i_blocks += BLOCKS_PER_PAGE; 2391 shmem_recalc_inode(inode); 2392 spin_unlock(&info->lock); 2393 2394 inc_mm_counter(dst_mm, mm_counter_file(page)); 2395 page_add_file_rmap(page, false); 2396 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2397 2398 /* No need to invalidate - it was non-present before */ 2399 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2400 pte_unmap_unlock(dst_pte, ptl); 2401 unlock_page(page); 2402 ret = 0; 2403 out: 2404 return ret; 2405 out_release_uncharge_unlock: 2406 pte_unmap_unlock(dst_pte, ptl); 2407 ClearPageDirty(page); 2408 delete_from_page_cache(page); 2409 out_release_uncharge: 2410 mem_cgroup_cancel_charge(page, memcg, false); 2411 out_release: 2412 unlock_page(page); 2413 put_page(page); 2414 out_unacct_blocks: 2415 shmem_inode_unacct_blocks(inode, 1); 2416 goto out; 2417 } 2418 2419 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2420 pmd_t *dst_pmd, 2421 struct vm_area_struct *dst_vma, 2422 unsigned long dst_addr, 2423 unsigned long src_addr, 2424 struct page **pagep) 2425 { 2426 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2427 dst_addr, src_addr, false, pagep); 2428 } 2429 2430 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2431 pmd_t *dst_pmd, 2432 struct vm_area_struct *dst_vma, 2433 unsigned long dst_addr) 2434 { 2435 struct page *page = NULL; 2436 2437 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2438 dst_addr, 0, true, &page); 2439 } 2440 2441 #ifdef CONFIG_TMPFS 2442 static const struct inode_operations shmem_symlink_inode_operations; 2443 static const struct inode_operations shmem_short_symlink_operations; 2444 2445 #ifdef CONFIG_TMPFS_XATTR 2446 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2447 #else 2448 #define shmem_initxattrs NULL 2449 #endif 2450 2451 static int 2452 shmem_write_begin(struct file *file, struct address_space *mapping, 2453 loff_t pos, unsigned len, unsigned flags, 2454 struct page **pagep, void **fsdata) 2455 { 2456 struct inode *inode = mapping->host; 2457 struct shmem_inode_info *info = SHMEM_I(inode); 2458 pgoff_t index = pos >> PAGE_SHIFT; 2459 2460 /* i_mutex is held by caller */ 2461 if (unlikely(info->seals & (F_SEAL_GROW | 2462 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2463 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2464 return -EPERM; 2465 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2466 return -EPERM; 2467 } 2468 2469 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2470 } 2471 2472 static int 2473 shmem_write_end(struct file *file, struct address_space *mapping, 2474 loff_t pos, unsigned len, unsigned copied, 2475 struct page *page, void *fsdata) 2476 { 2477 struct inode *inode = mapping->host; 2478 2479 if (pos + copied > inode->i_size) 2480 i_size_write(inode, pos + copied); 2481 2482 if (!PageUptodate(page)) { 2483 struct page *head = compound_head(page); 2484 if (PageTransCompound(page)) { 2485 int i; 2486 2487 for (i = 0; i < HPAGE_PMD_NR; i++) { 2488 if (head + i == page) 2489 continue; 2490 clear_highpage(head + i); 2491 flush_dcache_page(head + i); 2492 } 2493 } 2494 if (copied < PAGE_SIZE) { 2495 unsigned from = pos & (PAGE_SIZE - 1); 2496 zero_user_segments(page, 0, from, 2497 from + copied, PAGE_SIZE); 2498 } 2499 SetPageUptodate(head); 2500 } 2501 set_page_dirty(page); 2502 unlock_page(page); 2503 put_page(page); 2504 2505 return copied; 2506 } 2507 2508 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2509 { 2510 struct file *file = iocb->ki_filp; 2511 struct inode *inode = file_inode(file); 2512 struct address_space *mapping = inode->i_mapping; 2513 pgoff_t index; 2514 unsigned long offset; 2515 enum sgp_type sgp = SGP_READ; 2516 int error = 0; 2517 ssize_t retval = 0; 2518 loff_t *ppos = &iocb->ki_pos; 2519 2520 /* 2521 * Might this read be for a stacking filesystem? Then when reading 2522 * holes of a sparse file, we actually need to allocate those pages, 2523 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2524 */ 2525 if (!iter_is_iovec(to)) 2526 sgp = SGP_CACHE; 2527 2528 index = *ppos >> PAGE_SHIFT; 2529 offset = *ppos & ~PAGE_MASK; 2530 2531 for (;;) { 2532 struct page *page = NULL; 2533 pgoff_t end_index; 2534 unsigned long nr, ret; 2535 loff_t i_size = i_size_read(inode); 2536 2537 end_index = i_size >> PAGE_SHIFT; 2538 if (index > end_index) 2539 break; 2540 if (index == end_index) { 2541 nr = i_size & ~PAGE_MASK; 2542 if (nr <= offset) 2543 break; 2544 } 2545 2546 error = shmem_getpage(inode, index, &page, sgp); 2547 if (error) { 2548 if (error == -EINVAL) 2549 error = 0; 2550 break; 2551 } 2552 if (page) { 2553 if (sgp == SGP_CACHE) 2554 set_page_dirty(page); 2555 unlock_page(page); 2556 } 2557 2558 /* 2559 * We must evaluate after, since reads (unlike writes) 2560 * are called without i_mutex protection against truncate 2561 */ 2562 nr = PAGE_SIZE; 2563 i_size = i_size_read(inode); 2564 end_index = i_size >> PAGE_SHIFT; 2565 if (index == end_index) { 2566 nr = i_size & ~PAGE_MASK; 2567 if (nr <= offset) { 2568 if (page) 2569 put_page(page); 2570 break; 2571 } 2572 } 2573 nr -= offset; 2574 2575 if (page) { 2576 /* 2577 * If users can be writing to this page using arbitrary 2578 * virtual addresses, take care about potential aliasing 2579 * before reading the page on the kernel side. 2580 */ 2581 if (mapping_writably_mapped(mapping)) 2582 flush_dcache_page(page); 2583 /* 2584 * Mark the page accessed if we read the beginning. 2585 */ 2586 if (!offset) 2587 mark_page_accessed(page); 2588 } else { 2589 page = ZERO_PAGE(0); 2590 get_page(page); 2591 } 2592 2593 /* 2594 * Ok, we have the page, and it's up-to-date, so 2595 * now we can copy it to user space... 2596 */ 2597 ret = copy_page_to_iter(page, offset, nr, to); 2598 retval += ret; 2599 offset += ret; 2600 index += offset >> PAGE_SHIFT; 2601 offset &= ~PAGE_MASK; 2602 2603 put_page(page); 2604 if (!iov_iter_count(to)) 2605 break; 2606 if (ret < nr) { 2607 error = -EFAULT; 2608 break; 2609 } 2610 cond_resched(); 2611 } 2612 2613 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2614 file_accessed(file); 2615 return retval ? retval : error; 2616 } 2617 2618 /* 2619 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2620 */ 2621 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2622 pgoff_t index, pgoff_t end, int whence) 2623 { 2624 struct page *page; 2625 struct pagevec pvec; 2626 pgoff_t indices[PAGEVEC_SIZE]; 2627 bool done = false; 2628 int i; 2629 2630 pagevec_init(&pvec); 2631 pvec.nr = 1; /* start small: we may be there already */ 2632 while (!done) { 2633 pvec.nr = find_get_entries(mapping, index, 2634 pvec.nr, pvec.pages, indices); 2635 if (!pvec.nr) { 2636 if (whence == SEEK_DATA) 2637 index = end; 2638 break; 2639 } 2640 for (i = 0; i < pvec.nr; i++, index++) { 2641 if (index < indices[i]) { 2642 if (whence == SEEK_HOLE) { 2643 done = true; 2644 break; 2645 } 2646 index = indices[i]; 2647 } 2648 page = pvec.pages[i]; 2649 if (page && !xa_is_value(page)) { 2650 if (!PageUptodate(page)) 2651 page = NULL; 2652 } 2653 if (index >= end || 2654 (page && whence == SEEK_DATA) || 2655 (!page && whence == SEEK_HOLE)) { 2656 done = true; 2657 break; 2658 } 2659 } 2660 pagevec_remove_exceptionals(&pvec); 2661 pagevec_release(&pvec); 2662 pvec.nr = PAGEVEC_SIZE; 2663 cond_resched(); 2664 } 2665 return index; 2666 } 2667 2668 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2669 { 2670 struct address_space *mapping = file->f_mapping; 2671 struct inode *inode = mapping->host; 2672 pgoff_t start, end; 2673 loff_t new_offset; 2674 2675 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2676 return generic_file_llseek_size(file, offset, whence, 2677 MAX_LFS_FILESIZE, i_size_read(inode)); 2678 inode_lock(inode); 2679 /* We're holding i_mutex so we can access i_size directly */ 2680 2681 if (offset < 0 || offset >= inode->i_size) 2682 offset = -ENXIO; 2683 else { 2684 start = offset >> PAGE_SHIFT; 2685 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2686 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2687 new_offset <<= PAGE_SHIFT; 2688 if (new_offset > offset) { 2689 if (new_offset < inode->i_size) 2690 offset = new_offset; 2691 else if (whence == SEEK_DATA) 2692 offset = -ENXIO; 2693 else 2694 offset = inode->i_size; 2695 } 2696 } 2697 2698 if (offset >= 0) 2699 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2700 inode_unlock(inode); 2701 return offset; 2702 } 2703 2704 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2705 loff_t len) 2706 { 2707 struct inode *inode = file_inode(file); 2708 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2709 struct shmem_inode_info *info = SHMEM_I(inode); 2710 struct shmem_falloc shmem_falloc; 2711 pgoff_t start, index, end; 2712 int error; 2713 2714 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2715 return -EOPNOTSUPP; 2716 2717 inode_lock(inode); 2718 2719 if (mode & FALLOC_FL_PUNCH_HOLE) { 2720 struct address_space *mapping = file->f_mapping; 2721 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2722 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2723 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2724 2725 /* protected by i_mutex */ 2726 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2727 error = -EPERM; 2728 goto out; 2729 } 2730 2731 shmem_falloc.waitq = &shmem_falloc_waitq; 2732 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2733 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2734 spin_lock(&inode->i_lock); 2735 inode->i_private = &shmem_falloc; 2736 spin_unlock(&inode->i_lock); 2737 2738 if ((u64)unmap_end > (u64)unmap_start) 2739 unmap_mapping_range(mapping, unmap_start, 2740 1 + unmap_end - unmap_start, 0); 2741 shmem_truncate_range(inode, offset, offset + len - 1); 2742 /* No need to unmap again: hole-punching leaves COWed pages */ 2743 2744 spin_lock(&inode->i_lock); 2745 inode->i_private = NULL; 2746 wake_up_all(&shmem_falloc_waitq); 2747 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2748 spin_unlock(&inode->i_lock); 2749 error = 0; 2750 goto out; 2751 } 2752 2753 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2754 error = inode_newsize_ok(inode, offset + len); 2755 if (error) 2756 goto out; 2757 2758 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2759 error = -EPERM; 2760 goto out; 2761 } 2762 2763 start = offset >> PAGE_SHIFT; 2764 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2765 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2766 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2767 error = -ENOSPC; 2768 goto out; 2769 } 2770 2771 shmem_falloc.waitq = NULL; 2772 shmem_falloc.start = start; 2773 shmem_falloc.next = start; 2774 shmem_falloc.nr_falloced = 0; 2775 shmem_falloc.nr_unswapped = 0; 2776 spin_lock(&inode->i_lock); 2777 inode->i_private = &shmem_falloc; 2778 spin_unlock(&inode->i_lock); 2779 2780 for (index = start; index < end; index++) { 2781 struct page *page; 2782 2783 /* 2784 * Good, the fallocate(2) manpage permits EINTR: we may have 2785 * been interrupted because we are using up too much memory. 2786 */ 2787 if (signal_pending(current)) 2788 error = -EINTR; 2789 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2790 error = -ENOMEM; 2791 else 2792 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2793 if (error) { 2794 /* Remove the !PageUptodate pages we added */ 2795 if (index > start) { 2796 shmem_undo_range(inode, 2797 (loff_t)start << PAGE_SHIFT, 2798 ((loff_t)index << PAGE_SHIFT) - 1, true); 2799 } 2800 goto undone; 2801 } 2802 2803 /* 2804 * Inform shmem_writepage() how far we have reached. 2805 * No need for lock or barrier: we have the page lock. 2806 */ 2807 shmem_falloc.next++; 2808 if (!PageUptodate(page)) 2809 shmem_falloc.nr_falloced++; 2810 2811 /* 2812 * If !PageUptodate, leave it that way so that freeable pages 2813 * can be recognized if we need to rollback on error later. 2814 * But set_page_dirty so that memory pressure will swap rather 2815 * than free the pages we are allocating (and SGP_CACHE pages 2816 * might still be clean: we now need to mark those dirty too). 2817 */ 2818 set_page_dirty(page); 2819 unlock_page(page); 2820 put_page(page); 2821 cond_resched(); 2822 } 2823 2824 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2825 i_size_write(inode, offset + len); 2826 inode->i_ctime = current_time(inode); 2827 undone: 2828 spin_lock(&inode->i_lock); 2829 inode->i_private = NULL; 2830 spin_unlock(&inode->i_lock); 2831 out: 2832 inode_unlock(inode); 2833 return error; 2834 } 2835 2836 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2837 { 2838 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2839 2840 buf->f_type = TMPFS_MAGIC; 2841 buf->f_bsize = PAGE_SIZE; 2842 buf->f_namelen = NAME_MAX; 2843 if (sbinfo->max_blocks) { 2844 buf->f_blocks = sbinfo->max_blocks; 2845 buf->f_bavail = 2846 buf->f_bfree = sbinfo->max_blocks - 2847 percpu_counter_sum(&sbinfo->used_blocks); 2848 } 2849 if (sbinfo->max_inodes) { 2850 buf->f_files = sbinfo->max_inodes; 2851 buf->f_ffree = sbinfo->free_inodes; 2852 } 2853 /* else leave those fields 0 like simple_statfs */ 2854 return 0; 2855 } 2856 2857 /* 2858 * File creation. Allocate an inode, and we're done.. 2859 */ 2860 static int 2861 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2862 { 2863 struct inode *inode; 2864 int error = -ENOSPC; 2865 2866 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2867 if (inode) { 2868 error = simple_acl_create(dir, inode); 2869 if (error) 2870 goto out_iput; 2871 error = security_inode_init_security(inode, dir, 2872 &dentry->d_name, 2873 shmem_initxattrs, NULL); 2874 if (error && error != -EOPNOTSUPP) 2875 goto out_iput; 2876 2877 error = 0; 2878 dir->i_size += BOGO_DIRENT_SIZE; 2879 dir->i_ctime = dir->i_mtime = current_time(dir); 2880 d_instantiate(dentry, inode); 2881 dget(dentry); /* Extra count - pin the dentry in core */ 2882 } 2883 return error; 2884 out_iput: 2885 iput(inode); 2886 return error; 2887 } 2888 2889 static int 2890 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2891 { 2892 struct inode *inode; 2893 int error = -ENOSPC; 2894 2895 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2896 if (inode) { 2897 error = security_inode_init_security(inode, dir, 2898 NULL, 2899 shmem_initxattrs, NULL); 2900 if (error && error != -EOPNOTSUPP) 2901 goto out_iput; 2902 error = simple_acl_create(dir, inode); 2903 if (error) 2904 goto out_iput; 2905 d_tmpfile(dentry, inode); 2906 } 2907 return error; 2908 out_iput: 2909 iput(inode); 2910 return error; 2911 } 2912 2913 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2914 { 2915 int error; 2916 2917 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2918 return error; 2919 inc_nlink(dir); 2920 return 0; 2921 } 2922 2923 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2924 bool excl) 2925 { 2926 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2927 } 2928 2929 /* 2930 * Link a file.. 2931 */ 2932 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2933 { 2934 struct inode *inode = d_inode(old_dentry); 2935 int ret = 0; 2936 2937 /* 2938 * No ordinary (disk based) filesystem counts links as inodes; 2939 * but each new link needs a new dentry, pinning lowmem, and 2940 * tmpfs dentries cannot be pruned until they are unlinked. 2941 * But if an O_TMPFILE file is linked into the tmpfs, the 2942 * first link must skip that, to get the accounting right. 2943 */ 2944 if (inode->i_nlink) { 2945 ret = shmem_reserve_inode(inode->i_sb); 2946 if (ret) 2947 goto out; 2948 } 2949 2950 dir->i_size += BOGO_DIRENT_SIZE; 2951 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2952 inc_nlink(inode); 2953 ihold(inode); /* New dentry reference */ 2954 dget(dentry); /* Extra pinning count for the created dentry */ 2955 d_instantiate(dentry, inode); 2956 out: 2957 return ret; 2958 } 2959 2960 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2961 { 2962 struct inode *inode = d_inode(dentry); 2963 2964 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2965 shmem_free_inode(inode->i_sb); 2966 2967 dir->i_size -= BOGO_DIRENT_SIZE; 2968 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2969 drop_nlink(inode); 2970 dput(dentry); /* Undo the count from "create" - this does all the work */ 2971 return 0; 2972 } 2973 2974 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2975 { 2976 if (!simple_empty(dentry)) 2977 return -ENOTEMPTY; 2978 2979 drop_nlink(d_inode(dentry)); 2980 drop_nlink(dir); 2981 return shmem_unlink(dir, dentry); 2982 } 2983 2984 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2985 { 2986 bool old_is_dir = d_is_dir(old_dentry); 2987 bool new_is_dir = d_is_dir(new_dentry); 2988 2989 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2990 if (old_is_dir) { 2991 drop_nlink(old_dir); 2992 inc_nlink(new_dir); 2993 } else { 2994 drop_nlink(new_dir); 2995 inc_nlink(old_dir); 2996 } 2997 } 2998 old_dir->i_ctime = old_dir->i_mtime = 2999 new_dir->i_ctime = new_dir->i_mtime = 3000 d_inode(old_dentry)->i_ctime = 3001 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3002 3003 return 0; 3004 } 3005 3006 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3007 { 3008 struct dentry *whiteout; 3009 int error; 3010 3011 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3012 if (!whiteout) 3013 return -ENOMEM; 3014 3015 error = shmem_mknod(old_dir, whiteout, 3016 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3017 dput(whiteout); 3018 if (error) 3019 return error; 3020 3021 /* 3022 * Cheat and hash the whiteout while the old dentry is still in 3023 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3024 * 3025 * d_lookup() will consistently find one of them at this point, 3026 * not sure which one, but that isn't even important. 3027 */ 3028 d_rehash(whiteout); 3029 return 0; 3030 } 3031 3032 /* 3033 * The VFS layer already does all the dentry stuff for rename, 3034 * we just have to decrement the usage count for the target if 3035 * it exists so that the VFS layer correctly free's it when it 3036 * gets overwritten. 3037 */ 3038 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3039 { 3040 struct inode *inode = d_inode(old_dentry); 3041 int they_are_dirs = S_ISDIR(inode->i_mode); 3042 3043 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3044 return -EINVAL; 3045 3046 if (flags & RENAME_EXCHANGE) 3047 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3048 3049 if (!simple_empty(new_dentry)) 3050 return -ENOTEMPTY; 3051 3052 if (flags & RENAME_WHITEOUT) { 3053 int error; 3054 3055 error = shmem_whiteout(old_dir, old_dentry); 3056 if (error) 3057 return error; 3058 } 3059 3060 if (d_really_is_positive(new_dentry)) { 3061 (void) shmem_unlink(new_dir, new_dentry); 3062 if (they_are_dirs) { 3063 drop_nlink(d_inode(new_dentry)); 3064 drop_nlink(old_dir); 3065 } 3066 } else if (they_are_dirs) { 3067 drop_nlink(old_dir); 3068 inc_nlink(new_dir); 3069 } 3070 3071 old_dir->i_size -= BOGO_DIRENT_SIZE; 3072 new_dir->i_size += BOGO_DIRENT_SIZE; 3073 old_dir->i_ctime = old_dir->i_mtime = 3074 new_dir->i_ctime = new_dir->i_mtime = 3075 inode->i_ctime = current_time(old_dir); 3076 return 0; 3077 } 3078 3079 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3080 { 3081 int error; 3082 int len; 3083 struct inode *inode; 3084 struct page *page; 3085 3086 len = strlen(symname) + 1; 3087 if (len > PAGE_SIZE) 3088 return -ENAMETOOLONG; 3089 3090 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3091 VM_NORESERVE); 3092 if (!inode) 3093 return -ENOSPC; 3094 3095 error = security_inode_init_security(inode, dir, &dentry->d_name, 3096 shmem_initxattrs, NULL); 3097 if (error) { 3098 if (error != -EOPNOTSUPP) { 3099 iput(inode); 3100 return error; 3101 } 3102 error = 0; 3103 } 3104 3105 inode->i_size = len-1; 3106 if (len <= SHORT_SYMLINK_LEN) { 3107 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3108 if (!inode->i_link) { 3109 iput(inode); 3110 return -ENOMEM; 3111 } 3112 inode->i_op = &shmem_short_symlink_operations; 3113 } else { 3114 inode_nohighmem(inode); 3115 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3116 if (error) { 3117 iput(inode); 3118 return error; 3119 } 3120 inode->i_mapping->a_ops = &shmem_aops; 3121 inode->i_op = &shmem_symlink_inode_operations; 3122 memcpy(page_address(page), symname, len); 3123 SetPageUptodate(page); 3124 set_page_dirty(page); 3125 unlock_page(page); 3126 put_page(page); 3127 } 3128 dir->i_size += BOGO_DIRENT_SIZE; 3129 dir->i_ctime = dir->i_mtime = current_time(dir); 3130 d_instantiate(dentry, inode); 3131 dget(dentry); 3132 return 0; 3133 } 3134 3135 static void shmem_put_link(void *arg) 3136 { 3137 mark_page_accessed(arg); 3138 put_page(arg); 3139 } 3140 3141 static const char *shmem_get_link(struct dentry *dentry, 3142 struct inode *inode, 3143 struct delayed_call *done) 3144 { 3145 struct page *page = NULL; 3146 int error; 3147 if (!dentry) { 3148 page = find_get_page(inode->i_mapping, 0); 3149 if (!page) 3150 return ERR_PTR(-ECHILD); 3151 if (!PageUptodate(page)) { 3152 put_page(page); 3153 return ERR_PTR(-ECHILD); 3154 } 3155 } else { 3156 error = shmem_getpage(inode, 0, &page, SGP_READ); 3157 if (error) 3158 return ERR_PTR(error); 3159 unlock_page(page); 3160 } 3161 set_delayed_call(done, shmem_put_link, page); 3162 return page_address(page); 3163 } 3164 3165 #ifdef CONFIG_TMPFS_XATTR 3166 /* 3167 * Superblocks without xattr inode operations may get some security.* xattr 3168 * support from the LSM "for free". As soon as we have any other xattrs 3169 * like ACLs, we also need to implement the security.* handlers at 3170 * filesystem level, though. 3171 */ 3172 3173 /* 3174 * Callback for security_inode_init_security() for acquiring xattrs. 3175 */ 3176 static int shmem_initxattrs(struct inode *inode, 3177 const struct xattr *xattr_array, 3178 void *fs_info) 3179 { 3180 struct shmem_inode_info *info = SHMEM_I(inode); 3181 const struct xattr *xattr; 3182 struct simple_xattr *new_xattr; 3183 size_t len; 3184 3185 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3186 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3187 if (!new_xattr) 3188 return -ENOMEM; 3189 3190 len = strlen(xattr->name) + 1; 3191 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3192 GFP_KERNEL); 3193 if (!new_xattr->name) { 3194 kfree(new_xattr); 3195 return -ENOMEM; 3196 } 3197 3198 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3199 XATTR_SECURITY_PREFIX_LEN); 3200 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3201 xattr->name, len); 3202 3203 simple_xattr_list_add(&info->xattrs, new_xattr); 3204 } 3205 3206 return 0; 3207 } 3208 3209 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3210 struct dentry *unused, struct inode *inode, 3211 const char *name, void *buffer, size_t size) 3212 { 3213 struct shmem_inode_info *info = SHMEM_I(inode); 3214 3215 name = xattr_full_name(handler, name); 3216 return simple_xattr_get(&info->xattrs, name, buffer, size); 3217 } 3218 3219 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3220 struct dentry *unused, struct inode *inode, 3221 const char *name, const void *value, 3222 size_t size, int flags) 3223 { 3224 struct shmem_inode_info *info = SHMEM_I(inode); 3225 3226 name = xattr_full_name(handler, name); 3227 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3228 } 3229 3230 static const struct xattr_handler shmem_security_xattr_handler = { 3231 .prefix = XATTR_SECURITY_PREFIX, 3232 .get = shmem_xattr_handler_get, 3233 .set = shmem_xattr_handler_set, 3234 }; 3235 3236 static const struct xattr_handler shmem_trusted_xattr_handler = { 3237 .prefix = XATTR_TRUSTED_PREFIX, 3238 .get = shmem_xattr_handler_get, 3239 .set = shmem_xattr_handler_set, 3240 }; 3241 3242 static const struct xattr_handler *shmem_xattr_handlers[] = { 3243 #ifdef CONFIG_TMPFS_POSIX_ACL 3244 &posix_acl_access_xattr_handler, 3245 &posix_acl_default_xattr_handler, 3246 #endif 3247 &shmem_security_xattr_handler, 3248 &shmem_trusted_xattr_handler, 3249 NULL 3250 }; 3251 3252 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3253 { 3254 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3255 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3256 } 3257 #endif /* CONFIG_TMPFS_XATTR */ 3258 3259 static const struct inode_operations shmem_short_symlink_operations = { 3260 .get_link = simple_get_link, 3261 #ifdef CONFIG_TMPFS_XATTR 3262 .listxattr = shmem_listxattr, 3263 #endif 3264 }; 3265 3266 static const struct inode_operations shmem_symlink_inode_operations = { 3267 .get_link = shmem_get_link, 3268 #ifdef CONFIG_TMPFS_XATTR 3269 .listxattr = shmem_listxattr, 3270 #endif 3271 }; 3272 3273 static struct dentry *shmem_get_parent(struct dentry *child) 3274 { 3275 return ERR_PTR(-ESTALE); 3276 } 3277 3278 static int shmem_match(struct inode *ino, void *vfh) 3279 { 3280 __u32 *fh = vfh; 3281 __u64 inum = fh[2]; 3282 inum = (inum << 32) | fh[1]; 3283 return ino->i_ino == inum && fh[0] == ino->i_generation; 3284 } 3285 3286 /* Find any alias of inode, but prefer a hashed alias */ 3287 static struct dentry *shmem_find_alias(struct inode *inode) 3288 { 3289 struct dentry *alias = d_find_alias(inode); 3290 3291 return alias ?: d_find_any_alias(inode); 3292 } 3293 3294 3295 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3296 struct fid *fid, int fh_len, int fh_type) 3297 { 3298 struct inode *inode; 3299 struct dentry *dentry = NULL; 3300 u64 inum; 3301 3302 if (fh_len < 3) 3303 return NULL; 3304 3305 inum = fid->raw[2]; 3306 inum = (inum << 32) | fid->raw[1]; 3307 3308 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3309 shmem_match, fid->raw); 3310 if (inode) { 3311 dentry = shmem_find_alias(inode); 3312 iput(inode); 3313 } 3314 3315 return dentry; 3316 } 3317 3318 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3319 struct inode *parent) 3320 { 3321 if (*len < 3) { 3322 *len = 3; 3323 return FILEID_INVALID; 3324 } 3325 3326 if (inode_unhashed(inode)) { 3327 /* Unfortunately insert_inode_hash is not idempotent, 3328 * so as we hash inodes here rather than at creation 3329 * time, we need a lock to ensure we only try 3330 * to do it once 3331 */ 3332 static DEFINE_SPINLOCK(lock); 3333 spin_lock(&lock); 3334 if (inode_unhashed(inode)) 3335 __insert_inode_hash(inode, 3336 inode->i_ino + inode->i_generation); 3337 spin_unlock(&lock); 3338 } 3339 3340 fh[0] = inode->i_generation; 3341 fh[1] = inode->i_ino; 3342 fh[2] = ((__u64)inode->i_ino) >> 32; 3343 3344 *len = 3; 3345 return 1; 3346 } 3347 3348 static const struct export_operations shmem_export_ops = { 3349 .get_parent = shmem_get_parent, 3350 .encode_fh = shmem_encode_fh, 3351 .fh_to_dentry = shmem_fh_to_dentry, 3352 }; 3353 3354 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3355 bool remount) 3356 { 3357 char *this_char, *value, *rest; 3358 struct mempolicy *mpol = NULL; 3359 uid_t uid; 3360 gid_t gid; 3361 3362 while (options != NULL) { 3363 this_char = options; 3364 for (;;) { 3365 /* 3366 * NUL-terminate this option: unfortunately, 3367 * mount options form a comma-separated list, 3368 * but mpol's nodelist may also contain commas. 3369 */ 3370 options = strchr(options, ','); 3371 if (options == NULL) 3372 break; 3373 options++; 3374 if (!isdigit(*options)) { 3375 options[-1] = '\0'; 3376 break; 3377 } 3378 } 3379 if (!*this_char) 3380 continue; 3381 if ((value = strchr(this_char,'=')) != NULL) { 3382 *value++ = 0; 3383 } else { 3384 pr_err("tmpfs: No value for mount option '%s'\n", 3385 this_char); 3386 goto error; 3387 } 3388 3389 if (!strcmp(this_char,"size")) { 3390 unsigned long long size; 3391 size = memparse(value,&rest); 3392 if (*rest == '%') { 3393 size <<= PAGE_SHIFT; 3394 size *= totalram_pages(); 3395 do_div(size, 100); 3396 rest++; 3397 } 3398 if (*rest) 3399 goto bad_val; 3400 sbinfo->max_blocks = 3401 DIV_ROUND_UP(size, PAGE_SIZE); 3402 } else if (!strcmp(this_char,"nr_blocks")) { 3403 sbinfo->max_blocks = memparse(value, &rest); 3404 if (*rest) 3405 goto bad_val; 3406 } else if (!strcmp(this_char,"nr_inodes")) { 3407 sbinfo->max_inodes = memparse(value, &rest); 3408 if (*rest) 3409 goto bad_val; 3410 } else if (!strcmp(this_char,"mode")) { 3411 if (remount) 3412 continue; 3413 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3414 if (*rest) 3415 goto bad_val; 3416 } else if (!strcmp(this_char,"uid")) { 3417 if (remount) 3418 continue; 3419 uid = simple_strtoul(value, &rest, 0); 3420 if (*rest) 3421 goto bad_val; 3422 sbinfo->uid = make_kuid(current_user_ns(), uid); 3423 if (!uid_valid(sbinfo->uid)) 3424 goto bad_val; 3425 } else if (!strcmp(this_char,"gid")) { 3426 if (remount) 3427 continue; 3428 gid = simple_strtoul(value, &rest, 0); 3429 if (*rest) 3430 goto bad_val; 3431 sbinfo->gid = make_kgid(current_user_ns(), gid); 3432 if (!gid_valid(sbinfo->gid)) 3433 goto bad_val; 3434 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3435 } else if (!strcmp(this_char, "huge")) { 3436 int huge; 3437 huge = shmem_parse_huge(value); 3438 if (huge < 0) 3439 goto bad_val; 3440 if (!has_transparent_hugepage() && 3441 huge != SHMEM_HUGE_NEVER) 3442 goto bad_val; 3443 sbinfo->huge = huge; 3444 #endif 3445 #ifdef CONFIG_NUMA 3446 } else if (!strcmp(this_char,"mpol")) { 3447 mpol_put(mpol); 3448 mpol = NULL; 3449 if (mpol_parse_str(value, &mpol)) 3450 goto bad_val; 3451 #endif 3452 } else { 3453 pr_err("tmpfs: Bad mount option %s\n", this_char); 3454 goto error; 3455 } 3456 } 3457 sbinfo->mpol = mpol; 3458 return 0; 3459 3460 bad_val: 3461 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3462 value, this_char); 3463 error: 3464 mpol_put(mpol); 3465 return 1; 3466 3467 } 3468 3469 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3470 { 3471 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3472 struct shmem_sb_info config = *sbinfo; 3473 unsigned long inodes; 3474 int error = -EINVAL; 3475 3476 config.mpol = NULL; 3477 if (shmem_parse_options(data, &config, true)) 3478 return error; 3479 3480 spin_lock(&sbinfo->stat_lock); 3481 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3482 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3483 goto out; 3484 if (config.max_inodes < inodes) 3485 goto out; 3486 /* 3487 * Those tests disallow limited->unlimited while any are in use; 3488 * but we must separately disallow unlimited->limited, because 3489 * in that case we have no record of how much is already in use. 3490 */ 3491 if (config.max_blocks && !sbinfo->max_blocks) 3492 goto out; 3493 if (config.max_inodes && !sbinfo->max_inodes) 3494 goto out; 3495 3496 error = 0; 3497 sbinfo->huge = config.huge; 3498 sbinfo->max_blocks = config.max_blocks; 3499 sbinfo->max_inodes = config.max_inodes; 3500 sbinfo->free_inodes = config.max_inodes - inodes; 3501 3502 /* 3503 * Preserve previous mempolicy unless mpol remount option was specified. 3504 */ 3505 if (config.mpol) { 3506 mpol_put(sbinfo->mpol); 3507 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3508 } 3509 out: 3510 spin_unlock(&sbinfo->stat_lock); 3511 return error; 3512 } 3513 3514 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3515 { 3516 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3517 3518 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3519 seq_printf(seq, ",size=%luk", 3520 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3521 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3522 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3523 if (sbinfo->mode != (0777 | S_ISVTX)) 3524 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3525 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3526 seq_printf(seq, ",uid=%u", 3527 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3528 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3529 seq_printf(seq, ",gid=%u", 3530 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3531 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3532 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3533 if (sbinfo->huge) 3534 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3535 #endif 3536 shmem_show_mpol(seq, sbinfo->mpol); 3537 return 0; 3538 } 3539 3540 #endif /* CONFIG_TMPFS */ 3541 3542 static void shmem_put_super(struct super_block *sb) 3543 { 3544 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3545 3546 percpu_counter_destroy(&sbinfo->used_blocks); 3547 mpol_put(sbinfo->mpol); 3548 kfree(sbinfo); 3549 sb->s_fs_info = NULL; 3550 } 3551 3552 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3553 { 3554 struct inode *inode; 3555 struct shmem_sb_info *sbinfo; 3556 int err = -ENOMEM; 3557 3558 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3559 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3560 L1_CACHE_BYTES), GFP_KERNEL); 3561 if (!sbinfo) 3562 return -ENOMEM; 3563 3564 sbinfo->mode = 0777 | S_ISVTX; 3565 sbinfo->uid = current_fsuid(); 3566 sbinfo->gid = current_fsgid(); 3567 sb->s_fs_info = sbinfo; 3568 3569 #ifdef CONFIG_TMPFS 3570 /* 3571 * Per default we only allow half of the physical ram per 3572 * tmpfs instance, limiting inodes to one per page of lowmem; 3573 * but the internal instance is left unlimited. 3574 */ 3575 if (!(sb->s_flags & SB_KERNMOUNT)) { 3576 sbinfo->max_blocks = shmem_default_max_blocks(); 3577 sbinfo->max_inodes = shmem_default_max_inodes(); 3578 if (shmem_parse_options(data, sbinfo, false)) { 3579 err = -EINVAL; 3580 goto failed; 3581 } 3582 } else { 3583 sb->s_flags |= SB_NOUSER; 3584 } 3585 sb->s_export_op = &shmem_export_ops; 3586 sb->s_flags |= SB_NOSEC; 3587 #else 3588 sb->s_flags |= SB_NOUSER; 3589 #endif 3590 3591 spin_lock_init(&sbinfo->stat_lock); 3592 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3593 goto failed; 3594 sbinfo->free_inodes = sbinfo->max_inodes; 3595 spin_lock_init(&sbinfo->shrinklist_lock); 3596 INIT_LIST_HEAD(&sbinfo->shrinklist); 3597 3598 sb->s_maxbytes = MAX_LFS_FILESIZE; 3599 sb->s_blocksize = PAGE_SIZE; 3600 sb->s_blocksize_bits = PAGE_SHIFT; 3601 sb->s_magic = TMPFS_MAGIC; 3602 sb->s_op = &shmem_ops; 3603 sb->s_time_gran = 1; 3604 #ifdef CONFIG_TMPFS_XATTR 3605 sb->s_xattr = shmem_xattr_handlers; 3606 #endif 3607 #ifdef CONFIG_TMPFS_POSIX_ACL 3608 sb->s_flags |= SB_POSIXACL; 3609 #endif 3610 uuid_gen(&sb->s_uuid); 3611 3612 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3613 if (!inode) 3614 goto failed; 3615 inode->i_uid = sbinfo->uid; 3616 inode->i_gid = sbinfo->gid; 3617 sb->s_root = d_make_root(inode); 3618 if (!sb->s_root) 3619 goto failed; 3620 return 0; 3621 3622 failed: 3623 shmem_put_super(sb); 3624 return err; 3625 } 3626 3627 static struct kmem_cache *shmem_inode_cachep; 3628 3629 static struct inode *shmem_alloc_inode(struct super_block *sb) 3630 { 3631 struct shmem_inode_info *info; 3632 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3633 if (!info) 3634 return NULL; 3635 return &info->vfs_inode; 3636 } 3637 3638 static void shmem_destroy_callback(struct rcu_head *head) 3639 { 3640 struct inode *inode = container_of(head, struct inode, i_rcu); 3641 if (S_ISLNK(inode->i_mode)) 3642 kfree(inode->i_link); 3643 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3644 } 3645 3646 static void shmem_destroy_inode(struct inode *inode) 3647 { 3648 if (S_ISREG(inode->i_mode)) 3649 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3650 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3651 } 3652 3653 static void shmem_init_inode(void *foo) 3654 { 3655 struct shmem_inode_info *info = foo; 3656 inode_init_once(&info->vfs_inode); 3657 } 3658 3659 static void shmem_init_inodecache(void) 3660 { 3661 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3662 sizeof(struct shmem_inode_info), 3663 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3664 } 3665 3666 static void shmem_destroy_inodecache(void) 3667 { 3668 kmem_cache_destroy(shmem_inode_cachep); 3669 } 3670 3671 static const struct address_space_operations shmem_aops = { 3672 .writepage = shmem_writepage, 3673 .set_page_dirty = __set_page_dirty_no_writeback, 3674 #ifdef CONFIG_TMPFS 3675 .write_begin = shmem_write_begin, 3676 .write_end = shmem_write_end, 3677 #endif 3678 #ifdef CONFIG_MIGRATION 3679 .migratepage = migrate_page, 3680 #endif 3681 .error_remove_page = generic_error_remove_page, 3682 }; 3683 3684 static const struct file_operations shmem_file_operations = { 3685 .mmap = shmem_mmap, 3686 .get_unmapped_area = shmem_get_unmapped_area, 3687 #ifdef CONFIG_TMPFS 3688 .llseek = shmem_file_llseek, 3689 .read_iter = shmem_file_read_iter, 3690 .write_iter = generic_file_write_iter, 3691 .fsync = noop_fsync, 3692 .splice_read = generic_file_splice_read, 3693 .splice_write = iter_file_splice_write, 3694 .fallocate = shmem_fallocate, 3695 #endif 3696 }; 3697 3698 static const struct inode_operations shmem_inode_operations = { 3699 .getattr = shmem_getattr, 3700 .setattr = shmem_setattr, 3701 #ifdef CONFIG_TMPFS_XATTR 3702 .listxattr = shmem_listxattr, 3703 .set_acl = simple_set_acl, 3704 #endif 3705 }; 3706 3707 static const struct inode_operations shmem_dir_inode_operations = { 3708 #ifdef CONFIG_TMPFS 3709 .create = shmem_create, 3710 .lookup = simple_lookup, 3711 .link = shmem_link, 3712 .unlink = shmem_unlink, 3713 .symlink = shmem_symlink, 3714 .mkdir = shmem_mkdir, 3715 .rmdir = shmem_rmdir, 3716 .mknod = shmem_mknod, 3717 .rename = shmem_rename2, 3718 .tmpfile = shmem_tmpfile, 3719 #endif 3720 #ifdef CONFIG_TMPFS_XATTR 3721 .listxattr = shmem_listxattr, 3722 #endif 3723 #ifdef CONFIG_TMPFS_POSIX_ACL 3724 .setattr = shmem_setattr, 3725 .set_acl = simple_set_acl, 3726 #endif 3727 }; 3728 3729 static const struct inode_operations shmem_special_inode_operations = { 3730 #ifdef CONFIG_TMPFS_XATTR 3731 .listxattr = shmem_listxattr, 3732 #endif 3733 #ifdef CONFIG_TMPFS_POSIX_ACL 3734 .setattr = shmem_setattr, 3735 .set_acl = simple_set_acl, 3736 #endif 3737 }; 3738 3739 static const struct super_operations shmem_ops = { 3740 .alloc_inode = shmem_alloc_inode, 3741 .destroy_inode = shmem_destroy_inode, 3742 #ifdef CONFIG_TMPFS 3743 .statfs = shmem_statfs, 3744 .remount_fs = shmem_remount_fs, 3745 .show_options = shmem_show_options, 3746 #endif 3747 .evict_inode = shmem_evict_inode, 3748 .drop_inode = generic_delete_inode, 3749 .put_super = shmem_put_super, 3750 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3751 .nr_cached_objects = shmem_unused_huge_count, 3752 .free_cached_objects = shmem_unused_huge_scan, 3753 #endif 3754 }; 3755 3756 static const struct vm_operations_struct shmem_vm_ops = { 3757 .fault = shmem_fault, 3758 .map_pages = filemap_map_pages, 3759 #ifdef CONFIG_NUMA 3760 .set_policy = shmem_set_policy, 3761 .get_policy = shmem_get_policy, 3762 #endif 3763 }; 3764 3765 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3766 int flags, const char *dev_name, void *data) 3767 { 3768 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3769 } 3770 3771 static struct file_system_type shmem_fs_type = { 3772 .owner = THIS_MODULE, 3773 .name = "tmpfs", 3774 .mount = shmem_mount, 3775 .kill_sb = kill_litter_super, 3776 .fs_flags = FS_USERNS_MOUNT, 3777 }; 3778 3779 int __init shmem_init(void) 3780 { 3781 int error; 3782 3783 /* If rootfs called this, don't re-init */ 3784 if (shmem_inode_cachep) 3785 return 0; 3786 3787 shmem_init_inodecache(); 3788 3789 error = register_filesystem(&shmem_fs_type); 3790 if (error) { 3791 pr_err("Could not register tmpfs\n"); 3792 goto out2; 3793 } 3794 3795 shm_mnt = kern_mount(&shmem_fs_type); 3796 if (IS_ERR(shm_mnt)) { 3797 error = PTR_ERR(shm_mnt); 3798 pr_err("Could not kern_mount tmpfs\n"); 3799 goto out1; 3800 } 3801 3802 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3803 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3804 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3805 else 3806 shmem_huge = 0; /* just in case it was patched */ 3807 #endif 3808 return 0; 3809 3810 out1: 3811 unregister_filesystem(&shmem_fs_type); 3812 out2: 3813 shmem_destroy_inodecache(); 3814 shm_mnt = ERR_PTR(error); 3815 return error; 3816 } 3817 3818 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3819 static ssize_t shmem_enabled_show(struct kobject *kobj, 3820 struct kobj_attribute *attr, char *buf) 3821 { 3822 int values[] = { 3823 SHMEM_HUGE_ALWAYS, 3824 SHMEM_HUGE_WITHIN_SIZE, 3825 SHMEM_HUGE_ADVISE, 3826 SHMEM_HUGE_NEVER, 3827 SHMEM_HUGE_DENY, 3828 SHMEM_HUGE_FORCE, 3829 }; 3830 int i, count; 3831 3832 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3833 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3834 3835 count += sprintf(buf + count, fmt, 3836 shmem_format_huge(values[i])); 3837 } 3838 buf[count - 1] = '\n'; 3839 return count; 3840 } 3841 3842 static ssize_t shmem_enabled_store(struct kobject *kobj, 3843 struct kobj_attribute *attr, const char *buf, size_t count) 3844 { 3845 char tmp[16]; 3846 int huge; 3847 3848 if (count + 1 > sizeof(tmp)) 3849 return -EINVAL; 3850 memcpy(tmp, buf, count); 3851 tmp[count] = '\0'; 3852 if (count && tmp[count - 1] == '\n') 3853 tmp[count - 1] = '\0'; 3854 3855 huge = shmem_parse_huge(tmp); 3856 if (huge == -EINVAL) 3857 return -EINVAL; 3858 if (!has_transparent_hugepage() && 3859 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3860 return -EINVAL; 3861 3862 shmem_huge = huge; 3863 if (shmem_huge > SHMEM_HUGE_DENY) 3864 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3865 return count; 3866 } 3867 3868 struct kobj_attribute shmem_enabled_attr = 3869 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3870 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3871 3872 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3873 bool shmem_huge_enabled(struct vm_area_struct *vma) 3874 { 3875 struct inode *inode = file_inode(vma->vm_file); 3876 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3877 loff_t i_size; 3878 pgoff_t off; 3879 3880 if (shmem_huge == SHMEM_HUGE_FORCE) 3881 return true; 3882 if (shmem_huge == SHMEM_HUGE_DENY) 3883 return false; 3884 switch (sbinfo->huge) { 3885 case SHMEM_HUGE_NEVER: 3886 return false; 3887 case SHMEM_HUGE_ALWAYS: 3888 return true; 3889 case SHMEM_HUGE_WITHIN_SIZE: 3890 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3891 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3892 if (i_size >= HPAGE_PMD_SIZE && 3893 i_size >> PAGE_SHIFT >= off) 3894 return true; 3895 /* fall through */ 3896 case SHMEM_HUGE_ADVISE: 3897 /* TODO: implement fadvise() hints */ 3898 return (vma->vm_flags & VM_HUGEPAGE); 3899 default: 3900 VM_BUG_ON(1); 3901 return false; 3902 } 3903 } 3904 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 3905 3906 #else /* !CONFIG_SHMEM */ 3907 3908 /* 3909 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3910 * 3911 * This is intended for small system where the benefits of the full 3912 * shmem code (swap-backed and resource-limited) are outweighed by 3913 * their complexity. On systems without swap this code should be 3914 * effectively equivalent, but much lighter weight. 3915 */ 3916 3917 static struct file_system_type shmem_fs_type = { 3918 .name = "tmpfs", 3919 .mount = ramfs_mount, 3920 .kill_sb = kill_litter_super, 3921 .fs_flags = FS_USERNS_MOUNT, 3922 }; 3923 3924 int __init shmem_init(void) 3925 { 3926 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3927 3928 shm_mnt = kern_mount(&shmem_fs_type); 3929 BUG_ON(IS_ERR(shm_mnt)); 3930 3931 return 0; 3932 } 3933 3934 int shmem_unuse(unsigned int type, bool frontswap, 3935 unsigned long *fs_pages_to_unuse) 3936 { 3937 return 0; 3938 } 3939 3940 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3941 { 3942 return 0; 3943 } 3944 3945 void shmem_unlock_mapping(struct address_space *mapping) 3946 { 3947 } 3948 3949 #ifdef CONFIG_MMU 3950 unsigned long shmem_get_unmapped_area(struct file *file, 3951 unsigned long addr, unsigned long len, 3952 unsigned long pgoff, unsigned long flags) 3953 { 3954 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 3955 } 3956 #endif 3957 3958 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3959 { 3960 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3961 } 3962 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3963 3964 #define shmem_vm_ops generic_file_vm_ops 3965 #define shmem_file_operations ramfs_file_operations 3966 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3967 #define shmem_acct_size(flags, size) 0 3968 #define shmem_unacct_size(flags, size) do {} while (0) 3969 3970 #endif /* CONFIG_SHMEM */ 3971 3972 /* common code */ 3973 3974 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 3975 unsigned long flags, unsigned int i_flags) 3976 { 3977 struct inode *inode; 3978 struct file *res; 3979 3980 if (IS_ERR(mnt)) 3981 return ERR_CAST(mnt); 3982 3983 if (size < 0 || size > MAX_LFS_FILESIZE) 3984 return ERR_PTR(-EINVAL); 3985 3986 if (shmem_acct_size(flags, size)) 3987 return ERR_PTR(-ENOMEM); 3988 3989 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 3990 flags); 3991 if (unlikely(!inode)) { 3992 shmem_unacct_size(flags, size); 3993 return ERR_PTR(-ENOSPC); 3994 } 3995 inode->i_flags |= i_flags; 3996 inode->i_size = size; 3997 clear_nlink(inode); /* It is unlinked */ 3998 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3999 if (!IS_ERR(res)) 4000 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4001 &shmem_file_operations); 4002 if (IS_ERR(res)) 4003 iput(inode); 4004 return res; 4005 } 4006 4007 /** 4008 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4009 * kernel internal. There will be NO LSM permission checks against the 4010 * underlying inode. So users of this interface must do LSM checks at a 4011 * higher layer. The users are the big_key and shm implementations. LSM 4012 * checks are provided at the key or shm level rather than the inode. 4013 * @name: name for dentry (to be seen in /proc/<pid>/maps 4014 * @size: size to be set for the file 4015 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4016 */ 4017 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4018 { 4019 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4020 } 4021 4022 /** 4023 * shmem_file_setup - get an unlinked file living in tmpfs 4024 * @name: name for dentry (to be seen in /proc/<pid>/maps 4025 * @size: size to be set for the file 4026 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4027 */ 4028 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4029 { 4030 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4031 } 4032 EXPORT_SYMBOL_GPL(shmem_file_setup); 4033 4034 /** 4035 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4036 * @mnt: the tmpfs mount where the file will be created 4037 * @name: name for dentry (to be seen in /proc/<pid>/maps 4038 * @size: size to be set for the file 4039 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4040 */ 4041 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4042 loff_t size, unsigned long flags) 4043 { 4044 return __shmem_file_setup(mnt, name, size, flags, 0); 4045 } 4046 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4047 4048 /** 4049 * shmem_zero_setup - setup a shared anonymous mapping 4050 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4051 */ 4052 int shmem_zero_setup(struct vm_area_struct *vma) 4053 { 4054 struct file *file; 4055 loff_t size = vma->vm_end - vma->vm_start; 4056 4057 /* 4058 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4059 * between XFS directory reading and selinux: since this file is only 4060 * accessible to the user through its mapping, use S_PRIVATE flag to 4061 * bypass file security, in the same way as shmem_kernel_file_setup(). 4062 */ 4063 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4064 if (IS_ERR(file)) 4065 return PTR_ERR(file); 4066 4067 if (vma->vm_file) 4068 fput(vma->vm_file); 4069 vma->vm_file = file; 4070 vma->vm_ops = &shmem_vm_ops; 4071 4072 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4073 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4074 (vma->vm_end & HPAGE_PMD_MASK)) { 4075 khugepaged_enter(vma, vma->vm_flags); 4076 } 4077 4078 return 0; 4079 } 4080 4081 /** 4082 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4083 * @mapping: the page's address_space 4084 * @index: the page index 4085 * @gfp: the page allocator flags to use if allocating 4086 * 4087 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4088 * with any new page allocations done using the specified allocation flags. 4089 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4090 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4091 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4092 * 4093 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4094 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4095 */ 4096 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4097 pgoff_t index, gfp_t gfp) 4098 { 4099 #ifdef CONFIG_SHMEM 4100 struct inode *inode = mapping->host; 4101 struct page *page; 4102 int error; 4103 4104 BUG_ON(mapping->a_ops != &shmem_aops); 4105 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4106 gfp, NULL, NULL, NULL); 4107 if (error) 4108 page = ERR_PTR(error); 4109 else 4110 unlock_page(page); 4111 return page; 4112 #else 4113 /* 4114 * The tiny !SHMEM case uses ramfs without swap 4115 */ 4116 return read_cache_page_gfp(mapping, index, gfp); 4117 #endif 4118 } 4119 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4120