xref: /openbmc/linux/mm/shmem.c (revision d003d772)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 
41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 #include <asm/pgtable.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
112 {
113 	return totalram_pages() / 2;
114 }
115 
116 static unsigned long shmem_default_max_inodes(void)
117 {
118 	unsigned long nr_pages = totalram_pages();
119 
120 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
121 }
122 #endif
123 
124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 				struct shmem_inode_info *info, pgoff_t index);
127 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
128 			     struct page **pagep, enum sgp_type sgp,
129 			     gfp_t gfp, struct vm_area_struct *vma,
130 			     vm_fault_t *fault_type);
131 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
132 		struct page **pagep, enum sgp_type sgp,
133 		gfp_t gfp, struct vm_area_struct *vma,
134 		struct vm_fault *vmf, vm_fault_t *fault_type);
135 
136 int shmem_getpage(struct inode *inode, pgoff_t index,
137 		struct page **pagep, enum sgp_type sgp)
138 {
139 	return shmem_getpage_gfp(inode, index, pagep, sgp,
140 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
141 }
142 
143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
144 {
145 	return sb->s_fs_info;
146 }
147 
148 /*
149  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150  * for shared memory and for shared anonymous (/dev/zero) mappings
151  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152  * consistent with the pre-accounting of private mappings ...
153  */
154 static inline int shmem_acct_size(unsigned long flags, loff_t size)
155 {
156 	return (flags & VM_NORESERVE) ?
157 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
158 }
159 
160 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
161 {
162 	if (!(flags & VM_NORESERVE))
163 		vm_unacct_memory(VM_ACCT(size));
164 }
165 
166 static inline int shmem_reacct_size(unsigned long flags,
167 		loff_t oldsize, loff_t newsize)
168 {
169 	if (!(flags & VM_NORESERVE)) {
170 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
171 			return security_vm_enough_memory_mm(current->mm,
172 					VM_ACCT(newsize) - VM_ACCT(oldsize));
173 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
174 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
175 	}
176 	return 0;
177 }
178 
179 /*
180  * ... whereas tmpfs objects are accounted incrementally as
181  * pages are allocated, in order to allow large sparse files.
182  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
184  */
185 static inline int shmem_acct_block(unsigned long flags, long pages)
186 {
187 	if (!(flags & VM_NORESERVE))
188 		return 0;
189 
190 	return security_vm_enough_memory_mm(current->mm,
191 			pages * VM_ACCT(PAGE_SIZE));
192 }
193 
194 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
195 {
196 	if (flags & VM_NORESERVE)
197 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
198 }
199 
200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
201 {
202 	struct shmem_inode_info *info = SHMEM_I(inode);
203 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
204 
205 	if (shmem_acct_block(info->flags, pages))
206 		return false;
207 
208 	if (sbinfo->max_blocks) {
209 		if (percpu_counter_compare(&sbinfo->used_blocks,
210 					   sbinfo->max_blocks - pages) > 0)
211 			goto unacct;
212 		percpu_counter_add(&sbinfo->used_blocks, pages);
213 	}
214 
215 	return true;
216 
217 unacct:
218 	shmem_unacct_blocks(info->flags, pages);
219 	return false;
220 }
221 
222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
223 {
224 	struct shmem_inode_info *info = SHMEM_I(inode);
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 
227 	if (sbinfo->max_blocks)
228 		percpu_counter_sub(&sbinfo->used_blocks, pages);
229 	shmem_unacct_blocks(info->flags, pages);
230 }
231 
232 static const struct super_operations shmem_ops;
233 static const struct address_space_operations shmem_aops;
234 static const struct file_operations shmem_file_operations;
235 static const struct inode_operations shmem_inode_operations;
236 static const struct inode_operations shmem_dir_inode_operations;
237 static const struct inode_operations shmem_special_inode_operations;
238 static const struct vm_operations_struct shmem_vm_ops;
239 static struct file_system_type shmem_fs_type;
240 
241 bool vma_is_shmem(struct vm_area_struct *vma)
242 {
243 	return vma->vm_ops == &shmem_vm_ops;
244 }
245 
246 static LIST_HEAD(shmem_swaplist);
247 static DEFINE_MUTEX(shmem_swaplist_mutex);
248 
249 static int shmem_reserve_inode(struct super_block *sb)
250 {
251 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
252 	if (sbinfo->max_inodes) {
253 		spin_lock(&sbinfo->stat_lock);
254 		if (!sbinfo->free_inodes) {
255 			spin_unlock(&sbinfo->stat_lock);
256 			return -ENOSPC;
257 		}
258 		sbinfo->free_inodes--;
259 		spin_unlock(&sbinfo->stat_lock);
260 	}
261 	return 0;
262 }
263 
264 static void shmem_free_inode(struct super_block *sb)
265 {
266 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 	if (sbinfo->max_inodes) {
268 		spin_lock(&sbinfo->stat_lock);
269 		sbinfo->free_inodes++;
270 		spin_unlock(&sbinfo->stat_lock);
271 	}
272 }
273 
274 /**
275  * shmem_recalc_inode - recalculate the block usage of an inode
276  * @inode: inode to recalc
277  *
278  * We have to calculate the free blocks since the mm can drop
279  * undirtied hole pages behind our back.
280  *
281  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
282  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
283  *
284  * It has to be called with the spinlock held.
285  */
286 static void shmem_recalc_inode(struct inode *inode)
287 {
288 	struct shmem_inode_info *info = SHMEM_I(inode);
289 	long freed;
290 
291 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
292 	if (freed > 0) {
293 		info->alloced -= freed;
294 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
295 		shmem_inode_unacct_blocks(inode, freed);
296 	}
297 }
298 
299 bool shmem_charge(struct inode *inode, long pages)
300 {
301 	struct shmem_inode_info *info = SHMEM_I(inode);
302 	unsigned long flags;
303 
304 	if (!shmem_inode_acct_block(inode, pages))
305 		return false;
306 
307 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
308 	inode->i_mapping->nrpages += pages;
309 
310 	spin_lock_irqsave(&info->lock, flags);
311 	info->alloced += pages;
312 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
313 	shmem_recalc_inode(inode);
314 	spin_unlock_irqrestore(&info->lock, flags);
315 
316 	return true;
317 }
318 
319 void shmem_uncharge(struct inode *inode, long pages)
320 {
321 	struct shmem_inode_info *info = SHMEM_I(inode);
322 	unsigned long flags;
323 
324 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
325 
326 	spin_lock_irqsave(&info->lock, flags);
327 	info->alloced -= pages;
328 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
329 	shmem_recalc_inode(inode);
330 	spin_unlock_irqrestore(&info->lock, flags);
331 
332 	shmem_inode_unacct_blocks(inode, pages);
333 }
334 
335 /*
336  * Replace item expected in xarray by a new item, while holding xa_lock.
337  */
338 static int shmem_replace_entry(struct address_space *mapping,
339 			pgoff_t index, void *expected, void *replacement)
340 {
341 	XA_STATE(xas, &mapping->i_pages, index);
342 	void *item;
343 
344 	VM_BUG_ON(!expected);
345 	VM_BUG_ON(!replacement);
346 	item = xas_load(&xas);
347 	if (item != expected)
348 		return -ENOENT;
349 	xas_store(&xas, replacement);
350 	return 0;
351 }
352 
353 /*
354  * Sometimes, before we decide whether to proceed or to fail, we must check
355  * that an entry was not already brought back from swap by a racing thread.
356  *
357  * Checking page is not enough: by the time a SwapCache page is locked, it
358  * might be reused, and again be SwapCache, using the same swap as before.
359  */
360 static bool shmem_confirm_swap(struct address_space *mapping,
361 			       pgoff_t index, swp_entry_t swap)
362 {
363 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
364 }
365 
366 /*
367  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
368  *
369  * SHMEM_HUGE_NEVER:
370  *	disables huge pages for the mount;
371  * SHMEM_HUGE_ALWAYS:
372  *	enables huge pages for the mount;
373  * SHMEM_HUGE_WITHIN_SIZE:
374  *	only allocate huge pages if the page will be fully within i_size,
375  *	also respect fadvise()/madvise() hints;
376  * SHMEM_HUGE_ADVISE:
377  *	only allocate huge pages if requested with fadvise()/madvise();
378  */
379 
380 #define SHMEM_HUGE_NEVER	0
381 #define SHMEM_HUGE_ALWAYS	1
382 #define SHMEM_HUGE_WITHIN_SIZE	2
383 #define SHMEM_HUGE_ADVISE	3
384 
385 /*
386  * Special values.
387  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
388  *
389  * SHMEM_HUGE_DENY:
390  *	disables huge on shm_mnt and all mounts, for emergency use;
391  * SHMEM_HUGE_FORCE:
392  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
393  *
394  */
395 #define SHMEM_HUGE_DENY		(-1)
396 #define SHMEM_HUGE_FORCE	(-2)
397 
398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
399 /* ifdef here to avoid bloating shmem.o when not necessary */
400 
401 static int shmem_huge __read_mostly;
402 
403 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
404 static int shmem_parse_huge(const char *str)
405 {
406 	if (!strcmp(str, "never"))
407 		return SHMEM_HUGE_NEVER;
408 	if (!strcmp(str, "always"))
409 		return SHMEM_HUGE_ALWAYS;
410 	if (!strcmp(str, "within_size"))
411 		return SHMEM_HUGE_WITHIN_SIZE;
412 	if (!strcmp(str, "advise"))
413 		return SHMEM_HUGE_ADVISE;
414 	if (!strcmp(str, "deny"))
415 		return SHMEM_HUGE_DENY;
416 	if (!strcmp(str, "force"))
417 		return SHMEM_HUGE_FORCE;
418 	return -EINVAL;
419 }
420 
421 static const char *shmem_format_huge(int huge)
422 {
423 	switch (huge) {
424 	case SHMEM_HUGE_NEVER:
425 		return "never";
426 	case SHMEM_HUGE_ALWAYS:
427 		return "always";
428 	case SHMEM_HUGE_WITHIN_SIZE:
429 		return "within_size";
430 	case SHMEM_HUGE_ADVISE:
431 		return "advise";
432 	case SHMEM_HUGE_DENY:
433 		return "deny";
434 	case SHMEM_HUGE_FORCE:
435 		return "force";
436 	default:
437 		VM_BUG_ON(1);
438 		return "bad_val";
439 	}
440 }
441 #endif
442 
443 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
444 		struct shrink_control *sc, unsigned long nr_to_split)
445 {
446 	LIST_HEAD(list), *pos, *next;
447 	LIST_HEAD(to_remove);
448 	struct inode *inode;
449 	struct shmem_inode_info *info;
450 	struct page *page;
451 	unsigned long batch = sc ? sc->nr_to_scan : 128;
452 	int removed = 0, split = 0;
453 
454 	if (list_empty(&sbinfo->shrinklist))
455 		return SHRINK_STOP;
456 
457 	spin_lock(&sbinfo->shrinklist_lock);
458 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
459 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
460 
461 		/* pin the inode */
462 		inode = igrab(&info->vfs_inode);
463 
464 		/* inode is about to be evicted */
465 		if (!inode) {
466 			list_del_init(&info->shrinklist);
467 			removed++;
468 			goto next;
469 		}
470 
471 		/* Check if there's anything to gain */
472 		if (round_up(inode->i_size, PAGE_SIZE) ==
473 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
474 			list_move(&info->shrinklist, &to_remove);
475 			removed++;
476 			goto next;
477 		}
478 
479 		list_move(&info->shrinklist, &list);
480 next:
481 		if (!--batch)
482 			break;
483 	}
484 	spin_unlock(&sbinfo->shrinklist_lock);
485 
486 	list_for_each_safe(pos, next, &to_remove) {
487 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
488 		inode = &info->vfs_inode;
489 		list_del_init(&info->shrinklist);
490 		iput(inode);
491 	}
492 
493 	list_for_each_safe(pos, next, &list) {
494 		int ret;
495 
496 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
497 		inode = &info->vfs_inode;
498 
499 		if (nr_to_split && split >= nr_to_split)
500 			goto leave;
501 
502 		page = find_get_page(inode->i_mapping,
503 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
504 		if (!page)
505 			goto drop;
506 
507 		/* No huge page at the end of the file: nothing to split */
508 		if (!PageTransHuge(page)) {
509 			put_page(page);
510 			goto drop;
511 		}
512 
513 		/*
514 		 * Leave the inode on the list if we failed to lock
515 		 * the page at this time.
516 		 *
517 		 * Waiting for the lock may lead to deadlock in the
518 		 * reclaim path.
519 		 */
520 		if (!trylock_page(page)) {
521 			put_page(page);
522 			goto leave;
523 		}
524 
525 		ret = split_huge_page(page);
526 		unlock_page(page);
527 		put_page(page);
528 
529 		/* If split failed leave the inode on the list */
530 		if (ret)
531 			goto leave;
532 
533 		split++;
534 drop:
535 		list_del_init(&info->shrinklist);
536 		removed++;
537 leave:
538 		iput(inode);
539 	}
540 
541 	spin_lock(&sbinfo->shrinklist_lock);
542 	list_splice_tail(&list, &sbinfo->shrinklist);
543 	sbinfo->shrinklist_len -= removed;
544 	spin_unlock(&sbinfo->shrinklist_lock);
545 
546 	return split;
547 }
548 
549 static long shmem_unused_huge_scan(struct super_block *sb,
550 		struct shrink_control *sc)
551 {
552 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
553 
554 	if (!READ_ONCE(sbinfo->shrinklist_len))
555 		return SHRINK_STOP;
556 
557 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
558 }
559 
560 static long shmem_unused_huge_count(struct super_block *sb,
561 		struct shrink_control *sc)
562 {
563 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
564 	return READ_ONCE(sbinfo->shrinklist_len);
565 }
566 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
567 
568 #define shmem_huge SHMEM_HUGE_DENY
569 
570 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
571 		struct shrink_control *sc, unsigned long nr_to_split)
572 {
573 	return 0;
574 }
575 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
576 
577 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
578 {
579 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
580 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
581 	    shmem_huge != SHMEM_HUGE_DENY)
582 		return true;
583 	return false;
584 }
585 
586 /*
587  * Like add_to_page_cache_locked, but error if expected item has gone.
588  */
589 static int shmem_add_to_page_cache(struct page *page,
590 				   struct address_space *mapping,
591 				   pgoff_t index, void *expected, gfp_t gfp)
592 {
593 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
594 	unsigned long i = 0;
595 	unsigned long nr = 1UL << compound_order(page);
596 
597 	VM_BUG_ON_PAGE(PageTail(page), page);
598 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
599 	VM_BUG_ON_PAGE(!PageLocked(page), page);
600 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
601 	VM_BUG_ON(expected && PageTransHuge(page));
602 
603 	page_ref_add(page, nr);
604 	page->mapping = mapping;
605 	page->index = index;
606 
607 	do {
608 		void *entry;
609 		xas_lock_irq(&xas);
610 		entry = xas_find_conflict(&xas);
611 		if (entry != expected)
612 			xas_set_err(&xas, -EEXIST);
613 		xas_create_range(&xas);
614 		if (xas_error(&xas))
615 			goto unlock;
616 next:
617 		xas_store(&xas, page + i);
618 		if (++i < nr) {
619 			xas_next(&xas);
620 			goto next;
621 		}
622 		if (PageTransHuge(page)) {
623 			count_vm_event(THP_FILE_ALLOC);
624 			__inc_node_page_state(page, NR_SHMEM_THPS);
625 		}
626 		mapping->nrpages += nr;
627 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
628 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
629 unlock:
630 		xas_unlock_irq(&xas);
631 	} while (xas_nomem(&xas, gfp));
632 
633 	if (xas_error(&xas)) {
634 		page->mapping = NULL;
635 		page_ref_sub(page, nr);
636 		return xas_error(&xas);
637 	}
638 
639 	return 0;
640 }
641 
642 /*
643  * Like delete_from_page_cache, but substitutes swap for page.
644  */
645 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
646 {
647 	struct address_space *mapping = page->mapping;
648 	int error;
649 
650 	VM_BUG_ON_PAGE(PageCompound(page), page);
651 
652 	xa_lock_irq(&mapping->i_pages);
653 	error = shmem_replace_entry(mapping, page->index, page, radswap);
654 	page->mapping = NULL;
655 	mapping->nrpages--;
656 	__dec_node_page_state(page, NR_FILE_PAGES);
657 	__dec_node_page_state(page, NR_SHMEM);
658 	xa_unlock_irq(&mapping->i_pages);
659 	put_page(page);
660 	BUG_ON(error);
661 }
662 
663 /*
664  * Remove swap entry from page cache, free the swap and its page cache.
665  */
666 static int shmem_free_swap(struct address_space *mapping,
667 			   pgoff_t index, void *radswap)
668 {
669 	void *old;
670 
671 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
672 	if (old != radswap)
673 		return -ENOENT;
674 	free_swap_and_cache(radix_to_swp_entry(radswap));
675 	return 0;
676 }
677 
678 /*
679  * Determine (in bytes) how many of the shmem object's pages mapped by the
680  * given offsets are swapped out.
681  *
682  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
683  * as long as the inode doesn't go away and racy results are not a problem.
684  */
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 						pgoff_t start, pgoff_t end)
687 {
688 	XA_STATE(xas, &mapping->i_pages, start);
689 	struct page *page;
690 	unsigned long swapped = 0;
691 
692 	rcu_read_lock();
693 	xas_for_each(&xas, page, end - 1) {
694 		if (xas_retry(&xas, page))
695 			continue;
696 		if (xa_is_value(page))
697 			swapped++;
698 
699 		if (need_resched()) {
700 			xas_pause(&xas);
701 			cond_resched_rcu();
702 		}
703 	}
704 
705 	rcu_read_unlock();
706 
707 	return swapped << PAGE_SHIFT;
708 }
709 
710 /*
711  * Determine (in bytes) how many of the shmem object's pages mapped by the
712  * given vma is swapped out.
713  *
714  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
715  * as long as the inode doesn't go away and racy results are not a problem.
716  */
717 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
718 {
719 	struct inode *inode = file_inode(vma->vm_file);
720 	struct shmem_inode_info *info = SHMEM_I(inode);
721 	struct address_space *mapping = inode->i_mapping;
722 	unsigned long swapped;
723 
724 	/* Be careful as we don't hold info->lock */
725 	swapped = READ_ONCE(info->swapped);
726 
727 	/*
728 	 * The easier cases are when the shmem object has nothing in swap, or
729 	 * the vma maps it whole. Then we can simply use the stats that we
730 	 * already track.
731 	 */
732 	if (!swapped)
733 		return 0;
734 
735 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
736 		return swapped << PAGE_SHIFT;
737 
738 	/* Here comes the more involved part */
739 	return shmem_partial_swap_usage(mapping,
740 			linear_page_index(vma, vma->vm_start),
741 			linear_page_index(vma, vma->vm_end));
742 }
743 
744 /*
745  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
746  */
747 void shmem_unlock_mapping(struct address_space *mapping)
748 {
749 	struct pagevec pvec;
750 	pgoff_t indices[PAGEVEC_SIZE];
751 	pgoff_t index = 0;
752 
753 	pagevec_init(&pvec);
754 	/*
755 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
756 	 */
757 	while (!mapping_unevictable(mapping)) {
758 		/*
759 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
760 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
761 		 */
762 		pvec.nr = find_get_entries(mapping, index,
763 					   PAGEVEC_SIZE, pvec.pages, indices);
764 		if (!pvec.nr)
765 			break;
766 		index = indices[pvec.nr - 1] + 1;
767 		pagevec_remove_exceptionals(&pvec);
768 		check_move_unevictable_pages(&pvec);
769 		pagevec_release(&pvec);
770 		cond_resched();
771 	}
772 }
773 
774 /*
775  * Remove range of pages and swap entries from page cache, and free them.
776  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
777  */
778 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
779 								 bool unfalloc)
780 {
781 	struct address_space *mapping = inode->i_mapping;
782 	struct shmem_inode_info *info = SHMEM_I(inode);
783 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
784 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
785 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
786 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
787 	struct pagevec pvec;
788 	pgoff_t indices[PAGEVEC_SIZE];
789 	long nr_swaps_freed = 0;
790 	pgoff_t index;
791 	int i;
792 
793 	if (lend == -1)
794 		end = -1;	/* unsigned, so actually very big */
795 
796 	pagevec_init(&pvec);
797 	index = start;
798 	while (index < end) {
799 		pvec.nr = find_get_entries(mapping, index,
800 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
801 			pvec.pages, indices);
802 		if (!pvec.nr)
803 			break;
804 		for (i = 0; i < pagevec_count(&pvec); i++) {
805 			struct page *page = pvec.pages[i];
806 
807 			index = indices[i];
808 			if (index >= end)
809 				break;
810 
811 			if (xa_is_value(page)) {
812 				if (unfalloc)
813 					continue;
814 				nr_swaps_freed += !shmem_free_swap(mapping,
815 								index, page);
816 				continue;
817 			}
818 
819 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
820 
821 			if (!trylock_page(page))
822 				continue;
823 
824 			if (PageTransTail(page)) {
825 				/* Middle of THP: zero out the page */
826 				clear_highpage(page);
827 				unlock_page(page);
828 				continue;
829 			} else if (PageTransHuge(page)) {
830 				if (index == round_down(end, HPAGE_PMD_NR)) {
831 					/*
832 					 * Range ends in the middle of THP:
833 					 * zero out the page
834 					 */
835 					clear_highpage(page);
836 					unlock_page(page);
837 					continue;
838 				}
839 				index += HPAGE_PMD_NR - 1;
840 				i += HPAGE_PMD_NR - 1;
841 			}
842 
843 			if (!unfalloc || !PageUptodate(page)) {
844 				VM_BUG_ON_PAGE(PageTail(page), page);
845 				if (page_mapping(page) == mapping) {
846 					VM_BUG_ON_PAGE(PageWriteback(page), page);
847 					truncate_inode_page(mapping, page);
848 				}
849 			}
850 			unlock_page(page);
851 		}
852 		pagevec_remove_exceptionals(&pvec);
853 		pagevec_release(&pvec);
854 		cond_resched();
855 		index++;
856 	}
857 
858 	if (partial_start) {
859 		struct page *page = NULL;
860 		shmem_getpage(inode, start - 1, &page, SGP_READ);
861 		if (page) {
862 			unsigned int top = PAGE_SIZE;
863 			if (start > end) {
864 				top = partial_end;
865 				partial_end = 0;
866 			}
867 			zero_user_segment(page, partial_start, top);
868 			set_page_dirty(page);
869 			unlock_page(page);
870 			put_page(page);
871 		}
872 	}
873 	if (partial_end) {
874 		struct page *page = NULL;
875 		shmem_getpage(inode, end, &page, SGP_READ);
876 		if (page) {
877 			zero_user_segment(page, 0, partial_end);
878 			set_page_dirty(page);
879 			unlock_page(page);
880 			put_page(page);
881 		}
882 	}
883 	if (start >= end)
884 		return;
885 
886 	index = start;
887 	while (index < end) {
888 		cond_resched();
889 
890 		pvec.nr = find_get_entries(mapping, index,
891 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
892 				pvec.pages, indices);
893 		if (!pvec.nr) {
894 			/* If all gone or hole-punch or unfalloc, we're done */
895 			if (index == start || end != -1)
896 				break;
897 			/* But if truncating, restart to make sure all gone */
898 			index = start;
899 			continue;
900 		}
901 		for (i = 0; i < pagevec_count(&pvec); i++) {
902 			struct page *page = pvec.pages[i];
903 
904 			index = indices[i];
905 			if (index >= end)
906 				break;
907 
908 			if (xa_is_value(page)) {
909 				if (unfalloc)
910 					continue;
911 				if (shmem_free_swap(mapping, index, page)) {
912 					/* Swap was replaced by page: retry */
913 					index--;
914 					break;
915 				}
916 				nr_swaps_freed++;
917 				continue;
918 			}
919 
920 			lock_page(page);
921 
922 			if (PageTransTail(page)) {
923 				/* Middle of THP: zero out the page */
924 				clear_highpage(page);
925 				unlock_page(page);
926 				/*
927 				 * Partial thp truncate due 'start' in middle
928 				 * of THP: don't need to look on these pages
929 				 * again on !pvec.nr restart.
930 				 */
931 				if (index != round_down(end, HPAGE_PMD_NR))
932 					start++;
933 				continue;
934 			} else if (PageTransHuge(page)) {
935 				if (index == round_down(end, HPAGE_PMD_NR)) {
936 					/*
937 					 * Range ends in the middle of THP:
938 					 * zero out the page
939 					 */
940 					clear_highpage(page);
941 					unlock_page(page);
942 					continue;
943 				}
944 				index += HPAGE_PMD_NR - 1;
945 				i += HPAGE_PMD_NR - 1;
946 			}
947 
948 			if (!unfalloc || !PageUptodate(page)) {
949 				VM_BUG_ON_PAGE(PageTail(page), page);
950 				if (page_mapping(page) == mapping) {
951 					VM_BUG_ON_PAGE(PageWriteback(page), page);
952 					truncate_inode_page(mapping, page);
953 				} else {
954 					/* Page was replaced by swap: retry */
955 					unlock_page(page);
956 					index--;
957 					break;
958 				}
959 			}
960 			unlock_page(page);
961 		}
962 		pagevec_remove_exceptionals(&pvec);
963 		pagevec_release(&pvec);
964 		index++;
965 	}
966 
967 	spin_lock_irq(&info->lock);
968 	info->swapped -= nr_swaps_freed;
969 	shmem_recalc_inode(inode);
970 	spin_unlock_irq(&info->lock);
971 }
972 
973 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
974 {
975 	shmem_undo_range(inode, lstart, lend, false);
976 	inode->i_ctime = inode->i_mtime = current_time(inode);
977 }
978 EXPORT_SYMBOL_GPL(shmem_truncate_range);
979 
980 static int shmem_getattr(const struct path *path, struct kstat *stat,
981 			 u32 request_mask, unsigned int query_flags)
982 {
983 	struct inode *inode = path->dentry->d_inode;
984 	struct shmem_inode_info *info = SHMEM_I(inode);
985 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
986 
987 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
988 		spin_lock_irq(&info->lock);
989 		shmem_recalc_inode(inode);
990 		spin_unlock_irq(&info->lock);
991 	}
992 	generic_fillattr(inode, stat);
993 
994 	if (is_huge_enabled(sb_info))
995 		stat->blksize = HPAGE_PMD_SIZE;
996 
997 	return 0;
998 }
999 
1000 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1001 {
1002 	struct inode *inode = d_inode(dentry);
1003 	struct shmem_inode_info *info = SHMEM_I(inode);
1004 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1005 	int error;
1006 
1007 	error = setattr_prepare(dentry, attr);
1008 	if (error)
1009 		return error;
1010 
1011 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1012 		loff_t oldsize = inode->i_size;
1013 		loff_t newsize = attr->ia_size;
1014 
1015 		/* protected by i_mutex */
1016 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1017 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1018 			return -EPERM;
1019 
1020 		if (newsize != oldsize) {
1021 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1022 					oldsize, newsize);
1023 			if (error)
1024 				return error;
1025 			i_size_write(inode, newsize);
1026 			inode->i_ctime = inode->i_mtime = current_time(inode);
1027 		}
1028 		if (newsize <= oldsize) {
1029 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1030 			if (oldsize > holebegin)
1031 				unmap_mapping_range(inode->i_mapping,
1032 							holebegin, 0, 1);
1033 			if (info->alloced)
1034 				shmem_truncate_range(inode,
1035 							newsize, (loff_t)-1);
1036 			/* unmap again to remove racily COWed private pages */
1037 			if (oldsize > holebegin)
1038 				unmap_mapping_range(inode->i_mapping,
1039 							holebegin, 0, 1);
1040 
1041 			/*
1042 			 * Part of the huge page can be beyond i_size: subject
1043 			 * to shrink under memory pressure.
1044 			 */
1045 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1046 				spin_lock(&sbinfo->shrinklist_lock);
1047 				/*
1048 				 * _careful to defend against unlocked access to
1049 				 * ->shrink_list in shmem_unused_huge_shrink()
1050 				 */
1051 				if (list_empty_careful(&info->shrinklist)) {
1052 					list_add_tail(&info->shrinklist,
1053 							&sbinfo->shrinklist);
1054 					sbinfo->shrinklist_len++;
1055 				}
1056 				spin_unlock(&sbinfo->shrinklist_lock);
1057 			}
1058 		}
1059 	}
1060 
1061 	setattr_copy(inode, attr);
1062 	if (attr->ia_valid & ATTR_MODE)
1063 		error = posix_acl_chmod(inode, inode->i_mode);
1064 	return error;
1065 }
1066 
1067 static void shmem_evict_inode(struct inode *inode)
1068 {
1069 	struct shmem_inode_info *info = SHMEM_I(inode);
1070 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1071 
1072 	if (inode->i_mapping->a_ops == &shmem_aops) {
1073 		shmem_unacct_size(info->flags, inode->i_size);
1074 		inode->i_size = 0;
1075 		shmem_truncate_range(inode, 0, (loff_t)-1);
1076 		if (!list_empty(&info->shrinklist)) {
1077 			spin_lock(&sbinfo->shrinklist_lock);
1078 			if (!list_empty(&info->shrinklist)) {
1079 				list_del_init(&info->shrinklist);
1080 				sbinfo->shrinklist_len--;
1081 			}
1082 			spin_unlock(&sbinfo->shrinklist_lock);
1083 		}
1084 		if (!list_empty(&info->swaplist)) {
1085 			mutex_lock(&shmem_swaplist_mutex);
1086 			list_del_init(&info->swaplist);
1087 			mutex_unlock(&shmem_swaplist_mutex);
1088 		}
1089 	}
1090 
1091 	simple_xattrs_free(&info->xattrs);
1092 	WARN_ON(inode->i_blocks);
1093 	shmem_free_inode(inode->i_sb);
1094 	clear_inode(inode);
1095 }
1096 
1097 extern struct swap_info_struct *swap_info[];
1098 
1099 static int shmem_find_swap_entries(struct address_space *mapping,
1100 				   pgoff_t start, unsigned int nr_entries,
1101 				   struct page **entries, pgoff_t *indices,
1102 				   bool frontswap)
1103 {
1104 	XA_STATE(xas, &mapping->i_pages, start);
1105 	struct page *page;
1106 	unsigned int ret = 0;
1107 
1108 	if (!nr_entries)
1109 		return 0;
1110 
1111 	rcu_read_lock();
1112 	xas_for_each(&xas, page, ULONG_MAX) {
1113 		if (xas_retry(&xas, page))
1114 			continue;
1115 
1116 		if (!xa_is_value(page))
1117 			continue;
1118 
1119 		if (frontswap) {
1120 			swp_entry_t entry = radix_to_swp_entry(page);
1121 
1122 			if (!frontswap_test(swap_info[swp_type(entry)],
1123 					    swp_offset(entry)))
1124 				continue;
1125 		}
1126 
1127 		indices[ret] = xas.xa_index;
1128 		entries[ret] = page;
1129 
1130 		if (need_resched()) {
1131 			xas_pause(&xas);
1132 			cond_resched_rcu();
1133 		}
1134 		if (++ret == nr_entries)
1135 			break;
1136 	}
1137 	rcu_read_unlock();
1138 
1139 	return ret;
1140 }
1141 
1142 /*
1143  * Move the swapped pages for an inode to page cache. Returns the count
1144  * of pages swapped in, or the error in case of failure.
1145  */
1146 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1147 				    pgoff_t *indices)
1148 {
1149 	int i = 0;
1150 	int ret = 0;
1151 	int error = 0;
1152 	struct address_space *mapping = inode->i_mapping;
1153 
1154 	for (i = 0; i < pvec.nr; i++) {
1155 		struct page *page = pvec.pages[i];
1156 
1157 		if (!xa_is_value(page))
1158 			continue;
1159 		error = shmem_swapin_page(inode, indices[i],
1160 					  &page, SGP_CACHE,
1161 					  mapping_gfp_mask(mapping),
1162 					  NULL, NULL);
1163 		if (error == 0) {
1164 			unlock_page(page);
1165 			put_page(page);
1166 			ret++;
1167 		}
1168 		if (error == -ENOMEM)
1169 			break;
1170 		error = 0;
1171 	}
1172 	return error ? error : ret;
1173 }
1174 
1175 /*
1176  * If swap found in inode, free it and move page from swapcache to filecache.
1177  */
1178 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1179 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1180 {
1181 	struct address_space *mapping = inode->i_mapping;
1182 	pgoff_t start = 0;
1183 	struct pagevec pvec;
1184 	pgoff_t indices[PAGEVEC_SIZE];
1185 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1186 	int ret = 0;
1187 
1188 	pagevec_init(&pvec);
1189 	do {
1190 		unsigned int nr_entries = PAGEVEC_SIZE;
1191 
1192 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1193 			nr_entries = *fs_pages_to_unuse;
1194 
1195 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1196 						  pvec.pages, indices,
1197 						  frontswap);
1198 		if (pvec.nr == 0) {
1199 			ret = 0;
1200 			break;
1201 		}
1202 
1203 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1204 		if (ret < 0)
1205 			break;
1206 
1207 		if (frontswap_partial) {
1208 			*fs_pages_to_unuse -= ret;
1209 			if (*fs_pages_to_unuse == 0) {
1210 				ret = FRONTSWAP_PAGES_UNUSED;
1211 				break;
1212 			}
1213 		}
1214 
1215 		start = indices[pvec.nr - 1];
1216 	} while (true);
1217 
1218 	return ret;
1219 }
1220 
1221 /*
1222  * Read all the shared memory data that resides in the swap
1223  * device 'type' back into memory, so the swap device can be
1224  * unused.
1225  */
1226 int shmem_unuse(unsigned int type, bool frontswap,
1227 		unsigned long *fs_pages_to_unuse)
1228 {
1229 	struct shmem_inode_info *info, *next;
1230 	struct inode *inode;
1231 	struct inode *prev_inode = NULL;
1232 	int error = 0;
1233 
1234 	if (list_empty(&shmem_swaplist))
1235 		return 0;
1236 
1237 	mutex_lock(&shmem_swaplist_mutex);
1238 
1239 	/*
1240 	 * The extra refcount on the inode is necessary to safely dereference
1241 	 * p->next after re-acquiring the lock. New shmem inodes with swap
1242 	 * get added to the end of the list and we will scan them all.
1243 	 */
1244 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1245 		if (!info->swapped) {
1246 			list_del_init(&info->swaplist);
1247 			continue;
1248 		}
1249 
1250 		inode = igrab(&info->vfs_inode);
1251 		if (!inode)
1252 			continue;
1253 
1254 		mutex_unlock(&shmem_swaplist_mutex);
1255 		if (prev_inode)
1256 			iput(prev_inode);
1257 		prev_inode = inode;
1258 
1259 		error = shmem_unuse_inode(inode, type, frontswap,
1260 					  fs_pages_to_unuse);
1261 		cond_resched();
1262 
1263 		mutex_lock(&shmem_swaplist_mutex);
1264 		next = list_next_entry(info, swaplist);
1265 		if (!info->swapped)
1266 			list_del_init(&info->swaplist);
1267 		if (error)
1268 			break;
1269 	}
1270 	mutex_unlock(&shmem_swaplist_mutex);
1271 
1272 	if (prev_inode)
1273 		iput(prev_inode);
1274 
1275 	return error;
1276 }
1277 
1278 /*
1279  * Move the page from the page cache to the swap cache.
1280  */
1281 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1282 {
1283 	struct shmem_inode_info *info;
1284 	struct address_space *mapping;
1285 	struct inode *inode;
1286 	swp_entry_t swap;
1287 	pgoff_t index;
1288 
1289 	VM_BUG_ON_PAGE(PageCompound(page), page);
1290 	BUG_ON(!PageLocked(page));
1291 	mapping = page->mapping;
1292 	index = page->index;
1293 	inode = mapping->host;
1294 	info = SHMEM_I(inode);
1295 	if (info->flags & VM_LOCKED)
1296 		goto redirty;
1297 	if (!total_swap_pages)
1298 		goto redirty;
1299 
1300 	/*
1301 	 * Our capabilities prevent regular writeback or sync from ever calling
1302 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1303 	 * its underlying filesystem, in which case tmpfs should write out to
1304 	 * swap only in response to memory pressure, and not for the writeback
1305 	 * threads or sync.
1306 	 */
1307 	if (!wbc->for_reclaim) {
1308 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1309 		goto redirty;
1310 	}
1311 
1312 	/*
1313 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1314 	 * value into swapfile.c, the only way we can correctly account for a
1315 	 * fallocated page arriving here is now to initialize it and write it.
1316 	 *
1317 	 * That's okay for a page already fallocated earlier, but if we have
1318 	 * not yet completed the fallocation, then (a) we want to keep track
1319 	 * of this page in case we have to undo it, and (b) it may not be a
1320 	 * good idea to continue anyway, once we're pushing into swap.  So
1321 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1322 	 */
1323 	if (!PageUptodate(page)) {
1324 		if (inode->i_private) {
1325 			struct shmem_falloc *shmem_falloc;
1326 			spin_lock(&inode->i_lock);
1327 			shmem_falloc = inode->i_private;
1328 			if (shmem_falloc &&
1329 			    !shmem_falloc->waitq &&
1330 			    index >= shmem_falloc->start &&
1331 			    index < shmem_falloc->next)
1332 				shmem_falloc->nr_unswapped++;
1333 			else
1334 				shmem_falloc = NULL;
1335 			spin_unlock(&inode->i_lock);
1336 			if (shmem_falloc)
1337 				goto redirty;
1338 		}
1339 		clear_highpage(page);
1340 		flush_dcache_page(page);
1341 		SetPageUptodate(page);
1342 	}
1343 
1344 	swap = get_swap_page(page);
1345 	if (!swap.val)
1346 		goto redirty;
1347 
1348 	/*
1349 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1350 	 * if it's not already there.  Do it now before the page is
1351 	 * moved to swap cache, when its pagelock no longer protects
1352 	 * the inode from eviction.  But don't unlock the mutex until
1353 	 * we've incremented swapped, because shmem_unuse_inode() will
1354 	 * prune a !swapped inode from the swaplist under this mutex.
1355 	 */
1356 	mutex_lock(&shmem_swaplist_mutex);
1357 	if (list_empty(&info->swaplist))
1358 		list_add(&info->swaplist, &shmem_swaplist);
1359 
1360 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1361 		spin_lock_irq(&info->lock);
1362 		shmem_recalc_inode(inode);
1363 		info->swapped++;
1364 		spin_unlock_irq(&info->lock);
1365 
1366 		swap_shmem_alloc(swap);
1367 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1368 
1369 		mutex_unlock(&shmem_swaplist_mutex);
1370 		BUG_ON(page_mapped(page));
1371 		swap_writepage(page, wbc);
1372 		return 0;
1373 	}
1374 
1375 	mutex_unlock(&shmem_swaplist_mutex);
1376 	put_swap_page(page, swap);
1377 redirty:
1378 	set_page_dirty(page);
1379 	if (wbc->for_reclaim)
1380 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1381 	unlock_page(page);
1382 	return 0;
1383 }
1384 
1385 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1386 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1387 {
1388 	char buffer[64];
1389 
1390 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1391 		return;		/* show nothing */
1392 
1393 	mpol_to_str(buffer, sizeof(buffer), mpol);
1394 
1395 	seq_printf(seq, ",mpol=%s", buffer);
1396 }
1397 
1398 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1399 {
1400 	struct mempolicy *mpol = NULL;
1401 	if (sbinfo->mpol) {
1402 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1403 		mpol = sbinfo->mpol;
1404 		mpol_get(mpol);
1405 		spin_unlock(&sbinfo->stat_lock);
1406 	}
1407 	return mpol;
1408 }
1409 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1410 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1411 {
1412 }
1413 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1414 {
1415 	return NULL;
1416 }
1417 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1418 #ifndef CONFIG_NUMA
1419 #define vm_policy vm_private_data
1420 #endif
1421 
1422 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1423 		struct shmem_inode_info *info, pgoff_t index)
1424 {
1425 	/* Create a pseudo vma that just contains the policy */
1426 	vma_init(vma, NULL);
1427 	/* Bias interleave by inode number to distribute better across nodes */
1428 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1429 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1430 }
1431 
1432 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1433 {
1434 	/* Drop reference taken by mpol_shared_policy_lookup() */
1435 	mpol_cond_put(vma->vm_policy);
1436 }
1437 
1438 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1439 			struct shmem_inode_info *info, pgoff_t index)
1440 {
1441 	struct vm_area_struct pvma;
1442 	struct page *page;
1443 	struct vm_fault vmf;
1444 
1445 	shmem_pseudo_vma_init(&pvma, info, index);
1446 	vmf.vma = &pvma;
1447 	vmf.address = 0;
1448 	page = swap_cluster_readahead(swap, gfp, &vmf);
1449 	shmem_pseudo_vma_destroy(&pvma);
1450 
1451 	return page;
1452 }
1453 
1454 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1455 		struct shmem_inode_info *info, pgoff_t index)
1456 {
1457 	struct vm_area_struct pvma;
1458 	struct address_space *mapping = info->vfs_inode.i_mapping;
1459 	pgoff_t hindex;
1460 	struct page *page;
1461 
1462 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1463 		return NULL;
1464 
1465 	hindex = round_down(index, HPAGE_PMD_NR);
1466 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1467 								XA_PRESENT))
1468 		return NULL;
1469 
1470 	shmem_pseudo_vma_init(&pvma, info, hindex);
1471 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1472 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1473 	shmem_pseudo_vma_destroy(&pvma);
1474 	if (page)
1475 		prep_transhuge_page(page);
1476 	return page;
1477 }
1478 
1479 static struct page *shmem_alloc_page(gfp_t gfp,
1480 			struct shmem_inode_info *info, pgoff_t index)
1481 {
1482 	struct vm_area_struct pvma;
1483 	struct page *page;
1484 
1485 	shmem_pseudo_vma_init(&pvma, info, index);
1486 	page = alloc_page_vma(gfp, &pvma, 0);
1487 	shmem_pseudo_vma_destroy(&pvma);
1488 
1489 	return page;
1490 }
1491 
1492 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1493 		struct inode *inode,
1494 		pgoff_t index, bool huge)
1495 {
1496 	struct shmem_inode_info *info = SHMEM_I(inode);
1497 	struct page *page;
1498 	int nr;
1499 	int err = -ENOSPC;
1500 
1501 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1502 		huge = false;
1503 	nr = huge ? HPAGE_PMD_NR : 1;
1504 
1505 	if (!shmem_inode_acct_block(inode, nr))
1506 		goto failed;
1507 
1508 	if (huge)
1509 		page = shmem_alloc_hugepage(gfp, info, index);
1510 	else
1511 		page = shmem_alloc_page(gfp, info, index);
1512 	if (page) {
1513 		__SetPageLocked(page);
1514 		__SetPageSwapBacked(page);
1515 		return page;
1516 	}
1517 
1518 	err = -ENOMEM;
1519 	shmem_inode_unacct_blocks(inode, nr);
1520 failed:
1521 	return ERR_PTR(err);
1522 }
1523 
1524 /*
1525  * When a page is moved from swapcache to shmem filecache (either by the
1526  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1527  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1528  * ignorance of the mapping it belongs to.  If that mapping has special
1529  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1530  * we may need to copy to a suitable page before moving to filecache.
1531  *
1532  * In a future release, this may well be extended to respect cpuset and
1533  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1534  * but for now it is a simple matter of zone.
1535  */
1536 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1537 {
1538 	return page_zonenum(page) > gfp_zone(gfp);
1539 }
1540 
1541 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1542 				struct shmem_inode_info *info, pgoff_t index)
1543 {
1544 	struct page *oldpage, *newpage;
1545 	struct address_space *swap_mapping;
1546 	swp_entry_t entry;
1547 	pgoff_t swap_index;
1548 	int error;
1549 
1550 	oldpage = *pagep;
1551 	entry.val = page_private(oldpage);
1552 	swap_index = swp_offset(entry);
1553 	swap_mapping = page_mapping(oldpage);
1554 
1555 	/*
1556 	 * We have arrived here because our zones are constrained, so don't
1557 	 * limit chance of success by further cpuset and node constraints.
1558 	 */
1559 	gfp &= ~GFP_CONSTRAINT_MASK;
1560 	newpage = shmem_alloc_page(gfp, info, index);
1561 	if (!newpage)
1562 		return -ENOMEM;
1563 
1564 	get_page(newpage);
1565 	copy_highpage(newpage, oldpage);
1566 	flush_dcache_page(newpage);
1567 
1568 	__SetPageLocked(newpage);
1569 	__SetPageSwapBacked(newpage);
1570 	SetPageUptodate(newpage);
1571 	set_page_private(newpage, entry.val);
1572 	SetPageSwapCache(newpage);
1573 
1574 	/*
1575 	 * Our caller will very soon move newpage out of swapcache, but it's
1576 	 * a nice clean interface for us to replace oldpage by newpage there.
1577 	 */
1578 	xa_lock_irq(&swap_mapping->i_pages);
1579 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1580 	if (!error) {
1581 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1582 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1583 	}
1584 	xa_unlock_irq(&swap_mapping->i_pages);
1585 
1586 	if (unlikely(error)) {
1587 		/*
1588 		 * Is this possible?  I think not, now that our callers check
1589 		 * both PageSwapCache and page_private after getting page lock;
1590 		 * but be defensive.  Reverse old to newpage for clear and free.
1591 		 */
1592 		oldpage = newpage;
1593 	} else {
1594 		mem_cgroup_migrate(oldpage, newpage);
1595 		lru_cache_add_anon(newpage);
1596 		*pagep = newpage;
1597 	}
1598 
1599 	ClearPageSwapCache(oldpage);
1600 	set_page_private(oldpage, 0);
1601 
1602 	unlock_page(oldpage);
1603 	put_page(oldpage);
1604 	put_page(oldpage);
1605 	return error;
1606 }
1607 
1608 /*
1609  * Swap in the page pointed to by *pagep.
1610  * Caller has to make sure that *pagep contains a valid swapped page.
1611  * Returns 0 and the page in pagep if success. On failure, returns the
1612  * the error code and NULL in *pagep.
1613  */
1614 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1615 			     struct page **pagep, enum sgp_type sgp,
1616 			     gfp_t gfp, struct vm_area_struct *vma,
1617 			     vm_fault_t *fault_type)
1618 {
1619 	struct address_space *mapping = inode->i_mapping;
1620 	struct shmem_inode_info *info = SHMEM_I(inode);
1621 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1622 	struct mem_cgroup *memcg;
1623 	struct page *page;
1624 	swp_entry_t swap;
1625 	int error;
1626 
1627 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1628 	swap = radix_to_swp_entry(*pagep);
1629 	*pagep = NULL;
1630 
1631 	/* Look it up and read it in.. */
1632 	page = lookup_swap_cache(swap, NULL, 0);
1633 	if (!page) {
1634 		/* Or update major stats only when swapin succeeds?? */
1635 		if (fault_type) {
1636 			*fault_type |= VM_FAULT_MAJOR;
1637 			count_vm_event(PGMAJFAULT);
1638 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1639 		}
1640 		/* Here we actually start the io */
1641 		page = shmem_swapin(swap, gfp, info, index);
1642 		if (!page) {
1643 			error = -ENOMEM;
1644 			goto failed;
1645 		}
1646 	}
1647 
1648 	/* We have to do this with page locked to prevent races */
1649 	lock_page(page);
1650 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1651 	    !shmem_confirm_swap(mapping, index, swap)) {
1652 		error = -EEXIST;
1653 		goto unlock;
1654 	}
1655 	if (!PageUptodate(page)) {
1656 		error = -EIO;
1657 		goto failed;
1658 	}
1659 	wait_on_page_writeback(page);
1660 
1661 	if (shmem_should_replace_page(page, gfp)) {
1662 		error = shmem_replace_page(&page, gfp, info, index);
1663 		if (error)
1664 			goto failed;
1665 	}
1666 
1667 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1668 					    false);
1669 	if (!error) {
1670 		error = shmem_add_to_page_cache(page, mapping, index,
1671 						swp_to_radix_entry(swap), gfp);
1672 		/*
1673 		 * We already confirmed swap under page lock, and make
1674 		 * no memory allocation here, so usually no possibility
1675 		 * of error; but free_swap_and_cache() only trylocks a
1676 		 * page, so it is just possible that the entry has been
1677 		 * truncated or holepunched since swap was confirmed.
1678 		 * shmem_undo_range() will have done some of the
1679 		 * unaccounting, now delete_from_swap_cache() will do
1680 		 * the rest.
1681 		 */
1682 		if (error) {
1683 			mem_cgroup_cancel_charge(page, memcg, false);
1684 			delete_from_swap_cache(page);
1685 		}
1686 	}
1687 	if (error)
1688 		goto failed;
1689 
1690 	mem_cgroup_commit_charge(page, memcg, true, false);
1691 
1692 	spin_lock_irq(&info->lock);
1693 	info->swapped--;
1694 	shmem_recalc_inode(inode);
1695 	spin_unlock_irq(&info->lock);
1696 
1697 	if (sgp == SGP_WRITE)
1698 		mark_page_accessed(page);
1699 
1700 	delete_from_swap_cache(page);
1701 	set_page_dirty(page);
1702 	swap_free(swap);
1703 
1704 	*pagep = page;
1705 	return 0;
1706 failed:
1707 	if (!shmem_confirm_swap(mapping, index, swap))
1708 		error = -EEXIST;
1709 unlock:
1710 	if (page) {
1711 		unlock_page(page);
1712 		put_page(page);
1713 	}
1714 
1715 	return error;
1716 }
1717 
1718 /*
1719  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1720  *
1721  * If we allocate a new one we do not mark it dirty. That's up to the
1722  * vm. If we swap it in we mark it dirty since we also free the swap
1723  * entry since a page cannot live in both the swap and page cache.
1724  *
1725  * fault_mm and fault_type are only supplied by shmem_fault:
1726  * otherwise they are NULL.
1727  */
1728 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1729 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1730 	struct vm_area_struct *vma, struct vm_fault *vmf,
1731 			vm_fault_t *fault_type)
1732 {
1733 	struct address_space *mapping = inode->i_mapping;
1734 	struct shmem_inode_info *info = SHMEM_I(inode);
1735 	struct shmem_sb_info *sbinfo;
1736 	struct mm_struct *charge_mm;
1737 	struct mem_cgroup *memcg;
1738 	struct page *page;
1739 	enum sgp_type sgp_huge = sgp;
1740 	pgoff_t hindex = index;
1741 	int error;
1742 	int once = 0;
1743 	int alloced = 0;
1744 
1745 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1746 		return -EFBIG;
1747 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1748 		sgp = SGP_CACHE;
1749 repeat:
1750 	if (sgp <= SGP_CACHE &&
1751 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1752 		return -EINVAL;
1753 	}
1754 
1755 	sbinfo = SHMEM_SB(inode->i_sb);
1756 	charge_mm = vma ? vma->vm_mm : current->mm;
1757 
1758 	page = find_lock_entry(mapping, index);
1759 	if (xa_is_value(page)) {
1760 		error = shmem_swapin_page(inode, index, &page,
1761 					  sgp, gfp, vma, fault_type);
1762 		if (error == -EEXIST)
1763 			goto repeat;
1764 
1765 		*pagep = page;
1766 		return error;
1767 	}
1768 
1769 	if (page && sgp == SGP_WRITE)
1770 		mark_page_accessed(page);
1771 
1772 	/* fallocated page? */
1773 	if (page && !PageUptodate(page)) {
1774 		if (sgp != SGP_READ)
1775 			goto clear;
1776 		unlock_page(page);
1777 		put_page(page);
1778 		page = NULL;
1779 	}
1780 	if (page || sgp == SGP_READ) {
1781 		*pagep = page;
1782 		return 0;
1783 	}
1784 
1785 	/*
1786 	 * Fast cache lookup did not find it:
1787 	 * bring it back from swap or allocate.
1788 	 */
1789 
1790 	if (vma && userfaultfd_missing(vma)) {
1791 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1792 		return 0;
1793 	}
1794 
1795 	/* shmem_symlink() */
1796 	if (mapping->a_ops != &shmem_aops)
1797 		goto alloc_nohuge;
1798 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1799 		goto alloc_nohuge;
1800 	if (shmem_huge == SHMEM_HUGE_FORCE)
1801 		goto alloc_huge;
1802 	switch (sbinfo->huge) {
1803 		loff_t i_size;
1804 		pgoff_t off;
1805 	case SHMEM_HUGE_NEVER:
1806 		goto alloc_nohuge;
1807 	case SHMEM_HUGE_WITHIN_SIZE:
1808 		off = round_up(index, HPAGE_PMD_NR);
1809 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1810 		if (i_size >= HPAGE_PMD_SIZE &&
1811 		    i_size >> PAGE_SHIFT >= off)
1812 			goto alloc_huge;
1813 		/* fallthrough */
1814 	case SHMEM_HUGE_ADVISE:
1815 		if (sgp_huge == SGP_HUGE)
1816 			goto alloc_huge;
1817 		/* TODO: implement fadvise() hints */
1818 		goto alloc_nohuge;
1819 	}
1820 
1821 alloc_huge:
1822 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1823 	if (IS_ERR(page)) {
1824 alloc_nohuge:
1825 		page = shmem_alloc_and_acct_page(gfp, inode,
1826 						 index, false);
1827 	}
1828 	if (IS_ERR(page)) {
1829 		int retry = 5;
1830 
1831 		error = PTR_ERR(page);
1832 		page = NULL;
1833 		if (error != -ENOSPC)
1834 			goto unlock;
1835 		/*
1836 		 * Try to reclaim some space by splitting a huge page
1837 		 * beyond i_size on the filesystem.
1838 		 */
1839 		while (retry--) {
1840 			int ret;
1841 
1842 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1843 			if (ret == SHRINK_STOP)
1844 				break;
1845 			if (ret)
1846 				goto alloc_nohuge;
1847 		}
1848 		goto unlock;
1849 	}
1850 
1851 	if (PageTransHuge(page))
1852 		hindex = round_down(index, HPAGE_PMD_NR);
1853 	else
1854 		hindex = index;
1855 
1856 	if (sgp == SGP_WRITE)
1857 		__SetPageReferenced(page);
1858 
1859 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1860 					    PageTransHuge(page));
1861 	if (error)
1862 		goto unacct;
1863 	error = shmem_add_to_page_cache(page, mapping, hindex,
1864 					NULL, gfp & GFP_RECLAIM_MASK);
1865 	if (error) {
1866 		mem_cgroup_cancel_charge(page, memcg,
1867 					 PageTransHuge(page));
1868 		goto unacct;
1869 	}
1870 	mem_cgroup_commit_charge(page, memcg, false,
1871 				 PageTransHuge(page));
1872 	lru_cache_add_anon(page);
1873 
1874 	spin_lock_irq(&info->lock);
1875 	info->alloced += 1 << compound_order(page);
1876 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1877 	shmem_recalc_inode(inode);
1878 	spin_unlock_irq(&info->lock);
1879 	alloced = true;
1880 
1881 	if (PageTransHuge(page) &&
1882 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1883 			hindex + HPAGE_PMD_NR - 1) {
1884 		/*
1885 		 * Part of the huge page is beyond i_size: subject
1886 		 * to shrink under memory pressure.
1887 		 */
1888 		spin_lock(&sbinfo->shrinklist_lock);
1889 		/*
1890 		 * _careful to defend against unlocked access to
1891 		 * ->shrink_list in shmem_unused_huge_shrink()
1892 		 */
1893 		if (list_empty_careful(&info->shrinklist)) {
1894 			list_add_tail(&info->shrinklist,
1895 				      &sbinfo->shrinklist);
1896 			sbinfo->shrinklist_len++;
1897 		}
1898 		spin_unlock(&sbinfo->shrinklist_lock);
1899 	}
1900 
1901 	/*
1902 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1903 	 */
1904 	if (sgp == SGP_FALLOC)
1905 		sgp = SGP_WRITE;
1906 clear:
1907 	/*
1908 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1909 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1910 	 * it now, lest undo on failure cancel our earlier guarantee.
1911 	 */
1912 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1913 		struct page *head = compound_head(page);
1914 		int i;
1915 
1916 		for (i = 0; i < (1 << compound_order(head)); i++) {
1917 			clear_highpage(head + i);
1918 			flush_dcache_page(head + i);
1919 		}
1920 		SetPageUptodate(head);
1921 	}
1922 
1923 	/* Perhaps the file has been truncated since we checked */
1924 	if (sgp <= SGP_CACHE &&
1925 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1926 		if (alloced) {
1927 			ClearPageDirty(page);
1928 			delete_from_page_cache(page);
1929 			spin_lock_irq(&info->lock);
1930 			shmem_recalc_inode(inode);
1931 			spin_unlock_irq(&info->lock);
1932 		}
1933 		error = -EINVAL;
1934 		goto unlock;
1935 	}
1936 	*pagep = page + index - hindex;
1937 	return 0;
1938 
1939 	/*
1940 	 * Error recovery.
1941 	 */
1942 unacct:
1943 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1944 
1945 	if (PageTransHuge(page)) {
1946 		unlock_page(page);
1947 		put_page(page);
1948 		goto alloc_nohuge;
1949 	}
1950 unlock:
1951 	if (page) {
1952 		unlock_page(page);
1953 		put_page(page);
1954 	}
1955 	if (error == -ENOSPC && !once++) {
1956 		spin_lock_irq(&info->lock);
1957 		shmem_recalc_inode(inode);
1958 		spin_unlock_irq(&info->lock);
1959 		goto repeat;
1960 	}
1961 	if (error == -EEXIST)
1962 		goto repeat;
1963 	return error;
1964 }
1965 
1966 /*
1967  * This is like autoremove_wake_function, but it removes the wait queue
1968  * entry unconditionally - even if something else had already woken the
1969  * target.
1970  */
1971 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1972 {
1973 	int ret = default_wake_function(wait, mode, sync, key);
1974 	list_del_init(&wait->entry);
1975 	return ret;
1976 }
1977 
1978 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1979 {
1980 	struct vm_area_struct *vma = vmf->vma;
1981 	struct inode *inode = file_inode(vma->vm_file);
1982 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1983 	enum sgp_type sgp;
1984 	int err;
1985 	vm_fault_t ret = VM_FAULT_LOCKED;
1986 
1987 	/*
1988 	 * Trinity finds that probing a hole which tmpfs is punching can
1989 	 * prevent the hole-punch from ever completing: which in turn
1990 	 * locks writers out with its hold on i_mutex.  So refrain from
1991 	 * faulting pages into the hole while it's being punched.  Although
1992 	 * shmem_undo_range() does remove the additions, it may be unable to
1993 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1994 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1995 	 *
1996 	 * It does not matter if we sometimes reach this check just before the
1997 	 * hole-punch begins, so that one fault then races with the punch:
1998 	 * we just need to make racing faults a rare case.
1999 	 *
2000 	 * The implementation below would be much simpler if we just used a
2001 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2002 	 * and bloating every shmem inode for this unlikely case would be sad.
2003 	 */
2004 	if (unlikely(inode->i_private)) {
2005 		struct shmem_falloc *shmem_falloc;
2006 
2007 		spin_lock(&inode->i_lock);
2008 		shmem_falloc = inode->i_private;
2009 		if (shmem_falloc &&
2010 		    shmem_falloc->waitq &&
2011 		    vmf->pgoff >= shmem_falloc->start &&
2012 		    vmf->pgoff < shmem_falloc->next) {
2013 			wait_queue_head_t *shmem_falloc_waitq;
2014 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2015 
2016 			ret = VM_FAULT_NOPAGE;
2017 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2018 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
2019 				/* It's polite to up mmap_sem if we can */
2020 				up_read(&vma->vm_mm->mmap_sem);
2021 				ret = VM_FAULT_RETRY;
2022 			}
2023 
2024 			shmem_falloc_waitq = shmem_falloc->waitq;
2025 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2026 					TASK_UNINTERRUPTIBLE);
2027 			spin_unlock(&inode->i_lock);
2028 			schedule();
2029 
2030 			/*
2031 			 * shmem_falloc_waitq points into the shmem_fallocate()
2032 			 * stack of the hole-punching task: shmem_falloc_waitq
2033 			 * is usually invalid by the time we reach here, but
2034 			 * finish_wait() does not dereference it in that case;
2035 			 * though i_lock needed lest racing with wake_up_all().
2036 			 */
2037 			spin_lock(&inode->i_lock);
2038 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2039 			spin_unlock(&inode->i_lock);
2040 			return ret;
2041 		}
2042 		spin_unlock(&inode->i_lock);
2043 	}
2044 
2045 	sgp = SGP_CACHE;
2046 
2047 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2048 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2049 		sgp = SGP_NOHUGE;
2050 	else if (vma->vm_flags & VM_HUGEPAGE)
2051 		sgp = SGP_HUGE;
2052 
2053 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2054 				  gfp, vma, vmf, &ret);
2055 	if (err)
2056 		return vmf_error(err);
2057 	return ret;
2058 }
2059 
2060 unsigned long shmem_get_unmapped_area(struct file *file,
2061 				      unsigned long uaddr, unsigned long len,
2062 				      unsigned long pgoff, unsigned long flags)
2063 {
2064 	unsigned long (*get_area)(struct file *,
2065 		unsigned long, unsigned long, unsigned long, unsigned long);
2066 	unsigned long addr;
2067 	unsigned long offset;
2068 	unsigned long inflated_len;
2069 	unsigned long inflated_addr;
2070 	unsigned long inflated_offset;
2071 
2072 	if (len > TASK_SIZE)
2073 		return -ENOMEM;
2074 
2075 	get_area = current->mm->get_unmapped_area;
2076 	addr = get_area(file, uaddr, len, pgoff, flags);
2077 
2078 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2079 		return addr;
2080 	if (IS_ERR_VALUE(addr))
2081 		return addr;
2082 	if (addr & ~PAGE_MASK)
2083 		return addr;
2084 	if (addr > TASK_SIZE - len)
2085 		return addr;
2086 
2087 	if (shmem_huge == SHMEM_HUGE_DENY)
2088 		return addr;
2089 	if (len < HPAGE_PMD_SIZE)
2090 		return addr;
2091 	if (flags & MAP_FIXED)
2092 		return addr;
2093 	/*
2094 	 * Our priority is to support MAP_SHARED mapped hugely;
2095 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2096 	 * But if caller specified an address hint, respect that as before.
2097 	 */
2098 	if (uaddr)
2099 		return addr;
2100 
2101 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2102 		struct super_block *sb;
2103 
2104 		if (file) {
2105 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2106 			sb = file_inode(file)->i_sb;
2107 		} else {
2108 			/*
2109 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2110 			 * for "/dev/zero", to create a shared anonymous object.
2111 			 */
2112 			if (IS_ERR(shm_mnt))
2113 				return addr;
2114 			sb = shm_mnt->mnt_sb;
2115 		}
2116 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2117 			return addr;
2118 	}
2119 
2120 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2121 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2122 		return addr;
2123 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2124 		return addr;
2125 
2126 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2127 	if (inflated_len > TASK_SIZE)
2128 		return addr;
2129 	if (inflated_len < len)
2130 		return addr;
2131 
2132 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2133 	if (IS_ERR_VALUE(inflated_addr))
2134 		return addr;
2135 	if (inflated_addr & ~PAGE_MASK)
2136 		return addr;
2137 
2138 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2139 	inflated_addr += offset - inflated_offset;
2140 	if (inflated_offset > offset)
2141 		inflated_addr += HPAGE_PMD_SIZE;
2142 
2143 	if (inflated_addr > TASK_SIZE - len)
2144 		return addr;
2145 	return inflated_addr;
2146 }
2147 
2148 #ifdef CONFIG_NUMA
2149 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2150 {
2151 	struct inode *inode = file_inode(vma->vm_file);
2152 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2153 }
2154 
2155 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2156 					  unsigned long addr)
2157 {
2158 	struct inode *inode = file_inode(vma->vm_file);
2159 	pgoff_t index;
2160 
2161 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2162 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2163 }
2164 #endif
2165 
2166 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2167 {
2168 	struct inode *inode = file_inode(file);
2169 	struct shmem_inode_info *info = SHMEM_I(inode);
2170 	int retval = -ENOMEM;
2171 
2172 	spin_lock_irq(&info->lock);
2173 	if (lock && !(info->flags & VM_LOCKED)) {
2174 		if (!user_shm_lock(inode->i_size, user))
2175 			goto out_nomem;
2176 		info->flags |= VM_LOCKED;
2177 		mapping_set_unevictable(file->f_mapping);
2178 	}
2179 	if (!lock && (info->flags & VM_LOCKED) && user) {
2180 		user_shm_unlock(inode->i_size, user);
2181 		info->flags &= ~VM_LOCKED;
2182 		mapping_clear_unevictable(file->f_mapping);
2183 	}
2184 	retval = 0;
2185 
2186 out_nomem:
2187 	spin_unlock_irq(&info->lock);
2188 	return retval;
2189 }
2190 
2191 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2192 {
2193 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2194 
2195 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2196 		/*
2197 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2198 		 * "future write" seal active.
2199 		 */
2200 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2201 			return -EPERM;
2202 
2203 		/*
2204 		 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2205 		 * read-only mapping, take care to not allow mprotect to revert
2206 		 * protections.
2207 		 */
2208 		vma->vm_flags &= ~(VM_MAYWRITE);
2209 	}
2210 
2211 	file_accessed(file);
2212 	vma->vm_ops = &shmem_vm_ops;
2213 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2214 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2215 			(vma->vm_end & HPAGE_PMD_MASK)) {
2216 		khugepaged_enter(vma, vma->vm_flags);
2217 	}
2218 	return 0;
2219 }
2220 
2221 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2222 				     umode_t mode, dev_t dev, unsigned long flags)
2223 {
2224 	struct inode *inode;
2225 	struct shmem_inode_info *info;
2226 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2227 
2228 	if (shmem_reserve_inode(sb))
2229 		return NULL;
2230 
2231 	inode = new_inode(sb);
2232 	if (inode) {
2233 		inode->i_ino = get_next_ino();
2234 		inode_init_owner(inode, dir, mode);
2235 		inode->i_blocks = 0;
2236 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2237 		inode->i_generation = prandom_u32();
2238 		info = SHMEM_I(inode);
2239 		memset(info, 0, (char *)inode - (char *)info);
2240 		spin_lock_init(&info->lock);
2241 		info->seals = F_SEAL_SEAL;
2242 		info->flags = flags & VM_NORESERVE;
2243 		INIT_LIST_HEAD(&info->shrinklist);
2244 		INIT_LIST_HEAD(&info->swaplist);
2245 		simple_xattrs_init(&info->xattrs);
2246 		cache_no_acl(inode);
2247 
2248 		switch (mode & S_IFMT) {
2249 		default:
2250 			inode->i_op = &shmem_special_inode_operations;
2251 			init_special_inode(inode, mode, dev);
2252 			break;
2253 		case S_IFREG:
2254 			inode->i_mapping->a_ops = &shmem_aops;
2255 			inode->i_op = &shmem_inode_operations;
2256 			inode->i_fop = &shmem_file_operations;
2257 			mpol_shared_policy_init(&info->policy,
2258 						 shmem_get_sbmpol(sbinfo));
2259 			break;
2260 		case S_IFDIR:
2261 			inc_nlink(inode);
2262 			/* Some things misbehave if size == 0 on a directory */
2263 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2264 			inode->i_op = &shmem_dir_inode_operations;
2265 			inode->i_fop = &simple_dir_operations;
2266 			break;
2267 		case S_IFLNK:
2268 			/*
2269 			 * Must not load anything in the rbtree,
2270 			 * mpol_free_shared_policy will not be called.
2271 			 */
2272 			mpol_shared_policy_init(&info->policy, NULL);
2273 			break;
2274 		}
2275 
2276 		lockdep_annotate_inode_mutex_key(inode);
2277 	} else
2278 		shmem_free_inode(sb);
2279 	return inode;
2280 }
2281 
2282 bool shmem_mapping(struct address_space *mapping)
2283 {
2284 	return mapping->a_ops == &shmem_aops;
2285 }
2286 
2287 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2288 				  pmd_t *dst_pmd,
2289 				  struct vm_area_struct *dst_vma,
2290 				  unsigned long dst_addr,
2291 				  unsigned long src_addr,
2292 				  bool zeropage,
2293 				  struct page **pagep)
2294 {
2295 	struct inode *inode = file_inode(dst_vma->vm_file);
2296 	struct shmem_inode_info *info = SHMEM_I(inode);
2297 	struct address_space *mapping = inode->i_mapping;
2298 	gfp_t gfp = mapping_gfp_mask(mapping);
2299 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2300 	struct mem_cgroup *memcg;
2301 	spinlock_t *ptl;
2302 	void *page_kaddr;
2303 	struct page *page;
2304 	pte_t _dst_pte, *dst_pte;
2305 	int ret;
2306 	pgoff_t offset, max_off;
2307 
2308 	ret = -ENOMEM;
2309 	if (!shmem_inode_acct_block(inode, 1))
2310 		goto out;
2311 
2312 	if (!*pagep) {
2313 		page = shmem_alloc_page(gfp, info, pgoff);
2314 		if (!page)
2315 			goto out_unacct_blocks;
2316 
2317 		if (!zeropage) {	/* mcopy_atomic */
2318 			page_kaddr = kmap_atomic(page);
2319 			ret = copy_from_user(page_kaddr,
2320 					     (const void __user *)src_addr,
2321 					     PAGE_SIZE);
2322 			kunmap_atomic(page_kaddr);
2323 
2324 			/* fallback to copy_from_user outside mmap_sem */
2325 			if (unlikely(ret)) {
2326 				*pagep = page;
2327 				shmem_inode_unacct_blocks(inode, 1);
2328 				/* don't free the page */
2329 				return -ENOENT;
2330 			}
2331 		} else {		/* mfill_zeropage_atomic */
2332 			clear_highpage(page);
2333 		}
2334 	} else {
2335 		page = *pagep;
2336 		*pagep = NULL;
2337 	}
2338 
2339 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2340 	__SetPageLocked(page);
2341 	__SetPageSwapBacked(page);
2342 	__SetPageUptodate(page);
2343 
2344 	ret = -EFAULT;
2345 	offset = linear_page_index(dst_vma, dst_addr);
2346 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2347 	if (unlikely(offset >= max_off))
2348 		goto out_release;
2349 
2350 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2351 	if (ret)
2352 		goto out_release;
2353 
2354 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2355 						gfp & GFP_RECLAIM_MASK);
2356 	if (ret)
2357 		goto out_release_uncharge;
2358 
2359 	mem_cgroup_commit_charge(page, memcg, false, false);
2360 
2361 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2362 	if (dst_vma->vm_flags & VM_WRITE)
2363 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2364 	else {
2365 		/*
2366 		 * We don't set the pte dirty if the vma has no
2367 		 * VM_WRITE permission, so mark the page dirty or it
2368 		 * could be freed from under us. We could do it
2369 		 * unconditionally before unlock_page(), but doing it
2370 		 * only if VM_WRITE is not set is faster.
2371 		 */
2372 		set_page_dirty(page);
2373 	}
2374 
2375 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2376 
2377 	ret = -EFAULT;
2378 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2379 	if (unlikely(offset >= max_off))
2380 		goto out_release_uncharge_unlock;
2381 
2382 	ret = -EEXIST;
2383 	if (!pte_none(*dst_pte))
2384 		goto out_release_uncharge_unlock;
2385 
2386 	lru_cache_add_anon(page);
2387 
2388 	spin_lock(&info->lock);
2389 	info->alloced++;
2390 	inode->i_blocks += BLOCKS_PER_PAGE;
2391 	shmem_recalc_inode(inode);
2392 	spin_unlock(&info->lock);
2393 
2394 	inc_mm_counter(dst_mm, mm_counter_file(page));
2395 	page_add_file_rmap(page, false);
2396 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2397 
2398 	/* No need to invalidate - it was non-present before */
2399 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2400 	pte_unmap_unlock(dst_pte, ptl);
2401 	unlock_page(page);
2402 	ret = 0;
2403 out:
2404 	return ret;
2405 out_release_uncharge_unlock:
2406 	pte_unmap_unlock(dst_pte, ptl);
2407 	ClearPageDirty(page);
2408 	delete_from_page_cache(page);
2409 out_release_uncharge:
2410 	mem_cgroup_cancel_charge(page, memcg, false);
2411 out_release:
2412 	unlock_page(page);
2413 	put_page(page);
2414 out_unacct_blocks:
2415 	shmem_inode_unacct_blocks(inode, 1);
2416 	goto out;
2417 }
2418 
2419 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2420 			   pmd_t *dst_pmd,
2421 			   struct vm_area_struct *dst_vma,
2422 			   unsigned long dst_addr,
2423 			   unsigned long src_addr,
2424 			   struct page **pagep)
2425 {
2426 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2427 				      dst_addr, src_addr, false, pagep);
2428 }
2429 
2430 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2431 			     pmd_t *dst_pmd,
2432 			     struct vm_area_struct *dst_vma,
2433 			     unsigned long dst_addr)
2434 {
2435 	struct page *page = NULL;
2436 
2437 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2438 				      dst_addr, 0, true, &page);
2439 }
2440 
2441 #ifdef CONFIG_TMPFS
2442 static const struct inode_operations shmem_symlink_inode_operations;
2443 static const struct inode_operations shmem_short_symlink_operations;
2444 
2445 #ifdef CONFIG_TMPFS_XATTR
2446 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2447 #else
2448 #define shmem_initxattrs NULL
2449 #endif
2450 
2451 static int
2452 shmem_write_begin(struct file *file, struct address_space *mapping,
2453 			loff_t pos, unsigned len, unsigned flags,
2454 			struct page **pagep, void **fsdata)
2455 {
2456 	struct inode *inode = mapping->host;
2457 	struct shmem_inode_info *info = SHMEM_I(inode);
2458 	pgoff_t index = pos >> PAGE_SHIFT;
2459 
2460 	/* i_mutex is held by caller */
2461 	if (unlikely(info->seals & (F_SEAL_GROW |
2462 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2463 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2464 			return -EPERM;
2465 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2466 			return -EPERM;
2467 	}
2468 
2469 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2470 }
2471 
2472 static int
2473 shmem_write_end(struct file *file, struct address_space *mapping,
2474 			loff_t pos, unsigned len, unsigned copied,
2475 			struct page *page, void *fsdata)
2476 {
2477 	struct inode *inode = mapping->host;
2478 
2479 	if (pos + copied > inode->i_size)
2480 		i_size_write(inode, pos + copied);
2481 
2482 	if (!PageUptodate(page)) {
2483 		struct page *head = compound_head(page);
2484 		if (PageTransCompound(page)) {
2485 			int i;
2486 
2487 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2488 				if (head + i == page)
2489 					continue;
2490 				clear_highpage(head + i);
2491 				flush_dcache_page(head + i);
2492 			}
2493 		}
2494 		if (copied < PAGE_SIZE) {
2495 			unsigned from = pos & (PAGE_SIZE - 1);
2496 			zero_user_segments(page, 0, from,
2497 					from + copied, PAGE_SIZE);
2498 		}
2499 		SetPageUptodate(head);
2500 	}
2501 	set_page_dirty(page);
2502 	unlock_page(page);
2503 	put_page(page);
2504 
2505 	return copied;
2506 }
2507 
2508 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2509 {
2510 	struct file *file = iocb->ki_filp;
2511 	struct inode *inode = file_inode(file);
2512 	struct address_space *mapping = inode->i_mapping;
2513 	pgoff_t index;
2514 	unsigned long offset;
2515 	enum sgp_type sgp = SGP_READ;
2516 	int error = 0;
2517 	ssize_t retval = 0;
2518 	loff_t *ppos = &iocb->ki_pos;
2519 
2520 	/*
2521 	 * Might this read be for a stacking filesystem?  Then when reading
2522 	 * holes of a sparse file, we actually need to allocate those pages,
2523 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2524 	 */
2525 	if (!iter_is_iovec(to))
2526 		sgp = SGP_CACHE;
2527 
2528 	index = *ppos >> PAGE_SHIFT;
2529 	offset = *ppos & ~PAGE_MASK;
2530 
2531 	for (;;) {
2532 		struct page *page = NULL;
2533 		pgoff_t end_index;
2534 		unsigned long nr, ret;
2535 		loff_t i_size = i_size_read(inode);
2536 
2537 		end_index = i_size >> PAGE_SHIFT;
2538 		if (index > end_index)
2539 			break;
2540 		if (index == end_index) {
2541 			nr = i_size & ~PAGE_MASK;
2542 			if (nr <= offset)
2543 				break;
2544 		}
2545 
2546 		error = shmem_getpage(inode, index, &page, sgp);
2547 		if (error) {
2548 			if (error == -EINVAL)
2549 				error = 0;
2550 			break;
2551 		}
2552 		if (page) {
2553 			if (sgp == SGP_CACHE)
2554 				set_page_dirty(page);
2555 			unlock_page(page);
2556 		}
2557 
2558 		/*
2559 		 * We must evaluate after, since reads (unlike writes)
2560 		 * are called without i_mutex protection against truncate
2561 		 */
2562 		nr = PAGE_SIZE;
2563 		i_size = i_size_read(inode);
2564 		end_index = i_size >> PAGE_SHIFT;
2565 		if (index == end_index) {
2566 			nr = i_size & ~PAGE_MASK;
2567 			if (nr <= offset) {
2568 				if (page)
2569 					put_page(page);
2570 				break;
2571 			}
2572 		}
2573 		nr -= offset;
2574 
2575 		if (page) {
2576 			/*
2577 			 * If users can be writing to this page using arbitrary
2578 			 * virtual addresses, take care about potential aliasing
2579 			 * before reading the page on the kernel side.
2580 			 */
2581 			if (mapping_writably_mapped(mapping))
2582 				flush_dcache_page(page);
2583 			/*
2584 			 * Mark the page accessed if we read the beginning.
2585 			 */
2586 			if (!offset)
2587 				mark_page_accessed(page);
2588 		} else {
2589 			page = ZERO_PAGE(0);
2590 			get_page(page);
2591 		}
2592 
2593 		/*
2594 		 * Ok, we have the page, and it's up-to-date, so
2595 		 * now we can copy it to user space...
2596 		 */
2597 		ret = copy_page_to_iter(page, offset, nr, to);
2598 		retval += ret;
2599 		offset += ret;
2600 		index += offset >> PAGE_SHIFT;
2601 		offset &= ~PAGE_MASK;
2602 
2603 		put_page(page);
2604 		if (!iov_iter_count(to))
2605 			break;
2606 		if (ret < nr) {
2607 			error = -EFAULT;
2608 			break;
2609 		}
2610 		cond_resched();
2611 	}
2612 
2613 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2614 	file_accessed(file);
2615 	return retval ? retval : error;
2616 }
2617 
2618 /*
2619  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2620  */
2621 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2622 				    pgoff_t index, pgoff_t end, int whence)
2623 {
2624 	struct page *page;
2625 	struct pagevec pvec;
2626 	pgoff_t indices[PAGEVEC_SIZE];
2627 	bool done = false;
2628 	int i;
2629 
2630 	pagevec_init(&pvec);
2631 	pvec.nr = 1;		/* start small: we may be there already */
2632 	while (!done) {
2633 		pvec.nr = find_get_entries(mapping, index,
2634 					pvec.nr, pvec.pages, indices);
2635 		if (!pvec.nr) {
2636 			if (whence == SEEK_DATA)
2637 				index = end;
2638 			break;
2639 		}
2640 		for (i = 0; i < pvec.nr; i++, index++) {
2641 			if (index < indices[i]) {
2642 				if (whence == SEEK_HOLE) {
2643 					done = true;
2644 					break;
2645 				}
2646 				index = indices[i];
2647 			}
2648 			page = pvec.pages[i];
2649 			if (page && !xa_is_value(page)) {
2650 				if (!PageUptodate(page))
2651 					page = NULL;
2652 			}
2653 			if (index >= end ||
2654 			    (page && whence == SEEK_DATA) ||
2655 			    (!page && whence == SEEK_HOLE)) {
2656 				done = true;
2657 				break;
2658 			}
2659 		}
2660 		pagevec_remove_exceptionals(&pvec);
2661 		pagevec_release(&pvec);
2662 		pvec.nr = PAGEVEC_SIZE;
2663 		cond_resched();
2664 	}
2665 	return index;
2666 }
2667 
2668 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2669 {
2670 	struct address_space *mapping = file->f_mapping;
2671 	struct inode *inode = mapping->host;
2672 	pgoff_t start, end;
2673 	loff_t new_offset;
2674 
2675 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2676 		return generic_file_llseek_size(file, offset, whence,
2677 					MAX_LFS_FILESIZE, i_size_read(inode));
2678 	inode_lock(inode);
2679 	/* We're holding i_mutex so we can access i_size directly */
2680 
2681 	if (offset < 0 || offset >= inode->i_size)
2682 		offset = -ENXIO;
2683 	else {
2684 		start = offset >> PAGE_SHIFT;
2685 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2686 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2687 		new_offset <<= PAGE_SHIFT;
2688 		if (new_offset > offset) {
2689 			if (new_offset < inode->i_size)
2690 				offset = new_offset;
2691 			else if (whence == SEEK_DATA)
2692 				offset = -ENXIO;
2693 			else
2694 				offset = inode->i_size;
2695 		}
2696 	}
2697 
2698 	if (offset >= 0)
2699 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2700 	inode_unlock(inode);
2701 	return offset;
2702 }
2703 
2704 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2705 							 loff_t len)
2706 {
2707 	struct inode *inode = file_inode(file);
2708 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2709 	struct shmem_inode_info *info = SHMEM_I(inode);
2710 	struct shmem_falloc shmem_falloc;
2711 	pgoff_t start, index, end;
2712 	int error;
2713 
2714 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2715 		return -EOPNOTSUPP;
2716 
2717 	inode_lock(inode);
2718 
2719 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2720 		struct address_space *mapping = file->f_mapping;
2721 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2722 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2723 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2724 
2725 		/* protected by i_mutex */
2726 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2727 			error = -EPERM;
2728 			goto out;
2729 		}
2730 
2731 		shmem_falloc.waitq = &shmem_falloc_waitq;
2732 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2733 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2734 		spin_lock(&inode->i_lock);
2735 		inode->i_private = &shmem_falloc;
2736 		spin_unlock(&inode->i_lock);
2737 
2738 		if ((u64)unmap_end > (u64)unmap_start)
2739 			unmap_mapping_range(mapping, unmap_start,
2740 					    1 + unmap_end - unmap_start, 0);
2741 		shmem_truncate_range(inode, offset, offset + len - 1);
2742 		/* No need to unmap again: hole-punching leaves COWed pages */
2743 
2744 		spin_lock(&inode->i_lock);
2745 		inode->i_private = NULL;
2746 		wake_up_all(&shmem_falloc_waitq);
2747 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2748 		spin_unlock(&inode->i_lock);
2749 		error = 0;
2750 		goto out;
2751 	}
2752 
2753 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2754 	error = inode_newsize_ok(inode, offset + len);
2755 	if (error)
2756 		goto out;
2757 
2758 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2759 		error = -EPERM;
2760 		goto out;
2761 	}
2762 
2763 	start = offset >> PAGE_SHIFT;
2764 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2765 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2766 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2767 		error = -ENOSPC;
2768 		goto out;
2769 	}
2770 
2771 	shmem_falloc.waitq = NULL;
2772 	shmem_falloc.start = start;
2773 	shmem_falloc.next  = start;
2774 	shmem_falloc.nr_falloced = 0;
2775 	shmem_falloc.nr_unswapped = 0;
2776 	spin_lock(&inode->i_lock);
2777 	inode->i_private = &shmem_falloc;
2778 	spin_unlock(&inode->i_lock);
2779 
2780 	for (index = start; index < end; index++) {
2781 		struct page *page;
2782 
2783 		/*
2784 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2785 		 * been interrupted because we are using up too much memory.
2786 		 */
2787 		if (signal_pending(current))
2788 			error = -EINTR;
2789 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2790 			error = -ENOMEM;
2791 		else
2792 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2793 		if (error) {
2794 			/* Remove the !PageUptodate pages we added */
2795 			if (index > start) {
2796 				shmem_undo_range(inode,
2797 				    (loff_t)start << PAGE_SHIFT,
2798 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2799 			}
2800 			goto undone;
2801 		}
2802 
2803 		/*
2804 		 * Inform shmem_writepage() how far we have reached.
2805 		 * No need for lock or barrier: we have the page lock.
2806 		 */
2807 		shmem_falloc.next++;
2808 		if (!PageUptodate(page))
2809 			shmem_falloc.nr_falloced++;
2810 
2811 		/*
2812 		 * If !PageUptodate, leave it that way so that freeable pages
2813 		 * can be recognized if we need to rollback on error later.
2814 		 * But set_page_dirty so that memory pressure will swap rather
2815 		 * than free the pages we are allocating (and SGP_CACHE pages
2816 		 * might still be clean: we now need to mark those dirty too).
2817 		 */
2818 		set_page_dirty(page);
2819 		unlock_page(page);
2820 		put_page(page);
2821 		cond_resched();
2822 	}
2823 
2824 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2825 		i_size_write(inode, offset + len);
2826 	inode->i_ctime = current_time(inode);
2827 undone:
2828 	spin_lock(&inode->i_lock);
2829 	inode->i_private = NULL;
2830 	spin_unlock(&inode->i_lock);
2831 out:
2832 	inode_unlock(inode);
2833 	return error;
2834 }
2835 
2836 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2837 {
2838 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2839 
2840 	buf->f_type = TMPFS_MAGIC;
2841 	buf->f_bsize = PAGE_SIZE;
2842 	buf->f_namelen = NAME_MAX;
2843 	if (sbinfo->max_blocks) {
2844 		buf->f_blocks = sbinfo->max_blocks;
2845 		buf->f_bavail =
2846 		buf->f_bfree  = sbinfo->max_blocks -
2847 				percpu_counter_sum(&sbinfo->used_blocks);
2848 	}
2849 	if (sbinfo->max_inodes) {
2850 		buf->f_files = sbinfo->max_inodes;
2851 		buf->f_ffree = sbinfo->free_inodes;
2852 	}
2853 	/* else leave those fields 0 like simple_statfs */
2854 	return 0;
2855 }
2856 
2857 /*
2858  * File creation. Allocate an inode, and we're done..
2859  */
2860 static int
2861 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2862 {
2863 	struct inode *inode;
2864 	int error = -ENOSPC;
2865 
2866 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2867 	if (inode) {
2868 		error = simple_acl_create(dir, inode);
2869 		if (error)
2870 			goto out_iput;
2871 		error = security_inode_init_security(inode, dir,
2872 						     &dentry->d_name,
2873 						     shmem_initxattrs, NULL);
2874 		if (error && error != -EOPNOTSUPP)
2875 			goto out_iput;
2876 
2877 		error = 0;
2878 		dir->i_size += BOGO_DIRENT_SIZE;
2879 		dir->i_ctime = dir->i_mtime = current_time(dir);
2880 		d_instantiate(dentry, inode);
2881 		dget(dentry); /* Extra count - pin the dentry in core */
2882 	}
2883 	return error;
2884 out_iput:
2885 	iput(inode);
2886 	return error;
2887 }
2888 
2889 static int
2890 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2891 {
2892 	struct inode *inode;
2893 	int error = -ENOSPC;
2894 
2895 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2896 	if (inode) {
2897 		error = security_inode_init_security(inode, dir,
2898 						     NULL,
2899 						     shmem_initxattrs, NULL);
2900 		if (error && error != -EOPNOTSUPP)
2901 			goto out_iput;
2902 		error = simple_acl_create(dir, inode);
2903 		if (error)
2904 			goto out_iput;
2905 		d_tmpfile(dentry, inode);
2906 	}
2907 	return error;
2908 out_iput:
2909 	iput(inode);
2910 	return error;
2911 }
2912 
2913 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2914 {
2915 	int error;
2916 
2917 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2918 		return error;
2919 	inc_nlink(dir);
2920 	return 0;
2921 }
2922 
2923 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2924 		bool excl)
2925 {
2926 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2927 }
2928 
2929 /*
2930  * Link a file..
2931  */
2932 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2933 {
2934 	struct inode *inode = d_inode(old_dentry);
2935 	int ret = 0;
2936 
2937 	/*
2938 	 * No ordinary (disk based) filesystem counts links as inodes;
2939 	 * but each new link needs a new dentry, pinning lowmem, and
2940 	 * tmpfs dentries cannot be pruned until they are unlinked.
2941 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2942 	 * first link must skip that, to get the accounting right.
2943 	 */
2944 	if (inode->i_nlink) {
2945 		ret = shmem_reserve_inode(inode->i_sb);
2946 		if (ret)
2947 			goto out;
2948 	}
2949 
2950 	dir->i_size += BOGO_DIRENT_SIZE;
2951 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2952 	inc_nlink(inode);
2953 	ihold(inode);	/* New dentry reference */
2954 	dget(dentry);		/* Extra pinning count for the created dentry */
2955 	d_instantiate(dentry, inode);
2956 out:
2957 	return ret;
2958 }
2959 
2960 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2961 {
2962 	struct inode *inode = d_inode(dentry);
2963 
2964 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2965 		shmem_free_inode(inode->i_sb);
2966 
2967 	dir->i_size -= BOGO_DIRENT_SIZE;
2968 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2969 	drop_nlink(inode);
2970 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2971 	return 0;
2972 }
2973 
2974 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2975 {
2976 	if (!simple_empty(dentry))
2977 		return -ENOTEMPTY;
2978 
2979 	drop_nlink(d_inode(dentry));
2980 	drop_nlink(dir);
2981 	return shmem_unlink(dir, dentry);
2982 }
2983 
2984 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2985 {
2986 	bool old_is_dir = d_is_dir(old_dentry);
2987 	bool new_is_dir = d_is_dir(new_dentry);
2988 
2989 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2990 		if (old_is_dir) {
2991 			drop_nlink(old_dir);
2992 			inc_nlink(new_dir);
2993 		} else {
2994 			drop_nlink(new_dir);
2995 			inc_nlink(old_dir);
2996 		}
2997 	}
2998 	old_dir->i_ctime = old_dir->i_mtime =
2999 	new_dir->i_ctime = new_dir->i_mtime =
3000 	d_inode(old_dentry)->i_ctime =
3001 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3002 
3003 	return 0;
3004 }
3005 
3006 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3007 {
3008 	struct dentry *whiteout;
3009 	int error;
3010 
3011 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3012 	if (!whiteout)
3013 		return -ENOMEM;
3014 
3015 	error = shmem_mknod(old_dir, whiteout,
3016 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3017 	dput(whiteout);
3018 	if (error)
3019 		return error;
3020 
3021 	/*
3022 	 * Cheat and hash the whiteout while the old dentry is still in
3023 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3024 	 *
3025 	 * d_lookup() will consistently find one of them at this point,
3026 	 * not sure which one, but that isn't even important.
3027 	 */
3028 	d_rehash(whiteout);
3029 	return 0;
3030 }
3031 
3032 /*
3033  * The VFS layer already does all the dentry stuff for rename,
3034  * we just have to decrement the usage count for the target if
3035  * it exists so that the VFS layer correctly free's it when it
3036  * gets overwritten.
3037  */
3038 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3039 {
3040 	struct inode *inode = d_inode(old_dentry);
3041 	int they_are_dirs = S_ISDIR(inode->i_mode);
3042 
3043 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3044 		return -EINVAL;
3045 
3046 	if (flags & RENAME_EXCHANGE)
3047 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3048 
3049 	if (!simple_empty(new_dentry))
3050 		return -ENOTEMPTY;
3051 
3052 	if (flags & RENAME_WHITEOUT) {
3053 		int error;
3054 
3055 		error = shmem_whiteout(old_dir, old_dentry);
3056 		if (error)
3057 			return error;
3058 	}
3059 
3060 	if (d_really_is_positive(new_dentry)) {
3061 		(void) shmem_unlink(new_dir, new_dentry);
3062 		if (they_are_dirs) {
3063 			drop_nlink(d_inode(new_dentry));
3064 			drop_nlink(old_dir);
3065 		}
3066 	} else if (they_are_dirs) {
3067 		drop_nlink(old_dir);
3068 		inc_nlink(new_dir);
3069 	}
3070 
3071 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3072 	new_dir->i_size += BOGO_DIRENT_SIZE;
3073 	old_dir->i_ctime = old_dir->i_mtime =
3074 	new_dir->i_ctime = new_dir->i_mtime =
3075 	inode->i_ctime = current_time(old_dir);
3076 	return 0;
3077 }
3078 
3079 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3080 {
3081 	int error;
3082 	int len;
3083 	struct inode *inode;
3084 	struct page *page;
3085 
3086 	len = strlen(symname) + 1;
3087 	if (len > PAGE_SIZE)
3088 		return -ENAMETOOLONG;
3089 
3090 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3091 				VM_NORESERVE);
3092 	if (!inode)
3093 		return -ENOSPC;
3094 
3095 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3096 					     shmem_initxattrs, NULL);
3097 	if (error) {
3098 		if (error != -EOPNOTSUPP) {
3099 			iput(inode);
3100 			return error;
3101 		}
3102 		error = 0;
3103 	}
3104 
3105 	inode->i_size = len-1;
3106 	if (len <= SHORT_SYMLINK_LEN) {
3107 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3108 		if (!inode->i_link) {
3109 			iput(inode);
3110 			return -ENOMEM;
3111 		}
3112 		inode->i_op = &shmem_short_symlink_operations;
3113 	} else {
3114 		inode_nohighmem(inode);
3115 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3116 		if (error) {
3117 			iput(inode);
3118 			return error;
3119 		}
3120 		inode->i_mapping->a_ops = &shmem_aops;
3121 		inode->i_op = &shmem_symlink_inode_operations;
3122 		memcpy(page_address(page), symname, len);
3123 		SetPageUptodate(page);
3124 		set_page_dirty(page);
3125 		unlock_page(page);
3126 		put_page(page);
3127 	}
3128 	dir->i_size += BOGO_DIRENT_SIZE;
3129 	dir->i_ctime = dir->i_mtime = current_time(dir);
3130 	d_instantiate(dentry, inode);
3131 	dget(dentry);
3132 	return 0;
3133 }
3134 
3135 static void shmem_put_link(void *arg)
3136 {
3137 	mark_page_accessed(arg);
3138 	put_page(arg);
3139 }
3140 
3141 static const char *shmem_get_link(struct dentry *dentry,
3142 				  struct inode *inode,
3143 				  struct delayed_call *done)
3144 {
3145 	struct page *page = NULL;
3146 	int error;
3147 	if (!dentry) {
3148 		page = find_get_page(inode->i_mapping, 0);
3149 		if (!page)
3150 			return ERR_PTR(-ECHILD);
3151 		if (!PageUptodate(page)) {
3152 			put_page(page);
3153 			return ERR_PTR(-ECHILD);
3154 		}
3155 	} else {
3156 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3157 		if (error)
3158 			return ERR_PTR(error);
3159 		unlock_page(page);
3160 	}
3161 	set_delayed_call(done, shmem_put_link, page);
3162 	return page_address(page);
3163 }
3164 
3165 #ifdef CONFIG_TMPFS_XATTR
3166 /*
3167  * Superblocks without xattr inode operations may get some security.* xattr
3168  * support from the LSM "for free". As soon as we have any other xattrs
3169  * like ACLs, we also need to implement the security.* handlers at
3170  * filesystem level, though.
3171  */
3172 
3173 /*
3174  * Callback for security_inode_init_security() for acquiring xattrs.
3175  */
3176 static int shmem_initxattrs(struct inode *inode,
3177 			    const struct xattr *xattr_array,
3178 			    void *fs_info)
3179 {
3180 	struct shmem_inode_info *info = SHMEM_I(inode);
3181 	const struct xattr *xattr;
3182 	struct simple_xattr *new_xattr;
3183 	size_t len;
3184 
3185 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3186 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3187 		if (!new_xattr)
3188 			return -ENOMEM;
3189 
3190 		len = strlen(xattr->name) + 1;
3191 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3192 					  GFP_KERNEL);
3193 		if (!new_xattr->name) {
3194 			kfree(new_xattr);
3195 			return -ENOMEM;
3196 		}
3197 
3198 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3199 		       XATTR_SECURITY_PREFIX_LEN);
3200 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3201 		       xattr->name, len);
3202 
3203 		simple_xattr_list_add(&info->xattrs, new_xattr);
3204 	}
3205 
3206 	return 0;
3207 }
3208 
3209 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3210 				   struct dentry *unused, struct inode *inode,
3211 				   const char *name, void *buffer, size_t size)
3212 {
3213 	struct shmem_inode_info *info = SHMEM_I(inode);
3214 
3215 	name = xattr_full_name(handler, name);
3216 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3217 }
3218 
3219 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3220 				   struct dentry *unused, struct inode *inode,
3221 				   const char *name, const void *value,
3222 				   size_t size, int flags)
3223 {
3224 	struct shmem_inode_info *info = SHMEM_I(inode);
3225 
3226 	name = xattr_full_name(handler, name);
3227 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3228 }
3229 
3230 static const struct xattr_handler shmem_security_xattr_handler = {
3231 	.prefix = XATTR_SECURITY_PREFIX,
3232 	.get = shmem_xattr_handler_get,
3233 	.set = shmem_xattr_handler_set,
3234 };
3235 
3236 static const struct xattr_handler shmem_trusted_xattr_handler = {
3237 	.prefix = XATTR_TRUSTED_PREFIX,
3238 	.get = shmem_xattr_handler_get,
3239 	.set = shmem_xattr_handler_set,
3240 };
3241 
3242 static const struct xattr_handler *shmem_xattr_handlers[] = {
3243 #ifdef CONFIG_TMPFS_POSIX_ACL
3244 	&posix_acl_access_xattr_handler,
3245 	&posix_acl_default_xattr_handler,
3246 #endif
3247 	&shmem_security_xattr_handler,
3248 	&shmem_trusted_xattr_handler,
3249 	NULL
3250 };
3251 
3252 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3253 {
3254 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3255 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3256 }
3257 #endif /* CONFIG_TMPFS_XATTR */
3258 
3259 static const struct inode_operations shmem_short_symlink_operations = {
3260 	.get_link	= simple_get_link,
3261 #ifdef CONFIG_TMPFS_XATTR
3262 	.listxattr	= shmem_listxattr,
3263 #endif
3264 };
3265 
3266 static const struct inode_operations shmem_symlink_inode_operations = {
3267 	.get_link	= shmem_get_link,
3268 #ifdef CONFIG_TMPFS_XATTR
3269 	.listxattr	= shmem_listxattr,
3270 #endif
3271 };
3272 
3273 static struct dentry *shmem_get_parent(struct dentry *child)
3274 {
3275 	return ERR_PTR(-ESTALE);
3276 }
3277 
3278 static int shmem_match(struct inode *ino, void *vfh)
3279 {
3280 	__u32 *fh = vfh;
3281 	__u64 inum = fh[2];
3282 	inum = (inum << 32) | fh[1];
3283 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3284 }
3285 
3286 /* Find any alias of inode, but prefer a hashed alias */
3287 static struct dentry *shmem_find_alias(struct inode *inode)
3288 {
3289 	struct dentry *alias = d_find_alias(inode);
3290 
3291 	return alias ?: d_find_any_alias(inode);
3292 }
3293 
3294 
3295 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3296 		struct fid *fid, int fh_len, int fh_type)
3297 {
3298 	struct inode *inode;
3299 	struct dentry *dentry = NULL;
3300 	u64 inum;
3301 
3302 	if (fh_len < 3)
3303 		return NULL;
3304 
3305 	inum = fid->raw[2];
3306 	inum = (inum << 32) | fid->raw[1];
3307 
3308 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3309 			shmem_match, fid->raw);
3310 	if (inode) {
3311 		dentry = shmem_find_alias(inode);
3312 		iput(inode);
3313 	}
3314 
3315 	return dentry;
3316 }
3317 
3318 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3319 				struct inode *parent)
3320 {
3321 	if (*len < 3) {
3322 		*len = 3;
3323 		return FILEID_INVALID;
3324 	}
3325 
3326 	if (inode_unhashed(inode)) {
3327 		/* Unfortunately insert_inode_hash is not idempotent,
3328 		 * so as we hash inodes here rather than at creation
3329 		 * time, we need a lock to ensure we only try
3330 		 * to do it once
3331 		 */
3332 		static DEFINE_SPINLOCK(lock);
3333 		spin_lock(&lock);
3334 		if (inode_unhashed(inode))
3335 			__insert_inode_hash(inode,
3336 					    inode->i_ino + inode->i_generation);
3337 		spin_unlock(&lock);
3338 	}
3339 
3340 	fh[0] = inode->i_generation;
3341 	fh[1] = inode->i_ino;
3342 	fh[2] = ((__u64)inode->i_ino) >> 32;
3343 
3344 	*len = 3;
3345 	return 1;
3346 }
3347 
3348 static const struct export_operations shmem_export_ops = {
3349 	.get_parent     = shmem_get_parent,
3350 	.encode_fh      = shmem_encode_fh,
3351 	.fh_to_dentry	= shmem_fh_to_dentry,
3352 };
3353 
3354 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3355 			       bool remount)
3356 {
3357 	char *this_char, *value, *rest;
3358 	struct mempolicy *mpol = NULL;
3359 	uid_t uid;
3360 	gid_t gid;
3361 
3362 	while (options != NULL) {
3363 		this_char = options;
3364 		for (;;) {
3365 			/*
3366 			 * NUL-terminate this option: unfortunately,
3367 			 * mount options form a comma-separated list,
3368 			 * but mpol's nodelist may also contain commas.
3369 			 */
3370 			options = strchr(options, ',');
3371 			if (options == NULL)
3372 				break;
3373 			options++;
3374 			if (!isdigit(*options)) {
3375 				options[-1] = '\0';
3376 				break;
3377 			}
3378 		}
3379 		if (!*this_char)
3380 			continue;
3381 		if ((value = strchr(this_char,'=')) != NULL) {
3382 			*value++ = 0;
3383 		} else {
3384 			pr_err("tmpfs: No value for mount option '%s'\n",
3385 			       this_char);
3386 			goto error;
3387 		}
3388 
3389 		if (!strcmp(this_char,"size")) {
3390 			unsigned long long size;
3391 			size = memparse(value,&rest);
3392 			if (*rest == '%') {
3393 				size <<= PAGE_SHIFT;
3394 				size *= totalram_pages();
3395 				do_div(size, 100);
3396 				rest++;
3397 			}
3398 			if (*rest)
3399 				goto bad_val;
3400 			sbinfo->max_blocks =
3401 				DIV_ROUND_UP(size, PAGE_SIZE);
3402 		} else if (!strcmp(this_char,"nr_blocks")) {
3403 			sbinfo->max_blocks = memparse(value, &rest);
3404 			if (*rest)
3405 				goto bad_val;
3406 		} else if (!strcmp(this_char,"nr_inodes")) {
3407 			sbinfo->max_inodes = memparse(value, &rest);
3408 			if (*rest)
3409 				goto bad_val;
3410 		} else if (!strcmp(this_char,"mode")) {
3411 			if (remount)
3412 				continue;
3413 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3414 			if (*rest)
3415 				goto bad_val;
3416 		} else if (!strcmp(this_char,"uid")) {
3417 			if (remount)
3418 				continue;
3419 			uid = simple_strtoul(value, &rest, 0);
3420 			if (*rest)
3421 				goto bad_val;
3422 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3423 			if (!uid_valid(sbinfo->uid))
3424 				goto bad_val;
3425 		} else if (!strcmp(this_char,"gid")) {
3426 			if (remount)
3427 				continue;
3428 			gid = simple_strtoul(value, &rest, 0);
3429 			if (*rest)
3430 				goto bad_val;
3431 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3432 			if (!gid_valid(sbinfo->gid))
3433 				goto bad_val;
3434 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3435 		} else if (!strcmp(this_char, "huge")) {
3436 			int huge;
3437 			huge = shmem_parse_huge(value);
3438 			if (huge < 0)
3439 				goto bad_val;
3440 			if (!has_transparent_hugepage() &&
3441 					huge != SHMEM_HUGE_NEVER)
3442 				goto bad_val;
3443 			sbinfo->huge = huge;
3444 #endif
3445 #ifdef CONFIG_NUMA
3446 		} else if (!strcmp(this_char,"mpol")) {
3447 			mpol_put(mpol);
3448 			mpol = NULL;
3449 			if (mpol_parse_str(value, &mpol))
3450 				goto bad_val;
3451 #endif
3452 		} else {
3453 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3454 			goto error;
3455 		}
3456 	}
3457 	sbinfo->mpol = mpol;
3458 	return 0;
3459 
3460 bad_val:
3461 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3462 	       value, this_char);
3463 error:
3464 	mpol_put(mpol);
3465 	return 1;
3466 
3467 }
3468 
3469 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3470 {
3471 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3472 	struct shmem_sb_info config = *sbinfo;
3473 	unsigned long inodes;
3474 	int error = -EINVAL;
3475 
3476 	config.mpol = NULL;
3477 	if (shmem_parse_options(data, &config, true))
3478 		return error;
3479 
3480 	spin_lock(&sbinfo->stat_lock);
3481 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3482 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3483 		goto out;
3484 	if (config.max_inodes < inodes)
3485 		goto out;
3486 	/*
3487 	 * Those tests disallow limited->unlimited while any are in use;
3488 	 * but we must separately disallow unlimited->limited, because
3489 	 * in that case we have no record of how much is already in use.
3490 	 */
3491 	if (config.max_blocks && !sbinfo->max_blocks)
3492 		goto out;
3493 	if (config.max_inodes && !sbinfo->max_inodes)
3494 		goto out;
3495 
3496 	error = 0;
3497 	sbinfo->huge = config.huge;
3498 	sbinfo->max_blocks  = config.max_blocks;
3499 	sbinfo->max_inodes  = config.max_inodes;
3500 	sbinfo->free_inodes = config.max_inodes - inodes;
3501 
3502 	/*
3503 	 * Preserve previous mempolicy unless mpol remount option was specified.
3504 	 */
3505 	if (config.mpol) {
3506 		mpol_put(sbinfo->mpol);
3507 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3508 	}
3509 out:
3510 	spin_unlock(&sbinfo->stat_lock);
3511 	return error;
3512 }
3513 
3514 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3515 {
3516 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3517 
3518 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3519 		seq_printf(seq, ",size=%luk",
3520 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3521 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3522 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3523 	if (sbinfo->mode != (0777 | S_ISVTX))
3524 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3525 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3526 		seq_printf(seq, ",uid=%u",
3527 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3528 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3529 		seq_printf(seq, ",gid=%u",
3530 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3531 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3532 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3533 	if (sbinfo->huge)
3534 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3535 #endif
3536 	shmem_show_mpol(seq, sbinfo->mpol);
3537 	return 0;
3538 }
3539 
3540 #endif /* CONFIG_TMPFS */
3541 
3542 static void shmem_put_super(struct super_block *sb)
3543 {
3544 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3545 
3546 	percpu_counter_destroy(&sbinfo->used_blocks);
3547 	mpol_put(sbinfo->mpol);
3548 	kfree(sbinfo);
3549 	sb->s_fs_info = NULL;
3550 }
3551 
3552 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3553 {
3554 	struct inode *inode;
3555 	struct shmem_sb_info *sbinfo;
3556 	int err = -ENOMEM;
3557 
3558 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3559 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3560 				L1_CACHE_BYTES), GFP_KERNEL);
3561 	if (!sbinfo)
3562 		return -ENOMEM;
3563 
3564 	sbinfo->mode = 0777 | S_ISVTX;
3565 	sbinfo->uid = current_fsuid();
3566 	sbinfo->gid = current_fsgid();
3567 	sb->s_fs_info = sbinfo;
3568 
3569 #ifdef CONFIG_TMPFS
3570 	/*
3571 	 * Per default we only allow half of the physical ram per
3572 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3573 	 * but the internal instance is left unlimited.
3574 	 */
3575 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3576 		sbinfo->max_blocks = shmem_default_max_blocks();
3577 		sbinfo->max_inodes = shmem_default_max_inodes();
3578 		if (shmem_parse_options(data, sbinfo, false)) {
3579 			err = -EINVAL;
3580 			goto failed;
3581 		}
3582 	} else {
3583 		sb->s_flags |= SB_NOUSER;
3584 	}
3585 	sb->s_export_op = &shmem_export_ops;
3586 	sb->s_flags |= SB_NOSEC;
3587 #else
3588 	sb->s_flags |= SB_NOUSER;
3589 #endif
3590 
3591 	spin_lock_init(&sbinfo->stat_lock);
3592 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3593 		goto failed;
3594 	sbinfo->free_inodes = sbinfo->max_inodes;
3595 	spin_lock_init(&sbinfo->shrinklist_lock);
3596 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3597 
3598 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3599 	sb->s_blocksize = PAGE_SIZE;
3600 	sb->s_blocksize_bits = PAGE_SHIFT;
3601 	sb->s_magic = TMPFS_MAGIC;
3602 	sb->s_op = &shmem_ops;
3603 	sb->s_time_gran = 1;
3604 #ifdef CONFIG_TMPFS_XATTR
3605 	sb->s_xattr = shmem_xattr_handlers;
3606 #endif
3607 #ifdef CONFIG_TMPFS_POSIX_ACL
3608 	sb->s_flags |= SB_POSIXACL;
3609 #endif
3610 	uuid_gen(&sb->s_uuid);
3611 
3612 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3613 	if (!inode)
3614 		goto failed;
3615 	inode->i_uid = sbinfo->uid;
3616 	inode->i_gid = sbinfo->gid;
3617 	sb->s_root = d_make_root(inode);
3618 	if (!sb->s_root)
3619 		goto failed;
3620 	return 0;
3621 
3622 failed:
3623 	shmem_put_super(sb);
3624 	return err;
3625 }
3626 
3627 static struct kmem_cache *shmem_inode_cachep;
3628 
3629 static struct inode *shmem_alloc_inode(struct super_block *sb)
3630 {
3631 	struct shmem_inode_info *info;
3632 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3633 	if (!info)
3634 		return NULL;
3635 	return &info->vfs_inode;
3636 }
3637 
3638 static void shmem_destroy_callback(struct rcu_head *head)
3639 {
3640 	struct inode *inode = container_of(head, struct inode, i_rcu);
3641 	if (S_ISLNK(inode->i_mode))
3642 		kfree(inode->i_link);
3643 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3644 }
3645 
3646 static void shmem_destroy_inode(struct inode *inode)
3647 {
3648 	if (S_ISREG(inode->i_mode))
3649 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3650 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3651 }
3652 
3653 static void shmem_init_inode(void *foo)
3654 {
3655 	struct shmem_inode_info *info = foo;
3656 	inode_init_once(&info->vfs_inode);
3657 }
3658 
3659 static void shmem_init_inodecache(void)
3660 {
3661 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3662 				sizeof(struct shmem_inode_info),
3663 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3664 }
3665 
3666 static void shmem_destroy_inodecache(void)
3667 {
3668 	kmem_cache_destroy(shmem_inode_cachep);
3669 }
3670 
3671 static const struct address_space_operations shmem_aops = {
3672 	.writepage	= shmem_writepage,
3673 	.set_page_dirty	= __set_page_dirty_no_writeback,
3674 #ifdef CONFIG_TMPFS
3675 	.write_begin	= shmem_write_begin,
3676 	.write_end	= shmem_write_end,
3677 #endif
3678 #ifdef CONFIG_MIGRATION
3679 	.migratepage	= migrate_page,
3680 #endif
3681 	.error_remove_page = generic_error_remove_page,
3682 };
3683 
3684 static const struct file_operations shmem_file_operations = {
3685 	.mmap		= shmem_mmap,
3686 	.get_unmapped_area = shmem_get_unmapped_area,
3687 #ifdef CONFIG_TMPFS
3688 	.llseek		= shmem_file_llseek,
3689 	.read_iter	= shmem_file_read_iter,
3690 	.write_iter	= generic_file_write_iter,
3691 	.fsync		= noop_fsync,
3692 	.splice_read	= generic_file_splice_read,
3693 	.splice_write	= iter_file_splice_write,
3694 	.fallocate	= shmem_fallocate,
3695 #endif
3696 };
3697 
3698 static const struct inode_operations shmem_inode_operations = {
3699 	.getattr	= shmem_getattr,
3700 	.setattr	= shmem_setattr,
3701 #ifdef CONFIG_TMPFS_XATTR
3702 	.listxattr	= shmem_listxattr,
3703 	.set_acl	= simple_set_acl,
3704 #endif
3705 };
3706 
3707 static const struct inode_operations shmem_dir_inode_operations = {
3708 #ifdef CONFIG_TMPFS
3709 	.create		= shmem_create,
3710 	.lookup		= simple_lookup,
3711 	.link		= shmem_link,
3712 	.unlink		= shmem_unlink,
3713 	.symlink	= shmem_symlink,
3714 	.mkdir		= shmem_mkdir,
3715 	.rmdir		= shmem_rmdir,
3716 	.mknod		= shmem_mknod,
3717 	.rename		= shmem_rename2,
3718 	.tmpfile	= shmem_tmpfile,
3719 #endif
3720 #ifdef CONFIG_TMPFS_XATTR
3721 	.listxattr	= shmem_listxattr,
3722 #endif
3723 #ifdef CONFIG_TMPFS_POSIX_ACL
3724 	.setattr	= shmem_setattr,
3725 	.set_acl	= simple_set_acl,
3726 #endif
3727 };
3728 
3729 static const struct inode_operations shmem_special_inode_operations = {
3730 #ifdef CONFIG_TMPFS_XATTR
3731 	.listxattr	= shmem_listxattr,
3732 #endif
3733 #ifdef CONFIG_TMPFS_POSIX_ACL
3734 	.setattr	= shmem_setattr,
3735 	.set_acl	= simple_set_acl,
3736 #endif
3737 };
3738 
3739 static const struct super_operations shmem_ops = {
3740 	.alloc_inode	= shmem_alloc_inode,
3741 	.destroy_inode	= shmem_destroy_inode,
3742 #ifdef CONFIG_TMPFS
3743 	.statfs		= shmem_statfs,
3744 	.remount_fs	= shmem_remount_fs,
3745 	.show_options	= shmem_show_options,
3746 #endif
3747 	.evict_inode	= shmem_evict_inode,
3748 	.drop_inode	= generic_delete_inode,
3749 	.put_super	= shmem_put_super,
3750 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3751 	.nr_cached_objects	= shmem_unused_huge_count,
3752 	.free_cached_objects	= shmem_unused_huge_scan,
3753 #endif
3754 };
3755 
3756 static const struct vm_operations_struct shmem_vm_ops = {
3757 	.fault		= shmem_fault,
3758 	.map_pages	= filemap_map_pages,
3759 #ifdef CONFIG_NUMA
3760 	.set_policy     = shmem_set_policy,
3761 	.get_policy     = shmem_get_policy,
3762 #endif
3763 };
3764 
3765 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3766 	int flags, const char *dev_name, void *data)
3767 {
3768 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3769 }
3770 
3771 static struct file_system_type shmem_fs_type = {
3772 	.owner		= THIS_MODULE,
3773 	.name		= "tmpfs",
3774 	.mount		= shmem_mount,
3775 	.kill_sb	= kill_litter_super,
3776 	.fs_flags	= FS_USERNS_MOUNT,
3777 };
3778 
3779 int __init shmem_init(void)
3780 {
3781 	int error;
3782 
3783 	/* If rootfs called this, don't re-init */
3784 	if (shmem_inode_cachep)
3785 		return 0;
3786 
3787 	shmem_init_inodecache();
3788 
3789 	error = register_filesystem(&shmem_fs_type);
3790 	if (error) {
3791 		pr_err("Could not register tmpfs\n");
3792 		goto out2;
3793 	}
3794 
3795 	shm_mnt = kern_mount(&shmem_fs_type);
3796 	if (IS_ERR(shm_mnt)) {
3797 		error = PTR_ERR(shm_mnt);
3798 		pr_err("Could not kern_mount tmpfs\n");
3799 		goto out1;
3800 	}
3801 
3802 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3803 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3804 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3805 	else
3806 		shmem_huge = 0; /* just in case it was patched */
3807 #endif
3808 	return 0;
3809 
3810 out1:
3811 	unregister_filesystem(&shmem_fs_type);
3812 out2:
3813 	shmem_destroy_inodecache();
3814 	shm_mnt = ERR_PTR(error);
3815 	return error;
3816 }
3817 
3818 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3819 static ssize_t shmem_enabled_show(struct kobject *kobj,
3820 		struct kobj_attribute *attr, char *buf)
3821 {
3822 	int values[] = {
3823 		SHMEM_HUGE_ALWAYS,
3824 		SHMEM_HUGE_WITHIN_SIZE,
3825 		SHMEM_HUGE_ADVISE,
3826 		SHMEM_HUGE_NEVER,
3827 		SHMEM_HUGE_DENY,
3828 		SHMEM_HUGE_FORCE,
3829 	};
3830 	int i, count;
3831 
3832 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3833 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3834 
3835 		count += sprintf(buf + count, fmt,
3836 				shmem_format_huge(values[i]));
3837 	}
3838 	buf[count - 1] = '\n';
3839 	return count;
3840 }
3841 
3842 static ssize_t shmem_enabled_store(struct kobject *kobj,
3843 		struct kobj_attribute *attr, const char *buf, size_t count)
3844 {
3845 	char tmp[16];
3846 	int huge;
3847 
3848 	if (count + 1 > sizeof(tmp))
3849 		return -EINVAL;
3850 	memcpy(tmp, buf, count);
3851 	tmp[count] = '\0';
3852 	if (count && tmp[count - 1] == '\n')
3853 		tmp[count - 1] = '\0';
3854 
3855 	huge = shmem_parse_huge(tmp);
3856 	if (huge == -EINVAL)
3857 		return -EINVAL;
3858 	if (!has_transparent_hugepage() &&
3859 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3860 		return -EINVAL;
3861 
3862 	shmem_huge = huge;
3863 	if (shmem_huge > SHMEM_HUGE_DENY)
3864 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3865 	return count;
3866 }
3867 
3868 struct kobj_attribute shmem_enabled_attr =
3869 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3870 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3871 
3872 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3873 bool shmem_huge_enabled(struct vm_area_struct *vma)
3874 {
3875 	struct inode *inode = file_inode(vma->vm_file);
3876 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3877 	loff_t i_size;
3878 	pgoff_t off;
3879 
3880 	if (shmem_huge == SHMEM_HUGE_FORCE)
3881 		return true;
3882 	if (shmem_huge == SHMEM_HUGE_DENY)
3883 		return false;
3884 	switch (sbinfo->huge) {
3885 		case SHMEM_HUGE_NEVER:
3886 			return false;
3887 		case SHMEM_HUGE_ALWAYS:
3888 			return true;
3889 		case SHMEM_HUGE_WITHIN_SIZE:
3890 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3891 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3892 			if (i_size >= HPAGE_PMD_SIZE &&
3893 					i_size >> PAGE_SHIFT >= off)
3894 				return true;
3895 			/* fall through */
3896 		case SHMEM_HUGE_ADVISE:
3897 			/* TODO: implement fadvise() hints */
3898 			return (vma->vm_flags & VM_HUGEPAGE);
3899 		default:
3900 			VM_BUG_ON(1);
3901 			return false;
3902 	}
3903 }
3904 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3905 
3906 #else /* !CONFIG_SHMEM */
3907 
3908 /*
3909  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3910  *
3911  * This is intended for small system where the benefits of the full
3912  * shmem code (swap-backed and resource-limited) are outweighed by
3913  * their complexity. On systems without swap this code should be
3914  * effectively equivalent, but much lighter weight.
3915  */
3916 
3917 static struct file_system_type shmem_fs_type = {
3918 	.name		= "tmpfs",
3919 	.mount		= ramfs_mount,
3920 	.kill_sb	= kill_litter_super,
3921 	.fs_flags	= FS_USERNS_MOUNT,
3922 };
3923 
3924 int __init shmem_init(void)
3925 {
3926 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3927 
3928 	shm_mnt = kern_mount(&shmem_fs_type);
3929 	BUG_ON(IS_ERR(shm_mnt));
3930 
3931 	return 0;
3932 }
3933 
3934 int shmem_unuse(unsigned int type, bool frontswap,
3935 		unsigned long *fs_pages_to_unuse)
3936 {
3937 	return 0;
3938 }
3939 
3940 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3941 {
3942 	return 0;
3943 }
3944 
3945 void shmem_unlock_mapping(struct address_space *mapping)
3946 {
3947 }
3948 
3949 #ifdef CONFIG_MMU
3950 unsigned long shmem_get_unmapped_area(struct file *file,
3951 				      unsigned long addr, unsigned long len,
3952 				      unsigned long pgoff, unsigned long flags)
3953 {
3954 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3955 }
3956 #endif
3957 
3958 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3959 {
3960 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3961 }
3962 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3963 
3964 #define shmem_vm_ops				generic_file_vm_ops
3965 #define shmem_file_operations			ramfs_file_operations
3966 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3967 #define shmem_acct_size(flags, size)		0
3968 #define shmem_unacct_size(flags, size)		do {} while (0)
3969 
3970 #endif /* CONFIG_SHMEM */
3971 
3972 /* common code */
3973 
3974 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3975 				       unsigned long flags, unsigned int i_flags)
3976 {
3977 	struct inode *inode;
3978 	struct file *res;
3979 
3980 	if (IS_ERR(mnt))
3981 		return ERR_CAST(mnt);
3982 
3983 	if (size < 0 || size > MAX_LFS_FILESIZE)
3984 		return ERR_PTR(-EINVAL);
3985 
3986 	if (shmem_acct_size(flags, size))
3987 		return ERR_PTR(-ENOMEM);
3988 
3989 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3990 				flags);
3991 	if (unlikely(!inode)) {
3992 		shmem_unacct_size(flags, size);
3993 		return ERR_PTR(-ENOSPC);
3994 	}
3995 	inode->i_flags |= i_flags;
3996 	inode->i_size = size;
3997 	clear_nlink(inode);	/* It is unlinked */
3998 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3999 	if (!IS_ERR(res))
4000 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4001 				&shmem_file_operations);
4002 	if (IS_ERR(res))
4003 		iput(inode);
4004 	return res;
4005 }
4006 
4007 /**
4008  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4009  * 	kernel internal.  There will be NO LSM permission checks against the
4010  * 	underlying inode.  So users of this interface must do LSM checks at a
4011  *	higher layer.  The users are the big_key and shm implementations.  LSM
4012  *	checks are provided at the key or shm level rather than the inode.
4013  * @name: name for dentry (to be seen in /proc/<pid>/maps
4014  * @size: size to be set for the file
4015  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4016  */
4017 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4018 {
4019 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4020 }
4021 
4022 /**
4023  * shmem_file_setup - get an unlinked file living in tmpfs
4024  * @name: name for dentry (to be seen in /proc/<pid>/maps
4025  * @size: size to be set for the file
4026  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4027  */
4028 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4029 {
4030 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4031 }
4032 EXPORT_SYMBOL_GPL(shmem_file_setup);
4033 
4034 /**
4035  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4036  * @mnt: the tmpfs mount where the file will be created
4037  * @name: name for dentry (to be seen in /proc/<pid>/maps
4038  * @size: size to be set for the file
4039  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4040  */
4041 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4042 				       loff_t size, unsigned long flags)
4043 {
4044 	return __shmem_file_setup(mnt, name, size, flags, 0);
4045 }
4046 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4047 
4048 /**
4049  * shmem_zero_setup - setup a shared anonymous mapping
4050  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4051  */
4052 int shmem_zero_setup(struct vm_area_struct *vma)
4053 {
4054 	struct file *file;
4055 	loff_t size = vma->vm_end - vma->vm_start;
4056 
4057 	/*
4058 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4059 	 * between XFS directory reading and selinux: since this file is only
4060 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4061 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4062 	 */
4063 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4064 	if (IS_ERR(file))
4065 		return PTR_ERR(file);
4066 
4067 	if (vma->vm_file)
4068 		fput(vma->vm_file);
4069 	vma->vm_file = file;
4070 	vma->vm_ops = &shmem_vm_ops;
4071 
4072 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4073 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4074 			(vma->vm_end & HPAGE_PMD_MASK)) {
4075 		khugepaged_enter(vma, vma->vm_flags);
4076 	}
4077 
4078 	return 0;
4079 }
4080 
4081 /**
4082  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4083  * @mapping:	the page's address_space
4084  * @index:	the page index
4085  * @gfp:	the page allocator flags to use if allocating
4086  *
4087  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4088  * with any new page allocations done using the specified allocation flags.
4089  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4090  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4091  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4092  *
4093  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4094  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4095  */
4096 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4097 					 pgoff_t index, gfp_t gfp)
4098 {
4099 #ifdef CONFIG_SHMEM
4100 	struct inode *inode = mapping->host;
4101 	struct page *page;
4102 	int error;
4103 
4104 	BUG_ON(mapping->a_ops != &shmem_aops);
4105 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4106 				  gfp, NULL, NULL, NULL);
4107 	if (error)
4108 		page = ERR_PTR(error);
4109 	else
4110 		unlock_page(page);
4111 	return page;
4112 #else
4113 	/*
4114 	 * The tiny !SHMEM case uses ramfs without swap
4115 	 */
4116 	return read_cache_page_gfp(mapping, index, gfp);
4117 #endif
4118 }
4119 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4120