xref: /openbmc/linux/mm/shmem.c (revision ce746d43)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	bool full_inums;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 				struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 			     struct page **pagep, enum sgp_type sgp,
145 			     gfp_t gfp, struct vm_area_struct *vma,
146 			     vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp,
149 		gfp_t gfp, struct vm_area_struct *vma,
150 		struct vm_fault *vmf, vm_fault_t *fault_type);
151 
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 		struct page **pagep, enum sgp_type sgp)
154 {
155 	return shmem_getpage_gfp(inode, index, pagep, sgp,
156 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158 
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175 
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
182 static inline int shmem_reacct_size(unsigned long flags,
183 		loff_t oldsize, loff_t newsize)
184 {
185 	if (!(flags & VM_NORESERVE)) {
186 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 			return security_vm_enough_memory_mm(current->mm,
188 					VM_ACCT(newsize) - VM_ACCT(oldsize));
189 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 	}
192 	return 0;
193 }
194 
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 	if (!(flags & VM_NORESERVE))
204 		return 0;
205 
206 	return security_vm_enough_memory_mm(current->mm,
207 			pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 
221 	if (shmem_acct_block(info->flags, pages))
222 		return false;
223 
224 	if (sbinfo->max_blocks) {
225 		if (percpu_counter_compare(&sbinfo->used_blocks,
226 					   sbinfo->max_blocks - pages) > 0)
227 			goto unacct;
228 		percpu_counter_add(&sbinfo->used_blocks, pages);
229 	}
230 
231 	return true;
232 
233 unacct:
234 	shmem_unacct_blocks(info->flags, pages);
235 	return false;
236 }
237 
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 	struct shmem_inode_info *info = SHMEM_I(inode);
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 
243 	if (sbinfo->max_blocks)
244 		percpu_counter_sub(&sbinfo->used_blocks, pages);
245 	shmem_unacct_blocks(info->flags, pages);
246 }
247 
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256 
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 	return vma->vm_ops == &shmem_vm_ops;
260 }
261 
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 	ino_t ino;
279 
280 	if (!(sb->s_flags & SB_KERNMOUNT)) {
281 		spin_lock(&sbinfo->stat_lock);
282 		if (!sbinfo->free_inodes) {
283 			spin_unlock(&sbinfo->stat_lock);
284 			return -ENOSPC;
285 		}
286 		sbinfo->free_inodes--;
287 		if (inop) {
288 			ino = sbinfo->next_ino++;
289 			if (unlikely(is_zero_ino(ino)))
290 				ino = sbinfo->next_ino++;
291 			if (unlikely(!sbinfo->full_inums &&
292 				     ino > UINT_MAX)) {
293 				/*
294 				 * Emulate get_next_ino uint wraparound for
295 				 * compatibility
296 				 */
297 				if (IS_ENABLED(CONFIG_64BIT))
298 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
299 						__func__, MINOR(sb->s_dev));
300 				sbinfo->next_ino = 1;
301 				ino = sbinfo->next_ino++;
302 			}
303 			*inop = ino;
304 		}
305 		spin_unlock(&sbinfo->stat_lock);
306 	} else if (inop) {
307 		/*
308 		 * __shmem_file_setup, one of our callers, is lock-free: it
309 		 * doesn't hold stat_lock in shmem_reserve_inode since
310 		 * max_inodes is always 0, and is called from potentially
311 		 * unknown contexts. As such, use a per-cpu batched allocator
312 		 * which doesn't require the per-sb stat_lock unless we are at
313 		 * the batch boundary.
314 		 *
315 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
316 		 * shmem mounts are not exposed to userspace, so we don't need
317 		 * to worry about things like glibc compatibility.
318 		 */
319 		ino_t *next_ino;
320 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
321 		ino = *next_ino;
322 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
323 			spin_lock(&sbinfo->stat_lock);
324 			ino = sbinfo->next_ino;
325 			sbinfo->next_ino += SHMEM_INO_BATCH;
326 			spin_unlock(&sbinfo->stat_lock);
327 			if (unlikely(is_zero_ino(ino)))
328 				ino++;
329 		}
330 		*inop = ino;
331 		*next_ino = ++ino;
332 		put_cpu();
333 	}
334 
335 	return 0;
336 }
337 
338 static void shmem_free_inode(struct super_block *sb)
339 {
340 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
341 	if (sbinfo->max_inodes) {
342 		spin_lock(&sbinfo->stat_lock);
343 		sbinfo->free_inodes++;
344 		spin_unlock(&sbinfo->stat_lock);
345 	}
346 }
347 
348 /**
349  * shmem_recalc_inode - recalculate the block usage of an inode
350  * @inode: inode to recalc
351  *
352  * We have to calculate the free blocks since the mm can drop
353  * undirtied hole pages behind our back.
354  *
355  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
356  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
357  *
358  * It has to be called with the spinlock held.
359  */
360 static void shmem_recalc_inode(struct inode *inode)
361 {
362 	struct shmem_inode_info *info = SHMEM_I(inode);
363 	long freed;
364 
365 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
366 	if (freed > 0) {
367 		info->alloced -= freed;
368 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
369 		shmem_inode_unacct_blocks(inode, freed);
370 	}
371 }
372 
373 bool shmem_charge(struct inode *inode, long pages)
374 {
375 	struct shmem_inode_info *info = SHMEM_I(inode);
376 	unsigned long flags;
377 
378 	if (!shmem_inode_acct_block(inode, pages))
379 		return false;
380 
381 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
382 	inode->i_mapping->nrpages += pages;
383 
384 	spin_lock_irqsave(&info->lock, flags);
385 	info->alloced += pages;
386 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
387 	shmem_recalc_inode(inode);
388 	spin_unlock_irqrestore(&info->lock, flags);
389 
390 	return true;
391 }
392 
393 void shmem_uncharge(struct inode *inode, long pages)
394 {
395 	struct shmem_inode_info *info = SHMEM_I(inode);
396 	unsigned long flags;
397 
398 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
399 
400 	spin_lock_irqsave(&info->lock, flags);
401 	info->alloced -= pages;
402 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
403 	shmem_recalc_inode(inode);
404 	spin_unlock_irqrestore(&info->lock, flags);
405 
406 	shmem_inode_unacct_blocks(inode, pages);
407 }
408 
409 /*
410  * Replace item expected in xarray by a new item, while holding xa_lock.
411  */
412 static int shmem_replace_entry(struct address_space *mapping,
413 			pgoff_t index, void *expected, void *replacement)
414 {
415 	XA_STATE(xas, &mapping->i_pages, index);
416 	void *item;
417 
418 	VM_BUG_ON(!expected);
419 	VM_BUG_ON(!replacement);
420 	item = xas_load(&xas);
421 	if (item != expected)
422 		return -ENOENT;
423 	xas_store(&xas, replacement);
424 	return 0;
425 }
426 
427 /*
428  * Sometimes, before we decide whether to proceed or to fail, we must check
429  * that an entry was not already brought back from swap by a racing thread.
430  *
431  * Checking page is not enough: by the time a SwapCache page is locked, it
432  * might be reused, and again be SwapCache, using the same swap as before.
433  */
434 static bool shmem_confirm_swap(struct address_space *mapping,
435 			       pgoff_t index, swp_entry_t swap)
436 {
437 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
438 }
439 
440 /*
441  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
442  *
443  * SHMEM_HUGE_NEVER:
444  *	disables huge pages for the mount;
445  * SHMEM_HUGE_ALWAYS:
446  *	enables huge pages for the mount;
447  * SHMEM_HUGE_WITHIN_SIZE:
448  *	only allocate huge pages if the page will be fully within i_size,
449  *	also respect fadvise()/madvise() hints;
450  * SHMEM_HUGE_ADVISE:
451  *	only allocate huge pages if requested with fadvise()/madvise();
452  */
453 
454 #define SHMEM_HUGE_NEVER	0
455 #define SHMEM_HUGE_ALWAYS	1
456 #define SHMEM_HUGE_WITHIN_SIZE	2
457 #define SHMEM_HUGE_ADVISE	3
458 
459 /*
460  * Special values.
461  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
462  *
463  * SHMEM_HUGE_DENY:
464  *	disables huge on shm_mnt and all mounts, for emergency use;
465  * SHMEM_HUGE_FORCE:
466  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
467  *
468  */
469 #define SHMEM_HUGE_DENY		(-1)
470 #define SHMEM_HUGE_FORCE	(-2)
471 
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 /* ifdef here to avoid bloating shmem.o when not necessary */
474 
475 static int shmem_huge __read_mostly;
476 
477 #if defined(CONFIG_SYSFS)
478 static int shmem_parse_huge(const char *str)
479 {
480 	if (!strcmp(str, "never"))
481 		return SHMEM_HUGE_NEVER;
482 	if (!strcmp(str, "always"))
483 		return SHMEM_HUGE_ALWAYS;
484 	if (!strcmp(str, "within_size"))
485 		return SHMEM_HUGE_WITHIN_SIZE;
486 	if (!strcmp(str, "advise"))
487 		return SHMEM_HUGE_ADVISE;
488 	if (!strcmp(str, "deny"))
489 		return SHMEM_HUGE_DENY;
490 	if (!strcmp(str, "force"))
491 		return SHMEM_HUGE_FORCE;
492 	return -EINVAL;
493 }
494 #endif
495 
496 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
497 static const char *shmem_format_huge(int huge)
498 {
499 	switch (huge) {
500 	case SHMEM_HUGE_NEVER:
501 		return "never";
502 	case SHMEM_HUGE_ALWAYS:
503 		return "always";
504 	case SHMEM_HUGE_WITHIN_SIZE:
505 		return "within_size";
506 	case SHMEM_HUGE_ADVISE:
507 		return "advise";
508 	case SHMEM_HUGE_DENY:
509 		return "deny";
510 	case SHMEM_HUGE_FORCE:
511 		return "force";
512 	default:
513 		VM_BUG_ON(1);
514 		return "bad_val";
515 	}
516 }
517 #endif
518 
519 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
520 		struct shrink_control *sc, unsigned long nr_to_split)
521 {
522 	LIST_HEAD(list), *pos, *next;
523 	LIST_HEAD(to_remove);
524 	struct inode *inode;
525 	struct shmem_inode_info *info;
526 	struct page *page;
527 	unsigned long batch = sc ? sc->nr_to_scan : 128;
528 	int removed = 0, split = 0;
529 
530 	if (list_empty(&sbinfo->shrinklist))
531 		return SHRINK_STOP;
532 
533 	spin_lock(&sbinfo->shrinklist_lock);
534 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
535 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
536 
537 		/* pin the inode */
538 		inode = igrab(&info->vfs_inode);
539 
540 		/* inode is about to be evicted */
541 		if (!inode) {
542 			list_del_init(&info->shrinklist);
543 			removed++;
544 			goto next;
545 		}
546 
547 		/* Check if there's anything to gain */
548 		if (round_up(inode->i_size, PAGE_SIZE) ==
549 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
550 			list_move(&info->shrinklist, &to_remove);
551 			removed++;
552 			goto next;
553 		}
554 
555 		list_move(&info->shrinklist, &list);
556 next:
557 		if (!--batch)
558 			break;
559 	}
560 	spin_unlock(&sbinfo->shrinklist_lock);
561 
562 	list_for_each_safe(pos, next, &to_remove) {
563 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
564 		inode = &info->vfs_inode;
565 		list_del_init(&info->shrinklist);
566 		iput(inode);
567 	}
568 
569 	list_for_each_safe(pos, next, &list) {
570 		int ret;
571 
572 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
573 		inode = &info->vfs_inode;
574 
575 		if (nr_to_split && split >= nr_to_split)
576 			goto leave;
577 
578 		page = find_get_page(inode->i_mapping,
579 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
580 		if (!page)
581 			goto drop;
582 
583 		/* No huge page at the end of the file: nothing to split */
584 		if (!PageTransHuge(page)) {
585 			put_page(page);
586 			goto drop;
587 		}
588 
589 		/*
590 		 * Leave the inode on the list if we failed to lock
591 		 * the page at this time.
592 		 *
593 		 * Waiting for the lock may lead to deadlock in the
594 		 * reclaim path.
595 		 */
596 		if (!trylock_page(page)) {
597 			put_page(page);
598 			goto leave;
599 		}
600 
601 		ret = split_huge_page(page);
602 		unlock_page(page);
603 		put_page(page);
604 
605 		/* If split failed leave the inode on the list */
606 		if (ret)
607 			goto leave;
608 
609 		split++;
610 drop:
611 		list_del_init(&info->shrinklist);
612 		removed++;
613 leave:
614 		iput(inode);
615 	}
616 
617 	spin_lock(&sbinfo->shrinklist_lock);
618 	list_splice_tail(&list, &sbinfo->shrinklist);
619 	sbinfo->shrinklist_len -= removed;
620 	spin_unlock(&sbinfo->shrinklist_lock);
621 
622 	return split;
623 }
624 
625 static long shmem_unused_huge_scan(struct super_block *sb,
626 		struct shrink_control *sc)
627 {
628 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
629 
630 	if (!READ_ONCE(sbinfo->shrinklist_len))
631 		return SHRINK_STOP;
632 
633 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
634 }
635 
636 static long shmem_unused_huge_count(struct super_block *sb,
637 		struct shrink_control *sc)
638 {
639 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
640 	return READ_ONCE(sbinfo->shrinklist_len);
641 }
642 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
643 
644 #define shmem_huge SHMEM_HUGE_DENY
645 
646 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
647 		struct shrink_control *sc, unsigned long nr_to_split)
648 {
649 	return 0;
650 }
651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
652 
653 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
654 {
655 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
656 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
657 	    shmem_huge != SHMEM_HUGE_DENY)
658 		return true;
659 	return false;
660 }
661 
662 /*
663  * Like add_to_page_cache_locked, but error if expected item has gone.
664  */
665 static int shmem_add_to_page_cache(struct page *page,
666 				   struct address_space *mapping,
667 				   pgoff_t index, void *expected, gfp_t gfp,
668 				   struct mm_struct *charge_mm)
669 {
670 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
671 	unsigned long i = 0;
672 	unsigned long nr = compound_nr(page);
673 	int error;
674 
675 	VM_BUG_ON_PAGE(PageTail(page), page);
676 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
677 	VM_BUG_ON_PAGE(!PageLocked(page), page);
678 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
679 	VM_BUG_ON(expected && PageTransHuge(page));
680 
681 	page_ref_add(page, nr);
682 	page->mapping = mapping;
683 	page->index = index;
684 
685 	if (!PageSwapCache(page)) {
686 		error = mem_cgroup_charge(page, charge_mm, gfp);
687 		if (error) {
688 			if (PageTransHuge(page)) {
689 				count_vm_event(THP_FILE_FALLBACK);
690 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
691 			}
692 			goto error;
693 		}
694 	}
695 	cgroup_throttle_swaprate(page, gfp);
696 
697 	do {
698 		void *entry;
699 		xas_lock_irq(&xas);
700 		entry = xas_find_conflict(&xas);
701 		if (entry != expected)
702 			xas_set_err(&xas, -EEXIST);
703 		xas_create_range(&xas);
704 		if (xas_error(&xas))
705 			goto unlock;
706 next:
707 		xas_store(&xas, page);
708 		if (++i < nr) {
709 			xas_next(&xas);
710 			goto next;
711 		}
712 		if (PageTransHuge(page)) {
713 			count_vm_event(THP_FILE_ALLOC);
714 			__inc_node_page_state(page, NR_SHMEM_THPS);
715 		}
716 		mapping->nrpages += nr;
717 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
718 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
719 unlock:
720 		xas_unlock_irq(&xas);
721 	} while (xas_nomem(&xas, gfp));
722 
723 	if (xas_error(&xas)) {
724 		error = xas_error(&xas);
725 		goto error;
726 	}
727 
728 	return 0;
729 error:
730 	page->mapping = NULL;
731 	page_ref_sub(page, nr);
732 	return error;
733 }
734 
735 /*
736  * Like delete_from_page_cache, but substitutes swap for page.
737  */
738 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
739 {
740 	struct address_space *mapping = page->mapping;
741 	int error;
742 
743 	VM_BUG_ON_PAGE(PageCompound(page), page);
744 
745 	xa_lock_irq(&mapping->i_pages);
746 	error = shmem_replace_entry(mapping, page->index, page, radswap);
747 	page->mapping = NULL;
748 	mapping->nrpages--;
749 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
750 	__dec_lruvec_page_state(page, NR_SHMEM);
751 	xa_unlock_irq(&mapping->i_pages);
752 	put_page(page);
753 	BUG_ON(error);
754 }
755 
756 /*
757  * Remove swap entry from page cache, free the swap and its page cache.
758  */
759 static int shmem_free_swap(struct address_space *mapping,
760 			   pgoff_t index, void *radswap)
761 {
762 	void *old;
763 
764 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
765 	if (old != radswap)
766 		return -ENOENT;
767 	free_swap_and_cache(radix_to_swp_entry(radswap));
768 	return 0;
769 }
770 
771 /*
772  * Determine (in bytes) how many of the shmem object's pages mapped by the
773  * given offsets are swapped out.
774  *
775  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
776  * as long as the inode doesn't go away and racy results are not a problem.
777  */
778 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
779 						pgoff_t start, pgoff_t end)
780 {
781 	XA_STATE(xas, &mapping->i_pages, start);
782 	struct page *page;
783 	unsigned long swapped = 0;
784 
785 	rcu_read_lock();
786 	xas_for_each(&xas, page, end - 1) {
787 		if (xas_retry(&xas, page))
788 			continue;
789 		if (xa_is_value(page))
790 			swapped++;
791 
792 		if (need_resched()) {
793 			xas_pause(&xas);
794 			cond_resched_rcu();
795 		}
796 	}
797 
798 	rcu_read_unlock();
799 
800 	return swapped << PAGE_SHIFT;
801 }
802 
803 /*
804  * Determine (in bytes) how many of the shmem object's pages mapped by the
805  * given vma is swapped out.
806  *
807  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
808  * as long as the inode doesn't go away and racy results are not a problem.
809  */
810 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
811 {
812 	struct inode *inode = file_inode(vma->vm_file);
813 	struct shmem_inode_info *info = SHMEM_I(inode);
814 	struct address_space *mapping = inode->i_mapping;
815 	unsigned long swapped;
816 
817 	/* Be careful as we don't hold info->lock */
818 	swapped = READ_ONCE(info->swapped);
819 
820 	/*
821 	 * The easier cases are when the shmem object has nothing in swap, or
822 	 * the vma maps it whole. Then we can simply use the stats that we
823 	 * already track.
824 	 */
825 	if (!swapped)
826 		return 0;
827 
828 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
829 		return swapped << PAGE_SHIFT;
830 
831 	/* Here comes the more involved part */
832 	return shmem_partial_swap_usage(mapping,
833 			linear_page_index(vma, vma->vm_start),
834 			linear_page_index(vma, vma->vm_end));
835 }
836 
837 /*
838  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
839  */
840 void shmem_unlock_mapping(struct address_space *mapping)
841 {
842 	struct pagevec pvec;
843 	pgoff_t indices[PAGEVEC_SIZE];
844 	pgoff_t index = 0;
845 
846 	pagevec_init(&pvec);
847 	/*
848 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
849 	 */
850 	while (!mapping_unevictable(mapping)) {
851 		/*
852 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
853 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
854 		 */
855 		pvec.nr = find_get_entries(mapping, index,
856 					   PAGEVEC_SIZE, pvec.pages, indices);
857 		if (!pvec.nr)
858 			break;
859 		index = indices[pvec.nr - 1] + 1;
860 		pagevec_remove_exceptionals(&pvec);
861 		check_move_unevictable_pages(&pvec);
862 		pagevec_release(&pvec);
863 		cond_resched();
864 	}
865 }
866 
867 /*
868  * Check whether a hole-punch or truncation needs to split a huge page,
869  * returning true if no split was required, or the split has been successful.
870  *
871  * Eviction (or truncation to 0 size) should never need to split a huge page;
872  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
873  * head, and then succeeded to trylock on tail.
874  *
875  * A split can only succeed when there are no additional references on the
876  * huge page: so the split below relies upon find_get_entries() having stopped
877  * when it found a subpage of the huge page, without getting further references.
878  */
879 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
880 {
881 	if (!PageTransCompound(page))
882 		return true;
883 
884 	/* Just proceed to delete a huge page wholly within the range punched */
885 	if (PageHead(page) &&
886 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
887 		return true;
888 
889 	/* Try to split huge page, so we can truly punch the hole or truncate */
890 	return split_huge_page(page) >= 0;
891 }
892 
893 /*
894  * Remove range of pages and swap entries from page cache, and free them.
895  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
896  */
897 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
898 								 bool unfalloc)
899 {
900 	struct address_space *mapping = inode->i_mapping;
901 	struct shmem_inode_info *info = SHMEM_I(inode);
902 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
903 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
904 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
905 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
906 	struct pagevec pvec;
907 	pgoff_t indices[PAGEVEC_SIZE];
908 	long nr_swaps_freed = 0;
909 	pgoff_t index;
910 	int i;
911 
912 	if (lend == -1)
913 		end = -1;	/* unsigned, so actually very big */
914 
915 	pagevec_init(&pvec);
916 	index = start;
917 	while (index < end) {
918 		pvec.nr = find_get_entries(mapping, index,
919 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
920 			pvec.pages, indices);
921 		if (!pvec.nr)
922 			break;
923 		for (i = 0; i < pagevec_count(&pvec); i++) {
924 			struct page *page = pvec.pages[i];
925 
926 			index = indices[i];
927 			if (index >= end)
928 				break;
929 
930 			if (xa_is_value(page)) {
931 				if (unfalloc)
932 					continue;
933 				nr_swaps_freed += !shmem_free_swap(mapping,
934 								index, page);
935 				continue;
936 			}
937 
938 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
939 
940 			if (!trylock_page(page))
941 				continue;
942 
943 			if ((!unfalloc || !PageUptodate(page)) &&
944 			    page_mapping(page) == mapping) {
945 				VM_BUG_ON_PAGE(PageWriteback(page), page);
946 				if (shmem_punch_compound(page, start, end))
947 					truncate_inode_page(mapping, page);
948 			}
949 			unlock_page(page);
950 		}
951 		pagevec_remove_exceptionals(&pvec);
952 		pagevec_release(&pvec);
953 		cond_resched();
954 		index++;
955 	}
956 
957 	if (partial_start) {
958 		struct page *page = NULL;
959 		shmem_getpage(inode, start - 1, &page, SGP_READ);
960 		if (page) {
961 			unsigned int top = PAGE_SIZE;
962 			if (start > end) {
963 				top = partial_end;
964 				partial_end = 0;
965 			}
966 			zero_user_segment(page, partial_start, top);
967 			set_page_dirty(page);
968 			unlock_page(page);
969 			put_page(page);
970 		}
971 	}
972 	if (partial_end) {
973 		struct page *page = NULL;
974 		shmem_getpage(inode, end, &page, SGP_READ);
975 		if (page) {
976 			zero_user_segment(page, 0, partial_end);
977 			set_page_dirty(page);
978 			unlock_page(page);
979 			put_page(page);
980 		}
981 	}
982 	if (start >= end)
983 		return;
984 
985 	index = start;
986 	while (index < end) {
987 		cond_resched();
988 
989 		pvec.nr = find_get_entries(mapping, index,
990 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
991 				pvec.pages, indices);
992 		if (!pvec.nr) {
993 			/* If all gone or hole-punch or unfalloc, we're done */
994 			if (index == start || end != -1)
995 				break;
996 			/* But if truncating, restart to make sure all gone */
997 			index = start;
998 			continue;
999 		}
1000 		for (i = 0; i < pagevec_count(&pvec); i++) {
1001 			struct page *page = pvec.pages[i];
1002 
1003 			index = indices[i];
1004 			if (index >= end)
1005 				break;
1006 
1007 			if (xa_is_value(page)) {
1008 				if (unfalloc)
1009 					continue;
1010 				if (shmem_free_swap(mapping, index, page)) {
1011 					/* Swap was replaced by page: retry */
1012 					index--;
1013 					break;
1014 				}
1015 				nr_swaps_freed++;
1016 				continue;
1017 			}
1018 
1019 			lock_page(page);
1020 
1021 			if (!unfalloc || !PageUptodate(page)) {
1022 				if (page_mapping(page) != mapping) {
1023 					/* Page was replaced by swap: retry */
1024 					unlock_page(page);
1025 					index--;
1026 					break;
1027 				}
1028 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1029 				if (shmem_punch_compound(page, start, end))
1030 					truncate_inode_page(mapping, page);
1031 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1032 					/* Wipe the page and don't get stuck */
1033 					clear_highpage(page);
1034 					flush_dcache_page(page);
1035 					set_page_dirty(page);
1036 					if (index <
1037 					    round_up(start, HPAGE_PMD_NR))
1038 						start = index + 1;
1039 				}
1040 			}
1041 			unlock_page(page);
1042 		}
1043 		pagevec_remove_exceptionals(&pvec);
1044 		pagevec_release(&pvec);
1045 		index++;
1046 	}
1047 
1048 	spin_lock_irq(&info->lock);
1049 	info->swapped -= nr_swaps_freed;
1050 	shmem_recalc_inode(inode);
1051 	spin_unlock_irq(&info->lock);
1052 }
1053 
1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055 {
1056 	shmem_undo_range(inode, lstart, lend, false);
1057 	inode->i_ctime = inode->i_mtime = current_time(inode);
1058 }
1059 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1060 
1061 static int shmem_getattr(const struct path *path, struct kstat *stat,
1062 			 u32 request_mask, unsigned int query_flags)
1063 {
1064 	struct inode *inode = path->dentry->d_inode;
1065 	struct shmem_inode_info *info = SHMEM_I(inode);
1066 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1067 
1068 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1069 		spin_lock_irq(&info->lock);
1070 		shmem_recalc_inode(inode);
1071 		spin_unlock_irq(&info->lock);
1072 	}
1073 	generic_fillattr(inode, stat);
1074 
1075 	if (is_huge_enabled(sb_info))
1076 		stat->blksize = HPAGE_PMD_SIZE;
1077 
1078 	return 0;
1079 }
1080 
1081 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1082 {
1083 	struct inode *inode = d_inode(dentry);
1084 	struct shmem_inode_info *info = SHMEM_I(inode);
1085 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1086 	int error;
1087 
1088 	error = setattr_prepare(dentry, attr);
1089 	if (error)
1090 		return error;
1091 
1092 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093 		loff_t oldsize = inode->i_size;
1094 		loff_t newsize = attr->ia_size;
1095 
1096 		/* protected by i_mutex */
1097 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099 			return -EPERM;
1100 
1101 		if (newsize != oldsize) {
1102 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103 					oldsize, newsize);
1104 			if (error)
1105 				return error;
1106 			i_size_write(inode, newsize);
1107 			inode->i_ctime = inode->i_mtime = current_time(inode);
1108 		}
1109 		if (newsize <= oldsize) {
1110 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1111 			if (oldsize > holebegin)
1112 				unmap_mapping_range(inode->i_mapping,
1113 							holebegin, 0, 1);
1114 			if (info->alloced)
1115 				shmem_truncate_range(inode,
1116 							newsize, (loff_t)-1);
1117 			/* unmap again to remove racily COWed private pages */
1118 			if (oldsize > holebegin)
1119 				unmap_mapping_range(inode->i_mapping,
1120 							holebegin, 0, 1);
1121 
1122 			/*
1123 			 * Part of the huge page can be beyond i_size: subject
1124 			 * to shrink under memory pressure.
1125 			 */
1126 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1127 				spin_lock(&sbinfo->shrinklist_lock);
1128 				/*
1129 				 * _careful to defend against unlocked access to
1130 				 * ->shrink_list in shmem_unused_huge_shrink()
1131 				 */
1132 				if (list_empty_careful(&info->shrinklist)) {
1133 					list_add_tail(&info->shrinklist,
1134 							&sbinfo->shrinklist);
1135 					sbinfo->shrinklist_len++;
1136 				}
1137 				spin_unlock(&sbinfo->shrinklist_lock);
1138 			}
1139 		}
1140 	}
1141 
1142 	setattr_copy(inode, attr);
1143 	if (attr->ia_valid & ATTR_MODE)
1144 		error = posix_acl_chmod(inode, inode->i_mode);
1145 	return error;
1146 }
1147 
1148 static void shmem_evict_inode(struct inode *inode)
1149 {
1150 	struct shmem_inode_info *info = SHMEM_I(inode);
1151 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1152 
1153 	if (inode->i_mapping->a_ops == &shmem_aops) {
1154 		shmem_unacct_size(info->flags, inode->i_size);
1155 		inode->i_size = 0;
1156 		shmem_truncate_range(inode, 0, (loff_t)-1);
1157 		if (!list_empty(&info->shrinklist)) {
1158 			spin_lock(&sbinfo->shrinklist_lock);
1159 			if (!list_empty(&info->shrinklist)) {
1160 				list_del_init(&info->shrinklist);
1161 				sbinfo->shrinklist_len--;
1162 			}
1163 			spin_unlock(&sbinfo->shrinklist_lock);
1164 		}
1165 		while (!list_empty(&info->swaplist)) {
1166 			/* Wait while shmem_unuse() is scanning this inode... */
1167 			wait_var_event(&info->stop_eviction,
1168 				       !atomic_read(&info->stop_eviction));
1169 			mutex_lock(&shmem_swaplist_mutex);
1170 			/* ...but beware of the race if we peeked too early */
1171 			if (!atomic_read(&info->stop_eviction))
1172 				list_del_init(&info->swaplist);
1173 			mutex_unlock(&shmem_swaplist_mutex);
1174 		}
1175 	}
1176 
1177 	simple_xattrs_free(&info->xattrs);
1178 	WARN_ON(inode->i_blocks);
1179 	shmem_free_inode(inode->i_sb);
1180 	clear_inode(inode);
1181 }
1182 
1183 extern struct swap_info_struct *swap_info[];
1184 
1185 static int shmem_find_swap_entries(struct address_space *mapping,
1186 				   pgoff_t start, unsigned int nr_entries,
1187 				   struct page **entries, pgoff_t *indices,
1188 				   unsigned int type, bool frontswap)
1189 {
1190 	XA_STATE(xas, &mapping->i_pages, start);
1191 	struct page *page;
1192 	swp_entry_t entry;
1193 	unsigned int ret = 0;
1194 
1195 	if (!nr_entries)
1196 		return 0;
1197 
1198 	rcu_read_lock();
1199 	xas_for_each(&xas, page, ULONG_MAX) {
1200 		if (xas_retry(&xas, page))
1201 			continue;
1202 
1203 		if (!xa_is_value(page))
1204 			continue;
1205 
1206 		entry = radix_to_swp_entry(page);
1207 		if (swp_type(entry) != type)
1208 			continue;
1209 		if (frontswap &&
1210 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1211 			continue;
1212 
1213 		indices[ret] = xas.xa_index;
1214 		entries[ret] = page;
1215 
1216 		if (need_resched()) {
1217 			xas_pause(&xas);
1218 			cond_resched_rcu();
1219 		}
1220 		if (++ret == nr_entries)
1221 			break;
1222 	}
1223 	rcu_read_unlock();
1224 
1225 	return ret;
1226 }
1227 
1228 /*
1229  * Move the swapped pages for an inode to page cache. Returns the count
1230  * of pages swapped in, or the error in case of failure.
1231  */
1232 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1233 				    pgoff_t *indices)
1234 {
1235 	int i = 0;
1236 	int ret = 0;
1237 	int error = 0;
1238 	struct address_space *mapping = inode->i_mapping;
1239 
1240 	for (i = 0; i < pvec.nr; i++) {
1241 		struct page *page = pvec.pages[i];
1242 
1243 		if (!xa_is_value(page))
1244 			continue;
1245 		error = shmem_swapin_page(inode, indices[i],
1246 					  &page, SGP_CACHE,
1247 					  mapping_gfp_mask(mapping),
1248 					  NULL, NULL);
1249 		if (error == 0) {
1250 			unlock_page(page);
1251 			put_page(page);
1252 			ret++;
1253 		}
1254 		if (error == -ENOMEM)
1255 			break;
1256 		error = 0;
1257 	}
1258 	return error ? error : ret;
1259 }
1260 
1261 /*
1262  * If swap found in inode, free it and move page from swapcache to filecache.
1263  */
1264 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1265 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1266 {
1267 	struct address_space *mapping = inode->i_mapping;
1268 	pgoff_t start = 0;
1269 	struct pagevec pvec;
1270 	pgoff_t indices[PAGEVEC_SIZE];
1271 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1272 	int ret = 0;
1273 
1274 	pagevec_init(&pvec);
1275 	do {
1276 		unsigned int nr_entries = PAGEVEC_SIZE;
1277 
1278 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1279 			nr_entries = *fs_pages_to_unuse;
1280 
1281 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1282 						  pvec.pages, indices,
1283 						  type, frontswap);
1284 		if (pvec.nr == 0) {
1285 			ret = 0;
1286 			break;
1287 		}
1288 
1289 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1290 		if (ret < 0)
1291 			break;
1292 
1293 		if (frontswap_partial) {
1294 			*fs_pages_to_unuse -= ret;
1295 			if (*fs_pages_to_unuse == 0) {
1296 				ret = FRONTSWAP_PAGES_UNUSED;
1297 				break;
1298 			}
1299 		}
1300 
1301 		start = indices[pvec.nr - 1];
1302 	} while (true);
1303 
1304 	return ret;
1305 }
1306 
1307 /*
1308  * Read all the shared memory data that resides in the swap
1309  * device 'type' back into memory, so the swap device can be
1310  * unused.
1311  */
1312 int shmem_unuse(unsigned int type, bool frontswap,
1313 		unsigned long *fs_pages_to_unuse)
1314 {
1315 	struct shmem_inode_info *info, *next;
1316 	int error = 0;
1317 
1318 	if (list_empty(&shmem_swaplist))
1319 		return 0;
1320 
1321 	mutex_lock(&shmem_swaplist_mutex);
1322 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1323 		if (!info->swapped) {
1324 			list_del_init(&info->swaplist);
1325 			continue;
1326 		}
1327 		/*
1328 		 * Drop the swaplist mutex while searching the inode for swap;
1329 		 * but before doing so, make sure shmem_evict_inode() will not
1330 		 * remove placeholder inode from swaplist, nor let it be freed
1331 		 * (igrab() would protect from unlink, but not from unmount).
1332 		 */
1333 		atomic_inc(&info->stop_eviction);
1334 		mutex_unlock(&shmem_swaplist_mutex);
1335 
1336 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1337 					  fs_pages_to_unuse);
1338 		cond_resched();
1339 
1340 		mutex_lock(&shmem_swaplist_mutex);
1341 		next = list_next_entry(info, swaplist);
1342 		if (!info->swapped)
1343 			list_del_init(&info->swaplist);
1344 		if (atomic_dec_and_test(&info->stop_eviction))
1345 			wake_up_var(&info->stop_eviction);
1346 		if (error)
1347 			break;
1348 	}
1349 	mutex_unlock(&shmem_swaplist_mutex);
1350 
1351 	return error;
1352 }
1353 
1354 /*
1355  * Move the page from the page cache to the swap cache.
1356  */
1357 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1358 {
1359 	struct shmem_inode_info *info;
1360 	struct address_space *mapping;
1361 	struct inode *inode;
1362 	swp_entry_t swap;
1363 	pgoff_t index;
1364 
1365 	VM_BUG_ON_PAGE(PageCompound(page), page);
1366 	BUG_ON(!PageLocked(page));
1367 	mapping = page->mapping;
1368 	index = page->index;
1369 	inode = mapping->host;
1370 	info = SHMEM_I(inode);
1371 	if (info->flags & VM_LOCKED)
1372 		goto redirty;
1373 	if (!total_swap_pages)
1374 		goto redirty;
1375 
1376 	/*
1377 	 * Our capabilities prevent regular writeback or sync from ever calling
1378 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1379 	 * its underlying filesystem, in which case tmpfs should write out to
1380 	 * swap only in response to memory pressure, and not for the writeback
1381 	 * threads or sync.
1382 	 */
1383 	if (!wbc->for_reclaim) {
1384 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1385 		goto redirty;
1386 	}
1387 
1388 	/*
1389 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1390 	 * value into swapfile.c, the only way we can correctly account for a
1391 	 * fallocated page arriving here is now to initialize it and write it.
1392 	 *
1393 	 * That's okay for a page already fallocated earlier, but if we have
1394 	 * not yet completed the fallocation, then (a) we want to keep track
1395 	 * of this page in case we have to undo it, and (b) it may not be a
1396 	 * good idea to continue anyway, once we're pushing into swap.  So
1397 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1398 	 */
1399 	if (!PageUptodate(page)) {
1400 		if (inode->i_private) {
1401 			struct shmem_falloc *shmem_falloc;
1402 			spin_lock(&inode->i_lock);
1403 			shmem_falloc = inode->i_private;
1404 			if (shmem_falloc &&
1405 			    !shmem_falloc->waitq &&
1406 			    index >= shmem_falloc->start &&
1407 			    index < shmem_falloc->next)
1408 				shmem_falloc->nr_unswapped++;
1409 			else
1410 				shmem_falloc = NULL;
1411 			spin_unlock(&inode->i_lock);
1412 			if (shmem_falloc)
1413 				goto redirty;
1414 		}
1415 		clear_highpage(page);
1416 		flush_dcache_page(page);
1417 		SetPageUptodate(page);
1418 	}
1419 
1420 	swap = get_swap_page(page);
1421 	if (!swap.val)
1422 		goto redirty;
1423 
1424 	/*
1425 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1426 	 * if it's not already there.  Do it now before the page is
1427 	 * moved to swap cache, when its pagelock no longer protects
1428 	 * the inode from eviction.  But don't unlock the mutex until
1429 	 * we've incremented swapped, because shmem_unuse_inode() will
1430 	 * prune a !swapped inode from the swaplist under this mutex.
1431 	 */
1432 	mutex_lock(&shmem_swaplist_mutex);
1433 	if (list_empty(&info->swaplist))
1434 		list_add(&info->swaplist, &shmem_swaplist);
1435 
1436 	if (add_to_swap_cache(page, swap,
1437 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1438 		spin_lock_irq(&info->lock);
1439 		shmem_recalc_inode(inode);
1440 		info->swapped++;
1441 		spin_unlock_irq(&info->lock);
1442 
1443 		swap_shmem_alloc(swap);
1444 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1445 
1446 		mutex_unlock(&shmem_swaplist_mutex);
1447 		BUG_ON(page_mapped(page));
1448 		swap_writepage(page, wbc);
1449 		return 0;
1450 	}
1451 
1452 	mutex_unlock(&shmem_swaplist_mutex);
1453 	put_swap_page(page, swap);
1454 redirty:
1455 	set_page_dirty(page);
1456 	if (wbc->for_reclaim)
1457 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1458 	unlock_page(page);
1459 	return 0;
1460 }
1461 
1462 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1463 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1464 {
1465 	char buffer[64];
1466 
1467 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1468 		return;		/* show nothing */
1469 
1470 	mpol_to_str(buffer, sizeof(buffer), mpol);
1471 
1472 	seq_printf(seq, ",mpol=%s", buffer);
1473 }
1474 
1475 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1476 {
1477 	struct mempolicy *mpol = NULL;
1478 	if (sbinfo->mpol) {
1479 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1480 		mpol = sbinfo->mpol;
1481 		mpol_get(mpol);
1482 		spin_unlock(&sbinfo->stat_lock);
1483 	}
1484 	return mpol;
1485 }
1486 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1487 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1488 {
1489 }
1490 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1491 {
1492 	return NULL;
1493 }
1494 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1495 #ifndef CONFIG_NUMA
1496 #define vm_policy vm_private_data
1497 #endif
1498 
1499 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1500 		struct shmem_inode_info *info, pgoff_t index)
1501 {
1502 	/* Create a pseudo vma that just contains the policy */
1503 	vma_init(vma, NULL);
1504 	/* Bias interleave by inode number to distribute better across nodes */
1505 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1506 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1507 }
1508 
1509 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1510 {
1511 	/* Drop reference taken by mpol_shared_policy_lookup() */
1512 	mpol_cond_put(vma->vm_policy);
1513 }
1514 
1515 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1516 			struct shmem_inode_info *info, pgoff_t index)
1517 {
1518 	struct vm_area_struct pvma;
1519 	struct page *page;
1520 	struct vm_fault vmf;
1521 
1522 	shmem_pseudo_vma_init(&pvma, info, index);
1523 	vmf.vma = &pvma;
1524 	vmf.address = 0;
1525 	page = swap_cluster_readahead(swap, gfp, &vmf);
1526 	shmem_pseudo_vma_destroy(&pvma);
1527 
1528 	return page;
1529 }
1530 
1531 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1532 		struct shmem_inode_info *info, pgoff_t index)
1533 {
1534 	struct vm_area_struct pvma;
1535 	struct address_space *mapping = info->vfs_inode.i_mapping;
1536 	pgoff_t hindex;
1537 	struct page *page;
1538 
1539 	hindex = round_down(index, HPAGE_PMD_NR);
1540 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1541 								XA_PRESENT))
1542 		return NULL;
1543 
1544 	shmem_pseudo_vma_init(&pvma, info, hindex);
1545 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1546 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1547 	shmem_pseudo_vma_destroy(&pvma);
1548 	if (page)
1549 		prep_transhuge_page(page);
1550 	else
1551 		count_vm_event(THP_FILE_FALLBACK);
1552 	return page;
1553 }
1554 
1555 static struct page *shmem_alloc_page(gfp_t gfp,
1556 			struct shmem_inode_info *info, pgoff_t index)
1557 {
1558 	struct vm_area_struct pvma;
1559 	struct page *page;
1560 
1561 	shmem_pseudo_vma_init(&pvma, info, index);
1562 	page = alloc_page_vma(gfp, &pvma, 0);
1563 	shmem_pseudo_vma_destroy(&pvma);
1564 
1565 	return page;
1566 }
1567 
1568 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1569 		struct inode *inode,
1570 		pgoff_t index, bool huge)
1571 {
1572 	struct shmem_inode_info *info = SHMEM_I(inode);
1573 	struct page *page;
1574 	int nr;
1575 	int err = -ENOSPC;
1576 
1577 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1578 		huge = false;
1579 	nr = huge ? HPAGE_PMD_NR : 1;
1580 
1581 	if (!shmem_inode_acct_block(inode, nr))
1582 		goto failed;
1583 
1584 	if (huge)
1585 		page = shmem_alloc_hugepage(gfp, info, index);
1586 	else
1587 		page = shmem_alloc_page(gfp, info, index);
1588 	if (page) {
1589 		__SetPageLocked(page);
1590 		__SetPageSwapBacked(page);
1591 		return page;
1592 	}
1593 
1594 	err = -ENOMEM;
1595 	shmem_inode_unacct_blocks(inode, nr);
1596 failed:
1597 	return ERR_PTR(err);
1598 }
1599 
1600 /*
1601  * When a page is moved from swapcache to shmem filecache (either by the
1602  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1603  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1604  * ignorance of the mapping it belongs to.  If that mapping has special
1605  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1606  * we may need to copy to a suitable page before moving to filecache.
1607  *
1608  * In a future release, this may well be extended to respect cpuset and
1609  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1610  * but for now it is a simple matter of zone.
1611  */
1612 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1613 {
1614 	return page_zonenum(page) > gfp_zone(gfp);
1615 }
1616 
1617 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1618 				struct shmem_inode_info *info, pgoff_t index)
1619 {
1620 	struct page *oldpage, *newpage;
1621 	struct address_space *swap_mapping;
1622 	swp_entry_t entry;
1623 	pgoff_t swap_index;
1624 	int error;
1625 
1626 	oldpage = *pagep;
1627 	entry.val = page_private(oldpage);
1628 	swap_index = swp_offset(entry);
1629 	swap_mapping = page_mapping(oldpage);
1630 
1631 	/*
1632 	 * We have arrived here because our zones are constrained, so don't
1633 	 * limit chance of success by further cpuset and node constraints.
1634 	 */
1635 	gfp &= ~GFP_CONSTRAINT_MASK;
1636 	newpage = shmem_alloc_page(gfp, info, index);
1637 	if (!newpage)
1638 		return -ENOMEM;
1639 
1640 	get_page(newpage);
1641 	copy_highpage(newpage, oldpage);
1642 	flush_dcache_page(newpage);
1643 
1644 	__SetPageLocked(newpage);
1645 	__SetPageSwapBacked(newpage);
1646 	SetPageUptodate(newpage);
1647 	set_page_private(newpage, entry.val);
1648 	SetPageSwapCache(newpage);
1649 
1650 	/*
1651 	 * Our caller will very soon move newpage out of swapcache, but it's
1652 	 * a nice clean interface for us to replace oldpage by newpage there.
1653 	 */
1654 	xa_lock_irq(&swap_mapping->i_pages);
1655 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1656 	if (!error) {
1657 		mem_cgroup_migrate(oldpage, newpage);
1658 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1659 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1660 	}
1661 	xa_unlock_irq(&swap_mapping->i_pages);
1662 
1663 	if (unlikely(error)) {
1664 		/*
1665 		 * Is this possible?  I think not, now that our callers check
1666 		 * both PageSwapCache and page_private after getting page lock;
1667 		 * but be defensive.  Reverse old to newpage for clear and free.
1668 		 */
1669 		oldpage = newpage;
1670 	} else {
1671 		lru_cache_add(newpage);
1672 		*pagep = newpage;
1673 	}
1674 
1675 	ClearPageSwapCache(oldpage);
1676 	set_page_private(oldpage, 0);
1677 
1678 	unlock_page(oldpage);
1679 	put_page(oldpage);
1680 	put_page(oldpage);
1681 	return error;
1682 }
1683 
1684 /*
1685  * Swap in the page pointed to by *pagep.
1686  * Caller has to make sure that *pagep contains a valid swapped page.
1687  * Returns 0 and the page in pagep if success. On failure, returns the
1688  * the error code and NULL in *pagep.
1689  */
1690 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1691 			     struct page **pagep, enum sgp_type sgp,
1692 			     gfp_t gfp, struct vm_area_struct *vma,
1693 			     vm_fault_t *fault_type)
1694 {
1695 	struct address_space *mapping = inode->i_mapping;
1696 	struct shmem_inode_info *info = SHMEM_I(inode);
1697 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1698 	struct page *page;
1699 	swp_entry_t swap;
1700 	int error;
1701 
1702 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1703 	swap = radix_to_swp_entry(*pagep);
1704 	*pagep = NULL;
1705 
1706 	/* Look it up and read it in.. */
1707 	page = lookup_swap_cache(swap, NULL, 0);
1708 	if (!page) {
1709 		/* Or update major stats only when swapin succeeds?? */
1710 		if (fault_type) {
1711 			*fault_type |= VM_FAULT_MAJOR;
1712 			count_vm_event(PGMAJFAULT);
1713 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1714 		}
1715 		/* Here we actually start the io */
1716 		page = shmem_swapin(swap, gfp, info, index);
1717 		if (!page) {
1718 			error = -ENOMEM;
1719 			goto failed;
1720 		}
1721 	}
1722 
1723 	/* We have to do this with page locked to prevent races */
1724 	lock_page(page);
1725 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1726 	    !shmem_confirm_swap(mapping, index, swap)) {
1727 		error = -EEXIST;
1728 		goto unlock;
1729 	}
1730 	if (!PageUptodate(page)) {
1731 		error = -EIO;
1732 		goto failed;
1733 	}
1734 	wait_on_page_writeback(page);
1735 
1736 	if (shmem_should_replace_page(page, gfp)) {
1737 		error = shmem_replace_page(&page, gfp, info, index);
1738 		if (error)
1739 			goto failed;
1740 	}
1741 
1742 	error = shmem_add_to_page_cache(page, mapping, index,
1743 					swp_to_radix_entry(swap), gfp,
1744 					charge_mm);
1745 	if (error)
1746 		goto failed;
1747 
1748 	spin_lock_irq(&info->lock);
1749 	info->swapped--;
1750 	shmem_recalc_inode(inode);
1751 	spin_unlock_irq(&info->lock);
1752 
1753 	if (sgp == SGP_WRITE)
1754 		mark_page_accessed(page);
1755 
1756 	delete_from_swap_cache(page);
1757 	set_page_dirty(page);
1758 	swap_free(swap);
1759 
1760 	*pagep = page;
1761 	return 0;
1762 failed:
1763 	if (!shmem_confirm_swap(mapping, index, swap))
1764 		error = -EEXIST;
1765 unlock:
1766 	if (page) {
1767 		unlock_page(page);
1768 		put_page(page);
1769 	}
1770 
1771 	return error;
1772 }
1773 
1774 /*
1775  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1776  *
1777  * If we allocate a new one we do not mark it dirty. That's up to the
1778  * vm. If we swap it in we mark it dirty since we also free the swap
1779  * entry since a page cannot live in both the swap and page cache.
1780  *
1781  * vmf and fault_type are only supplied by shmem_fault:
1782  * otherwise they are NULL.
1783  */
1784 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1785 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1786 	struct vm_area_struct *vma, struct vm_fault *vmf,
1787 			vm_fault_t *fault_type)
1788 {
1789 	struct address_space *mapping = inode->i_mapping;
1790 	struct shmem_inode_info *info = SHMEM_I(inode);
1791 	struct shmem_sb_info *sbinfo;
1792 	struct mm_struct *charge_mm;
1793 	struct page *page;
1794 	enum sgp_type sgp_huge = sgp;
1795 	pgoff_t hindex = index;
1796 	int error;
1797 	int once = 0;
1798 	int alloced = 0;
1799 
1800 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1801 		return -EFBIG;
1802 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1803 		sgp = SGP_CACHE;
1804 repeat:
1805 	if (sgp <= SGP_CACHE &&
1806 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1807 		return -EINVAL;
1808 	}
1809 
1810 	sbinfo = SHMEM_SB(inode->i_sb);
1811 	charge_mm = vma ? vma->vm_mm : current->mm;
1812 
1813 	page = find_lock_entry(mapping, index);
1814 	if (xa_is_value(page)) {
1815 		error = shmem_swapin_page(inode, index, &page,
1816 					  sgp, gfp, vma, fault_type);
1817 		if (error == -EEXIST)
1818 			goto repeat;
1819 
1820 		*pagep = page;
1821 		return error;
1822 	}
1823 
1824 	if (page && sgp == SGP_WRITE)
1825 		mark_page_accessed(page);
1826 
1827 	/* fallocated page? */
1828 	if (page && !PageUptodate(page)) {
1829 		if (sgp != SGP_READ)
1830 			goto clear;
1831 		unlock_page(page);
1832 		put_page(page);
1833 		page = NULL;
1834 	}
1835 	if (page || sgp == SGP_READ) {
1836 		*pagep = page;
1837 		return 0;
1838 	}
1839 
1840 	/*
1841 	 * Fast cache lookup did not find it:
1842 	 * bring it back from swap or allocate.
1843 	 */
1844 
1845 	if (vma && userfaultfd_missing(vma)) {
1846 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1847 		return 0;
1848 	}
1849 
1850 	/* shmem_symlink() */
1851 	if (mapping->a_ops != &shmem_aops)
1852 		goto alloc_nohuge;
1853 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1854 		goto alloc_nohuge;
1855 	if (shmem_huge == SHMEM_HUGE_FORCE)
1856 		goto alloc_huge;
1857 	switch (sbinfo->huge) {
1858 	case SHMEM_HUGE_NEVER:
1859 		goto alloc_nohuge;
1860 	case SHMEM_HUGE_WITHIN_SIZE: {
1861 		loff_t i_size;
1862 		pgoff_t off;
1863 
1864 		off = round_up(index, HPAGE_PMD_NR);
1865 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1866 		if (i_size >= HPAGE_PMD_SIZE &&
1867 		    i_size >> PAGE_SHIFT >= off)
1868 			goto alloc_huge;
1869 
1870 		fallthrough;
1871 	}
1872 	case SHMEM_HUGE_ADVISE:
1873 		if (sgp_huge == SGP_HUGE)
1874 			goto alloc_huge;
1875 		/* TODO: implement fadvise() hints */
1876 		goto alloc_nohuge;
1877 	}
1878 
1879 alloc_huge:
1880 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1881 	if (IS_ERR(page)) {
1882 alloc_nohuge:
1883 		page = shmem_alloc_and_acct_page(gfp, inode,
1884 						 index, false);
1885 	}
1886 	if (IS_ERR(page)) {
1887 		int retry = 5;
1888 
1889 		error = PTR_ERR(page);
1890 		page = NULL;
1891 		if (error != -ENOSPC)
1892 			goto unlock;
1893 		/*
1894 		 * Try to reclaim some space by splitting a huge page
1895 		 * beyond i_size on the filesystem.
1896 		 */
1897 		while (retry--) {
1898 			int ret;
1899 
1900 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1901 			if (ret == SHRINK_STOP)
1902 				break;
1903 			if (ret)
1904 				goto alloc_nohuge;
1905 		}
1906 		goto unlock;
1907 	}
1908 
1909 	if (PageTransHuge(page))
1910 		hindex = round_down(index, HPAGE_PMD_NR);
1911 	else
1912 		hindex = index;
1913 
1914 	if (sgp == SGP_WRITE)
1915 		__SetPageReferenced(page);
1916 
1917 	error = shmem_add_to_page_cache(page, mapping, hindex,
1918 					NULL, gfp & GFP_RECLAIM_MASK,
1919 					charge_mm);
1920 	if (error)
1921 		goto unacct;
1922 	lru_cache_add(page);
1923 
1924 	spin_lock_irq(&info->lock);
1925 	info->alloced += compound_nr(page);
1926 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1927 	shmem_recalc_inode(inode);
1928 	spin_unlock_irq(&info->lock);
1929 	alloced = true;
1930 
1931 	if (PageTransHuge(page) &&
1932 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1933 			hindex + HPAGE_PMD_NR - 1) {
1934 		/*
1935 		 * Part of the huge page is beyond i_size: subject
1936 		 * to shrink under memory pressure.
1937 		 */
1938 		spin_lock(&sbinfo->shrinklist_lock);
1939 		/*
1940 		 * _careful to defend against unlocked access to
1941 		 * ->shrink_list in shmem_unused_huge_shrink()
1942 		 */
1943 		if (list_empty_careful(&info->shrinklist)) {
1944 			list_add_tail(&info->shrinklist,
1945 				      &sbinfo->shrinklist);
1946 			sbinfo->shrinklist_len++;
1947 		}
1948 		spin_unlock(&sbinfo->shrinklist_lock);
1949 	}
1950 
1951 	/*
1952 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1953 	 */
1954 	if (sgp == SGP_FALLOC)
1955 		sgp = SGP_WRITE;
1956 clear:
1957 	/*
1958 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1959 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1960 	 * it now, lest undo on failure cancel our earlier guarantee.
1961 	 */
1962 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1963 		struct page *head = compound_head(page);
1964 		int i;
1965 
1966 		for (i = 0; i < compound_nr(head); i++) {
1967 			clear_highpage(head + i);
1968 			flush_dcache_page(head + i);
1969 		}
1970 		SetPageUptodate(head);
1971 	}
1972 
1973 	/* Perhaps the file has been truncated since we checked */
1974 	if (sgp <= SGP_CACHE &&
1975 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1976 		if (alloced) {
1977 			ClearPageDirty(page);
1978 			delete_from_page_cache(page);
1979 			spin_lock_irq(&info->lock);
1980 			shmem_recalc_inode(inode);
1981 			spin_unlock_irq(&info->lock);
1982 		}
1983 		error = -EINVAL;
1984 		goto unlock;
1985 	}
1986 	*pagep = page + index - hindex;
1987 	return 0;
1988 
1989 	/*
1990 	 * Error recovery.
1991 	 */
1992 unacct:
1993 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1994 
1995 	if (PageTransHuge(page)) {
1996 		unlock_page(page);
1997 		put_page(page);
1998 		goto alloc_nohuge;
1999 	}
2000 unlock:
2001 	if (page) {
2002 		unlock_page(page);
2003 		put_page(page);
2004 	}
2005 	if (error == -ENOSPC && !once++) {
2006 		spin_lock_irq(&info->lock);
2007 		shmem_recalc_inode(inode);
2008 		spin_unlock_irq(&info->lock);
2009 		goto repeat;
2010 	}
2011 	if (error == -EEXIST)
2012 		goto repeat;
2013 	return error;
2014 }
2015 
2016 /*
2017  * This is like autoremove_wake_function, but it removes the wait queue
2018  * entry unconditionally - even if something else had already woken the
2019  * target.
2020  */
2021 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2022 {
2023 	int ret = default_wake_function(wait, mode, sync, key);
2024 	list_del_init(&wait->entry);
2025 	return ret;
2026 }
2027 
2028 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2029 {
2030 	struct vm_area_struct *vma = vmf->vma;
2031 	struct inode *inode = file_inode(vma->vm_file);
2032 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2033 	enum sgp_type sgp;
2034 	int err;
2035 	vm_fault_t ret = VM_FAULT_LOCKED;
2036 
2037 	/*
2038 	 * Trinity finds that probing a hole which tmpfs is punching can
2039 	 * prevent the hole-punch from ever completing: which in turn
2040 	 * locks writers out with its hold on i_mutex.  So refrain from
2041 	 * faulting pages into the hole while it's being punched.  Although
2042 	 * shmem_undo_range() does remove the additions, it may be unable to
2043 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2044 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2045 	 *
2046 	 * It does not matter if we sometimes reach this check just before the
2047 	 * hole-punch begins, so that one fault then races with the punch:
2048 	 * we just need to make racing faults a rare case.
2049 	 *
2050 	 * The implementation below would be much simpler if we just used a
2051 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2052 	 * and bloating every shmem inode for this unlikely case would be sad.
2053 	 */
2054 	if (unlikely(inode->i_private)) {
2055 		struct shmem_falloc *shmem_falloc;
2056 
2057 		spin_lock(&inode->i_lock);
2058 		shmem_falloc = inode->i_private;
2059 		if (shmem_falloc &&
2060 		    shmem_falloc->waitq &&
2061 		    vmf->pgoff >= shmem_falloc->start &&
2062 		    vmf->pgoff < shmem_falloc->next) {
2063 			struct file *fpin;
2064 			wait_queue_head_t *shmem_falloc_waitq;
2065 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2066 
2067 			ret = VM_FAULT_NOPAGE;
2068 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2069 			if (fpin)
2070 				ret = VM_FAULT_RETRY;
2071 
2072 			shmem_falloc_waitq = shmem_falloc->waitq;
2073 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2074 					TASK_UNINTERRUPTIBLE);
2075 			spin_unlock(&inode->i_lock);
2076 			schedule();
2077 
2078 			/*
2079 			 * shmem_falloc_waitq points into the shmem_fallocate()
2080 			 * stack of the hole-punching task: shmem_falloc_waitq
2081 			 * is usually invalid by the time we reach here, but
2082 			 * finish_wait() does not dereference it in that case;
2083 			 * though i_lock needed lest racing with wake_up_all().
2084 			 */
2085 			spin_lock(&inode->i_lock);
2086 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2087 			spin_unlock(&inode->i_lock);
2088 
2089 			if (fpin)
2090 				fput(fpin);
2091 			return ret;
2092 		}
2093 		spin_unlock(&inode->i_lock);
2094 	}
2095 
2096 	sgp = SGP_CACHE;
2097 
2098 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2099 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2100 		sgp = SGP_NOHUGE;
2101 	else if (vma->vm_flags & VM_HUGEPAGE)
2102 		sgp = SGP_HUGE;
2103 
2104 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2105 				  gfp, vma, vmf, &ret);
2106 	if (err)
2107 		return vmf_error(err);
2108 	return ret;
2109 }
2110 
2111 unsigned long shmem_get_unmapped_area(struct file *file,
2112 				      unsigned long uaddr, unsigned long len,
2113 				      unsigned long pgoff, unsigned long flags)
2114 {
2115 	unsigned long (*get_area)(struct file *,
2116 		unsigned long, unsigned long, unsigned long, unsigned long);
2117 	unsigned long addr;
2118 	unsigned long offset;
2119 	unsigned long inflated_len;
2120 	unsigned long inflated_addr;
2121 	unsigned long inflated_offset;
2122 
2123 	if (len > TASK_SIZE)
2124 		return -ENOMEM;
2125 
2126 	get_area = current->mm->get_unmapped_area;
2127 	addr = get_area(file, uaddr, len, pgoff, flags);
2128 
2129 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2130 		return addr;
2131 	if (IS_ERR_VALUE(addr))
2132 		return addr;
2133 	if (addr & ~PAGE_MASK)
2134 		return addr;
2135 	if (addr > TASK_SIZE - len)
2136 		return addr;
2137 
2138 	if (shmem_huge == SHMEM_HUGE_DENY)
2139 		return addr;
2140 	if (len < HPAGE_PMD_SIZE)
2141 		return addr;
2142 	if (flags & MAP_FIXED)
2143 		return addr;
2144 	/*
2145 	 * Our priority is to support MAP_SHARED mapped hugely;
2146 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2147 	 * But if caller specified an address hint and we allocated area there
2148 	 * successfully, respect that as before.
2149 	 */
2150 	if (uaddr == addr)
2151 		return addr;
2152 
2153 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2154 		struct super_block *sb;
2155 
2156 		if (file) {
2157 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2158 			sb = file_inode(file)->i_sb;
2159 		} else {
2160 			/*
2161 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2162 			 * for "/dev/zero", to create a shared anonymous object.
2163 			 */
2164 			if (IS_ERR(shm_mnt))
2165 				return addr;
2166 			sb = shm_mnt->mnt_sb;
2167 		}
2168 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2169 			return addr;
2170 	}
2171 
2172 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2173 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2174 		return addr;
2175 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2176 		return addr;
2177 
2178 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2179 	if (inflated_len > TASK_SIZE)
2180 		return addr;
2181 	if (inflated_len < len)
2182 		return addr;
2183 
2184 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2185 	if (IS_ERR_VALUE(inflated_addr))
2186 		return addr;
2187 	if (inflated_addr & ~PAGE_MASK)
2188 		return addr;
2189 
2190 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2191 	inflated_addr += offset - inflated_offset;
2192 	if (inflated_offset > offset)
2193 		inflated_addr += HPAGE_PMD_SIZE;
2194 
2195 	if (inflated_addr > TASK_SIZE - len)
2196 		return addr;
2197 	return inflated_addr;
2198 }
2199 
2200 #ifdef CONFIG_NUMA
2201 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2202 {
2203 	struct inode *inode = file_inode(vma->vm_file);
2204 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2205 }
2206 
2207 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2208 					  unsigned long addr)
2209 {
2210 	struct inode *inode = file_inode(vma->vm_file);
2211 	pgoff_t index;
2212 
2213 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2214 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2215 }
2216 #endif
2217 
2218 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2219 {
2220 	struct inode *inode = file_inode(file);
2221 	struct shmem_inode_info *info = SHMEM_I(inode);
2222 	int retval = -ENOMEM;
2223 
2224 	/*
2225 	 * What serializes the accesses to info->flags?
2226 	 * ipc_lock_object() when called from shmctl_do_lock(),
2227 	 * no serialization needed when called from shm_destroy().
2228 	 */
2229 	if (lock && !(info->flags & VM_LOCKED)) {
2230 		if (!user_shm_lock(inode->i_size, user))
2231 			goto out_nomem;
2232 		info->flags |= VM_LOCKED;
2233 		mapping_set_unevictable(file->f_mapping);
2234 	}
2235 	if (!lock && (info->flags & VM_LOCKED) && user) {
2236 		user_shm_unlock(inode->i_size, user);
2237 		info->flags &= ~VM_LOCKED;
2238 		mapping_clear_unevictable(file->f_mapping);
2239 	}
2240 	retval = 0;
2241 
2242 out_nomem:
2243 	return retval;
2244 }
2245 
2246 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2247 {
2248 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2249 
2250 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2251 		/*
2252 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2253 		 * "future write" seal active.
2254 		 */
2255 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2256 			return -EPERM;
2257 
2258 		/*
2259 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2260 		 * MAP_SHARED and read-only, take care to not allow mprotect to
2261 		 * revert protections on such mappings. Do this only for shared
2262 		 * mappings. For private mappings, don't need to mask
2263 		 * VM_MAYWRITE as we still want them to be COW-writable.
2264 		 */
2265 		if (vma->vm_flags & VM_SHARED)
2266 			vma->vm_flags &= ~(VM_MAYWRITE);
2267 	}
2268 
2269 	file_accessed(file);
2270 	vma->vm_ops = &shmem_vm_ops;
2271 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2272 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2273 			(vma->vm_end & HPAGE_PMD_MASK)) {
2274 		khugepaged_enter(vma, vma->vm_flags);
2275 	}
2276 	return 0;
2277 }
2278 
2279 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2280 				     umode_t mode, dev_t dev, unsigned long flags)
2281 {
2282 	struct inode *inode;
2283 	struct shmem_inode_info *info;
2284 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2285 	ino_t ino;
2286 
2287 	if (shmem_reserve_inode(sb, &ino))
2288 		return NULL;
2289 
2290 	inode = new_inode(sb);
2291 	if (inode) {
2292 		inode->i_ino = ino;
2293 		inode_init_owner(inode, dir, mode);
2294 		inode->i_blocks = 0;
2295 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2296 		inode->i_generation = prandom_u32();
2297 		info = SHMEM_I(inode);
2298 		memset(info, 0, (char *)inode - (char *)info);
2299 		spin_lock_init(&info->lock);
2300 		atomic_set(&info->stop_eviction, 0);
2301 		info->seals = F_SEAL_SEAL;
2302 		info->flags = flags & VM_NORESERVE;
2303 		INIT_LIST_HEAD(&info->shrinklist);
2304 		INIT_LIST_HEAD(&info->swaplist);
2305 		simple_xattrs_init(&info->xattrs);
2306 		cache_no_acl(inode);
2307 
2308 		switch (mode & S_IFMT) {
2309 		default:
2310 			inode->i_op = &shmem_special_inode_operations;
2311 			init_special_inode(inode, mode, dev);
2312 			break;
2313 		case S_IFREG:
2314 			inode->i_mapping->a_ops = &shmem_aops;
2315 			inode->i_op = &shmem_inode_operations;
2316 			inode->i_fop = &shmem_file_operations;
2317 			mpol_shared_policy_init(&info->policy,
2318 						 shmem_get_sbmpol(sbinfo));
2319 			break;
2320 		case S_IFDIR:
2321 			inc_nlink(inode);
2322 			/* Some things misbehave if size == 0 on a directory */
2323 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324 			inode->i_op = &shmem_dir_inode_operations;
2325 			inode->i_fop = &simple_dir_operations;
2326 			break;
2327 		case S_IFLNK:
2328 			/*
2329 			 * Must not load anything in the rbtree,
2330 			 * mpol_free_shared_policy will not be called.
2331 			 */
2332 			mpol_shared_policy_init(&info->policy, NULL);
2333 			break;
2334 		}
2335 
2336 		lockdep_annotate_inode_mutex_key(inode);
2337 	} else
2338 		shmem_free_inode(sb);
2339 	return inode;
2340 }
2341 
2342 bool shmem_mapping(struct address_space *mapping)
2343 {
2344 	return mapping->a_ops == &shmem_aops;
2345 }
2346 
2347 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2348 				  pmd_t *dst_pmd,
2349 				  struct vm_area_struct *dst_vma,
2350 				  unsigned long dst_addr,
2351 				  unsigned long src_addr,
2352 				  bool zeropage,
2353 				  struct page **pagep)
2354 {
2355 	struct inode *inode = file_inode(dst_vma->vm_file);
2356 	struct shmem_inode_info *info = SHMEM_I(inode);
2357 	struct address_space *mapping = inode->i_mapping;
2358 	gfp_t gfp = mapping_gfp_mask(mapping);
2359 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2360 	spinlock_t *ptl;
2361 	void *page_kaddr;
2362 	struct page *page;
2363 	pte_t _dst_pte, *dst_pte;
2364 	int ret;
2365 	pgoff_t offset, max_off;
2366 
2367 	ret = -ENOMEM;
2368 	if (!shmem_inode_acct_block(inode, 1))
2369 		goto out;
2370 
2371 	if (!*pagep) {
2372 		page = shmem_alloc_page(gfp, info, pgoff);
2373 		if (!page)
2374 			goto out_unacct_blocks;
2375 
2376 		if (!zeropage) {	/* mcopy_atomic */
2377 			page_kaddr = kmap_atomic(page);
2378 			ret = copy_from_user(page_kaddr,
2379 					     (const void __user *)src_addr,
2380 					     PAGE_SIZE);
2381 			kunmap_atomic(page_kaddr);
2382 
2383 			/* fallback to copy_from_user outside mmap_lock */
2384 			if (unlikely(ret)) {
2385 				*pagep = page;
2386 				shmem_inode_unacct_blocks(inode, 1);
2387 				/* don't free the page */
2388 				return -ENOENT;
2389 			}
2390 		} else {		/* mfill_zeropage_atomic */
2391 			clear_highpage(page);
2392 		}
2393 	} else {
2394 		page = *pagep;
2395 		*pagep = NULL;
2396 	}
2397 
2398 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2399 	__SetPageLocked(page);
2400 	__SetPageSwapBacked(page);
2401 	__SetPageUptodate(page);
2402 
2403 	ret = -EFAULT;
2404 	offset = linear_page_index(dst_vma, dst_addr);
2405 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2406 	if (unlikely(offset >= max_off))
2407 		goto out_release;
2408 
2409 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2410 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2411 	if (ret)
2412 		goto out_release;
2413 
2414 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2415 	if (dst_vma->vm_flags & VM_WRITE)
2416 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2417 	else {
2418 		/*
2419 		 * We don't set the pte dirty if the vma has no
2420 		 * VM_WRITE permission, so mark the page dirty or it
2421 		 * could be freed from under us. We could do it
2422 		 * unconditionally before unlock_page(), but doing it
2423 		 * only if VM_WRITE is not set is faster.
2424 		 */
2425 		set_page_dirty(page);
2426 	}
2427 
2428 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2429 
2430 	ret = -EFAULT;
2431 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2432 	if (unlikely(offset >= max_off))
2433 		goto out_release_unlock;
2434 
2435 	ret = -EEXIST;
2436 	if (!pte_none(*dst_pte))
2437 		goto out_release_unlock;
2438 
2439 	lru_cache_add(page);
2440 
2441 	spin_lock_irq(&info->lock);
2442 	info->alloced++;
2443 	inode->i_blocks += BLOCKS_PER_PAGE;
2444 	shmem_recalc_inode(inode);
2445 	spin_unlock_irq(&info->lock);
2446 
2447 	inc_mm_counter(dst_mm, mm_counter_file(page));
2448 	page_add_file_rmap(page, false);
2449 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2450 
2451 	/* No need to invalidate - it was non-present before */
2452 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2453 	pte_unmap_unlock(dst_pte, ptl);
2454 	unlock_page(page);
2455 	ret = 0;
2456 out:
2457 	return ret;
2458 out_release_unlock:
2459 	pte_unmap_unlock(dst_pte, ptl);
2460 	ClearPageDirty(page);
2461 	delete_from_page_cache(page);
2462 out_release:
2463 	unlock_page(page);
2464 	put_page(page);
2465 out_unacct_blocks:
2466 	shmem_inode_unacct_blocks(inode, 1);
2467 	goto out;
2468 }
2469 
2470 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2471 			   pmd_t *dst_pmd,
2472 			   struct vm_area_struct *dst_vma,
2473 			   unsigned long dst_addr,
2474 			   unsigned long src_addr,
2475 			   struct page **pagep)
2476 {
2477 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2478 				      dst_addr, src_addr, false, pagep);
2479 }
2480 
2481 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2482 			     pmd_t *dst_pmd,
2483 			     struct vm_area_struct *dst_vma,
2484 			     unsigned long dst_addr)
2485 {
2486 	struct page *page = NULL;
2487 
2488 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2489 				      dst_addr, 0, true, &page);
2490 }
2491 
2492 #ifdef CONFIG_TMPFS
2493 static const struct inode_operations shmem_symlink_inode_operations;
2494 static const struct inode_operations shmem_short_symlink_operations;
2495 
2496 #ifdef CONFIG_TMPFS_XATTR
2497 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2498 #else
2499 #define shmem_initxattrs NULL
2500 #endif
2501 
2502 static int
2503 shmem_write_begin(struct file *file, struct address_space *mapping,
2504 			loff_t pos, unsigned len, unsigned flags,
2505 			struct page **pagep, void **fsdata)
2506 {
2507 	struct inode *inode = mapping->host;
2508 	struct shmem_inode_info *info = SHMEM_I(inode);
2509 	pgoff_t index = pos >> PAGE_SHIFT;
2510 
2511 	/* i_mutex is held by caller */
2512 	if (unlikely(info->seals & (F_SEAL_GROW |
2513 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2514 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2515 			return -EPERM;
2516 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2517 			return -EPERM;
2518 	}
2519 
2520 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2521 }
2522 
2523 static int
2524 shmem_write_end(struct file *file, struct address_space *mapping,
2525 			loff_t pos, unsigned len, unsigned copied,
2526 			struct page *page, void *fsdata)
2527 {
2528 	struct inode *inode = mapping->host;
2529 
2530 	if (pos + copied > inode->i_size)
2531 		i_size_write(inode, pos + copied);
2532 
2533 	if (!PageUptodate(page)) {
2534 		struct page *head = compound_head(page);
2535 		if (PageTransCompound(page)) {
2536 			int i;
2537 
2538 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2539 				if (head + i == page)
2540 					continue;
2541 				clear_highpage(head + i);
2542 				flush_dcache_page(head + i);
2543 			}
2544 		}
2545 		if (copied < PAGE_SIZE) {
2546 			unsigned from = pos & (PAGE_SIZE - 1);
2547 			zero_user_segments(page, 0, from,
2548 					from + copied, PAGE_SIZE);
2549 		}
2550 		SetPageUptodate(head);
2551 	}
2552 	set_page_dirty(page);
2553 	unlock_page(page);
2554 	put_page(page);
2555 
2556 	return copied;
2557 }
2558 
2559 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2560 {
2561 	struct file *file = iocb->ki_filp;
2562 	struct inode *inode = file_inode(file);
2563 	struct address_space *mapping = inode->i_mapping;
2564 	pgoff_t index;
2565 	unsigned long offset;
2566 	enum sgp_type sgp = SGP_READ;
2567 	int error = 0;
2568 	ssize_t retval = 0;
2569 	loff_t *ppos = &iocb->ki_pos;
2570 
2571 	/*
2572 	 * Might this read be for a stacking filesystem?  Then when reading
2573 	 * holes of a sparse file, we actually need to allocate those pages,
2574 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2575 	 */
2576 	if (!iter_is_iovec(to))
2577 		sgp = SGP_CACHE;
2578 
2579 	index = *ppos >> PAGE_SHIFT;
2580 	offset = *ppos & ~PAGE_MASK;
2581 
2582 	for (;;) {
2583 		struct page *page = NULL;
2584 		pgoff_t end_index;
2585 		unsigned long nr, ret;
2586 		loff_t i_size = i_size_read(inode);
2587 
2588 		end_index = i_size >> PAGE_SHIFT;
2589 		if (index > end_index)
2590 			break;
2591 		if (index == end_index) {
2592 			nr = i_size & ~PAGE_MASK;
2593 			if (nr <= offset)
2594 				break;
2595 		}
2596 
2597 		error = shmem_getpage(inode, index, &page, sgp);
2598 		if (error) {
2599 			if (error == -EINVAL)
2600 				error = 0;
2601 			break;
2602 		}
2603 		if (page) {
2604 			if (sgp == SGP_CACHE)
2605 				set_page_dirty(page);
2606 			unlock_page(page);
2607 		}
2608 
2609 		/*
2610 		 * We must evaluate after, since reads (unlike writes)
2611 		 * are called without i_mutex protection against truncate
2612 		 */
2613 		nr = PAGE_SIZE;
2614 		i_size = i_size_read(inode);
2615 		end_index = i_size >> PAGE_SHIFT;
2616 		if (index == end_index) {
2617 			nr = i_size & ~PAGE_MASK;
2618 			if (nr <= offset) {
2619 				if (page)
2620 					put_page(page);
2621 				break;
2622 			}
2623 		}
2624 		nr -= offset;
2625 
2626 		if (page) {
2627 			/*
2628 			 * If users can be writing to this page using arbitrary
2629 			 * virtual addresses, take care about potential aliasing
2630 			 * before reading the page on the kernel side.
2631 			 */
2632 			if (mapping_writably_mapped(mapping))
2633 				flush_dcache_page(page);
2634 			/*
2635 			 * Mark the page accessed if we read the beginning.
2636 			 */
2637 			if (!offset)
2638 				mark_page_accessed(page);
2639 		} else {
2640 			page = ZERO_PAGE(0);
2641 			get_page(page);
2642 		}
2643 
2644 		/*
2645 		 * Ok, we have the page, and it's up-to-date, so
2646 		 * now we can copy it to user space...
2647 		 */
2648 		ret = copy_page_to_iter(page, offset, nr, to);
2649 		retval += ret;
2650 		offset += ret;
2651 		index += offset >> PAGE_SHIFT;
2652 		offset &= ~PAGE_MASK;
2653 
2654 		put_page(page);
2655 		if (!iov_iter_count(to))
2656 			break;
2657 		if (ret < nr) {
2658 			error = -EFAULT;
2659 			break;
2660 		}
2661 		cond_resched();
2662 	}
2663 
2664 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2665 	file_accessed(file);
2666 	return retval ? retval : error;
2667 }
2668 
2669 /*
2670  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2671  */
2672 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2673 				    pgoff_t index, pgoff_t end, int whence)
2674 {
2675 	struct page *page;
2676 	struct pagevec pvec;
2677 	pgoff_t indices[PAGEVEC_SIZE];
2678 	bool done = false;
2679 	int i;
2680 
2681 	pagevec_init(&pvec);
2682 	pvec.nr = 1;		/* start small: we may be there already */
2683 	while (!done) {
2684 		pvec.nr = find_get_entries(mapping, index,
2685 					pvec.nr, pvec.pages, indices);
2686 		if (!pvec.nr) {
2687 			if (whence == SEEK_DATA)
2688 				index = end;
2689 			break;
2690 		}
2691 		for (i = 0; i < pvec.nr; i++, index++) {
2692 			if (index < indices[i]) {
2693 				if (whence == SEEK_HOLE) {
2694 					done = true;
2695 					break;
2696 				}
2697 				index = indices[i];
2698 			}
2699 			page = pvec.pages[i];
2700 			if (page && !xa_is_value(page)) {
2701 				if (!PageUptodate(page))
2702 					page = NULL;
2703 			}
2704 			if (index >= end ||
2705 			    (page && whence == SEEK_DATA) ||
2706 			    (!page && whence == SEEK_HOLE)) {
2707 				done = true;
2708 				break;
2709 			}
2710 		}
2711 		pagevec_remove_exceptionals(&pvec);
2712 		pagevec_release(&pvec);
2713 		pvec.nr = PAGEVEC_SIZE;
2714 		cond_resched();
2715 	}
2716 	return index;
2717 }
2718 
2719 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2720 {
2721 	struct address_space *mapping = file->f_mapping;
2722 	struct inode *inode = mapping->host;
2723 	pgoff_t start, end;
2724 	loff_t new_offset;
2725 
2726 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2727 		return generic_file_llseek_size(file, offset, whence,
2728 					MAX_LFS_FILESIZE, i_size_read(inode));
2729 	inode_lock(inode);
2730 	/* We're holding i_mutex so we can access i_size directly */
2731 
2732 	if (offset < 0 || offset >= inode->i_size)
2733 		offset = -ENXIO;
2734 	else {
2735 		start = offset >> PAGE_SHIFT;
2736 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2737 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2738 		new_offset <<= PAGE_SHIFT;
2739 		if (new_offset > offset) {
2740 			if (new_offset < inode->i_size)
2741 				offset = new_offset;
2742 			else if (whence == SEEK_DATA)
2743 				offset = -ENXIO;
2744 			else
2745 				offset = inode->i_size;
2746 		}
2747 	}
2748 
2749 	if (offset >= 0)
2750 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2751 	inode_unlock(inode);
2752 	return offset;
2753 }
2754 
2755 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2756 							 loff_t len)
2757 {
2758 	struct inode *inode = file_inode(file);
2759 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2760 	struct shmem_inode_info *info = SHMEM_I(inode);
2761 	struct shmem_falloc shmem_falloc;
2762 	pgoff_t start, index, end;
2763 	int error;
2764 
2765 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2766 		return -EOPNOTSUPP;
2767 
2768 	inode_lock(inode);
2769 
2770 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2771 		struct address_space *mapping = file->f_mapping;
2772 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2773 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2774 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2775 
2776 		/* protected by i_mutex */
2777 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2778 			error = -EPERM;
2779 			goto out;
2780 		}
2781 
2782 		shmem_falloc.waitq = &shmem_falloc_waitq;
2783 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2784 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2785 		spin_lock(&inode->i_lock);
2786 		inode->i_private = &shmem_falloc;
2787 		spin_unlock(&inode->i_lock);
2788 
2789 		if ((u64)unmap_end > (u64)unmap_start)
2790 			unmap_mapping_range(mapping, unmap_start,
2791 					    1 + unmap_end - unmap_start, 0);
2792 		shmem_truncate_range(inode, offset, offset + len - 1);
2793 		/* No need to unmap again: hole-punching leaves COWed pages */
2794 
2795 		spin_lock(&inode->i_lock);
2796 		inode->i_private = NULL;
2797 		wake_up_all(&shmem_falloc_waitq);
2798 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2799 		spin_unlock(&inode->i_lock);
2800 		error = 0;
2801 		goto out;
2802 	}
2803 
2804 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2805 	error = inode_newsize_ok(inode, offset + len);
2806 	if (error)
2807 		goto out;
2808 
2809 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2810 		error = -EPERM;
2811 		goto out;
2812 	}
2813 
2814 	start = offset >> PAGE_SHIFT;
2815 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2816 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2817 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2818 		error = -ENOSPC;
2819 		goto out;
2820 	}
2821 
2822 	shmem_falloc.waitq = NULL;
2823 	shmem_falloc.start = start;
2824 	shmem_falloc.next  = start;
2825 	shmem_falloc.nr_falloced = 0;
2826 	shmem_falloc.nr_unswapped = 0;
2827 	spin_lock(&inode->i_lock);
2828 	inode->i_private = &shmem_falloc;
2829 	spin_unlock(&inode->i_lock);
2830 
2831 	for (index = start; index < end; index++) {
2832 		struct page *page;
2833 
2834 		/*
2835 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2836 		 * been interrupted because we are using up too much memory.
2837 		 */
2838 		if (signal_pending(current))
2839 			error = -EINTR;
2840 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2841 			error = -ENOMEM;
2842 		else
2843 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2844 		if (error) {
2845 			/* Remove the !PageUptodate pages we added */
2846 			if (index > start) {
2847 				shmem_undo_range(inode,
2848 				    (loff_t)start << PAGE_SHIFT,
2849 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2850 			}
2851 			goto undone;
2852 		}
2853 
2854 		/*
2855 		 * Inform shmem_writepage() how far we have reached.
2856 		 * No need for lock or barrier: we have the page lock.
2857 		 */
2858 		shmem_falloc.next++;
2859 		if (!PageUptodate(page))
2860 			shmem_falloc.nr_falloced++;
2861 
2862 		/*
2863 		 * If !PageUptodate, leave it that way so that freeable pages
2864 		 * can be recognized if we need to rollback on error later.
2865 		 * But set_page_dirty so that memory pressure will swap rather
2866 		 * than free the pages we are allocating (and SGP_CACHE pages
2867 		 * might still be clean: we now need to mark those dirty too).
2868 		 */
2869 		set_page_dirty(page);
2870 		unlock_page(page);
2871 		put_page(page);
2872 		cond_resched();
2873 	}
2874 
2875 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2876 		i_size_write(inode, offset + len);
2877 	inode->i_ctime = current_time(inode);
2878 undone:
2879 	spin_lock(&inode->i_lock);
2880 	inode->i_private = NULL;
2881 	spin_unlock(&inode->i_lock);
2882 out:
2883 	inode_unlock(inode);
2884 	return error;
2885 }
2886 
2887 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2888 {
2889 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2890 
2891 	buf->f_type = TMPFS_MAGIC;
2892 	buf->f_bsize = PAGE_SIZE;
2893 	buf->f_namelen = NAME_MAX;
2894 	if (sbinfo->max_blocks) {
2895 		buf->f_blocks = sbinfo->max_blocks;
2896 		buf->f_bavail =
2897 		buf->f_bfree  = sbinfo->max_blocks -
2898 				percpu_counter_sum(&sbinfo->used_blocks);
2899 	}
2900 	if (sbinfo->max_inodes) {
2901 		buf->f_files = sbinfo->max_inodes;
2902 		buf->f_ffree = sbinfo->free_inodes;
2903 	}
2904 	/* else leave those fields 0 like simple_statfs */
2905 	return 0;
2906 }
2907 
2908 /*
2909  * File creation. Allocate an inode, and we're done..
2910  */
2911 static int
2912 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2913 {
2914 	struct inode *inode;
2915 	int error = -ENOSPC;
2916 
2917 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2918 	if (inode) {
2919 		error = simple_acl_create(dir, inode);
2920 		if (error)
2921 			goto out_iput;
2922 		error = security_inode_init_security(inode, dir,
2923 						     &dentry->d_name,
2924 						     shmem_initxattrs, NULL);
2925 		if (error && error != -EOPNOTSUPP)
2926 			goto out_iput;
2927 
2928 		error = 0;
2929 		dir->i_size += BOGO_DIRENT_SIZE;
2930 		dir->i_ctime = dir->i_mtime = current_time(dir);
2931 		d_instantiate(dentry, inode);
2932 		dget(dentry); /* Extra count - pin the dentry in core */
2933 	}
2934 	return error;
2935 out_iput:
2936 	iput(inode);
2937 	return error;
2938 }
2939 
2940 static int
2941 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2942 {
2943 	struct inode *inode;
2944 	int error = -ENOSPC;
2945 
2946 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2947 	if (inode) {
2948 		error = security_inode_init_security(inode, dir,
2949 						     NULL,
2950 						     shmem_initxattrs, NULL);
2951 		if (error && error != -EOPNOTSUPP)
2952 			goto out_iput;
2953 		error = simple_acl_create(dir, inode);
2954 		if (error)
2955 			goto out_iput;
2956 		d_tmpfile(dentry, inode);
2957 	}
2958 	return error;
2959 out_iput:
2960 	iput(inode);
2961 	return error;
2962 }
2963 
2964 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2965 {
2966 	int error;
2967 
2968 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2969 		return error;
2970 	inc_nlink(dir);
2971 	return 0;
2972 }
2973 
2974 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2975 		bool excl)
2976 {
2977 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2978 }
2979 
2980 /*
2981  * Link a file..
2982  */
2983 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2984 {
2985 	struct inode *inode = d_inode(old_dentry);
2986 	int ret = 0;
2987 
2988 	/*
2989 	 * No ordinary (disk based) filesystem counts links as inodes;
2990 	 * but each new link needs a new dentry, pinning lowmem, and
2991 	 * tmpfs dentries cannot be pruned until they are unlinked.
2992 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2993 	 * first link must skip that, to get the accounting right.
2994 	 */
2995 	if (inode->i_nlink) {
2996 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2997 		if (ret)
2998 			goto out;
2999 	}
3000 
3001 	dir->i_size += BOGO_DIRENT_SIZE;
3002 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3003 	inc_nlink(inode);
3004 	ihold(inode);	/* New dentry reference */
3005 	dget(dentry);		/* Extra pinning count for the created dentry */
3006 	d_instantiate(dentry, inode);
3007 out:
3008 	return ret;
3009 }
3010 
3011 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3012 {
3013 	struct inode *inode = d_inode(dentry);
3014 
3015 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3016 		shmem_free_inode(inode->i_sb);
3017 
3018 	dir->i_size -= BOGO_DIRENT_SIZE;
3019 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3020 	drop_nlink(inode);
3021 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3022 	return 0;
3023 }
3024 
3025 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3026 {
3027 	if (!simple_empty(dentry))
3028 		return -ENOTEMPTY;
3029 
3030 	drop_nlink(d_inode(dentry));
3031 	drop_nlink(dir);
3032 	return shmem_unlink(dir, dentry);
3033 }
3034 
3035 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3036 {
3037 	bool old_is_dir = d_is_dir(old_dentry);
3038 	bool new_is_dir = d_is_dir(new_dentry);
3039 
3040 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3041 		if (old_is_dir) {
3042 			drop_nlink(old_dir);
3043 			inc_nlink(new_dir);
3044 		} else {
3045 			drop_nlink(new_dir);
3046 			inc_nlink(old_dir);
3047 		}
3048 	}
3049 	old_dir->i_ctime = old_dir->i_mtime =
3050 	new_dir->i_ctime = new_dir->i_mtime =
3051 	d_inode(old_dentry)->i_ctime =
3052 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3053 
3054 	return 0;
3055 }
3056 
3057 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3058 {
3059 	struct dentry *whiteout;
3060 	int error;
3061 
3062 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3063 	if (!whiteout)
3064 		return -ENOMEM;
3065 
3066 	error = shmem_mknod(old_dir, whiteout,
3067 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3068 	dput(whiteout);
3069 	if (error)
3070 		return error;
3071 
3072 	/*
3073 	 * Cheat and hash the whiteout while the old dentry is still in
3074 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3075 	 *
3076 	 * d_lookup() will consistently find one of them at this point,
3077 	 * not sure which one, but that isn't even important.
3078 	 */
3079 	d_rehash(whiteout);
3080 	return 0;
3081 }
3082 
3083 /*
3084  * The VFS layer already does all the dentry stuff for rename,
3085  * we just have to decrement the usage count for the target if
3086  * it exists so that the VFS layer correctly free's it when it
3087  * gets overwritten.
3088  */
3089 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3090 {
3091 	struct inode *inode = d_inode(old_dentry);
3092 	int they_are_dirs = S_ISDIR(inode->i_mode);
3093 
3094 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3095 		return -EINVAL;
3096 
3097 	if (flags & RENAME_EXCHANGE)
3098 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3099 
3100 	if (!simple_empty(new_dentry))
3101 		return -ENOTEMPTY;
3102 
3103 	if (flags & RENAME_WHITEOUT) {
3104 		int error;
3105 
3106 		error = shmem_whiteout(old_dir, old_dentry);
3107 		if (error)
3108 			return error;
3109 	}
3110 
3111 	if (d_really_is_positive(new_dentry)) {
3112 		(void) shmem_unlink(new_dir, new_dentry);
3113 		if (they_are_dirs) {
3114 			drop_nlink(d_inode(new_dentry));
3115 			drop_nlink(old_dir);
3116 		}
3117 	} else if (they_are_dirs) {
3118 		drop_nlink(old_dir);
3119 		inc_nlink(new_dir);
3120 	}
3121 
3122 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3123 	new_dir->i_size += BOGO_DIRENT_SIZE;
3124 	old_dir->i_ctime = old_dir->i_mtime =
3125 	new_dir->i_ctime = new_dir->i_mtime =
3126 	inode->i_ctime = current_time(old_dir);
3127 	return 0;
3128 }
3129 
3130 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3131 {
3132 	int error;
3133 	int len;
3134 	struct inode *inode;
3135 	struct page *page;
3136 
3137 	len = strlen(symname) + 1;
3138 	if (len > PAGE_SIZE)
3139 		return -ENAMETOOLONG;
3140 
3141 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3142 				VM_NORESERVE);
3143 	if (!inode)
3144 		return -ENOSPC;
3145 
3146 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3147 					     shmem_initxattrs, NULL);
3148 	if (error && error != -EOPNOTSUPP) {
3149 		iput(inode);
3150 		return error;
3151 	}
3152 
3153 	inode->i_size = len-1;
3154 	if (len <= SHORT_SYMLINK_LEN) {
3155 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3156 		if (!inode->i_link) {
3157 			iput(inode);
3158 			return -ENOMEM;
3159 		}
3160 		inode->i_op = &shmem_short_symlink_operations;
3161 	} else {
3162 		inode_nohighmem(inode);
3163 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3164 		if (error) {
3165 			iput(inode);
3166 			return error;
3167 		}
3168 		inode->i_mapping->a_ops = &shmem_aops;
3169 		inode->i_op = &shmem_symlink_inode_operations;
3170 		memcpy(page_address(page), symname, len);
3171 		SetPageUptodate(page);
3172 		set_page_dirty(page);
3173 		unlock_page(page);
3174 		put_page(page);
3175 	}
3176 	dir->i_size += BOGO_DIRENT_SIZE;
3177 	dir->i_ctime = dir->i_mtime = current_time(dir);
3178 	d_instantiate(dentry, inode);
3179 	dget(dentry);
3180 	return 0;
3181 }
3182 
3183 static void shmem_put_link(void *arg)
3184 {
3185 	mark_page_accessed(arg);
3186 	put_page(arg);
3187 }
3188 
3189 static const char *shmem_get_link(struct dentry *dentry,
3190 				  struct inode *inode,
3191 				  struct delayed_call *done)
3192 {
3193 	struct page *page = NULL;
3194 	int error;
3195 	if (!dentry) {
3196 		page = find_get_page(inode->i_mapping, 0);
3197 		if (!page)
3198 			return ERR_PTR(-ECHILD);
3199 		if (!PageUptodate(page)) {
3200 			put_page(page);
3201 			return ERR_PTR(-ECHILD);
3202 		}
3203 	} else {
3204 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3205 		if (error)
3206 			return ERR_PTR(error);
3207 		unlock_page(page);
3208 	}
3209 	set_delayed_call(done, shmem_put_link, page);
3210 	return page_address(page);
3211 }
3212 
3213 #ifdef CONFIG_TMPFS_XATTR
3214 /*
3215  * Superblocks without xattr inode operations may get some security.* xattr
3216  * support from the LSM "for free". As soon as we have any other xattrs
3217  * like ACLs, we also need to implement the security.* handlers at
3218  * filesystem level, though.
3219  */
3220 
3221 /*
3222  * Callback for security_inode_init_security() for acquiring xattrs.
3223  */
3224 static int shmem_initxattrs(struct inode *inode,
3225 			    const struct xattr *xattr_array,
3226 			    void *fs_info)
3227 {
3228 	struct shmem_inode_info *info = SHMEM_I(inode);
3229 	const struct xattr *xattr;
3230 	struct simple_xattr *new_xattr;
3231 	size_t len;
3232 
3233 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3234 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3235 		if (!new_xattr)
3236 			return -ENOMEM;
3237 
3238 		len = strlen(xattr->name) + 1;
3239 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3240 					  GFP_KERNEL);
3241 		if (!new_xattr->name) {
3242 			kvfree(new_xattr);
3243 			return -ENOMEM;
3244 		}
3245 
3246 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3247 		       XATTR_SECURITY_PREFIX_LEN);
3248 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3249 		       xattr->name, len);
3250 
3251 		simple_xattr_list_add(&info->xattrs, new_xattr);
3252 	}
3253 
3254 	return 0;
3255 }
3256 
3257 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3258 				   struct dentry *unused, struct inode *inode,
3259 				   const char *name, void *buffer, size_t size)
3260 {
3261 	struct shmem_inode_info *info = SHMEM_I(inode);
3262 
3263 	name = xattr_full_name(handler, name);
3264 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3265 }
3266 
3267 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3268 				   struct dentry *unused, struct inode *inode,
3269 				   const char *name, const void *value,
3270 				   size_t size, int flags)
3271 {
3272 	struct shmem_inode_info *info = SHMEM_I(inode);
3273 
3274 	name = xattr_full_name(handler, name);
3275 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3276 }
3277 
3278 static const struct xattr_handler shmem_security_xattr_handler = {
3279 	.prefix = XATTR_SECURITY_PREFIX,
3280 	.get = shmem_xattr_handler_get,
3281 	.set = shmem_xattr_handler_set,
3282 };
3283 
3284 static const struct xattr_handler shmem_trusted_xattr_handler = {
3285 	.prefix = XATTR_TRUSTED_PREFIX,
3286 	.get = shmem_xattr_handler_get,
3287 	.set = shmem_xattr_handler_set,
3288 };
3289 
3290 static const struct xattr_handler *shmem_xattr_handlers[] = {
3291 #ifdef CONFIG_TMPFS_POSIX_ACL
3292 	&posix_acl_access_xattr_handler,
3293 	&posix_acl_default_xattr_handler,
3294 #endif
3295 	&shmem_security_xattr_handler,
3296 	&shmem_trusted_xattr_handler,
3297 	NULL
3298 };
3299 
3300 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3301 {
3302 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3303 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3304 }
3305 #endif /* CONFIG_TMPFS_XATTR */
3306 
3307 static const struct inode_operations shmem_short_symlink_operations = {
3308 	.get_link	= simple_get_link,
3309 #ifdef CONFIG_TMPFS_XATTR
3310 	.listxattr	= shmem_listxattr,
3311 #endif
3312 };
3313 
3314 static const struct inode_operations shmem_symlink_inode_operations = {
3315 	.get_link	= shmem_get_link,
3316 #ifdef CONFIG_TMPFS_XATTR
3317 	.listxattr	= shmem_listxattr,
3318 #endif
3319 };
3320 
3321 static struct dentry *shmem_get_parent(struct dentry *child)
3322 {
3323 	return ERR_PTR(-ESTALE);
3324 }
3325 
3326 static int shmem_match(struct inode *ino, void *vfh)
3327 {
3328 	__u32 *fh = vfh;
3329 	__u64 inum = fh[2];
3330 	inum = (inum << 32) | fh[1];
3331 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3332 }
3333 
3334 /* Find any alias of inode, but prefer a hashed alias */
3335 static struct dentry *shmem_find_alias(struct inode *inode)
3336 {
3337 	struct dentry *alias = d_find_alias(inode);
3338 
3339 	return alias ?: d_find_any_alias(inode);
3340 }
3341 
3342 
3343 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3344 		struct fid *fid, int fh_len, int fh_type)
3345 {
3346 	struct inode *inode;
3347 	struct dentry *dentry = NULL;
3348 	u64 inum;
3349 
3350 	if (fh_len < 3)
3351 		return NULL;
3352 
3353 	inum = fid->raw[2];
3354 	inum = (inum << 32) | fid->raw[1];
3355 
3356 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3357 			shmem_match, fid->raw);
3358 	if (inode) {
3359 		dentry = shmem_find_alias(inode);
3360 		iput(inode);
3361 	}
3362 
3363 	return dentry;
3364 }
3365 
3366 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3367 				struct inode *parent)
3368 {
3369 	if (*len < 3) {
3370 		*len = 3;
3371 		return FILEID_INVALID;
3372 	}
3373 
3374 	if (inode_unhashed(inode)) {
3375 		/* Unfortunately insert_inode_hash is not idempotent,
3376 		 * so as we hash inodes here rather than at creation
3377 		 * time, we need a lock to ensure we only try
3378 		 * to do it once
3379 		 */
3380 		static DEFINE_SPINLOCK(lock);
3381 		spin_lock(&lock);
3382 		if (inode_unhashed(inode))
3383 			__insert_inode_hash(inode,
3384 					    inode->i_ino + inode->i_generation);
3385 		spin_unlock(&lock);
3386 	}
3387 
3388 	fh[0] = inode->i_generation;
3389 	fh[1] = inode->i_ino;
3390 	fh[2] = ((__u64)inode->i_ino) >> 32;
3391 
3392 	*len = 3;
3393 	return 1;
3394 }
3395 
3396 static const struct export_operations shmem_export_ops = {
3397 	.get_parent     = shmem_get_parent,
3398 	.encode_fh      = shmem_encode_fh,
3399 	.fh_to_dentry	= shmem_fh_to_dentry,
3400 };
3401 
3402 enum shmem_param {
3403 	Opt_gid,
3404 	Opt_huge,
3405 	Opt_mode,
3406 	Opt_mpol,
3407 	Opt_nr_blocks,
3408 	Opt_nr_inodes,
3409 	Opt_size,
3410 	Opt_uid,
3411 	Opt_inode32,
3412 	Opt_inode64,
3413 };
3414 
3415 static const struct constant_table shmem_param_enums_huge[] = {
3416 	{"never",	SHMEM_HUGE_NEVER },
3417 	{"always",	SHMEM_HUGE_ALWAYS },
3418 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3419 	{"advise",	SHMEM_HUGE_ADVISE },
3420 	{}
3421 };
3422 
3423 const struct fs_parameter_spec shmem_fs_parameters[] = {
3424 	fsparam_u32   ("gid",		Opt_gid),
3425 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3426 	fsparam_u32oct("mode",		Opt_mode),
3427 	fsparam_string("mpol",		Opt_mpol),
3428 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3429 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3430 	fsparam_string("size",		Opt_size),
3431 	fsparam_u32   ("uid",		Opt_uid),
3432 	fsparam_flag  ("inode32",	Opt_inode32),
3433 	fsparam_flag  ("inode64",	Opt_inode64),
3434 	{}
3435 };
3436 
3437 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3438 {
3439 	struct shmem_options *ctx = fc->fs_private;
3440 	struct fs_parse_result result;
3441 	unsigned long long size;
3442 	char *rest;
3443 	int opt;
3444 
3445 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3446 	if (opt < 0)
3447 		return opt;
3448 
3449 	switch (opt) {
3450 	case Opt_size:
3451 		size = memparse(param->string, &rest);
3452 		if (*rest == '%') {
3453 			size <<= PAGE_SHIFT;
3454 			size *= totalram_pages();
3455 			do_div(size, 100);
3456 			rest++;
3457 		}
3458 		if (*rest)
3459 			goto bad_value;
3460 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3461 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3462 		break;
3463 	case Opt_nr_blocks:
3464 		ctx->blocks = memparse(param->string, &rest);
3465 		if (*rest)
3466 			goto bad_value;
3467 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3468 		break;
3469 	case Opt_nr_inodes:
3470 		ctx->inodes = memparse(param->string, &rest);
3471 		if (*rest)
3472 			goto bad_value;
3473 		ctx->seen |= SHMEM_SEEN_INODES;
3474 		break;
3475 	case Opt_mode:
3476 		ctx->mode = result.uint_32 & 07777;
3477 		break;
3478 	case Opt_uid:
3479 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3480 		if (!uid_valid(ctx->uid))
3481 			goto bad_value;
3482 		break;
3483 	case Opt_gid:
3484 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3485 		if (!gid_valid(ctx->gid))
3486 			goto bad_value;
3487 		break;
3488 	case Opt_huge:
3489 		ctx->huge = result.uint_32;
3490 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3491 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3492 		      has_transparent_hugepage()))
3493 			goto unsupported_parameter;
3494 		ctx->seen |= SHMEM_SEEN_HUGE;
3495 		break;
3496 	case Opt_mpol:
3497 		if (IS_ENABLED(CONFIG_NUMA)) {
3498 			mpol_put(ctx->mpol);
3499 			ctx->mpol = NULL;
3500 			if (mpol_parse_str(param->string, &ctx->mpol))
3501 				goto bad_value;
3502 			break;
3503 		}
3504 		goto unsupported_parameter;
3505 	case Opt_inode32:
3506 		ctx->full_inums = false;
3507 		ctx->seen |= SHMEM_SEEN_INUMS;
3508 		break;
3509 	case Opt_inode64:
3510 		if (sizeof(ino_t) < 8) {
3511 			return invalfc(fc,
3512 				       "Cannot use inode64 with <64bit inums in kernel\n");
3513 		}
3514 		ctx->full_inums = true;
3515 		ctx->seen |= SHMEM_SEEN_INUMS;
3516 		break;
3517 	}
3518 	return 0;
3519 
3520 unsupported_parameter:
3521 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3522 bad_value:
3523 	return invalfc(fc, "Bad value for '%s'", param->key);
3524 }
3525 
3526 static int shmem_parse_options(struct fs_context *fc, void *data)
3527 {
3528 	char *options = data;
3529 
3530 	if (options) {
3531 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3532 		if (err)
3533 			return err;
3534 	}
3535 
3536 	while (options != NULL) {
3537 		char *this_char = options;
3538 		for (;;) {
3539 			/*
3540 			 * NUL-terminate this option: unfortunately,
3541 			 * mount options form a comma-separated list,
3542 			 * but mpol's nodelist may also contain commas.
3543 			 */
3544 			options = strchr(options, ',');
3545 			if (options == NULL)
3546 				break;
3547 			options++;
3548 			if (!isdigit(*options)) {
3549 				options[-1] = '\0';
3550 				break;
3551 			}
3552 		}
3553 		if (*this_char) {
3554 			char *value = strchr(this_char,'=');
3555 			size_t len = 0;
3556 			int err;
3557 
3558 			if (value) {
3559 				*value++ = '\0';
3560 				len = strlen(value);
3561 			}
3562 			err = vfs_parse_fs_string(fc, this_char, value, len);
3563 			if (err < 0)
3564 				return err;
3565 		}
3566 	}
3567 	return 0;
3568 }
3569 
3570 /*
3571  * Reconfigure a shmem filesystem.
3572  *
3573  * Note that we disallow change from limited->unlimited blocks/inodes while any
3574  * are in use; but we must separately disallow unlimited->limited, because in
3575  * that case we have no record of how much is already in use.
3576  */
3577 static int shmem_reconfigure(struct fs_context *fc)
3578 {
3579 	struct shmem_options *ctx = fc->fs_private;
3580 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3581 	unsigned long inodes;
3582 	const char *err;
3583 
3584 	spin_lock(&sbinfo->stat_lock);
3585 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3586 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3587 		if (!sbinfo->max_blocks) {
3588 			err = "Cannot retroactively limit size";
3589 			goto out;
3590 		}
3591 		if (percpu_counter_compare(&sbinfo->used_blocks,
3592 					   ctx->blocks) > 0) {
3593 			err = "Too small a size for current use";
3594 			goto out;
3595 		}
3596 	}
3597 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3598 		if (!sbinfo->max_inodes) {
3599 			err = "Cannot retroactively limit inodes";
3600 			goto out;
3601 		}
3602 		if (ctx->inodes < inodes) {
3603 			err = "Too few inodes for current use";
3604 			goto out;
3605 		}
3606 	}
3607 
3608 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3609 	    sbinfo->next_ino > UINT_MAX) {
3610 		err = "Current inum too high to switch to 32-bit inums";
3611 		goto out;
3612 	}
3613 
3614 	if (ctx->seen & SHMEM_SEEN_HUGE)
3615 		sbinfo->huge = ctx->huge;
3616 	if (ctx->seen & SHMEM_SEEN_INUMS)
3617 		sbinfo->full_inums = ctx->full_inums;
3618 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3619 		sbinfo->max_blocks  = ctx->blocks;
3620 	if (ctx->seen & SHMEM_SEEN_INODES) {
3621 		sbinfo->max_inodes  = ctx->inodes;
3622 		sbinfo->free_inodes = ctx->inodes - inodes;
3623 	}
3624 
3625 	/*
3626 	 * Preserve previous mempolicy unless mpol remount option was specified.
3627 	 */
3628 	if (ctx->mpol) {
3629 		mpol_put(sbinfo->mpol);
3630 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3631 		ctx->mpol = NULL;
3632 	}
3633 	spin_unlock(&sbinfo->stat_lock);
3634 	return 0;
3635 out:
3636 	spin_unlock(&sbinfo->stat_lock);
3637 	return invalfc(fc, "%s", err);
3638 }
3639 
3640 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3641 {
3642 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3643 
3644 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3645 		seq_printf(seq, ",size=%luk",
3646 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3647 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3648 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3649 	if (sbinfo->mode != (0777 | S_ISVTX))
3650 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3651 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3652 		seq_printf(seq, ",uid=%u",
3653 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3654 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3655 		seq_printf(seq, ",gid=%u",
3656 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3657 
3658 	/*
3659 	 * Showing inode{64,32} might be useful even if it's the system default,
3660 	 * since then people don't have to resort to checking both here and
3661 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3662 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3663 	 *
3664 	 * We hide it when inode64 isn't the default and we are using 32-bit
3665 	 * inodes, since that probably just means the feature isn't even under
3666 	 * consideration.
3667 	 *
3668 	 * As such:
3669 	 *
3670 	 *                     +-----------------+-----------------+
3671 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3672 	 *  +------------------+-----------------+-----------------+
3673 	 *  | full_inums=true  | show            | show            |
3674 	 *  | full_inums=false | show            | hide            |
3675 	 *  +------------------+-----------------+-----------------+
3676 	 *
3677 	 */
3678 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3679 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3681 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3682 	if (sbinfo->huge)
3683 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3684 #endif
3685 	shmem_show_mpol(seq, sbinfo->mpol);
3686 	return 0;
3687 }
3688 
3689 #endif /* CONFIG_TMPFS */
3690 
3691 static void shmem_put_super(struct super_block *sb)
3692 {
3693 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3694 
3695 	free_percpu(sbinfo->ino_batch);
3696 	percpu_counter_destroy(&sbinfo->used_blocks);
3697 	mpol_put(sbinfo->mpol);
3698 	kfree(sbinfo);
3699 	sb->s_fs_info = NULL;
3700 }
3701 
3702 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3703 {
3704 	struct shmem_options *ctx = fc->fs_private;
3705 	struct inode *inode;
3706 	struct shmem_sb_info *sbinfo;
3707 	int err = -ENOMEM;
3708 
3709 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3710 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3711 				L1_CACHE_BYTES), GFP_KERNEL);
3712 	if (!sbinfo)
3713 		return -ENOMEM;
3714 
3715 	sb->s_fs_info = sbinfo;
3716 
3717 #ifdef CONFIG_TMPFS
3718 	/*
3719 	 * Per default we only allow half of the physical ram per
3720 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3721 	 * but the internal instance is left unlimited.
3722 	 */
3723 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3724 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3725 			ctx->blocks = shmem_default_max_blocks();
3726 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3727 			ctx->inodes = shmem_default_max_inodes();
3728 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3729 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3730 	} else {
3731 		sb->s_flags |= SB_NOUSER;
3732 	}
3733 	sb->s_export_op = &shmem_export_ops;
3734 	sb->s_flags |= SB_NOSEC;
3735 #else
3736 	sb->s_flags |= SB_NOUSER;
3737 #endif
3738 	sbinfo->max_blocks = ctx->blocks;
3739 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3740 	if (sb->s_flags & SB_KERNMOUNT) {
3741 		sbinfo->ino_batch = alloc_percpu(ino_t);
3742 		if (!sbinfo->ino_batch)
3743 			goto failed;
3744 	}
3745 	sbinfo->uid = ctx->uid;
3746 	sbinfo->gid = ctx->gid;
3747 	sbinfo->full_inums = ctx->full_inums;
3748 	sbinfo->mode = ctx->mode;
3749 	sbinfo->huge = ctx->huge;
3750 	sbinfo->mpol = ctx->mpol;
3751 	ctx->mpol = NULL;
3752 
3753 	spin_lock_init(&sbinfo->stat_lock);
3754 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3755 		goto failed;
3756 	spin_lock_init(&sbinfo->shrinklist_lock);
3757 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3758 
3759 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3760 	sb->s_blocksize = PAGE_SIZE;
3761 	sb->s_blocksize_bits = PAGE_SHIFT;
3762 	sb->s_magic = TMPFS_MAGIC;
3763 	sb->s_op = &shmem_ops;
3764 	sb->s_time_gran = 1;
3765 #ifdef CONFIG_TMPFS_XATTR
3766 	sb->s_xattr = shmem_xattr_handlers;
3767 #endif
3768 #ifdef CONFIG_TMPFS_POSIX_ACL
3769 	sb->s_flags |= SB_POSIXACL;
3770 #endif
3771 	uuid_gen(&sb->s_uuid);
3772 
3773 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3774 	if (!inode)
3775 		goto failed;
3776 	inode->i_uid = sbinfo->uid;
3777 	inode->i_gid = sbinfo->gid;
3778 	sb->s_root = d_make_root(inode);
3779 	if (!sb->s_root)
3780 		goto failed;
3781 	return 0;
3782 
3783 failed:
3784 	shmem_put_super(sb);
3785 	return err;
3786 }
3787 
3788 static int shmem_get_tree(struct fs_context *fc)
3789 {
3790 	return get_tree_nodev(fc, shmem_fill_super);
3791 }
3792 
3793 static void shmem_free_fc(struct fs_context *fc)
3794 {
3795 	struct shmem_options *ctx = fc->fs_private;
3796 
3797 	if (ctx) {
3798 		mpol_put(ctx->mpol);
3799 		kfree(ctx);
3800 	}
3801 }
3802 
3803 static const struct fs_context_operations shmem_fs_context_ops = {
3804 	.free			= shmem_free_fc,
3805 	.get_tree		= shmem_get_tree,
3806 #ifdef CONFIG_TMPFS
3807 	.parse_monolithic	= shmem_parse_options,
3808 	.parse_param		= shmem_parse_one,
3809 	.reconfigure		= shmem_reconfigure,
3810 #endif
3811 };
3812 
3813 static struct kmem_cache *shmem_inode_cachep;
3814 
3815 static struct inode *shmem_alloc_inode(struct super_block *sb)
3816 {
3817 	struct shmem_inode_info *info;
3818 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3819 	if (!info)
3820 		return NULL;
3821 	return &info->vfs_inode;
3822 }
3823 
3824 static void shmem_free_in_core_inode(struct inode *inode)
3825 {
3826 	if (S_ISLNK(inode->i_mode))
3827 		kfree(inode->i_link);
3828 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3829 }
3830 
3831 static void shmem_destroy_inode(struct inode *inode)
3832 {
3833 	if (S_ISREG(inode->i_mode))
3834 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3835 }
3836 
3837 static void shmem_init_inode(void *foo)
3838 {
3839 	struct shmem_inode_info *info = foo;
3840 	inode_init_once(&info->vfs_inode);
3841 }
3842 
3843 static void shmem_init_inodecache(void)
3844 {
3845 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3846 				sizeof(struct shmem_inode_info),
3847 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3848 }
3849 
3850 static void shmem_destroy_inodecache(void)
3851 {
3852 	kmem_cache_destroy(shmem_inode_cachep);
3853 }
3854 
3855 static const struct address_space_operations shmem_aops = {
3856 	.writepage	= shmem_writepage,
3857 	.set_page_dirty	= __set_page_dirty_no_writeback,
3858 #ifdef CONFIG_TMPFS
3859 	.write_begin	= shmem_write_begin,
3860 	.write_end	= shmem_write_end,
3861 #endif
3862 #ifdef CONFIG_MIGRATION
3863 	.migratepage	= migrate_page,
3864 #endif
3865 	.error_remove_page = generic_error_remove_page,
3866 };
3867 
3868 static const struct file_operations shmem_file_operations = {
3869 	.mmap		= shmem_mmap,
3870 	.get_unmapped_area = shmem_get_unmapped_area,
3871 #ifdef CONFIG_TMPFS
3872 	.llseek		= shmem_file_llseek,
3873 	.read_iter	= shmem_file_read_iter,
3874 	.write_iter	= generic_file_write_iter,
3875 	.fsync		= noop_fsync,
3876 	.splice_read	= generic_file_splice_read,
3877 	.splice_write	= iter_file_splice_write,
3878 	.fallocate	= shmem_fallocate,
3879 #endif
3880 };
3881 
3882 static const struct inode_operations shmem_inode_operations = {
3883 	.getattr	= shmem_getattr,
3884 	.setattr	= shmem_setattr,
3885 #ifdef CONFIG_TMPFS_XATTR
3886 	.listxattr	= shmem_listxattr,
3887 	.set_acl	= simple_set_acl,
3888 #endif
3889 };
3890 
3891 static const struct inode_operations shmem_dir_inode_operations = {
3892 #ifdef CONFIG_TMPFS
3893 	.create		= shmem_create,
3894 	.lookup		= simple_lookup,
3895 	.link		= shmem_link,
3896 	.unlink		= shmem_unlink,
3897 	.symlink	= shmem_symlink,
3898 	.mkdir		= shmem_mkdir,
3899 	.rmdir		= shmem_rmdir,
3900 	.mknod		= shmem_mknod,
3901 	.rename		= shmem_rename2,
3902 	.tmpfile	= shmem_tmpfile,
3903 #endif
3904 #ifdef CONFIG_TMPFS_XATTR
3905 	.listxattr	= shmem_listxattr,
3906 #endif
3907 #ifdef CONFIG_TMPFS_POSIX_ACL
3908 	.setattr	= shmem_setattr,
3909 	.set_acl	= simple_set_acl,
3910 #endif
3911 };
3912 
3913 static const struct inode_operations shmem_special_inode_operations = {
3914 #ifdef CONFIG_TMPFS_XATTR
3915 	.listxattr	= shmem_listxattr,
3916 #endif
3917 #ifdef CONFIG_TMPFS_POSIX_ACL
3918 	.setattr	= shmem_setattr,
3919 	.set_acl	= simple_set_acl,
3920 #endif
3921 };
3922 
3923 static const struct super_operations shmem_ops = {
3924 	.alloc_inode	= shmem_alloc_inode,
3925 	.free_inode	= shmem_free_in_core_inode,
3926 	.destroy_inode	= shmem_destroy_inode,
3927 #ifdef CONFIG_TMPFS
3928 	.statfs		= shmem_statfs,
3929 	.show_options	= shmem_show_options,
3930 #endif
3931 	.evict_inode	= shmem_evict_inode,
3932 	.drop_inode	= generic_delete_inode,
3933 	.put_super	= shmem_put_super,
3934 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3935 	.nr_cached_objects	= shmem_unused_huge_count,
3936 	.free_cached_objects	= shmem_unused_huge_scan,
3937 #endif
3938 };
3939 
3940 static const struct vm_operations_struct shmem_vm_ops = {
3941 	.fault		= shmem_fault,
3942 	.map_pages	= filemap_map_pages,
3943 #ifdef CONFIG_NUMA
3944 	.set_policy     = shmem_set_policy,
3945 	.get_policy     = shmem_get_policy,
3946 #endif
3947 };
3948 
3949 int shmem_init_fs_context(struct fs_context *fc)
3950 {
3951 	struct shmem_options *ctx;
3952 
3953 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3954 	if (!ctx)
3955 		return -ENOMEM;
3956 
3957 	ctx->mode = 0777 | S_ISVTX;
3958 	ctx->uid = current_fsuid();
3959 	ctx->gid = current_fsgid();
3960 
3961 	fc->fs_private = ctx;
3962 	fc->ops = &shmem_fs_context_ops;
3963 	return 0;
3964 }
3965 
3966 static struct file_system_type shmem_fs_type = {
3967 	.owner		= THIS_MODULE,
3968 	.name		= "tmpfs",
3969 	.init_fs_context = shmem_init_fs_context,
3970 #ifdef CONFIG_TMPFS
3971 	.parameters	= shmem_fs_parameters,
3972 #endif
3973 	.kill_sb	= kill_litter_super,
3974 	.fs_flags	= FS_USERNS_MOUNT,
3975 };
3976 
3977 int __init shmem_init(void)
3978 {
3979 	int error;
3980 
3981 	shmem_init_inodecache();
3982 
3983 	error = register_filesystem(&shmem_fs_type);
3984 	if (error) {
3985 		pr_err("Could not register tmpfs\n");
3986 		goto out2;
3987 	}
3988 
3989 	shm_mnt = kern_mount(&shmem_fs_type);
3990 	if (IS_ERR(shm_mnt)) {
3991 		error = PTR_ERR(shm_mnt);
3992 		pr_err("Could not kern_mount tmpfs\n");
3993 		goto out1;
3994 	}
3995 
3996 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3997 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3998 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3999 	else
4000 		shmem_huge = 0; /* just in case it was patched */
4001 #endif
4002 	return 0;
4003 
4004 out1:
4005 	unregister_filesystem(&shmem_fs_type);
4006 out2:
4007 	shmem_destroy_inodecache();
4008 	shm_mnt = ERR_PTR(error);
4009 	return error;
4010 }
4011 
4012 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4013 static ssize_t shmem_enabled_show(struct kobject *kobj,
4014 		struct kobj_attribute *attr, char *buf)
4015 {
4016 	static const int values[] = {
4017 		SHMEM_HUGE_ALWAYS,
4018 		SHMEM_HUGE_WITHIN_SIZE,
4019 		SHMEM_HUGE_ADVISE,
4020 		SHMEM_HUGE_NEVER,
4021 		SHMEM_HUGE_DENY,
4022 		SHMEM_HUGE_FORCE,
4023 	};
4024 	int i, count;
4025 
4026 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4027 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4028 
4029 		count += sprintf(buf + count, fmt,
4030 				shmem_format_huge(values[i]));
4031 	}
4032 	buf[count - 1] = '\n';
4033 	return count;
4034 }
4035 
4036 static ssize_t shmem_enabled_store(struct kobject *kobj,
4037 		struct kobj_attribute *attr, const char *buf, size_t count)
4038 {
4039 	char tmp[16];
4040 	int huge;
4041 
4042 	if (count + 1 > sizeof(tmp))
4043 		return -EINVAL;
4044 	memcpy(tmp, buf, count);
4045 	tmp[count] = '\0';
4046 	if (count && tmp[count - 1] == '\n')
4047 		tmp[count - 1] = '\0';
4048 
4049 	huge = shmem_parse_huge(tmp);
4050 	if (huge == -EINVAL)
4051 		return -EINVAL;
4052 	if (!has_transparent_hugepage() &&
4053 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4054 		return -EINVAL;
4055 
4056 	shmem_huge = huge;
4057 	if (shmem_huge > SHMEM_HUGE_DENY)
4058 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4059 	return count;
4060 }
4061 
4062 struct kobj_attribute shmem_enabled_attr =
4063 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4064 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4065 
4066 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4067 bool shmem_huge_enabled(struct vm_area_struct *vma)
4068 {
4069 	struct inode *inode = file_inode(vma->vm_file);
4070 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4071 	loff_t i_size;
4072 	pgoff_t off;
4073 
4074 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4075 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4076 		return false;
4077 	if (shmem_huge == SHMEM_HUGE_FORCE)
4078 		return true;
4079 	if (shmem_huge == SHMEM_HUGE_DENY)
4080 		return false;
4081 	switch (sbinfo->huge) {
4082 		case SHMEM_HUGE_NEVER:
4083 			return false;
4084 		case SHMEM_HUGE_ALWAYS:
4085 			return true;
4086 		case SHMEM_HUGE_WITHIN_SIZE:
4087 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4088 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4089 			if (i_size >= HPAGE_PMD_SIZE &&
4090 					i_size >> PAGE_SHIFT >= off)
4091 				return true;
4092 			fallthrough;
4093 		case SHMEM_HUGE_ADVISE:
4094 			/* TODO: implement fadvise() hints */
4095 			return (vma->vm_flags & VM_HUGEPAGE);
4096 		default:
4097 			VM_BUG_ON(1);
4098 			return false;
4099 	}
4100 }
4101 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4102 
4103 #else /* !CONFIG_SHMEM */
4104 
4105 /*
4106  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4107  *
4108  * This is intended for small system where the benefits of the full
4109  * shmem code (swap-backed and resource-limited) are outweighed by
4110  * their complexity. On systems without swap this code should be
4111  * effectively equivalent, but much lighter weight.
4112  */
4113 
4114 static struct file_system_type shmem_fs_type = {
4115 	.name		= "tmpfs",
4116 	.init_fs_context = ramfs_init_fs_context,
4117 	.parameters	= ramfs_fs_parameters,
4118 	.kill_sb	= kill_litter_super,
4119 	.fs_flags	= FS_USERNS_MOUNT,
4120 };
4121 
4122 int __init shmem_init(void)
4123 {
4124 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4125 
4126 	shm_mnt = kern_mount(&shmem_fs_type);
4127 	BUG_ON(IS_ERR(shm_mnt));
4128 
4129 	return 0;
4130 }
4131 
4132 int shmem_unuse(unsigned int type, bool frontswap,
4133 		unsigned long *fs_pages_to_unuse)
4134 {
4135 	return 0;
4136 }
4137 
4138 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4139 {
4140 	return 0;
4141 }
4142 
4143 void shmem_unlock_mapping(struct address_space *mapping)
4144 {
4145 }
4146 
4147 #ifdef CONFIG_MMU
4148 unsigned long shmem_get_unmapped_area(struct file *file,
4149 				      unsigned long addr, unsigned long len,
4150 				      unsigned long pgoff, unsigned long flags)
4151 {
4152 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4153 }
4154 #endif
4155 
4156 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4157 {
4158 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4159 }
4160 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4161 
4162 #define shmem_vm_ops				generic_file_vm_ops
4163 #define shmem_file_operations			ramfs_file_operations
4164 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4165 #define shmem_acct_size(flags, size)		0
4166 #define shmem_unacct_size(flags, size)		do {} while (0)
4167 
4168 #endif /* CONFIG_SHMEM */
4169 
4170 /* common code */
4171 
4172 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4173 				       unsigned long flags, unsigned int i_flags)
4174 {
4175 	struct inode *inode;
4176 	struct file *res;
4177 
4178 	if (IS_ERR(mnt))
4179 		return ERR_CAST(mnt);
4180 
4181 	if (size < 0 || size > MAX_LFS_FILESIZE)
4182 		return ERR_PTR(-EINVAL);
4183 
4184 	if (shmem_acct_size(flags, size))
4185 		return ERR_PTR(-ENOMEM);
4186 
4187 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4188 				flags);
4189 	if (unlikely(!inode)) {
4190 		shmem_unacct_size(flags, size);
4191 		return ERR_PTR(-ENOSPC);
4192 	}
4193 	inode->i_flags |= i_flags;
4194 	inode->i_size = size;
4195 	clear_nlink(inode);	/* It is unlinked */
4196 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4197 	if (!IS_ERR(res))
4198 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4199 				&shmem_file_operations);
4200 	if (IS_ERR(res))
4201 		iput(inode);
4202 	return res;
4203 }
4204 
4205 /**
4206  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4207  * 	kernel internal.  There will be NO LSM permission checks against the
4208  * 	underlying inode.  So users of this interface must do LSM checks at a
4209  *	higher layer.  The users are the big_key and shm implementations.  LSM
4210  *	checks are provided at the key or shm level rather than the inode.
4211  * @name: name for dentry (to be seen in /proc/<pid>/maps
4212  * @size: size to be set for the file
4213  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4214  */
4215 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4216 {
4217 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4218 }
4219 
4220 /**
4221  * shmem_file_setup - get an unlinked file living in tmpfs
4222  * @name: name for dentry (to be seen in /proc/<pid>/maps
4223  * @size: size to be set for the file
4224  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4225  */
4226 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4227 {
4228 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4229 }
4230 EXPORT_SYMBOL_GPL(shmem_file_setup);
4231 
4232 /**
4233  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4234  * @mnt: the tmpfs mount where the file will be created
4235  * @name: name for dentry (to be seen in /proc/<pid>/maps
4236  * @size: size to be set for the file
4237  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4238  */
4239 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4240 				       loff_t size, unsigned long flags)
4241 {
4242 	return __shmem_file_setup(mnt, name, size, flags, 0);
4243 }
4244 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4245 
4246 /**
4247  * shmem_zero_setup - setup a shared anonymous mapping
4248  * @vma: the vma to be mmapped is prepared by do_mmap
4249  */
4250 int shmem_zero_setup(struct vm_area_struct *vma)
4251 {
4252 	struct file *file;
4253 	loff_t size = vma->vm_end - vma->vm_start;
4254 
4255 	/*
4256 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4257 	 * between XFS directory reading and selinux: since this file is only
4258 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4259 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4260 	 */
4261 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4262 	if (IS_ERR(file))
4263 		return PTR_ERR(file);
4264 
4265 	if (vma->vm_file)
4266 		fput(vma->vm_file);
4267 	vma->vm_file = file;
4268 	vma->vm_ops = &shmem_vm_ops;
4269 
4270 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4271 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4272 			(vma->vm_end & HPAGE_PMD_MASK)) {
4273 		khugepaged_enter(vma, vma->vm_flags);
4274 	}
4275 
4276 	return 0;
4277 }
4278 
4279 /**
4280  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4281  * @mapping:	the page's address_space
4282  * @index:	the page index
4283  * @gfp:	the page allocator flags to use if allocating
4284  *
4285  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4286  * with any new page allocations done using the specified allocation flags.
4287  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4288  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4289  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4290  *
4291  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4292  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4293  */
4294 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4295 					 pgoff_t index, gfp_t gfp)
4296 {
4297 #ifdef CONFIG_SHMEM
4298 	struct inode *inode = mapping->host;
4299 	struct page *page;
4300 	int error;
4301 
4302 	BUG_ON(mapping->a_ops != &shmem_aops);
4303 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4304 				  gfp, NULL, NULL, NULL);
4305 	if (error)
4306 		page = ERR_PTR(error);
4307 	else
4308 		unlock_page(page);
4309 	return page;
4310 #else
4311 	/*
4312 	 * The tiny !SHMEM case uses ramfs without swap
4313 	 */
4314 	return read_cache_page_gfp(mapping, index, gfp);
4315 #endif
4316 }
4317 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4318