1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 struct shmem_options { 111 unsigned long long blocks; 112 unsigned long long inodes; 113 struct mempolicy *mpol; 114 kuid_t uid; 115 kgid_t gid; 116 umode_t mode; 117 bool full_inums; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 #define SHMEM_SEEN_INUMS 8 124 }; 125 126 #ifdef CONFIG_TMPFS 127 static unsigned long shmem_default_max_blocks(void) 128 { 129 return totalram_pages() / 2; 130 } 131 132 static unsigned long shmem_default_max_inodes(void) 133 { 134 unsigned long nr_pages = totalram_pages(); 135 136 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 137 } 138 #endif 139 140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 141 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 142 struct shmem_inode_info *info, pgoff_t index); 143 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 144 struct page **pagep, enum sgp_type sgp, 145 gfp_t gfp, struct vm_area_struct *vma, 146 vm_fault_t *fault_type); 147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp, 149 gfp_t gfp, struct vm_area_struct *vma, 150 struct vm_fault *vmf, vm_fault_t *fault_type); 151 152 int shmem_getpage(struct inode *inode, pgoff_t index, 153 struct page **pagep, enum sgp_type sgp) 154 { 155 return shmem_getpage_gfp(inode, index, pagep, sgp, 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 157 } 158 159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 160 { 161 return sb->s_fs_info; 162 } 163 164 /* 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 166 * for shared memory and for shared anonymous (/dev/zero) mappings 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 168 * consistent with the pre-accounting of private mappings ... 169 */ 170 static inline int shmem_acct_size(unsigned long flags, loff_t size) 171 { 172 return (flags & VM_NORESERVE) ? 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 174 } 175 176 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 177 { 178 if (!(flags & VM_NORESERVE)) 179 vm_unacct_memory(VM_ACCT(size)); 180 } 181 182 static inline int shmem_reacct_size(unsigned long flags, 183 loff_t oldsize, loff_t newsize) 184 { 185 if (!(flags & VM_NORESERVE)) { 186 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 187 return security_vm_enough_memory_mm(current->mm, 188 VM_ACCT(newsize) - VM_ACCT(oldsize)); 189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 191 } 192 return 0; 193 } 194 195 /* 196 * ... whereas tmpfs objects are accounted incrementally as 197 * pages are allocated, in order to allow large sparse files. 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 200 */ 201 static inline int shmem_acct_block(unsigned long flags, long pages) 202 { 203 if (!(flags & VM_NORESERVE)) 204 return 0; 205 206 return security_vm_enough_memory_mm(current->mm, 207 pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 217 { 218 struct shmem_inode_info *info = SHMEM_I(inode); 219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 220 221 if (shmem_acct_block(info->flags, pages)) 222 return false; 223 224 if (sbinfo->max_blocks) { 225 if (percpu_counter_compare(&sbinfo->used_blocks, 226 sbinfo->max_blocks - pages) > 0) 227 goto unacct; 228 percpu_counter_add(&sbinfo->used_blocks, pages); 229 } 230 231 return true; 232 233 unacct: 234 shmem_unacct_blocks(info->flags, pages); 235 return false; 236 } 237 238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 239 { 240 struct shmem_inode_info *info = SHMEM_I(inode); 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 243 if (sbinfo->max_blocks) 244 percpu_counter_sub(&sbinfo->used_blocks, pages); 245 shmem_unacct_blocks(info->flags, pages); 246 } 247 248 static const struct super_operations shmem_ops; 249 static const struct address_space_operations shmem_aops; 250 static const struct file_operations shmem_file_operations; 251 static const struct inode_operations shmem_inode_operations; 252 static const struct inode_operations shmem_dir_inode_operations; 253 static const struct inode_operations shmem_special_inode_operations; 254 static const struct vm_operations_struct shmem_vm_ops; 255 static struct file_system_type shmem_fs_type; 256 257 bool vma_is_shmem(struct vm_area_struct *vma) 258 { 259 return vma->vm_ops == &shmem_vm_ops; 260 } 261 262 static LIST_HEAD(shmem_swaplist); 263 static DEFINE_MUTEX(shmem_swaplist_mutex); 264 265 /* 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 267 * produces a novel ino for the newly allocated inode. 268 * 269 * It may also be called when making a hard link to permit the space needed by 270 * each dentry. However, in that case, no new inode number is needed since that 271 * internally draws from another pool of inode numbers (currently global 272 * get_next_ino()). This case is indicated by passing NULL as inop. 273 */ 274 #define SHMEM_INO_BATCH 1024 275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 276 { 277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 278 ino_t ino; 279 280 if (!(sb->s_flags & SB_KERNMOUNT)) { 281 spin_lock(&sbinfo->stat_lock); 282 if (!sbinfo->free_inodes) { 283 spin_unlock(&sbinfo->stat_lock); 284 return -ENOSPC; 285 } 286 sbinfo->free_inodes--; 287 if (inop) { 288 ino = sbinfo->next_ino++; 289 if (unlikely(is_zero_ino(ino))) 290 ino = sbinfo->next_ino++; 291 if (unlikely(!sbinfo->full_inums && 292 ino > UINT_MAX)) { 293 /* 294 * Emulate get_next_ino uint wraparound for 295 * compatibility 296 */ 297 if (IS_ENABLED(CONFIG_64BIT)) 298 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 299 __func__, MINOR(sb->s_dev)); 300 sbinfo->next_ino = 1; 301 ino = sbinfo->next_ino++; 302 } 303 *inop = ino; 304 } 305 spin_unlock(&sbinfo->stat_lock); 306 } else if (inop) { 307 /* 308 * __shmem_file_setup, one of our callers, is lock-free: it 309 * doesn't hold stat_lock in shmem_reserve_inode since 310 * max_inodes is always 0, and is called from potentially 311 * unknown contexts. As such, use a per-cpu batched allocator 312 * which doesn't require the per-sb stat_lock unless we are at 313 * the batch boundary. 314 * 315 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 316 * shmem mounts are not exposed to userspace, so we don't need 317 * to worry about things like glibc compatibility. 318 */ 319 ino_t *next_ino; 320 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 321 ino = *next_ino; 322 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 323 spin_lock(&sbinfo->stat_lock); 324 ino = sbinfo->next_ino; 325 sbinfo->next_ino += SHMEM_INO_BATCH; 326 spin_unlock(&sbinfo->stat_lock); 327 if (unlikely(is_zero_ino(ino))) 328 ino++; 329 } 330 *inop = ino; 331 *next_ino = ++ino; 332 put_cpu(); 333 } 334 335 return 0; 336 } 337 338 static void shmem_free_inode(struct super_block *sb) 339 { 340 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 341 if (sbinfo->max_inodes) { 342 spin_lock(&sbinfo->stat_lock); 343 sbinfo->free_inodes++; 344 spin_unlock(&sbinfo->stat_lock); 345 } 346 } 347 348 /** 349 * shmem_recalc_inode - recalculate the block usage of an inode 350 * @inode: inode to recalc 351 * 352 * We have to calculate the free blocks since the mm can drop 353 * undirtied hole pages behind our back. 354 * 355 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 356 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 357 * 358 * It has to be called with the spinlock held. 359 */ 360 static void shmem_recalc_inode(struct inode *inode) 361 { 362 struct shmem_inode_info *info = SHMEM_I(inode); 363 long freed; 364 365 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 366 if (freed > 0) { 367 info->alloced -= freed; 368 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 369 shmem_inode_unacct_blocks(inode, freed); 370 } 371 } 372 373 bool shmem_charge(struct inode *inode, long pages) 374 { 375 struct shmem_inode_info *info = SHMEM_I(inode); 376 unsigned long flags; 377 378 if (!shmem_inode_acct_block(inode, pages)) 379 return false; 380 381 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 382 inode->i_mapping->nrpages += pages; 383 384 spin_lock_irqsave(&info->lock, flags); 385 info->alloced += pages; 386 inode->i_blocks += pages * BLOCKS_PER_PAGE; 387 shmem_recalc_inode(inode); 388 spin_unlock_irqrestore(&info->lock, flags); 389 390 return true; 391 } 392 393 void shmem_uncharge(struct inode *inode, long pages) 394 { 395 struct shmem_inode_info *info = SHMEM_I(inode); 396 unsigned long flags; 397 398 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 399 400 spin_lock_irqsave(&info->lock, flags); 401 info->alloced -= pages; 402 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 403 shmem_recalc_inode(inode); 404 spin_unlock_irqrestore(&info->lock, flags); 405 406 shmem_inode_unacct_blocks(inode, pages); 407 } 408 409 /* 410 * Replace item expected in xarray by a new item, while holding xa_lock. 411 */ 412 static int shmem_replace_entry(struct address_space *mapping, 413 pgoff_t index, void *expected, void *replacement) 414 { 415 XA_STATE(xas, &mapping->i_pages, index); 416 void *item; 417 418 VM_BUG_ON(!expected); 419 VM_BUG_ON(!replacement); 420 item = xas_load(&xas); 421 if (item != expected) 422 return -ENOENT; 423 xas_store(&xas, replacement); 424 return 0; 425 } 426 427 /* 428 * Sometimes, before we decide whether to proceed or to fail, we must check 429 * that an entry was not already brought back from swap by a racing thread. 430 * 431 * Checking page is not enough: by the time a SwapCache page is locked, it 432 * might be reused, and again be SwapCache, using the same swap as before. 433 */ 434 static bool shmem_confirm_swap(struct address_space *mapping, 435 pgoff_t index, swp_entry_t swap) 436 { 437 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 438 } 439 440 /* 441 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 442 * 443 * SHMEM_HUGE_NEVER: 444 * disables huge pages for the mount; 445 * SHMEM_HUGE_ALWAYS: 446 * enables huge pages for the mount; 447 * SHMEM_HUGE_WITHIN_SIZE: 448 * only allocate huge pages if the page will be fully within i_size, 449 * also respect fadvise()/madvise() hints; 450 * SHMEM_HUGE_ADVISE: 451 * only allocate huge pages if requested with fadvise()/madvise(); 452 */ 453 454 #define SHMEM_HUGE_NEVER 0 455 #define SHMEM_HUGE_ALWAYS 1 456 #define SHMEM_HUGE_WITHIN_SIZE 2 457 #define SHMEM_HUGE_ADVISE 3 458 459 /* 460 * Special values. 461 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 462 * 463 * SHMEM_HUGE_DENY: 464 * disables huge on shm_mnt and all mounts, for emergency use; 465 * SHMEM_HUGE_FORCE: 466 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 467 * 468 */ 469 #define SHMEM_HUGE_DENY (-1) 470 #define SHMEM_HUGE_FORCE (-2) 471 472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 473 /* ifdef here to avoid bloating shmem.o when not necessary */ 474 475 static int shmem_huge __read_mostly; 476 477 #if defined(CONFIG_SYSFS) 478 static int shmem_parse_huge(const char *str) 479 { 480 if (!strcmp(str, "never")) 481 return SHMEM_HUGE_NEVER; 482 if (!strcmp(str, "always")) 483 return SHMEM_HUGE_ALWAYS; 484 if (!strcmp(str, "within_size")) 485 return SHMEM_HUGE_WITHIN_SIZE; 486 if (!strcmp(str, "advise")) 487 return SHMEM_HUGE_ADVISE; 488 if (!strcmp(str, "deny")) 489 return SHMEM_HUGE_DENY; 490 if (!strcmp(str, "force")) 491 return SHMEM_HUGE_FORCE; 492 return -EINVAL; 493 } 494 #endif 495 496 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 497 static const char *shmem_format_huge(int huge) 498 { 499 switch (huge) { 500 case SHMEM_HUGE_NEVER: 501 return "never"; 502 case SHMEM_HUGE_ALWAYS: 503 return "always"; 504 case SHMEM_HUGE_WITHIN_SIZE: 505 return "within_size"; 506 case SHMEM_HUGE_ADVISE: 507 return "advise"; 508 case SHMEM_HUGE_DENY: 509 return "deny"; 510 case SHMEM_HUGE_FORCE: 511 return "force"; 512 default: 513 VM_BUG_ON(1); 514 return "bad_val"; 515 } 516 } 517 #endif 518 519 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 520 struct shrink_control *sc, unsigned long nr_to_split) 521 { 522 LIST_HEAD(list), *pos, *next; 523 LIST_HEAD(to_remove); 524 struct inode *inode; 525 struct shmem_inode_info *info; 526 struct page *page; 527 unsigned long batch = sc ? sc->nr_to_scan : 128; 528 int removed = 0, split = 0; 529 530 if (list_empty(&sbinfo->shrinklist)) 531 return SHRINK_STOP; 532 533 spin_lock(&sbinfo->shrinklist_lock); 534 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 535 info = list_entry(pos, struct shmem_inode_info, shrinklist); 536 537 /* pin the inode */ 538 inode = igrab(&info->vfs_inode); 539 540 /* inode is about to be evicted */ 541 if (!inode) { 542 list_del_init(&info->shrinklist); 543 removed++; 544 goto next; 545 } 546 547 /* Check if there's anything to gain */ 548 if (round_up(inode->i_size, PAGE_SIZE) == 549 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 550 list_move(&info->shrinklist, &to_remove); 551 removed++; 552 goto next; 553 } 554 555 list_move(&info->shrinklist, &list); 556 next: 557 if (!--batch) 558 break; 559 } 560 spin_unlock(&sbinfo->shrinklist_lock); 561 562 list_for_each_safe(pos, next, &to_remove) { 563 info = list_entry(pos, struct shmem_inode_info, shrinklist); 564 inode = &info->vfs_inode; 565 list_del_init(&info->shrinklist); 566 iput(inode); 567 } 568 569 list_for_each_safe(pos, next, &list) { 570 int ret; 571 572 info = list_entry(pos, struct shmem_inode_info, shrinklist); 573 inode = &info->vfs_inode; 574 575 if (nr_to_split && split >= nr_to_split) 576 goto leave; 577 578 page = find_get_page(inode->i_mapping, 579 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 580 if (!page) 581 goto drop; 582 583 /* No huge page at the end of the file: nothing to split */ 584 if (!PageTransHuge(page)) { 585 put_page(page); 586 goto drop; 587 } 588 589 /* 590 * Leave the inode on the list if we failed to lock 591 * the page at this time. 592 * 593 * Waiting for the lock may lead to deadlock in the 594 * reclaim path. 595 */ 596 if (!trylock_page(page)) { 597 put_page(page); 598 goto leave; 599 } 600 601 ret = split_huge_page(page); 602 unlock_page(page); 603 put_page(page); 604 605 /* If split failed leave the inode on the list */ 606 if (ret) 607 goto leave; 608 609 split++; 610 drop: 611 list_del_init(&info->shrinklist); 612 removed++; 613 leave: 614 iput(inode); 615 } 616 617 spin_lock(&sbinfo->shrinklist_lock); 618 list_splice_tail(&list, &sbinfo->shrinklist); 619 sbinfo->shrinklist_len -= removed; 620 spin_unlock(&sbinfo->shrinklist_lock); 621 622 return split; 623 } 624 625 static long shmem_unused_huge_scan(struct super_block *sb, 626 struct shrink_control *sc) 627 { 628 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 629 630 if (!READ_ONCE(sbinfo->shrinklist_len)) 631 return SHRINK_STOP; 632 633 return shmem_unused_huge_shrink(sbinfo, sc, 0); 634 } 635 636 static long shmem_unused_huge_count(struct super_block *sb, 637 struct shrink_control *sc) 638 { 639 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 640 return READ_ONCE(sbinfo->shrinklist_len); 641 } 642 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 643 644 #define shmem_huge SHMEM_HUGE_DENY 645 646 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 647 struct shrink_control *sc, unsigned long nr_to_split) 648 { 649 return 0; 650 } 651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 652 653 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 654 { 655 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 656 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 657 shmem_huge != SHMEM_HUGE_DENY) 658 return true; 659 return false; 660 } 661 662 /* 663 * Like add_to_page_cache_locked, but error if expected item has gone. 664 */ 665 static int shmem_add_to_page_cache(struct page *page, 666 struct address_space *mapping, 667 pgoff_t index, void *expected, gfp_t gfp, 668 struct mm_struct *charge_mm) 669 { 670 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 671 unsigned long i = 0; 672 unsigned long nr = compound_nr(page); 673 int error; 674 675 VM_BUG_ON_PAGE(PageTail(page), page); 676 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 677 VM_BUG_ON_PAGE(!PageLocked(page), page); 678 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 679 VM_BUG_ON(expected && PageTransHuge(page)); 680 681 page_ref_add(page, nr); 682 page->mapping = mapping; 683 page->index = index; 684 685 if (!PageSwapCache(page)) { 686 error = mem_cgroup_charge(page, charge_mm, gfp); 687 if (error) { 688 if (PageTransHuge(page)) { 689 count_vm_event(THP_FILE_FALLBACK); 690 count_vm_event(THP_FILE_FALLBACK_CHARGE); 691 } 692 goto error; 693 } 694 } 695 cgroup_throttle_swaprate(page, gfp); 696 697 do { 698 void *entry; 699 xas_lock_irq(&xas); 700 entry = xas_find_conflict(&xas); 701 if (entry != expected) 702 xas_set_err(&xas, -EEXIST); 703 xas_create_range(&xas); 704 if (xas_error(&xas)) 705 goto unlock; 706 next: 707 xas_store(&xas, page); 708 if (++i < nr) { 709 xas_next(&xas); 710 goto next; 711 } 712 if (PageTransHuge(page)) { 713 count_vm_event(THP_FILE_ALLOC); 714 __inc_node_page_state(page, NR_SHMEM_THPS); 715 } 716 mapping->nrpages += nr; 717 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 718 __mod_lruvec_page_state(page, NR_SHMEM, nr); 719 unlock: 720 xas_unlock_irq(&xas); 721 } while (xas_nomem(&xas, gfp)); 722 723 if (xas_error(&xas)) { 724 error = xas_error(&xas); 725 goto error; 726 } 727 728 return 0; 729 error: 730 page->mapping = NULL; 731 page_ref_sub(page, nr); 732 return error; 733 } 734 735 /* 736 * Like delete_from_page_cache, but substitutes swap for page. 737 */ 738 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 739 { 740 struct address_space *mapping = page->mapping; 741 int error; 742 743 VM_BUG_ON_PAGE(PageCompound(page), page); 744 745 xa_lock_irq(&mapping->i_pages); 746 error = shmem_replace_entry(mapping, page->index, page, radswap); 747 page->mapping = NULL; 748 mapping->nrpages--; 749 __dec_lruvec_page_state(page, NR_FILE_PAGES); 750 __dec_lruvec_page_state(page, NR_SHMEM); 751 xa_unlock_irq(&mapping->i_pages); 752 put_page(page); 753 BUG_ON(error); 754 } 755 756 /* 757 * Remove swap entry from page cache, free the swap and its page cache. 758 */ 759 static int shmem_free_swap(struct address_space *mapping, 760 pgoff_t index, void *radswap) 761 { 762 void *old; 763 764 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 765 if (old != radswap) 766 return -ENOENT; 767 free_swap_and_cache(radix_to_swp_entry(radswap)); 768 return 0; 769 } 770 771 /* 772 * Determine (in bytes) how many of the shmem object's pages mapped by the 773 * given offsets are swapped out. 774 * 775 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 776 * as long as the inode doesn't go away and racy results are not a problem. 777 */ 778 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 779 pgoff_t start, pgoff_t end) 780 { 781 XA_STATE(xas, &mapping->i_pages, start); 782 struct page *page; 783 unsigned long swapped = 0; 784 785 rcu_read_lock(); 786 xas_for_each(&xas, page, end - 1) { 787 if (xas_retry(&xas, page)) 788 continue; 789 if (xa_is_value(page)) 790 swapped++; 791 792 if (need_resched()) { 793 xas_pause(&xas); 794 cond_resched_rcu(); 795 } 796 } 797 798 rcu_read_unlock(); 799 800 return swapped << PAGE_SHIFT; 801 } 802 803 /* 804 * Determine (in bytes) how many of the shmem object's pages mapped by the 805 * given vma is swapped out. 806 * 807 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 808 * as long as the inode doesn't go away and racy results are not a problem. 809 */ 810 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 811 { 812 struct inode *inode = file_inode(vma->vm_file); 813 struct shmem_inode_info *info = SHMEM_I(inode); 814 struct address_space *mapping = inode->i_mapping; 815 unsigned long swapped; 816 817 /* Be careful as we don't hold info->lock */ 818 swapped = READ_ONCE(info->swapped); 819 820 /* 821 * The easier cases are when the shmem object has nothing in swap, or 822 * the vma maps it whole. Then we can simply use the stats that we 823 * already track. 824 */ 825 if (!swapped) 826 return 0; 827 828 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 829 return swapped << PAGE_SHIFT; 830 831 /* Here comes the more involved part */ 832 return shmem_partial_swap_usage(mapping, 833 linear_page_index(vma, vma->vm_start), 834 linear_page_index(vma, vma->vm_end)); 835 } 836 837 /* 838 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 839 */ 840 void shmem_unlock_mapping(struct address_space *mapping) 841 { 842 struct pagevec pvec; 843 pgoff_t indices[PAGEVEC_SIZE]; 844 pgoff_t index = 0; 845 846 pagevec_init(&pvec); 847 /* 848 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 849 */ 850 while (!mapping_unevictable(mapping)) { 851 /* 852 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 853 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 854 */ 855 pvec.nr = find_get_entries(mapping, index, 856 PAGEVEC_SIZE, pvec.pages, indices); 857 if (!pvec.nr) 858 break; 859 index = indices[pvec.nr - 1] + 1; 860 pagevec_remove_exceptionals(&pvec); 861 check_move_unevictable_pages(&pvec); 862 pagevec_release(&pvec); 863 cond_resched(); 864 } 865 } 866 867 /* 868 * Check whether a hole-punch or truncation needs to split a huge page, 869 * returning true if no split was required, or the split has been successful. 870 * 871 * Eviction (or truncation to 0 size) should never need to split a huge page; 872 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 873 * head, and then succeeded to trylock on tail. 874 * 875 * A split can only succeed when there are no additional references on the 876 * huge page: so the split below relies upon find_get_entries() having stopped 877 * when it found a subpage of the huge page, without getting further references. 878 */ 879 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 880 { 881 if (!PageTransCompound(page)) 882 return true; 883 884 /* Just proceed to delete a huge page wholly within the range punched */ 885 if (PageHead(page) && 886 page->index >= start && page->index + HPAGE_PMD_NR <= end) 887 return true; 888 889 /* Try to split huge page, so we can truly punch the hole or truncate */ 890 return split_huge_page(page) >= 0; 891 } 892 893 /* 894 * Remove range of pages and swap entries from page cache, and free them. 895 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 896 */ 897 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 898 bool unfalloc) 899 { 900 struct address_space *mapping = inode->i_mapping; 901 struct shmem_inode_info *info = SHMEM_I(inode); 902 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 903 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 904 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 905 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 906 struct pagevec pvec; 907 pgoff_t indices[PAGEVEC_SIZE]; 908 long nr_swaps_freed = 0; 909 pgoff_t index; 910 int i; 911 912 if (lend == -1) 913 end = -1; /* unsigned, so actually very big */ 914 915 pagevec_init(&pvec); 916 index = start; 917 while (index < end) { 918 pvec.nr = find_get_entries(mapping, index, 919 min(end - index, (pgoff_t)PAGEVEC_SIZE), 920 pvec.pages, indices); 921 if (!pvec.nr) 922 break; 923 for (i = 0; i < pagevec_count(&pvec); i++) { 924 struct page *page = pvec.pages[i]; 925 926 index = indices[i]; 927 if (index >= end) 928 break; 929 930 if (xa_is_value(page)) { 931 if (unfalloc) 932 continue; 933 nr_swaps_freed += !shmem_free_swap(mapping, 934 index, page); 935 continue; 936 } 937 938 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 939 940 if (!trylock_page(page)) 941 continue; 942 943 if ((!unfalloc || !PageUptodate(page)) && 944 page_mapping(page) == mapping) { 945 VM_BUG_ON_PAGE(PageWriteback(page), page); 946 if (shmem_punch_compound(page, start, end)) 947 truncate_inode_page(mapping, page); 948 } 949 unlock_page(page); 950 } 951 pagevec_remove_exceptionals(&pvec); 952 pagevec_release(&pvec); 953 cond_resched(); 954 index++; 955 } 956 957 if (partial_start) { 958 struct page *page = NULL; 959 shmem_getpage(inode, start - 1, &page, SGP_READ); 960 if (page) { 961 unsigned int top = PAGE_SIZE; 962 if (start > end) { 963 top = partial_end; 964 partial_end = 0; 965 } 966 zero_user_segment(page, partial_start, top); 967 set_page_dirty(page); 968 unlock_page(page); 969 put_page(page); 970 } 971 } 972 if (partial_end) { 973 struct page *page = NULL; 974 shmem_getpage(inode, end, &page, SGP_READ); 975 if (page) { 976 zero_user_segment(page, 0, partial_end); 977 set_page_dirty(page); 978 unlock_page(page); 979 put_page(page); 980 } 981 } 982 if (start >= end) 983 return; 984 985 index = start; 986 while (index < end) { 987 cond_resched(); 988 989 pvec.nr = find_get_entries(mapping, index, 990 min(end - index, (pgoff_t)PAGEVEC_SIZE), 991 pvec.pages, indices); 992 if (!pvec.nr) { 993 /* If all gone or hole-punch or unfalloc, we're done */ 994 if (index == start || end != -1) 995 break; 996 /* But if truncating, restart to make sure all gone */ 997 index = start; 998 continue; 999 } 1000 for (i = 0; i < pagevec_count(&pvec); i++) { 1001 struct page *page = pvec.pages[i]; 1002 1003 index = indices[i]; 1004 if (index >= end) 1005 break; 1006 1007 if (xa_is_value(page)) { 1008 if (unfalloc) 1009 continue; 1010 if (shmem_free_swap(mapping, index, page)) { 1011 /* Swap was replaced by page: retry */ 1012 index--; 1013 break; 1014 } 1015 nr_swaps_freed++; 1016 continue; 1017 } 1018 1019 lock_page(page); 1020 1021 if (!unfalloc || !PageUptodate(page)) { 1022 if (page_mapping(page) != mapping) { 1023 /* Page was replaced by swap: retry */ 1024 unlock_page(page); 1025 index--; 1026 break; 1027 } 1028 VM_BUG_ON_PAGE(PageWriteback(page), page); 1029 if (shmem_punch_compound(page, start, end)) 1030 truncate_inode_page(mapping, page); 1031 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1032 /* Wipe the page and don't get stuck */ 1033 clear_highpage(page); 1034 flush_dcache_page(page); 1035 set_page_dirty(page); 1036 if (index < 1037 round_up(start, HPAGE_PMD_NR)) 1038 start = index + 1; 1039 } 1040 } 1041 unlock_page(page); 1042 } 1043 pagevec_remove_exceptionals(&pvec); 1044 pagevec_release(&pvec); 1045 index++; 1046 } 1047 1048 spin_lock_irq(&info->lock); 1049 info->swapped -= nr_swaps_freed; 1050 shmem_recalc_inode(inode); 1051 spin_unlock_irq(&info->lock); 1052 } 1053 1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1055 { 1056 shmem_undo_range(inode, lstart, lend, false); 1057 inode->i_ctime = inode->i_mtime = current_time(inode); 1058 } 1059 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1060 1061 static int shmem_getattr(const struct path *path, struct kstat *stat, 1062 u32 request_mask, unsigned int query_flags) 1063 { 1064 struct inode *inode = path->dentry->d_inode; 1065 struct shmem_inode_info *info = SHMEM_I(inode); 1066 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1067 1068 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1069 spin_lock_irq(&info->lock); 1070 shmem_recalc_inode(inode); 1071 spin_unlock_irq(&info->lock); 1072 } 1073 generic_fillattr(inode, stat); 1074 1075 if (is_huge_enabled(sb_info)) 1076 stat->blksize = HPAGE_PMD_SIZE; 1077 1078 return 0; 1079 } 1080 1081 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1082 { 1083 struct inode *inode = d_inode(dentry); 1084 struct shmem_inode_info *info = SHMEM_I(inode); 1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1086 int error; 1087 1088 error = setattr_prepare(dentry, attr); 1089 if (error) 1090 return error; 1091 1092 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1093 loff_t oldsize = inode->i_size; 1094 loff_t newsize = attr->ia_size; 1095 1096 /* protected by i_mutex */ 1097 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1098 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1099 return -EPERM; 1100 1101 if (newsize != oldsize) { 1102 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1103 oldsize, newsize); 1104 if (error) 1105 return error; 1106 i_size_write(inode, newsize); 1107 inode->i_ctime = inode->i_mtime = current_time(inode); 1108 } 1109 if (newsize <= oldsize) { 1110 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1111 if (oldsize > holebegin) 1112 unmap_mapping_range(inode->i_mapping, 1113 holebegin, 0, 1); 1114 if (info->alloced) 1115 shmem_truncate_range(inode, 1116 newsize, (loff_t)-1); 1117 /* unmap again to remove racily COWed private pages */ 1118 if (oldsize > holebegin) 1119 unmap_mapping_range(inode->i_mapping, 1120 holebegin, 0, 1); 1121 1122 /* 1123 * Part of the huge page can be beyond i_size: subject 1124 * to shrink under memory pressure. 1125 */ 1126 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1127 spin_lock(&sbinfo->shrinklist_lock); 1128 /* 1129 * _careful to defend against unlocked access to 1130 * ->shrink_list in shmem_unused_huge_shrink() 1131 */ 1132 if (list_empty_careful(&info->shrinklist)) { 1133 list_add_tail(&info->shrinklist, 1134 &sbinfo->shrinklist); 1135 sbinfo->shrinklist_len++; 1136 } 1137 spin_unlock(&sbinfo->shrinklist_lock); 1138 } 1139 } 1140 } 1141 1142 setattr_copy(inode, attr); 1143 if (attr->ia_valid & ATTR_MODE) 1144 error = posix_acl_chmod(inode, inode->i_mode); 1145 return error; 1146 } 1147 1148 static void shmem_evict_inode(struct inode *inode) 1149 { 1150 struct shmem_inode_info *info = SHMEM_I(inode); 1151 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1152 1153 if (inode->i_mapping->a_ops == &shmem_aops) { 1154 shmem_unacct_size(info->flags, inode->i_size); 1155 inode->i_size = 0; 1156 shmem_truncate_range(inode, 0, (loff_t)-1); 1157 if (!list_empty(&info->shrinklist)) { 1158 spin_lock(&sbinfo->shrinklist_lock); 1159 if (!list_empty(&info->shrinklist)) { 1160 list_del_init(&info->shrinklist); 1161 sbinfo->shrinklist_len--; 1162 } 1163 spin_unlock(&sbinfo->shrinklist_lock); 1164 } 1165 while (!list_empty(&info->swaplist)) { 1166 /* Wait while shmem_unuse() is scanning this inode... */ 1167 wait_var_event(&info->stop_eviction, 1168 !atomic_read(&info->stop_eviction)); 1169 mutex_lock(&shmem_swaplist_mutex); 1170 /* ...but beware of the race if we peeked too early */ 1171 if (!atomic_read(&info->stop_eviction)) 1172 list_del_init(&info->swaplist); 1173 mutex_unlock(&shmem_swaplist_mutex); 1174 } 1175 } 1176 1177 simple_xattrs_free(&info->xattrs); 1178 WARN_ON(inode->i_blocks); 1179 shmem_free_inode(inode->i_sb); 1180 clear_inode(inode); 1181 } 1182 1183 extern struct swap_info_struct *swap_info[]; 1184 1185 static int shmem_find_swap_entries(struct address_space *mapping, 1186 pgoff_t start, unsigned int nr_entries, 1187 struct page **entries, pgoff_t *indices, 1188 unsigned int type, bool frontswap) 1189 { 1190 XA_STATE(xas, &mapping->i_pages, start); 1191 struct page *page; 1192 swp_entry_t entry; 1193 unsigned int ret = 0; 1194 1195 if (!nr_entries) 1196 return 0; 1197 1198 rcu_read_lock(); 1199 xas_for_each(&xas, page, ULONG_MAX) { 1200 if (xas_retry(&xas, page)) 1201 continue; 1202 1203 if (!xa_is_value(page)) 1204 continue; 1205 1206 entry = radix_to_swp_entry(page); 1207 if (swp_type(entry) != type) 1208 continue; 1209 if (frontswap && 1210 !frontswap_test(swap_info[type], swp_offset(entry))) 1211 continue; 1212 1213 indices[ret] = xas.xa_index; 1214 entries[ret] = page; 1215 1216 if (need_resched()) { 1217 xas_pause(&xas); 1218 cond_resched_rcu(); 1219 } 1220 if (++ret == nr_entries) 1221 break; 1222 } 1223 rcu_read_unlock(); 1224 1225 return ret; 1226 } 1227 1228 /* 1229 * Move the swapped pages for an inode to page cache. Returns the count 1230 * of pages swapped in, or the error in case of failure. 1231 */ 1232 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1233 pgoff_t *indices) 1234 { 1235 int i = 0; 1236 int ret = 0; 1237 int error = 0; 1238 struct address_space *mapping = inode->i_mapping; 1239 1240 for (i = 0; i < pvec.nr; i++) { 1241 struct page *page = pvec.pages[i]; 1242 1243 if (!xa_is_value(page)) 1244 continue; 1245 error = shmem_swapin_page(inode, indices[i], 1246 &page, SGP_CACHE, 1247 mapping_gfp_mask(mapping), 1248 NULL, NULL); 1249 if (error == 0) { 1250 unlock_page(page); 1251 put_page(page); 1252 ret++; 1253 } 1254 if (error == -ENOMEM) 1255 break; 1256 error = 0; 1257 } 1258 return error ? error : ret; 1259 } 1260 1261 /* 1262 * If swap found in inode, free it and move page from swapcache to filecache. 1263 */ 1264 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1265 bool frontswap, unsigned long *fs_pages_to_unuse) 1266 { 1267 struct address_space *mapping = inode->i_mapping; 1268 pgoff_t start = 0; 1269 struct pagevec pvec; 1270 pgoff_t indices[PAGEVEC_SIZE]; 1271 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1272 int ret = 0; 1273 1274 pagevec_init(&pvec); 1275 do { 1276 unsigned int nr_entries = PAGEVEC_SIZE; 1277 1278 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1279 nr_entries = *fs_pages_to_unuse; 1280 1281 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1282 pvec.pages, indices, 1283 type, frontswap); 1284 if (pvec.nr == 0) { 1285 ret = 0; 1286 break; 1287 } 1288 1289 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1290 if (ret < 0) 1291 break; 1292 1293 if (frontswap_partial) { 1294 *fs_pages_to_unuse -= ret; 1295 if (*fs_pages_to_unuse == 0) { 1296 ret = FRONTSWAP_PAGES_UNUSED; 1297 break; 1298 } 1299 } 1300 1301 start = indices[pvec.nr - 1]; 1302 } while (true); 1303 1304 return ret; 1305 } 1306 1307 /* 1308 * Read all the shared memory data that resides in the swap 1309 * device 'type' back into memory, so the swap device can be 1310 * unused. 1311 */ 1312 int shmem_unuse(unsigned int type, bool frontswap, 1313 unsigned long *fs_pages_to_unuse) 1314 { 1315 struct shmem_inode_info *info, *next; 1316 int error = 0; 1317 1318 if (list_empty(&shmem_swaplist)) 1319 return 0; 1320 1321 mutex_lock(&shmem_swaplist_mutex); 1322 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1323 if (!info->swapped) { 1324 list_del_init(&info->swaplist); 1325 continue; 1326 } 1327 /* 1328 * Drop the swaplist mutex while searching the inode for swap; 1329 * but before doing so, make sure shmem_evict_inode() will not 1330 * remove placeholder inode from swaplist, nor let it be freed 1331 * (igrab() would protect from unlink, but not from unmount). 1332 */ 1333 atomic_inc(&info->stop_eviction); 1334 mutex_unlock(&shmem_swaplist_mutex); 1335 1336 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1337 fs_pages_to_unuse); 1338 cond_resched(); 1339 1340 mutex_lock(&shmem_swaplist_mutex); 1341 next = list_next_entry(info, swaplist); 1342 if (!info->swapped) 1343 list_del_init(&info->swaplist); 1344 if (atomic_dec_and_test(&info->stop_eviction)) 1345 wake_up_var(&info->stop_eviction); 1346 if (error) 1347 break; 1348 } 1349 mutex_unlock(&shmem_swaplist_mutex); 1350 1351 return error; 1352 } 1353 1354 /* 1355 * Move the page from the page cache to the swap cache. 1356 */ 1357 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1358 { 1359 struct shmem_inode_info *info; 1360 struct address_space *mapping; 1361 struct inode *inode; 1362 swp_entry_t swap; 1363 pgoff_t index; 1364 1365 VM_BUG_ON_PAGE(PageCompound(page), page); 1366 BUG_ON(!PageLocked(page)); 1367 mapping = page->mapping; 1368 index = page->index; 1369 inode = mapping->host; 1370 info = SHMEM_I(inode); 1371 if (info->flags & VM_LOCKED) 1372 goto redirty; 1373 if (!total_swap_pages) 1374 goto redirty; 1375 1376 /* 1377 * Our capabilities prevent regular writeback or sync from ever calling 1378 * shmem_writepage; but a stacking filesystem might use ->writepage of 1379 * its underlying filesystem, in which case tmpfs should write out to 1380 * swap only in response to memory pressure, and not for the writeback 1381 * threads or sync. 1382 */ 1383 if (!wbc->for_reclaim) { 1384 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1385 goto redirty; 1386 } 1387 1388 /* 1389 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1390 * value into swapfile.c, the only way we can correctly account for a 1391 * fallocated page arriving here is now to initialize it and write it. 1392 * 1393 * That's okay for a page already fallocated earlier, but if we have 1394 * not yet completed the fallocation, then (a) we want to keep track 1395 * of this page in case we have to undo it, and (b) it may not be a 1396 * good idea to continue anyway, once we're pushing into swap. So 1397 * reactivate the page, and let shmem_fallocate() quit when too many. 1398 */ 1399 if (!PageUptodate(page)) { 1400 if (inode->i_private) { 1401 struct shmem_falloc *shmem_falloc; 1402 spin_lock(&inode->i_lock); 1403 shmem_falloc = inode->i_private; 1404 if (shmem_falloc && 1405 !shmem_falloc->waitq && 1406 index >= shmem_falloc->start && 1407 index < shmem_falloc->next) 1408 shmem_falloc->nr_unswapped++; 1409 else 1410 shmem_falloc = NULL; 1411 spin_unlock(&inode->i_lock); 1412 if (shmem_falloc) 1413 goto redirty; 1414 } 1415 clear_highpage(page); 1416 flush_dcache_page(page); 1417 SetPageUptodate(page); 1418 } 1419 1420 swap = get_swap_page(page); 1421 if (!swap.val) 1422 goto redirty; 1423 1424 /* 1425 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1426 * if it's not already there. Do it now before the page is 1427 * moved to swap cache, when its pagelock no longer protects 1428 * the inode from eviction. But don't unlock the mutex until 1429 * we've incremented swapped, because shmem_unuse_inode() will 1430 * prune a !swapped inode from the swaplist under this mutex. 1431 */ 1432 mutex_lock(&shmem_swaplist_mutex); 1433 if (list_empty(&info->swaplist)) 1434 list_add(&info->swaplist, &shmem_swaplist); 1435 1436 if (add_to_swap_cache(page, swap, 1437 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) { 1438 spin_lock_irq(&info->lock); 1439 shmem_recalc_inode(inode); 1440 info->swapped++; 1441 spin_unlock_irq(&info->lock); 1442 1443 swap_shmem_alloc(swap); 1444 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1445 1446 mutex_unlock(&shmem_swaplist_mutex); 1447 BUG_ON(page_mapped(page)); 1448 swap_writepage(page, wbc); 1449 return 0; 1450 } 1451 1452 mutex_unlock(&shmem_swaplist_mutex); 1453 put_swap_page(page, swap); 1454 redirty: 1455 set_page_dirty(page); 1456 if (wbc->for_reclaim) 1457 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1458 unlock_page(page); 1459 return 0; 1460 } 1461 1462 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1463 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1464 { 1465 char buffer[64]; 1466 1467 if (!mpol || mpol->mode == MPOL_DEFAULT) 1468 return; /* show nothing */ 1469 1470 mpol_to_str(buffer, sizeof(buffer), mpol); 1471 1472 seq_printf(seq, ",mpol=%s", buffer); 1473 } 1474 1475 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1476 { 1477 struct mempolicy *mpol = NULL; 1478 if (sbinfo->mpol) { 1479 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1480 mpol = sbinfo->mpol; 1481 mpol_get(mpol); 1482 spin_unlock(&sbinfo->stat_lock); 1483 } 1484 return mpol; 1485 } 1486 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1487 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1488 { 1489 } 1490 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1491 { 1492 return NULL; 1493 } 1494 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1495 #ifndef CONFIG_NUMA 1496 #define vm_policy vm_private_data 1497 #endif 1498 1499 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1500 struct shmem_inode_info *info, pgoff_t index) 1501 { 1502 /* Create a pseudo vma that just contains the policy */ 1503 vma_init(vma, NULL); 1504 /* Bias interleave by inode number to distribute better across nodes */ 1505 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1506 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1507 } 1508 1509 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1510 { 1511 /* Drop reference taken by mpol_shared_policy_lookup() */ 1512 mpol_cond_put(vma->vm_policy); 1513 } 1514 1515 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1516 struct shmem_inode_info *info, pgoff_t index) 1517 { 1518 struct vm_area_struct pvma; 1519 struct page *page; 1520 struct vm_fault vmf; 1521 1522 shmem_pseudo_vma_init(&pvma, info, index); 1523 vmf.vma = &pvma; 1524 vmf.address = 0; 1525 page = swap_cluster_readahead(swap, gfp, &vmf); 1526 shmem_pseudo_vma_destroy(&pvma); 1527 1528 return page; 1529 } 1530 1531 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1532 struct shmem_inode_info *info, pgoff_t index) 1533 { 1534 struct vm_area_struct pvma; 1535 struct address_space *mapping = info->vfs_inode.i_mapping; 1536 pgoff_t hindex; 1537 struct page *page; 1538 1539 hindex = round_down(index, HPAGE_PMD_NR); 1540 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1541 XA_PRESENT)) 1542 return NULL; 1543 1544 shmem_pseudo_vma_init(&pvma, info, hindex); 1545 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1546 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1547 shmem_pseudo_vma_destroy(&pvma); 1548 if (page) 1549 prep_transhuge_page(page); 1550 else 1551 count_vm_event(THP_FILE_FALLBACK); 1552 return page; 1553 } 1554 1555 static struct page *shmem_alloc_page(gfp_t gfp, 1556 struct shmem_inode_info *info, pgoff_t index) 1557 { 1558 struct vm_area_struct pvma; 1559 struct page *page; 1560 1561 shmem_pseudo_vma_init(&pvma, info, index); 1562 page = alloc_page_vma(gfp, &pvma, 0); 1563 shmem_pseudo_vma_destroy(&pvma); 1564 1565 return page; 1566 } 1567 1568 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1569 struct inode *inode, 1570 pgoff_t index, bool huge) 1571 { 1572 struct shmem_inode_info *info = SHMEM_I(inode); 1573 struct page *page; 1574 int nr; 1575 int err = -ENOSPC; 1576 1577 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1578 huge = false; 1579 nr = huge ? HPAGE_PMD_NR : 1; 1580 1581 if (!shmem_inode_acct_block(inode, nr)) 1582 goto failed; 1583 1584 if (huge) 1585 page = shmem_alloc_hugepage(gfp, info, index); 1586 else 1587 page = shmem_alloc_page(gfp, info, index); 1588 if (page) { 1589 __SetPageLocked(page); 1590 __SetPageSwapBacked(page); 1591 return page; 1592 } 1593 1594 err = -ENOMEM; 1595 shmem_inode_unacct_blocks(inode, nr); 1596 failed: 1597 return ERR_PTR(err); 1598 } 1599 1600 /* 1601 * When a page is moved from swapcache to shmem filecache (either by the 1602 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1603 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1604 * ignorance of the mapping it belongs to. If that mapping has special 1605 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1606 * we may need to copy to a suitable page before moving to filecache. 1607 * 1608 * In a future release, this may well be extended to respect cpuset and 1609 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1610 * but for now it is a simple matter of zone. 1611 */ 1612 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1613 { 1614 return page_zonenum(page) > gfp_zone(gfp); 1615 } 1616 1617 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1618 struct shmem_inode_info *info, pgoff_t index) 1619 { 1620 struct page *oldpage, *newpage; 1621 struct address_space *swap_mapping; 1622 swp_entry_t entry; 1623 pgoff_t swap_index; 1624 int error; 1625 1626 oldpage = *pagep; 1627 entry.val = page_private(oldpage); 1628 swap_index = swp_offset(entry); 1629 swap_mapping = page_mapping(oldpage); 1630 1631 /* 1632 * We have arrived here because our zones are constrained, so don't 1633 * limit chance of success by further cpuset and node constraints. 1634 */ 1635 gfp &= ~GFP_CONSTRAINT_MASK; 1636 newpage = shmem_alloc_page(gfp, info, index); 1637 if (!newpage) 1638 return -ENOMEM; 1639 1640 get_page(newpage); 1641 copy_highpage(newpage, oldpage); 1642 flush_dcache_page(newpage); 1643 1644 __SetPageLocked(newpage); 1645 __SetPageSwapBacked(newpage); 1646 SetPageUptodate(newpage); 1647 set_page_private(newpage, entry.val); 1648 SetPageSwapCache(newpage); 1649 1650 /* 1651 * Our caller will very soon move newpage out of swapcache, but it's 1652 * a nice clean interface for us to replace oldpage by newpage there. 1653 */ 1654 xa_lock_irq(&swap_mapping->i_pages); 1655 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1656 if (!error) { 1657 mem_cgroup_migrate(oldpage, newpage); 1658 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1659 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1660 } 1661 xa_unlock_irq(&swap_mapping->i_pages); 1662 1663 if (unlikely(error)) { 1664 /* 1665 * Is this possible? I think not, now that our callers check 1666 * both PageSwapCache and page_private after getting page lock; 1667 * but be defensive. Reverse old to newpage for clear and free. 1668 */ 1669 oldpage = newpage; 1670 } else { 1671 lru_cache_add(newpage); 1672 *pagep = newpage; 1673 } 1674 1675 ClearPageSwapCache(oldpage); 1676 set_page_private(oldpage, 0); 1677 1678 unlock_page(oldpage); 1679 put_page(oldpage); 1680 put_page(oldpage); 1681 return error; 1682 } 1683 1684 /* 1685 * Swap in the page pointed to by *pagep. 1686 * Caller has to make sure that *pagep contains a valid swapped page. 1687 * Returns 0 and the page in pagep if success. On failure, returns the 1688 * the error code and NULL in *pagep. 1689 */ 1690 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1691 struct page **pagep, enum sgp_type sgp, 1692 gfp_t gfp, struct vm_area_struct *vma, 1693 vm_fault_t *fault_type) 1694 { 1695 struct address_space *mapping = inode->i_mapping; 1696 struct shmem_inode_info *info = SHMEM_I(inode); 1697 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1698 struct page *page; 1699 swp_entry_t swap; 1700 int error; 1701 1702 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1703 swap = radix_to_swp_entry(*pagep); 1704 *pagep = NULL; 1705 1706 /* Look it up and read it in.. */ 1707 page = lookup_swap_cache(swap, NULL, 0); 1708 if (!page) { 1709 /* Or update major stats only when swapin succeeds?? */ 1710 if (fault_type) { 1711 *fault_type |= VM_FAULT_MAJOR; 1712 count_vm_event(PGMAJFAULT); 1713 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1714 } 1715 /* Here we actually start the io */ 1716 page = shmem_swapin(swap, gfp, info, index); 1717 if (!page) { 1718 error = -ENOMEM; 1719 goto failed; 1720 } 1721 } 1722 1723 /* We have to do this with page locked to prevent races */ 1724 lock_page(page); 1725 if (!PageSwapCache(page) || page_private(page) != swap.val || 1726 !shmem_confirm_swap(mapping, index, swap)) { 1727 error = -EEXIST; 1728 goto unlock; 1729 } 1730 if (!PageUptodate(page)) { 1731 error = -EIO; 1732 goto failed; 1733 } 1734 wait_on_page_writeback(page); 1735 1736 if (shmem_should_replace_page(page, gfp)) { 1737 error = shmem_replace_page(&page, gfp, info, index); 1738 if (error) 1739 goto failed; 1740 } 1741 1742 error = shmem_add_to_page_cache(page, mapping, index, 1743 swp_to_radix_entry(swap), gfp, 1744 charge_mm); 1745 if (error) 1746 goto failed; 1747 1748 spin_lock_irq(&info->lock); 1749 info->swapped--; 1750 shmem_recalc_inode(inode); 1751 spin_unlock_irq(&info->lock); 1752 1753 if (sgp == SGP_WRITE) 1754 mark_page_accessed(page); 1755 1756 delete_from_swap_cache(page); 1757 set_page_dirty(page); 1758 swap_free(swap); 1759 1760 *pagep = page; 1761 return 0; 1762 failed: 1763 if (!shmem_confirm_swap(mapping, index, swap)) 1764 error = -EEXIST; 1765 unlock: 1766 if (page) { 1767 unlock_page(page); 1768 put_page(page); 1769 } 1770 1771 return error; 1772 } 1773 1774 /* 1775 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1776 * 1777 * If we allocate a new one we do not mark it dirty. That's up to the 1778 * vm. If we swap it in we mark it dirty since we also free the swap 1779 * entry since a page cannot live in both the swap and page cache. 1780 * 1781 * vmf and fault_type are only supplied by shmem_fault: 1782 * otherwise they are NULL. 1783 */ 1784 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1785 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1786 struct vm_area_struct *vma, struct vm_fault *vmf, 1787 vm_fault_t *fault_type) 1788 { 1789 struct address_space *mapping = inode->i_mapping; 1790 struct shmem_inode_info *info = SHMEM_I(inode); 1791 struct shmem_sb_info *sbinfo; 1792 struct mm_struct *charge_mm; 1793 struct page *page; 1794 enum sgp_type sgp_huge = sgp; 1795 pgoff_t hindex = index; 1796 int error; 1797 int once = 0; 1798 int alloced = 0; 1799 1800 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1801 return -EFBIG; 1802 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1803 sgp = SGP_CACHE; 1804 repeat: 1805 if (sgp <= SGP_CACHE && 1806 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1807 return -EINVAL; 1808 } 1809 1810 sbinfo = SHMEM_SB(inode->i_sb); 1811 charge_mm = vma ? vma->vm_mm : current->mm; 1812 1813 page = find_lock_entry(mapping, index); 1814 if (xa_is_value(page)) { 1815 error = shmem_swapin_page(inode, index, &page, 1816 sgp, gfp, vma, fault_type); 1817 if (error == -EEXIST) 1818 goto repeat; 1819 1820 *pagep = page; 1821 return error; 1822 } 1823 1824 if (page && sgp == SGP_WRITE) 1825 mark_page_accessed(page); 1826 1827 /* fallocated page? */ 1828 if (page && !PageUptodate(page)) { 1829 if (sgp != SGP_READ) 1830 goto clear; 1831 unlock_page(page); 1832 put_page(page); 1833 page = NULL; 1834 } 1835 if (page || sgp == SGP_READ) { 1836 *pagep = page; 1837 return 0; 1838 } 1839 1840 /* 1841 * Fast cache lookup did not find it: 1842 * bring it back from swap or allocate. 1843 */ 1844 1845 if (vma && userfaultfd_missing(vma)) { 1846 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1847 return 0; 1848 } 1849 1850 /* shmem_symlink() */ 1851 if (mapping->a_ops != &shmem_aops) 1852 goto alloc_nohuge; 1853 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1854 goto alloc_nohuge; 1855 if (shmem_huge == SHMEM_HUGE_FORCE) 1856 goto alloc_huge; 1857 switch (sbinfo->huge) { 1858 case SHMEM_HUGE_NEVER: 1859 goto alloc_nohuge; 1860 case SHMEM_HUGE_WITHIN_SIZE: { 1861 loff_t i_size; 1862 pgoff_t off; 1863 1864 off = round_up(index, HPAGE_PMD_NR); 1865 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1866 if (i_size >= HPAGE_PMD_SIZE && 1867 i_size >> PAGE_SHIFT >= off) 1868 goto alloc_huge; 1869 1870 fallthrough; 1871 } 1872 case SHMEM_HUGE_ADVISE: 1873 if (sgp_huge == SGP_HUGE) 1874 goto alloc_huge; 1875 /* TODO: implement fadvise() hints */ 1876 goto alloc_nohuge; 1877 } 1878 1879 alloc_huge: 1880 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1881 if (IS_ERR(page)) { 1882 alloc_nohuge: 1883 page = shmem_alloc_and_acct_page(gfp, inode, 1884 index, false); 1885 } 1886 if (IS_ERR(page)) { 1887 int retry = 5; 1888 1889 error = PTR_ERR(page); 1890 page = NULL; 1891 if (error != -ENOSPC) 1892 goto unlock; 1893 /* 1894 * Try to reclaim some space by splitting a huge page 1895 * beyond i_size on the filesystem. 1896 */ 1897 while (retry--) { 1898 int ret; 1899 1900 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1901 if (ret == SHRINK_STOP) 1902 break; 1903 if (ret) 1904 goto alloc_nohuge; 1905 } 1906 goto unlock; 1907 } 1908 1909 if (PageTransHuge(page)) 1910 hindex = round_down(index, HPAGE_PMD_NR); 1911 else 1912 hindex = index; 1913 1914 if (sgp == SGP_WRITE) 1915 __SetPageReferenced(page); 1916 1917 error = shmem_add_to_page_cache(page, mapping, hindex, 1918 NULL, gfp & GFP_RECLAIM_MASK, 1919 charge_mm); 1920 if (error) 1921 goto unacct; 1922 lru_cache_add(page); 1923 1924 spin_lock_irq(&info->lock); 1925 info->alloced += compound_nr(page); 1926 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1927 shmem_recalc_inode(inode); 1928 spin_unlock_irq(&info->lock); 1929 alloced = true; 1930 1931 if (PageTransHuge(page) && 1932 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1933 hindex + HPAGE_PMD_NR - 1) { 1934 /* 1935 * Part of the huge page is beyond i_size: subject 1936 * to shrink under memory pressure. 1937 */ 1938 spin_lock(&sbinfo->shrinklist_lock); 1939 /* 1940 * _careful to defend against unlocked access to 1941 * ->shrink_list in shmem_unused_huge_shrink() 1942 */ 1943 if (list_empty_careful(&info->shrinklist)) { 1944 list_add_tail(&info->shrinklist, 1945 &sbinfo->shrinklist); 1946 sbinfo->shrinklist_len++; 1947 } 1948 spin_unlock(&sbinfo->shrinklist_lock); 1949 } 1950 1951 /* 1952 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1953 */ 1954 if (sgp == SGP_FALLOC) 1955 sgp = SGP_WRITE; 1956 clear: 1957 /* 1958 * Let SGP_WRITE caller clear ends if write does not fill page; 1959 * but SGP_FALLOC on a page fallocated earlier must initialize 1960 * it now, lest undo on failure cancel our earlier guarantee. 1961 */ 1962 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1963 struct page *head = compound_head(page); 1964 int i; 1965 1966 for (i = 0; i < compound_nr(head); i++) { 1967 clear_highpage(head + i); 1968 flush_dcache_page(head + i); 1969 } 1970 SetPageUptodate(head); 1971 } 1972 1973 /* Perhaps the file has been truncated since we checked */ 1974 if (sgp <= SGP_CACHE && 1975 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1976 if (alloced) { 1977 ClearPageDirty(page); 1978 delete_from_page_cache(page); 1979 spin_lock_irq(&info->lock); 1980 shmem_recalc_inode(inode); 1981 spin_unlock_irq(&info->lock); 1982 } 1983 error = -EINVAL; 1984 goto unlock; 1985 } 1986 *pagep = page + index - hindex; 1987 return 0; 1988 1989 /* 1990 * Error recovery. 1991 */ 1992 unacct: 1993 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1994 1995 if (PageTransHuge(page)) { 1996 unlock_page(page); 1997 put_page(page); 1998 goto alloc_nohuge; 1999 } 2000 unlock: 2001 if (page) { 2002 unlock_page(page); 2003 put_page(page); 2004 } 2005 if (error == -ENOSPC && !once++) { 2006 spin_lock_irq(&info->lock); 2007 shmem_recalc_inode(inode); 2008 spin_unlock_irq(&info->lock); 2009 goto repeat; 2010 } 2011 if (error == -EEXIST) 2012 goto repeat; 2013 return error; 2014 } 2015 2016 /* 2017 * This is like autoremove_wake_function, but it removes the wait queue 2018 * entry unconditionally - even if something else had already woken the 2019 * target. 2020 */ 2021 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2022 { 2023 int ret = default_wake_function(wait, mode, sync, key); 2024 list_del_init(&wait->entry); 2025 return ret; 2026 } 2027 2028 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2029 { 2030 struct vm_area_struct *vma = vmf->vma; 2031 struct inode *inode = file_inode(vma->vm_file); 2032 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2033 enum sgp_type sgp; 2034 int err; 2035 vm_fault_t ret = VM_FAULT_LOCKED; 2036 2037 /* 2038 * Trinity finds that probing a hole which tmpfs is punching can 2039 * prevent the hole-punch from ever completing: which in turn 2040 * locks writers out with its hold on i_mutex. So refrain from 2041 * faulting pages into the hole while it's being punched. Although 2042 * shmem_undo_range() does remove the additions, it may be unable to 2043 * keep up, as each new page needs its own unmap_mapping_range() call, 2044 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2045 * 2046 * It does not matter if we sometimes reach this check just before the 2047 * hole-punch begins, so that one fault then races with the punch: 2048 * we just need to make racing faults a rare case. 2049 * 2050 * The implementation below would be much simpler if we just used a 2051 * standard mutex or completion: but we cannot take i_mutex in fault, 2052 * and bloating every shmem inode for this unlikely case would be sad. 2053 */ 2054 if (unlikely(inode->i_private)) { 2055 struct shmem_falloc *shmem_falloc; 2056 2057 spin_lock(&inode->i_lock); 2058 shmem_falloc = inode->i_private; 2059 if (shmem_falloc && 2060 shmem_falloc->waitq && 2061 vmf->pgoff >= shmem_falloc->start && 2062 vmf->pgoff < shmem_falloc->next) { 2063 struct file *fpin; 2064 wait_queue_head_t *shmem_falloc_waitq; 2065 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2066 2067 ret = VM_FAULT_NOPAGE; 2068 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2069 if (fpin) 2070 ret = VM_FAULT_RETRY; 2071 2072 shmem_falloc_waitq = shmem_falloc->waitq; 2073 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2074 TASK_UNINTERRUPTIBLE); 2075 spin_unlock(&inode->i_lock); 2076 schedule(); 2077 2078 /* 2079 * shmem_falloc_waitq points into the shmem_fallocate() 2080 * stack of the hole-punching task: shmem_falloc_waitq 2081 * is usually invalid by the time we reach here, but 2082 * finish_wait() does not dereference it in that case; 2083 * though i_lock needed lest racing with wake_up_all(). 2084 */ 2085 spin_lock(&inode->i_lock); 2086 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2087 spin_unlock(&inode->i_lock); 2088 2089 if (fpin) 2090 fput(fpin); 2091 return ret; 2092 } 2093 spin_unlock(&inode->i_lock); 2094 } 2095 2096 sgp = SGP_CACHE; 2097 2098 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2099 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2100 sgp = SGP_NOHUGE; 2101 else if (vma->vm_flags & VM_HUGEPAGE) 2102 sgp = SGP_HUGE; 2103 2104 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2105 gfp, vma, vmf, &ret); 2106 if (err) 2107 return vmf_error(err); 2108 return ret; 2109 } 2110 2111 unsigned long shmem_get_unmapped_area(struct file *file, 2112 unsigned long uaddr, unsigned long len, 2113 unsigned long pgoff, unsigned long flags) 2114 { 2115 unsigned long (*get_area)(struct file *, 2116 unsigned long, unsigned long, unsigned long, unsigned long); 2117 unsigned long addr; 2118 unsigned long offset; 2119 unsigned long inflated_len; 2120 unsigned long inflated_addr; 2121 unsigned long inflated_offset; 2122 2123 if (len > TASK_SIZE) 2124 return -ENOMEM; 2125 2126 get_area = current->mm->get_unmapped_area; 2127 addr = get_area(file, uaddr, len, pgoff, flags); 2128 2129 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2130 return addr; 2131 if (IS_ERR_VALUE(addr)) 2132 return addr; 2133 if (addr & ~PAGE_MASK) 2134 return addr; 2135 if (addr > TASK_SIZE - len) 2136 return addr; 2137 2138 if (shmem_huge == SHMEM_HUGE_DENY) 2139 return addr; 2140 if (len < HPAGE_PMD_SIZE) 2141 return addr; 2142 if (flags & MAP_FIXED) 2143 return addr; 2144 /* 2145 * Our priority is to support MAP_SHARED mapped hugely; 2146 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2147 * But if caller specified an address hint and we allocated area there 2148 * successfully, respect that as before. 2149 */ 2150 if (uaddr == addr) 2151 return addr; 2152 2153 if (shmem_huge != SHMEM_HUGE_FORCE) { 2154 struct super_block *sb; 2155 2156 if (file) { 2157 VM_BUG_ON(file->f_op != &shmem_file_operations); 2158 sb = file_inode(file)->i_sb; 2159 } else { 2160 /* 2161 * Called directly from mm/mmap.c, or drivers/char/mem.c 2162 * for "/dev/zero", to create a shared anonymous object. 2163 */ 2164 if (IS_ERR(shm_mnt)) 2165 return addr; 2166 sb = shm_mnt->mnt_sb; 2167 } 2168 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2169 return addr; 2170 } 2171 2172 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2173 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2174 return addr; 2175 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2176 return addr; 2177 2178 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2179 if (inflated_len > TASK_SIZE) 2180 return addr; 2181 if (inflated_len < len) 2182 return addr; 2183 2184 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2185 if (IS_ERR_VALUE(inflated_addr)) 2186 return addr; 2187 if (inflated_addr & ~PAGE_MASK) 2188 return addr; 2189 2190 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2191 inflated_addr += offset - inflated_offset; 2192 if (inflated_offset > offset) 2193 inflated_addr += HPAGE_PMD_SIZE; 2194 2195 if (inflated_addr > TASK_SIZE - len) 2196 return addr; 2197 return inflated_addr; 2198 } 2199 2200 #ifdef CONFIG_NUMA 2201 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2202 { 2203 struct inode *inode = file_inode(vma->vm_file); 2204 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2205 } 2206 2207 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2208 unsigned long addr) 2209 { 2210 struct inode *inode = file_inode(vma->vm_file); 2211 pgoff_t index; 2212 2213 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2214 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2215 } 2216 #endif 2217 2218 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2219 { 2220 struct inode *inode = file_inode(file); 2221 struct shmem_inode_info *info = SHMEM_I(inode); 2222 int retval = -ENOMEM; 2223 2224 /* 2225 * What serializes the accesses to info->flags? 2226 * ipc_lock_object() when called from shmctl_do_lock(), 2227 * no serialization needed when called from shm_destroy(). 2228 */ 2229 if (lock && !(info->flags & VM_LOCKED)) { 2230 if (!user_shm_lock(inode->i_size, user)) 2231 goto out_nomem; 2232 info->flags |= VM_LOCKED; 2233 mapping_set_unevictable(file->f_mapping); 2234 } 2235 if (!lock && (info->flags & VM_LOCKED) && user) { 2236 user_shm_unlock(inode->i_size, user); 2237 info->flags &= ~VM_LOCKED; 2238 mapping_clear_unevictable(file->f_mapping); 2239 } 2240 retval = 0; 2241 2242 out_nomem: 2243 return retval; 2244 } 2245 2246 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2247 { 2248 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2249 2250 if (info->seals & F_SEAL_FUTURE_WRITE) { 2251 /* 2252 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2253 * "future write" seal active. 2254 */ 2255 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2256 return -EPERM; 2257 2258 /* 2259 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2260 * MAP_SHARED and read-only, take care to not allow mprotect to 2261 * revert protections on such mappings. Do this only for shared 2262 * mappings. For private mappings, don't need to mask 2263 * VM_MAYWRITE as we still want them to be COW-writable. 2264 */ 2265 if (vma->vm_flags & VM_SHARED) 2266 vma->vm_flags &= ~(VM_MAYWRITE); 2267 } 2268 2269 file_accessed(file); 2270 vma->vm_ops = &shmem_vm_ops; 2271 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2272 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2273 (vma->vm_end & HPAGE_PMD_MASK)) { 2274 khugepaged_enter(vma, vma->vm_flags); 2275 } 2276 return 0; 2277 } 2278 2279 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2280 umode_t mode, dev_t dev, unsigned long flags) 2281 { 2282 struct inode *inode; 2283 struct shmem_inode_info *info; 2284 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2285 ino_t ino; 2286 2287 if (shmem_reserve_inode(sb, &ino)) 2288 return NULL; 2289 2290 inode = new_inode(sb); 2291 if (inode) { 2292 inode->i_ino = ino; 2293 inode_init_owner(inode, dir, mode); 2294 inode->i_blocks = 0; 2295 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2296 inode->i_generation = prandom_u32(); 2297 info = SHMEM_I(inode); 2298 memset(info, 0, (char *)inode - (char *)info); 2299 spin_lock_init(&info->lock); 2300 atomic_set(&info->stop_eviction, 0); 2301 info->seals = F_SEAL_SEAL; 2302 info->flags = flags & VM_NORESERVE; 2303 INIT_LIST_HEAD(&info->shrinklist); 2304 INIT_LIST_HEAD(&info->swaplist); 2305 simple_xattrs_init(&info->xattrs); 2306 cache_no_acl(inode); 2307 2308 switch (mode & S_IFMT) { 2309 default: 2310 inode->i_op = &shmem_special_inode_operations; 2311 init_special_inode(inode, mode, dev); 2312 break; 2313 case S_IFREG: 2314 inode->i_mapping->a_ops = &shmem_aops; 2315 inode->i_op = &shmem_inode_operations; 2316 inode->i_fop = &shmem_file_operations; 2317 mpol_shared_policy_init(&info->policy, 2318 shmem_get_sbmpol(sbinfo)); 2319 break; 2320 case S_IFDIR: 2321 inc_nlink(inode); 2322 /* Some things misbehave if size == 0 on a directory */ 2323 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2324 inode->i_op = &shmem_dir_inode_operations; 2325 inode->i_fop = &simple_dir_operations; 2326 break; 2327 case S_IFLNK: 2328 /* 2329 * Must not load anything in the rbtree, 2330 * mpol_free_shared_policy will not be called. 2331 */ 2332 mpol_shared_policy_init(&info->policy, NULL); 2333 break; 2334 } 2335 2336 lockdep_annotate_inode_mutex_key(inode); 2337 } else 2338 shmem_free_inode(sb); 2339 return inode; 2340 } 2341 2342 bool shmem_mapping(struct address_space *mapping) 2343 { 2344 return mapping->a_ops == &shmem_aops; 2345 } 2346 2347 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2348 pmd_t *dst_pmd, 2349 struct vm_area_struct *dst_vma, 2350 unsigned long dst_addr, 2351 unsigned long src_addr, 2352 bool zeropage, 2353 struct page **pagep) 2354 { 2355 struct inode *inode = file_inode(dst_vma->vm_file); 2356 struct shmem_inode_info *info = SHMEM_I(inode); 2357 struct address_space *mapping = inode->i_mapping; 2358 gfp_t gfp = mapping_gfp_mask(mapping); 2359 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2360 spinlock_t *ptl; 2361 void *page_kaddr; 2362 struct page *page; 2363 pte_t _dst_pte, *dst_pte; 2364 int ret; 2365 pgoff_t offset, max_off; 2366 2367 ret = -ENOMEM; 2368 if (!shmem_inode_acct_block(inode, 1)) 2369 goto out; 2370 2371 if (!*pagep) { 2372 page = shmem_alloc_page(gfp, info, pgoff); 2373 if (!page) 2374 goto out_unacct_blocks; 2375 2376 if (!zeropage) { /* mcopy_atomic */ 2377 page_kaddr = kmap_atomic(page); 2378 ret = copy_from_user(page_kaddr, 2379 (const void __user *)src_addr, 2380 PAGE_SIZE); 2381 kunmap_atomic(page_kaddr); 2382 2383 /* fallback to copy_from_user outside mmap_lock */ 2384 if (unlikely(ret)) { 2385 *pagep = page; 2386 shmem_inode_unacct_blocks(inode, 1); 2387 /* don't free the page */ 2388 return -ENOENT; 2389 } 2390 } else { /* mfill_zeropage_atomic */ 2391 clear_highpage(page); 2392 } 2393 } else { 2394 page = *pagep; 2395 *pagep = NULL; 2396 } 2397 2398 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2399 __SetPageLocked(page); 2400 __SetPageSwapBacked(page); 2401 __SetPageUptodate(page); 2402 2403 ret = -EFAULT; 2404 offset = linear_page_index(dst_vma, dst_addr); 2405 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2406 if (unlikely(offset >= max_off)) 2407 goto out_release; 2408 2409 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2410 gfp & GFP_RECLAIM_MASK, dst_mm); 2411 if (ret) 2412 goto out_release; 2413 2414 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2415 if (dst_vma->vm_flags & VM_WRITE) 2416 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2417 else { 2418 /* 2419 * We don't set the pte dirty if the vma has no 2420 * VM_WRITE permission, so mark the page dirty or it 2421 * could be freed from under us. We could do it 2422 * unconditionally before unlock_page(), but doing it 2423 * only if VM_WRITE is not set is faster. 2424 */ 2425 set_page_dirty(page); 2426 } 2427 2428 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2429 2430 ret = -EFAULT; 2431 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2432 if (unlikely(offset >= max_off)) 2433 goto out_release_unlock; 2434 2435 ret = -EEXIST; 2436 if (!pte_none(*dst_pte)) 2437 goto out_release_unlock; 2438 2439 lru_cache_add(page); 2440 2441 spin_lock_irq(&info->lock); 2442 info->alloced++; 2443 inode->i_blocks += BLOCKS_PER_PAGE; 2444 shmem_recalc_inode(inode); 2445 spin_unlock_irq(&info->lock); 2446 2447 inc_mm_counter(dst_mm, mm_counter_file(page)); 2448 page_add_file_rmap(page, false); 2449 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2450 2451 /* No need to invalidate - it was non-present before */ 2452 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2453 pte_unmap_unlock(dst_pte, ptl); 2454 unlock_page(page); 2455 ret = 0; 2456 out: 2457 return ret; 2458 out_release_unlock: 2459 pte_unmap_unlock(dst_pte, ptl); 2460 ClearPageDirty(page); 2461 delete_from_page_cache(page); 2462 out_release: 2463 unlock_page(page); 2464 put_page(page); 2465 out_unacct_blocks: 2466 shmem_inode_unacct_blocks(inode, 1); 2467 goto out; 2468 } 2469 2470 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2471 pmd_t *dst_pmd, 2472 struct vm_area_struct *dst_vma, 2473 unsigned long dst_addr, 2474 unsigned long src_addr, 2475 struct page **pagep) 2476 { 2477 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2478 dst_addr, src_addr, false, pagep); 2479 } 2480 2481 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2482 pmd_t *dst_pmd, 2483 struct vm_area_struct *dst_vma, 2484 unsigned long dst_addr) 2485 { 2486 struct page *page = NULL; 2487 2488 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2489 dst_addr, 0, true, &page); 2490 } 2491 2492 #ifdef CONFIG_TMPFS 2493 static const struct inode_operations shmem_symlink_inode_operations; 2494 static const struct inode_operations shmem_short_symlink_operations; 2495 2496 #ifdef CONFIG_TMPFS_XATTR 2497 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2498 #else 2499 #define shmem_initxattrs NULL 2500 #endif 2501 2502 static int 2503 shmem_write_begin(struct file *file, struct address_space *mapping, 2504 loff_t pos, unsigned len, unsigned flags, 2505 struct page **pagep, void **fsdata) 2506 { 2507 struct inode *inode = mapping->host; 2508 struct shmem_inode_info *info = SHMEM_I(inode); 2509 pgoff_t index = pos >> PAGE_SHIFT; 2510 2511 /* i_mutex is held by caller */ 2512 if (unlikely(info->seals & (F_SEAL_GROW | 2513 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2514 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2515 return -EPERM; 2516 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2517 return -EPERM; 2518 } 2519 2520 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2521 } 2522 2523 static int 2524 shmem_write_end(struct file *file, struct address_space *mapping, 2525 loff_t pos, unsigned len, unsigned copied, 2526 struct page *page, void *fsdata) 2527 { 2528 struct inode *inode = mapping->host; 2529 2530 if (pos + copied > inode->i_size) 2531 i_size_write(inode, pos + copied); 2532 2533 if (!PageUptodate(page)) { 2534 struct page *head = compound_head(page); 2535 if (PageTransCompound(page)) { 2536 int i; 2537 2538 for (i = 0; i < HPAGE_PMD_NR; i++) { 2539 if (head + i == page) 2540 continue; 2541 clear_highpage(head + i); 2542 flush_dcache_page(head + i); 2543 } 2544 } 2545 if (copied < PAGE_SIZE) { 2546 unsigned from = pos & (PAGE_SIZE - 1); 2547 zero_user_segments(page, 0, from, 2548 from + copied, PAGE_SIZE); 2549 } 2550 SetPageUptodate(head); 2551 } 2552 set_page_dirty(page); 2553 unlock_page(page); 2554 put_page(page); 2555 2556 return copied; 2557 } 2558 2559 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2560 { 2561 struct file *file = iocb->ki_filp; 2562 struct inode *inode = file_inode(file); 2563 struct address_space *mapping = inode->i_mapping; 2564 pgoff_t index; 2565 unsigned long offset; 2566 enum sgp_type sgp = SGP_READ; 2567 int error = 0; 2568 ssize_t retval = 0; 2569 loff_t *ppos = &iocb->ki_pos; 2570 2571 /* 2572 * Might this read be for a stacking filesystem? Then when reading 2573 * holes of a sparse file, we actually need to allocate those pages, 2574 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2575 */ 2576 if (!iter_is_iovec(to)) 2577 sgp = SGP_CACHE; 2578 2579 index = *ppos >> PAGE_SHIFT; 2580 offset = *ppos & ~PAGE_MASK; 2581 2582 for (;;) { 2583 struct page *page = NULL; 2584 pgoff_t end_index; 2585 unsigned long nr, ret; 2586 loff_t i_size = i_size_read(inode); 2587 2588 end_index = i_size >> PAGE_SHIFT; 2589 if (index > end_index) 2590 break; 2591 if (index == end_index) { 2592 nr = i_size & ~PAGE_MASK; 2593 if (nr <= offset) 2594 break; 2595 } 2596 2597 error = shmem_getpage(inode, index, &page, sgp); 2598 if (error) { 2599 if (error == -EINVAL) 2600 error = 0; 2601 break; 2602 } 2603 if (page) { 2604 if (sgp == SGP_CACHE) 2605 set_page_dirty(page); 2606 unlock_page(page); 2607 } 2608 2609 /* 2610 * We must evaluate after, since reads (unlike writes) 2611 * are called without i_mutex protection against truncate 2612 */ 2613 nr = PAGE_SIZE; 2614 i_size = i_size_read(inode); 2615 end_index = i_size >> PAGE_SHIFT; 2616 if (index == end_index) { 2617 nr = i_size & ~PAGE_MASK; 2618 if (nr <= offset) { 2619 if (page) 2620 put_page(page); 2621 break; 2622 } 2623 } 2624 nr -= offset; 2625 2626 if (page) { 2627 /* 2628 * If users can be writing to this page using arbitrary 2629 * virtual addresses, take care about potential aliasing 2630 * before reading the page on the kernel side. 2631 */ 2632 if (mapping_writably_mapped(mapping)) 2633 flush_dcache_page(page); 2634 /* 2635 * Mark the page accessed if we read the beginning. 2636 */ 2637 if (!offset) 2638 mark_page_accessed(page); 2639 } else { 2640 page = ZERO_PAGE(0); 2641 get_page(page); 2642 } 2643 2644 /* 2645 * Ok, we have the page, and it's up-to-date, so 2646 * now we can copy it to user space... 2647 */ 2648 ret = copy_page_to_iter(page, offset, nr, to); 2649 retval += ret; 2650 offset += ret; 2651 index += offset >> PAGE_SHIFT; 2652 offset &= ~PAGE_MASK; 2653 2654 put_page(page); 2655 if (!iov_iter_count(to)) 2656 break; 2657 if (ret < nr) { 2658 error = -EFAULT; 2659 break; 2660 } 2661 cond_resched(); 2662 } 2663 2664 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2665 file_accessed(file); 2666 return retval ? retval : error; 2667 } 2668 2669 /* 2670 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2671 */ 2672 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2673 pgoff_t index, pgoff_t end, int whence) 2674 { 2675 struct page *page; 2676 struct pagevec pvec; 2677 pgoff_t indices[PAGEVEC_SIZE]; 2678 bool done = false; 2679 int i; 2680 2681 pagevec_init(&pvec); 2682 pvec.nr = 1; /* start small: we may be there already */ 2683 while (!done) { 2684 pvec.nr = find_get_entries(mapping, index, 2685 pvec.nr, pvec.pages, indices); 2686 if (!pvec.nr) { 2687 if (whence == SEEK_DATA) 2688 index = end; 2689 break; 2690 } 2691 for (i = 0; i < pvec.nr; i++, index++) { 2692 if (index < indices[i]) { 2693 if (whence == SEEK_HOLE) { 2694 done = true; 2695 break; 2696 } 2697 index = indices[i]; 2698 } 2699 page = pvec.pages[i]; 2700 if (page && !xa_is_value(page)) { 2701 if (!PageUptodate(page)) 2702 page = NULL; 2703 } 2704 if (index >= end || 2705 (page && whence == SEEK_DATA) || 2706 (!page && whence == SEEK_HOLE)) { 2707 done = true; 2708 break; 2709 } 2710 } 2711 pagevec_remove_exceptionals(&pvec); 2712 pagevec_release(&pvec); 2713 pvec.nr = PAGEVEC_SIZE; 2714 cond_resched(); 2715 } 2716 return index; 2717 } 2718 2719 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2720 { 2721 struct address_space *mapping = file->f_mapping; 2722 struct inode *inode = mapping->host; 2723 pgoff_t start, end; 2724 loff_t new_offset; 2725 2726 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2727 return generic_file_llseek_size(file, offset, whence, 2728 MAX_LFS_FILESIZE, i_size_read(inode)); 2729 inode_lock(inode); 2730 /* We're holding i_mutex so we can access i_size directly */ 2731 2732 if (offset < 0 || offset >= inode->i_size) 2733 offset = -ENXIO; 2734 else { 2735 start = offset >> PAGE_SHIFT; 2736 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2737 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2738 new_offset <<= PAGE_SHIFT; 2739 if (new_offset > offset) { 2740 if (new_offset < inode->i_size) 2741 offset = new_offset; 2742 else if (whence == SEEK_DATA) 2743 offset = -ENXIO; 2744 else 2745 offset = inode->i_size; 2746 } 2747 } 2748 2749 if (offset >= 0) 2750 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2751 inode_unlock(inode); 2752 return offset; 2753 } 2754 2755 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2756 loff_t len) 2757 { 2758 struct inode *inode = file_inode(file); 2759 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2760 struct shmem_inode_info *info = SHMEM_I(inode); 2761 struct shmem_falloc shmem_falloc; 2762 pgoff_t start, index, end; 2763 int error; 2764 2765 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2766 return -EOPNOTSUPP; 2767 2768 inode_lock(inode); 2769 2770 if (mode & FALLOC_FL_PUNCH_HOLE) { 2771 struct address_space *mapping = file->f_mapping; 2772 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2773 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2774 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2775 2776 /* protected by i_mutex */ 2777 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2778 error = -EPERM; 2779 goto out; 2780 } 2781 2782 shmem_falloc.waitq = &shmem_falloc_waitq; 2783 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2784 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2785 spin_lock(&inode->i_lock); 2786 inode->i_private = &shmem_falloc; 2787 spin_unlock(&inode->i_lock); 2788 2789 if ((u64)unmap_end > (u64)unmap_start) 2790 unmap_mapping_range(mapping, unmap_start, 2791 1 + unmap_end - unmap_start, 0); 2792 shmem_truncate_range(inode, offset, offset + len - 1); 2793 /* No need to unmap again: hole-punching leaves COWed pages */ 2794 2795 spin_lock(&inode->i_lock); 2796 inode->i_private = NULL; 2797 wake_up_all(&shmem_falloc_waitq); 2798 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2799 spin_unlock(&inode->i_lock); 2800 error = 0; 2801 goto out; 2802 } 2803 2804 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2805 error = inode_newsize_ok(inode, offset + len); 2806 if (error) 2807 goto out; 2808 2809 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2810 error = -EPERM; 2811 goto out; 2812 } 2813 2814 start = offset >> PAGE_SHIFT; 2815 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2816 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2817 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2818 error = -ENOSPC; 2819 goto out; 2820 } 2821 2822 shmem_falloc.waitq = NULL; 2823 shmem_falloc.start = start; 2824 shmem_falloc.next = start; 2825 shmem_falloc.nr_falloced = 0; 2826 shmem_falloc.nr_unswapped = 0; 2827 spin_lock(&inode->i_lock); 2828 inode->i_private = &shmem_falloc; 2829 spin_unlock(&inode->i_lock); 2830 2831 for (index = start; index < end; index++) { 2832 struct page *page; 2833 2834 /* 2835 * Good, the fallocate(2) manpage permits EINTR: we may have 2836 * been interrupted because we are using up too much memory. 2837 */ 2838 if (signal_pending(current)) 2839 error = -EINTR; 2840 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2841 error = -ENOMEM; 2842 else 2843 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2844 if (error) { 2845 /* Remove the !PageUptodate pages we added */ 2846 if (index > start) { 2847 shmem_undo_range(inode, 2848 (loff_t)start << PAGE_SHIFT, 2849 ((loff_t)index << PAGE_SHIFT) - 1, true); 2850 } 2851 goto undone; 2852 } 2853 2854 /* 2855 * Inform shmem_writepage() how far we have reached. 2856 * No need for lock or barrier: we have the page lock. 2857 */ 2858 shmem_falloc.next++; 2859 if (!PageUptodate(page)) 2860 shmem_falloc.nr_falloced++; 2861 2862 /* 2863 * If !PageUptodate, leave it that way so that freeable pages 2864 * can be recognized if we need to rollback on error later. 2865 * But set_page_dirty so that memory pressure will swap rather 2866 * than free the pages we are allocating (and SGP_CACHE pages 2867 * might still be clean: we now need to mark those dirty too). 2868 */ 2869 set_page_dirty(page); 2870 unlock_page(page); 2871 put_page(page); 2872 cond_resched(); 2873 } 2874 2875 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2876 i_size_write(inode, offset + len); 2877 inode->i_ctime = current_time(inode); 2878 undone: 2879 spin_lock(&inode->i_lock); 2880 inode->i_private = NULL; 2881 spin_unlock(&inode->i_lock); 2882 out: 2883 inode_unlock(inode); 2884 return error; 2885 } 2886 2887 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2888 { 2889 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2890 2891 buf->f_type = TMPFS_MAGIC; 2892 buf->f_bsize = PAGE_SIZE; 2893 buf->f_namelen = NAME_MAX; 2894 if (sbinfo->max_blocks) { 2895 buf->f_blocks = sbinfo->max_blocks; 2896 buf->f_bavail = 2897 buf->f_bfree = sbinfo->max_blocks - 2898 percpu_counter_sum(&sbinfo->used_blocks); 2899 } 2900 if (sbinfo->max_inodes) { 2901 buf->f_files = sbinfo->max_inodes; 2902 buf->f_ffree = sbinfo->free_inodes; 2903 } 2904 /* else leave those fields 0 like simple_statfs */ 2905 return 0; 2906 } 2907 2908 /* 2909 * File creation. Allocate an inode, and we're done.. 2910 */ 2911 static int 2912 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2913 { 2914 struct inode *inode; 2915 int error = -ENOSPC; 2916 2917 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2918 if (inode) { 2919 error = simple_acl_create(dir, inode); 2920 if (error) 2921 goto out_iput; 2922 error = security_inode_init_security(inode, dir, 2923 &dentry->d_name, 2924 shmem_initxattrs, NULL); 2925 if (error && error != -EOPNOTSUPP) 2926 goto out_iput; 2927 2928 error = 0; 2929 dir->i_size += BOGO_DIRENT_SIZE; 2930 dir->i_ctime = dir->i_mtime = current_time(dir); 2931 d_instantiate(dentry, inode); 2932 dget(dentry); /* Extra count - pin the dentry in core */ 2933 } 2934 return error; 2935 out_iput: 2936 iput(inode); 2937 return error; 2938 } 2939 2940 static int 2941 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2942 { 2943 struct inode *inode; 2944 int error = -ENOSPC; 2945 2946 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2947 if (inode) { 2948 error = security_inode_init_security(inode, dir, 2949 NULL, 2950 shmem_initxattrs, NULL); 2951 if (error && error != -EOPNOTSUPP) 2952 goto out_iput; 2953 error = simple_acl_create(dir, inode); 2954 if (error) 2955 goto out_iput; 2956 d_tmpfile(dentry, inode); 2957 } 2958 return error; 2959 out_iput: 2960 iput(inode); 2961 return error; 2962 } 2963 2964 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2965 { 2966 int error; 2967 2968 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2969 return error; 2970 inc_nlink(dir); 2971 return 0; 2972 } 2973 2974 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2975 bool excl) 2976 { 2977 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2978 } 2979 2980 /* 2981 * Link a file.. 2982 */ 2983 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2984 { 2985 struct inode *inode = d_inode(old_dentry); 2986 int ret = 0; 2987 2988 /* 2989 * No ordinary (disk based) filesystem counts links as inodes; 2990 * but each new link needs a new dentry, pinning lowmem, and 2991 * tmpfs dentries cannot be pruned until they are unlinked. 2992 * But if an O_TMPFILE file is linked into the tmpfs, the 2993 * first link must skip that, to get the accounting right. 2994 */ 2995 if (inode->i_nlink) { 2996 ret = shmem_reserve_inode(inode->i_sb, NULL); 2997 if (ret) 2998 goto out; 2999 } 3000 3001 dir->i_size += BOGO_DIRENT_SIZE; 3002 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3003 inc_nlink(inode); 3004 ihold(inode); /* New dentry reference */ 3005 dget(dentry); /* Extra pinning count for the created dentry */ 3006 d_instantiate(dentry, inode); 3007 out: 3008 return ret; 3009 } 3010 3011 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3012 { 3013 struct inode *inode = d_inode(dentry); 3014 3015 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3016 shmem_free_inode(inode->i_sb); 3017 3018 dir->i_size -= BOGO_DIRENT_SIZE; 3019 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3020 drop_nlink(inode); 3021 dput(dentry); /* Undo the count from "create" - this does all the work */ 3022 return 0; 3023 } 3024 3025 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3026 { 3027 if (!simple_empty(dentry)) 3028 return -ENOTEMPTY; 3029 3030 drop_nlink(d_inode(dentry)); 3031 drop_nlink(dir); 3032 return shmem_unlink(dir, dentry); 3033 } 3034 3035 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3036 { 3037 bool old_is_dir = d_is_dir(old_dentry); 3038 bool new_is_dir = d_is_dir(new_dentry); 3039 3040 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3041 if (old_is_dir) { 3042 drop_nlink(old_dir); 3043 inc_nlink(new_dir); 3044 } else { 3045 drop_nlink(new_dir); 3046 inc_nlink(old_dir); 3047 } 3048 } 3049 old_dir->i_ctime = old_dir->i_mtime = 3050 new_dir->i_ctime = new_dir->i_mtime = 3051 d_inode(old_dentry)->i_ctime = 3052 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3053 3054 return 0; 3055 } 3056 3057 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3058 { 3059 struct dentry *whiteout; 3060 int error; 3061 3062 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3063 if (!whiteout) 3064 return -ENOMEM; 3065 3066 error = shmem_mknod(old_dir, whiteout, 3067 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3068 dput(whiteout); 3069 if (error) 3070 return error; 3071 3072 /* 3073 * Cheat and hash the whiteout while the old dentry is still in 3074 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3075 * 3076 * d_lookup() will consistently find one of them at this point, 3077 * not sure which one, but that isn't even important. 3078 */ 3079 d_rehash(whiteout); 3080 return 0; 3081 } 3082 3083 /* 3084 * The VFS layer already does all the dentry stuff for rename, 3085 * we just have to decrement the usage count for the target if 3086 * it exists so that the VFS layer correctly free's it when it 3087 * gets overwritten. 3088 */ 3089 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3090 { 3091 struct inode *inode = d_inode(old_dentry); 3092 int they_are_dirs = S_ISDIR(inode->i_mode); 3093 3094 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3095 return -EINVAL; 3096 3097 if (flags & RENAME_EXCHANGE) 3098 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3099 3100 if (!simple_empty(new_dentry)) 3101 return -ENOTEMPTY; 3102 3103 if (flags & RENAME_WHITEOUT) { 3104 int error; 3105 3106 error = shmem_whiteout(old_dir, old_dentry); 3107 if (error) 3108 return error; 3109 } 3110 3111 if (d_really_is_positive(new_dentry)) { 3112 (void) shmem_unlink(new_dir, new_dentry); 3113 if (they_are_dirs) { 3114 drop_nlink(d_inode(new_dentry)); 3115 drop_nlink(old_dir); 3116 } 3117 } else if (they_are_dirs) { 3118 drop_nlink(old_dir); 3119 inc_nlink(new_dir); 3120 } 3121 3122 old_dir->i_size -= BOGO_DIRENT_SIZE; 3123 new_dir->i_size += BOGO_DIRENT_SIZE; 3124 old_dir->i_ctime = old_dir->i_mtime = 3125 new_dir->i_ctime = new_dir->i_mtime = 3126 inode->i_ctime = current_time(old_dir); 3127 return 0; 3128 } 3129 3130 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3131 { 3132 int error; 3133 int len; 3134 struct inode *inode; 3135 struct page *page; 3136 3137 len = strlen(symname) + 1; 3138 if (len > PAGE_SIZE) 3139 return -ENAMETOOLONG; 3140 3141 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3142 VM_NORESERVE); 3143 if (!inode) 3144 return -ENOSPC; 3145 3146 error = security_inode_init_security(inode, dir, &dentry->d_name, 3147 shmem_initxattrs, NULL); 3148 if (error && error != -EOPNOTSUPP) { 3149 iput(inode); 3150 return error; 3151 } 3152 3153 inode->i_size = len-1; 3154 if (len <= SHORT_SYMLINK_LEN) { 3155 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3156 if (!inode->i_link) { 3157 iput(inode); 3158 return -ENOMEM; 3159 } 3160 inode->i_op = &shmem_short_symlink_operations; 3161 } else { 3162 inode_nohighmem(inode); 3163 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3164 if (error) { 3165 iput(inode); 3166 return error; 3167 } 3168 inode->i_mapping->a_ops = &shmem_aops; 3169 inode->i_op = &shmem_symlink_inode_operations; 3170 memcpy(page_address(page), symname, len); 3171 SetPageUptodate(page); 3172 set_page_dirty(page); 3173 unlock_page(page); 3174 put_page(page); 3175 } 3176 dir->i_size += BOGO_DIRENT_SIZE; 3177 dir->i_ctime = dir->i_mtime = current_time(dir); 3178 d_instantiate(dentry, inode); 3179 dget(dentry); 3180 return 0; 3181 } 3182 3183 static void shmem_put_link(void *arg) 3184 { 3185 mark_page_accessed(arg); 3186 put_page(arg); 3187 } 3188 3189 static const char *shmem_get_link(struct dentry *dentry, 3190 struct inode *inode, 3191 struct delayed_call *done) 3192 { 3193 struct page *page = NULL; 3194 int error; 3195 if (!dentry) { 3196 page = find_get_page(inode->i_mapping, 0); 3197 if (!page) 3198 return ERR_PTR(-ECHILD); 3199 if (!PageUptodate(page)) { 3200 put_page(page); 3201 return ERR_PTR(-ECHILD); 3202 } 3203 } else { 3204 error = shmem_getpage(inode, 0, &page, SGP_READ); 3205 if (error) 3206 return ERR_PTR(error); 3207 unlock_page(page); 3208 } 3209 set_delayed_call(done, shmem_put_link, page); 3210 return page_address(page); 3211 } 3212 3213 #ifdef CONFIG_TMPFS_XATTR 3214 /* 3215 * Superblocks without xattr inode operations may get some security.* xattr 3216 * support from the LSM "for free". As soon as we have any other xattrs 3217 * like ACLs, we also need to implement the security.* handlers at 3218 * filesystem level, though. 3219 */ 3220 3221 /* 3222 * Callback for security_inode_init_security() for acquiring xattrs. 3223 */ 3224 static int shmem_initxattrs(struct inode *inode, 3225 const struct xattr *xattr_array, 3226 void *fs_info) 3227 { 3228 struct shmem_inode_info *info = SHMEM_I(inode); 3229 const struct xattr *xattr; 3230 struct simple_xattr *new_xattr; 3231 size_t len; 3232 3233 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3234 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3235 if (!new_xattr) 3236 return -ENOMEM; 3237 3238 len = strlen(xattr->name) + 1; 3239 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3240 GFP_KERNEL); 3241 if (!new_xattr->name) { 3242 kvfree(new_xattr); 3243 return -ENOMEM; 3244 } 3245 3246 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3247 XATTR_SECURITY_PREFIX_LEN); 3248 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3249 xattr->name, len); 3250 3251 simple_xattr_list_add(&info->xattrs, new_xattr); 3252 } 3253 3254 return 0; 3255 } 3256 3257 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3258 struct dentry *unused, struct inode *inode, 3259 const char *name, void *buffer, size_t size) 3260 { 3261 struct shmem_inode_info *info = SHMEM_I(inode); 3262 3263 name = xattr_full_name(handler, name); 3264 return simple_xattr_get(&info->xattrs, name, buffer, size); 3265 } 3266 3267 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3268 struct dentry *unused, struct inode *inode, 3269 const char *name, const void *value, 3270 size_t size, int flags) 3271 { 3272 struct shmem_inode_info *info = SHMEM_I(inode); 3273 3274 name = xattr_full_name(handler, name); 3275 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3276 } 3277 3278 static const struct xattr_handler shmem_security_xattr_handler = { 3279 .prefix = XATTR_SECURITY_PREFIX, 3280 .get = shmem_xattr_handler_get, 3281 .set = shmem_xattr_handler_set, 3282 }; 3283 3284 static const struct xattr_handler shmem_trusted_xattr_handler = { 3285 .prefix = XATTR_TRUSTED_PREFIX, 3286 .get = shmem_xattr_handler_get, 3287 .set = shmem_xattr_handler_set, 3288 }; 3289 3290 static const struct xattr_handler *shmem_xattr_handlers[] = { 3291 #ifdef CONFIG_TMPFS_POSIX_ACL 3292 &posix_acl_access_xattr_handler, 3293 &posix_acl_default_xattr_handler, 3294 #endif 3295 &shmem_security_xattr_handler, 3296 &shmem_trusted_xattr_handler, 3297 NULL 3298 }; 3299 3300 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3301 { 3302 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3303 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3304 } 3305 #endif /* CONFIG_TMPFS_XATTR */ 3306 3307 static const struct inode_operations shmem_short_symlink_operations = { 3308 .get_link = simple_get_link, 3309 #ifdef CONFIG_TMPFS_XATTR 3310 .listxattr = shmem_listxattr, 3311 #endif 3312 }; 3313 3314 static const struct inode_operations shmem_symlink_inode_operations = { 3315 .get_link = shmem_get_link, 3316 #ifdef CONFIG_TMPFS_XATTR 3317 .listxattr = shmem_listxattr, 3318 #endif 3319 }; 3320 3321 static struct dentry *shmem_get_parent(struct dentry *child) 3322 { 3323 return ERR_PTR(-ESTALE); 3324 } 3325 3326 static int shmem_match(struct inode *ino, void *vfh) 3327 { 3328 __u32 *fh = vfh; 3329 __u64 inum = fh[2]; 3330 inum = (inum << 32) | fh[1]; 3331 return ino->i_ino == inum && fh[0] == ino->i_generation; 3332 } 3333 3334 /* Find any alias of inode, but prefer a hashed alias */ 3335 static struct dentry *shmem_find_alias(struct inode *inode) 3336 { 3337 struct dentry *alias = d_find_alias(inode); 3338 3339 return alias ?: d_find_any_alias(inode); 3340 } 3341 3342 3343 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3344 struct fid *fid, int fh_len, int fh_type) 3345 { 3346 struct inode *inode; 3347 struct dentry *dentry = NULL; 3348 u64 inum; 3349 3350 if (fh_len < 3) 3351 return NULL; 3352 3353 inum = fid->raw[2]; 3354 inum = (inum << 32) | fid->raw[1]; 3355 3356 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3357 shmem_match, fid->raw); 3358 if (inode) { 3359 dentry = shmem_find_alias(inode); 3360 iput(inode); 3361 } 3362 3363 return dentry; 3364 } 3365 3366 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3367 struct inode *parent) 3368 { 3369 if (*len < 3) { 3370 *len = 3; 3371 return FILEID_INVALID; 3372 } 3373 3374 if (inode_unhashed(inode)) { 3375 /* Unfortunately insert_inode_hash is not idempotent, 3376 * so as we hash inodes here rather than at creation 3377 * time, we need a lock to ensure we only try 3378 * to do it once 3379 */ 3380 static DEFINE_SPINLOCK(lock); 3381 spin_lock(&lock); 3382 if (inode_unhashed(inode)) 3383 __insert_inode_hash(inode, 3384 inode->i_ino + inode->i_generation); 3385 spin_unlock(&lock); 3386 } 3387 3388 fh[0] = inode->i_generation; 3389 fh[1] = inode->i_ino; 3390 fh[2] = ((__u64)inode->i_ino) >> 32; 3391 3392 *len = 3; 3393 return 1; 3394 } 3395 3396 static const struct export_operations shmem_export_ops = { 3397 .get_parent = shmem_get_parent, 3398 .encode_fh = shmem_encode_fh, 3399 .fh_to_dentry = shmem_fh_to_dentry, 3400 }; 3401 3402 enum shmem_param { 3403 Opt_gid, 3404 Opt_huge, 3405 Opt_mode, 3406 Opt_mpol, 3407 Opt_nr_blocks, 3408 Opt_nr_inodes, 3409 Opt_size, 3410 Opt_uid, 3411 Opt_inode32, 3412 Opt_inode64, 3413 }; 3414 3415 static const struct constant_table shmem_param_enums_huge[] = { 3416 {"never", SHMEM_HUGE_NEVER }, 3417 {"always", SHMEM_HUGE_ALWAYS }, 3418 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3419 {"advise", SHMEM_HUGE_ADVISE }, 3420 {} 3421 }; 3422 3423 const struct fs_parameter_spec shmem_fs_parameters[] = { 3424 fsparam_u32 ("gid", Opt_gid), 3425 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3426 fsparam_u32oct("mode", Opt_mode), 3427 fsparam_string("mpol", Opt_mpol), 3428 fsparam_string("nr_blocks", Opt_nr_blocks), 3429 fsparam_string("nr_inodes", Opt_nr_inodes), 3430 fsparam_string("size", Opt_size), 3431 fsparam_u32 ("uid", Opt_uid), 3432 fsparam_flag ("inode32", Opt_inode32), 3433 fsparam_flag ("inode64", Opt_inode64), 3434 {} 3435 }; 3436 3437 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3438 { 3439 struct shmem_options *ctx = fc->fs_private; 3440 struct fs_parse_result result; 3441 unsigned long long size; 3442 char *rest; 3443 int opt; 3444 3445 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3446 if (opt < 0) 3447 return opt; 3448 3449 switch (opt) { 3450 case Opt_size: 3451 size = memparse(param->string, &rest); 3452 if (*rest == '%') { 3453 size <<= PAGE_SHIFT; 3454 size *= totalram_pages(); 3455 do_div(size, 100); 3456 rest++; 3457 } 3458 if (*rest) 3459 goto bad_value; 3460 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3461 ctx->seen |= SHMEM_SEEN_BLOCKS; 3462 break; 3463 case Opt_nr_blocks: 3464 ctx->blocks = memparse(param->string, &rest); 3465 if (*rest) 3466 goto bad_value; 3467 ctx->seen |= SHMEM_SEEN_BLOCKS; 3468 break; 3469 case Opt_nr_inodes: 3470 ctx->inodes = memparse(param->string, &rest); 3471 if (*rest) 3472 goto bad_value; 3473 ctx->seen |= SHMEM_SEEN_INODES; 3474 break; 3475 case Opt_mode: 3476 ctx->mode = result.uint_32 & 07777; 3477 break; 3478 case Opt_uid: 3479 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3480 if (!uid_valid(ctx->uid)) 3481 goto bad_value; 3482 break; 3483 case Opt_gid: 3484 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3485 if (!gid_valid(ctx->gid)) 3486 goto bad_value; 3487 break; 3488 case Opt_huge: 3489 ctx->huge = result.uint_32; 3490 if (ctx->huge != SHMEM_HUGE_NEVER && 3491 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3492 has_transparent_hugepage())) 3493 goto unsupported_parameter; 3494 ctx->seen |= SHMEM_SEEN_HUGE; 3495 break; 3496 case Opt_mpol: 3497 if (IS_ENABLED(CONFIG_NUMA)) { 3498 mpol_put(ctx->mpol); 3499 ctx->mpol = NULL; 3500 if (mpol_parse_str(param->string, &ctx->mpol)) 3501 goto bad_value; 3502 break; 3503 } 3504 goto unsupported_parameter; 3505 case Opt_inode32: 3506 ctx->full_inums = false; 3507 ctx->seen |= SHMEM_SEEN_INUMS; 3508 break; 3509 case Opt_inode64: 3510 if (sizeof(ino_t) < 8) { 3511 return invalfc(fc, 3512 "Cannot use inode64 with <64bit inums in kernel\n"); 3513 } 3514 ctx->full_inums = true; 3515 ctx->seen |= SHMEM_SEEN_INUMS; 3516 break; 3517 } 3518 return 0; 3519 3520 unsupported_parameter: 3521 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3522 bad_value: 3523 return invalfc(fc, "Bad value for '%s'", param->key); 3524 } 3525 3526 static int shmem_parse_options(struct fs_context *fc, void *data) 3527 { 3528 char *options = data; 3529 3530 if (options) { 3531 int err = security_sb_eat_lsm_opts(options, &fc->security); 3532 if (err) 3533 return err; 3534 } 3535 3536 while (options != NULL) { 3537 char *this_char = options; 3538 for (;;) { 3539 /* 3540 * NUL-terminate this option: unfortunately, 3541 * mount options form a comma-separated list, 3542 * but mpol's nodelist may also contain commas. 3543 */ 3544 options = strchr(options, ','); 3545 if (options == NULL) 3546 break; 3547 options++; 3548 if (!isdigit(*options)) { 3549 options[-1] = '\0'; 3550 break; 3551 } 3552 } 3553 if (*this_char) { 3554 char *value = strchr(this_char,'='); 3555 size_t len = 0; 3556 int err; 3557 3558 if (value) { 3559 *value++ = '\0'; 3560 len = strlen(value); 3561 } 3562 err = vfs_parse_fs_string(fc, this_char, value, len); 3563 if (err < 0) 3564 return err; 3565 } 3566 } 3567 return 0; 3568 } 3569 3570 /* 3571 * Reconfigure a shmem filesystem. 3572 * 3573 * Note that we disallow change from limited->unlimited blocks/inodes while any 3574 * are in use; but we must separately disallow unlimited->limited, because in 3575 * that case we have no record of how much is already in use. 3576 */ 3577 static int shmem_reconfigure(struct fs_context *fc) 3578 { 3579 struct shmem_options *ctx = fc->fs_private; 3580 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3581 unsigned long inodes; 3582 const char *err; 3583 3584 spin_lock(&sbinfo->stat_lock); 3585 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3586 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3587 if (!sbinfo->max_blocks) { 3588 err = "Cannot retroactively limit size"; 3589 goto out; 3590 } 3591 if (percpu_counter_compare(&sbinfo->used_blocks, 3592 ctx->blocks) > 0) { 3593 err = "Too small a size for current use"; 3594 goto out; 3595 } 3596 } 3597 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3598 if (!sbinfo->max_inodes) { 3599 err = "Cannot retroactively limit inodes"; 3600 goto out; 3601 } 3602 if (ctx->inodes < inodes) { 3603 err = "Too few inodes for current use"; 3604 goto out; 3605 } 3606 } 3607 3608 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3609 sbinfo->next_ino > UINT_MAX) { 3610 err = "Current inum too high to switch to 32-bit inums"; 3611 goto out; 3612 } 3613 3614 if (ctx->seen & SHMEM_SEEN_HUGE) 3615 sbinfo->huge = ctx->huge; 3616 if (ctx->seen & SHMEM_SEEN_INUMS) 3617 sbinfo->full_inums = ctx->full_inums; 3618 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3619 sbinfo->max_blocks = ctx->blocks; 3620 if (ctx->seen & SHMEM_SEEN_INODES) { 3621 sbinfo->max_inodes = ctx->inodes; 3622 sbinfo->free_inodes = ctx->inodes - inodes; 3623 } 3624 3625 /* 3626 * Preserve previous mempolicy unless mpol remount option was specified. 3627 */ 3628 if (ctx->mpol) { 3629 mpol_put(sbinfo->mpol); 3630 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3631 ctx->mpol = NULL; 3632 } 3633 spin_unlock(&sbinfo->stat_lock); 3634 return 0; 3635 out: 3636 spin_unlock(&sbinfo->stat_lock); 3637 return invalfc(fc, "%s", err); 3638 } 3639 3640 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3641 { 3642 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3643 3644 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3645 seq_printf(seq, ",size=%luk", 3646 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3647 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3648 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3649 if (sbinfo->mode != (0777 | S_ISVTX)) 3650 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3651 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3652 seq_printf(seq, ",uid=%u", 3653 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3654 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3655 seq_printf(seq, ",gid=%u", 3656 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3657 3658 /* 3659 * Showing inode{64,32} might be useful even if it's the system default, 3660 * since then people don't have to resort to checking both here and 3661 * /proc/config.gz to confirm 64-bit inums were successfully applied 3662 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3663 * 3664 * We hide it when inode64 isn't the default and we are using 32-bit 3665 * inodes, since that probably just means the feature isn't even under 3666 * consideration. 3667 * 3668 * As such: 3669 * 3670 * +-----------------+-----------------+ 3671 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3672 * +------------------+-----------------+-----------------+ 3673 * | full_inums=true | show | show | 3674 * | full_inums=false | show | hide | 3675 * +------------------+-----------------+-----------------+ 3676 * 3677 */ 3678 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3679 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3681 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3682 if (sbinfo->huge) 3683 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3684 #endif 3685 shmem_show_mpol(seq, sbinfo->mpol); 3686 return 0; 3687 } 3688 3689 #endif /* CONFIG_TMPFS */ 3690 3691 static void shmem_put_super(struct super_block *sb) 3692 { 3693 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3694 3695 free_percpu(sbinfo->ino_batch); 3696 percpu_counter_destroy(&sbinfo->used_blocks); 3697 mpol_put(sbinfo->mpol); 3698 kfree(sbinfo); 3699 sb->s_fs_info = NULL; 3700 } 3701 3702 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3703 { 3704 struct shmem_options *ctx = fc->fs_private; 3705 struct inode *inode; 3706 struct shmem_sb_info *sbinfo; 3707 int err = -ENOMEM; 3708 3709 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3710 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3711 L1_CACHE_BYTES), GFP_KERNEL); 3712 if (!sbinfo) 3713 return -ENOMEM; 3714 3715 sb->s_fs_info = sbinfo; 3716 3717 #ifdef CONFIG_TMPFS 3718 /* 3719 * Per default we only allow half of the physical ram per 3720 * tmpfs instance, limiting inodes to one per page of lowmem; 3721 * but the internal instance is left unlimited. 3722 */ 3723 if (!(sb->s_flags & SB_KERNMOUNT)) { 3724 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3725 ctx->blocks = shmem_default_max_blocks(); 3726 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3727 ctx->inodes = shmem_default_max_inodes(); 3728 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3729 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3730 } else { 3731 sb->s_flags |= SB_NOUSER; 3732 } 3733 sb->s_export_op = &shmem_export_ops; 3734 sb->s_flags |= SB_NOSEC; 3735 #else 3736 sb->s_flags |= SB_NOUSER; 3737 #endif 3738 sbinfo->max_blocks = ctx->blocks; 3739 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3740 if (sb->s_flags & SB_KERNMOUNT) { 3741 sbinfo->ino_batch = alloc_percpu(ino_t); 3742 if (!sbinfo->ino_batch) 3743 goto failed; 3744 } 3745 sbinfo->uid = ctx->uid; 3746 sbinfo->gid = ctx->gid; 3747 sbinfo->full_inums = ctx->full_inums; 3748 sbinfo->mode = ctx->mode; 3749 sbinfo->huge = ctx->huge; 3750 sbinfo->mpol = ctx->mpol; 3751 ctx->mpol = NULL; 3752 3753 spin_lock_init(&sbinfo->stat_lock); 3754 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3755 goto failed; 3756 spin_lock_init(&sbinfo->shrinklist_lock); 3757 INIT_LIST_HEAD(&sbinfo->shrinklist); 3758 3759 sb->s_maxbytes = MAX_LFS_FILESIZE; 3760 sb->s_blocksize = PAGE_SIZE; 3761 sb->s_blocksize_bits = PAGE_SHIFT; 3762 sb->s_magic = TMPFS_MAGIC; 3763 sb->s_op = &shmem_ops; 3764 sb->s_time_gran = 1; 3765 #ifdef CONFIG_TMPFS_XATTR 3766 sb->s_xattr = shmem_xattr_handlers; 3767 #endif 3768 #ifdef CONFIG_TMPFS_POSIX_ACL 3769 sb->s_flags |= SB_POSIXACL; 3770 #endif 3771 uuid_gen(&sb->s_uuid); 3772 3773 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3774 if (!inode) 3775 goto failed; 3776 inode->i_uid = sbinfo->uid; 3777 inode->i_gid = sbinfo->gid; 3778 sb->s_root = d_make_root(inode); 3779 if (!sb->s_root) 3780 goto failed; 3781 return 0; 3782 3783 failed: 3784 shmem_put_super(sb); 3785 return err; 3786 } 3787 3788 static int shmem_get_tree(struct fs_context *fc) 3789 { 3790 return get_tree_nodev(fc, shmem_fill_super); 3791 } 3792 3793 static void shmem_free_fc(struct fs_context *fc) 3794 { 3795 struct shmem_options *ctx = fc->fs_private; 3796 3797 if (ctx) { 3798 mpol_put(ctx->mpol); 3799 kfree(ctx); 3800 } 3801 } 3802 3803 static const struct fs_context_operations shmem_fs_context_ops = { 3804 .free = shmem_free_fc, 3805 .get_tree = shmem_get_tree, 3806 #ifdef CONFIG_TMPFS 3807 .parse_monolithic = shmem_parse_options, 3808 .parse_param = shmem_parse_one, 3809 .reconfigure = shmem_reconfigure, 3810 #endif 3811 }; 3812 3813 static struct kmem_cache *shmem_inode_cachep; 3814 3815 static struct inode *shmem_alloc_inode(struct super_block *sb) 3816 { 3817 struct shmem_inode_info *info; 3818 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3819 if (!info) 3820 return NULL; 3821 return &info->vfs_inode; 3822 } 3823 3824 static void shmem_free_in_core_inode(struct inode *inode) 3825 { 3826 if (S_ISLNK(inode->i_mode)) 3827 kfree(inode->i_link); 3828 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3829 } 3830 3831 static void shmem_destroy_inode(struct inode *inode) 3832 { 3833 if (S_ISREG(inode->i_mode)) 3834 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3835 } 3836 3837 static void shmem_init_inode(void *foo) 3838 { 3839 struct shmem_inode_info *info = foo; 3840 inode_init_once(&info->vfs_inode); 3841 } 3842 3843 static void shmem_init_inodecache(void) 3844 { 3845 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3846 sizeof(struct shmem_inode_info), 3847 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3848 } 3849 3850 static void shmem_destroy_inodecache(void) 3851 { 3852 kmem_cache_destroy(shmem_inode_cachep); 3853 } 3854 3855 static const struct address_space_operations shmem_aops = { 3856 .writepage = shmem_writepage, 3857 .set_page_dirty = __set_page_dirty_no_writeback, 3858 #ifdef CONFIG_TMPFS 3859 .write_begin = shmem_write_begin, 3860 .write_end = shmem_write_end, 3861 #endif 3862 #ifdef CONFIG_MIGRATION 3863 .migratepage = migrate_page, 3864 #endif 3865 .error_remove_page = generic_error_remove_page, 3866 }; 3867 3868 static const struct file_operations shmem_file_operations = { 3869 .mmap = shmem_mmap, 3870 .get_unmapped_area = shmem_get_unmapped_area, 3871 #ifdef CONFIG_TMPFS 3872 .llseek = shmem_file_llseek, 3873 .read_iter = shmem_file_read_iter, 3874 .write_iter = generic_file_write_iter, 3875 .fsync = noop_fsync, 3876 .splice_read = generic_file_splice_read, 3877 .splice_write = iter_file_splice_write, 3878 .fallocate = shmem_fallocate, 3879 #endif 3880 }; 3881 3882 static const struct inode_operations shmem_inode_operations = { 3883 .getattr = shmem_getattr, 3884 .setattr = shmem_setattr, 3885 #ifdef CONFIG_TMPFS_XATTR 3886 .listxattr = shmem_listxattr, 3887 .set_acl = simple_set_acl, 3888 #endif 3889 }; 3890 3891 static const struct inode_operations shmem_dir_inode_operations = { 3892 #ifdef CONFIG_TMPFS 3893 .create = shmem_create, 3894 .lookup = simple_lookup, 3895 .link = shmem_link, 3896 .unlink = shmem_unlink, 3897 .symlink = shmem_symlink, 3898 .mkdir = shmem_mkdir, 3899 .rmdir = shmem_rmdir, 3900 .mknod = shmem_mknod, 3901 .rename = shmem_rename2, 3902 .tmpfile = shmem_tmpfile, 3903 #endif 3904 #ifdef CONFIG_TMPFS_XATTR 3905 .listxattr = shmem_listxattr, 3906 #endif 3907 #ifdef CONFIG_TMPFS_POSIX_ACL 3908 .setattr = shmem_setattr, 3909 .set_acl = simple_set_acl, 3910 #endif 3911 }; 3912 3913 static const struct inode_operations shmem_special_inode_operations = { 3914 #ifdef CONFIG_TMPFS_XATTR 3915 .listxattr = shmem_listxattr, 3916 #endif 3917 #ifdef CONFIG_TMPFS_POSIX_ACL 3918 .setattr = shmem_setattr, 3919 .set_acl = simple_set_acl, 3920 #endif 3921 }; 3922 3923 static const struct super_operations shmem_ops = { 3924 .alloc_inode = shmem_alloc_inode, 3925 .free_inode = shmem_free_in_core_inode, 3926 .destroy_inode = shmem_destroy_inode, 3927 #ifdef CONFIG_TMPFS 3928 .statfs = shmem_statfs, 3929 .show_options = shmem_show_options, 3930 #endif 3931 .evict_inode = shmem_evict_inode, 3932 .drop_inode = generic_delete_inode, 3933 .put_super = shmem_put_super, 3934 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3935 .nr_cached_objects = shmem_unused_huge_count, 3936 .free_cached_objects = shmem_unused_huge_scan, 3937 #endif 3938 }; 3939 3940 static const struct vm_operations_struct shmem_vm_ops = { 3941 .fault = shmem_fault, 3942 .map_pages = filemap_map_pages, 3943 #ifdef CONFIG_NUMA 3944 .set_policy = shmem_set_policy, 3945 .get_policy = shmem_get_policy, 3946 #endif 3947 }; 3948 3949 int shmem_init_fs_context(struct fs_context *fc) 3950 { 3951 struct shmem_options *ctx; 3952 3953 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3954 if (!ctx) 3955 return -ENOMEM; 3956 3957 ctx->mode = 0777 | S_ISVTX; 3958 ctx->uid = current_fsuid(); 3959 ctx->gid = current_fsgid(); 3960 3961 fc->fs_private = ctx; 3962 fc->ops = &shmem_fs_context_ops; 3963 return 0; 3964 } 3965 3966 static struct file_system_type shmem_fs_type = { 3967 .owner = THIS_MODULE, 3968 .name = "tmpfs", 3969 .init_fs_context = shmem_init_fs_context, 3970 #ifdef CONFIG_TMPFS 3971 .parameters = shmem_fs_parameters, 3972 #endif 3973 .kill_sb = kill_litter_super, 3974 .fs_flags = FS_USERNS_MOUNT, 3975 }; 3976 3977 int __init shmem_init(void) 3978 { 3979 int error; 3980 3981 shmem_init_inodecache(); 3982 3983 error = register_filesystem(&shmem_fs_type); 3984 if (error) { 3985 pr_err("Could not register tmpfs\n"); 3986 goto out2; 3987 } 3988 3989 shm_mnt = kern_mount(&shmem_fs_type); 3990 if (IS_ERR(shm_mnt)) { 3991 error = PTR_ERR(shm_mnt); 3992 pr_err("Could not kern_mount tmpfs\n"); 3993 goto out1; 3994 } 3995 3996 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3997 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3998 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3999 else 4000 shmem_huge = 0; /* just in case it was patched */ 4001 #endif 4002 return 0; 4003 4004 out1: 4005 unregister_filesystem(&shmem_fs_type); 4006 out2: 4007 shmem_destroy_inodecache(); 4008 shm_mnt = ERR_PTR(error); 4009 return error; 4010 } 4011 4012 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4013 static ssize_t shmem_enabled_show(struct kobject *kobj, 4014 struct kobj_attribute *attr, char *buf) 4015 { 4016 static const int values[] = { 4017 SHMEM_HUGE_ALWAYS, 4018 SHMEM_HUGE_WITHIN_SIZE, 4019 SHMEM_HUGE_ADVISE, 4020 SHMEM_HUGE_NEVER, 4021 SHMEM_HUGE_DENY, 4022 SHMEM_HUGE_FORCE, 4023 }; 4024 int i, count; 4025 4026 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 4027 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 4028 4029 count += sprintf(buf + count, fmt, 4030 shmem_format_huge(values[i])); 4031 } 4032 buf[count - 1] = '\n'; 4033 return count; 4034 } 4035 4036 static ssize_t shmem_enabled_store(struct kobject *kobj, 4037 struct kobj_attribute *attr, const char *buf, size_t count) 4038 { 4039 char tmp[16]; 4040 int huge; 4041 4042 if (count + 1 > sizeof(tmp)) 4043 return -EINVAL; 4044 memcpy(tmp, buf, count); 4045 tmp[count] = '\0'; 4046 if (count && tmp[count - 1] == '\n') 4047 tmp[count - 1] = '\0'; 4048 4049 huge = shmem_parse_huge(tmp); 4050 if (huge == -EINVAL) 4051 return -EINVAL; 4052 if (!has_transparent_hugepage() && 4053 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4054 return -EINVAL; 4055 4056 shmem_huge = huge; 4057 if (shmem_huge > SHMEM_HUGE_DENY) 4058 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4059 return count; 4060 } 4061 4062 struct kobj_attribute shmem_enabled_attr = 4063 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4064 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4065 4066 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4067 bool shmem_huge_enabled(struct vm_area_struct *vma) 4068 { 4069 struct inode *inode = file_inode(vma->vm_file); 4070 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4071 loff_t i_size; 4072 pgoff_t off; 4073 4074 if ((vma->vm_flags & VM_NOHUGEPAGE) || 4075 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 4076 return false; 4077 if (shmem_huge == SHMEM_HUGE_FORCE) 4078 return true; 4079 if (shmem_huge == SHMEM_HUGE_DENY) 4080 return false; 4081 switch (sbinfo->huge) { 4082 case SHMEM_HUGE_NEVER: 4083 return false; 4084 case SHMEM_HUGE_ALWAYS: 4085 return true; 4086 case SHMEM_HUGE_WITHIN_SIZE: 4087 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4088 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4089 if (i_size >= HPAGE_PMD_SIZE && 4090 i_size >> PAGE_SHIFT >= off) 4091 return true; 4092 fallthrough; 4093 case SHMEM_HUGE_ADVISE: 4094 /* TODO: implement fadvise() hints */ 4095 return (vma->vm_flags & VM_HUGEPAGE); 4096 default: 4097 VM_BUG_ON(1); 4098 return false; 4099 } 4100 } 4101 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4102 4103 #else /* !CONFIG_SHMEM */ 4104 4105 /* 4106 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4107 * 4108 * This is intended for small system where the benefits of the full 4109 * shmem code (swap-backed and resource-limited) are outweighed by 4110 * their complexity. On systems without swap this code should be 4111 * effectively equivalent, but much lighter weight. 4112 */ 4113 4114 static struct file_system_type shmem_fs_type = { 4115 .name = "tmpfs", 4116 .init_fs_context = ramfs_init_fs_context, 4117 .parameters = ramfs_fs_parameters, 4118 .kill_sb = kill_litter_super, 4119 .fs_flags = FS_USERNS_MOUNT, 4120 }; 4121 4122 int __init shmem_init(void) 4123 { 4124 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4125 4126 shm_mnt = kern_mount(&shmem_fs_type); 4127 BUG_ON(IS_ERR(shm_mnt)); 4128 4129 return 0; 4130 } 4131 4132 int shmem_unuse(unsigned int type, bool frontswap, 4133 unsigned long *fs_pages_to_unuse) 4134 { 4135 return 0; 4136 } 4137 4138 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4139 { 4140 return 0; 4141 } 4142 4143 void shmem_unlock_mapping(struct address_space *mapping) 4144 { 4145 } 4146 4147 #ifdef CONFIG_MMU 4148 unsigned long shmem_get_unmapped_area(struct file *file, 4149 unsigned long addr, unsigned long len, 4150 unsigned long pgoff, unsigned long flags) 4151 { 4152 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4153 } 4154 #endif 4155 4156 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4157 { 4158 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4159 } 4160 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4161 4162 #define shmem_vm_ops generic_file_vm_ops 4163 #define shmem_file_operations ramfs_file_operations 4164 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4165 #define shmem_acct_size(flags, size) 0 4166 #define shmem_unacct_size(flags, size) do {} while (0) 4167 4168 #endif /* CONFIG_SHMEM */ 4169 4170 /* common code */ 4171 4172 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4173 unsigned long flags, unsigned int i_flags) 4174 { 4175 struct inode *inode; 4176 struct file *res; 4177 4178 if (IS_ERR(mnt)) 4179 return ERR_CAST(mnt); 4180 4181 if (size < 0 || size > MAX_LFS_FILESIZE) 4182 return ERR_PTR(-EINVAL); 4183 4184 if (shmem_acct_size(flags, size)) 4185 return ERR_PTR(-ENOMEM); 4186 4187 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4188 flags); 4189 if (unlikely(!inode)) { 4190 shmem_unacct_size(flags, size); 4191 return ERR_PTR(-ENOSPC); 4192 } 4193 inode->i_flags |= i_flags; 4194 inode->i_size = size; 4195 clear_nlink(inode); /* It is unlinked */ 4196 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4197 if (!IS_ERR(res)) 4198 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4199 &shmem_file_operations); 4200 if (IS_ERR(res)) 4201 iput(inode); 4202 return res; 4203 } 4204 4205 /** 4206 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4207 * kernel internal. There will be NO LSM permission checks against the 4208 * underlying inode. So users of this interface must do LSM checks at a 4209 * higher layer. The users are the big_key and shm implementations. LSM 4210 * checks are provided at the key or shm level rather than the inode. 4211 * @name: name for dentry (to be seen in /proc/<pid>/maps 4212 * @size: size to be set for the file 4213 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4214 */ 4215 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4216 { 4217 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4218 } 4219 4220 /** 4221 * shmem_file_setup - get an unlinked file living in tmpfs 4222 * @name: name for dentry (to be seen in /proc/<pid>/maps 4223 * @size: size to be set for the file 4224 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4225 */ 4226 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4227 { 4228 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4229 } 4230 EXPORT_SYMBOL_GPL(shmem_file_setup); 4231 4232 /** 4233 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4234 * @mnt: the tmpfs mount where the file will be created 4235 * @name: name for dentry (to be seen in /proc/<pid>/maps 4236 * @size: size to be set for the file 4237 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4238 */ 4239 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4240 loff_t size, unsigned long flags) 4241 { 4242 return __shmem_file_setup(mnt, name, size, flags, 0); 4243 } 4244 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4245 4246 /** 4247 * shmem_zero_setup - setup a shared anonymous mapping 4248 * @vma: the vma to be mmapped is prepared by do_mmap 4249 */ 4250 int shmem_zero_setup(struct vm_area_struct *vma) 4251 { 4252 struct file *file; 4253 loff_t size = vma->vm_end - vma->vm_start; 4254 4255 /* 4256 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4257 * between XFS directory reading and selinux: since this file is only 4258 * accessible to the user through its mapping, use S_PRIVATE flag to 4259 * bypass file security, in the same way as shmem_kernel_file_setup(). 4260 */ 4261 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4262 if (IS_ERR(file)) 4263 return PTR_ERR(file); 4264 4265 if (vma->vm_file) 4266 fput(vma->vm_file); 4267 vma->vm_file = file; 4268 vma->vm_ops = &shmem_vm_ops; 4269 4270 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4271 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4272 (vma->vm_end & HPAGE_PMD_MASK)) { 4273 khugepaged_enter(vma, vma->vm_flags); 4274 } 4275 4276 return 0; 4277 } 4278 4279 /** 4280 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4281 * @mapping: the page's address_space 4282 * @index: the page index 4283 * @gfp: the page allocator flags to use if allocating 4284 * 4285 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4286 * with any new page allocations done using the specified allocation flags. 4287 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4288 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4289 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4290 * 4291 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4292 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4293 */ 4294 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4295 pgoff_t index, gfp_t gfp) 4296 { 4297 #ifdef CONFIG_SHMEM 4298 struct inode *inode = mapping->host; 4299 struct page *page; 4300 int error; 4301 4302 BUG_ON(mapping->a_ops != &shmem_aops); 4303 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4304 gfp, NULL, NULL, NULL); 4305 if (error) 4306 page = ERR_PTR(error); 4307 else 4308 unlock_page(page); 4309 return page; 4310 #else 4311 /* 4312 * The tiny !SHMEM case uses ramfs without swap 4313 */ 4314 return read_cache_page_gfp(mapping, index, gfp); 4315 #endif 4316 } 4317 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4318