1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 42 static struct vfsmount *shm_mnt; 43 44 #ifdef CONFIG_SHMEM 45 /* 46 * This virtual memory filesystem is heavily based on the ramfs. It 47 * extends ramfs by the ability to use swap and honor resource limits 48 * which makes it a completely usable filesystem. 49 */ 50 51 #include <linux/xattr.h> 52 #include <linux/exportfs.h> 53 #include <linux/posix_acl.h> 54 #include <linux/posix_acl_xattr.h> 55 #include <linux/mman.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/backing-dev.h> 59 #include <linux/shmem_fs.h> 60 #include <linux/writeback.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 83 #include "internal.h" 84 85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 87 88 /* Pretend that each entry is of this size in directory's i_size */ 89 #define BOGO_DIRENT_SIZE 20 90 91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 92 #define SHORT_SYMLINK_LEN 128 93 94 /* 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 96 * inode->i_private (with i_rwsem making sure that it has only one user at 97 * a time): we would prefer not to enlarge the shmem inode just for that. 98 */ 99 struct shmem_falloc { 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 101 pgoff_t start; /* start of range currently being fallocated */ 102 pgoff_t next; /* the next page offset to be fallocated */ 103 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 105 }; 106 107 struct shmem_options { 108 unsigned long long blocks; 109 unsigned long long inodes; 110 struct mempolicy *mpol; 111 kuid_t uid; 112 kgid_t gid; 113 umode_t mode; 114 bool full_inums; 115 int huge; 116 int seen; 117 #define SHMEM_SEEN_BLOCKS 1 118 #define SHMEM_SEEN_INODES 2 119 #define SHMEM_SEEN_HUGE 4 120 #define SHMEM_SEEN_INUMS 8 121 }; 122 123 #ifdef CONFIG_TMPFS 124 static unsigned long shmem_default_max_blocks(void) 125 { 126 return totalram_pages() / 2; 127 } 128 129 static unsigned long shmem_default_max_inodes(void) 130 { 131 unsigned long nr_pages = totalram_pages(); 132 133 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 134 } 135 #endif 136 137 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 138 struct page **pagep, enum sgp_type sgp, 139 gfp_t gfp, struct vm_area_struct *vma, 140 vm_fault_t *fault_type); 141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 142 struct page **pagep, enum sgp_type sgp, 143 gfp_t gfp, struct vm_area_struct *vma, 144 struct vm_fault *vmf, vm_fault_t *fault_type); 145 146 int shmem_getpage(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp) 148 { 149 return shmem_getpage_gfp(inode, index, pagep, sgp, 150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 151 } 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 215 if (shmem_acct_block(info->flags, pages)) 216 return false; 217 218 if (sbinfo->max_blocks) { 219 if (percpu_counter_compare(&sbinfo->used_blocks, 220 sbinfo->max_blocks - pages) > 0) 221 goto unacct; 222 percpu_counter_add(&sbinfo->used_blocks, pages); 223 } 224 225 return true; 226 227 unacct: 228 shmem_unacct_blocks(info->flags, pages); 229 return false; 230 } 231 232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 233 { 234 struct shmem_inode_info *info = SHMEM_I(inode); 235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 236 237 if (sbinfo->max_blocks) 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 shmem_unacct_blocks(info->flags, pages); 240 } 241 242 static const struct super_operations shmem_ops; 243 const struct address_space_operations shmem_aops; 244 static const struct file_operations shmem_file_operations; 245 static const struct inode_operations shmem_inode_operations; 246 static const struct inode_operations shmem_dir_inode_operations; 247 static const struct inode_operations shmem_special_inode_operations; 248 static const struct vm_operations_struct shmem_vm_ops; 249 static struct file_system_type shmem_fs_type; 250 251 bool vma_is_shmem(struct vm_area_struct *vma) 252 { 253 return vma->vm_ops == &shmem_vm_ops; 254 } 255 256 static LIST_HEAD(shmem_swaplist); 257 static DEFINE_MUTEX(shmem_swaplist_mutex); 258 259 /* 260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 261 * produces a novel ino for the newly allocated inode. 262 * 263 * It may also be called when making a hard link to permit the space needed by 264 * each dentry. However, in that case, no new inode number is needed since that 265 * internally draws from another pool of inode numbers (currently global 266 * get_next_ino()). This case is indicated by passing NULL as inop. 267 */ 268 #define SHMEM_INO_BATCH 1024 269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 270 { 271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 272 ino_t ino; 273 274 if (!(sb->s_flags & SB_KERNMOUNT)) { 275 raw_spin_lock(&sbinfo->stat_lock); 276 if (sbinfo->max_inodes) { 277 if (!sbinfo->free_inodes) { 278 raw_spin_unlock(&sbinfo->stat_lock); 279 return -ENOSPC; 280 } 281 sbinfo->free_inodes--; 282 } 283 if (inop) { 284 ino = sbinfo->next_ino++; 285 if (unlikely(is_zero_ino(ino))) 286 ino = sbinfo->next_ino++; 287 if (unlikely(!sbinfo->full_inums && 288 ino > UINT_MAX)) { 289 /* 290 * Emulate get_next_ino uint wraparound for 291 * compatibility 292 */ 293 if (IS_ENABLED(CONFIG_64BIT)) 294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 295 __func__, MINOR(sb->s_dev)); 296 sbinfo->next_ino = 1; 297 ino = sbinfo->next_ino++; 298 } 299 *inop = ino; 300 } 301 raw_spin_unlock(&sbinfo->stat_lock); 302 } else if (inop) { 303 /* 304 * __shmem_file_setup, one of our callers, is lock-free: it 305 * doesn't hold stat_lock in shmem_reserve_inode since 306 * max_inodes is always 0, and is called from potentially 307 * unknown contexts. As such, use a per-cpu batched allocator 308 * which doesn't require the per-sb stat_lock unless we are at 309 * the batch boundary. 310 * 311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 312 * shmem mounts are not exposed to userspace, so we don't need 313 * to worry about things like glibc compatibility. 314 */ 315 ino_t *next_ino; 316 317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 318 ino = *next_ino; 319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 320 raw_spin_lock(&sbinfo->stat_lock); 321 ino = sbinfo->next_ino; 322 sbinfo->next_ino += SHMEM_INO_BATCH; 323 raw_spin_unlock(&sbinfo->stat_lock); 324 if (unlikely(is_zero_ino(ino))) 325 ino++; 326 } 327 *inop = ino; 328 *next_ino = ++ino; 329 put_cpu(); 330 } 331 332 return 0; 333 } 334 335 static void shmem_free_inode(struct super_block *sb) 336 { 337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 338 if (sbinfo->max_inodes) { 339 raw_spin_lock(&sbinfo->stat_lock); 340 sbinfo->free_inodes++; 341 raw_spin_unlock(&sbinfo->stat_lock); 342 } 343 } 344 345 /** 346 * shmem_recalc_inode - recalculate the block usage of an inode 347 * @inode: inode to recalc 348 * 349 * We have to calculate the free blocks since the mm can drop 350 * undirtied hole pages behind our back. 351 * 352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 354 * 355 * It has to be called with the spinlock held. 356 */ 357 static void shmem_recalc_inode(struct inode *inode) 358 { 359 struct shmem_inode_info *info = SHMEM_I(inode); 360 long freed; 361 362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 363 if (freed > 0) { 364 info->alloced -= freed; 365 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 366 shmem_inode_unacct_blocks(inode, freed); 367 } 368 } 369 370 bool shmem_charge(struct inode *inode, long pages) 371 { 372 struct shmem_inode_info *info = SHMEM_I(inode); 373 unsigned long flags; 374 375 if (!shmem_inode_acct_block(inode, pages)) 376 return false; 377 378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 379 inode->i_mapping->nrpages += pages; 380 381 spin_lock_irqsave(&info->lock, flags); 382 info->alloced += pages; 383 inode->i_blocks += pages * BLOCKS_PER_PAGE; 384 shmem_recalc_inode(inode); 385 spin_unlock_irqrestore(&info->lock, flags); 386 387 return true; 388 } 389 390 void shmem_uncharge(struct inode *inode, long pages) 391 { 392 struct shmem_inode_info *info = SHMEM_I(inode); 393 unsigned long flags; 394 395 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 396 397 spin_lock_irqsave(&info->lock, flags); 398 info->alloced -= pages; 399 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 400 shmem_recalc_inode(inode); 401 spin_unlock_irqrestore(&info->lock, flags); 402 403 shmem_inode_unacct_blocks(inode, pages); 404 } 405 406 /* 407 * Replace item expected in xarray by a new item, while holding xa_lock. 408 */ 409 static int shmem_replace_entry(struct address_space *mapping, 410 pgoff_t index, void *expected, void *replacement) 411 { 412 XA_STATE(xas, &mapping->i_pages, index); 413 void *item; 414 415 VM_BUG_ON(!expected); 416 VM_BUG_ON(!replacement); 417 item = xas_load(&xas); 418 if (item != expected) 419 return -ENOENT; 420 xas_store(&xas, replacement); 421 return 0; 422 } 423 424 /* 425 * Sometimes, before we decide whether to proceed or to fail, we must check 426 * that an entry was not already brought back from swap by a racing thread. 427 * 428 * Checking page is not enough: by the time a SwapCache page is locked, it 429 * might be reused, and again be SwapCache, using the same swap as before. 430 */ 431 static bool shmem_confirm_swap(struct address_space *mapping, 432 pgoff_t index, swp_entry_t swap) 433 { 434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 435 } 436 437 /* 438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 439 * 440 * SHMEM_HUGE_NEVER: 441 * disables huge pages for the mount; 442 * SHMEM_HUGE_ALWAYS: 443 * enables huge pages for the mount; 444 * SHMEM_HUGE_WITHIN_SIZE: 445 * only allocate huge pages if the page will be fully within i_size, 446 * also respect fadvise()/madvise() hints; 447 * SHMEM_HUGE_ADVISE: 448 * only allocate huge pages if requested with fadvise()/madvise(); 449 */ 450 451 #define SHMEM_HUGE_NEVER 0 452 #define SHMEM_HUGE_ALWAYS 1 453 #define SHMEM_HUGE_WITHIN_SIZE 2 454 #define SHMEM_HUGE_ADVISE 3 455 456 /* 457 * Special values. 458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 459 * 460 * SHMEM_HUGE_DENY: 461 * disables huge on shm_mnt and all mounts, for emergency use; 462 * SHMEM_HUGE_FORCE: 463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 464 * 465 */ 466 #define SHMEM_HUGE_DENY (-1) 467 #define SHMEM_HUGE_FORCE (-2) 468 469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 470 /* ifdef here to avoid bloating shmem.o when not necessary */ 471 472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 473 474 bool shmem_is_huge(struct vm_area_struct *vma, 475 struct inode *inode, pgoff_t index) 476 { 477 loff_t i_size; 478 479 if (!S_ISREG(inode->i_mode)) 480 return false; 481 if (shmem_huge == SHMEM_HUGE_DENY) 482 return false; 483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 485 return false; 486 if (shmem_huge == SHMEM_HUGE_FORCE) 487 return true; 488 489 switch (SHMEM_SB(inode->i_sb)->huge) { 490 case SHMEM_HUGE_ALWAYS: 491 return true; 492 case SHMEM_HUGE_WITHIN_SIZE: 493 index = round_up(index + 1, HPAGE_PMD_NR); 494 i_size = round_up(i_size_read(inode), PAGE_SIZE); 495 if (i_size >> PAGE_SHIFT >= index) 496 return true; 497 fallthrough; 498 case SHMEM_HUGE_ADVISE: 499 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 500 return true; 501 fallthrough; 502 default: 503 return false; 504 } 505 } 506 507 #if defined(CONFIG_SYSFS) 508 static int shmem_parse_huge(const char *str) 509 { 510 if (!strcmp(str, "never")) 511 return SHMEM_HUGE_NEVER; 512 if (!strcmp(str, "always")) 513 return SHMEM_HUGE_ALWAYS; 514 if (!strcmp(str, "within_size")) 515 return SHMEM_HUGE_WITHIN_SIZE; 516 if (!strcmp(str, "advise")) 517 return SHMEM_HUGE_ADVISE; 518 if (!strcmp(str, "deny")) 519 return SHMEM_HUGE_DENY; 520 if (!strcmp(str, "force")) 521 return SHMEM_HUGE_FORCE; 522 return -EINVAL; 523 } 524 #endif 525 526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 527 static const char *shmem_format_huge(int huge) 528 { 529 switch (huge) { 530 case SHMEM_HUGE_NEVER: 531 return "never"; 532 case SHMEM_HUGE_ALWAYS: 533 return "always"; 534 case SHMEM_HUGE_WITHIN_SIZE: 535 return "within_size"; 536 case SHMEM_HUGE_ADVISE: 537 return "advise"; 538 case SHMEM_HUGE_DENY: 539 return "deny"; 540 case SHMEM_HUGE_FORCE: 541 return "force"; 542 default: 543 VM_BUG_ON(1); 544 return "bad_val"; 545 } 546 } 547 #endif 548 549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 550 struct shrink_control *sc, unsigned long nr_to_split) 551 { 552 LIST_HEAD(list), *pos, *next; 553 LIST_HEAD(to_remove); 554 struct inode *inode; 555 struct shmem_inode_info *info; 556 struct page *page; 557 unsigned long batch = sc ? sc->nr_to_scan : 128; 558 int split = 0; 559 560 if (list_empty(&sbinfo->shrinklist)) 561 return SHRINK_STOP; 562 563 spin_lock(&sbinfo->shrinklist_lock); 564 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 565 info = list_entry(pos, struct shmem_inode_info, shrinklist); 566 567 /* pin the inode */ 568 inode = igrab(&info->vfs_inode); 569 570 /* inode is about to be evicted */ 571 if (!inode) { 572 list_del_init(&info->shrinklist); 573 goto next; 574 } 575 576 /* Check if there's anything to gain */ 577 if (round_up(inode->i_size, PAGE_SIZE) == 578 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 579 list_move(&info->shrinklist, &to_remove); 580 goto next; 581 } 582 583 list_move(&info->shrinklist, &list); 584 next: 585 sbinfo->shrinklist_len--; 586 if (!--batch) 587 break; 588 } 589 spin_unlock(&sbinfo->shrinklist_lock); 590 591 list_for_each_safe(pos, next, &to_remove) { 592 info = list_entry(pos, struct shmem_inode_info, shrinklist); 593 inode = &info->vfs_inode; 594 list_del_init(&info->shrinklist); 595 iput(inode); 596 } 597 598 list_for_each_safe(pos, next, &list) { 599 int ret; 600 601 info = list_entry(pos, struct shmem_inode_info, shrinklist); 602 inode = &info->vfs_inode; 603 604 if (nr_to_split && split >= nr_to_split) 605 goto move_back; 606 607 page = find_get_page(inode->i_mapping, 608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 609 if (!page) 610 goto drop; 611 612 /* No huge page at the end of the file: nothing to split */ 613 if (!PageTransHuge(page)) { 614 put_page(page); 615 goto drop; 616 } 617 618 /* 619 * Move the inode on the list back to shrinklist if we failed 620 * to lock the page at this time. 621 * 622 * Waiting for the lock may lead to deadlock in the 623 * reclaim path. 624 */ 625 if (!trylock_page(page)) { 626 put_page(page); 627 goto move_back; 628 } 629 630 ret = split_huge_page(page); 631 unlock_page(page); 632 put_page(page); 633 634 /* If split failed move the inode on the list back to shrinklist */ 635 if (ret) 636 goto move_back; 637 638 split++; 639 drop: 640 list_del_init(&info->shrinklist); 641 goto put; 642 move_back: 643 /* 644 * Make sure the inode is either on the global list or deleted 645 * from any local list before iput() since it could be deleted 646 * in another thread once we put the inode (then the local list 647 * is corrupted). 648 */ 649 spin_lock(&sbinfo->shrinklist_lock); 650 list_move(&info->shrinklist, &sbinfo->shrinklist); 651 sbinfo->shrinklist_len++; 652 spin_unlock(&sbinfo->shrinklist_lock); 653 put: 654 iput(inode); 655 } 656 657 return split; 658 } 659 660 static long shmem_unused_huge_scan(struct super_block *sb, 661 struct shrink_control *sc) 662 { 663 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 664 665 if (!READ_ONCE(sbinfo->shrinklist_len)) 666 return SHRINK_STOP; 667 668 return shmem_unused_huge_shrink(sbinfo, sc, 0); 669 } 670 671 static long shmem_unused_huge_count(struct super_block *sb, 672 struct shrink_control *sc) 673 { 674 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 675 return READ_ONCE(sbinfo->shrinklist_len); 676 } 677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 678 679 #define shmem_huge SHMEM_HUGE_DENY 680 681 bool shmem_is_huge(struct vm_area_struct *vma, 682 struct inode *inode, pgoff_t index) 683 { 684 return false; 685 } 686 687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 688 struct shrink_control *sc, unsigned long nr_to_split) 689 { 690 return 0; 691 } 692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 693 694 /* 695 * Like add_to_page_cache_locked, but error if expected item has gone. 696 */ 697 static int shmem_add_to_page_cache(struct page *page, 698 struct address_space *mapping, 699 pgoff_t index, void *expected, gfp_t gfp, 700 struct mm_struct *charge_mm) 701 { 702 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 703 unsigned long nr = compound_nr(page); 704 int error; 705 706 VM_BUG_ON_PAGE(PageTail(page), page); 707 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 708 VM_BUG_ON_PAGE(!PageLocked(page), page); 709 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 710 VM_BUG_ON(expected && PageTransHuge(page)); 711 712 page_ref_add(page, nr); 713 page->mapping = mapping; 714 page->index = index; 715 716 if (!PageSwapCache(page)) { 717 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp); 718 if (error) { 719 if (PageTransHuge(page)) { 720 count_vm_event(THP_FILE_FALLBACK); 721 count_vm_event(THP_FILE_FALLBACK_CHARGE); 722 } 723 goto error; 724 } 725 } 726 cgroup_throttle_swaprate(page, gfp); 727 728 do { 729 xas_lock_irq(&xas); 730 if (expected != xas_find_conflict(&xas)) { 731 xas_set_err(&xas, -EEXIST); 732 goto unlock; 733 } 734 if (expected && xas_find_conflict(&xas)) { 735 xas_set_err(&xas, -EEXIST); 736 goto unlock; 737 } 738 xas_store(&xas, page); 739 if (xas_error(&xas)) 740 goto unlock; 741 if (PageTransHuge(page)) { 742 count_vm_event(THP_FILE_ALLOC); 743 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); 744 } 745 mapping->nrpages += nr; 746 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 747 __mod_lruvec_page_state(page, NR_SHMEM, nr); 748 unlock: 749 xas_unlock_irq(&xas); 750 } while (xas_nomem(&xas, gfp)); 751 752 if (xas_error(&xas)) { 753 error = xas_error(&xas); 754 goto error; 755 } 756 757 return 0; 758 error: 759 page->mapping = NULL; 760 page_ref_sub(page, nr); 761 return error; 762 } 763 764 /* 765 * Like delete_from_page_cache, but substitutes swap for page. 766 */ 767 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 768 { 769 struct address_space *mapping = page->mapping; 770 int error; 771 772 VM_BUG_ON_PAGE(PageCompound(page), page); 773 774 xa_lock_irq(&mapping->i_pages); 775 error = shmem_replace_entry(mapping, page->index, page, radswap); 776 page->mapping = NULL; 777 mapping->nrpages--; 778 __dec_lruvec_page_state(page, NR_FILE_PAGES); 779 __dec_lruvec_page_state(page, NR_SHMEM); 780 xa_unlock_irq(&mapping->i_pages); 781 put_page(page); 782 BUG_ON(error); 783 } 784 785 /* 786 * Remove swap entry from page cache, free the swap and its page cache. 787 */ 788 static int shmem_free_swap(struct address_space *mapping, 789 pgoff_t index, void *radswap) 790 { 791 void *old; 792 793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 794 if (old != radswap) 795 return -ENOENT; 796 free_swap_and_cache(radix_to_swp_entry(radswap)); 797 return 0; 798 } 799 800 /* 801 * Determine (in bytes) how many of the shmem object's pages mapped by the 802 * given offsets are swapped out. 803 * 804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 805 * as long as the inode doesn't go away and racy results are not a problem. 806 */ 807 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 808 pgoff_t start, pgoff_t end) 809 { 810 XA_STATE(xas, &mapping->i_pages, start); 811 struct page *page; 812 unsigned long swapped = 0; 813 814 rcu_read_lock(); 815 xas_for_each(&xas, page, end - 1) { 816 if (xas_retry(&xas, page)) 817 continue; 818 if (xa_is_value(page)) 819 swapped++; 820 821 if (need_resched()) { 822 xas_pause(&xas); 823 cond_resched_rcu(); 824 } 825 } 826 827 rcu_read_unlock(); 828 829 return swapped << PAGE_SHIFT; 830 } 831 832 /* 833 * Determine (in bytes) how many of the shmem object's pages mapped by the 834 * given vma is swapped out. 835 * 836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 837 * as long as the inode doesn't go away and racy results are not a problem. 838 */ 839 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 840 { 841 struct inode *inode = file_inode(vma->vm_file); 842 struct shmem_inode_info *info = SHMEM_I(inode); 843 struct address_space *mapping = inode->i_mapping; 844 unsigned long swapped; 845 846 /* Be careful as we don't hold info->lock */ 847 swapped = READ_ONCE(info->swapped); 848 849 /* 850 * The easier cases are when the shmem object has nothing in swap, or 851 * the vma maps it whole. Then we can simply use the stats that we 852 * already track. 853 */ 854 if (!swapped) 855 return 0; 856 857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 858 return swapped << PAGE_SHIFT; 859 860 /* Here comes the more involved part */ 861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 862 vma->vm_pgoff + vma_pages(vma)); 863 } 864 865 /* 866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 867 */ 868 void shmem_unlock_mapping(struct address_space *mapping) 869 { 870 struct pagevec pvec; 871 pgoff_t index = 0; 872 873 pagevec_init(&pvec); 874 /* 875 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 876 */ 877 while (!mapping_unevictable(mapping)) { 878 if (!pagevec_lookup(&pvec, mapping, &index)) 879 break; 880 check_move_unevictable_pages(&pvec); 881 pagevec_release(&pvec); 882 cond_resched(); 883 } 884 } 885 886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 887 { 888 struct folio *folio; 889 struct page *page; 890 891 /* 892 * At first avoid shmem_getpage(,,,SGP_READ): that fails 893 * beyond i_size, and reports fallocated pages as holes. 894 */ 895 folio = __filemap_get_folio(inode->i_mapping, index, 896 FGP_ENTRY | FGP_LOCK, 0); 897 if (!xa_is_value(folio)) 898 return folio; 899 /* 900 * But read a page back from swap if any of it is within i_size 901 * (although in some cases this is just a waste of time). 902 */ 903 page = NULL; 904 shmem_getpage(inode, index, &page, SGP_READ); 905 return page ? page_folio(page) : NULL; 906 } 907 908 /* 909 * Remove range of pages and swap entries from page cache, and free them. 910 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 911 */ 912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 913 bool unfalloc) 914 { 915 struct address_space *mapping = inode->i_mapping; 916 struct shmem_inode_info *info = SHMEM_I(inode); 917 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 918 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 919 struct folio_batch fbatch; 920 pgoff_t indices[PAGEVEC_SIZE]; 921 struct folio *folio; 922 bool same_folio; 923 long nr_swaps_freed = 0; 924 pgoff_t index; 925 int i; 926 927 if (lend == -1) 928 end = -1; /* unsigned, so actually very big */ 929 930 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 931 info->fallocend = start; 932 933 folio_batch_init(&fbatch); 934 index = start; 935 while (index < end && find_lock_entries(mapping, index, end - 1, 936 &fbatch, indices)) { 937 for (i = 0; i < folio_batch_count(&fbatch); i++) { 938 folio = fbatch.folios[i]; 939 940 index = indices[i]; 941 942 if (xa_is_value(folio)) { 943 if (unfalloc) 944 continue; 945 nr_swaps_freed += !shmem_free_swap(mapping, 946 index, folio); 947 continue; 948 } 949 index += folio_nr_pages(folio) - 1; 950 951 if (!unfalloc || !folio_test_uptodate(folio)) 952 truncate_inode_folio(mapping, folio); 953 folio_unlock(folio); 954 } 955 folio_batch_remove_exceptionals(&fbatch); 956 folio_batch_release(&fbatch); 957 cond_resched(); 958 index++; 959 } 960 961 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 962 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 963 if (folio) { 964 same_folio = lend < folio_pos(folio) + folio_size(folio); 965 folio_mark_dirty(folio); 966 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 967 start = folio->index + folio_nr_pages(folio); 968 if (same_folio) 969 end = folio->index; 970 } 971 folio_unlock(folio); 972 folio_put(folio); 973 folio = NULL; 974 } 975 976 if (!same_folio) 977 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 978 if (folio) { 979 folio_mark_dirty(folio); 980 if (!truncate_inode_partial_folio(folio, lstart, lend)) 981 end = folio->index; 982 folio_unlock(folio); 983 folio_put(folio); 984 } 985 986 index = start; 987 while (index < end) { 988 cond_resched(); 989 990 if (!find_get_entries(mapping, index, end - 1, &fbatch, 991 indices)) { 992 /* If all gone or hole-punch or unfalloc, we're done */ 993 if (index == start || end != -1) 994 break; 995 /* But if truncating, restart to make sure all gone */ 996 index = start; 997 continue; 998 } 999 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1000 folio = fbatch.folios[i]; 1001 1002 index = indices[i]; 1003 if (xa_is_value(folio)) { 1004 if (unfalloc) 1005 continue; 1006 if (shmem_free_swap(mapping, index, folio)) { 1007 /* Swap was replaced by page: retry */ 1008 index--; 1009 break; 1010 } 1011 nr_swaps_freed++; 1012 continue; 1013 } 1014 1015 folio_lock(folio); 1016 1017 if (!unfalloc || !folio_test_uptodate(folio)) { 1018 if (folio_mapping(folio) != mapping) { 1019 /* Page was replaced by swap: retry */ 1020 folio_unlock(folio); 1021 index--; 1022 break; 1023 } 1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1025 folio); 1026 truncate_inode_folio(mapping, folio); 1027 } 1028 index = folio->index + folio_nr_pages(folio) - 1; 1029 folio_unlock(folio); 1030 } 1031 folio_batch_remove_exceptionals(&fbatch); 1032 folio_batch_release(&fbatch); 1033 index++; 1034 } 1035 1036 spin_lock_irq(&info->lock); 1037 info->swapped -= nr_swaps_freed; 1038 shmem_recalc_inode(inode); 1039 spin_unlock_irq(&info->lock); 1040 } 1041 1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1043 { 1044 shmem_undo_range(inode, lstart, lend, false); 1045 inode->i_ctime = inode->i_mtime = current_time(inode); 1046 } 1047 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1048 1049 static int shmem_getattr(struct user_namespace *mnt_userns, 1050 const struct path *path, struct kstat *stat, 1051 u32 request_mask, unsigned int query_flags) 1052 { 1053 struct inode *inode = path->dentry->d_inode; 1054 struct shmem_inode_info *info = SHMEM_I(inode); 1055 1056 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1057 spin_lock_irq(&info->lock); 1058 shmem_recalc_inode(inode); 1059 spin_unlock_irq(&info->lock); 1060 } 1061 generic_fillattr(&init_user_ns, inode, stat); 1062 1063 if (shmem_is_huge(NULL, inode, 0)) 1064 stat->blksize = HPAGE_PMD_SIZE; 1065 1066 if (request_mask & STATX_BTIME) { 1067 stat->result_mask |= STATX_BTIME; 1068 stat->btime.tv_sec = info->i_crtime.tv_sec; 1069 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int shmem_setattr(struct user_namespace *mnt_userns, 1076 struct dentry *dentry, struct iattr *attr) 1077 { 1078 struct inode *inode = d_inode(dentry); 1079 struct shmem_inode_info *info = SHMEM_I(inode); 1080 int error; 1081 1082 error = setattr_prepare(&init_user_ns, dentry, attr); 1083 if (error) 1084 return error; 1085 1086 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1087 loff_t oldsize = inode->i_size; 1088 loff_t newsize = attr->ia_size; 1089 1090 /* protected by i_rwsem */ 1091 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1092 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1093 return -EPERM; 1094 1095 if (newsize != oldsize) { 1096 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1097 oldsize, newsize); 1098 if (error) 1099 return error; 1100 i_size_write(inode, newsize); 1101 inode->i_ctime = inode->i_mtime = current_time(inode); 1102 } 1103 if (newsize <= oldsize) { 1104 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1105 if (oldsize > holebegin) 1106 unmap_mapping_range(inode->i_mapping, 1107 holebegin, 0, 1); 1108 if (info->alloced) 1109 shmem_truncate_range(inode, 1110 newsize, (loff_t)-1); 1111 /* unmap again to remove racily COWed private pages */ 1112 if (oldsize > holebegin) 1113 unmap_mapping_range(inode->i_mapping, 1114 holebegin, 0, 1); 1115 } 1116 } 1117 1118 setattr_copy(&init_user_ns, inode, attr); 1119 if (attr->ia_valid & ATTR_MODE) 1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1121 return error; 1122 } 1123 1124 static void shmem_evict_inode(struct inode *inode) 1125 { 1126 struct shmem_inode_info *info = SHMEM_I(inode); 1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1128 1129 if (shmem_mapping(inode->i_mapping)) { 1130 shmem_unacct_size(info->flags, inode->i_size); 1131 inode->i_size = 0; 1132 mapping_set_exiting(inode->i_mapping); 1133 shmem_truncate_range(inode, 0, (loff_t)-1); 1134 if (!list_empty(&info->shrinklist)) { 1135 spin_lock(&sbinfo->shrinklist_lock); 1136 if (!list_empty(&info->shrinklist)) { 1137 list_del_init(&info->shrinklist); 1138 sbinfo->shrinklist_len--; 1139 } 1140 spin_unlock(&sbinfo->shrinklist_lock); 1141 } 1142 while (!list_empty(&info->swaplist)) { 1143 /* Wait while shmem_unuse() is scanning this inode... */ 1144 wait_var_event(&info->stop_eviction, 1145 !atomic_read(&info->stop_eviction)); 1146 mutex_lock(&shmem_swaplist_mutex); 1147 /* ...but beware of the race if we peeked too early */ 1148 if (!atomic_read(&info->stop_eviction)) 1149 list_del_init(&info->swaplist); 1150 mutex_unlock(&shmem_swaplist_mutex); 1151 } 1152 } 1153 1154 simple_xattrs_free(&info->xattrs); 1155 WARN_ON(inode->i_blocks); 1156 shmem_free_inode(inode->i_sb); 1157 clear_inode(inode); 1158 } 1159 1160 static int shmem_find_swap_entries(struct address_space *mapping, 1161 pgoff_t start, unsigned int nr_entries, 1162 struct page **entries, pgoff_t *indices, 1163 unsigned int type) 1164 { 1165 XA_STATE(xas, &mapping->i_pages, start); 1166 struct page *page; 1167 swp_entry_t entry; 1168 unsigned int ret = 0; 1169 1170 if (!nr_entries) 1171 return 0; 1172 1173 rcu_read_lock(); 1174 xas_for_each(&xas, page, ULONG_MAX) { 1175 if (xas_retry(&xas, page)) 1176 continue; 1177 1178 if (!xa_is_value(page)) 1179 continue; 1180 1181 entry = radix_to_swp_entry(page); 1182 if (swp_type(entry) != type) 1183 continue; 1184 1185 indices[ret] = xas.xa_index; 1186 entries[ret] = page; 1187 1188 if (need_resched()) { 1189 xas_pause(&xas); 1190 cond_resched_rcu(); 1191 } 1192 if (++ret == nr_entries) 1193 break; 1194 } 1195 rcu_read_unlock(); 1196 1197 return ret; 1198 } 1199 1200 /* 1201 * Move the swapped pages for an inode to page cache. Returns the count 1202 * of pages swapped in, or the error in case of failure. 1203 */ 1204 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1205 pgoff_t *indices) 1206 { 1207 int i = 0; 1208 int ret = 0; 1209 int error = 0; 1210 struct address_space *mapping = inode->i_mapping; 1211 1212 for (i = 0; i < pvec.nr; i++) { 1213 struct page *page = pvec.pages[i]; 1214 1215 if (!xa_is_value(page)) 1216 continue; 1217 error = shmem_swapin_page(inode, indices[i], 1218 &page, SGP_CACHE, 1219 mapping_gfp_mask(mapping), 1220 NULL, NULL); 1221 if (error == 0) { 1222 unlock_page(page); 1223 put_page(page); 1224 ret++; 1225 } 1226 if (error == -ENOMEM) 1227 break; 1228 error = 0; 1229 } 1230 return error ? error : ret; 1231 } 1232 1233 /* 1234 * If swap found in inode, free it and move page from swapcache to filecache. 1235 */ 1236 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1237 { 1238 struct address_space *mapping = inode->i_mapping; 1239 pgoff_t start = 0; 1240 struct pagevec pvec; 1241 pgoff_t indices[PAGEVEC_SIZE]; 1242 int ret = 0; 1243 1244 pagevec_init(&pvec); 1245 do { 1246 unsigned int nr_entries = PAGEVEC_SIZE; 1247 1248 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1249 pvec.pages, indices, type); 1250 if (pvec.nr == 0) { 1251 ret = 0; 1252 break; 1253 } 1254 1255 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1256 if (ret < 0) 1257 break; 1258 1259 start = indices[pvec.nr - 1]; 1260 } while (true); 1261 1262 return ret; 1263 } 1264 1265 /* 1266 * Read all the shared memory data that resides in the swap 1267 * device 'type' back into memory, so the swap device can be 1268 * unused. 1269 */ 1270 int shmem_unuse(unsigned int type) 1271 { 1272 struct shmem_inode_info *info, *next; 1273 int error = 0; 1274 1275 if (list_empty(&shmem_swaplist)) 1276 return 0; 1277 1278 mutex_lock(&shmem_swaplist_mutex); 1279 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1280 if (!info->swapped) { 1281 list_del_init(&info->swaplist); 1282 continue; 1283 } 1284 /* 1285 * Drop the swaplist mutex while searching the inode for swap; 1286 * but before doing so, make sure shmem_evict_inode() will not 1287 * remove placeholder inode from swaplist, nor let it be freed 1288 * (igrab() would protect from unlink, but not from unmount). 1289 */ 1290 atomic_inc(&info->stop_eviction); 1291 mutex_unlock(&shmem_swaplist_mutex); 1292 1293 error = shmem_unuse_inode(&info->vfs_inode, type); 1294 cond_resched(); 1295 1296 mutex_lock(&shmem_swaplist_mutex); 1297 next = list_next_entry(info, swaplist); 1298 if (!info->swapped) 1299 list_del_init(&info->swaplist); 1300 if (atomic_dec_and_test(&info->stop_eviction)) 1301 wake_up_var(&info->stop_eviction); 1302 if (error) 1303 break; 1304 } 1305 mutex_unlock(&shmem_swaplist_mutex); 1306 1307 return error; 1308 } 1309 1310 /* 1311 * Move the page from the page cache to the swap cache. 1312 */ 1313 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1314 { 1315 struct shmem_inode_info *info; 1316 struct address_space *mapping; 1317 struct inode *inode; 1318 swp_entry_t swap; 1319 pgoff_t index; 1320 1321 /* 1322 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1323 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1324 * and its shmem_writeback() needs them to be split when swapping. 1325 */ 1326 if (PageTransCompound(page)) { 1327 /* Ensure the subpages are still dirty */ 1328 SetPageDirty(page); 1329 if (split_huge_page(page) < 0) 1330 goto redirty; 1331 ClearPageDirty(page); 1332 } 1333 1334 BUG_ON(!PageLocked(page)); 1335 mapping = page->mapping; 1336 index = page->index; 1337 inode = mapping->host; 1338 info = SHMEM_I(inode); 1339 if (info->flags & VM_LOCKED) 1340 goto redirty; 1341 if (!total_swap_pages) 1342 goto redirty; 1343 1344 /* 1345 * Our capabilities prevent regular writeback or sync from ever calling 1346 * shmem_writepage; but a stacking filesystem might use ->writepage of 1347 * its underlying filesystem, in which case tmpfs should write out to 1348 * swap only in response to memory pressure, and not for the writeback 1349 * threads or sync. 1350 */ 1351 if (!wbc->for_reclaim) { 1352 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1353 goto redirty; 1354 } 1355 1356 /* 1357 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1358 * value into swapfile.c, the only way we can correctly account for a 1359 * fallocated page arriving here is now to initialize it and write it. 1360 * 1361 * That's okay for a page already fallocated earlier, but if we have 1362 * not yet completed the fallocation, then (a) we want to keep track 1363 * of this page in case we have to undo it, and (b) it may not be a 1364 * good idea to continue anyway, once we're pushing into swap. So 1365 * reactivate the page, and let shmem_fallocate() quit when too many. 1366 */ 1367 if (!PageUptodate(page)) { 1368 if (inode->i_private) { 1369 struct shmem_falloc *shmem_falloc; 1370 spin_lock(&inode->i_lock); 1371 shmem_falloc = inode->i_private; 1372 if (shmem_falloc && 1373 !shmem_falloc->waitq && 1374 index >= shmem_falloc->start && 1375 index < shmem_falloc->next) 1376 shmem_falloc->nr_unswapped++; 1377 else 1378 shmem_falloc = NULL; 1379 spin_unlock(&inode->i_lock); 1380 if (shmem_falloc) 1381 goto redirty; 1382 } 1383 clear_highpage(page); 1384 flush_dcache_page(page); 1385 SetPageUptodate(page); 1386 } 1387 1388 swap = get_swap_page(page); 1389 if (!swap.val) 1390 goto redirty; 1391 1392 /* 1393 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1394 * if it's not already there. Do it now before the page is 1395 * moved to swap cache, when its pagelock no longer protects 1396 * the inode from eviction. But don't unlock the mutex until 1397 * we've incremented swapped, because shmem_unuse_inode() will 1398 * prune a !swapped inode from the swaplist under this mutex. 1399 */ 1400 mutex_lock(&shmem_swaplist_mutex); 1401 if (list_empty(&info->swaplist)) 1402 list_add(&info->swaplist, &shmem_swaplist); 1403 1404 if (add_to_swap_cache(page, swap, 1405 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1406 NULL) == 0) { 1407 spin_lock_irq(&info->lock); 1408 shmem_recalc_inode(inode); 1409 info->swapped++; 1410 spin_unlock_irq(&info->lock); 1411 1412 swap_shmem_alloc(swap); 1413 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1414 1415 mutex_unlock(&shmem_swaplist_mutex); 1416 BUG_ON(page_mapped(page)); 1417 swap_writepage(page, wbc); 1418 return 0; 1419 } 1420 1421 mutex_unlock(&shmem_swaplist_mutex); 1422 put_swap_page(page, swap); 1423 redirty: 1424 set_page_dirty(page); 1425 if (wbc->for_reclaim) 1426 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1427 unlock_page(page); 1428 return 0; 1429 } 1430 1431 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1432 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1433 { 1434 char buffer[64]; 1435 1436 if (!mpol || mpol->mode == MPOL_DEFAULT) 1437 return; /* show nothing */ 1438 1439 mpol_to_str(buffer, sizeof(buffer), mpol); 1440 1441 seq_printf(seq, ",mpol=%s", buffer); 1442 } 1443 1444 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1445 { 1446 struct mempolicy *mpol = NULL; 1447 if (sbinfo->mpol) { 1448 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1449 mpol = sbinfo->mpol; 1450 mpol_get(mpol); 1451 raw_spin_unlock(&sbinfo->stat_lock); 1452 } 1453 return mpol; 1454 } 1455 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1456 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1457 { 1458 } 1459 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1460 { 1461 return NULL; 1462 } 1463 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1464 #ifndef CONFIG_NUMA 1465 #define vm_policy vm_private_data 1466 #endif 1467 1468 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1469 struct shmem_inode_info *info, pgoff_t index) 1470 { 1471 /* Create a pseudo vma that just contains the policy */ 1472 vma_init(vma, NULL); 1473 /* Bias interleave by inode number to distribute better across nodes */ 1474 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1475 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1476 } 1477 1478 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1479 { 1480 /* Drop reference taken by mpol_shared_policy_lookup() */ 1481 mpol_cond_put(vma->vm_policy); 1482 } 1483 1484 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1485 struct shmem_inode_info *info, pgoff_t index) 1486 { 1487 struct vm_area_struct pvma; 1488 struct page *page; 1489 struct vm_fault vmf = { 1490 .vma = &pvma, 1491 }; 1492 1493 shmem_pseudo_vma_init(&pvma, info, index); 1494 page = swap_cluster_readahead(swap, gfp, &vmf); 1495 shmem_pseudo_vma_destroy(&pvma); 1496 1497 return page; 1498 } 1499 1500 /* 1501 * Make sure huge_gfp is always more limited than limit_gfp. 1502 * Some of the flags set permissions, while others set limitations. 1503 */ 1504 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1505 { 1506 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1507 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1508 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1509 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1510 1511 /* Allow allocations only from the originally specified zones. */ 1512 result |= zoneflags; 1513 1514 /* 1515 * Minimize the result gfp by taking the union with the deny flags, 1516 * and the intersection of the allow flags. 1517 */ 1518 result |= (limit_gfp & denyflags); 1519 result |= (huge_gfp & limit_gfp) & allowflags; 1520 1521 return result; 1522 } 1523 1524 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1525 struct shmem_inode_info *info, pgoff_t index) 1526 { 1527 struct vm_area_struct pvma; 1528 struct address_space *mapping = info->vfs_inode.i_mapping; 1529 pgoff_t hindex; 1530 struct page *page; 1531 1532 hindex = round_down(index, HPAGE_PMD_NR); 1533 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1534 XA_PRESENT)) 1535 return NULL; 1536 1537 shmem_pseudo_vma_init(&pvma, info, hindex); 1538 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1539 shmem_pseudo_vma_destroy(&pvma); 1540 if (page) 1541 prep_transhuge_page(page); 1542 else 1543 count_vm_event(THP_FILE_FALLBACK); 1544 return page; 1545 } 1546 1547 static struct page *shmem_alloc_page(gfp_t gfp, 1548 struct shmem_inode_info *info, pgoff_t index) 1549 { 1550 struct vm_area_struct pvma; 1551 struct page *page; 1552 1553 shmem_pseudo_vma_init(&pvma, info, index); 1554 page = alloc_page_vma(gfp, &pvma, 0); 1555 shmem_pseudo_vma_destroy(&pvma); 1556 1557 return page; 1558 } 1559 1560 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1561 struct inode *inode, 1562 pgoff_t index, bool huge) 1563 { 1564 struct shmem_inode_info *info = SHMEM_I(inode); 1565 struct page *page; 1566 int nr; 1567 int err = -ENOSPC; 1568 1569 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1570 huge = false; 1571 nr = huge ? HPAGE_PMD_NR : 1; 1572 1573 if (!shmem_inode_acct_block(inode, nr)) 1574 goto failed; 1575 1576 if (huge) 1577 page = shmem_alloc_hugepage(gfp, info, index); 1578 else 1579 page = shmem_alloc_page(gfp, info, index); 1580 if (page) { 1581 __SetPageLocked(page); 1582 __SetPageSwapBacked(page); 1583 return page; 1584 } 1585 1586 err = -ENOMEM; 1587 shmem_inode_unacct_blocks(inode, nr); 1588 failed: 1589 return ERR_PTR(err); 1590 } 1591 1592 /* 1593 * When a page is moved from swapcache to shmem filecache (either by the 1594 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1595 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1596 * ignorance of the mapping it belongs to. If that mapping has special 1597 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1598 * we may need to copy to a suitable page before moving to filecache. 1599 * 1600 * In a future release, this may well be extended to respect cpuset and 1601 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1602 * but for now it is a simple matter of zone. 1603 */ 1604 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1605 { 1606 return page_zonenum(page) > gfp_zone(gfp); 1607 } 1608 1609 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1610 struct shmem_inode_info *info, pgoff_t index) 1611 { 1612 struct page *oldpage, *newpage; 1613 struct folio *old, *new; 1614 struct address_space *swap_mapping; 1615 swp_entry_t entry; 1616 pgoff_t swap_index; 1617 int error; 1618 1619 oldpage = *pagep; 1620 entry.val = page_private(oldpage); 1621 swap_index = swp_offset(entry); 1622 swap_mapping = page_mapping(oldpage); 1623 1624 /* 1625 * We have arrived here because our zones are constrained, so don't 1626 * limit chance of success by further cpuset and node constraints. 1627 */ 1628 gfp &= ~GFP_CONSTRAINT_MASK; 1629 newpage = shmem_alloc_page(gfp, info, index); 1630 if (!newpage) 1631 return -ENOMEM; 1632 1633 get_page(newpage); 1634 copy_highpage(newpage, oldpage); 1635 flush_dcache_page(newpage); 1636 1637 __SetPageLocked(newpage); 1638 __SetPageSwapBacked(newpage); 1639 SetPageUptodate(newpage); 1640 set_page_private(newpage, entry.val); 1641 SetPageSwapCache(newpage); 1642 1643 /* 1644 * Our caller will very soon move newpage out of swapcache, but it's 1645 * a nice clean interface for us to replace oldpage by newpage there. 1646 */ 1647 xa_lock_irq(&swap_mapping->i_pages); 1648 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1649 if (!error) { 1650 old = page_folio(oldpage); 1651 new = page_folio(newpage); 1652 mem_cgroup_migrate(old, new); 1653 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1654 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1655 } 1656 xa_unlock_irq(&swap_mapping->i_pages); 1657 1658 if (unlikely(error)) { 1659 /* 1660 * Is this possible? I think not, now that our callers check 1661 * both PageSwapCache and page_private after getting page lock; 1662 * but be defensive. Reverse old to newpage for clear and free. 1663 */ 1664 oldpage = newpage; 1665 } else { 1666 lru_cache_add(newpage); 1667 *pagep = newpage; 1668 } 1669 1670 ClearPageSwapCache(oldpage); 1671 set_page_private(oldpage, 0); 1672 1673 unlock_page(oldpage); 1674 put_page(oldpage); 1675 put_page(oldpage); 1676 return error; 1677 } 1678 1679 /* 1680 * Swap in the page pointed to by *pagep. 1681 * Caller has to make sure that *pagep contains a valid swapped page. 1682 * Returns 0 and the page in pagep if success. On failure, returns the 1683 * error code and NULL in *pagep. 1684 */ 1685 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1686 struct page **pagep, enum sgp_type sgp, 1687 gfp_t gfp, struct vm_area_struct *vma, 1688 vm_fault_t *fault_type) 1689 { 1690 struct address_space *mapping = inode->i_mapping; 1691 struct shmem_inode_info *info = SHMEM_I(inode); 1692 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1693 struct page *page; 1694 swp_entry_t swap; 1695 int error; 1696 1697 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1698 swap = radix_to_swp_entry(*pagep); 1699 *pagep = NULL; 1700 1701 /* Look it up and read it in.. */ 1702 page = lookup_swap_cache(swap, NULL, 0); 1703 if (!page) { 1704 /* Or update major stats only when swapin succeeds?? */ 1705 if (fault_type) { 1706 *fault_type |= VM_FAULT_MAJOR; 1707 count_vm_event(PGMAJFAULT); 1708 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1709 } 1710 /* Here we actually start the io */ 1711 page = shmem_swapin(swap, gfp, info, index); 1712 if (!page) { 1713 error = -ENOMEM; 1714 goto failed; 1715 } 1716 } 1717 1718 /* We have to do this with page locked to prevent races */ 1719 lock_page(page); 1720 if (!PageSwapCache(page) || page_private(page) != swap.val || 1721 !shmem_confirm_swap(mapping, index, swap)) { 1722 error = -EEXIST; 1723 goto unlock; 1724 } 1725 if (!PageUptodate(page)) { 1726 error = -EIO; 1727 goto failed; 1728 } 1729 wait_on_page_writeback(page); 1730 1731 /* 1732 * Some architectures may have to restore extra metadata to the 1733 * physical page after reading from swap. 1734 */ 1735 arch_swap_restore(swap, page); 1736 1737 if (shmem_should_replace_page(page, gfp)) { 1738 error = shmem_replace_page(&page, gfp, info, index); 1739 if (error) 1740 goto failed; 1741 } 1742 1743 error = shmem_add_to_page_cache(page, mapping, index, 1744 swp_to_radix_entry(swap), gfp, 1745 charge_mm); 1746 if (error) 1747 goto failed; 1748 1749 spin_lock_irq(&info->lock); 1750 info->swapped--; 1751 shmem_recalc_inode(inode); 1752 spin_unlock_irq(&info->lock); 1753 1754 if (sgp == SGP_WRITE) 1755 mark_page_accessed(page); 1756 1757 delete_from_swap_cache(page); 1758 set_page_dirty(page); 1759 swap_free(swap); 1760 1761 *pagep = page; 1762 return 0; 1763 failed: 1764 if (!shmem_confirm_swap(mapping, index, swap)) 1765 error = -EEXIST; 1766 unlock: 1767 if (page) { 1768 unlock_page(page); 1769 put_page(page); 1770 } 1771 1772 return error; 1773 } 1774 1775 /* 1776 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1777 * 1778 * If we allocate a new one we do not mark it dirty. That's up to the 1779 * vm. If we swap it in we mark it dirty since we also free the swap 1780 * entry since a page cannot live in both the swap and page cache. 1781 * 1782 * vma, vmf, and fault_type are only supplied by shmem_fault: 1783 * otherwise they are NULL. 1784 */ 1785 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1786 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1787 struct vm_area_struct *vma, struct vm_fault *vmf, 1788 vm_fault_t *fault_type) 1789 { 1790 struct address_space *mapping = inode->i_mapping; 1791 struct shmem_inode_info *info = SHMEM_I(inode); 1792 struct shmem_sb_info *sbinfo; 1793 struct mm_struct *charge_mm; 1794 struct page *page; 1795 pgoff_t hindex = index; 1796 gfp_t huge_gfp; 1797 int error; 1798 int once = 0; 1799 int alloced = 0; 1800 1801 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1802 return -EFBIG; 1803 repeat: 1804 if (sgp <= SGP_CACHE && 1805 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1806 return -EINVAL; 1807 } 1808 1809 sbinfo = SHMEM_SB(inode->i_sb); 1810 charge_mm = vma ? vma->vm_mm : NULL; 1811 1812 page = pagecache_get_page(mapping, index, 1813 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); 1814 1815 if (page && vma && userfaultfd_minor(vma)) { 1816 if (!xa_is_value(page)) { 1817 unlock_page(page); 1818 put_page(page); 1819 } 1820 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1821 return 0; 1822 } 1823 1824 if (xa_is_value(page)) { 1825 error = shmem_swapin_page(inode, index, &page, 1826 sgp, gfp, vma, fault_type); 1827 if (error == -EEXIST) 1828 goto repeat; 1829 1830 *pagep = page; 1831 return error; 1832 } 1833 1834 if (page) { 1835 hindex = page->index; 1836 if (sgp == SGP_WRITE) 1837 mark_page_accessed(page); 1838 if (PageUptodate(page)) 1839 goto out; 1840 /* fallocated page */ 1841 if (sgp != SGP_READ) 1842 goto clear; 1843 unlock_page(page); 1844 put_page(page); 1845 } 1846 1847 /* 1848 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1849 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1850 */ 1851 *pagep = NULL; 1852 if (sgp == SGP_READ) 1853 return 0; 1854 if (sgp == SGP_NOALLOC) 1855 return -ENOENT; 1856 1857 /* 1858 * Fast cache lookup and swap lookup did not find it: allocate. 1859 */ 1860 1861 if (vma && userfaultfd_missing(vma)) { 1862 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1863 return 0; 1864 } 1865 1866 if (!shmem_is_huge(vma, inode, index)) 1867 goto alloc_nohuge; 1868 1869 huge_gfp = vma_thp_gfp_mask(vma); 1870 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1871 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); 1872 if (IS_ERR(page)) { 1873 alloc_nohuge: 1874 page = shmem_alloc_and_acct_page(gfp, inode, 1875 index, false); 1876 } 1877 if (IS_ERR(page)) { 1878 int retry = 5; 1879 1880 error = PTR_ERR(page); 1881 page = NULL; 1882 if (error != -ENOSPC) 1883 goto unlock; 1884 /* 1885 * Try to reclaim some space by splitting a huge page 1886 * beyond i_size on the filesystem. 1887 */ 1888 while (retry--) { 1889 int ret; 1890 1891 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1892 if (ret == SHRINK_STOP) 1893 break; 1894 if (ret) 1895 goto alloc_nohuge; 1896 } 1897 goto unlock; 1898 } 1899 1900 if (PageTransHuge(page)) 1901 hindex = round_down(index, HPAGE_PMD_NR); 1902 else 1903 hindex = index; 1904 1905 if (sgp == SGP_WRITE) 1906 __SetPageReferenced(page); 1907 1908 error = shmem_add_to_page_cache(page, mapping, hindex, 1909 NULL, gfp & GFP_RECLAIM_MASK, 1910 charge_mm); 1911 if (error) 1912 goto unacct; 1913 lru_cache_add(page); 1914 1915 spin_lock_irq(&info->lock); 1916 info->alloced += compound_nr(page); 1917 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1918 shmem_recalc_inode(inode); 1919 spin_unlock_irq(&info->lock); 1920 alloced = true; 1921 1922 if (PageTransHuge(page) && 1923 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1924 hindex + HPAGE_PMD_NR - 1) { 1925 /* 1926 * Part of the huge page is beyond i_size: subject 1927 * to shrink under memory pressure. 1928 */ 1929 spin_lock(&sbinfo->shrinklist_lock); 1930 /* 1931 * _careful to defend against unlocked access to 1932 * ->shrink_list in shmem_unused_huge_shrink() 1933 */ 1934 if (list_empty_careful(&info->shrinklist)) { 1935 list_add_tail(&info->shrinklist, 1936 &sbinfo->shrinklist); 1937 sbinfo->shrinklist_len++; 1938 } 1939 spin_unlock(&sbinfo->shrinklist_lock); 1940 } 1941 1942 /* 1943 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1944 */ 1945 if (sgp == SGP_FALLOC) 1946 sgp = SGP_WRITE; 1947 clear: 1948 /* 1949 * Let SGP_WRITE caller clear ends if write does not fill page; 1950 * but SGP_FALLOC on a page fallocated earlier must initialize 1951 * it now, lest undo on failure cancel our earlier guarantee. 1952 */ 1953 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1954 int i; 1955 1956 for (i = 0; i < compound_nr(page); i++) { 1957 clear_highpage(page + i); 1958 flush_dcache_page(page + i); 1959 } 1960 SetPageUptodate(page); 1961 } 1962 1963 /* Perhaps the file has been truncated since we checked */ 1964 if (sgp <= SGP_CACHE && 1965 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1966 if (alloced) { 1967 ClearPageDirty(page); 1968 delete_from_page_cache(page); 1969 spin_lock_irq(&info->lock); 1970 shmem_recalc_inode(inode); 1971 spin_unlock_irq(&info->lock); 1972 } 1973 error = -EINVAL; 1974 goto unlock; 1975 } 1976 out: 1977 *pagep = page + index - hindex; 1978 return 0; 1979 1980 /* 1981 * Error recovery. 1982 */ 1983 unacct: 1984 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1985 1986 if (PageTransHuge(page)) { 1987 unlock_page(page); 1988 put_page(page); 1989 goto alloc_nohuge; 1990 } 1991 unlock: 1992 if (page) { 1993 unlock_page(page); 1994 put_page(page); 1995 } 1996 if (error == -ENOSPC && !once++) { 1997 spin_lock_irq(&info->lock); 1998 shmem_recalc_inode(inode); 1999 spin_unlock_irq(&info->lock); 2000 goto repeat; 2001 } 2002 if (error == -EEXIST) 2003 goto repeat; 2004 return error; 2005 } 2006 2007 /* 2008 * This is like autoremove_wake_function, but it removes the wait queue 2009 * entry unconditionally - even if something else had already woken the 2010 * target. 2011 */ 2012 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2013 { 2014 int ret = default_wake_function(wait, mode, sync, key); 2015 list_del_init(&wait->entry); 2016 return ret; 2017 } 2018 2019 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2020 { 2021 struct vm_area_struct *vma = vmf->vma; 2022 struct inode *inode = file_inode(vma->vm_file); 2023 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2024 int err; 2025 vm_fault_t ret = VM_FAULT_LOCKED; 2026 2027 /* 2028 * Trinity finds that probing a hole which tmpfs is punching can 2029 * prevent the hole-punch from ever completing: which in turn 2030 * locks writers out with its hold on i_rwsem. So refrain from 2031 * faulting pages into the hole while it's being punched. Although 2032 * shmem_undo_range() does remove the additions, it may be unable to 2033 * keep up, as each new page needs its own unmap_mapping_range() call, 2034 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2035 * 2036 * It does not matter if we sometimes reach this check just before the 2037 * hole-punch begins, so that one fault then races with the punch: 2038 * we just need to make racing faults a rare case. 2039 * 2040 * The implementation below would be much simpler if we just used a 2041 * standard mutex or completion: but we cannot take i_rwsem in fault, 2042 * and bloating every shmem inode for this unlikely case would be sad. 2043 */ 2044 if (unlikely(inode->i_private)) { 2045 struct shmem_falloc *shmem_falloc; 2046 2047 spin_lock(&inode->i_lock); 2048 shmem_falloc = inode->i_private; 2049 if (shmem_falloc && 2050 shmem_falloc->waitq && 2051 vmf->pgoff >= shmem_falloc->start && 2052 vmf->pgoff < shmem_falloc->next) { 2053 struct file *fpin; 2054 wait_queue_head_t *shmem_falloc_waitq; 2055 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2056 2057 ret = VM_FAULT_NOPAGE; 2058 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2059 if (fpin) 2060 ret = VM_FAULT_RETRY; 2061 2062 shmem_falloc_waitq = shmem_falloc->waitq; 2063 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2064 TASK_UNINTERRUPTIBLE); 2065 spin_unlock(&inode->i_lock); 2066 schedule(); 2067 2068 /* 2069 * shmem_falloc_waitq points into the shmem_fallocate() 2070 * stack of the hole-punching task: shmem_falloc_waitq 2071 * is usually invalid by the time we reach here, but 2072 * finish_wait() does not dereference it in that case; 2073 * though i_lock needed lest racing with wake_up_all(). 2074 */ 2075 spin_lock(&inode->i_lock); 2076 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2077 spin_unlock(&inode->i_lock); 2078 2079 if (fpin) 2080 fput(fpin); 2081 return ret; 2082 } 2083 spin_unlock(&inode->i_lock); 2084 } 2085 2086 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2087 gfp, vma, vmf, &ret); 2088 if (err) 2089 return vmf_error(err); 2090 return ret; 2091 } 2092 2093 unsigned long shmem_get_unmapped_area(struct file *file, 2094 unsigned long uaddr, unsigned long len, 2095 unsigned long pgoff, unsigned long flags) 2096 { 2097 unsigned long (*get_area)(struct file *, 2098 unsigned long, unsigned long, unsigned long, unsigned long); 2099 unsigned long addr; 2100 unsigned long offset; 2101 unsigned long inflated_len; 2102 unsigned long inflated_addr; 2103 unsigned long inflated_offset; 2104 2105 if (len > TASK_SIZE) 2106 return -ENOMEM; 2107 2108 get_area = current->mm->get_unmapped_area; 2109 addr = get_area(file, uaddr, len, pgoff, flags); 2110 2111 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2112 return addr; 2113 if (IS_ERR_VALUE(addr)) 2114 return addr; 2115 if (addr & ~PAGE_MASK) 2116 return addr; 2117 if (addr > TASK_SIZE - len) 2118 return addr; 2119 2120 if (shmem_huge == SHMEM_HUGE_DENY) 2121 return addr; 2122 if (len < HPAGE_PMD_SIZE) 2123 return addr; 2124 if (flags & MAP_FIXED) 2125 return addr; 2126 /* 2127 * Our priority is to support MAP_SHARED mapped hugely; 2128 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2129 * But if caller specified an address hint and we allocated area there 2130 * successfully, respect that as before. 2131 */ 2132 if (uaddr == addr) 2133 return addr; 2134 2135 if (shmem_huge != SHMEM_HUGE_FORCE) { 2136 struct super_block *sb; 2137 2138 if (file) { 2139 VM_BUG_ON(file->f_op != &shmem_file_operations); 2140 sb = file_inode(file)->i_sb; 2141 } else { 2142 /* 2143 * Called directly from mm/mmap.c, or drivers/char/mem.c 2144 * for "/dev/zero", to create a shared anonymous object. 2145 */ 2146 if (IS_ERR(shm_mnt)) 2147 return addr; 2148 sb = shm_mnt->mnt_sb; 2149 } 2150 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2151 return addr; 2152 } 2153 2154 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2155 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2156 return addr; 2157 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2158 return addr; 2159 2160 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2161 if (inflated_len > TASK_SIZE) 2162 return addr; 2163 if (inflated_len < len) 2164 return addr; 2165 2166 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2167 if (IS_ERR_VALUE(inflated_addr)) 2168 return addr; 2169 if (inflated_addr & ~PAGE_MASK) 2170 return addr; 2171 2172 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2173 inflated_addr += offset - inflated_offset; 2174 if (inflated_offset > offset) 2175 inflated_addr += HPAGE_PMD_SIZE; 2176 2177 if (inflated_addr > TASK_SIZE - len) 2178 return addr; 2179 return inflated_addr; 2180 } 2181 2182 #ifdef CONFIG_NUMA 2183 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2184 { 2185 struct inode *inode = file_inode(vma->vm_file); 2186 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2187 } 2188 2189 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2190 unsigned long addr) 2191 { 2192 struct inode *inode = file_inode(vma->vm_file); 2193 pgoff_t index; 2194 2195 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2196 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2197 } 2198 #endif 2199 2200 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2201 { 2202 struct inode *inode = file_inode(file); 2203 struct shmem_inode_info *info = SHMEM_I(inode); 2204 int retval = -ENOMEM; 2205 2206 /* 2207 * What serializes the accesses to info->flags? 2208 * ipc_lock_object() when called from shmctl_do_lock(), 2209 * no serialization needed when called from shm_destroy(). 2210 */ 2211 if (lock && !(info->flags & VM_LOCKED)) { 2212 if (!user_shm_lock(inode->i_size, ucounts)) 2213 goto out_nomem; 2214 info->flags |= VM_LOCKED; 2215 mapping_set_unevictable(file->f_mapping); 2216 } 2217 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2218 user_shm_unlock(inode->i_size, ucounts); 2219 info->flags &= ~VM_LOCKED; 2220 mapping_clear_unevictable(file->f_mapping); 2221 } 2222 retval = 0; 2223 2224 out_nomem: 2225 return retval; 2226 } 2227 2228 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2229 { 2230 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2231 int ret; 2232 2233 ret = seal_check_future_write(info->seals, vma); 2234 if (ret) 2235 return ret; 2236 2237 /* arm64 - allow memory tagging on RAM-based files */ 2238 vma->vm_flags |= VM_MTE_ALLOWED; 2239 2240 file_accessed(file); 2241 vma->vm_ops = &shmem_vm_ops; 2242 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2243 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2244 (vma->vm_end & HPAGE_PMD_MASK)) { 2245 khugepaged_enter(vma, vma->vm_flags); 2246 } 2247 return 0; 2248 } 2249 2250 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2251 umode_t mode, dev_t dev, unsigned long flags) 2252 { 2253 struct inode *inode; 2254 struct shmem_inode_info *info; 2255 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2256 ino_t ino; 2257 2258 if (shmem_reserve_inode(sb, &ino)) 2259 return NULL; 2260 2261 inode = new_inode(sb); 2262 if (inode) { 2263 inode->i_ino = ino; 2264 inode_init_owner(&init_user_ns, inode, dir, mode); 2265 inode->i_blocks = 0; 2266 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2267 inode->i_generation = prandom_u32(); 2268 info = SHMEM_I(inode); 2269 memset(info, 0, (char *)inode - (char *)info); 2270 spin_lock_init(&info->lock); 2271 atomic_set(&info->stop_eviction, 0); 2272 info->seals = F_SEAL_SEAL; 2273 info->flags = flags & VM_NORESERVE; 2274 info->i_crtime = inode->i_mtime; 2275 INIT_LIST_HEAD(&info->shrinklist); 2276 INIT_LIST_HEAD(&info->swaplist); 2277 simple_xattrs_init(&info->xattrs); 2278 cache_no_acl(inode); 2279 mapping_set_large_folios(inode->i_mapping); 2280 2281 switch (mode & S_IFMT) { 2282 default: 2283 inode->i_op = &shmem_special_inode_operations; 2284 init_special_inode(inode, mode, dev); 2285 break; 2286 case S_IFREG: 2287 inode->i_mapping->a_ops = &shmem_aops; 2288 inode->i_op = &shmem_inode_operations; 2289 inode->i_fop = &shmem_file_operations; 2290 mpol_shared_policy_init(&info->policy, 2291 shmem_get_sbmpol(sbinfo)); 2292 break; 2293 case S_IFDIR: 2294 inc_nlink(inode); 2295 /* Some things misbehave if size == 0 on a directory */ 2296 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2297 inode->i_op = &shmem_dir_inode_operations; 2298 inode->i_fop = &simple_dir_operations; 2299 break; 2300 case S_IFLNK: 2301 /* 2302 * Must not load anything in the rbtree, 2303 * mpol_free_shared_policy will not be called. 2304 */ 2305 mpol_shared_policy_init(&info->policy, NULL); 2306 break; 2307 } 2308 2309 lockdep_annotate_inode_mutex_key(inode); 2310 } else 2311 shmem_free_inode(sb); 2312 return inode; 2313 } 2314 2315 #ifdef CONFIG_USERFAULTFD 2316 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2317 pmd_t *dst_pmd, 2318 struct vm_area_struct *dst_vma, 2319 unsigned long dst_addr, 2320 unsigned long src_addr, 2321 bool zeropage, 2322 struct page **pagep) 2323 { 2324 struct inode *inode = file_inode(dst_vma->vm_file); 2325 struct shmem_inode_info *info = SHMEM_I(inode); 2326 struct address_space *mapping = inode->i_mapping; 2327 gfp_t gfp = mapping_gfp_mask(mapping); 2328 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2329 void *page_kaddr; 2330 struct page *page; 2331 int ret; 2332 pgoff_t max_off; 2333 2334 if (!shmem_inode_acct_block(inode, 1)) { 2335 /* 2336 * We may have got a page, returned -ENOENT triggering a retry, 2337 * and now we find ourselves with -ENOMEM. Release the page, to 2338 * avoid a BUG_ON in our caller. 2339 */ 2340 if (unlikely(*pagep)) { 2341 put_page(*pagep); 2342 *pagep = NULL; 2343 } 2344 return -ENOMEM; 2345 } 2346 2347 if (!*pagep) { 2348 ret = -ENOMEM; 2349 page = shmem_alloc_page(gfp, info, pgoff); 2350 if (!page) 2351 goto out_unacct_blocks; 2352 2353 if (!zeropage) { /* COPY */ 2354 page_kaddr = kmap_atomic(page); 2355 ret = copy_from_user(page_kaddr, 2356 (const void __user *)src_addr, 2357 PAGE_SIZE); 2358 kunmap_atomic(page_kaddr); 2359 2360 /* fallback to copy_from_user outside mmap_lock */ 2361 if (unlikely(ret)) { 2362 *pagep = page; 2363 ret = -ENOENT; 2364 /* don't free the page */ 2365 goto out_unacct_blocks; 2366 } 2367 2368 flush_dcache_page(page); 2369 } else { /* ZEROPAGE */ 2370 clear_user_highpage(page, dst_addr); 2371 } 2372 } else { 2373 page = *pagep; 2374 *pagep = NULL; 2375 } 2376 2377 VM_BUG_ON(PageLocked(page)); 2378 VM_BUG_ON(PageSwapBacked(page)); 2379 __SetPageLocked(page); 2380 __SetPageSwapBacked(page); 2381 __SetPageUptodate(page); 2382 2383 ret = -EFAULT; 2384 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2385 if (unlikely(pgoff >= max_off)) 2386 goto out_release; 2387 2388 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2389 gfp & GFP_RECLAIM_MASK, dst_mm); 2390 if (ret) 2391 goto out_release; 2392 2393 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2394 page, true, false); 2395 if (ret) 2396 goto out_delete_from_cache; 2397 2398 spin_lock_irq(&info->lock); 2399 info->alloced++; 2400 inode->i_blocks += BLOCKS_PER_PAGE; 2401 shmem_recalc_inode(inode); 2402 spin_unlock_irq(&info->lock); 2403 2404 unlock_page(page); 2405 return 0; 2406 out_delete_from_cache: 2407 delete_from_page_cache(page); 2408 out_release: 2409 unlock_page(page); 2410 put_page(page); 2411 out_unacct_blocks: 2412 shmem_inode_unacct_blocks(inode, 1); 2413 return ret; 2414 } 2415 #endif /* CONFIG_USERFAULTFD */ 2416 2417 #ifdef CONFIG_TMPFS 2418 static const struct inode_operations shmem_symlink_inode_operations; 2419 static const struct inode_operations shmem_short_symlink_operations; 2420 2421 #ifdef CONFIG_TMPFS_XATTR 2422 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2423 #else 2424 #define shmem_initxattrs NULL 2425 #endif 2426 2427 static int 2428 shmem_write_begin(struct file *file, struct address_space *mapping, 2429 loff_t pos, unsigned len, unsigned flags, 2430 struct page **pagep, void **fsdata) 2431 { 2432 struct inode *inode = mapping->host; 2433 struct shmem_inode_info *info = SHMEM_I(inode); 2434 pgoff_t index = pos >> PAGE_SHIFT; 2435 int ret = 0; 2436 2437 /* i_rwsem is held by caller */ 2438 if (unlikely(info->seals & (F_SEAL_GROW | 2439 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2440 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2441 return -EPERM; 2442 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2443 return -EPERM; 2444 } 2445 2446 ret = shmem_getpage(inode, index, pagep, SGP_WRITE); 2447 2448 if (ret) 2449 return ret; 2450 2451 if (PageHWPoison(*pagep)) { 2452 unlock_page(*pagep); 2453 put_page(*pagep); 2454 *pagep = NULL; 2455 return -EIO; 2456 } 2457 2458 return 0; 2459 } 2460 2461 static int 2462 shmem_write_end(struct file *file, struct address_space *mapping, 2463 loff_t pos, unsigned len, unsigned copied, 2464 struct page *page, void *fsdata) 2465 { 2466 struct inode *inode = mapping->host; 2467 2468 if (pos + copied > inode->i_size) 2469 i_size_write(inode, pos + copied); 2470 2471 if (!PageUptodate(page)) { 2472 struct page *head = compound_head(page); 2473 if (PageTransCompound(page)) { 2474 int i; 2475 2476 for (i = 0; i < HPAGE_PMD_NR; i++) { 2477 if (head + i == page) 2478 continue; 2479 clear_highpage(head + i); 2480 flush_dcache_page(head + i); 2481 } 2482 } 2483 if (copied < PAGE_SIZE) { 2484 unsigned from = pos & (PAGE_SIZE - 1); 2485 zero_user_segments(page, 0, from, 2486 from + copied, PAGE_SIZE); 2487 } 2488 SetPageUptodate(head); 2489 } 2490 set_page_dirty(page); 2491 unlock_page(page); 2492 put_page(page); 2493 2494 return copied; 2495 } 2496 2497 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2498 { 2499 struct file *file = iocb->ki_filp; 2500 struct inode *inode = file_inode(file); 2501 struct address_space *mapping = inode->i_mapping; 2502 pgoff_t index; 2503 unsigned long offset; 2504 int error = 0; 2505 ssize_t retval = 0; 2506 loff_t *ppos = &iocb->ki_pos; 2507 2508 index = *ppos >> PAGE_SHIFT; 2509 offset = *ppos & ~PAGE_MASK; 2510 2511 for (;;) { 2512 struct page *page = NULL; 2513 pgoff_t end_index; 2514 unsigned long nr, ret; 2515 loff_t i_size = i_size_read(inode); 2516 bool got_page; 2517 2518 end_index = i_size >> PAGE_SHIFT; 2519 if (index > end_index) 2520 break; 2521 if (index == end_index) { 2522 nr = i_size & ~PAGE_MASK; 2523 if (nr <= offset) 2524 break; 2525 } 2526 2527 error = shmem_getpage(inode, index, &page, SGP_READ); 2528 if (error) { 2529 if (error == -EINVAL) 2530 error = 0; 2531 break; 2532 } 2533 if (page) { 2534 unlock_page(page); 2535 2536 if (PageHWPoison(page)) { 2537 put_page(page); 2538 error = -EIO; 2539 break; 2540 } 2541 } 2542 2543 /* 2544 * We must evaluate after, since reads (unlike writes) 2545 * are called without i_rwsem protection against truncate 2546 */ 2547 nr = PAGE_SIZE; 2548 i_size = i_size_read(inode); 2549 end_index = i_size >> PAGE_SHIFT; 2550 if (index == end_index) { 2551 nr = i_size & ~PAGE_MASK; 2552 if (nr <= offset) { 2553 if (page) 2554 put_page(page); 2555 break; 2556 } 2557 } 2558 nr -= offset; 2559 2560 if (page) { 2561 /* 2562 * If users can be writing to this page using arbitrary 2563 * virtual addresses, take care about potential aliasing 2564 * before reading the page on the kernel side. 2565 */ 2566 if (mapping_writably_mapped(mapping)) 2567 flush_dcache_page(page); 2568 /* 2569 * Mark the page accessed if we read the beginning. 2570 */ 2571 if (!offset) 2572 mark_page_accessed(page); 2573 got_page = true; 2574 } else { 2575 page = ZERO_PAGE(0); 2576 got_page = false; 2577 } 2578 2579 /* 2580 * Ok, we have the page, and it's up-to-date, so 2581 * now we can copy it to user space... 2582 */ 2583 ret = copy_page_to_iter(page, offset, nr, to); 2584 retval += ret; 2585 offset += ret; 2586 index += offset >> PAGE_SHIFT; 2587 offset &= ~PAGE_MASK; 2588 2589 if (got_page) 2590 put_page(page); 2591 if (!iov_iter_count(to)) 2592 break; 2593 if (ret < nr) { 2594 error = -EFAULT; 2595 break; 2596 } 2597 cond_resched(); 2598 } 2599 2600 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2601 file_accessed(file); 2602 return retval ? retval : error; 2603 } 2604 2605 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2606 { 2607 struct address_space *mapping = file->f_mapping; 2608 struct inode *inode = mapping->host; 2609 2610 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2611 return generic_file_llseek_size(file, offset, whence, 2612 MAX_LFS_FILESIZE, i_size_read(inode)); 2613 if (offset < 0) 2614 return -ENXIO; 2615 2616 inode_lock(inode); 2617 /* We're holding i_rwsem so we can access i_size directly */ 2618 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2619 if (offset >= 0) 2620 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2621 inode_unlock(inode); 2622 return offset; 2623 } 2624 2625 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2626 loff_t len) 2627 { 2628 struct inode *inode = file_inode(file); 2629 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2630 struct shmem_inode_info *info = SHMEM_I(inode); 2631 struct shmem_falloc shmem_falloc; 2632 pgoff_t start, index, end, undo_fallocend; 2633 int error; 2634 2635 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2636 return -EOPNOTSUPP; 2637 2638 inode_lock(inode); 2639 2640 if (mode & FALLOC_FL_PUNCH_HOLE) { 2641 struct address_space *mapping = file->f_mapping; 2642 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2643 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2644 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2645 2646 /* protected by i_rwsem */ 2647 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2648 error = -EPERM; 2649 goto out; 2650 } 2651 2652 shmem_falloc.waitq = &shmem_falloc_waitq; 2653 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2654 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2655 spin_lock(&inode->i_lock); 2656 inode->i_private = &shmem_falloc; 2657 spin_unlock(&inode->i_lock); 2658 2659 if ((u64)unmap_end > (u64)unmap_start) 2660 unmap_mapping_range(mapping, unmap_start, 2661 1 + unmap_end - unmap_start, 0); 2662 shmem_truncate_range(inode, offset, offset + len - 1); 2663 /* No need to unmap again: hole-punching leaves COWed pages */ 2664 2665 spin_lock(&inode->i_lock); 2666 inode->i_private = NULL; 2667 wake_up_all(&shmem_falloc_waitq); 2668 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2669 spin_unlock(&inode->i_lock); 2670 error = 0; 2671 goto out; 2672 } 2673 2674 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2675 error = inode_newsize_ok(inode, offset + len); 2676 if (error) 2677 goto out; 2678 2679 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2680 error = -EPERM; 2681 goto out; 2682 } 2683 2684 start = offset >> PAGE_SHIFT; 2685 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2686 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2687 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2688 error = -ENOSPC; 2689 goto out; 2690 } 2691 2692 shmem_falloc.waitq = NULL; 2693 shmem_falloc.start = start; 2694 shmem_falloc.next = start; 2695 shmem_falloc.nr_falloced = 0; 2696 shmem_falloc.nr_unswapped = 0; 2697 spin_lock(&inode->i_lock); 2698 inode->i_private = &shmem_falloc; 2699 spin_unlock(&inode->i_lock); 2700 2701 /* 2702 * info->fallocend is only relevant when huge pages might be 2703 * involved: to prevent split_huge_page() freeing fallocated 2704 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2705 */ 2706 undo_fallocend = info->fallocend; 2707 if (info->fallocend < end) 2708 info->fallocend = end; 2709 2710 for (index = start; index < end; ) { 2711 struct page *page; 2712 2713 /* 2714 * Good, the fallocate(2) manpage permits EINTR: we may have 2715 * been interrupted because we are using up too much memory. 2716 */ 2717 if (signal_pending(current)) 2718 error = -EINTR; 2719 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2720 error = -ENOMEM; 2721 else 2722 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2723 if (error) { 2724 info->fallocend = undo_fallocend; 2725 /* Remove the !PageUptodate pages we added */ 2726 if (index > start) { 2727 shmem_undo_range(inode, 2728 (loff_t)start << PAGE_SHIFT, 2729 ((loff_t)index << PAGE_SHIFT) - 1, true); 2730 } 2731 goto undone; 2732 } 2733 2734 index++; 2735 /* 2736 * Here is a more important optimization than it appears: 2737 * a second SGP_FALLOC on the same huge page will clear it, 2738 * making it PageUptodate and un-undoable if we fail later. 2739 */ 2740 if (PageTransCompound(page)) { 2741 index = round_up(index, HPAGE_PMD_NR); 2742 /* Beware 32-bit wraparound */ 2743 if (!index) 2744 index--; 2745 } 2746 2747 /* 2748 * Inform shmem_writepage() how far we have reached. 2749 * No need for lock or barrier: we have the page lock. 2750 */ 2751 if (!PageUptodate(page)) 2752 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2753 shmem_falloc.next = index; 2754 2755 /* 2756 * If !PageUptodate, leave it that way so that freeable pages 2757 * can be recognized if we need to rollback on error later. 2758 * But set_page_dirty so that memory pressure will swap rather 2759 * than free the pages we are allocating (and SGP_CACHE pages 2760 * might still be clean: we now need to mark those dirty too). 2761 */ 2762 set_page_dirty(page); 2763 unlock_page(page); 2764 put_page(page); 2765 cond_resched(); 2766 } 2767 2768 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2769 i_size_write(inode, offset + len); 2770 inode->i_ctime = current_time(inode); 2771 undone: 2772 spin_lock(&inode->i_lock); 2773 inode->i_private = NULL; 2774 spin_unlock(&inode->i_lock); 2775 out: 2776 inode_unlock(inode); 2777 return error; 2778 } 2779 2780 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2781 { 2782 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2783 2784 buf->f_type = TMPFS_MAGIC; 2785 buf->f_bsize = PAGE_SIZE; 2786 buf->f_namelen = NAME_MAX; 2787 if (sbinfo->max_blocks) { 2788 buf->f_blocks = sbinfo->max_blocks; 2789 buf->f_bavail = 2790 buf->f_bfree = sbinfo->max_blocks - 2791 percpu_counter_sum(&sbinfo->used_blocks); 2792 } 2793 if (sbinfo->max_inodes) { 2794 buf->f_files = sbinfo->max_inodes; 2795 buf->f_ffree = sbinfo->free_inodes; 2796 } 2797 /* else leave those fields 0 like simple_statfs */ 2798 2799 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2800 2801 return 0; 2802 } 2803 2804 /* 2805 * File creation. Allocate an inode, and we're done.. 2806 */ 2807 static int 2808 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2809 struct dentry *dentry, umode_t mode, dev_t dev) 2810 { 2811 struct inode *inode; 2812 int error = -ENOSPC; 2813 2814 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2815 if (inode) { 2816 error = simple_acl_create(dir, inode); 2817 if (error) 2818 goto out_iput; 2819 error = security_inode_init_security(inode, dir, 2820 &dentry->d_name, 2821 shmem_initxattrs, NULL); 2822 if (error && error != -EOPNOTSUPP) 2823 goto out_iput; 2824 2825 error = 0; 2826 dir->i_size += BOGO_DIRENT_SIZE; 2827 dir->i_ctime = dir->i_mtime = current_time(dir); 2828 d_instantiate(dentry, inode); 2829 dget(dentry); /* Extra count - pin the dentry in core */ 2830 } 2831 return error; 2832 out_iput: 2833 iput(inode); 2834 return error; 2835 } 2836 2837 static int 2838 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2839 struct dentry *dentry, umode_t mode) 2840 { 2841 struct inode *inode; 2842 int error = -ENOSPC; 2843 2844 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2845 if (inode) { 2846 error = security_inode_init_security(inode, dir, 2847 NULL, 2848 shmem_initxattrs, NULL); 2849 if (error && error != -EOPNOTSUPP) 2850 goto out_iput; 2851 error = simple_acl_create(dir, inode); 2852 if (error) 2853 goto out_iput; 2854 d_tmpfile(dentry, inode); 2855 } 2856 return error; 2857 out_iput: 2858 iput(inode); 2859 return error; 2860 } 2861 2862 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2863 struct dentry *dentry, umode_t mode) 2864 { 2865 int error; 2866 2867 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2868 mode | S_IFDIR, 0))) 2869 return error; 2870 inc_nlink(dir); 2871 return 0; 2872 } 2873 2874 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2875 struct dentry *dentry, umode_t mode, bool excl) 2876 { 2877 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2878 } 2879 2880 /* 2881 * Link a file.. 2882 */ 2883 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2884 { 2885 struct inode *inode = d_inode(old_dentry); 2886 int ret = 0; 2887 2888 /* 2889 * No ordinary (disk based) filesystem counts links as inodes; 2890 * but each new link needs a new dentry, pinning lowmem, and 2891 * tmpfs dentries cannot be pruned until they are unlinked. 2892 * But if an O_TMPFILE file is linked into the tmpfs, the 2893 * first link must skip that, to get the accounting right. 2894 */ 2895 if (inode->i_nlink) { 2896 ret = shmem_reserve_inode(inode->i_sb, NULL); 2897 if (ret) 2898 goto out; 2899 } 2900 2901 dir->i_size += BOGO_DIRENT_SIZE; 2902 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2903 inc_nlink(inode); 2904 ihold(inode); /* New dentry reference */ 2905 dget(dentry); /* Extra pinning count for the created dentry */ 2906 d_instantiate(dentry, inode); 2907 out: 2908 return ret; 2909 } 2910 2911 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2912 { 2913 struct inode *inode = d_inode(dentry); 2914 2915 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2916 shmem_free_inode(inode->i_sb); 2917 2918 dir->i_size -= BOGO_DIRENT_SIZE; 2919 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2920 drop_nlink(inode); 2921 dput(dentry); /* Undo the count from "create" - this does all the work */ 2922 return 0; 2923 } 2924 2925 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2926 { 2927 if (!simple_empty(dentry)) 2928 return -ENOTEMPTY; 2929 2930 drop_nlink(d_inode(dentry)); 2931 drop_nlink(dir); 2932 return shmem_unlink(dir, dentry); 2933 } 2934 2935 static int shmem_whiteout(struct user_namespace *mnt_userns, 2936 struct inode *old_dir, struct dentry *old_dentry) 2937 { 2938 struct dentry *whiteout; 2939 int error; 2940 2941 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2942 if (!whiteout) 2943 return -ENOMEM; 2944 2945 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2946 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2947 dput(whiteout); 2948 if (error) 2949 return error; 2950 2951 /* 2952 * Cheat and hash the whiteout while the old dentry is still in 2953 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2954 * 2955 * d_lookup() will consistently find one of them at this point, 2956 * not sure which one, but that isn't even important. 2957 */ 2958 d_rehash(whiteout); 2959 return 0; 2960 } 2961 2962 /* 2963 * The VFS layer already does all the dentry stuff for rename, 2964 * we just have to decrement the usage count for the target if 2965 * it exists so that the VFS layer correctly free's it when it 2966 * gets overwritten. 2967 */ 2968 static int shmem_rename2(struct user_namespace *mnt_userns, 2969 struct inode *old_dir, struct dentry *old_dentry, 2970 struct inode *new_dir, struct dentry *new_dentry, 2971 unsigned int flags) 2972 { 2973 struct inode *inode = d_inode(old_dentry); 2974 int they_are_dirs = S_ISDIR(inode->i_mode); 2975 2976 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2977 return -EINVAL; 2978 2979 if (flags & RENAME_EXCHANGE) 2980 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 2981 2982 if (!simple_empty(new_dentry)) 2983 return -ENOTEMPTY; 2984 2985 if (flags & RENAME_WHITEOUT) { 2986 int error; 2987 2988 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 2989 if (error) 2990 return error; 2991 } 2992 2993 if (d_really_is_positive(new_dentry)) { 2994 (void) shmem_unlink(new_dir, new_dentry); 2995 if (they_are_dirs) { 2996 drop_nlink(d_inode(new_dentry)); 2997 drop_nlink(old_dir); 2998 } 2999 } else if (they_are_dirs) { 3000 drop_nlink(old_dir); 3001 inc_nlink(new_dir); 3002 } 3003 3004 old_dir->i_size -= BOGO_DIRENT_SIZE; 3005 new_dir->i_size += BOGO_DIRENT_SIZE; 3006 old_dir->i_ctime = old_dir->i_mtime = 3007 new_dir->i_ctime = new_dir->i_mtime = 3008 inode->i_ctime = current_time(old_dir); 3009 return 0; 3010 } 3011 3012 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3013 struct dentry *dentry, const char *symname) 3014 { 3015 int error; 3016 int len; 3017 struct inode *inode; 3018 struct page *page; 3019 3020 len = strlen(symname) + 1; 3021 if (len > PAGE_SIZE) 3022 return -ENAMETOOLONG; 3023 3024 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3025 VM_NORESERVE); 3026 if (!inode) 3027 return -ENOSPC; 3028 3029 error = security_inode_init_security(inode, dir, &dentry->d_name, 3030 shmem_initxattrs, NULL); 3031 if (error && error != -EOPNOTSUPP) { 3032 iput(inode); 3033 return error; 3034 } 3035 3036 inode->i_size = len-1; 3037 if (len <= SHORT_SYMLINK_LEN) { 3038 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3039 if (!inode->i_link) { 3040 iput(inode); 3041 return -ENOMEM; 3042 } 3043 inode->i_op = &shmem_short_symlink_operations; 3044 } else { 3045 inode_nohighmem(inode); 3046 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3047 if (error) { 3048 iput(inode); 3049 return error; 3050 } 3051 inode->i_mapping->a_ops = &shmem_aops; 3052 inode->i_op = &shmem_symlink_inode_operations; 3053 memcpy(page_address(page), symname, len); 3054 SetPageUptodate(page); 3055 set_page_dirty(page); 3056 unlock_page(page); 3057 put_page(page); 3058 } 3059 dir->i_size += BOGO_DIRENT_SIZE; 3060 dir->i_ctime = dir->i_mtime = current_time(dir); 3061 d_instantiate(dentry, inode); 3062 dget(dentry); 3063 return 0; 3064 } 3065 3066 static void shmem_put_link(void *arg) 3067 { 3068 mark_page_accessed(arg); 3069 put_page(arg); 3070 } 3071 3072 static const char *shmem_get_link(struct dentry *dentry, 3073 struct inode *inode, 3074 struct delayed_call *done) 3075 { 3076 struct page *page = NULL; 3077 int error; 3078 if (!dentry) { 3079 page = find_get_page(inode->i_mapping, 0); 3080 if (!page) 3081 return ERR_PTR(-ECHILD); 3082 if (PageHWPoison(page) || 3083 !PageUptodate(page)) { 3084 put_page(page); 3085 return ERR_PTR(-ECHILD); 3086 } 3087 } else { 3088 error = shmem_getpage(inode, 0, &page, SGP_READ); 3089 if (error) 3090 return ERR_PTR(error); 3091 if (!page) 3092 return ERR_PTR(-ECHILD); 3093 if (PageHWPoison(page)) { 3094 unlock_page(page); 3095 put_page(page); 3096 return ERR_PTR(-ECHILD); 3097 } 3098 unlock_page(page); 3099 } 3100 set_delayed_call(done, shmem_put_link, page); 3101 return page_address(page); 3102 } 3103 3104 #ifdef CONFIG_TMPFS_XATTR 3105 /* 3106 * Superblocks without xattr inode operations may get some security.* xattr 3107 * support from the LSM "for free". As soon as we have any other xattrs 3108 * like ACLs, we also need to implement the security.* handlers at 3109 * filesystem level, though. 3110 */ 3111 3112 /* 3113 * Callback for security_inode_init_security() for acquiring xattrs. 3114 */ 3115 static int shmem_initxattrs(struct inode *inode, 3116 const struct xattr *xattr_array, 3117 void *fs_info) 3118 { 3119 struct shmem_inode_info *info = SHMEM_I(inode); 3120 const struct xattr *xattr; 3121 struct simple_xattr *new_xattr; 3122 size_t len; 3123 3124 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3125 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3126 if (!new_xattr) 3127 return -ENOMEM; 3128 3129 len = strlen(xattr->name) + 1; 3130 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3131 GFP_KERNEL); 3132 if (!new_xattr->name) { 3133 kvfree(new_xattr); 3134 return -ENOMEM; 3135 } 3136 3137 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3138 XATTR_SECURITY_PREFIX_LEN); 3139 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3140 xattr->name, len); 3141 3142 simple_xattr_list_add(&info->xattrs, new_xattr); 3143 } 3144 3145 return 0; 3146 } 3147 3148 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3149 struct dentry *unused, struct inode *inode, 3150 const char *name, void *buffer, size_t size) 3151 { 3152 struct shmem_inode_info *info = SHMEM_I(inode); 3153 3154 name = xattr_full_name(handler, name); 3155 return simple_xattr_get(&info->xattrs, name, buffer, size); 3156 } 3157 3158 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3159 struct user_namespace *mnt_userns, 3160 struct dentry *unused, struct inode *inode, 3161 const char *name, const void *value, 3162 size_t size, int flags) 3163 { 3164 struct shmem_inode_info *info = SHMEM_I(inode); 3165 3166 name = xattr_full_name(handler, name); 3167 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3168 } 3169 3170 static const struct xattr_handler shmem_security_xattr_handler = { 3171 .prefix = XATTR_SECURITY_PREFIX, 3172 .get = shmem_xattr_handler_get, 3173 .set = shmem_xattr_handler_set, 3174 }; 3175 3176 static const struct xattr_handler shmem_trusted_xattr_handler = { 3177 .prefix = XATTR_TRUSTED_PREFIX, 3178 .get = shmem_xattr_handler_get, 3179 .set = shmem_xattr_handler_set, 3180 }; 3181 3182 static const struct xattr_handler *shmem_xattr_handlers[] = { 3183 #ifdef CONFIG_TMPFS_POSIX_ACL 3184 &posix_acl_access_xattr_handler, 3185 &posix_acl_default_xattr_handler, 3186 #endif 3187 &shmem_security_xattr_handler, 3188 &shmem_trusted_xattr_handler, 3189 NULL 3190 }; 3191 3192 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3193 { 3194 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3195 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3196 } 3197 #endif /* CONFIG_TMPFS_XATTR */ 3198 3199 static const struct inode_operations shmem_short_symlink_operations = { 3200 .getattr = shmem_getattr, 3201 .get_link = simple_get_link, 3202 #ifdef CONFIG_TMPFS_XATTR 3203 .listxattr = shmem_listxattr, 3204 #endif 3205 }; 3206 3207 static const struct inode_operations shmem_symlink_inode_operations = { 3208 .getattr = shmem_getattr, 3209 .get_link = shmem_get_link, 3210 #ifdef CONFIG_TMPFS_XATTR 3211 .listxattr = shmem_listxattr, 3212 #endif 3213 }; 3214 3215 static struct dentry *shmem_get_parent(struct dentry *child) 3216 { 3217 return ERR_PTR(-ESTALE); 3218 } 3219 3220 static int shmem_match(struct inode *ino, void *vfh) 3221 { 3222 __u32 *fh = vfh; 3223 __u64 inum = fh[2]; 3224 inum = (inum << 32) | fh[1]; 3225 return ino->i_ino == inum && fh[0] == ino->i_generation; 3226 } 3227 3228 /* Find any alias of inode, but prefer a hashed alias */ 3229 static struct dentry *shmem_find_alias(struct inode *inode) 3230 { 3231 struct dentry *alias = d_find_alias(inode); 3232 3233 return alias ?: d_find_any_alias(inode); 3234 } 3235 3236 3237 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3238 struct fid *fid, int fh_len, int fh_type) 3239 { 3240 struct inode *inode; 3241 struct dentry *dentry = NULL; 3242 u64 inum; 3243 3244 if (fh_len < 3) 3245 return NULL; 3246 3247 inum = fid->raw[2]; 3248 inum = (inum << 32) | fid->raw[1]; 3249 3250 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3251 shmem_match, fid->raw); 3252 if (inode) { 3253 dentry = shmem_find_alias(inode); 3254 iput(inode); 3255 } 3256 3257 return dentry; 3258 } 3259 3260 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3261 struct inode *parent) 3262 { 3263 if (*len < 3) { 3264 *len = 3; 3265 return FILEID_INVALID; 3266 } 3267 3268 if (inode_unhashed(inode)) { 3269 /* Unfortunately insert_inode_hash is not idempotent, 3270 * so as we hash inodes here rather than at creation 3271 * time, we need a lock to ensure we only try 3272 * to do it once 3273 */ 3274 static DEFINE_SPINLOCK(lock); 3275 spin_lock(&lock); 3276 if (inode_unhashed(inode)) 3277 __insert_inode_hash(inode, 3278 inode->i_ino + inode->i_generation); 3279 spin_unlock(&lock); 3280 } 3281 3282 fh[0] = inode->i_generation; 3283 fh[1] = inode->i_ino; 3284 fh[2] = ((__u64)inode->i_ino) >> 32; 3285 3286 *len = 3; 3287 return 1; 3288 } 3289 3290 static const struct export_operations shmem_export_ops = { 3291 .get_parent = shmem_get_parent, 3292 .encode_fh = shmem_encode_fh, 3293 .fh_to_dentry = shmem_fh_to_dentry, 3294 }; 3295 3296 enum shmem_param { 3297 Opt_gid, 3298 Opt_huge, 3299 Opt_mode, 3300 Opt_mpol, 3301 Opt_nr_blocks, 3302 Opt_nr_inodes, 3303 Opt_size, 3304 Opt_uid, 3305 Opt_inode32, 3306 Opt_inode64, 3307 }; 3308 3309 static const struct constant_table shmem_param_enums_huge[] = { 3310 {"never", SHMEM_HUGE_NEVER }, 3311 {"always", SHMEM_HUGE_ALWAYS }, 3312 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3313 {"advise", SHMEM_HUGE_ADVISE }, 3314 {} 3315 }; 3316 3317 const struct fs_parameter_spec shmem_fs_parameters[] = { 3318 fsparam_u32 ("gid", Opt_gid), 3319 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3320 fsparam_u32oct("mode", Opt_mode), 3321 fsparam_string("mpol", Opt_mpol), 3322 fsparam_string("nr_blocks", Opt_nr_blocks), 3323 fsparam_string("nr_inodes", Opt_nr_inodes), 3324 fsparam_string("size", Opt_size), 3325 fsparam_u32 ("uid", Opt_uid), 3326 fsparam_flag ("inode32", Opt_inode32), 3327 fsparam_flag ("inode64", Opt_inode64), 3328 {} 3329 }; 3330 3331 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3332 { 3333 struct shmem_options *ctx = fc->fs_private; 3334 struct fs_parse_result result; 3335 unsigned long long size; 3336 char *rest; 3337 int opt; 3338 3339 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3340 if (opt < 0) 3341 return opt; 3342 3343 switch (opt) { 3344 case Opt_size: 3345 size = memparse(param->string, &rest); 3346 if (*rest == '%') { 3347 size <<= PAGE_SHIFT; 3348 size *= totalram_pages(); 3349 do_div(size, 100); 3350 rest++; 3351 } 3352 if (*rest) 3353 goto bad_value; 3354 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3355 ctx->seen |= SHMEM_SEEN_BLOCKS; 3356 break; 3357 case Opt_nr_blocks: 3358 ctx->blocks = memparse(param->string, &rest); 3359 if (*rest) 3360 goto bad_value; 3361 ctx->seen |= SHMEM_SEEN_BLOCKS; 3362 break; 3363 case Opt_nr_inodes: 3364 ctx->inodes = memparse(param->string, &rest); 3365 if (*rest) 3366 goto bad_value; 3367 ctx->seen |= SHMEM_SEEN_INODES; 3368 break; 3369 case Opt_mode: 3370 ctx->mode = result.uint_32 & 07777; 3371 break; 3372 case Opt_uid: 3373 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3374 if (!uid_valid(ctx->uid)) 3375 goto bad_value; 3376 break; 3377 case Opt_gid: 3378 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3379 if (!gid_valid(ctx->gid)) 3380 goto bad_value; 3381 break; 3382 case Opt_huge: 3383 ctx->huge = result.uint_32; 3384 if (ctx->huge != SHMEM_HUGE_NEVER && 3385 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3386 has_transparent_hugepage())) 3387 goto unsupported_parameter; 3388 ctx->seen |= SHMEM_SEEN_HUGE; 3389 break; 3390 case Opt_mpol: 3391 if (IS_ENABLED(CONFIG_NUMA)) { 3392 mpol_put(ctx->mpol); 3393 ctx->mpol = NULL; 3394 if (mpol_parse_str(param->string, &ctx->mpol)) 3395 goto bad_value; 3396 break; 3397 } 3398 goto unsupported_parameter; 3399 case Opt_inode32: 3400 ctx->full_inums = false; 3401 ctx->seen |= SHMEM_SEEN_INUMS; 3402 break; 3403 case Opt_inode64: 3404 if (sizeof(ino_t) < 8) { 3405 return invalfc(fc, 3406 "Cannot use inode64 with <64bit inums in kernel\n"); 3407 } 3408 ctx->full_inums = true; 3409 ctx->seen |= SHMEM_SEEN_INUMS; 3410 break; 3411 } 3412 return 0; 3413 3414 unsupported_parameter: 3415 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3416 bad_value: 3417 return invalfc(fc, "Bad value for '%s'", param->key); 3418 } 3419 3420 static int shmem_parse_options(struct fs_context *fc, void *data) 3421 { 3422 char *options = data; 3423 3424 if (options) { 3425 int err = security_sb_eat_lsm_opts(options, &fc->security); 3426 if (err) 3427 return err; 3428 } 3429 3430 while (options != NULL) { 3431 char *this_char = options; 3432 for (;;) { 3433 /* 3434 * NUL-terminate this option: unfortunately, 3435 * mount options form a comma-separated list, 3436 * but mpol's nodelist may also contain commas. 3437 */ 3438 options = strchr(options, ','); 3439 if (options == NULL) 3440 break; 3441 options++; 3442 if (!isdigit(*options)) { 3443 options[-1] = '\0'; 3444 break; 3445 } 3446 } 3447 if (*this_char) { 3448 char *value = strchr(this_char, '='); 3449 size_t len = 0; 3450 int err; 3451 3452 if (value) { 3453 *value++ = '\0'; 3454 len = strlen(value); 3455 } 3456 err = vfs_parse_fs_string(fc, this_char, value, len); 3457 if (err < 0) 3458 return err; 3459 } 3460 } 3461 return 0; 3462 } 3463 3464 /* 3465 * Reconfigure a shmem filesystem. 3466 * 3467 * Note that we disallow change from limited->unlimited blocks/inodes while any 3468 * are in use; but we must separately disallow unlimited->limited, because in 3469 * that case we have no record of how much is already in use. 3470 */ 3471 static int shmem_reconfigure(struct fs_context *fc) 3472 { 3473 struct shmem_options *ctx = fc->fs_private; 3474 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3475 unsigned long inodes; 3476 struct mempolicy *mpol = NULL; 3477 const char *err; 3478 3479 raw_spin_lock(&sbinfo->stat_lock); 3480 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3481 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3482 if (!sbinfo->max_blocks) { 3483 err = "Cannot retroactively limit size"; 3484 goto out; 3485 } 3486 if (percpu_counter_compare(&sbinfo->used_blocks, 3487 ctx->blocks) > 0) { 3488 err = "Too small a size for current use"; 3489 goto out; 3490 } 3491 } 3492 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3493 if (!sbinfo->max_inodes) { 3494 err = "Cannot retroactively limit inodes"; 3495 goto out; 3496 } 3497 if (ctx->inodes < inodes) { 3498 err = "Too few inodes for current use"; 3499 goto out; 3500 } 3501 } 3502 3503 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3504 sbinfo->next_ino > UINT_MAX) { 3505 err = "Current inum too high to switch to 32-bit inums"; 3506 goto out; 3507 } 3508 3509 if (ctx->seen & SHMEM_SEEN_HUGE) 3510 sbinfo->huge = ctx->huge; 3511 if (ctx->seen & SHMEM_SEEN_INUMS) 3512 sbinfo->full_inums = ctx->full_inums; 3513 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3514 sbinfo->max_blocks = ctx->blocks; 3515 if (ctx->seen & SHMEM_SEEN_INODES) { 3516 sbinfo->max_inodes = ctx->inodes; 3517 sbinfo->free_inodes = ctx->inodes - inodes; 3518 } 3519 3520 /* 3521 * Preserve previous mempolicy unless mpol remount option was specified. 3522 */ 3523 if (ctx->mpol) { 3524 mpol = sbinfo->mpol; 3525 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3526 ctx->mpol = NULL; 3527 } 3528 raw_spin_unlock(&sbinfo->stat_lock); 3529 mpol_put(mpol); 3530 return 0; 3531 out: 3532 raw_spin_unlock(&sbinfo->stat_lock); 3533 return invalfc(fc, "%s", err); 3534 } 3535 3536 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3537 { 3538 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3539 3540 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3541 seq_printf(seq, ",size=%luk", 3542 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3543 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3544 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3545 if (sbinfo->mode != (0777 | S_ISVTX)) 3546 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3547 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3548 seq_printf(seq, ",uid=%u", 3549 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3550 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3551 seq_printf(seq, ",gid=%u", 3552 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3553 3554 /* 3555 * Showing inode{64,32} might be useful even if it's the system default, 3556 * since then people don't have to resort to checking both here and 3557 * /proc/config.gz to confirm 64-bit inums were successfully applied 3558 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3559 * 3560 * We hide it when inode64 isn't the default and we are using 32-bit 3561 * inodes, since that probably just means the feature isn't even under 3562 * consideration. 3563 * 3564 * As such: 3565 * 3566 * +-----------------+-----------------+ 3567 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3568 * +------------------+-----------------+-----------------+ 3569 * | full_inums=true | show | show | 3570 * | full_inums=false | show | hide | 3571 * +------------------+-----------------+-----------------+ 3572 * 3573 */ 3574 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3575 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3577 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3578 if (sbinfo->huge) 3579 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3580 #endif 3581 shmem_show_mpol(seq, sbinfo->mpol); 3582 return 0; 3583 } 3584 3585 #endif /* CONFIG_TMPFS */ 3586 3587 static void shmem_put_super(struct super_block *sb) 3588 { 3589 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3590 3591 free_percpu(sbinfo->ino_batch); 3592 percpu_counter_destroy(&sbinfo->used_blocks); 3593 mpol_put(sbinfo->mpol); 3594 kfree(sbinfo); 3595 sb->s_fs_info = NULL; 3596 } 3597 3598 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3599 { 3600 struct shmem_options *ctx = fc->fs_private; 3601 struct inode *inode; 3602 struct shmem_sb_info *sbinfo; 3603 3604 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3605 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3606 L1_CACHE_BYTES), GFP_KERNEL); 3607 if (!sbinfo) 3608 return -ENOMEM; 3609 3610 sb->s_fs_info = sbinfo; 3611 3612 #ifdef CONFIG_TMPFS 3613 /* 3614 * Per default we only allow half of the physical ram per 3615 * tmpfs instance, limiting inodes to one per page of lowmem; 3616 * but the internal instance is left unlimited. 3617 */ 3618 if (!(sb->s_flags & SB_KERNMOUNT)) { 3619 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3620 ctx->blocks = shmem_default_max_blocks(); 3621 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3622 ctx->inodes = shmem_default_max_inodes(); 3623 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3624 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3625 } else { 3626 sb->s_flags |= SB_NOUSER; 3627 } 3628 sb->s_export_op = &shmem_export_ops; 3629 sb->s_flags |= SB_NOSEC; 3630 #else 3631 sb->s_flags |= SB_NOUSER; 3632 #endif 3633 sbinfo->max_blocks = ctx->blocks; 3634 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3635 if (sb->s_flags & SB_KERNMOUNT) { 3636 sbinfo->ino_batch = alloc_percpu(ino_t); 3637 if (!sbinfo->ino_batch) 3638 goto failed; 3639 } 3640 sbinfo->uid = ctx->uid; 3641 sbinfo->gid = ctx->gid; 3642 sbinfo->full_inums = ctx->full_inums; 3643 sbinfo->mode = ctx->mode; 3644 sbinfo->huge = ctx->huge; 3645 sbinfo->mpol = ctx->mpol; 3646 ctx->mpol = NULL; 3647 3648 raw_spin_lock_init(&sbinfo->stat_lock); 3649 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3650 goto failed; 3651 spin_lock_init(&sbinfo->shrinklist_lock); 3652 INIT_LIST_HEAD(&sbinfo->shrinklist); 3653 3654 sb->s_maxbytes = MAX_LFS_FILESIZE; 3655 sb->s_blocksize = PAGE_SIZE; 3656 sb->s_blocksize_bits = PAGE_SHIFT; 3657 sb->s_magic = TMPFS_MAGIC; 3658 sb->s_op = &shmem_ops; 3659 sb->s_time_gran = 1; 3660 #ifdef CONFIG_TMPFS_XATTR 3661 sb->s_xattr = shmem_xattr_handlers; 3662 #endif 3663 #ifdef CONFIG_TMPFS_POSIX_ACL 3664 sb->s_flags |= SB_POSIXACL; 3665 #endif 3666 uuid_gen(&sb->s_uuid); 3667 3668 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3669 if (!inode) 3670 goto failed; 3671 inode->i_uid = sbinfo->uid; 3672 inode->i_gid = sbinfo->gid; 3673 sb->s_root = d_make_root(inode); 3674 if (!sb->s_root) 3675 goto failed; 3676 return 0; 3677 3678 failed: 3679 shmem_put_super(sb); 3680 return -ENOMEM; 3681 } 3682 3683 static int shmem_get_tree(struct fs_context *fc) 3684 { 3685 return get_tree_nodev(fc, shmem_fill_super); 3686 } 3687 3688 static void shmem_free_fc(struct fs_context *fc) 3689 { 3690 struct shmem_options *ctx = fc->fs_private; 3691 3692 if (ctx) { 3693 mpol_put(ctx->mpol); 3694 kfree(ctx); 3695 } 3696 } 3697 3698 static const struct fs_context_operations shmem_fs_context_ops = { 3699 .free = shmem_free_fc, 3700 .get_tree = shmem_get_tree, 3701 #ifdef CONFIG_TMPFS 3702 .parse_monolithic = shmem_parse_options, 3703 .parse_param = shmem_parse_one, 3704 .reconfigure = shmem_reconfigure, 3705 #endif 3706 }; 3707 3708 static struct kmem_cache *shmem_inode_cachep; 3709 3710 static struct inode *shmem_alloc_inode(struct super_block *sb) 3711 { 3712 struct shmem_inode_info *info; 3713 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3714 if (!info) 3715 return NULL; 3716 return &info->vfs_inode; 3717 } 3718 3719 static void shmem_free_in_core_inode(struct inode *inode) 3720 { 3721 if (S_ISLNK(inode->i_mode)) 3722 kfree(inode->i_link); 3723 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3724 } 3725 3726 static void shmem_destroy_inode(struct inode *inode) 3727 { 3728 if (S_ISREG(inode->i_mode)) 3729 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3730 } 3731 3732 static void shmem_init_inode(void *foo) 3733 { 3734 struct shmem_inode_info *info = foo; 3735 inode_init_once(&info->vfs_inode); 3736 } 3737 3738 static void shmem_init_inodecache(void) 3739 { 3740 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3741 sizeof(struct shmem_inode_info), 3742 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3743 } 3744 3745 static void shmem_destroy_inodecache(void) 3746 { 3747 kmem_cache_destroy(shmem_inode_cachep); 3748 } 3749 3750 /* Keep the page in page cache instead of truncating it */ 3751 static int shmem_error_remove_page(struct address_space *mapping, 3752 struct page *page) 3753 { 3754 return 0; 3755 } 3756 3757 const struct address_space_operations shmem_aops = { 3758 .writepage = shmem_writepage, 3759 .set_page_dirty = __set_page_dirty_no_writeback, 3760 #ifdef CONFIG_TMPFS 3761 .write_begin = shmem_write_begin, 3762 .write_end = shmem_write_end, 3763 #endif 3764 #ifdef CONFIG_MIGRATION 3765 .migratepage = migrate_page, 3766 #endif 3767 .error_remove_page = shmem_error_remove_page, 3768 }; 3769 EXPORT_SYMBOL(shmem_aops); 3770 3771 static const struct file_operations shmem_file_operations = { 3772 .mmap = shmem_mmap, 3773 .get_unmapped_area = shmem_get_unmapped_area, 3774 #ifdef CONFIG_TMPFS 3775 .llseek = shmem_file_llseek, 3776 .read_iter = shmem_file_read_iter, 3777 .write_iter = generic_file_write_iter, 3778 .fsync = noop_fsync, 3779 .splice_read = generic_file_splice_read, 3780 .splice_write = iter_file_splice_write, 3781 .fallocate = shmem_fallocate, 3782 #endif 3783 }; 3784 3785 static const struct inode_operations shmem_inode_operations = { 3786 .getattr = shmem_getattr, 3787 .setattr = shmem_setattr, 3788 #ifdef CONFIG_TMPFS_XATTR 3789 .listxattr = shmem_listxattr, 3790 .set_acl = simple_set_acl, 3791 #endif 3792 }; 3793 3794 static const struct inode_operations shmem_dir_inode_operations = { 3795 #ifdef CONFIG_TMPFS 3796 .getattr = shmem_getattr, 3797 .create = shmem_create, 3798 .lookup = simple_lookup, 3799 .link = shmem_link, 3800 .unlink = shmem_unlink, 3801 .symlink = shmem_symlink, 3802 .mkdir = shmem_mkdir, 3803 .rmdir = shmem_rmdir, 3804 .mknod = shmem_mknod, 3805 .rename = shmem_rename2, 3806 .tmpfile = shmem_tmpfile, 3807 #endif 3808 #ifdef CONFIG_TMPFS_XATTR 3809 .listxattr = shmem_listxattr, 3810 #endif 3811 #ifdef CONFIG_TMPFS_POSIX_ACL 3812 .setattr = shmem_setattr, 3813 .set_acl = simple_set_acl, 3814 #endif 3815 }; 3816 3817 static const struct inode_operations shmem_special_inode_operations = { 3818 .getattr = shmem_getattr, 3819 #ifdef CONFIG_TMPFS_XATTR 3820 .listxattr = shmem_listxattr, 3821 #endif 3822 #ifdef CONFIG_TMPFS_POSIX_ACL 3823 .setattr = shmem_setattr, 3824 .set_acl = simple_set_acl, 3825 #endif 3826 }; 3827 3828 static const struct super_operations shmem_ops = { 3829 .alloc_inode = shmem_alloc_inode, 3830 .free_inode = shmem_free_in_core_inode, 3831 .destroy_inode = shmem_destroy_inode, 3832 #ifdef CONFIG_TMPFS 3833 .statfs = shmem_statfs, 3834 .show_options = shmem_show_options, 3835 #endif 3836 .evict_inode = shmem_evict_inode, 3837 .drop_inode = generic_delete_inode, 3838 .put_super = shmem_put_super, 3839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3840 .nr_cached_objects = shmem_unused_huge_count, 3841 .free_cached_objects = shmem_unused_huge_scan, 3842 #endif 3843 }; 3844 3845 static const struct vm_operations_struct shmem_vm_ops = { 3846 .fault = shmem_fault, 3847 .map_pages = filemap_map_pages, 3848 #ifdef CONFIG_NUMA 3849 .set_policy = shmem_set_policy, 3850 .get_policy = shmem_get_policy, 3851 #endif 3852 }; 3853 3854 int shmem_init_fs_context(struct fs_context *fc) 3855 { 3856 struct shmem_options *ctx; 3857 3858 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3859 if (!ctx) 3860 return -ENOMEM; 3861 3862 ctx->mode = 0777 | S_ISVTX; 3863 ctx->uid = current_fsuid(); 3864 ctx->gid = current_fsgid(); 3865 3866 fc->fs_private = ctx; 3867 fc->ops = &shmem_fs_context_ops; 3868 return 0; 3869 } 3870 3871 static struct file_system_type shmem_fs_type = { 3872 .owner = THIS_MODULE, 3873 .name = "tmpfs", 3874 .init_fs_context = shmem_init_fs_context, 3875 #ifdef CONFIG_TMPFS 3876 .parameters = shmem_fs_parameters, 3877 #endif 3878 .kill_sb = kill_litter_super, 3879 .fs_flags = FS_USERNS_MOUNT, 3880 }; 3881 3882 int __init shmem_init(void) 3883 { 3884 int error; 3885 3886 shmem_init_inodecache(); 3887 3888 error = register_filesystem(&shmem_fs_type); 3889 if (error) { 3890 pr_err("Could not register tmpfs\n"); 3891 goto out2; 3892 } 3893 3894 shm_mnt = kern_mount(&shmem_fs_type); 3895 if (IS_ERR(shm_mnt)) { 3896 error = PTR_ERR(shm_mnt); 3897 pr_err("Could not kern_mount tmpfs\n"); 3898 goto out1; 3899 } 3900 3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3902 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3903 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3904 else 3905 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 3906 #endif 3907 return 0; 3908 3909 out1: 3910 unregister_filesystem(&shmem_fs_type); 3911 out2: 3912 shmem_destroy_inodecache(); 3913 shm_mnt = ERR_PTR(error); 3914 return error; 3915 } 3916 3917 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3918 static ssize_t shmem_enabled_show(struct kobject *kobj, 3919 struct kobj_attribute *attr, char *buf) 3920 { 3921 static const int values[] = { 3922 SHMEM_HUGE_ALWAYS, 3923 SHMEM_HUGE_WITHIN_SIZE, 3924 SHMEM_HUGE_ADVISE, 3925 SHMEM_HUGE_NEVER, 3926 SHMEM_HUGE_DENY, 3927 SHMEM_HUGE_FORCE, 3928 }; 3929 int len = 0; 3930 int i; 3931 3932 for (i = 0; i < ARRAY_SIZE(values); i++) { 3933 len += sysfs_emit_at(buf, len, 3934 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3935 i ? " " : "", 3936 shmem_format_huge(values[i])); 3937 } 3938 3939 len += sysfs_emit_at(buf, len, "\n"); 3940 3941 return len; 3942 } 3943 3944 static ssize_t shmem_enabled_store(struct kobject *kobj, 3945 struct kobj_attribute *attr, const char *buf, size_t count) 3946 { 3947 char tmp[16]; 3948 int huge; 3949 3950 if (count + 1 > sizeof(tmp)) 3951 return -EINVAL; 3952 memcpy(tmp, buf, count); 3953 tmp[count] = '\0'; 3954 if (count && tmp[count - 1] == '\n') 3955 tmp[count - 1] = '\0'; 3956 3957 huge = shmem_parse_huge(tmp); 3958 if (huge == -EINVAL) 3959 return -EINVAL; 3960 if (!has_transparent_hugepage() && 3961 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3962 return -EINVAL; 3963 3964 shmem_huge = huge; 3965 if (shmem_huge > SHMEM_HUGE_DENY) 3966 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3967 return count; 3968 } 3969 3970 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 3971 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3972 3973 #else /* !CONFIG_SHMEM */ 3974 3975 /* 3976 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3977 * 3978 * This is intended for small system where the benefits of the full 3979 * shmem code (swap-backed and resource-limited) are outweighed by 3980 * their complexity. On systems without swap this code should be 3981 * effectively equivalent, but much lighter weight. 3982 */ 3983 3984 static struct file_system_type shmem_fs_type = { 3985 .name = "tmpfs", 3986 .init_fs_context = ramfs_init_fs_context, 3987 .parameters = ramfs_fs_parameters, 3988 .kill_sb = kill_litter_super, 3989 .fs_flags = FS_USERNS_MOUNT, 3990 }; 3991 3992 int __init shmem_init(void) 3993 { 3994 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3995 3996 shm_mnt = kern_mount(&shmem_fs_type); 3997 BUG_ON(IS_ERR(shm_mnt)); 3998 3999 return 0; 4000 } 4001 4002 int shmem_unuse(unsigned int type) 4003 { 4004 return 0; 4005 } 4006 4007 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4008 { 4009 return 0; 4010 } 4011 4012 void shmem_unlock_mapping(struct address_space *mapping) 4013 { 4014 } 4015 4016 #ifdef CONFIG_MMU 4017 unsigned long shmem_get_unmapped_area(struct file *file, 4018 unsigned long addr, unsigned long len, 4019 unsigned long pgoff, unsigned long flags) 4020 { 4021 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4022 } 4023 #endif 4024 4025 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4026 { 4027 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4028 } 4029 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4030 4031 #define shmem_vm_ops generic_file_vm_ops 4032 #define shmem_file_operations ramfs_file_operations 4033 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4034 #define shmem_acct_size(flags, size) 0 4035 #define shmem_unacct_size(flags, size) do {} while (0) 4036 4037 #endif /* CONFIG_SHMEM */ 4038 4039 /* common code */ 4040 4041 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4042 unsigned long flags, unsigned int i_flags) 4043 { 4044 struct inode *inode; 4045 struct file *res; 4046 4047 if (IS_ERR(mnt)) 4048 return ERR_CAST(mnt); 4049 4050 if (size < 0 || size > MAX_LFS_FILESIZE) 4051 return ERR_PTR(-EINVAL); 4052 4053 if (shmem_acct_size(flags, size)) 4054 return ERR_PTR(-ENOMEM); 4055 4056 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4057 flags); 4058 if (unlikely(!inode)) { 4059 shmem_unacct_size(flags, size); 4060 return ERR_PTR(-ENOSPC); 4061 } 4062 inode->i_flags |= i_flags; 4063 inode->i_size = size; 4064 clear_nlink(inode); /* It is unlinked */ 4065 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4066 if (!IS_ERR(res)) 4067 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4068 &shmem_file_operations); 4069 if (IS_ERR(res)) 4070 iput(inode); 4071 return res; 4072 } 4073 4074 /** 4075 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4076 * kernel internal. There will be NO LSM permission checks against the 4077 * underlying inode. So users of this interface must do LSM checks at a 4078 * higher layer. The users are the big_key and shm implementations. LSM 4079 * checks are provided at the key or shm level rather than the inode. 4080 * @name: name for dentry (to be seen in /proc/<pid>/maps 4081 * @size: size to be set for the file 4082 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4083 */ 4084 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4085 { 4086 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4087 } 4088 4089 /** 4090 * shmem_file_setup - get an unlinked file living in tmpfs 4091 * @name: name for dentry (to be seen in /proc/<pid>/maps 4092 * @size: size to be set for the file 4093 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4094 */ 4095 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4096 { 4097 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4098 } 4099 EXPORT_SYMBOL_GPL(shmem_file_setup); 4100 4101 /** 4102 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4103 * @mnt: the tmpfs mount where the file will be created 4104 * @name: name for dentry (to be seen in /proc/<pid>/maps 4105 * @size: size to be set for the file 4106 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4107 */ 4108 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4109 loff_t size, unsigned long flags) 4110 { 4111 return __shmem_file_setup(mnt, name, size, flags, 0); 4112 } 4113 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4114 4115 /** 4116 * shmem_zero_setup - setup a shared anonymous mapping 4117 * @vma: the vma to be mmapped is prepared by do_mmap 4118 */ 4119 int shmem_zero_setup(struct vm_area_struct *vma) 4120 { 4121 struct file *file; 4122 loff_t size = vma->vm_end - vma->vm_start; 4123 4124 /* 4125 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4126 * between XFS directory reading and selinux: since this file is only 4127 * accessible to the user through its mapping, use S_PRIVATE flag to 4128 * bypass file security, in the same way as shmem_kernel_file_setup(). 4129 */ 4130 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4131 if (IS_ERR(file)) 4132 return PTR_ERR(file); 4133 4134 if (vma->vm_file) 4135 fput(vma->vm_file); 4136 vma->vm_file = file; 4137 vma->vm_ops = &shmem_vm_ops; 4138 4139 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4140 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4141 (vma->vm_end & HPAGE_PMD_MASK)) { 4142 khugepaged_enter(vma, vma->vm_flags); 4143 } 4144 4145 return 0; 4146 } 4147 4148 /** 4149 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4150 * @mapping: the page's address_space 4151 * @index: the page index 4152 * @gfp: the page allocator flags to use if allocating 4153 * 4154 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4155 * with any new page allocations done using the specified allocation flags. 4156 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4157 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4158 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4159 * 4160 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4161 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4162 */ 4163 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4164 pgoff_t index, gfp_t gfp) 4165 { 4166 #ifdef CONFIG_SHMEM 4167 struct inode *inode = mapping->host; 4168 struct page *page; 4169 int error; 4170 4171 BUG_ON(!shmem_mapping(mapping)); 4172 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4173 gfp, NULL, NULL, NULL); 4174 if (error) 4175 return ERR_PTR(error); 4176 4177 unlock_page(page); 4178 if (PageHWPoison(page)) { 4179 put_page(page); 4180 return ERR_PTR(-EIO); 4181 } 4182 4183 return page; 4184 #else 4185 /* 4186 * The tiny !SHMEM case uses ramfs without swap 4187 */ 4188 return read_cache_page_gfp(mapping, index, gfp); 4189 #endif 4190 } 4191 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4192