xref: /openbmc/linux/mm/shmem.c (revision c21b37f6)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/backing-dev.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
57 
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC	0x01021994
60 
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
64 
65 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 
68 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN	 VM_READ
72 #define SHMEM_TRUNCATE	 VM_WRITE
73 
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT	 64
76 
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
79 
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 enum sgp_type {
82 	SGP_QUICK,	/* don't try more than file page cache lookup */
83 	SGP_READ,	/* don't exceed i_size, don't allocate page */
84 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
85 	SGP_WRITE,	/* may exceed i_size, may allocate page */
86 	SGP_FAULT,	/* same as SGP_CACHE, return with page locked */
87 };
88 
89 static int shmem_getpage(struct inode *inode, unsigned long idx,
90 			 struct page **pagep, enum sgp_type sgp, int *type);
91 
92 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
93 {
94 	/*
95 	 * The above definition of ENTRIES_PER_PAGE, and the use of
96 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
97 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
98 	 *
99 	 * __GFP_MOVABLE is masked out as swap vectors cannot move
100 	 */
101 	return alloc_pages((gfp_mask & ~__GFP_MOVABLE) | __GFP_ZERO,
102 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
103 }
104 
105 static inline void shmem_dir_free(struct page *page)
106 {
107 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
108 }
109 
110 static struct page **shmem_dir_map(struct page *page)
111 {
112 	return (struct page **)kmap_atomic(page, KM_USER0);
113 }
114 
115 static inline void shmem_dir_unmap(struct page **dir)
116 {
117 	kunmap_atomic(dir, KM_USER0);
118 }
119 
120 static swp_entry_t *shmem_swp_map(struct page *page)
121 {
122 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
123 }
124 
125 static inline void shmem_swp_balance_unmap(void)
126 {
127 	/*
128 	 * When passing a pointer to an i_direct entry, to code which
129 	 * also handles indirect entries and so will shmem_swp_unmap,
130 	 * we must arrange for the preempt count to remain in balance.
131 	 * What kmap_atomic of a lowmem page does depends on config
132 	 * and architecture, so pretend to kmap_atomic some lowmem page.
133 	 */
134 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
135 }
136 
137 static inline void shmem_swp_unmap(swp_entry_t *entry)
138 {
139 	kunmap_atomic(entry, KM_USER1);
140 }
141 
142 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
143 {
144 	return sb->s_fs_info;
145 }
146 
147 /*
148  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
149  * for shared memory and for shared anonymous (/dev/zero) mappings
150  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
151  * consistent with the pre-accounting of private mappings ...
152  */
153 static inline int shmem_acct_size(unsigned long flags, loff_t size)
154 {
155 	return (flags & VM_ACCOUNT)?
156 		security_vm_enough_memory(VM_ACCT(size)): 0;
157 }
158 
159 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
160 {
161 	if (flags & VM_ACCOUNT)
162 		vm_unacct_memory(VM_ACCT(size));
163 }
164 
165 /*
166  * ... whereas tmpfs objects are accounted incrementally as
167  * pages are allocated, in order to allow huge sparse files.
168  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170  */
171 static inline int shmem_acct_block(unsigned long flags)
172 {
173 	return (flags & VM_ACCOUNT)?
174 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
175 }
176 
177 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178 {
179 	if (!(flags & VM_ACCOUNT))
180 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181 }
182 
183 static const struct super_operations shmem_ops;
184 static const struct address_space_operations shmem_aops;
185 static const struct file_operations shmem_file_operations;
186 static const struct inode_operations shmem_inode_operations;
187 static const struct inode_operations shmem_dir_inode_operations;
188 static const struct inode_operations shmem_special_inode_operations;
189 static struct vm_operations_struct shmem_vm_ops;
190 
191 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
192 	.ra_pages	= 0,	/* No readahead */
193 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
194 	.unplug_io_fn	= default_unplug_io_fn,
195 };
196 
197 static LIST_HEAD(shmem_swaplist);
198 static DEFINE_SPINLOCK(shmem_swaplist_lock);
199 
200 static void shmem_free_blocks(struct inode *inode, long pages)
201 {
202 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
203 	if (sbinfo->max_blocks) {
204 		spin_lock(&sbinfo->stat_lock);
205 		sbinfo->free_blocks += pages;
206 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
207 		spin_unlock(&sbinfo->stat_lock);
208 	}
209 }
210 
211 /*
212  * shmem_recalc_inode - recalculate the size of an inode
213  *
214  * @inode: inode to recalc
215  *
216  * We have to calculate the free blocks since the mm can drop
217  * undirtied hole pages behind our back.
218  *
219  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
220  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
221  *
222  * It has to be called with the spinlock held.
223  */
224 static void shmem_recalc_inode(struct inode *inode)
225 {
226 	struct shmem_inode_info *info = SHMEM_I(inode);
227 	long freed;
228 
229 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
230 	if (freed > 0) {
231 		info->alloced -= freed;
232 		shmem_unacct_blocks(info->flags, freed);
233 		shmem_free_blocks(inode, freed);
234 	}
235 }
236 
237 /*
238  * shmem_swp_entry - find the swap vector position in the info structure
239  *
240  * @info:  info structure for the inode
241  * @index: index of the page to find
242  * @page:  optional page to add to the structure. Has to be preset to
243  *         all zeros
244  *
245  * If there is no space allocated yet it will return NULL when
246  * page is NULL, else it will use the page for the needed block,
247  * setting it to NULL on return to indicate that it has been used.
248  *
249  * The swap vector is organized the following way:
250  *
251  * There are SHMEM_NR_DIRECT entries directly stored in the
252  * shmem_inode_info structure. So small files do not need an addional
253  * allocation.
254  *
255  * For pages with index > SHMEM_NR_DIRECT there is the pointer
256  * i_indirect which points to a page which holds in the first half
257  * doubly indirect blocks, in the second half triple indirect blocks:
258  *
259  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
260  * following layout (for SHMEM_NR_DIRECT == 16):
261  *
262  * i_indirect -> dir --> 16-19
263  * 	      |	     +-> 20-23
264  * 	      |
265  * 	      +-->dir2 --> 24-27
266  * 	      |	       +-> 28-31
267  * 	      |	       +-> 32-35
268  * 	      |	       +-> 36-39
269  * 	      |
270  * 	      +-->dir3 --> 40-43
271  * 	       	       +-> 44-47
272  * 	      	       +-> 48-51
273  * 	      	       +-> 52-55
274  */
275 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
276 {
277 	unsigned long offset;
278 	struct page **dir;
279 	struct page *subdir;
280 
281 	if (index < SHMEM_NR_DIRECT) {
282 		shmem_swp_balance_unmap();
283 		return info->i_direct+index;
284 	}
285 	if (!info->i_indirect) {
286 		if (page) {
287 			info->i_indirect = *page;
288 			*page = NULL;
289 		}
290 		return NULL;			/* need another page */
291 	}
292 
293 	index -= SHMEM_NR_DIRECT;
294 	offset = index % ENTRIES_PER_PAGE;
295 	index /= ENTRIES_PER_PAGE;
296 	dir = shmem_dir_map(info->i_indirect);
297 
298 	if (index >= ENTRIES_PER_PAGE/2) {
299 		index -= ENTRIES_PER_PAGE/2;
300 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
301 		index %= ENTRIES_PER_PAGE;
302 		subdir = *dir;
303 		if (!subdir) {
304 			if (page) {
305 				*dir = *page;
306 				*page = NULL;
307 			}
308 			shmem_dir_unmap(dir);
309 			return NULL;		/* need another page */
310 		}
311 		shmem_dir_unmap(dir);
312 		dir = shmem_dir_map(subdir);
313 	}
314 
315 	dir += index;
316 	subdir = *dir;
317 	if (!subdir) {
318 		if (!page || !(subdir = *page)) {
319 			shmem_dir_unmap(dir);
320 			return NULL;		/* need a page */
321 		}
322 		*dir = subdir;
323 		*page = NULL;
324 	}
325 	shmem_dir_unmap(dir);
326 	return shmem_swp_map(subdir) + offset;
327 }
328 
329 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
330 {
331 	long incdec = value? 1: -1;
332 
333 	entry->val = value;
334 	info->swapped += incdec;
335 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
336 		struct page *page = kmap_atomic_to_page(entry);
337 		set_page_private(page, page_private(page) + incdec);
338 	}
339 }
340 
341 /*
342  * shmem_swp_alloc - get the position of the swap entry for the page.
343  *                   If it does not exist allocate the entry.
344  *
345  * @info:	info structure for the inode
346  * @index:	index of the page to find
347  * @sgp:	check and recheck i_size? skip allocation?
348  */
349 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
350 {
351 	struct inode *inode = &info->vfs_inode;
352 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
353 	struct page *page = NULL;
354 	swp_entry_t *entry;
355 
356 	if (sgp != SGP_WRITE &&
357 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
358 		return ERR_PTR(-EINVAL);
359 
360 	while (!(entry = shmem_swp_entry(info, index, &page))) {
361 		if (sgp == SGP_READ)
362 			return shmem_swp_map(ZERO_PAGE(0));
363 		/*
364 		 * Test free_blocks against 1 not 0, since we have 1 data
365 		 * page (and perhaps indirect index pages) yet to allocate:
366 		 * a waste to allocate index if we cannot allocate data.
367 		 */
368 		if (sbinfo->max_blocks) {
369 			spin_lock(&sbinfo->stat_lock);
370 			if (sbinfo->free_blocks <= 1) {
371 				spin_unlock(&sbinfo->stat_lock);
372 				return ERR_PTR(-ENOSPC);
373 			}
374 			sbinfo->free_blocks--;
375 			inode->i_blocks += BLOCKS_PER_PAGE;
376 			spin_unlock(&sbinfo->stat_lock);
377 		}
378 
379 		spin_unlock(&info->lock);
380 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
381 		if (page)
382 			set_page_private(page, 0);
383 		spin_lock(&info->lock);
384 
385 		if (!page) {
386 			shmem_free_blocks(inode, 1);
387 			return ERR_PTR(-ENOMEM);
388 		}
389 		if (sgp != SGP_WRITE &&
390 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
391 			entry = ERR_PTR(-EINVAL);
392 			break;
393 		}
394 		if (info->next_index <= index)
395 			info->next_index = index + 1;
396 	}
397 	if (page) {
398 		/* another task gave its page, or truncated the file */
399 		shmem_free_blocks(inode, 1);
400 		shmem_dir_free(page);
401 	}
402 	if (info->next_index <= index && !IS_ERR(entry))
403 		info->next_index = index + 1;
404 	return entry;
405 }
406 
407 /*
408  * shmem_free_swp - free some swap entries in a directory
409  *
410  * @dir:        pointer to the directory
411  * @edir:       pointer after last entry of the directory
412  * @punch_lock: pointer to spinlock when needed for the holepunch case
413  */
414 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
415 						spinlock_t *punch_lock)
416 {
417 	spinlock_t *punch_unlock = NULL;
418 	swp_entry_t *ptr;
419 	int freed = 0;
420 
421 	for (ptr = dir; ptr < edir; ptr++) {
422 		if (ptr->val) {
423 			if (unlikely(punch_lock)) {
424 				punch_unlock = punch_lock;
425 				punch_lock = NULL;
426 				spin_lock(punch_unlock);
427 				if (!ptr->val)
428 					continue;
429 			}
430 			free_swap_and_cache(*ptr);
431 			*ptr = (swp_entry_t){0};
432 			freed++;
433 		}
434 	}
435 	if (punch_unlock)
436 		spin_unlock(punch_unlock);
437 	return freed;
438 }
439 
440 static int shmem_map_and_free_swp(struct page *subdir, int offset,
441 		int limit, struct page ***dir, spinlock_t *punch_lock)
442 {
443 	swp_entry_t *ptr;
444 	int freed = 0;
445 
446 	ptr = shmem_swp_map(subdir);
447 	for (; offset < limit; offset += LATENCY_LIMIT) {
448 		int size = limit - offset;
449 		if (size > LATENCY_LIMIT)
450 			size = LATENCY_LIMIT;
451 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
452 							punch_lock);
453 		if (need_resched()) {
454 			shmem_swp_unmap(ptr);
455 			if (*dir) {
456 				shmem_dir_unmap(*dir);
457 				*dir = NULL;
458 			}
459 			cond_resched();
460 			ptr = shmem_swp_map(subdir);
461 		}
462 	}
463 	shmem_swp_unmap(ptr);
464 	return freed;
465 }
466 
467 static void shmem_free_pages(struct list_head *next)
468 {
469 	struct page *page;
470 	int freed = 0;
471 
472 	do {
473 		page = container_of(next, struct page, lru);
474 		next = next->next;
475 		shmem_dir_free(page);
476 		freed++;
477 		if (freed >= LATENCY_LIMIT) {
478 			cond_resched();
479 			freed = 0;
480 		}
481 	} while (next);
482 }
483 
484 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
485 {
486 	struct shmem_inode_info *info = SHMEM_I(inode);
487 	unsigned long idx;
488 	unsigned long size;
489 	unsigned long limit;
490 	unsigned long stage;
491 	unsigned long diroff;
492 	struct page **dir;
493 	struct page *topdir;
494 	struct page *middir;
495 	struct page *subdir;
496 	swp_entry_t *ptr;
497 	LIST_HEAD(pages_to_free);
498 	long nr_pages_to_free = 0;
499 	long nr_swaps_freed = 0;
500 	int offset;
501 	int freed;
502 	int punch_hole;
503 	spinlock_t *needs_lock;
504 	spinlock_t *punch_lock;
505 	unsigned long upper_limit;
506 
507 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
508 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
509 	if (idx >= info->next_index)
510 		return;
511 
512 	spin_lock(&info->lock);
513 	info->flags |= SHMEM_TRUNCATE;
514 	if (likely(end == (loff_t) -1)) {
515 		limit = info->next_index;
516 		upper_limit = SHMEM_MAX_INDEX;
517 		info->next_index = idx;
518 		needs_lock = NULL;
519 		punch_hole = 0;
520 	} else {
521 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
522 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
523 							PAGE_CACHE_SHIFT;
524 			upper_limit = SHMEM_MAX_INDEX;
525 		} else {
526 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
527 			upper_limit = limit;
528 		}
529 		needs_lock = &info->lock;
530 		punch_hole = 1;
531 	}
532 
533 	topdir = info->i_indirect;
534 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
535 		info->i_indirect = NULL;
536 		nr_pages_to_free++;
537 		list_add(&topdir->lru, &pages_to_free);
538 	}
539 	spin_unlock(&info->lock);
540 
541 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
542 		ptr = info->i_direct;
543 		size = limit;
544 		if (size > SHMEM_NR_DIRECT)
545 			size = SHMEM_NR_DIRECT;
546 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
547 	}
548 
549 	/*
550 	 * If there are no indirect blocks or we are punching a hole
551 	 * below indirect blocks, nothing to be done.
552 	 */
553 	if (!topdir || limit <= SHMEM_NR_DIRECT)
554 		goto done2;
555 
556 	/*
557 	 * The truncation case has already dropped info->lock, and we're safe
558 	 * because i_size and next_index have already been lowered, preventing
559 	 * access beyond.  But in the punch_hole case, we still need to take
560 	 * the lock when updating the swap directory, because there might be
561 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
562 	 * shmem_writepage.  However, whenever we find we can remove a whole
563 	 * directory page (not at the misaligned start or end of the range),
564 	 * we first NULLify its pointer in the level above, and then have no
565 	 * need to take the lock when updating its contents: needs_lock and
566 	 * punch_lock (either pointing to info->lock or NULL) manage this.
567 	 */
568 
569 	upper_limit -= SHMEM_NR_DIRECT;
570 	limit -= SHMEM_NR_DIRECT;
571 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
572 	offset = idx % ENTRIES_PER_PAGE;
573 	idx -= offset;
574 
575 	dir = shmem_dir_map(topdir);
576 	stage = ENTRIES_PER_PAGEPAGE/2;
577 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
578 		middir = topdir;
579 		diroff = idx/ENTRIES_PER_PAGE;
580 	} else {
581 		dir += ENTRIES_PER_PAGE/2;
582 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
583 		while (stage <= idx)
584 			stage += ENTRIES_PER_PAGEPAGE;
585 		middir = *dir;
586 		if (*dir) {
587 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
588 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
589 			if (!diroff && !offset && upper_limit >= stage) {
590 				if (needs_lock) {
591 					spin_lock(needs_lock);
592 					*dir = NULL;
593 					spin_unlock(needs_lock);
594 					needs_lock = NULL;
595 				} else
596 					*dir = NULL;
597 				nr_pages_to_free++;
598 				list_add(&middir->lru, &pages_to_free);
599 			}
600 			shmem_dir_unmap(dir);
601 			dir = shmem_dir_map(middir);
602 		} else {
603 			diroff = 0;
604 			offset = 0;
605 			idx = stage;
606 		}
607 	}
608 
609 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
610 		if (unlikely(idx == stage)) {
611 			shmem_dir_unmap(dir);
612 			dir = shmem_dir_map(topdir) +
613 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
614 			while (!*dir) {
615 				dir++;
616 				idx += ENTRIES_PER_PAGEPAGE;
617 				if (idx >= limit)
618 					goto done1;
619 			}
620 			stage = idx + ENTRIES_PER_PAGEPAGE;
621 			middir = *dir;
622 			if (punch_hole)
623 				needs_lock = &info->lock;
624 			if (upper_limit >= stage) {
625 				if (needs_lock) {
626 					spin_lock(needs_lock);
627 					*dir = NULL;
628 					spin_unlock(needs_lock);
629 					needs_lock = NULL;
630 				} else
631 					*dir = NULL;
632 				nr_pages_to_free++;
633 				list_add(&middir->lru, &pages_to_free);
634 			}
635 			shmem_dir_unmap(dir);
636 			cond_resched();
637 			dir = shmem_dir_map(middir);
638 			diroff = 0;
639 		}
640 		punch_lock = needs_lock;
641 		subdir = dir[diroff];
642 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
643 			if (needs_lock) {
644 				spin_lock(needs_lock);
645 				dir[diroff] = NULL;
646 				spin_unlock(needs_lock);
647 				punch_lock = NULL;
648 			} else
649 				dir[diroff] = NULL;
650 			nr_pages_to_free++;
651 			list_add(&subdir->lru, &pages_to_free);
652 		}
653 		if (subdir && page_private(subdir) /* has swap entries */) {
654 			size = limit - idx;
655 			if (size > ENTRIES_PER_PAGE)
656 				size = ENTRIES_PER_PAGE;
657 			freed = shmem_map_and_free_swp(subdir,
658 					offset, size, &dir, punch_lock);
659 			if (!dir)
660 				dir = shmem_dir_map(middir);
661 			nr_swaps_freed += freed;
662 			if (offset || punch_lock) {
663 				spin_lock(&info->lock);
664 				set_page_private(subdir,
665 					page_private(subdir) - freed);
666 				spin_unlock(&info->lock);
667 			} else
668 				BUG_ON(page_private(subdir) != freed);
669 		}
670 		offset = 0;
671 	}
672 done1:
673 	shmem_dir_unmap(dir);
674 done2:
675 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
676 		/*
677 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
678 		 * may have swizzled a page in from swap since vmtruncate or
679 		 * generic_delete_inode did it, before we lowered next_index.
680 		 * Also, though shmem_getpage checks i_size before adding to
681 		 * cache, no recheck after: so fix the narrow window there too.
682 		 *
683 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
684 		 * every time for punch_hole (which never got a chance to clear
685 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
686 		 * yet hardly ever necessary: try to optimize them out later.
687 		 */
688 		truncate_inode_pages_range(inode->i_mapping, start, end);
689 		if (punch_hole)
690 			unmap_mapping_range(inode->i_mapping, start,
691 							end - start, 1);
692 	}
693 
694 	spin_lock(&info->lock);
695 	info->flags &= ~SHMEM_TRUNCATE;
696 	info->swapped -= nr_swaps_freed;
697 	if (nr_pages_to_free)
698 		shmem_free_blocks(inode, nr_pages_to_free);
699 	shmem_recalc_inode(inode);
700 	spin_unlock(&info->lock);
701 
702 	/*
703 	 * Empty swap vector directory pages to be freed?
704 	 */
705 	if (!list_empty(&pages_to_free)) {
706 		pages_to_free.prev->next = NULL;
707 		shmem_free_pages(pages_to_free.next);
708 	}
709 }
710 
711 static void shmem_truncate(struct inode *inode)
712 {
713 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
714 }
715 
716 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
717 {
718 	struct inode *inode = dentry->d_inode;
719 	struct page *page = NULL;
720 	int error;
721 
722 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
723 		if (attr->ia_size < inode->i_size) {
724 			/*
725 			 * If truncating down to a partial page, then
726 			 * if that page is already allocated, hold it
727 			 * in memory until the truncation is over, so
728 			 * truncate_partial_page cannnot miss it were
729 			 * it assigned to swap.
730 			 */
731 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
732 				(void) shmem_getpage(inode,
733 					attr->ia_size>>PAGE_CACHE_SHIFT,
734 						&page, SGP_READ, NULL);
735 			}
736 			/*
737 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
738 			 * detect if any pages might have been added to cache
739 			 * after truncate_inode_pages.  But we needn't bother
740 			 * if it's being fully truncated to zero-length: the
741 			 * nrpages check is efficient enough in that case.
742 			 */
743 			if (attr->ia_size) {
744 				struct shmem_inode_info *info = SHMEM_I(inode);
745 				spin_lock(&info->lock);
746 				info->flags &= ~SHMEM_PAGEIN;
747 				spin_unlock(&info->lock);
748 			}
749 		}
750 	}
751 
752 	error = inode_change_ok(inode, attr);
753 	if (!error)
754 		error = inode_setattr(inode, attr);
755 #ifdef CONFIG_TMPFS_POSIX_ACL
756 	if (!error && (attr->ia_valid & ATTR_MODE))
757 		error = generic_acl_chmod(inode, &shmem_acl_ops);
758 #endif
759 	if (page)
760 		page_cache_release(page);
761 	return error;
762 }
763 
764 static void shmem_delete_inode(struct inode *inode)
765 {
766 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
767 	struct shmem_inode_info *info = SHMEM_I(inode);
768 
769 	if (inode->i_op->truncate == shmem_truncate) {
770 		truncate_inode_pages(inode->i_mapping, 0);
771 		shmem_unacct_size(info->flags, inode->i_size);
772 		inode->i_size = 0;
773 		shmem_truncate(inode);
774 		if (!list_empty(&info->swaplist)) {
775 			spin_lock(&shmem_swaplist_lock);
776 			list_del_init(&info->swaplist);
777 			spin_unlock(&shmem_swaplist_lock);
778 		}
779 	}
780 	BUG_ON(inode->i_blocks);
781 	if (sbinfo->max_inodes) {
782 		spin_lock(&sbinfo->stat_lock);
783 		sbinfo->free_inodes++;
784 		spin_unlock(&sbinfo->stat_lock);
785 	}
786 	clear_inode(inode);
787 }
788 
789 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
790 {
791 	swp_entry_t *ptr;
792 
793 	for (ptr = dir; ptr < edir; ptr++) {
794 		if (ptr->val == entry.val)
795 			return ptr - dir;
796 	}
797 	return -1;
798 }
799 
800 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
801 {
802 	struct inode *inode;
803 	unsigned long idx;
804 	unsigned long size;
805 	unsigned long limit;
806 	unsigned long stage;
807 	struct page **dir;
808 	struct page *subdir;
809 	swp_entry_t *ptr;
810 	int offset;
811 
812 	idx = 0;
813 	ptr = info->i_direct;
814 	spin_lock(&info->lock);
815 	limit = info->next_index;
816 	size = limit;
817 	if (size > SHMEM_NR_DIRECT)
818 		size = SHMEM_NR_DIRECT;
819 	offset = shmem_find_swp(entry, ptr, ptr+size);
820 	if (offset >= 0) {
821 		shmem_swp_balance_unmap();
822 		goto found;
823 	}
824 	if (!info->i_indirect)
825 		goto lost2;
826 
827 	dir = shmem_dir_map(info->i_indirect);
828 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
829 
830 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
831 		if (unlikely(idx == stage)) {
832 			shmem_dir_unmap(dir-1);
833 			dir = shmem_dir_map(info->i_indirect) +
834 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
835 			while (!*dir) {
836 				dir++;
837 				idx += ENTRIES_PER_PAGEPAGE;
838 				if (idx >= limit)
839 					goto lost1;
840 			}
841 			stage = idx + ENTRIES_PER_PAGEPAGE;
842 			subdir = *dir;
843 			shmem_dir_unmap(dir);
844 			dir = shmem_dir_map(subdir);
845 		}
846 		subdir = *dir;
847 		if (subdir && page_private(subdir)) {
848 			ptr = shmem_swp_map(subdir);
849 			size = limit - idx;
850 			if (size > ENTRIES_PER_PAGE)
851 				size = ENTRIES_PER_PAGE;
852 			offset = shmem_find_swp(entry, ptr, ptr+size);
853 			if (offset >= 0) {
854 				shmem_dir_unmap(dir);
855 				goto found;
856 			}
857 			shmem_swp_unmap(ptr);
858 		}
859 	}
860 lost1:
861 	shmem_dir_unmap(dir-1);
862 lost2:
863 	spin_unlock(&info->lock);
864 	return 0;
865 found:
866 	idx += offset;
867 	inode = &info->vfs_inode;
868 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
869 		info->flags |= SHMEM_PAGEIN;
870 		shmem_swp_set(info, ptr + offset, 0);
871 	}
872 	shmem_swp_unmap(ptr);
873 	spin_unlock(&info->lock);
874 	/*
875 	 * Decrement swap count even when the entry is left behind:
876 	 * try_to_unuse will skip over mms, then reincrement count.
877 	 */
878 	swap_free(entry);
879 	return 1;
880 }
881 
882 /*
883  * shmem_unuse() search for an eventually swapped out shmem page.
884  */
885 int shmem_unuse(swp_entry_t entry, struct page *page)
886 {
887 	struct list_head *p, *next;
888 	struct shmem_inode_info *info;
889 	int found = 0;
890 
891 	spin_lock(&shmem_swaplist_lock);
892 	list_for_each_safe(p, next, &shmem_swaplist) {
893 		info = list_entry(p, struct shmem_inode_info, swaplist);
894 		if (!info->swapped)
895 			list_del_init(&info->swaplist);
896 		else if (shmem_unuse_inode(info, entry, page)) {
897 			/* move head to start search for next from here */
898 			list_move_tail(&shmem_swaplist, &info->swaplist);
899 			found = 1;
900 			break;
901 		}
902 	}
903 	spin_unlock(&shmem_swaplist_lock);
904 	return found;
905 }
906 
907 /*
908  * Move the page from the page cache to the swap cache.
909  */
910 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
911 {
912 	struct shmem_inode_info *info;
913 	swp_entry_t *entry, swap;
914 	struct address_space *mapping;
915 	unsigned long index;
916 	struct inode *inode;
917 
918 	BUG_ON(!PageLocked(page));
919 	BUG_ON(page_mapped(page));
920 
921 	mapping = page->mapping;
922 	index = page->index;
923 	inode = mapping->host;
924 	info = SHMEM_I(inode);
925 	if (info->flags & VM_LOCKED)
926 		goto redirty;
927 	swap = get_swap_page();
928 	if (!swap.val)
929 		goto redirty;
930 
931 	spin_lock(&info->lock);
932 	shmem_recalc_inode(inode);
933 	if (index >= info->next_index) {
934 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
935 		goto unlock;
936 	}
937 	entry = shmem_swp_entry(info, index, NULL);
938 	BUG_ON(!entry);
939 	BUG_ON(entry->val);
940 
941 	if (move_to_swap_cache(page, swap) == 0) {
942 		shmem_swp_set(info, entry, swap.val);
943 		shmem_swp_unmap(entry);
944 		spin_unlock(&info->lock);
945 		if (list_empty(&info->swaplist)) {
946 			spin_lock(&shmem_swaplist_lock);
947 			/* move instead of add in case we're racing */
948 			list_move_tail(&info->swaplist, &shmem_swaplist);
949 			spin_unlock(&shmem_swaplist_lock);
950 		}
951 		unlock_page(page);
952 		return 0;
953 	}
954 
955 	shmem_swp_unmap(entry);
956 unlock:
957 	spin_unlock(&info->lock);
958 	swap_free(swap);
959 redirty:
960 	set_page_dirty(page);
961 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
962 }
963 
964 #ifdef CONFIG_NUMA
965 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
966 {
967 	char *nodelist = strchr(value, ':');
968 	int err = 1;
969 
970 	if (nodelist) {
971 		/* NUL-terminate policy string */
972 		*nodelist++ = '\0';
973 		if (nodelist_parse(nodelist, *policy_nodes))
974 			goto out;
975 		if (!nodes_subset(*policy_nodes, node_online_map))
976 			goto out;
977 	}
978 	if (!strcmp(value, "default")) {
979 		*policy = MPOL_DEFAULT;
980 		/* Don't allow a nodelist */
981 		if (!nodelist)
982 			err = 0;
983 	} else if (!strcmp(value, "prefer")) {
984 		*policy = MPOL_PREFERRED;
985 		/* Insist on a nodelist of one node only */
986 		if (nodelist) {
987 			char *rest = nodelist;
988 			while (isdigit(*rest))
989 				rest++;
990 			if (!*rest)
991 				err = 0;
992 		}
993 	} else if (!strcmp(value, "bind")) {
994 		*policy = MPOL_BIND;
995 		/* Insist on a nodelist */
996 		if (nodelist)
997 			err = 0;
998 	} else if (!strcmp(value, "interleave")) {
999 		*policy = MPOL_INTERLEAVE;
1000 		/* Default to nodes online if no nodelist */
1001 		if (!nodelist)
1002 			*policy_nodes = node_online_map;
1003 		err = 0;
1004 	}
1005 out:
1006 	/* Restore string for error message */
1007 	if (nodelist)
1008 		*--nodelist = ':';
1009 	return err;
1010 }
1011 
1012 static struct page *shmem_swapin_async(struct shared_policy *p,
1013 				       swp_entry_t entry, unsigned long idx)
1014 {
1015 	struct page *page;
1016 	struct vm_area_struct pvma;
1017 
1018 	/* Create a pseudo vma that just contains the policy */
1019 	memset(&pvma, 0, sizeof(struct vm_area_struct));
1020 	pvma.vm_end = PAGE_SIZE;
1021 	pvma.vm_pgoff = idx;
1022 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1023 	page = read_swap_cache_async(entry, &pvma, 0);
1024 	mpol_free(pvma.vm_policy);
1025 	return page;
1026 }
1027 
1028 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
1029 			  unsigned long idx)
1030 {
1031 	struct shared_policy *p = &info->policy;
1032 	int i, num;
1033 	struct page *page;
1034 	unsigned long offset;
1035 
1036 	num = valid_swaphandles(entry, &offset);
1037 	for (i = 0; i < num; offset++, i++) {
1038 		page = shmem_swapin_async(p,
1039 				swp_entry(swp_type(entry), offset), idx);
1040 		if (!page)
1041 			break;
1042 		page_cache_release(page);
1043 	}
1044 	lru_add_drain();	/* Push any new pages onto the LRU now */
1045 	return shmem_swapin_async(p, entry, idx);
1046 }
1047 
1048 static struct page *
1049 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1050 		 unsigned long idx)
1051 {
1052 	struct vm_area_struct pvma;
1053 	struct page *page;
1054 
1055 	memset(&pvma, 0, sizeof(struct vm_area_struct));
1056 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1057 	pvma.vm_pgoff = idx;
1058 	pvma.vm_end = PAGE_SIZE;
1059 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1060 	mpol_free(pvma.vm_policy);
1061 	return page;
1062 }
1063 #else
1064 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1065 {
1066 	return 1;
1067 }
1068 
1069 static inline struct page *
1070 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1071 {
1072 	swapin_readahead(entry, 0, NULL);
1073 	return read_swap_cache_async(entry, NULL, 0);
1074 }
1075 
1076 static inline struct page *
1077 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1078 {
1079 	return alloc_page(gfp | __GFP_ZERO);
1080 }
1081 #endif
1082 
1083 /*
1084  * shmem_getpage - either get the page from swap or allocate a new one
1085  *
1086  * If we allocate a new one we do not mark it dirty. That's up to the
1087  * vm. If we swap it in we mark it dirty since we also free the swap
1088  * entry since a page cannot live in both the swap and page cache
1089  */
1090 static int shmem_getpage(struct inode *inode, unsigned long idx,
1091 			struct page **pagep, enum sgp_type sgp, int *type)
1092 {
1093 	struct address_space *mapping = inode->i_mapping;
1094 	struct shmem_inode_info *info = SHMEM_I(inode);
1095 	struct shmem_sb_info *sbinfo;
1096 	struct page *filepage = *pagep;
1097 	struct page *swappage;
1098 	swp_entry_t *entry;
1099 	swp_entry_t swap;
1100 	int error;
1101 
1102 	if (idx >= SHMEM_MAX_INDEX)
1103 		return -EFBIG;
1104 
1105 	if (type)
1106 		*type = 0;
1107 
1108 	/*
1109 	 * Normally, filepage is NULL on entry, and either found
1110 	 * uptodate immediately, or allocated and zeroed, or read
1111 	 * in under swappage, which is then assigned to filepage.
1112 	 * But shmem_readpage and shmem_prepare_write pass in a locked
1113 	 * filepage, which may be found not uptodate by other callers
1114 	 * too, and may need to be copied from the swappage read in.
1115 	 */
1116 repeat:
1117 	if (!filepage)
1118 		filepage = find_lock_page(mapping, idx);
1119 	if (filepage && PageUptodate(filepage))
1120 		goto done;
1121 	error = 0;
1122 	if (sgp == SGP_QUICK)
1123 		goto failed;
1124 
1125 	spin_lock(&info->lock);
1126 	shmem_recalc_inode(inode);
1127 	entry = shmem_swp_alloc(info, idx, sgp);
1128 	if (IS_ERR(entry)) {
1129 		spin_unlock(&info->lock);
1130 		error = PTR_ERR(entry);
1131 		goto failed;
1132 	}
1133 	swap = *entry;
1134 
1135 	if (swap.val) {
1136 		/* Look it up and read it in.. */
1137 		swappage = lookup_swap_cache(swap);
1138 		if (!swappage) {
1139 			shmem_swp_unmap(entry);
1140 			/* here we actually do the io */
1141 			if (type && !(*type & VM_FAULT_MAJOR)) {
1142 				__count_vm_event(PGMAJFAULT);
1143 				*type |= VM_FAULT_MAJOR;
1144 			}
1145 			spin_unlock(&info->lock);
1146 			swappage = shmem_swapin(info, swap, idx);
1147 			if (!swappage) {
1148 				spin_lock(&info->lock);
1149 				entry = shmem_swp_alloc(info, idx, sgp);
1150 				if (IS_ERR(entry))
1151 					error = PTR_ERR(entry);
1152 				else {
1153 					if (entry->val == swap.val)
1154 						error = -ENOMEM;
1155 					shmem_swp_unmap(entry);
1156 				}
1157 				spin_unlock(&info->lock);
1158 				if (error)
1159 					goto failed;
1160 				goto repeat;
1161 			}
1162 			wait_on_page_locked(swappage);
1163 			page_cache_release(swappage);
1164 			goto repeat;
1165 		}
1166 
1167 		/* We have to do this with page locked to prevent races */
1168 		if (TestSetPageLocked(swappage)) {
1169 			shmem_swp_unmap(entry);
1170 			spin_unlock(&info->lock);
1171 			wait_on_page_locked(swappage);
1172 			page_cache_release(swappage);
1173 			goto repeat;
1174 		}
1175 		if (PageWriteback(swappage)) {
1176 			shmem_swp_unmap(entry);
1177 			spin_unlock(&info->lock);
1178 			wait_on_page_writeback(swappage);
1179 			unlock_page(swappage);
1180 			page_cache_release(swappage);
1181 			goto repeat;
1182 		}
1183 		if (!PageUptodate(swappage)) {
1184 			shmem_swp_unmap(entry);
1185 			spin_unlock(&info->lock);
1186 			unlock_page(swappage);
1187 			page_cache_release(swappage);
1188 			error = -EIO;
1189 			goto failed;
1190 		}
1191 
1192 		if (filepage) {
1193 			shmem_swp_set(info, entry, 0);
1194 			shmem_swp_unmap(entry);
1195 			delete_from_swap_cache(swappage);
1196 			spin_unlock(&info->lock);
1197 			copy_highpage(filepage, swappage);
1198 			unlock_page(swappage);
1199 			page_cache_release(swappage);
1200 			flush_dcache_page(filepage);
1201 			SetPageUptodate(filepage);
1202 			set_page_dirty(filepage);
1203 			swap_free(swap);
1204 		} else if (!(error = move_from_swap_cache(
1205 				swappage, idx, mapping))) {
1206 			info->flags |= SHMEM_PAGEIN;
1207 			shmem_swp_set(info, entry, 0);
1208 			shmem_swp_unmap(entry);
1209 			spin_unlock(&info->lock);
1210 			filepage = swappage;
1211 			swap_free(swap);
1212 		} else {
1213 			shmem_swp_unmap(entry);
1214 			spin_unlock(&info->lock);
1215 			unlock_page(swappage);
1216 			page_cache_release(swappage);
1217 			if (error == -ENOMEM) {
1218 				/* let kswapd refresh zone for GFP_ATOMICs */
1219 				congestion_wait(WRITE, HZ/50);
1220 			}
1221 			goto repeat;
1222 		}
1223 	} else if (sgp == SGP_READ && !filepage) {
1224 		shmem_swp_unmap(entry);
1225 		filepage = find_get_page(mapping, idx);
1226 		if (filepage &&
1227 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1228 			spin_unlock(&info->lock);
1229 			wait_on_page_locked(filepage);
1230 			page_cache_release(filepage);
1231 			filepage = NULL;
1232 			goto repeat;
1233 		}
1234 		spin_unlock(&info->lock);
1235 	} else {
1236 		shmem_swp_unmap(entry);
1237 		sbinfo = SHMEM_SB(inode->i_sb);
1238 		if (sbinfo->max_blocks) {
1239 			spin_lock(&sbinfo->stat_lock);
1240 			if (sbinfo->free_blocks == 0 ||
1241 			    shmem_acct_block(info->flags)) {
1242 				spin_unlock(&sbinfo->stat_lock);
1243 				spin_unlock(&info->lock);
1244 				error = -ENOSPC;
1245 				goto failed;
1246 			}
1247 			sbinfo->free_blocks--;
1248 			inode->i_blocks += BLOCKS_PER_PAGE;
1249 			spin_unlock(&sbinfo->stat_lock);
1250 		} else if (shmem_acct_block(info->flags)) {
1251 			spin_unlock(&info->lock);
1252 			error = -ENOSPC;
1253 			goto failed;
1254 		}
1255 
1256 		if (!filepage) {
1257 			spin_unlock(&info->lock);
1258 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1259 						    info,
1260 						    idx);
1261 			if (!filepage) {
1262 				shmem_unacct_blocks(info->flags, 1);
1263 				shmem_free_blocks(inode, 1);
1264 				error = -ENOMEM;
1265 				goto failed;
1266 			}
1267 
1268 			spin_lock(&info->lock);
1269 			entry = shmem_swp_alloc(info, idx, sgp);
1270 			if (IS_ERR(entry))
1271 				error = PTR_ERR(entry);
1272 			else {
1273 				swap = *entry;
1274 				shmem_swp_unmap(entry);
1275 			}
1276 			if (error || swap.val || 0 != add_to_page_cache_lru(
1277 					filepage, mapping, idx, GFP_ATOMIC)) {
1278 				spin_unlock(&info->lock);
1279 				page_cache_release(filepage);
1280 				shmem_unacct_blocks(info->flags, 1);
1281 				shmem_free_blocks(inode, 1);
1282 				filepage = NULL;
1283 				if (error)
1284 					goto failed;
1285 				goto repeat;
1286 			}
1287 			info->flags |= SHMEM_PAGEIN;
1288 		}
1289 
1290 		info->alloced++;
1291 		spin_unlock(&info->lock);
1292 		flush_dcache_page(filepage);
1293 		SetPageUptodate(filepage);
1294 	}
1295 done:
1296 	if (*pagep != filepage) {
1297 		*pagep = filepage;
1298 		if (sgp != SGP_FAULT)
1299 			unlock_page(filepage);
1300 
1301 	}
1302 	return 0;
1303 
1304 failed:
1305 	if (*pagep != filepage) {
1306 		unlock_page(filepage);
1307 		page_cache_release(filepage);
1308 	}
1309 	return error;
1310 }
1311 
1312 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1313 {
1314 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1315 	int error;
1316 	int ret;
1317 
1318 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1319 		return VM_FAULT_SIGBUS;
1320 
1321 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret);
1322 	if (error)
1323 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1324 
1325 	mark_page_accessed(vmf->page);
1326 	return ret | VM_FAULT_LOCKED;
1327 }
1328 
1329 #ifdef CONFIG_NUMA
1330 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1331 {
1332 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1333 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1334 }
1335 
1336 struct mempolicy *
1337 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1338 {
1339 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1340 	unsigned long idx;
1341 
1342 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1343 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1344 }
1345 #endif
1346 
1347 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1348 {
1349 	struct inode *inode = file->f_path.dentry->d_inode;
1350 	struct shmem_inode_info *info = SHMEM_I(inode);
1351 	int retval = -ENOMEM;
1352 
1353 	spin_lock(&info->lock);
1354 	if (lock && !(info->flags & VM_LOCKED)) {
1355 		if (!user_shm_lock(inode->i_size, user))
1356 			goto out_nomem;
1357 		info->flags |= VM_LOCKED;
1358 	}
1359 	if (!lock && (info->flags & VM_LOCKED) && user) {
1360 		user_shm_unlock(inode->i_size, user);
1361 		info->flags &= ~VM_LOCKED;
1362 	}
1363 	retval = 0;
1364 out_nomem:
1365 	spin_unlock(&info->lock);
1366 	return retval;
1367 }
1368 
1369 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1370 {
1371 	file_accessed(file);
1372 	vma->vm_ops = &shmem_vm_ops;
1373 	vma->vm_flags |= VM_CAN_NONLINEAR;
1374 	return 0;
1375 }
1376 
1377 static struct inode *
1378 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1379 {
1380 	struct inode *inode;
1381 	struct shmem_inode_info *info;
1382 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1383 
1384 	if (sbinfo->max_inodes) {
1385 		spin_lock(&sbinfo->stat_lock);
1386 		if (!sbinfo->free_inodes) {
1387 			spin_unlock(&sbinfo->stat_lock);
1388 			return NULL;
1389 		}
1390 		sbinfo->free_inodes--;
1391 		spin_unlock(&sbinfo->stat_lock);
1392 	}
1393 
1394 	inode = new_inode(sb);
1395 	if (inode) {
1396 		inode->i_mode = mode;
1397 		inode->i_uid = current->fsuid;
1398 		inode->i_gid = current->fsgid;
1399 		inode->i_blocks = 0;
1400 		inode->i_mapping->a_ops = &shmem_aops;
1401 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1402 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1403 		inode->i_generation = get_seconds();
1404 		info = SHMEM_I(inode);
1405 		memset(info, 0, (char *)inode - (char *)info);
1406 		spin_lock_init(&info->lock);
1407 		INIT_LIST_HEAD(&info->swaplist);
1408 
1409 		switch (mode & S_IFMT) {
1410 		default:
1411 			inode->i_op = &shmem_special_inode_operations;
1412 			init_special_inode(inode, mode, dev);
1413 			break;
1414 		case S_IFREG:
1415 			inode->i_op = &shmem_inode_operations;
1416 			inode->i_fop = &shmem_file_operations;
1417 			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1418 							&sbinfo->policy_nodes);
1419 			break;
1420 		case S_IFDIR:
1421 			inc_nlink(inode);
1422 			/* Some things misbehave if size == 0 on a directory */
1423 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1424 			inode->i_op = &shmem_dir_inode_operations;
1425 			inode->i_fop = &simple_dir_operations;
1426 			break;
1427 		case S_IFLNK:
1428 			/*
1429 			 * Must not load anything in the rbtree,
1430 			 * mpol_free_shared_policy will not be called.
1431 			 */
1432 			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1433 						NULL);
1434 			break;
1435 		}
1436 	} else if (sbinfo->max_inodes) {
1437 		spin_lock(&sbinfo->stat_lock);
1438 		sbinfo->free_inodes++;
1439 		spin_unlock(&sbinfo->stat_lock);
1440 	}
1441 	return inode;
1442 }
1443 
1444 #ifdef CONFIG_TMPFS
1445 static const struct inode_operations shmem_symlink_inode_operations;
1446 static const struct inode_operations shmem_symlink_inline_operations;
1447 
1448 /*
1449  * Normally tmpfs avoids the use of shmem_readpage and shmem_prepare_write;
1450  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1451  * below the loop driver, in the generic fashion that many filesystems support.
1452  */
1453 static int shmem_readpage(struct file *file, struct page *page)
1454 {
1455 	struct inode *inode = page->mapping->host;
1456 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1457 	unlock_page(page);
1458 	return error;
1459 }
1460 
1461 static int
1462 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1463 {
1464 	struct inode *inode = page->mapping->host;
1465 	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1466 }
1467 
1468 static ssize_t
1469 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1470 {
1471 	struct inode	*inode = file->f_path.dentry->d_inode;
1472 	loff_t		pos;
1473 	unsigned long	written;
1474 	ssize_t		err;
1475 
1476 	if ((ssize_t) count < 0)
1477 		return -EINVAL;
1478 
1479 	if (!access_ok(VERIFY_READ, buf, count))
1480 		return -EFAULT;
1481 
1482 	mutex_lock(&inode->i_mutex);
1483 
1484 	pos = *ppos;
1485 	written = 0;
1486 
1487 	err = generic_write_checks(file, &pos, &count, 0);
1488 	if (err || !count)
1489 		goto out;
1490 
1491 	err = remove_suid(file->f_path.dentry);
1492 	if (err)
1493 		goto out;
1494 
1495 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1496 
1497 	do {
1498 		struct page *page = NULL;
1499 		unsigned long bytes, index, offset;
1500 		char *kaddr;
1501 		int left;
1502 
1503 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1504 		index = pos >> PAGE_CACHE_SHIFT;
1505 		bytes = PAGE_CACHE_SIZE - offset;
1506 		if (bytes > count)
1507 			bytes = count;
1508 
1509 		/*
1510 		 * We don't hold page lock across copy from user -
1511 		 * what would it guard against? - so no deadlock here.
1512 		 * But it still may be a good idea to prefault below.
1513 		 */
1514 
1515 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1516 		if (err)
1517 			break;
1518 
1519 		left = bytes;
1520 		if (PageHighMem(page)) {
1521 			volatile unsigned char dummy;
1522 			__get_user(dummy, buf);
1523 			__get_user(dummy, buf + bytes - 1);
1524 
1525 			kaddr = kmap_atomic(page, KM_USER0);
1526 			left = __copy_from_user_inatomic(kaddr + offset,
1527 							buf, bytes);
1528 			kunmap_atomic(kaddr, KM_USER0);
1529 		}
1530 		if (left) {
1531 			kaddr = kmap(page);
1532 			left = __copy_from_user(kaddr + offset, buf, bytes);
1533 			kunmap(page);
1534 		}
1535 
1536 		written += bytes;
1537 		count -= bytes;
1538 		pos += bytes;
1539 		buf += bytes;
1540 		if (pos > inode->i_size)
1541 			i_size_write(inode, pos);
1542 
1543 		flush_dcache_page(page);
1544 		set_page_dirty(page);
1545 		mark_page_accessed(page);
1546 		page_cache_release(page);
1547 
1548 		if (left) {
1549 			pos -= left;
1550 			written -= left;
1551 			err = -EFAULT;
1552 			break;
1553 		}
1554 
1555 		/*
1556 		 * Our dirty pages are not counted in nr_dirty,
1557 		 * and we do not attempt to balance dirty pages.
1558 		 */
1559 
1560 		cond_resched();
1561 	} while (count);
1562 
1563 	*ppos = pos;
1564 	if (written)
1565 		err = written;
1566 out:
1567 	mutex_unlock(&inode->i_mutex);
1568 	return err;
1569 }
1570 
1571 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1572 {
1573 	struct inode *inode = filp->f_path.dentry->d_inode;
1574 	struct address_space *mapping = inode->i_mapping;
1575 	unsigned long index, offset;
1576 
1577 	index = *ppos >> PAGE_CACHE_SHIFT;
1578 	offset = *ppos & ~PAGE_CACHE_MASK;
1579 
1580 	for (;;) {
1581 		struct page *page = NULL;
1582 		unsigned long end_index, nr, ret;
1583 		loff_t i_size = i_size_read(inode);
1584 
1585 		end_index = i_size >> PAGE_CACHE_SHIFT;
1586 		if (index > end_index)
1587 			break;
1588 		if (index == end_index) {
1589 			nr = i_size & ~PAGE_CACHE_MASK;
1590 			if (nr <= offset)
1591 				break;
1592 		}
1593 
1594 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1595 		if (desc->error) {
1596 			if (desc->error == -EINVAL)
1597 				desc->error = 0;
1598 			break;
1599 		}
1600 
1601 		/*
1602 		 * We must evaluate after, since reads (unlike writes)
1603 		 * are called without i_mutex protection against truncate
1604 		 */
1605 		nr = PAGE_CACHE_SIZE;
1606 		i_size = i_size_read(inode);
1607 		end_index = i_size >> PAGE_CACHE_SHIFT;
1608 		if (index == end_index) {
1609 			nr = i_size & ~PAGE_CACHE_MASK;
1610 			if (nr <= offset) {
1611 				if (page)
1612 					page_cache_release(page);
1613 				break;
1614 			}
1615 		}
1616 		nr -= offset;
1617 
1618 		if (page) {
1619 			/*
1620 			 * If users can be writing to this page using arbitrary
1621 			 * virtual addresses, take care about potential aliasing
1622 			 * before reading the page on the kernel side.
1623 			 */
1624 			if (mapping_writably_mapped(mapping))
1625 				flush_dcache_page(page);
1626 			/*
1627 			 * Mark the page accessed if we read the beginning.
1628 			 */
1629 			if (!offset)
1630 				mark_page_accessed(page);
1631 		} else {
1632 			page = ZERO_PAGE(0);
1633 			page_cache_get(page);
1634 		}
1635 
1636 		/*
1637 		 * Ok, we have the page, and it's up-to-date, so
1638 		 * now we can copy it to user space...
1639 		 *
1640 		 * The actor routine returns how many bytes were actually used..
1641 		 * NOTE! This may not be the same as how much of a user buffer
1642 		 * we filled up (we may be padding etc), so we can only update
1643 		 * "pos" here (the actor routine has to update the user buffer
1644 		 * pointers and the remaining count).
1645 		 */
1646 		ret = actor(desc, page, offset, nr);
1647 		offset += ret;
1648 		index += offset >> PAGE_CACHE_SHIFT;
1649 		offset &= ~PAGE_CACHE_MASK;
1650 
1651 		page_cache_release(page);
1652 		if (ret != nr || !desc->count)
1653 			break;
1654 
1655 		cond_resched();
1656 	}
1657 
1658 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1659 	file_accessed(filp);
1660 }
1661 
1662 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1663 {
1664 	read_descriptor_t desc;
1665 
1666 	if ((ssize_t) count < 0)
1667 		return -EINVAL;
1668 	if (!access_ok(VERIFY_WRITE, buf, count))
1669 		return -EFAULT;
1670 	if (!count)
1671 		return 0;
1672 
1673 	desc.written = 0;
1674 	desc.count = count;
1675 	desc.arg.buf = buf;
1676 	desc.error = 0;
1677 
1678 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1679 	if (desc.written)
1680 		return desc.written;
1681 	return desc.error;
1682 }
1683 
1684 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1685 {
1686 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1687 
1688 	buf->f_type = TMPFS_MAGIC;
1689 	buf->f_bsize = PAGE_CACHE_SIZE;
1690 	buf->f_namelen = NAME_MAX;
1691 	spin_lock(&sbinfo->stat_lock);
1692 	if (sbinfo->max_blocks) {
1693 		buf->f_blocks = sbinfo->max_blocks;
1694 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1695 	}
1696 	if (sbinfo->max_inodes) {
1697 		buf->f_files = sbinfo->max_inodes;
1698 		buf->f_ffree = sbinfo->free_inodes;
1699 	}
1700 	/* else leave those fields 0 like simple_statfs */
1701 	spin_unlock(&sbinfo->stat_lock);
1702 	return 0;
1703 }
1704 
1705 /*
1706  * File creation. Allocate an inode, and we're done..
1707  */
1708 static int
1709 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1710 {
1711 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1712 	int error = -ENOSPC;
1713 
1714 	if (inode) {
1715 		error = security_inode_init_security(inode, dir, NULL, NULL,
1716 						     NULL);
1717 		if (error) {
1718 			if (error != -EOPNOTSUPP) {
1719 				iput(inode);
1720 				return error;
1721 			}
1722 		}
1723 		error = shmem_acl_init(inode, dir);
1724 		if (error) {
1725 			iput(inode);
1726 			return error;
1727 		}
1728 		if (dir->i_mode & S_ISGID) {
1729 			inode->i_gid = dir->i_gid;
1730 			if (S_ISDIR(mode))
1731 				inode->i_mode |= S_ISGID;
1732 		}
1733 		dir->i_size += BOGO_DIRENT_SIZE;
1734 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1735 		d_instantiate(dentry, inode);
1736 		dget(dentry); /* Extra count - pin the dentry in core */
1737 	}
1738 	return error;
1739 }
1740 
1741 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1742 {
1743 	int error;
1744 
1745 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1746 		return error;
1747 	inc_nlink(dir);
1748 	return 0;
1749 }
1750 
1751 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1752 		struct nameidata *nd)
1753 {
1754 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1755 }
1756 
1757 /*
1758  * Link a file..
1759  */
1760 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1761 {
1762 	struct inode *inode = old_dentry->d_inode;
1763 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1764 
1765 	/*
1766 	 * No ordinary (disk based) filesystem counts links as inodes;
1767 	 * but each new link needs a new dentry, pinning lowmem, and
1768 	 * tmpfs dentries cannot be pruned until they are unlinked.
1769 	 */
1770 	if (sbinfo->max_inodes) {
1771 		spin_lock(&sbinfo->stat_lock);
1772 		if (!sbinfo->free_inodes) {
1773 			spin_unlock(&sbinfo->stat_lock);
1774 			return -ENOSPC;
1775 		}
1776 		sbinfo->free_inodes--;
1777 		spin_unlock(&sbinfo->stat_lock);
1778 	}
1779 
1780 	dir->i_size += BOGO_DIRENT_SIZE;
1781 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1782 	inc_nlink(inode);
1783 	atomic_inc(&inode->i_count);	/* New dentry reference */
1784 	dget(dentry);		/* Extra pinning count for the created dentry */
1785 	d_instantiate(dentry, inode);
1786 	return 0;
1787 }
1788 
1789 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1790 {
1791 	struct inode *inode = dentry->d_inode;
1792 
1793 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1794 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1795 		if (sbinfo->max_inodes) {
1796 			spin_lock(&sbinfo->stat_lock);
1797 			sbinfo->free_inodes++;
1798 			spin_unlock(&sbinfo->stat_lock);
1799 		}
1800 	}
1801 
1802 	dir->i_size -= BOGO_DIRENT_SIZE;
1803 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1804 	drop_nlink(inode);
1805 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1806 	return 0;
1807 }
1808 
1809 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1810 {
1811 	if (!simple_empty(dentry))
1812 		return -ENOTEMPTY;
1813 
1814 	drop_nlink(dentry->d_inode);
1815 	drop_nlink(dir);
1816 	return shmem_unlink(dir, dentry);
1817 }
1818 
1819 /*
1820  * The VFS layer already does all the dentry stuff for rename,
1821  * we just have to decrement the usage count for the target if
1822  * it exists so that the VFS layer correctly free's it when it
1823  * gets overwritten.
1824  */
1825 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1826 {
1827 	struct inode *inode = old_dentry->d_inode;
1828 	int they_are_dirs = S_ISDIR(inode->i_mode);
1829 
1830 	if (!simple_empty(new_dentry))
1831 		return -ENOTEMPTY;
1832 
1833 	if (new_dentry->d_inode) {
1834 		(void) shmem_unlink(new_dir, new_dentry);
1835 		if (they_are_dirs)
1836 			drop_nlink(old_dir);
1837 	} else if (they_are_dirs) {
1838 		drop_nlink(old_dir);
1839 		inc_nlink(new_dir);
1840 	}
1841 
1842 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1843 	new_dir->i_size += BOGO_DIRENT_SIZE;
1844 	old_dir->i_ctime = old_dir->i_mtime =
1845 	new_dir->i_ctime = new_dir->i_mtime =
1846 	inode->i_ctime = CURRENT_TIME;
1847 	return 0;
1848 }
1849 
1850 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1851 {
1852 	int error;
1853 	int len;
1854 	struct inode *inode;
1855 	struct page *page = NULL;
1856 	char *kaddr;
1857 	struct shmem_inode_info *info;
1858 
1859 	len = strlen(symname) + 1;
1860 	if (len > PAGE_CACHE_SIZE)
1861 		return -ENAMETOOLONG;
1862 
1863 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1864 	if (!inode)
1865 		return -ENOSPC;
1866 
1867 	error = security_inode_init_security(inode, dir, NULL, NULL,
1868 					     NULL);
1869 	if (error) {
1870 		if (error != -EOPNOTSUPP) {
1871 			iput(inode);
1872 			return error;
1873 		}
1874 		error = 0;
1875 	}
1876 
1877 	info = SHMEM_I(inode);
1878 	inode->i_size = len-1;
1879 	if (len <= (char *)inode - (char *)info) {
1880 		/* do it inline */
1881 		memcpy(info, symname, len);
1882 		inode->i_op = &shmem_symlink_inline_operations;
1883 	} else {
1884 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1885 		if (error) {
1886 			iput(inode);
1887 			return error;
1888 		}
1889 		inode->i_op = &shmem_symlink_inode_operations;
1890 		kaddr = kmap_atomic(page, KM_USER0);
1891 		memcpy(kaddr, symname, len);
1892 		kunmap_atomic(kaddr, KM_USER0);
1893 		set_page_dirty(page);
1894 		page_cache_release(page);
1895 	}
1896 	if (dir->i_mode & S_ISGID)
1897 		inode->i_gid = dir->i_gid;
1898 	dir->i_size += BOGO_DIRENT_SIZE;
1899 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1900 	d_instantiate(dentry, inode);
1901 	dget(dentry);
1902 	return 0;
1903 }
1904 
1905 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1906 {
1907 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1908 	return NULL;
1909 }
1910 
1911 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1912 {
1913 	struct page *page = NULL;
1914 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1915 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1916 	return page;
1917 }
1918 
1919 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1920 {
1921 	if (!IS_ERR(nd_get_link(nd))) {
1922 		struct page *page = cookie;
1923 		kunmap(page);
1924 		mark_page_accessed(page);
1925 		page_cache_release(page);
1926 	}
1927 }
1928 
1929 static const struct inode_operations shmem_symlink_inline_operations = {
1930 	.readlink	= generic_readlink,
1931 	.follow_link	= shmem_follow_link_inline,
1932 };
1933 
1934 static const struct inode_operations shmem_symlink_inode_operations = {
1935 	.truncate	= shmem_truncate,
1936 	.readlink	= generic_readlink,
1937 	.follow_link	= shmem_follow_link,
1938 	.put_link	= shmem_put_link,
1939 };
1940 
1941 #ifdef CONFIG_TMPFS_POSIX_ACL
1942 /**
1943  * Superblocks without xattr inode operations will get security.* xattr
1944  * support from the VFS "for free". As soon as we have any other xattrs
1945  * like ACLs, we also need to implement the security.* handlers at
1946  * filesystem level, though.
1947  */
1948 
1949 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1950 					size_t list_len, const char *name,
1951 					size_t name_len)
1952 {
1953 	return security_inode_listsecurity(inode, list, list_len);
1954 }
1955 
1956 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1957 				    void *buffer, size_t size)
1958 {
1959 	if (strcmp(name, "") == 0)
1960 		return -EINVAL;
1961 	return security_inode_getsecurity(inode, name, buffer, size,
1962 					  -EOPNOTSUPP);
1963 }
1964 
1965 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1966 				    const void *value, size_t size, int flags)
1967 {
1968 	if (strcmp(name, "") == 0)
1969 		return -EINVAL;
1970 	return security_inode_setsecurity(inode, name, value, size, flags);
1971 }
1972 
1973 static struct xattr_handler shmem_xattr_security_handler = {
1974 	.prefix = XATTR_SECURITY_PREFIX,
1975 	.list   = shmem_xattr_security_list,
1976 	.get    = shmem_xattr_security_get,
1977 	.set    = shmem_xattr_security_set,
1978 };
1979 
1980 static struct xattr_handler *shmem_xattr_handlers[] = {
1981 	&shmem_xattr_acl_access_handler,
1982 	&shmem_xattr_acl_default_handler,
1983 	&shmem_xattr_security_handler,
1984 	NULL
1985 };
1986 #endif
1987 
1988 static struct dentry *shmem_get_parent(struct dentry *child)
1989 {
1990 	return ERR_PTR(-ESTALE);
1991 }
1992 
1993 static int shmem_match(struct inode *ino, void *vfh)
1994 {
1995 	__u32 *fh = vfh;
1996 	__u64 inum = fh[2];
1997 	inum = (inum << 32) | fh[1];
1998 	return ino->i_ino == inum && fh[0] == ino->i_generation;
1999 }
2000 
2001 static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2002 {
2003 	struct dentry *de = NULL;
2004 	struct inode *inode;
2005 	__u32 *fh = vfh;
2006 	__u64 inum = fh[2];
2007 	inum = (inum << 32) | fh[1];
2008 
2009 	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2010 	if (inode) {
2011 		de = d_find_alias(inode);
2012 		iput(inode);
2013 	}
2014 
2015 	return de? de: ERR_PTR(-ESTALE);
2016 }
2017 
2018 static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2019 		int len, int type,
2020 		int (*acceptable)(void *context, struct dentry *de),
2021 		void *context)
2022 {
2023 	if (len < 3)
2024 		return ERR_PTR(-ESTALE);
2025 
2026 	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2027 							context);
2028 }
2029 
2030 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2031 				int connectable)
2032 {
2033 	struct inode *inode = dentry->d_inode;
2034 
2035 	if (*len < 3)
2036 		return 255;
2037 
2038 	if (hlist_unhashed(&inode->i_hash)) {
2039 		/* Unfortunately insert_inode_hash is not idempotent,
2040 		 * so as we hash inodes here rather than at creation
2041 		 * time, we need a lock to ensure we only try
2042 		 * to do it once
2043 		 */
2044 		static DEFINE_SPINLOCK(lock);
2045 		spin_lock(&lock);
2046 		if (hlist_unhashed(&inode->i_hash))
2047 			__insert_inode_hash(inode,
2048 					    inode->i_ino + inode->i_generation);
2049 		spin_unlock(&lock);
2050 	}
2051 
2052 	fh[0] = inode->i_generation;
2053 	fh[1] = inode->i_ino;
2054 	fh[2] = ((__u64)inode->i_ino) >> 32;
2055 
2056 	*len = 3;
2057 	return 1;
2058 }
2059 
2060 static struct export_operations shmem_export_ops = {
2061 	.get_parent     = shmem_get_parent,
2062 	.get_dentry     = shmem_get_dentry,
2063 	.encode_fh      = shmem_encode_fh,
2064 	.decode_fh      = shmem_decode_fh,
2065 };
2066 
2067 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2068 	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2069 	int *policy, nodemask_t *policy_nodes)
2070 {
2071 	char *this_char, *value, *rest;
2072 
2073 	while (options != NULL) {
2074 		this_char = options;
2075 		for (;;) {
2076 			/*
2077 			 * NUL-terminate this option: unfortunately,
2078 			 * mount options form a comma-separated list,
2079 			 * but mpol's nodelist may also contain commas.
2080 			 */
2081 			options = strchr(options, ',');
2082 			if (options == NULL)
2083 				break;
2084 			options++;
2085 			if (!isdigit(*options)) {
2086 				options[-1] = '\0';
2087 				break;
2088 			}
2089 		}
2090 		if (!*this_char)
2091 			continue;
2092 		if ((value = strchr(this_char,'=')) != NULL) {
2093 			*value++ = 0;
2094 		} else {
2095 			printk(KERN_ERR
2096 			    "tmpfs: No value for mount option '%s'\n",
2097 			    this_char);
2098 			return 1;
2099 		}
2100 
2101 		if (!strcmp(this_char,"size")) {
2102 			unsigned long long size;
2103 			size = memparse(value,&rest);
2104 			if (*rest == '%') {
2105 				size <<= PAGE_SHIFT;
2106 				size *= totalram_pages;
2107 				do_div(size, 100);
2108 				rest++;
2109 			}
2110 			if (*rest)
2111 				goto bad_val;
2112 			*blocks = size >> PAGE_CACHE_SHIFT;
2113 		} else if (!strcmp(this_char,"nr_blocks")) {
2114 			*blocks = memparse(value,&rest);
2115 			if (*rest)
2116 				goto bad_val;
2117 		} else if (!strcmp(this_char,"nr_inodes")) {
2118 			*inodes = memparse(value,&rest);
2119 			if (*rest)
2120 				goto bad_val;
2121 		} else if (!strcmp(this_char,"mode")) {
2122 			if (!mode)
2123 				continue;
2124 			*mode = simple_strtoul(value,&rest,8);
2125 			if (*rest)
2126 				goto bad_val;
2127 		} else if (!strcmp(this_char,"uid")) {
2128 			if (!uid)
2129 				continue;
2130 			*uid = simple_strtoul(value,&rest,0);
2131 			if (*rest)
2132 				goto bad_val;
2133 		} else if (!strcmp(this_char,"gid")) {
2134 			if (!gid)
2135 				continue;
2136 			*gid = simple_strtoul(value,&rest,0);
2137 			if (*rest)
2138 				goto bad_val;
2139 		} else if (!strcmp(this_char,"mpol")) {
2140 			if (shmem_parse_mpol(value,policy,policy_nodes))
2141 				goto bad_val;
2142 		} else {
2143 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2144 			       this_char);
2145 			return 1;
2146 		}
2147 	}
2148 	return 0;
2149 
2150 bad_val:
2151 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2152 	       value, this_char);
2153 	return 1;
2154 
2155 }
2156 
2157 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2158 {
2159 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2160 	unsigned long max_blocks = sbinfo->max_blocks;
2161 	unsigned long max_inodes = sbinfo->max_inodes;
2162 	int policy = sbinfo->policy;
2163 	nodemask_t policy_nodes = sbinfo->policy_nodes;
2164 	unsigned long blocks;
2165 	unsigned long inodes;
2166 	int error = -EINVAL;
2167 
2168 	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2169 				&max_inodes, &policy, &policy_nodes))
2170 		return error;
2171 
2172 	spin_lock(&sbinfo->stat_lock);
2173 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2174 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2175 	if (max_blocks < blocks)
2176 		goto out;
2177 	if (max_inodes < inodes)
2178 		goto out;
2179 	/*
2180 	 * Those tests also disallow limited->unlimited while any are in
2181 	 * use, so i_blocks will always be zero when max_blocks is zero;
2182 	 * but we must separately disallow unlimited->limited, because
2183 	 * in that case we have no record of how much is already in use.
2184 	 */
2185 	if (max_blocks && !sbinfo->max_blocks)
2186 		goto out;
2187 	if (max_inodes && !sbinfo->max_inodes)
2188 		goto out;
2189 
2190 	error = 0;
2191 	sbinfo->max_blocks  = max_blocks;
2192 	sbinfo->free_blocks = max_blocks - blocks;
2193 	sbinfo->max_inodes  = max_inodes;
2194 	sbinfo->free_inodes = max_inodes - inodes;
2195 	sbinfo->policy = policy;
2196 	sbinfo->policy_nodes = policy_nodes;
2197 out:
2198 	spin_unlock(&sbinfo->stat_lock);
2199 	return error;
2200 }
2201 #endif
2202 
2203 static void shmem_put_super(struct super_block *sb)
2204 {
2205 	kfree(sb->s_fs_info);
2206 	sb->s_fs_info = NULL;
2207 }
2208 
2209 static int shmem_fill_super(struct super_block *sb,
2210 			    void *data, int silent)
2211 {
2212 	struct inode *inode;
2213 	struct dentry *root;
2214 	int mode   = S_IRWXUGO | S_ISVTX;
2215 	uid_t uid = current->fsuid;
2216 	gid_t gid = current->fsgid;
2217 	int err = -ENOMEM;
2218 	struct shmem_sb_info *sbinfo;
2219 	unsigned long blocks = 0;
2220 	unsigned long inodes = 0;
2221 	int policy = MPOL_DEFAULT;
2222 	nodemask_t policy_nodes = node_online_map;
2223 
2224 #ifdef CONFIG_TMPFS
2225 	/*
2226 	 * Per default we only allow half of the physical ram per
2227 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2228 	 * but the internal instance is left unlimited.
2229 	 */
2230 	if (!(sb->s_flags & MS_NOUSER)) {
2231 		blocks = totalram_pages / 2;
2232 		inodes = totalram_pages - totalhigh_pages;
2233 		if (inodes > blocks)
2234 			inodes = blocks;
2235 		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2236 					&inodes, &policy, &policy_nodes))
2237 			return -EINVAL;
2238 	}
2239 	sb->s_export_op = &shmem_export_ops;
2240 #else
2241 	sb->s_flags |= MS_NOUSER;
2242 #endif
2243 
2244 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2245 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2246 				L1_CACHE_BYTES), GFP_KERNEL);
2247 	if (!sbinfo)
2248 		return -ENOMEM;
2249 
2250 	spin_lock_init(&sbinfo->stat_lock);
2251 	sbinfo->max_blocks = blocks;
2252 	sbinfo->free_blocks = blocks;
2253 	sbinfo->max_inodes = inodes;
2254 	sbinfo->free_inodes = inodes;
2255 	sbinfo->policy = policy;
2256 	sbinfo->policy_nodes = policy_nodes;
2257 
2258 	sb->s_fs_info = sbinfo;
2259 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2260 	sb->s_blocksize = PAGE_CACHE_SIZE;
2261 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2262 	sb->s_magic = TMPFS_MAGIC;
2263 	sb->s_op = &shmem_ops;
2264 	sb->s_time_gran = 1;
2265 #ifdef CONFIG_TMPFS_POSIX_ACL
2266 	sb->s_xattr = shmem_xattr_handlers;
2267 	sb->s_flags |= MS_POSIXACL;
2268 #endif
2269 
2270 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2271 	if (!inode)
2272 		goto failed;
2273 	inode->i_uid = uid;
2274 	inode->i_gid = gid;
2275 	root = d_alloc_root(inode);
2276 	if (!root)
2277 		goto failed_iput;
2278 	sb->s_root = root;
2279 	return 0;
2280 
2281 failed_iput:
2282 	iput(inode);
2283 failed:
2284 	shmem_put_super(sb);
2285 	return err;
2286 }
2287 
2288 static struct kmem_cache *shmem_inode_cachep;
2289 
2290 static struct inode *shmem_alloc_inode(struct super_block *sb)
2291 {
2292 	struct shmem_inode_info *p;
2293 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2294 	if (!p)
2295 		return NULL;
2296 	return &p->vfs_inode;
2297 }
2298 
2299 static void shmem_destroy_inode(struct inode *inode)
2300 {
2301 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2302 		/* only struct inode is valid if it's an inline symlink */
2303 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2304 	}
2305 	shmem_acl_destroy_inode(inode);
2306 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2307 }
2308 
2309 static void init_once(void *foo, struct kmem_cache *cachep,
2310 		      unsigned long flags)
2311 {
2312 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2313 
2314 	inode_init_once(&p->vfs_inode);
2315 #ifdef CONFIG_TMPFS_POSIX_ACL
2316 	p->i_acl = NULL;
2317 	p->i_default_acl = NULL;
2318 #endif
2319 }
2320 
2321 static int init_inodecache(void)
2322 {
2323 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2324 				sizeof(struct shmem_inode_info),
2325 				0, 0, init_once);
2326 	if (shmem_inode_cachep == NULL)
2327 		return -ENOMEM;
2328 	return 0;
2329 }
2330 
2331 static void destroy_inodecache(void)
2332 {
2333 	kmem_cache_destroy(shmem_inode_cachep);
2334 }
2335 
2336 static const struct address_space_operations shmem_aops = {
2337 	.writepage	= shmem_writepage,
2338 	.set_page_dirty	= __set_page_dirty_no_writeback,
2339 #ifdef CONFIG_TMPFS
2340 	.readpage	= shmem_readpage,
2341 	.prepare_write	= shmem_prepare_write,
2342 	.commit_write	= simple_commit_write,
2343 #endif
2344 	.migratepage	= migrate_page,
2345 };
2346 
2347 static const struct file_operations shmem_file_operations = {
2348 	.mmap		= shmem_mmap,
2349 #ifdef CONFIG_TMPFS
2350 	.llseek		= generic_file_llseek,
2351 	.read		= shmem_file_read,
2352 	.write		= shmem_file_write,
2353 	.fsync		= simple_sync_file,
2354 	.splice_read	= generic_file_splice_read,
2355 	.splice_write	= generic_file_splice_write,
2356 #endif
2357 };
2358 
2359 static const struct inode_operations shmem_inode_operations = {
2360 	.truncate	= shmem_truncate,
2361 	.setattr	= shmem_notify_change,
2362 	.truncate_range	= shmem_truncate_range,
2363 #ifdef CONFIG_TMPFS_POSIX_ACL
2364 	.setxattr	= generic_setxattr,
2365 	.getxattr	= generic_getxattr,
2366 	.listxattr	= generic_listxattr,
2367 	.removexattr	= generic_removexattr,
2368 	.permission	= shmem_permission,
2369 #endif
2370 
2371 };
2372 
2373 static const struct inode_operations shmem_dir_inode_operations = {
2374 #ifdef CONFIG_TMPFS
2375 	.create		= shmem_create,
2376 	.lookup		= simple_lookup,
2377 	.link		= shmem_link,
2378 	.unlink		= shmem_unlink,
2379 	.symlink	= shmem_symlink,
2380 	.mkdir		= shmem_mkdir,
2381 	.rmdir		= shmem_rmdir,
2382 	.mknod		= shmem_mknod,
2383 	.rename		= shmem_rename,
2384 #endif
2385 #ifdef CONFIG_TMPFS_POSIX_ACL
2386 	.setattr	= shmem_notify_change,
2387 	.setxattr	= generic_setxattr,
2388 	.getxattr	= generic_getxattr,
2389 	.listxattr	= generic_listxattr,
2390 	.removexattr	= generic_removexattr,
2391 	.permission	= shmem_permission,
2392 #endif
2393 };
2394 
2395 static const struct inode_operations shmem_special_inode_operations = {
2396 #ifdef CONFIG_TMPFS_POSIX_ACL
2397 	.setattr	= shmem_notify_change,
2398 	.setxattr	= generic_setxattr,
2399 	.getxattr	= generic_getxattr,
2400 	.listxattr	= generic_listxattr,
2401 	.removexattr	= generic_removexattr,
2402 	.permission	= shmem_permission,
2403 #endif
2404 };
2405 
2406 static const struct super_operations shmem_ops = {
2407 	.alloc_inode	= shmem_alloc_inode,
2408 	.destroy_inode	= shmem_destroy_inode,
2409 #ifdef CONFIG_TMPFS
2410 	.statfs		= shmem_statfs,
2411 	.remount_fs	= shmem_remount_fs,
2412 #endif
2413 	.delete_inode	= shmem_delete_inode,
2414 	.drop_inode	= generic_delete_inode,
2415 	.put_super	= shmem_put_super,
2416 };
2417 
2418 static struct vm_operations_struct shmem_vm_ops = {
2419 	.fault		= shmem_fault,
2420 #ifdef CONFIG_NUMA
2421 	.set_policy     = shmem_set_policy,
2422 	.get_policy     = shmem_get_policy,
2423 #endif
2424 };
2425 
2426 
2427 static int shmem_get_sb(struct file_system_type *fs_type,
2428 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2429 {
2430 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2431 }
2432 
2433 static struct file_system_type tmpfs_fs_type = {
2434 	.owner		= THIS_MODULE,
2435 	.name		= "tmpfs",
2436 	.get_sb		= shmem_get_sb,
2437 	.kill_sb	= kill_litter_super,
2438 };
2439 static struct vfsmount *shm_mnt;
2440 
2441 static int __init init_tmpfs(void)
2442 {
2443 	int error;
2444 
2445 	error = init_inodecache();
2446 	if (error)
2447 		goto out3;
2448 
2449 	error = register_filesystem(&tmpfs_fs_type);
2450 	if (error) {
2451 		printk(KERN_ERR "Could not register tmpfs\n");
2452 		goto out2;
2453 	}
2454 
2455 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2456 				tmpfs_fs_type.name, NULL);
2457 	if (IS_ERR(shm_mnt)) {
2458 		error = PTR_ERR(shm_mnt);
2459 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2460 		goto out1;
2461 	}
2462 	return 0;
2463 
2464 out1:
2465 	unregister_filesystem(&tmpfs_fs_type);
2466 out2:
2467 	destroy_inodecache();
2468 out3:
2469 	shm_mnt = ERR_PTR(error);
2470 	return error;
2471 }
2472 module_init(init_tmpfs)
2473 
2474 /*
2475  * shmem_file_setup - get an unlinked file living in tmpfs
2476  *
2477  * @name: name for dentry (to be seen in /proc/<pid>/maps
2478  * @size: size to be set for the file
2479  *
2480  */
2481 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2482 {
2483 	int error;
2484 	struct file *file;
2485 	struct inode *inode;
2486 	struct dentry *dentry, *root;
2487 	struct qstr this;
2488 
2489 	if (IS_ERR(shm_mnt))
2490 		return (void *)shm_mnt;
2491 
2492 	if (size < 0 || size > SHMEM_MAX_BYTES)
2493 		return ERR_PTR(-EINVAL);
2494 
2495 	if (shmem_acct_size(flags, size))
2496 		return ERR_PTR(-ENOMEM);
2497 
2498 	error = -ENOMEM;
2499 	this.name = name;
2500 	this.len = strlen(name);
2501 	this.hash = 0; /* will go */
2502 	root = shm_mnt->mnt_root;
2503 	dentry = d_alloc(root, &this);
2504 	if (!dentry)
2505 		goto put_memory;
2506 
2507 	error = -ENFILE;
2508 	file = get_empty_filp();
2509 	if (!file)
2510 		goto put_dentry;
2511 
2512 	error = -ENOSPC;
2513 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2514 	if (!inode)
2515 		goto close_file;
2516 
2517 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2518 	d_instantiate(dentry, inode);
2519 	inode->i_size = size;
2520 	inode->i_nlink = 0;	/* It is unlinked */
2521 	file->f_path.mnt = mntget(shm_mnt);
2522 	file->f_path.dentry = dentry;
2523 	file->f_mapping = inode->i_mapping;
2524 	file->f_op = &shmem_file_operations;
2525 	file->f_mode = FMODE_WRITE | FMODE_READ;
2526 	return file;
2527 
2528 close_file:
2529 	put_filp(file);
2530 put_dentry:
2531 	dput(dentry);
2532 put_memory:
2533 	shmem_unacct_size(flags, size);
2534 	return ERR_PTR(error);
2535 }
2536 
2537 /*
2538  * shmem_zero_setup - setup a shared anonymous mapping
2539  *
2540  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2541  */
2542 int shmem_zero_setup(struct vm_area_struct *vma)
2543 {
2544 	struct file *file;
2545 	loff_t size = vma->vm_end - vma->vm_start;
2546 
2547 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2548 	if (IS_ERR(file))
2549 		return PTR_ERR(file);
2550 
2551 	if (vma->vm_file)
2552 		fput(vma->vm_file);
2553 	vma->vm_file = file;
2554 	vma->vm_ops = &shmem_vm_ops;
2555 	return 0;
2556 }
2557