1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2005 Hugh Dickins. 10 * Copyright (C) 2002-2005 VERITAS Software Corporation. 11 * Copyright (C) 2004 Andi Kleen, SuSE Labs 12 * 13 * Extended attribute support for tmpfs: 14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 16 * 17 * This file is released under the GPL. 18 */ 19 20 /* 21 * This virtual memory filesystem is heavily based on the ramfs. It 22 * extends ramfs by the ability to use swap and honor resource limits 23 * which makes it a completely usable filesystem. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/fs.h> 29 #include <linux/xattr.h> 30 #include <linux/exportfs.h> 31 #include <linux/generic_acl.h> 32 #include <linux/mm.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/swap.h> 36 #include <linux/pagemap.h> 37 #include <linux/string.h> 38 #include <linux/slab.h> 39 #include <linux/backing-dev.h> 40 #include <linux/shmem_fs.h> 41 #include <linux/mount.h> 42 #include <linux/writeback.h> 43 #include <linux/vfs.h> 44 #include <linux/blkdev.h> 45 #include <linux/security.h> 46 #include <linux/swapops.h> 47 #include <linux/mempolicy.h> 48 #include <linux/namei.h> 49 #include <linux/ctype.h> 50 #include <linux/migrate.h> 51 #include <linux/highmem.h> 52 #include <linux/backing-dev.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/div64.h> 56 #include <asm/pgtable.h> 57 58 /* This magic number is used in glibc for posix shared memory */ 59 #define TMPFS_MAGIC 0x01021994 60 61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) 62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) 63 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 64 65 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) 66 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT) 67 68 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 69 70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ 71 #define SHMEM_PAGEIN VM_READ 72 #define SHMEM_TRUNCATE VM_WRITE 73 74 /* Definition to limit shmem_truncate's steps between cond_rescheds */ 75 #define LATENCY_LIMIT 64 76 77 /* Pretend that each entry is of this size in directory's i_size */ 78 #define BOGO_DIRENT_SIZE 20 79 80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ 81 enum sgp_type { 82 SGP_QUICK, /* don't try more than file page cache lookup */ 83 SGP_READ, /* don't exceed i_size, don't allocate page */ 84 SGP_CACHE, /* don't exceed i_size, may allocate page */ 85 SGP_WRITE, /* may exceed i_size, may allocate page */ 86 SGP_FAULT, /* same as SGP_CACHE, return with page locked */ 87 }; 88 89 static int shmem_getpage(struct inode *inode, unsigned long idx, 90 struct page **pagep, enum sgp_type sgp, int *type); 91 92 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) 93 { 94 /* 95 * The above definition of ENTRIES_PER_PAGE, and the use of 96 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: 97 * might be reconsidered if it ever diverges from PAGE_SIZE. 98 * 99 * __GFP_MOVABLE is masked out as swap vectors cannot move 100 */ 101 return alloc_pages((gfp_mask & ~__GFP_MOVABLE) | __GFP_ZERO, 102 PAGE_CACHE_SHIFT-PAGE_SHIFT); 103 } 104 105 static inline void shmem_dir_free(struct page *page) 106 { 107 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); 108 } 109 110 static struct page **shmem_dir_map(struct page *page) 111 { 112 return (struct page **)kmap_atomic(page, KM_USER0); 113 } 114 115 static inline void shmem_dir_unmap(struct page **dir) 116 { 117 kunmap_atomic(dir, KM_USER0); 118 } 119 120 static swp_entry_t *shmem_swp_map(struct page *page) 121 { 122 return (swp_entry_t *)kmap_atomic(page, KM_USER1); 123 } 124 125 static inline void shmem_swp_balance_unmap(void) 126 { 127 /* 128 * When passing a pointer to an i_direct entry, to code which 129 * also handles indirect entries and so will shmem_swp_unmap, 130 * we must arrange for the preempt count to remain in balance. 131 * What kmap_atomic of a lowmem page does depends on config 132 * and architecture, so pretend to kmap_atomic some lowmem page. 133 */ 134 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); 135 } 136 137 static inline void shmem_swp_unmap(swp_entry_t *entry) 138 { 139 kunmap_atomic(entry, KM_USER1); 140 } 141 142 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 143 { 144 return sb->s_fs_info; 145 } 146 147 /* 148 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 149 * for shared memory and for shared anonymous (/dev/zero) mappings 150 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 151 * consistent with the pre-accounting of private mappings ... 152 */ 153 static inline int shmem_acct_size(unsigned long flags, loff_t size) 154 { 155 return (flags & VM_ACCOUNT)? 156 security_vm_enough_memory(VM_ACCT(size)): 0; 157 } 158 159 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 160 { 161 if (flags & VM_ACCOUNT) 162 vm_unacct_memory(VM_ACCT(size)); 163 } 164 165 /* 166 * ... whereas tmpfs objects are accounted incrementally as 167 * pages are allocated, in order to allow huge sparse files. 168 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 169 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 170 */ 171 static inline int shmem_acct_block(unsigned long flags) 172 { 173 return (flags & VM_ACCOUNT)? 174 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE)); 175 } 176 177 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 178 { 179 if (!(flags & VM_ACCOUNT)) 180 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 181 } 182 183 static const struct super_operations shmem_ops; 184 static const struct address_space_operations shmem_aops; 185 static const struct file_operations shmem_file_operations; 186 static const struct inode_operations shmem_inode_operations; 187 static const struct inode_operations shmem_dir_inode_operations; 188 static const struct inode_operations shmem_special_inode_operations; 189 static struct vm_operations_struct shmem_vm_ops; 190 191 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 192 .ra_pages = 0, /* No readahead */ 193 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK, 194 .unplug_io_fn = default_unplug_io_fn, 195 }; 196 197 static LIST_HEAD(shmem_swaplist); 198 static DEFINE_SPINLOCK(shmem_swaplist_lock); 199 200 static void shmem_free_blocks(struct inode *inode, long pages) 201 { 202 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 203 if (sbinfo->max_blocks) { 204 spin_lock(&sbinfo->stat_lock); 205 sbinfo->free_blocks += pages; 206 inode->i_blocks -= pages*BLOCKS_PER_PAGE; 207 spin_unlock(&sbinfo->stat_lock); 208 } 209 } 210 211 /* 212 * shmem_recalc_inode - recalculate the size of an inode 213 * 214 * @inode: inode to recalc 215 * 216 * We have to calculate the free blocks since the mm can drop 217 * undirtied hole pages behind our back. 218 * 219 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 220 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 221 * 222 * It has to be called with the spinlock held. 223 */ 224 static void shmem_recalc_inode(struct inode *inode) 225 { 226 struct shmem_inode_info *info = SHMEM_I(inode); 227 long freed; 228 229 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 230 if (freed > 0) { 231 info->alloced -= freed; 232 shmem_unacct_blocks(info->flags, freed); 233 shmem_free_blocks(inode, freed); 234 } 235 } 236 237 /* 238 * shmem_swp_entry - find the swap vector position in the info structure 239 * 240 * @info: info structure for the inode 241 * @index: index of the page to find 242 * @page: optional page to add to the structure. Has to be preset to 243 * all zeros 244 * 245 * If there is no space allocated yet it will return NULL when 246 * page is NULL, else it will use the page for the needed block, 247 * setting it to NULL on return to indicate that it has been used. 248 * 249 * The swap vector is organized the following way: 250 * 251 * There are SHMEM_NR_DIRECT entries directly stored in the 252 * shmem_inode_info structure. So small files do not need an addional 253 * allocation. 254 * 255 * For pages with index > SHMEM_NR_DIRECT there is the pointer 256 * i_indirect which points to a page which holds in the first half 257 * doubly indirect blocks, in the second half triple indirect blocks: 258 * 259 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the 260 * following layout (for SHMEM_NR_DIRECT == 16): 261 * 262 * i_indirect -> dir --> 16-19 263 * | +-> 20-23 264 * | 265 * +-->dir2 --> 24-27 266 * | +-> 28-31 267 * | +-> 32-35 268 * | +-> 36-39 269 * | 270 * +-->dir3 --> 40-43 271 * +-> 44-47 272 * +-> 48-51 273 * +-> 52-55 274 */ 275 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) 276 { 277 unsigned long offset; 278 struct page **dir; 279 struct page *subdir; 280 281 if (index < SHMEM_NR_DIRECT) { 282 shmem_swp_balance_unmap(); 283 return info->i_direct+index; 284 } 285 if (!info->i_indirect) { 286 if (page) { 287 info->i_indirect = *page; 288 *page = NULL; 289 } 290 return NULL; /* need another page */ 291 } 292 293 index -= SHMEM_NR_DIRECT; 294 offset = index % ENTRIES_PER_PAGE; 295 index /= ENTRIES_PER_PAGE; 296 dir = shmem_dir_map(info->i_indirect); 297 298 if (index >= ENTRIES_PER_PAGE/2) { 299 index -= ENTRIES_PER_PAGE/2; 300 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; 301 index %= ENTRIES_PER_PAGE; 302 subdir = *dir; 303 if (!subdir) { 304 if (page) { 305 *dir = *page; 306 *page = NULL; 307 } 308 shmem_dir_unmap(dir); 309 return NULL; /* need another page */ 310 } 311 shmem_dir_unmap(dir); 312 dir = shmem_dir_map(subdir); 313 } 314 315 dir += index; 316 subdir = *dir; 317 if (!subdir) { 318 if (!page || !(subdir = *page)) { 319 shmem_dir_unmap(dir); 320 return NULL; /* need a page */ 321 } 322 *dir = subdir; 323 *page = NULL; 324 } 325 shmem_dir_unmap(dir); 326 return shmem_swp_map(subdir) + offset; 327 } 328 329 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) 330 { 331 long incdec = value? 1: -1; 332 333 entry->val = value; 334 info->swapped += incdec; 335 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { 336 struct page *page = kmap_atomic_to_page(entry); 337 set_page_private(page, page_private(page) + incdec); 338 } 339 } 340 341 /* 342 * shmem_swp_alloc - get the position of the swap entry for the page. 343 * If it does not exist allocate the entry. 344 * 345 * @info: info structure for the inode 346 * @index: index of the page to find 347 * @sgp: check and recheck i_size? skip allocation? 348 */ 349 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) 350 { 351 struct inode *inode = &info->vfs_inode; 352 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 353 struct page *page = NULL; 354 swp_entry_t *entry; 355 356 if (sgp != SGP_WRITE && 357 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 358 return ERR_PTR(-EINVAL); 359 360 while (!(entry = shmem_swp_entry(info, index, &page))) { 361 if (sgp == SGP_READ) 362 return shmem_swp_map(ZERO_PAGE(0)); 363 /* 364 * Test free_blocks against 1 not 0, since we have 1 data 365 * page (and perhaps indirect index pages) yet to allocate: 366 * a waste to allocate index if we cannot allocate data. 367 */ 368 if (sbinfo->max_blocks) { 369 spin_lock(&sbinfo->stat_lock); 370 if (sbinfo->free_blocks <= 1) { 371 spin_unlock(&sbinfo->stat_lock); 372 return ERR_PTR(-ENOSPC); 373 } 374 sbinfo->free_blocks--; 375 inode->i_blocks += BLOCKS_PER_PAGE; 376 spin_unlock(&sbinfo->stat_lock); 377 } 378 379 spin_unlock(&info->lock); 380 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping)); 381 if (page) 382 set_page_private(page, 0); 383 spin_lock(&info->lock); 384 385 if (!page) { 386 shmem_free_blocks(inode, 1); 387 return ERR_PTR(-ENOMEM); 388 } 389 if (sgp != SGP_WRITE && 390 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 391 entry = ERR_PTR(-EINVAL); 392 break; 393 } 394 if (info->next_index <= index) 395 info->next_index = index + 1; 396 } 397 if (page) { 398 /* another task gave its page, or truncated the file */ 399 shmem_free_blocks(inode, 1); 400 shmem_dir_free(page); 401 } 402 if (info->next_index <= index && !IS_ERR(entry)) 403 info->next_index = index + 1; 404 return entry; 405 } 406 407 /* 408 * shmem_free_swp - free some swap entries in a directory 409 * 410 * @dir: pointer to the directory 411 * @edir: pointer after last entry of the directory 412 * @punch_lock: pointer to spinlock when needed for the holepunch case 413 */ 414 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir, 415 spinlock_t *punch_lock) 416 { 417 spinlock_t *punch_unlock = NULL; 418 swp_entry_t *ptr; 419 int freed = 0; 420 421 for (ptr = dir; ptr < edir; ptr++) { 422 if (ptr->val) { 423 if (unlikely(punch_lock)) { 424 punch_unlock = punch_lock; 425 punch_lock = NULL; 426 spin_lock(punch_unlock); 427 if (!ptr->val) 428 continue; 429 } 430 free_swap_and_cache(*ptr); 431 *ptr = (swp_entry_t){0}; 432 freed++; 433 } 434 } 435 if (punch_unlock) 436 spin_unlock(punch_unlock); 437 return freed; 438 } 439 440 static int shmem_map_and_free_swp(struct page *subdir, int offset, 441 int limit, struct page ***dir, spinlock_t *punch_lock) 442 { 443 swp_entry_t *ptr; 444 int freed = 0; 445 446 ptr = shmem_swp_map(subdir); 447 for (; offset < limit; offset += LATENCY_LIMIT) { 448 int size = limit - offset; 449 if (size > LATENCY_LIMIT) 450 size = LATENCY_LIMIT; 451 freed += shmem_free_swp(ptr+offset, ptr+offset+size, 452 punch_lock); 453 if (need_resched()) { 454 shmem_swp_unmap(ptr); 455 if (*dir) { 456 shmem_dir_unmap(*dir); 457 *dir = NULL; 458 } 459 cond_resched(); 460 ptr = shmem_swp_map(subdir); 461 } 462 } 463 shmem_swp_unmap(ptr); 464 return freed; 465 } 466 467 static void shmem_free_pages(struct list_head *next) 468 { 469 struct page *page; 470 int freed = 0; 471 472 do { 473 page = container_of(next, struct page, lru); 474 next = next->next; 475 shmem_dir_free(page); 476 freed++; 477 if (freed >= LATENCY_LIMIT) { 478 cond_resched(); 479 freed = 0; 480 } 481 } while (next); 482 } 483 484 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) 485 { 486 struct shmem_inode_info *info = SHMEM_I(inode); 487 unsigned long idx; 488 unsigned long size; 489 unsigned long limit; 490 unsigned long stage; 491 unsigned long diroff; 492 struct page **dir; 493 struct page *topdir; 494 struct page *middir; 495 struct page *subdir; 496 swp_entry_t *ptr; 497 LIST_HEAD(pages_to_free); 498 long nr_pages_to_free = 0; 499 long nr_swaps_freed = 0; 500 int offset; 501 int freed; 502 int punch_hole; 503 spinlock_t *needs_lock; 504 spinlock_t *punch_lock; 505 unsigned long upper_limit; 506 507 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 508 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 509 if (idx >= info->next_index) 510 return; 511 512 spin_lock(&info->lock); 513 info->flags |= SHMEM_TRUNCATE; 514 if (likely(end == (loff_t) -1)) { 515 limit = info->next_index; 516 upper_limit = SHMEM_MAX_INDEX; 517 info->next_index = idx; 518 needs_lock = NULL; 519 punch_hole = 0; 520 } else { 521 if (end + 1 >= inode->i_size) { /* we may free a little more */ 522 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >> 523 PAGE_CACHE_SHIFT; 524 upper_limit = SHMEM_MAX_INDEX; 525 } else { 526 limit = (end + 1) >> PAGE_CACHE_SHIFT; 527 upper_limit = limit; 528 } 529 needs_lock = &info->lock; 530 punch_hole = 1; 531 } 532 533 topdir = info->i_indirect; 534 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { 535 info->i_indirect = NULL; 536 nr_pages_to_free++; 537 list_add(&topdir->lru, &pages_to_free); 538 } 539 spin_unlock(&info->lock); 540 541 if (info->swapped && idx < SHMEM_NR_DIRECT) { 542 ptr = info->i_direct; 543 size = limit; 544 if (size > SHMEM_NR_DIRECT) 545 size = SHMEM_NR_DIRECT; 546 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock); 547 } 548 549 /* 550 * If there are no indirect blocks or we are punching a hole 551 * below indirect blocks, nothing to be done. 552 */ 553 if (!topdir || limit <= SHMEM_NR_DIRECT) 554 goto done2; 555 556 /* 557 * The truncation case has already dropped info->lock, and we're safe 558 * because i_size and next_index have already been lowered, preventing 559 * access beyond. But in the punch_hole case, we still need to take 560 * the lock when updating the swap directory, because there might be 561 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or 562 * shmem_writepage. However, whenever we find we can remove a whole 563 * directory page (not at the misaligned start or end of the range), 564 * we first NULLify its pointer in the level above, and then have no 565 * need to take the lock when updating its contents: needs_lock and 566 * punch_lock (either pointing to info->lock or NULL) manage this. 567 */ 568 569 upper_limit -= SHMEM_NR_DIRECT; 570 limit -= SHMEM_NR_DIRECT; 571 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; 572 offset = idx % ENTRIES_PER_PAGE; 573 idx -= offset; 574 575 dir = shmem_dir_map(topdir); 576 stage = ENTRIES_PER_PAGEPAGE/2; 577 if (idx < ENTRIES_PER_PAGEPAGE/2) { 578 middir = topdir; 579 diroff = idx/ENTRIES_PER_PAGE; 580 } else { 581 dir += ENTRIES_PER_PAGE/2; 582 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; 583 while (stage <= idx) 584 stage += ENTRIES_PER_PAGEPAGE; 585 middir = *dir; 586 if (*dir) { 587 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % 588 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; 589 if (!diroff && !offset && upper_limit >= stage) { 590 if (needs_lock) { 591 spin_lock(needs_lock); 592 *dir = NULL; 593 spin_unlock(needs_lock); 594 needs_lock = NULL; 595 } else 596 *dir = NULL; 597 nr_pages_to_free++; 598 list_add(&middir->lru, &pages_to_free); 599 } 600 shmem_dir_unmap(dir); 601 dir = shmem_dir_map(middir); 602 } else { 603 diroff = 0; 604 offset = 0; 605 idx = stage; 606 } 607 } 608 609 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { 610 if (unlikely(idx == stage)) { 611 shmem_dir_unmap(dir); 612 dir = shmem_dir_map(topdir) + 613 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 614 while (!*dir) { 615 dir++; 616 idx += ENTRIES_PER_PAGEPAGE; 617 if (idx >= limit) 618 goto done1; 619 } 620 stage = idx + ENTRIES_PER_PAGEPAGE; 621 middir = *dir; 622 if (punch_hole) 623 needs_lock = &info->lock; 624 if (upper_limit >= stage) { 625 if (needs_lock) { 626 spin_lock(needs_lock); 627 *dir = NULL; 628 spin_unlock(needs_lock); 629 needs_lock = NULL; 630 } else 631 *dir = NULL; 632 nr_pages_to_free++; 633 list_add(&middir->lru, &pages_to_free); 634 } 635 shmem_dir_unmap(dir); 636 cond_resched(); 637 dir = shmem_dir_map(middir); 638 diroff = 0; 639 } 640 punch_lock = needs_lock; 641 subdir = dir[diroff]; 642 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) { 643 if (needs_lock) { 644 spin_lock(needs_lock); 645 dir[diroff] = NULL; 646 spin_unlock(needs_lock); 647 punch_lock = NULL; 648 } else 649 dir[diroff] = NULL; 650 nr_pages_to_free++; 651 list_add(&subdir->lru, &pages_to_free); 652 } 653 if (subdir && page_private(subdir) /* has swap entries */) { 654 size = limit - idx; 655 if (size > ENTRIES_PER_PAGE) 656 size = ENTRIES_PER_PAGE; 657 freed = shmem_map_and_free_swp(subdir, 658 offset, size, &dir, punch_lock); 659 if (!dir) 660 dir = shmem_dir_map(middir); 661 nr_swaps_freed += freed; 662 if (offset || punch_lock) { 663 spin_lock(&info->lock); 664 set_page_private(subdir, 665 page_private(subdir) - freed); 666 spin_unlock(&info->lock); 667 } else 668 BUG_ON(page_private(subdir) != freed); 669 } 670 offset = 0; 671 } 672 done1: 673 shmem_dir_unmap(dir); 674 done2: 675 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { 676 /* 677 * Call truncate_inode_pages again: racing shmem_unuse_inode 678 * may have swizzled a page in from swap since vmtruncate or 679 * generic_delete_inode did it, before we lowered next_index. 680 * Also, though shmem_getpage checks i_size before adding to 681 * cache, no recheck after: so fix the narrow window there too. 682 * 683 * Recalling truncate_inode_pages_range and unmap_mapping_range 684 * every time for punch_hole (which never got a chance to clear 685 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive, 686 * yet hardly ever necessary: try to optimize them out later. 687 */ 688 truncate_inode_pages_range(inode->i_mapping, start, end); 689 if (punch_hole) 690 unmap_mapping_range(inode->i_mapping, start, 691 end - start, 1); 692 } 693 694 spin_lock(&info->lock); 695 info->flags &= ~SHMEM_TRUNCATE; 696 info->swapped -= nr_swaps_freed; 697 if (nr_pages_to_free) 698 shmem_free_blocks(inode, nr_pages_to_free); 699 shmem_recalc_inode(inode); 700 spin_unlock(&info->lock); 701 702 /* 703 * Empty swap vector directory pages to be freed? 704 */ 705 if (!list_empty(&pages_to_free)) { 706 pages_to_free.prev->next = NULL; 707 shmem_free_pages(pages_to_free.next); 708 } 709 } 710 711 static void shmem_truncate(struct inode *inode) 712 { 713 shmem_truncate_range(inode, inode->i_size, (loff_t)-1); 714 } 715 716 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) 717 { 718 struct inode *inode = dentry->d_inode; 719 struct page *page = NULL; 720 int error; 721 722 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 723 if (attr->ia_size < inode->i_size) { 724 /* 725 * If truncating down to a partial page, then 726 * if that page is already allocated, hold it 727 * in memory until the truncation is over, so 728 * truncate_partial_page cannnot miss it were 729 * it assigned to swap. 730 */ 731 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) { 732 (void) shmem_getpage(inode, 733 attr->ia_size>>PAGE_CACHE_SHIFT, 734 &page, SGP_READ, NULL); 735 } 736 /* 737 * Reset SHMEM_PAGEIN flag so that shmem_truncate can 738 * detect if any pages might have been added to cache 739 * after truncate_inode_pages. But we needn't bother 740 * if it's being fully truncated to zero-length: the 741 * nrpages check is efficient enough in that case. 742 */ 743 if (attr->ia_size) { 744 struct shmem_inode_info *info = SHMEM_I(inode); 745 spin_lock(&info->lock); 746 info->flags &= ~SHMEM_PAGEIN; 747 spin_unlock(&info->lock); 748 } 749 } 750 } 751 752 error = inode_change_ok(inode, attr); 753 if (!error) 754 error = inode_setattr(inode, attr); 755 #ifdef CONFIG_TMPFS_POSIX_ACL 756 if (!error && (attr->ia_valid & ATTR_MODE)) 757 error = generic_acl_chmod(inode, &shmem_acl_ops); 758 #endif 759 if (page) 760 page_cache_release(page); 761 return error; 762 } 763 764 static void shmem_delete_inode(struct inode *inode) 765 { 766 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 767 struct shmem_inode_info *info = SHMEM_I(inode); 768 769 if (inode->i_op->truncate == shmem_truncate) { 770 truncate_inode_pages(inode->i_mapping, 0); 771 shmem_unacct_size(info->flags, inode->i_size); 772 inode->i_size = 0; 773 shmem_truncate(inode); 774 if (!list_empty(&info->swaplist)) { 775 spin_lock(&shmem_swaplist_lock); 776 list_del_init(&info->swaplist); 777 spin_unlock(&shmem_swaplist_lock); 778 } 779 } 780 BUG_ON(inode->i_blocks); 781 if (sbinfo->max_inodes) { 782 spin_lock(&sbinfo->stat_lock); 783 sbinfo->free_inodes++; 784 spin_unlock(&sbinfo->stat_lock); 785 } 786 clear_inode(inode); 787 } 788 789 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) 790 { 791 swp_entry_t *ptr; 792 793 for (ptr = dir; ptr < edir; ptr++) { 794 if (ptr->val == entry.val) 795 return ptr - dir; 796 } 797 return -1; 798 } 799 800 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) 801 { 802 struct inode *inode; 803 unsigned long idx; 804 unsigned long size; 805 unsigned long limit; 806 unsigned long stage; 807 struct page **dir; 808 struct page *subdir; 809 swp_entry_t *ptr; 810 int offset; 811 812 idx = 0; 813 ptr = info->i_direct; 814 spin_lock(&info->lock); 815 limit = info->next_index; 816 size = limit; 817 if (size > SHMEM_NR_DIRECT) 818 size = SHMEM_NR_DIRECT; 819 offset = shmem_find_swp(entry, ptr, ptr+size); 820 if (offset >= 0) { 821 shmem_swp_balance_unmap(); 822 goto found; 823 } 824 if (!info->i_indirect) 825 goto lost2; 826 827 dir = shmem_dir_map(info->i_indirect); 828 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; 829 830 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { 831 if (unlikely(idx == stage)) { 832 shmem_dir_unmap(dir-1); 833 dir = shmem_dir_map(info->i_indirect) + 834 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 835 while (!*dir) { 836 dir++; 837 idx += ENTRIES_PER_PAGEPAGE; 838 if (idx >= limit) 839 goto lost1; 840 } 841 stage = idx + ENTRIES_PER_PAGEPAGE; 842 subdir = *dir; 843 shmem_dir_unmap(dir); 844 dir = shmem_dir_map(subdir); 845 } 846 subdir = *dir; 847 if (subdir && page_private(subdir)) { 848 ptr = shmem_swp_map(subdir); 849 size = limit - idx; 850 if (size > ENTRIES_PER_PAGE) 851 size = ENTRIES_PER_PAGE; 852 offset = shmem_find_swp(entry, ptr, ptr+size); 853 if (offset >= 0) { 854 shmem_dir_unmap(dir); 855 goto found; 856 } 857 shmem_swp_unmap(ptr); 858 } 859 } 860 lost1: 861 shmem_dir_unmap(dir-1); 862 lost2: 863 spin_unlock(&info->lock); 864 return 0; 865 found: 866 idx += offset; 867 inode = &info->vfs_inode; 868 if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) { 869 info->flags |= SHMEM_PAGEIN; 870 shmem_swp_set(info, ptr + offset, 0); 871 } 872 shmem_swp_unmap(ptr); 873 spin_unlock(&info->lock); 874 /* 875 * Decrement swap count even when the entry is left behind: 876 * try_to_unuse will skip over mms, then reincrement count. 877 */ 878 swap_free(entry); 879 return 1; 880 } 881 882 /* 883 * shmem_unuse() search for an eventually swapped out shmem page. 884 */ 885 int shmem_unuse(swp_entry_t entry, struct page *page) 886 { 887 struct list_head *p, *next; 888 struct shmem_inode_info *info; 889 int found = 0; 890 891 spin_lock(&shmem_swaplist_lock); 892 list_for_each_safe(p, next, &shmem_swaplist) { 893 info = list_entry(p, struct shmem_inode_info, swaplist); 894 if (!info->swapped) 895 list_del_init(&info->swaplist); 896 else if (shmem_unuse_inode(info, entry, page)) { 897 /* move head to start search for next from here */ 898 list_move_tail(&shmem_swaplist, &info->swaplist); 899 found = 1; 900 break; 901 } 902 } 903 spin_unlock(&shmem_swaplist_lock); 904 return found; 905 } 906 907 /* 908 * Move the page from the page cache to the swap cache. 909 */ 910 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 911 { 912 struct shmem_inode_info *info; 913 swp_entry_t *entry, swap; 914 struct address_space *mapping; 915 unsigned long index; 916 struct inode *inode; 917 918 BUG_ON(!PageLocked(page)); 919 BUG_ON(page_mapped(page)); 920 921 mapping = page->mapping; 922 index = page->index; 923 inode = mapping->host; 924 info = SHMEM_I(inode); 925 if (info->flags & VM_LOCKED) 926 goto redirty; 927 swap = get_swap_page(); 928 if (!swap.val) 929 goto redirty; 930 931 spin_lock(&info->lock); 932 shmem_recalc_inode(inode); 933 if (index >= info->next_index) { 934 BUG_ON(!(info->flags & SHMEM_TRUNCATE)); 935 goto unlock; 936 } 937 entry = shmem_swp_entry(info, index, NULL); 938 BUG_ON(!entry); 939 BUG_ON(entry->val); 940 941 if (move_to_swap_cache(page, swap) == 0) { 942 shmem_swp_set(info, entry, swap.val); 943 shmem_swp_unmap(entry); 944 spin_unlock(&info->lock); 945 if (list_empty(&info->swaplist)) { 946 spin_lock(&shmem_swaplist_lock); 947 /* move instead of add in case we're racing */ 948 list_move_tail(&info->swaplist, &shmem_swaplist); 949 spin_unlock(&shmem_swaplist_lock); 950 } 951 unlock_page(page); 952 return 0; 953 } 954 955 shmem_swp_unmap(entry); 956 unlock: 957 spin_unlock(&info->lock); 958 swap_free(swap); 959 redirty: 960 set_page_dirty(page); 961 return AOP_WRITEPAGE_ACTIVATE; /* Return with the page locked */ 962 } 963 964 #ifdef CONFIG_NUMA 965 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes) 966 { 967 char *nodelist = strchr(value, ':'); 968 int err = 1; 969 970 if (nodelist) { 971 /* NUL-terminate policy string */ 972 *nodelist++ = '\0'; 973 if (nodelist_parse(nodelist, *policy_nodes)) 974 goto out; 975 if (!nodes_subset(*policy_nodes, node_online_map)) 976 goto out; 977 } 978 if (!strcmp(value, "default")) { 979 *policy = MPOL_DEFAULT; 980 /* Don't allow a nodelist */ 981 if (!nodelist) 982 err = 0; 983 } else if (!strcmp(value, "prefer")) { 984 *policy = MPOL_PREFERRED; 985 /* Insist on a nodelist of one node only */ 986 if (nodelist) { 987 char *rest = nodelist; 988 while (isdigit(*rest)) 989 rest++; 990 if (!*rest) 991 err = 0; 992 } 993 } else if (!strcmp(value, "bind")) { 994 *policy = MPOL_BIND; 995 /* Insist on a nodelist */ 996 if (nodelist) 997 err = 0; 998 } else if (!strcmp(value, "interleave")) { 999 *policy = MPOL_INTERLEAVE; 1000 /* Default to nodes online if no nodelist */ 1001 if (!nodelist) 1002 *policy_nodes = node_online_map; 1003 err = 0; 1004 } 1005 out: 1006 /* Restore string for error message */ 1007 if (nodelist) 1008 *--nodelist = ':'; 1009 return err; 1010 } 1011 1012 static struct page *shmem_swapin_async(struct shared_policy *p, 1013 swp_entry_t entry, unsigned long idx) 1014 { 1015 struct page *page; 1016 struct vm_area_struct pvma; 1017 1018 /* Create a pseudo vma that just contains the policy */ 1019 memset(&pvma, 0, sizeof(struct vm_area_struct)); 1020 pvma.vm_end = PAGE_SIZE; 1021 pvma.vm_pgoff = idx; 1022 pvma.vm_policy = mpol_shared_policy_lookup(p, idx); 1023 page = read_swap_cache_async(entry, &pvma, 0); 1024 mpol_free(pvma.vm_policy); 1025 return page; 1026 } 1027 1028 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry, 1029 unsigned long idx) 1030 { 1031 struct shared_policy *p = &info->policy; 1032 int i, num; 1033 struct page *page; 1034 unsigned long offset; 1035 1036 num = valid_swaphandles(entry, &offset); 1037 for (i = 0; i < num; offset++, i++) { 1038 page = shmem_swapin_async(p, 1039 swp_entry(swp_type(entry), offset), idx); 1040 if (!page) 1041 break; 1042 page_cache_release(page); 1043 } 1044 lru_add_drain(); /* Push any new pages onto the LRU now */ 1045 return shmem_swapin_async(p, entry, idx); 1046 } 1047 1048 static struct page * 1049 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info, 1050 unsigned long idx) 1051 { 1052 struct vm_area_struct pvma; 1053 struct page *page; 1054 1055 memset(&pvma, 0, sizeof(struct vm_area_struct)); 1056 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); 1057 pvma.vm_pgoff = idx; 1058 pvma.vm_end = PAGE_SIZE; 1059 page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0); 1060 mpol_free(pvma.vm_policy); 1061 return page; 1062 } 1063 #else 1064 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes) 1065 { 1066 return 1; 1067 } 1068 1069 static inline struct page * 1070 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx) 1071 { 1072 swapin_readahead(entry, 0, NULL); 1073 return read_swap_cache_async(entry, NULL, 0); 1074 } 1075 1076 static inline struct page * 1077 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx) 1078 { 1079 return alloc_page(gfp | __GFP_ZERO); 1080 } 1081 #endif 1082 1083 /* 1084 * shmem_getpage - either get the page from swap or allocate a new one 1085 * 1086 * If we allocate a new one we do not mark it dirty. That's up to the 1087 * vm. If we swap it in we mark it dirty since we also free the swap 1088 * entry since a page cannot live in both the swap and page cache 1089 */ 1090 static int shmem_getpage(struct inode *inode, unsigned long idx, 1091 struct page **pagep, enum sgp_type sgp, int *type) 1092 { 1093 struct address_space *mapping = inode->i_mapping; 1094 struct shmem_inode_info *info = SHMEM_I(inode); 1095 struct shmem_sb_info *sbinfo; 1096 struct page *filepage = *pagep; 1097 struct page *swappage; 1098 swp_entry_t *entry; 1099 swp_entry_t swap; 1100 int error; 1101 1102 if (idx >= SHMEM_MAX_INDEX) 1103 return -EFBIG; 1104 1105 if (type) 1106 *type = 0; 1107 1108 /* 1109 * Normally, filepage is NULL on entry, and either found 1110 * uptodate immediately, or allocated and zeroed, or read 1111 * in under swappage, which is then assigned to filepage. 1112 * But shmem_readpage and shmem_prepare_write pass in a locked 1113 * filepage, which may be found not uptodate by other callers 1114 * too, and may need to be copied from the swappage read in. 1115 */ 1116 repeat: 1117 if (!filepage) 1118 filepage = find_lock_page(mapping, idx); 1119 if (filepage && PageUptodate(filepage)) 1120 goto done; 1121 error = 0; 1122 if (sgp == SGP_QUICK) 1123 goto failed; 1124 1125 spin_lock(&info->lock); 1126 shmem_recalc_inode(inode); 1127 entry = shmem_swp_alloc(info, idx, sgp); 1128 if (IS_ERR(entry)) { 1129 spin_unlock(&info->lock); 1130 error = PTR_ERR(entry); 1131 goto failed; 1132 } 1133 swap = *entry; 1134 1135 if (swap.val) { 1136 /* Look it up and read it in.. */ 1137 swappage = lookup_swap_cache(swap); 1138 if (!swappage) { 1139 shmem_swp_unmap(entry); 1140 /* here we actually do the io */ 1141 if (type && !(*type & VM_FAULT_MAJOR)) { 1142 __count_vm_event(PGMAJFAULT); 1143 *type |= VM_FAULT_MAJOR; 1144 } 1145 spin_unlock(&info->lock); 1146 swappage = shmem_swapin(info, swap, idx); 1147 if (!swappage) { 1148 spin_lock(&info->lock); 1149 entry = shmem_swp_alloc(info, idx, sgp); 1150 if (IS_ERR(entry)) 1151 error = PTR_ERR(entry); 1152 else { 1153 if (entry->val == swap.val) 1154 error = -ENOMEM; 1155 shmem_swp_unmap(entry); 1156 } 1157 spin_unlock(&info->lock); 1158 if (error) 1159 goto failed; 1160 goto repeat; 1161 } 1162 wait_on_page_locked(swappage); 1163 page_cache_release(swappage); 1164 goto repeat; 1165 } 1166 1167 /* We have to do this with page locked to prevent races */ 1168 if (TestSetPageLocked(swappage)) { 1169 shmem_swp_unmap(entry); 1170 spin_unlock(&info->lock); 1171 wait_on_page_locked(swappage); 1172 page_cache_release(swappage); 1173 goto repeat; 1174 } 1175 if (PageWriteback(swappage)) { 1176 shmem_swp_unmap(entry); 1177 spin_unlock(&info->lock); 1178 wait_on_page_writeback(swappage); 1179 unlock_page(swappage); 1180 page_cache_release(swappage); 1181 goto repeat; 1182 } 1183 if (!PageUptodate(swappage)) { 1184 shmem_swp_unmap(entry); 1185 spin_unlock(&info->lock); 1186 unlock_page(swappage); 1187 page_cache_release(swappage); 1188 error = -EIO; 1189 goto failed; 1190 } 1191 1192 if (filepage) { 1193 shmem_swp_set(info, entry, 0); 1194 shmem_swp_unmap(entry); 1195 delete_from_swap_cache(swappage); 1196 spin_unlock(&info->lock); 1197 copy_highpage(filepage, swappage); 1198 unlock_page(swappage); 1199 page_cache_release(swappage); 1200 flush_dcache_page(filepage); 1201 SetPageUptodate(filepage); 1202 set_page_dirty(filepage); 1203 swap_free(swap); 1204 } else if (!(error = move_from_swap_cache( 1205 swappage, idx, mapping))) { 1206 info->flags |= SHMEM_PAGEIN; 1207 shmem_swp_set(info, entry, 0); 1208 shmem_swp_unmap(entry); 1209 spin_unlock(&info->lock); 1210 filepage = swappage; 1211 swap_free(swap); 1212 } else { 1213 shmem_swp_unmap(entry); 1214 spin_unlock(&info->lock); 1215 unlock_page(swappage); 1216 page_cache_release(swappage); 1217 if (error == -ENOMEM) { 1218 /* let kswapd refresh zone for GFP_ATOMICs */ 1219 congestion_wait(WRITE, HZ/50); 1220 } 1221 goto repeat; 1222 } 1223 } else if (sgp == SGP_READ && !filepage) { 1224 shmem_swp_unmap(entry); 1225 filepage = find_get_page(mapping, idx); 1226 if (filepage && 1227 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) { 1228 spin_unlock(&info->lock); 1229 wait_on_page_locked(filepage); 1230 page_cache_release(filepage); 1231 filepage = NULL; 1232 goto repeat; 1233 } 1234 spin_unlock(&info->lock); 1235 } else { 1236 shmem_swp_unmap(entry); 1237 sbinfo = SHMEM_SB(inode->i_sb); 1238 if (sbinfo->max_blocks) { 1239 spin_lock(&sbinfo->stat_lock); 1240 if (sbinfo->free_blocks == 0 || 1241 shmem_acct_block(info->flags)) { 1242 spin_unlock(&sbinfo->stat_lock); 1243 spin_unlock(&info->lock); 1244 error = -ENOSPC; 1245 goto failed; 1246 } 1247 sbinfo->free_blocks--; 1248 inode->i_blocks += BLOCKS_PER_PAGE; 1249 spin_unlock(&sbinfo->stat_lock); 1250 } else if (shmem_acct_block(info->flags)) { 1251 spin_unlock(&info->lock); 1252 error = -ENOSPC; 1253 goto failed; 1254 } 1255 1256 if (!filepage) { 1257 spin_unlock(&info->lock); 1258 filepage = shmem_alloc_page(mapping_gfp_mask(mapping), 1259 info, 1260 idx); 1261 if (!filepage) { 1262 shmem_unacct_blocks(info->flags, 1); 1263 shmem_free_blocks(inode, 1); 1264 error = -ENOMEM; 1265 goto failed; 1266 } 1267 1268 spin_lock(&info->lock); 1269 entry = shmem_swp_alloc(info, idx, sgp); 1270 if (IS_ERR(entry)) 1271 error = PTR_ERR(entry); 1272 else { 1273 swap = *entry; 1274 shmem_swp_unmap(entry); 1275 } 1276 if (error || swap.val || 0 != add_to_page_cache_lru( 1277 filepage, mapping, idx, GFP_ATOMIC)) { 1278 spin_unlock(&info->lock); 1279 page_cache_release(filepage); 1280 shmem_unacct_blocks(info->flags, 1); 1281 shmem_free_blocks(inode, 1); 1282 filepage = NULL; 1283 if (error) 1284 goto failed; 1285 goto repeat; 1286 } 1287 info->flags |= SHMEM_PAGEIN; 1288 } 1289 1290 info->alloced++; 1291 spin_unlock(&info->lock); 1292 flush_dcache_page(filepage); 1293 SetPageUptodate(filepage); 1294 } 1295 done: 1296 if (*pagep != filepage) { 1297 *pagep = filepage; 1298 if (sgp != SGP_FAULT) 1299 unlock_page(filepage); 1300 1301 } 1302 return 0; 1303 1304 failed: 1305 if (*pagep != filepage) { 1306 unlock_page(filepage); 1307 page_cache_release(filepage); 1308 } 1309 return error; 1310 } 1311 1312 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1313 { 1314 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1315 int error; 1316 int ret; 1317 1318 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 1319 return VM_FAULT_SIGBUS; 1320 1321 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret); 1322 if (error) 1323 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1324 1325 mark_page_accessed(vmf->page); 1326 return ret | VM_FAULT_LOCKED; 1327 } 1328 1329 #ifdef CONFIG_NUMA 1330 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) 1331 { 1332 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1333 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); 1334 } 1335 1336 struct mempolicy * 1337 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr) 1338 { 1339 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1340 unsigned long idx; 1341 1342 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1343 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); 1344 } 1345 #endif 1346 1347 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1348 { 1349 struct inode *inode = file->f_path.dentry->d_inode; 1350 struct shmem_inode_info *info = SHMEM_I(inode); 1351 int retval = -ENOMEM; 1352 1353 spin_lock(&info->lock); 1354 if (lock && !(info->flags & VM_LOCKED)) { 1355 if (!user_shm_lock(inode->i_size, user)) 1356 goto out_nomem; 1357 info->flags |= VM_LOCKED; 1358 } 1359 if (!lock && (info->flags & VM_LOCKED) && user) { 1360 user_shm_unlock(inode->i_size, user); 1361 info->flags &= ~VM_LOCKED; 1362 } 1363 retval = 0; 1364 out_nomem: 1365 spin_unlock(&info->lock); 1366 return retval; 1367 } 1368 1369 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1370 { 1371 file_accessed(file); 1372 vma->vm_ops = &shmem_vm_ops; 1373 vma->vm_flags |= VM_CAN_NONLINEAR; 1374 return 0; 1375 } 1376 1377 static struct inode * 1378 shmem_get_inode(struct super_block *sb, int mode, dev_t dev) 1379 { 1380 struct inode *inode; 1381 struct shmem_inode_info *info; 1382 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1383 1384 if (sbinfo->max_inodes) { 1385 spin_lock(&sbinfo->stat_lock); 1386 if (!sbinfo->free_inodes) { 1387 spin_unlock(&sbinfo->stat_lock); 1388 return NULL; 1389 } 1390 sbinfo->free_inodes--; 1391 spin_unlock(&sbinfo->stat_lock); 1392 } 1393 1394 inode = new_inode(sb); 1395 if (inode) { 1396 inode->i_mode = mode; 1397 inode->i_uid = current->fsuid; 1398 inode->i_gid = current->fsgid; 1399 inode->i_blocks = 0; 1400 inode->i_mapping->a_ops = &shmem_aops; 1401 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1402 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1403 inode->i_generation = get_seconds(); 1404 info = SHMEM_I(inode); 1405 memset(info, 0, (char *)inode - (char *)info); 1406 spin_lock_init(&info->lock); 1407 INIT_LIST_HEAD(&info->swaplist); 1408 1409 switch (mode & S_IFMT) { 1410 default: 1411 inode->i_op = &shmem_special_inode_operations; 1412 init_special_inode(inode, mode, dev); 1413 break; 1414 case S_IFREG: 1415 inode->i_op = &shmem_inode_operations; 1416 inode->i_fop = &shmem_file_operations; 1417 mpol_shared_policy_init(&info->policy, sbinfo->policy, 1418 &sbinfo->policy_nodes); 1419 break; 1420 case S_IFDIR: 1421 inc_nlink(inode); 1422 /* Some things misbehave if size == 0 on a directory */ 1423 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1424 inode->i_op = &shmem_dir_inode_operations; 1425 inode->i_fop = &simple_dir_operations; 1426 break; 1427 case S_IFLNK: 1428 /* 1429 * Must not load anything in the rbtree, 1430 * mpol_free_shared_policy will not be called. 1431 */ 1432 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT, 1433 NULL); 1434 break; 1435 } 1436 } else if (sbinfo->max_inodes) { 1437 spin_lock(&sbinfo->stat_lock); 1438 sbinfo->free_inodes++; 1439 spin_unlock(&sbinfo->stat_lock); 1440 } 1441 return inode; 1442 } 1443 1444 #ifdef CONFIG_TMPFS 1445 static const struct inode_operations shmem_symlink_inode_operations; 1446 static const struct inode_operations shmem_symlink_inline_operations; 1447 1448 /* 1449 * Normally tmpfs avoids the use of shmem_readpage and shmem_prepare_write; 1450 * but providing them allows a tmpfs file to be used for splice, sendfile, and 1451 * below the loop driver, in the generic fashion that many filesystems support. 1452 */ 1453 static int shmem_readpage(struct file *file, struct page *page) 1454 { 1455 struct inode *inode = page->mapping->host; 1456 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL); 1457 unlock_page(page); 1458 return error; 1459 } 1460 1461 static int 1462 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to) 1463 { 1464 struct inode *inode = page->mapping->host; 1465 return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL); 1466 } 1467 1468 static ssize_t 1469 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) 1470 { 1471 struct inode *inode = file->f_path.dentry->d_inode; 1472 loff_t pos; 1473 unsigned long written; 1474 ssize_t err; 1475 1476 if ((ssize_t) count < 0) 1477 return -EINVAL; 1478 1479 if (!access_ok(VERIFY_READ, buf, count)) 1480 return -EFAULT; 1481 1482 mutex_lock(&inode->i_mutex); 1483 1484 pos = *ppos; 1485 written = 0; 1486 1487 err = generic_write_checks(file, &pos, &count, 0); 1488 if (err || !count) 1489 goto out; 1490 1491 err = remove_suid(file->f_path.dentry); 1492 if (err) 1493 goto out; 1494 1495 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1496 1497 do { 1498 struct page *page = NULL; 1499 unsigned long bytes, index, offset; 1500 char *kaddr; 1501 int left; 1502 1503 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 1504 index = pos >> PAGE_CACHE_SHIFT; 1505 bytes = PAGE_CACHE_SIZE - offset; 1506 if (bytes > count) 1507 bytes = count; 1508 1509 /* 1510 * We don't hold page lock across copy from user - 1511 * what would it guard against? - so no deadlock here. 1512 * But it still may be a good idea to prefault below. 1513 */ 1514 1515 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL); 1516 if (err) 1517 break; 1518 1519 left = bytes; 1520 if (PageHighMem(page)) { 1521 volatile unsigned char dummy; 1522 __get_user(dummy, buf); 1523 __get_user(dummy, buf + bytes - 1); 1524 1525 kaddr = kmap_atomic(page, KM_USER0); 1526 left = __copy_from_user_inatomic(kaddr + offset, 1527 buf, bytes); 1528 kunmap_atomic(kaddr, KM_USER0); 1529 } 1530 if (left) { 1531 kaddr = kmap(page); 1532 left = __copy_from_user(kaddr + offset, buf, bytes); 1533 kunmap(page); 1534 } 1535 1536 written += bytes; 1537 count -= bytes; 1538 pos += bytes; 1539 buf += bytes; 1540 if (pos > inode->i_size) 1541 i_size_write(inode, pos); 1542 1543 flush_dcache_page(page); 1544 set_page_dirty(page); 1545 mark_page_accessed(page); 1546 page_cache_release(page); 1547 1548 if (left) { 1549 pos -= left; 1550 written -= left; 1551 err = -EFAULT; 1552 break; 1553 } 1554 1555 /* 1556 * Our dirty pages are not counted in nr_dirty, 1557 * and we do not attempt to balance dirty pages. 1558 */ 1559 1560 cond_resched(); 1561 } while (count); 1562 1563 *ppos = pos; 1564 if (written) 1565 err = written; 1566 out: 1567 mutex_unlock(&inode->i_mutex); 1568 return err; 1569 } 1570 1571 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1572 { 1573 struct inode *inode = filp->f_path.dentry->d_inode; 1574 struct address_space *mapping = inode->i_mapping; 1575 unsigned long index, offset; 1576 1577 index = *ppos >> PAGE_CACHE_SHIFT; 1578 offset = *ppos & ~PAGE_CACHE_MASK; 1579 1580 for (;;) { 1581 struct page *page = NULL; 1582 unsigned long end_index, nr, ret; 1583 loff_t i_size = i_size_read(inode); 1584 1585 end_index = i_size >> PAGE_CACHE_SHIFT; 1586 if (index > end_index) 1587 break; 1588 if (index == end_index) { 1589 nr = i_size & ~PAGE_CACHE_MASK; 1590 if (nr <= offset) 1591 break; 1592 } 1593 1594 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL); 1595 if (desc->error) { 1596 if (desc->error == -EINVAL) 1597 desc->error = 0; 1598 break; 1599 } 1600 1601 /* 1602 * We must evaluate after, since reads (unlike writes) 1603 * are called without i_mutex protection against truncate 1604 */ 1605 nr = PAGE_CACHE_SIZE; 1606 i_size = i_size_read(inode); 1607 end_index = i_size >> PAGE_CACHE_SHIFT; 1608 if (index == end_index) { 1609 nr = i_size & ~PAGE_CACHE_MASK; 1610 if (nr <= offset) { 1611 if (page) 1612 page_cache_release(page); 1613 break; 1614 } 1615 } 1616 nr -= offset; 1617 1618 if (page) { 1619 /* 1620 * If users can be writing to this page using arbitrary 1621 * virtual addresses, take care about potential aliasing 1622 * before reading the page on the kernel side. 1623 */ 1624 if (mapping_writably_mapped(mapping)) 1625 flush_dcache_page(page); 1626 /* 1627 * Mark the page accessed if we read the beginning. 1628 */ 1629 if (!offset) 1630 mark_page_accessed(page); 1631 } else { 1632 page = ZERO_PAGE(0); 1633 page_cache_get(page); 1634 } 1635 1636 /* 1637 * Ok, we have the page, and it's up-to-date, so 1638 * now we can copy it to user space... 1639 * 1640 * The actor routine returns how many bytes were actually used.. 1641 * NOTE! This may not be the same as how much of a user buffer 1642 * we filled up (we may be padding etc), so we can only update 1643 * "pos" here (the actor routine has to update the user buffer 1644 * pointers and the remaining count). 1645 */ 1646 ret = actor(desc, page, offset, nr); 1647 offset += ret; 1648 index += offset >> PAGE_CACHE_SHIFT; 1649 offset &= ~PAGE_CACHE_MASK; 1650 1651 page_cache_release(page); 1652 if (ret != nr || !desc->count) 1653 break; 1654 1655 cond_resched(); 1656 } 1657 1658 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1659 file_accessed(filp); 1660 } 1661 1662 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 1663 { 1664 read_descriptor_t desc; 1665 1666 if ((ssize_t) count < 0) 1667 return -EINVAL; 1668 if (!access_ok(VERIFY_WRITE, buf, count)) 1669 return -EFAULT; 1670 if (!count) 1671 return 0; 1672 1673 desc.written = 0; 1674 desc.count = count; 1675 desc.arg.buf = buf; 1676 desc.error = 0; 1677 1678 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1679 if (desc.written) 1680 return desc.written; 1681 return desc.error; 1682 } 1683 1684 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1685 { 1686 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1687 1688 buf->f_type = TMPFS_MAGIC; 1689 buf->f_bsize = PAGE_CACHE_SIZE; 1690 buf->f_namelen = NAME_MAX; 1691 spin_lock(&sbinfo->stat_lock); 1692 if (sbinfo->max_blocks) { 1693 buf->f_blocks = sbinfo->max_blocks; 1694 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks; 1695 } 1696 if (sbinfo->max_inodes) { 1697 buf->f_files = sbinfo->max_inodes; 1698 buf->f_ffree = sbinfo->free_inodes; 1699 } 1700 /* else leave those fields 0 like simple_statfs */ 1701 spin_unlock(&sbinfo->stat_lock); 1702 return 0; 1703 } 1704 1705 /* 1706 * File creation. Allocate an inode, and we're done.. 1707 */ 1708 static int 1709 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1710 { 1711 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev); 1712 int error = -ENOSPC; 1713 1714 if (inode) { 1715 error = security_inode_init_security(inode, dir, NULL, NULL, 1716 NULL); 1717 if (error) { 1718 if (error != -EOPNOTSUPP) { 1719 iput(inode); 1720 return error; 1721 } 1722 } 1723 error = shmem_acl_init(inode, dir); 1724 if (error) { 1725 iput(inode); 1726 return error; 1727 } 1728 if (dir->i_mode & S_ISGID) { 1729 inode->i_gid = dir->i_gid; 1730 if (S_ISDIR(mode)) 1731 inode->i_mode |= S_ISGID; 1732 } 1733 dir->i_size += BOGO_DIRENT_SIZE; 1734 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1735 d_instantiate(dentry, inode); 1736 dget(dentry); /* Extra count - pin the dentry in core */ 1737 } 1738 return error; 1739 } 1740 1741 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1742 { 1743 int error; 1744 1745 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1746 return error; 1747 inc_nlink(dir); 1748 return 0; 1749 } 1750 1751 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, 1752 struct nameidata *nd) 1753 { 1754 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1755 } 1756 1757 /* 1758 * Link a file.. 1759 */ 1760 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1761 { 1762 struct inode *inode = old_dentry->d_inode; 1763 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1764 1765 /* 1766 * No ordinary (disk based) filesystem counts links as inodes; 1767 * but each new link needs a new dentry, pinning lowmem, and 1768 * tmpfs dentries cannot be pruned until they are unlinked. 1769 */ 1770 if (sbinfo->max_inodes) { 1771 spin_lock(&sbinfo->stat_lock); 1772 if (!sbinfo->free_inodes) { 1773 spin_unlock(&sbinfo->stat_lock); 1774 return -ENOSPC; 1775 } 1776 sbinfo->free_inodes--; 1777 spin_unlock(&sbinfo->stat_lock); 1778 } 1779 1780 dir->i_size += BOGO_DIRENT_SIZE; 1781 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1782 inc_nlink(inode); 1783 atomic_inc(&inode->i_count); /* New dentry reference */ 1784 dget(dentry); /* Extra pinning count for the created dentry */ 1785 d_instantiate(dentry, inode); 1786 return 0; 1787 } 1788 1789 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1790 { 1791 struct inode *inode = dentry->d_inode; 1792 1793 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) { 1794 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1795 if (sbinfo->max_inodes) { 1796 spin_lock(&sbinfo->stat_lock); 1797 sbinfo->free_inodes++; 1798 spin_unlock(&sbinfo->stat_lock); 1799 } 1800 } 1801 1802 dir->i_size -= BOGO_DIRENT_SIZE; 1803 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1804 drop_nlink(inode); 1805 dput(dentry); /* Undo the count from "create" - this does all the work */ 1806 return 0; 1807 } 1808 1809 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1810 { 1811 if (!simple_empty(dentry)) 1812 return -ENOTEMPTY; 1813 1814 drop_nlink(dentry->d_inode); 1815 drop_nlink(dir); 1816 return shmem_unlink(dir, dentry); 1817 } 1818 1819 /* 1820 * The VFS layer already does all the dentry stuff for rename, 1821 * we just have to decrement the usage count for the target if 1822 * it exists so that the VFS layer correctly free's it when it 1823 * gets overwritten. 1824 */ 1825 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1826 { 1827 struct inode *inode = old_dentry->d_inode; 1828 int they_are_dirs = S_ISDIR(inode->i_mode); 1829 1830 if (!simple_empty(new_dentry)) 1831 return -ENOTEMPTY; 1832 1833 if (new_dentry->d_inode) { 1834 (void) shmem_unlink(new_dir, new_dentry); 1835 if (they_are_dirs) 1836 drop_nlink(old_dir); 1837 } else if (they_are_dirs) { 1838 drop_nlink(old_dir); 1839 inc_nlink(new_dir); 1840 } 1841 1842 old_dir->i_size -= BOGO_DIRENT_SIZE; 1843 new_dir->i_size += BOGO_DIRENT_SIZE; 1844 old_dir->i_ctime = old_dir->i_mtime = 1845 new_dir->i_ctime = new_dir->i_mtime = 1846 inode->i_ctime = CURRENT_TIME; 1847 return 0; 1848 } 1849 1850 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1851 { 1852 int error; 1853 int len; 1854 struct inode *inode; 1855 struct page *page = NULL; 1856 char *kaddr; 1857 struct shmem_inode_info *info; 1858 1859 len = strlen(symname) + 1; 1860 if (len > PAGE_CACHE_SIZE) 1861 return -ENAMETOOLONG; 1862 1863 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0); 1864 if (!inode) 1865 return -ENOSPC; 1866 1867 error = security_inode_init_security(inode, dir, NULL, NULL, 1868 NULL); 1869 if (error) { 1870 if (error != -EOPNOTSUPP) { 1871 iput(inode); 1872 return error; 1873 } 1874 error = 0; 1875 } 1876 1877 info = SHMEM_I(inode); 1878 inode->i_size = len-1; 1879 if (len <= (char *)inode - (char *)info) { 1880 /* do it inline */ 1881 memcpy(info, symname, len); 1882 inode->i_op = &shmem_symlink_inline_operations; 1883 } else { 1884 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1885 if (error) { 1886 iput(inode); 1887 return error; 1888 } 1889 inode->i_op = &shmem_symlink_inode_operations; 1890 kaddr = kmap_atomic(page, KM_USER0); 1891 memcpy(kaddr, symname, len); 1892 kunmap_atomic(kaddr, KM_USER0); 1893 set_page_dirty(page); 1894 page_cache_release(page); 1895 } 1896 if (dir->i_mode & S_ISGID) 1897 inode->i_gid = dir->i_gid; 1898 dir->i_size += BOGO_DIRENT_SIZE; 1899 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1900 d_instantiate(dentry, inode); 1901 dget(dentry); 1902 return 0; 1903 } 1904 1905 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) 1906 { 1907 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); 1908 return NULL; 1909 } 1910 1911 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 1912 { 1913 struct page *page = NULL; 1914 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 1915 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); 1916 return page; 1917 } 1918 1919 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 1920 { 1921 if (!IS_ERR(nd_get_link(nd))) { 1922 struct page *page = cookie; 1923 kunmap(page); 1924 mark_page_accessed(page); 1925 page_cache_release(page); 1926 } 1927 } 1928 1929 static const struct inode_operations shmem_symlink_inline_operations = { 1930 .readlink = generic_readlink, 1931 .follow_link = shmem_follow_link_inline, 1932 }; 1933 1934 static const struct inode_operations shmem_symlink_inode_operations = { 1935 .truncate = shmem_truncate, 1936 .readlink = generic_readlink, 1937 .follow_link = shmem_follow_link, 1938 .put_link = shmem_put_link, 1939 }; 1940 1941 #ifdef CONFIG_TMPFS_POSIX_ACL 1942 /** 1943 * Superblocks without xattr inode operations will get security.* xattr 1944 * support from the VFS "for free". As soon as we have any other xattrs 1945 * like ACLs, we also need to implement the security.* handlers at 1946 * filesystem level, though. 1947 */ 1948 1949 static size_t shmem_xattr_security_list(struct inode *inode, char *list, 1950 size_t list_len, const char *name, 1951 size_t name_len) 1952 { 1953 return security_inode_listsecurity(inode, list, list_len); 1954 } 1955 1956 static int shmem_xattr_security_get(struct inode *inode, const char *name, 1957 void *buffer, size_t size) 1958 { 1959 if (strcmp(name, "") == 0) 1960 return -EINVAL; 1961 return security_inode_getsecurity(inode, name, buffer, size, 1962 -EOPNOTSUPP); 1963 } 1964 1965 static int shmem_xattr_security_set(struct inode *inode, const char *name, 1966 const void *value, size_t size, int flags) 1967 { 1968 if (strcmp(name, "") == 0) 1969 return -EINVAL; 1970 return security_inode_setsecurity(inode, name, value, size, flags); 1971 } 1972 1973 static struct xattr_handler shmem_xattr_security_handler = { 1974 .prefix = XATTR_SECURITY_PREFIX, 1975 .list = shmem_xattr_security_list, 1976 .get = shmem_xattr_security_get, 1977 .set = shmem_xattr_security_set, 1978 }; 1979 1980 static struct xattr_handler *shmem_xattr_handlers[] = { 1981 &shmem_xattr_acl_access_handler, 1982 &shmem_xattr_acl_default_handler, 1983 &shmem_xattr_security_handler, 1984 NULL 1985 }; 1986 #endif 1987 1988 static struct dentry *shmem_get_parent(struct dentry *child) 1989 { 1990 return ERR_PTR(-ESTALE); 1991 } 1992 1993 static int shmem_match(struct inode *ino, void *vfh) 1994 { 1995 __u32 *fh = vfh; 1996 __u64 inum = fh[2]; 1997 inum = (inum << 32) | fh[1]; 1998 return ino->i_ino == inum && fh[0] == ino->i_generation; 1999 } 2000 2001 static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh) 2002 { 2003 struct dentry *de = NULL; 2004 struct inode *inode; 2005 __u32 *fh = vfh; 2006 __u64 inum = fh[2]; 2007 inum = (inum << 32) | fh[1]; 2008 2009 inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh); 2010 if (inode) { 2011 de = d_find_alias(inode); 2012 iput(inode); 2013 } 2014 2015 return de? de: ERR_PTR(-ESTALE); 2016 } 2017 2018 static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh, 2019 int len, int type, 2020 int (*acceptable)(void *context, struct dentry *de), 2021 void *context) 2022 { 2023 if (len < 3) 2024 return ERR_PTR(-ESTALE); 2025 2026 return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable, 2027 context); 2028 } 2029 2030 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2031 int connectable) 2032 { 2033 struct inode *inode = dentry->d_inode; 2034 2035 if (*len < 3) 2036 return 255; 2037 2038 if (hlist_unhashed(&inode->i_hash)) { 2039 /* Unfortunately insert_inode_hash is not idempotent, 2040 * so as we hash inodes here rather than at creation 2041 * time, we need a lock to ensure we only try 2042 * to do it once 2043 */ 2044 static DEFINE_SPINLOCK(lock); 2045 spin_lock(&lock); 2046 if (hlist_unhashed(&inode->i_hash)) 2047 __insert_inode_hash(inode, 2048 inode->i_ino + inode->i_generation); 2049 spin_unlock(&lock); 2050 } 2051 2052 fh[0] = inode->i_generation; 2053 fh[1] = inode->i_ino; 2054 fh[2] = ((__u64)inode->i_ino) >> 32; 2055 2056 *len = 3; 2057 return 1; 2058 } 2059 2060 static struct export_operations shmem_export_ops = { 2061 .get_parent = shmem_get_parent, 2062 .get_dentry = shmem_get_dentry, 2063 .encode_fh = shmem_encode_fh, 2064 .decode_fh = shmem_decode_fh, 2065 }; 2066 2067 static int shmem_parse_options(char *options, int *mode, uid_t *uid, 2068 gid_t *gid, unsigned long *blocks, unsigned long *inodes, 2069 int *policy, nodemask_t *policy_nodes) 2070 { 2071 char *this_char, *value, *rest; 2072 2073 while (options != NULL) { 2074 this_char = options; 2075 for (;;) { 2076 /* 2077 * NUL-terminate this option: unfortunately, 2078 * mount options form a comma-separated list, 2079 * but mpol's nodelist may also contain commas. 2080 */ 2081 options = strchr(options, ','); 2082 if (options == NULL) 2083 break; 2084 options++; 2085 if (!isdigit(*options)) { 2086 options[-1] = '\0'; 2087 break; 2088 } 2089 } 2090 if (!*this_char) 2091 continue; 2092 if ((value = strchr(this_char,'=')) != NULL) { 2093 *value++ = 0; 2094 } else { 2095 printk(KERN_ERR 2096 "tmpfs: No value for mount option '%s'\n", 2097 this_char); 2098 return 1; 2099 } 2100 2101 if (!strcmp(this_char,"size")) { 2102 unsigned long long size; 2103 size = memparse(value,&rest); 2104 if (*rest == '%') { 2105 size <<= PAGE_SHIFT; 2106 size *= totalram_pages; 2107 do_div(size, 100); 2108 rest++; 2109 } 2110 if (*rest) 2111 goto bad_val; 2112 *blocks = size >> PAGE_CACHE_SHIFT; 2113 } else if (!strcmp(this_char,"nr_blocks")) { 2114 *blocks = memparse(value,&rest); 2115 if (*rest) 2116 goto bad_val; 2117 } else if (!strcmp(this_char,"nr_inodes")) { 2118 *inodes = memparse(value,&rest); 2119 if (*rest) 2120 goto bad_val; 2121 } else if (!strcmp(this_char,"mode")) { 2122 if (!mode) 2123 continue; 2124 *mode = simple_strtoul(value,&rest,8); 2125 if (*rest) 2126 goto bad_val; 2127 } else if (!strcmp(this_char,"uid")) { 2128 if (!uid) 2129 continue; 2130 *uid = simple_strtoul(value,&rest,0); 2131 if (*rest) 2132 goto bad_val; 2133 } else if (!strcmp(this_char,"gid")) { 2134 if (!gid) 2135 continue; 2136 *gid = simple_strtoul(value,&rest,0); 2137 if (*rest) 2138 goto bad_val; 2139 } else if (!strcmp(this_char,"mpol")) { 2140 if (shmem_parse_mpol(value,policy,policy_nodes)) 2141 goto bad_val; 2142 } else { 2143 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2144 this_char); 2145 return 1; 2146 } 2147 } 2148 return 0; 2149 2150 bad_val: 2151 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2152 value, this_char); 2153 return 1; 2154 2155 } 2156 2157 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2158 { 2159 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2160 unsigned long max_blocks = sbinfo->max_blocks; 2161 unsigned long max_inodes = sbinfo->max_inodes; 2162 int policy = sbinfo->policy; 2163 nodemask_t policy_nodes = sbinfo->policy_nodes; 2164 unsigned long blocks; 2165 unsigned long inodes; 2166 int error = -EINVAL; 2167 2168 if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks, 2169 &max_inodes, &policy, &policy_nodes)) 2170 return error; 2171 2172 spin_lock(&sbinfo->stat_lock); 2173 blocks = sbinfo->max_blocks - sbinfo->free_blocks; 2174 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2175 if (max_blocks < blocks) 2176 goto out; 2177 if (max_inodes < inodes) 2178 goto out; 2179 /* 2180 * Those tests also disallow limited->unlimited while any are in 2181 * use, so i_blocks will always be zero when max_blocks is zero; 2182 * but we must separately disallow unlimited->limited, because 2183 * in that case we have no record of how much is already in use. 2184 */ 2185 if (max_blocks && !sbinfo->max_blocks) 2186 goto out; 2187 if (max_inodes && !sbinfo->max_inodes) 2188 goto out; 2189 2190 error = 0; 2191 sbinfo->max_blocks = max_blocks; 2192 sbinfo->free_blocks = max_blocks - blocks; 2193 sbinfo->max_inodes = max_inodes; 2194 sbinfo->free_inodes = max_inodes - inodes; 2195 sbinfo->policy = policy; 2196 sbinfo->policy_nodes = policy_nodes; 2197 out: 2198 spin_unlock(&sbinfo->stat_lock); 2199 return error; 2200 } 2201 #endif 2202 2203 static void shmem_put_super(struct super_block *sb) 2204 { 2205 kfree(sb->s_fs_info); 2206 sb->s_fs_info = NULL; 2207 } 2208 2209 static int shmem_fill_super(struct super_block *sb, 2210 void *data, int silent) 2211 { 2212 struct inode *inode; 2213 struct dentry *root; 2214 int mode = S_IRWXUGO | S_ISVTX; 2215 uid_t uid = current->fsuid; 2216 gid_t gid = current->fsgid; 2217 int err = -ENOMEM; 2218 struct shmem_sb_info *sbinfo; 2219 unsigned long blocks = 0; 2220 unsigned long inodes = 0; 2221 int policy = MPOL_DEFAULT; 2222 nodemask_t policy_nodes = node_online_map; 2223 2224 #ifdef CONFIG_TMPFS 2225 /* 2226 * Per default we only allow half of the physical ram per 2227 * tmpfs instance, limiting inodes to one per page of lowmem; 2228 * but the internal instance is left unlimited. 2229 */ 2230 if (!(sb->s_flags & MS_NOUSER)) { 2231 blocks = totalram_pages / 2; 2232 inodes = totalram_pages - totalhigh_pages; 2233 if (inodes > blocks) 2234 inodes = blocks; 2235 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks, 2236 &inodes, &policy, &policy_nodes)) 2237 return -EINVAL; 2238 } 2239 sb->s_export_op = &shmem_export_ops; 2240 #else 2241 sb->s_flags |= MS_NOUSER; 2242 #endif 2243 2244 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2245 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info), 2246 L1_CACHE_BYTES), GFP_KERNEL); 2247 if (!sbinfo) 2248 return -ENOMEM; 2249 2250 spin_lock_init(&sbinfo->stat_lock); 2251 sbinfo->max_blocks = blocks; 2252 sbinfo->free_blocks = blocks; 2253 sbinfo->max_inodes = inodes; 2254 sbinfo->free_inodes = inodes; 2255 sbinfo->policy = policy; 2256 sbinfo->policy_nodes = policy_nodes; 2257 2258 sb->s_fs_info = sbinfo; 2259 sb->s_maxbytes = SHMEM_MAX_BYTES; 2260 sb->s_blocksize = PAGE_CACHE_SIZE; 2261 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2262 sb->s_magic = TMPFS_MAGIC; 2263 sb->s_op = &shmem_ops; 2264 sb->s_time_gran = 1; 2265 #ifdef CONFIG_TMPFS_POSIX_ACL 2266 sb->s_xattr = shmem_xattr_handlers; 2267 sb->s_flags |= MS_POSIXACL; 2268 #endif 2269 2270 inode = shmem_get_inode(sb, S_IFDIR | mode, 0); 2271 if (!inode) 2272 goto failed; 2273 inode->i_uid = uid; 2274 inode->i_gid = gid; 2275 root = d_alloc_root(inode); 2276 if (!root) 2277 goto failed_iput; 2278 sb->s_root = root; 2279 return 0; 2280 2281 failed_iput: 2282 iput(inode); 2283 failed: 2284 shmem_put_super(sb); 2285 return err; 2286 } 2287 2288 static struct kmem_cache *shmem_inode_cachep; 2289 2290 static struct inode *shmem_alloc_inode(struct super_block *sb) 2291 { 2292 struct shmem_inode_info *p; 2293 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2294 if (!p) 2295 return NULL; 2296 return &p->vfs_inode; 2297 } 2298 2299 static void shmem_destroy_inode(struct inode *inode) 2300 { 2301 if ((inode->i_mode & S_IFMT) == S_IFREG) { 2302 /* only struct inode is valid if it's an inline symlink */ 2303 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2304 } 2305 shmem_acl_destroy_inode(inode); 2306 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2307 } 2308 2309 static void init_once(void *foo, struct kmem_cache *cachep, 2310 unsigned long flags) 2311 { 2312 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2313 2314 inode_init_once(&p->vfs_inode); 2315 #ifdef CONFIG_TMPFS_POSIX_ACL 2316 p->i_acl = NULL; 2317 p->i_default_acl = NULL; 2318 #endif 2319 } 2320 2321 static int init_inodecache(void) 2322 { 2323 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2324 sizeof(struct shmem_inode_info), 2325 0, 0, init_once); 2326 if (shmem_inode_cachep == NULL) 2327 return -ENOMEM; 2328 return 0; 2329 } 2330 2331 static void destroy_inodecache(void) 2332 { 2333 kmem_cache_destroy(shmem_inode_cachep); 2334 } 2335 2336 static const struct address_space_operations shmem_aops = { 2337 .writepage = shmem_writepage, 2338 .set_page_dirty = __set_page_dirty_no_writeback, 2339 #ifdef CONFIG_TMPFS 2340 .readpage = shmem_readpage, 2341 .prepare_write = shmem_prepare_write, 2342 .commit_write = simple_commit_write, 2343 #endif 2344 .migratepage = migrate_page, 2345 }; 2346 2347 static const struct file_operations shmem_file_operations = { 2348 .mmap = shmem_mmap, 2349 #ifdef CONFIG_TMPFS 2350 .llseek = generic_file_llseek, 2351 .read = shmem_file_read, 2352 .write = shmem_file_write, 2353 .fsync = simple_sync_file, 2354 .splice_read = generic_file_splice_read, 2355 .splice_write = generic_file_splice_write, 2356 #endif 2357 }; 2358 2359 static const struct inode_operations shmem_inode_operations = { 2360 .truncate = shmem_truncate, 2361 .setattr = shmem_notify_change, 2362 .truncate_range = shmem_truncate_range, 2363 #ifdef CONFIG_TMPFS_POSIX_ACL 2364 .setxattr = generic_setxattr, 2365 .getxattr = generic_getxattr, 2366 .listxattr = generic_listxattr, 2367 .removexattr = generic_removexattr, 2368 .permission = shmem_permission, 2369 #endif 2370 2371 }; 2372 2373 static const struct inode_operations shmem_dir_inode_operations = { 2374 #ifdef CONFIG_TMPFS 2375 .create = shmem_create, 2376 .lookup = simple_lookup, 2377 .link = shmem_link, 2378 .unlink = shmem_unlink, 2379 .symlink = shmem_symlink, 2380 .mkdir = shmem_mkdir, 2381 .rmdir = shmem_rmdir, 2382 .mknod = shmem_mknod, 2383 .rename = shmem_rename, 2384 #endif 2385 #ifdef CONFIG_TMPFS_POSIX_ACL 2386 .setattr = shmem_notify_change, 2387 .setxattr = generic_setxattr, 2388 .getxattr = generic_getxattr, 2389 .listxattr = generic_listxattr, 2390 .removexattr = generic_removexattr, 2391 .permission = shmem_permission, 2392 #endif 2393 }; 2394 2395 static const struct inode_operations shmem_special_inode_operations = { 2396 #ifdef CONFIG_TMPFS_POSIX_ACL 2397 .setattr = shmem_notify_change, 2398 .setxattr = generic_setxattr, 2399 .getxattr = generic_getxattr, 2400 .listxattr = generic_listxattr, 2401 .removexattr = generic_removexattr, 2402 .permission = shmem_permission, 2403 #endif 2404 }; 2405 2406 static const struct super_operations shmem_ops = { 2407 .alloc_inode = shmem_alloc_inode, 2408 .destroy_inode = shmem_destroy_inode, 2409 #ifdef CONFIG_TMPFS 2410 .statfs = shmem_statfs, 2411 .remount_fs = shmem_remount_fs, 2412 #endif 2413 .delete_inode = shmem_delete_inode, 2414 .drop_inode = generic_delete_inode, 2415 .put_super = shmem_put_super, 2416 }; 2417 2418 static struct vm_operations_struct shmem_vm_ops = { 2419 .fault = shmem_fault, 2420 #ifdef CONFIG_NUMA 2421 .set_policy = shmem_set_policy, 2422 .get_policy = shmem_get_policy, 2423 #endif 2424 }; 2425 2426 2427 static int shmem_get_sb(struct file_system_type *fs_type, 2428 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 2429 { 2430 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt); 2431 } 2432 2433 static struct file_system_type tmpfs_fs_type = { 2434 .owner = THIS_MODULE, 2435 .name = "tmpfs", 2436 .get_sb = shmem_get_sb, 2437 .kill_sb = kill_litter_super, 2438 }; 2439 static struct vfsmount *shm_mnt; 2440 2441 static int __init init_tmpfs(void) 2442 { 2443 int error; 2444 2445 error = init_inodecache(); 2446 if (error) 2447 goto out3; 2448 2449 error = register_filesystem(&tmpfs_fs_type); 2450 if (error) { 2451 printk(KERN_ERR "Could not register tmpfs\n"); 2452 goto out2; 2453 } 2454 2455 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER, 2456 tmpfs_fs_type.name, NULL); 2457 if (IS_ERR(shm_mnt)) { 2458 error = PTR_ERR(shm_mnt); 2459 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2460 goto out1; 2461 } 2462 return 0; 2463 2464 out1: 2465 unregister_filesystem(&tmpfs_fs_type); 2466 out2: 2467 destroy_inodecache(); 2468 out3: 2469 shm_mnt = ERR_PTR(error); 2470 return error; 2471 } 2472 module_init(init_tmpfs) 2473 2474 /* 2475 * shmem_file_setup - get an unlinked file living in tmpfs 2476 * 2477 * @name: name for dentry (to be seen in /proc/<pid>/maps 2478 * @size: size to be set for the file 2479 * 2480 */ 2481 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags) 2482 { 2483 int error; 2484 struct file *file; 2485 struct inode *inode; 2486 struct dentry *dentry, *root; 2487 struct qstr this; 2488 2489 if (IS_ERR(shm_mnt)) 2490 return (void *)shm_mnt; 2491 2492 if (size < 0 || size > SHMEM_MAX_BYTES) 2493 return ERR_PTR(-EINVAL); 2494 2495 if (shmem_acct_size(flags, size)) 2496 return ERR_PTR(-ENOMEM); 2497 2498 error = -ENOMEM; 2499 this.name = name; 2500 this.len = strlen(name); 2501 this.hash = 0; /* will go */ 2502 root = shm_mnt->mnt_root; 2503 dentry = d_alloc(root, &this); 2504 if (!dentry) 2505 goto put_memory; 2506 2507 error = -ENFILE; 2508 file = get_empty_filp(); 2509 if (!file) 2510 goto put_dentry; 2511 2512 error = -ENOSPC; 2513 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0); 2514 if (!inode) 2515 goto close_file; 2516 2517 SHMEM_I(inode)->flags = flags & VM_ACCOUNT; 2518 d_instantiate(dentry, inode); 2519 inode->i_size = size; 2520 inode->i_nlink = 0; /* It is unlinked */ 2521 file->f_path.mnt = mntget(shm_mnt); 2522 file->f_path.dentry = dentry; 2523 file->f_mapping = inode->i_mapping; 2524 file->f_op = &shmem_file_operations; 2525 file->f_mode = FMODE_WRITE | FMODE_READ; 2526 return file; 2527 2528 close_file: 2529 put_filp(file); 2530 put_dentry: 2531 dput(dentry); 2532 put_memory: 2533 shmem_unacct_size(flags, size); 2534 return ERR_PTR(error); 2535 } 2536 2537 /* 2538 * shmem_zero_setup - setup a shared anonymous mapping 2539 * 2540 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2541 */ 2542 int shmem_zero_setup(struct vm_area_struct *vma) 2543 { 2544 struct file *file; 2545 loff_t size = vma->vm_end - vma->vm_start; 2546 2547 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2548 if (IS_ERR(file)) 2549 return PTR_ERR(file); 2550 2551 if (vma->vm_file) 2552 fput(vma->vm_file); 2553 vma->vm_file = file; 2554 vma->vm_ops = &shmem_vm_ops; 2555 return 0; 2556 } 2557