1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 #include <asm/pgtable.h> 86 87 #include "internal.h" 88 89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* Pretend that each entry is of this size in directory's i_size */ 93 #define BOGO_DIRENT_SIZE 20 94 95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 96 #define SHORT_SYMLINK_LEN 128 97 98 /* 99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 100 * inode->i_private (with i_mutex making sure that it has only one user at 101 * a time): we would prefer not to enlarge the shmem inode just for that. 102 */ 103 struct shmem_falloc { 104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 105 pgoff_t start; /* start of range currently being fallocated */ 106 pgoff_t next; /* the next page offset to be fallocated */ 107 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 109 }; 110 111 struct shmem_options { 112 unsigned long long blocks; 113 unsigned long long inodes; 114 struct mempolicy *mpol; 115 kuid_t uid; 116 kgid_t gid; 117 umode_t mode; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 140 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 141 struct shmem_inode_info *info, pgoff_t index); 142 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 143 struct page **pagep, enum sgp_type sgp, 144 gfp_t gfp, struct vm_area_struct *vma, 145 vm_fault_t *fault_type); 146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp, 148 gfp_t gfp, struct vm_area_struct *vma, 149 struct vm_fault *vmf, vm_fault_t *fault_type); 150 151 int shmem_getpage(struct inode *inode, pgoff_t index, 152 struct page **pagep, enum sgp_type sgp) 153 { 154 return shmem_getpage_gfp(inode, index, pagep, sgp, 155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 156 } 157 158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 159 { 160 return sb->s_fs_info; 161 } 162 163 /* 164 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 165 * for shared memory and for shared anonymous (/dev/zero) mappings 166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 167 * consistent with the pre-accounting of private mappings ... 168 */ 169 static inline int shmem_acct_size(unsigned long flags, loff_t size) 170 { 171 return (flags & VM_NORESERVE) ? 172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 173 } 174 175 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 176 { 177 if (!(flags & VM_NORESERVE)) 178 vm_unacct_memory(VM_ACCT(size)); 179 } 180 181 static inline int shmem_reacct_size(unsigned long flags, 182 loff_t oldsize, loff_t newsize) 183 { 184 if (!(flags & VM_NORESERVE)) { 185 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 186 return security_vm_enough_memory_mm(current->mm, 187 VM_ACCT(newsize) - VM_ACCT(oldsize)); 188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 190 } 191 return 0; 192 } 193 194 /* 195 * ... whereas tmpfs objects are accounted incrementally as 196 * pages are allocated, in order to allow large sparse files. 197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 199 */ 200 static inline int shmem_acct_block(unsigned long flags, long pages) 201 { 202 if (!(flags & VM_NORESERVE)) 203 return 0; 204 205 return security_vm_enough_memory_mm(current->mm, 206 pages * VM_ACCT(PAGE_SIZE)); 207 } 208 209 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 210 { 211 if (flags & VM_NORESERVE) 212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 213 } 214 215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 216 { 217 struct shmem_inode_info *info = SHMEM_I(inode); 218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 219 220 if (shmem_acct_block(info->flags, pages)) 221 return false; 222 223 if (sbinfo->max_blocks) { 224 if (percpu_counter_compare(&sbinfo->used_blocks, 225 sbinfo->max_blocks - pages) > 0) 226 goto unacct; 227 percpu_counter_add(&sbinfo->used_blocks, pages); 228 } 229 230 return true; 231 232 unacct: 233 shmem_unacct_blocks(info->flags, pages); 234 return false; 235 } 236 237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 238 { 239 struct shmem_inode_info *info = SHMEM_I(inode); 240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 241 242 if (sbinfo->max_blocks) 243 percpu_counter_sub(&sbinfo->used_blocks, pages); 244 shmem_unacct_blocks(info->flags, pages); 245 } 246 247 static const struct super_operations shmem_ops; 248 static const struct address_space_operations shmem_aops; 249 static const struct file_operations shmem_file_operations; 250 static const struct inode_operations shmem_inode_operations; 251 static const struct inode_operations shmem_dir_inode_operations; 252 static const struct inode_operations shmem_special_inode_operations; 253 static const struct vm_operations_struct shmem_vm_ops; 254 static struct file_system_type shmem_fs_type; 255 256 bool vma_is_shmem(struct vm_area_struct *vma) 257 { 258 return vma->vm_ops == &shmem_vm_ops; 259 } 260 261 static LIST_HEAD(shmem_swaplist); 262 static DEFINE_MUTEX(shmem_swaplist_mutex); 263 264 static int shmem_reserve_inode(struct super_block *sb) 265 { 266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 267 if (sbinfo->max_inodes) { 268 spin_lock(&sbinfo->stat_lock); 269 if (!sbinfo->free_inodes) { 270 spin_unlock(&sbinfo->stat_lock); 271 return -ENOSPC; 272 } 273 sbinfo->free_inodes--; 274 spin_unlock(&sbinfo->stat_lock); 275 } 276 return 0; 277 } 278 279 static void shmem_free_inode(struct super_block *sb) 280 { 281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 282 if (sbinfo->max_inodes) { 283 spin_lock(&sbinfo->stat_lock); 284 sbinfo->free_inodes++; 285 spin_unlock(&sbinfo->stat_lock); 286 } 287 } 288 289 /** 290 * shmem_recalc_inode - recalculate the block usage of an inode 291 * @inode: inode to recalc 292 * 293 * We have to calculate the free blocks since the mm can drop 294 * undirtied hole pages behind our back. 295 * 296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 298 * 299 * It has to be called with the spinlock held. 300 */ 301 static void shmem_recalc_inode(struct inode *inode) 302 { 303 struct shmem_inode_info *info = SHMEM_I(inode); 304 long freed; 305 306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 307 if (freed > 0) { 308 info->alloced -= freed; 309 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 310 shmem_inode_unacct_blocks(inode, freed); 311 } 312 } 313 314 bool shmem_charge(struct inode *inode, long pages) 315 { 316 struct shmem_inode_info *info = SHMEM_I(inode); 317 unsigned long flags; 318 319 if (!shmem_inode_acct_block(inode, pages)) 320 return false; 321 322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 323 inode->i_mapping->nrpages += pages; 324 325 spin_lock_irqsave(&info->lock, flags); 326 info->alloced += pages; 327 inode->i_blocks += pages * BLOCKS_PER_PAGE; 328 shmem_recalc_inode(inode); 329 spin_unlock_irqrestore(&info->lock, flags); 330 331 return true; 332 } 333 334 void shmem_uncharge(struct inode *inode, long pages) 335 { 336 struct shmem_inode_info *info = SHMEM_I(inode); 337 unsigned long flags; 338 339 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 340 341 spin_lock_irqsave(&info->lock, flags); 342 info->alloced -= pages; 343 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 344 shmem_recalc_inode(inode); 345 spin_unlock_irqrestore(&info->lock, flags); 346 347 shmem_inode_unacct_blocks(inode, pages); 348 } 349 350 /* 351 * Replace item expected in xarray by a new item, while holding xa_lock. 352 */ 353 static int shmem_replace_entry(struct address_space *mapping, 354 pgoff_t index, void *expected, void *replacement) 355 { 356 XA_STATE(xas, &mapping->i_pages, index); 357 void *item; 358 359 VM_BUG_ON(!expected); 360 VM_BUG_ON(!replacement); 361 item = xas_load(&xas); 362 if (item != expected) 363 return -ENOENT; 364 xas_store(&xas, replacement); 365 return 0; 366 } 367 368 /* 369 * Sometimes, before we decide whether to proceed or to fail, we must check 370 * that an entry was not already brought back from swap by a racing thread. 371 * 372 * Checking page is not enough: by the time a SwapCache page is locked, it 373 * might be reused, and again be SwapCache, using the same swap as before. 374 */ 375 static bool shmem_confirm_swap(struct address_space *mapping, 376 pgoff_t index, swp_entry_t swap) 377 { 378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 379 } 380 381 /* 382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 383 * 384 * SHMEM_HUGE_NEVER: 385 * disables huge pages for the mount; 386 * SHMEM_HUGE_ALWAYS: 387 * enables huge pages for the mount; 388 * SHMEM_HUGE_WITHIN_SIZE: 389 * only allocate huge pages if the page will be fully within i_size, 390 * also respect fadvise()/madvise() hints; 391 * SHMEM_HUGE_ADVISE: 392 * only allocate huge pages if requested with fadvise()/madvise(); 393 */ 394 395 #define SHMEM_HUGE_NEVER 0 396 #define SHMEM_HUGE_ALWAYS 1 397 #define SHMEM_HUGE_WITHIN_SIZE 2 398 #define SHMEM_HUGE_ADVISE 3 399 400 /* 401 * Special values. 402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 403 * 404 * SHMEM_HUGE_DENY: 405 * disables huge on shm_mnt and all mounts, for emergency use; 406 * SHMEM_HUGE_FORCE: 407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 408 * 409 */ 410 #define SHMEM_HUGE_DENY (-1) 411 #define SHMEM_HUGE_FORCE (-2) 412 413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 414 /* ifdef here to avoid bloating shmem.o when not necessary */ 415 416 static int shmem_huge __read_mostly; 417 418 #if defined(CONFIG_SYSFS) 419 static int shmem_parse_huge(const char *str) 420 { 421 if (!strcmp(str, "never")) 422 return SHMEM_HUGE_NEVER; 423 if (!strcmp(str, "always")) 424 return SHMEM_HUGE_ALWAYS; 425 if (!strcmp(str, "within_size")) 426 return SHMEM_HUGE_WITHIN_SIZE; 427 if (!strcmp(str, "advise")) 428 return SHMEM_HUGE_ADVISE; 429 if (!strcmp(str, "deny")) 430 return SHMEM_HUGE_DENY; 431 if (!strcmp(str, "force")) 432 return SHMEM_HUGE_FORCE; 433 return -EINVAL; 434 } 435 #endif 436 437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 438 static const char *shmem_format_huge(int huge) 439 { 440 switch (huge) { 441 case SHMEM_HUGE_NEVER: 442 return "never"; 443 case SHMEM_HUGE_ALWAYS: 444 return "always"; 445 case SHMEM_HUGE_WITHIN_SIZE: 446 return "within_size"; 447 case SHMEM_HUGE_ADVISE: 448 return "advise"; 449 case SHMEM_HUGE_DENY: 450 return "deny"; 451 case SHMEM_HUGE_FORCE: 452 return "force"; 453 default: 454 VM_BUG_ON(1); 455 return "bad_val"; 456 } 457 } 458 #endif 459 460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 461 struct shrink_control *sc, unsigned long nr_to_split) 462 { 463 LIST_HEAD(list), *pos, *next; 464 LIST_HEAD(to_remove); 465 struct inode *inode; 466 struct shmem_inode_info *info; 467 struct page *page; 468 unsigned long batch = sc ? sc->nr_to_scan : 128; 469 int removed = 0, split = 0; 470 471 if (list_empty(&sbinfo->shrinklist)) 472 return SHRINK_STOP; 473 474 spin_lock(&sbinfo->shrinklist_lock); 475 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 476 info = list_entry(pos, struct shmem_inode_info, shrinklist); 477 478 /* pin the inode */ 479 inode = igrab(&info->vfs_inode); 480 481 /* inode is about to be evicted */ 482 if (!inode) { 483 list_del_init(&info->shrinklist); 484 removed++; 485 goto next; 486 } 487 488 /* Check if there's anything to gain */ 489 if (round_up(inode->i_size, PAGE_SIZE) == 490 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 491 list_move(&info->shrinklist, &to_remove); 492 removed++; 493 goto next; 494 } 495 496 list_move(&info->shrinklist, &list); 497 next: 498 if (!--batch) 499 break; 500 } 501 spin_unlock(&sbinfo->shrinklist_lock); 502 503 list_for_each_safe(pos, next, &to_remove) { 504 info = list_entry(pos, struct shmem_inode_info, shrinklist); 505 inode = &info->vfs_inode; 506 list_del_init(&info->shrinklist); 507 iput(inode); 508 } 509 510 list_for_each_safe(pos, next, &list) { 511 int ret; 512 513 info = list_entry(pos, struct shmem_inode_info, shrinklist); 514 inode = &info->vfs_inode; 515 516 if (nr_to_split && split >= nr_to_split) 517 goto leave; 518 519 page = find_get_page(inode->i_mapping, 520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 521 if (!page) 522 goto drop; 523 524 /* No huge page at the end of the file: nothing to split */ 525 if (!PageTransHuge(page)) { 526 put_page(page); 527 goto drop; 528 } 529 530 /* 531 * Leave the inode on the list if we failed to lock 532 * the page at this time. 533 * 534 * Waiting for the lock may lead to deadlock in the 535 * reclaim path. 536 */ 537 if (!trylock_page(page)) { 538 put_page(page); 539 goto leave; 540 } 541 542 ret = split_huge_page(page); 543 unlock_page(page); 544 put_page(page); 545 546 /* If split failed leave the inode on the list */ 547 if (ret) 548 goto leave; 549 550 split++; 551 drop: 552 list_del_init(&info->shrinklist); 553 removed++; 554 leave: 555 iput(inode); 556 } 557 558 spin_lock(&sbinfo->shrinklist_lock); 559 list_splice_tail(&list, &sbinfo->shrinklist); 560 sbinfo->shrinklist_len -= removed; 561 spin_unlock(&sbinfo->shrinklist_lock); 562 563 return split; 564 } 565 566 static long shmem_unused_huge_scan(struct super_block *sb, 567 struct shrink_control *sc) 568 { 569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 570 571 if (!READ_ONCE(sbinfo->shrinklist_len)) 572 return SHRINK_STOP; 573 574 return shmem_unused_huge_shrink(sbinfo, sc, 0); 575 } 576 577 static long shmem_unused_huge_count(struct super_block *sb, 578 struct shrink_control *sc) 579 { 580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 581 return READ_ONCE(sbinfo->shrinklist_len); 582 } 583 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 584 585 #define shmem_huge SHMEM_HUGE_DENY 586 587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 588 struct shrink_control *sc, unsigned long nr_to_split) 589 { 590 return 0; 591 } 592 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 593 594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 595 { 596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 598 shmem_huge != SHMEM_HUGE_DENY) 599 return true; 600 return false; 601 } 602 603 /* 604 * Like add_to_page_cache_locked, but error if expected item has gone. 605 */ 606 static int shmem_add_to_page_cache(struct page *page, 607 struct address_space *mapping, 608 pgoff_t index, void *expected, gfp_t gfp) 609 { 610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 611 unsigned long i = 0; 612 unsigned long nr = compound_nr(page); 613 614 VM_BUG_ON_PAGE(PageTail(page), page); 615 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 616 VM_BUG_ON_PAGE(!PageLocked(page), page); 617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 618 VM_BUG_ON(expected && PageTransHuge(page)); 619 620 page_ref_add(page, nr); 621 page->mapping = mapping; 622 page->index = index; 623 624 do { 625 void *entry; 626 xas_lock_irq(&xas); 627 entry = xas_find_conflict(&xas); 628 if (entry != expected) 629 xas_set_err(&xas, -EEXIST); 630 xas_create_range(&xas); 631 if (xas_error(&xas)) 632 goto unlock; 633 next: 634 xas_store(&xas, page); 635 if (++i < nr) { 636 xas_next(&xas); 637 goto next; 638 } 639 if (PageTransHuge(page)) { 640 count_vm_event(THP_FILE_ALLOC); 641 __inc_node_page_state(page, NR_SHMEM_THPS); 642 } 643 mapping->nrpages += nr; 644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 646 unlock: 647 xas_unlock_irq(&xas); 648 } while (xas_nomem(&xas, gfp)); 649 650 if (xas_error(&xas)) { 651 page->mapping = NULL; 652 page_ref_sub(page, nr); 653 return xas_error(&xas); 654 } 655 656 return 0; 657 } 658 659 /* 660 * Like delete_from_page_cache, but substitutes swap for page. 661 */ 662 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 663 { 664 struct address_space *mapping = page->mapping; 665 int error; 666 667 VM_BUG_ON_PAGE(PageCompound(page), page); 668 669 xa_lock_irq(&mapping->i_pages); 670 error = shmem_replace_entry(mapping, page->index, page, radswap); 671 page->mapping = NULL; 672 mapping->nrpages--; 673 __dec_node_page_state(page, NR_FILE_PAGES); 674 __dec_node_page_state(page, NR_SHMEM); 675 xa_unlock_irq(&mapping->i_pages); 676 put_page(page); 677 BUG_ON(error); 678 } 679 680 /* 681 * Remove swap entry from page cache, free the swap and its page cache. 682 */ 683 static int shmem_free_swap(struct address_space *mapping, 684 pgoff_t index, void *radswap) 685 { 686 void *old; 687 688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 689 if (old != radswap) 690 return -ENOENT; 691 free_swap_and_cache(radix_to_swp_entry(radswap)); 692 return 0; 693 } 694 695 /* 696 * Determine (in bytes) how many of the shmem object's pages mapped by the 697 * given offsets are swapped out. 698 * 699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 700 * as long as the inode doesn't go away and racy results are not a problem. 701 */ 702 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 703 pgoff_t start, pgoff_t end) 704 { 705 XA_STATE(xas, &mapping->i_pages, start); 706 struct page *page; 707 unsigned long swapped = 0; 708 709 rcu_read_lock(); 710 xas_for_each(&xas, page, end - 1) { 711 if (xas_retry(&xas, page)) 712 continue; 713 if (xa_is_value(page)) 714 swapped++; 715 716 if (need_resched()) { 717 xas_pause(&xas); 718 cond_resched_rcu(); 719 } 720 } 721 722 rcu_read_unlock(); 723 724 return swapped << PAGE_SHIFT; 725 } 726 727 /* 728 * Determine (in bytes) how many of the shmem object's pages mapped by the 729 * given vma is swapped out. 730 * 731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 732 * as long as the inode doesn't go away and racy results are not a problem. 733 */ 734 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 735 { 736 struct inode *inode = file_inode(vma->vm_file); 737 struct shmem_inode_info *info = SHMEM_I(inode); 738 struct address_space *mapping = inode->i_mapping; 739 unsigned long swapped; 740 741 /* Be careful as we don't hold info->lock */ 742 swapped = READ_ONCE(info->swapped); 743 744 /* 745 * The easier cases are when the shmem object has nothing in swap, or 746 * the vma maps it whole. Then we can simply use the stats that we 747 * already track. 748 */ 749 if (!swapped) 750 return 0; 751 752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 753 return swapped << PAGE_SHIFT; 754 755 /* Here comes the more involved part */ 756 return shmem_partial_swap_usage(mapping, 757 linear_page_index(vma, vma->vm_start), 758 linear_page_index(vma, vma->vm_end)); 759 } 760 761 /* 762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 763 */ 764 void shmem_unlock_mapping(struct address_space *mapping) 765 { 766 struct pagevec pvec; 767 pgoff_t indices[PAGEVEC_SIZE]; 768 pgoff_t index = 0; 769 770 pagevec_init(&pvec); 771 /* 772 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 773 */ 774 while (!mapping_unevictable(mapping)) { 775 /* 776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 778 */ 779 pvec.nr = find_get_entries(mapping, index, 780 PAGEVEC_SIZE, pvec.pages, indices); 781 if (!pvec.nr) 782 break; 783 index = indices[pvec.nr - 1] + 1; 784 pagevec_remove_exceptionals(&pvec); 785 check_move_unevictable_pages(&pvec); 786 pagevec_release(&pvec); 787 cond_resched(); 788 } 789 } 790 791 /* 792 * Remove range of pages and swap entries from page cache, and free them. 793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 794 */ 795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 796 bool unfalloc) 797 { 798 struct address_space *mapping = inode->i_mapping; 799 struct shmem_inode_info *info = SHMEM_I(inode); 800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 801 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 802 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 804 struct pagevec pvec; 805 pgoff_t indices[PAGEVEC_SIZE]; 806 long nr_swaps_freed = 0; 807 pgoff_t index; 808 int i; 809 810 if (lend == -1) 811 end = -1; /* unsigned, so actually very big */ 812 813 pagevec_init(&pvec); 814 index = start; 815 while (index < end) { 816 pvec.nr = find_get_entries(mapping, index, 817 min(end - index, (pgoff_t)PAGEVEC_SIZE), 818 pvec.pages, indices); 819 if (!pvec.nr) 820 break; 821 for (i = 0; i < pagevec_count(&pvec); i++) { 822 struct page *page = pvec.pages[i]; 823 824 index = indices[i]; 825 if (index >= end) 826 break; 827 828 if (xa_is_value(page)) { 829 if (unfalloc) 830 continue; 831 nr_swaps_freed += !shmem_free_swap(mapping, 832 index, page); 833 continue; 834 } 835 836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 837 838 if (!trylock_page(page)) 839 continue; 840 841 if (PageTransTail(page)) { 842 /* Middle of THP: zero out the page */ 843 clear_highpage(page); 844 unlock_page(page); 845 continue; 846 } else if (PageTransHuge(page)) { 847 if (index == round_down(end, HPAGE_PMD_NR)) { 848 /* 849 * Range ends in the middle of THP: 850 * zero out the page 851 */ 852 clear_highpage(page); 853 unlock_page(page); 854 continue; 855 } 856 index += HPAGE_PMD_NR - 1; 857 i += HPAGE_PMD_NR - 1; 858 } 859 860 if (!unfalloc || !PageUptodate(page)) { 861 VM_BUG_ON_PAGE(PageTail(page), page); 862 if (page_mapping(page) == mapping) { 863 VM_BUG_ON_PAGE(PageWriteback(page), page); 864 truncate_inode_page(mapping, page); 865 } 866 } 867 unlock_page(page); 868 } 869 pagevec_remove_exceptionals(&pvec); 870 pagevec_release(&pvec); 871 cond_resched(); 872 index++; 873 } 874 875 if (partial_start) { 876 struct page *page = NULL; 877 shmem_getpage(inode, start - 1, &page, SGP_READ); 878 if (page) { 879 unsigned int top = PAGE_SIZE; 880 if (start > end) { 881 top = partial_end; 882 partial_end = 0; 883 } 884 zero_user_segment(page, partial_start, top); 885 set_page_dirty(page); 886 unlock_page(page); 887 put_page(page); 888 } 889 } 890 if (partial_end) { 891 struct page *page = NULL; 892 shmem_getpage(inode, end, &page, SGP_READ); 893 if (page) { 894 zero_user_segment(page, 0, partial_end); 895 set_page_dirty(page); 896 unlock_page(page); 897 put_page(page); 898 } 899 } 900 if (start >= end) 901 return; 902 903 index = start; 904 while (index < end) { 905 cond_resched(); 906 907 pvec.nr = find_get_entries(mapping, index, 908 min(end - index, (pgoff_t)PAGEVEC_SIZE), 909 pvec.pages, indices); 910 if (!pvec.nr) { 911 /* If all gone or hole-punch or unfalloc, we're done */ 912 if (index == start || end != -1) 913 break; 914 /* But if truncating, restart to make sure all gone */ 915 index = start; 916 continue; 917 } 918 for (i = 0; i < pagevec_count(&pvec); i++) { 919 struct page *page = pvec.pages[i]; 920 921 index = indices[i]; 922 if (index >= end) 923 break; 924 925 if (xa_is_value(page)) { 926 if (unfalloc) 927 continue; 928 if (shmem_free_swap(mapping, index, page)) { 929 /* Swap was replaced by page: retry */ 930 index--; 931 break; 932 } 933 nr_swaps_freed++; 934 continue; 935 } 936 937 lock_page(page); 938 939 if (PageTransTail(page)) { 940 /* Middle of THP: zero out the page */ 941 clear_highpage(page); 942 unlock_page(page); 943 /* 944 * Partial thp truncate due 'start' in middle 945 * of THP: don't need to look on these pages 946 * again on !pvec.nr restart. 947 */ 948 if (index != round_down(end, HPAGE_PMD_NR)) 949 start++; 950 continue; 951 } else if (PageTransHuge(page)) { 952 if (index == round_down(end, HPAGE_PMD_NR)) { 953 /* 954 * Range ends in the middle of THP: 955 * zero out the page 956 */ 957 clear_highpage(page); 958 unlock_page(page); 959 continue; 960 } 961 index += HPAGE_PMD_NR - 1; 962 i += HPAGE_PMD_NR - 1; 963 } 964 965 if (!unfalloc || !PageUptodate(page)) { 966 VM_BUG_ON_PAGE(PageTail(page), page); 967 if (page_mapping(page) == mapping) { 968 VM_BUG_ON_PAGE(PageWriteback(page), page); 969 truncate_inode_page(mapping, page); 970 } else { 971 /* Page was replaced by swap: retry */ 972 unlock_page(page); 973 index--; 974 break; 975 } 976 } 977 unlock_page(page); 978 } 979 pagevec_remove_exceptionals(&pvec); 980 pagevec_release(&pvec); 981 index++; 982 } 983 984 spin_lock_irq(&info->lock); 985 info->swapped -= nr_swaps_freed; 986 shmem_recalc_inode(inode); 987 spin_unlock_irq(&info->lock); 988 } 989 990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 991 { 992 shmem_undo_range(inode, lstart, lend, false); 993 inode->i_ctime = inode->i_mtime = current_time(inode); 994 } 995 EXPORT_SYMBOL_GPL(shmem_truncate_range); 996 997 static int shmem_getattr(const struct path *path, struct kstat *stat, 998 u32 request_mask, unsigned int query_flags) 999 { 1000 struct inode *inode = path->dentry->d_inode; 1001 struct shmem_inode_info *info = SHMEM_I(inode); 1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1003 1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1005 spin_lock_irq(&info->lock); 1006 shmem_recalc_inode(inode); 1007 spin_unlock_irq(&info->lock); 1008 } 1009 generic_fillattr(inode, stat); 1010 1011 if (is_huge_enabled(sb_info)) 1012 stat->blksize = HPAGE_PMD_SIZE; 1013 1014 return 0; 1015 } 1016 1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1018 { 1019 struct inode *inode = d_inode(dentry); 1020 struct shmem_inode_info *info = SHMEM_I(inode); 1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1022 int error; 1023 1024 error = setattr_prepare(dentry, attr); 1025 if (error) 1026 return error; 1027 1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1029 loff_t oldsize = inode->i_size; 1030 loff_t newsize = attr->ia_size; 1031 1032 /* protected by i_mutex */ 1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1034 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1035 return -EPERM; 1036 1037 if (newsize != oldsize) { 1038 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1039 oldsize, newsize); 1040 if (error) 1041 return error; 1042 i_size_write(inode, newsize); 1043 inode->i_ctime = inode->i_mtime = current_time(inode); 1044 } 1045 if (newsize <= oldsize) { 1046 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1047 if (oldsize > holebegin) 1048 unmap_mapping_range(inode->i_mapping, 1049 holebegin, 0, 1); 1050 if (info->alloced) 1051 shmem_truncate_range(inode, 1052 newsize, (loff_t)-1); 1053 /* unmap again to remove racily COWed private pages */ 1054 if (oldsize > holebegin) 1055 unmap_mapping_range(inode->i_mapping, 1056 holebegin, 0, 1); 1057 1058 /* 1059 * Part of the huge page can be beyond i_size: subject 1060 * to shrink under memory pressure. 1061 */ 1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1063 spin_lock(&sbinfo->shrinklist_lock); 1064 /* 1065 * _careful to defend against unlocked access to 1066 * ->shrink_list in shmem_unused_huge_shrink() 1067 */ 1068 if (list_empty_careful(&info->shrinklist)) { 1069 list_add_tail(&info->shrinklist, 1070 &sbinfo->shrinklist); 1071 sbinfo->shrinklist_len++; 1072 } 1073 spin_unlock(&sbinfo->shrinklist_lock); 1074 } 1075 } 1076 } 1077 1078 setattr_copy(inode, attr); 1079 if (attr->ia_valid & ATTR_MODE) 1080 error = posix_acl_chmod(inode, inode->i_mode); 1081 return error; 1082 } 1083 1084 static void shmem_evict_inode(struct inode *inode) 1085 { 1086 struct shmem_inode_info *info = SHMEM_I(inode); 1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1088 1089 if (inode->i_mapping->a_ops == &shmem_aops) { 1090 shmem_unacct_size(info->flags, inode->i_size); 1091 inode->i_size = 0; 1092 shmem_truncate_range(inode, 0, (loff_t)-1); 1093 if (!list_empty(&info->shrinklist)) { 1094 spin_lock(&sbinfo->shrinklist_lock); 1095 if (!list_empty(&info->shrinklist)) { 1096 list_del_init(&info->shrinklist); 1097 sbinfo->shrinklist_len--; 1098 } 1099 spin_unlock(&sbinfo->shrinklist_lock); 1100 } 1101 while (!list_empty(&info->swaplist)) { 1102 /* Wait while shmem_unuse() is scanning this inode... */ 1103 wait_var_event(&info->stop_eviction, 1104 !atomic_read(&info->stop_eviction)); 1105 mutex_lock(&shmem_swaplist_mutex); 1106 /* ...but beware of the race if we peeked too early */ 1107 if (!atomic_read(&info->stop_eviction)) 1108 list_del_init(&info->swaplist); 1109 mutex_unlock(&shmem_swaplist_mutex); 1110 } 1111 } 1112 1113 simple_xattrs_free(&info->xattrs); 1114 WARN_ON(inode->i_blocks); 1115 shmem_free_inode(inode->i_sb); 1116 clear_inode(inode); 1117 } 1118 1119 extern struct swap_info_struct *swap_info[]; 1120 1121 static int shmem_find_swap_entries(struct address_space *mapping, 1122 pgoff_t start, unsigned int nr_entries, 1123 struct page **entries, pgoff_t *indices, 1124 unsigned int type, bool frontswap) 1125 { 1126 XA_STATE(xas, &mapping->i_pages, start); 1127 struct page *page; 1128 swp_entry_t entry; 1129 unsigned int ret = 0; 1130 1131 if (!nr_entries) 1132 return 0; 1133 1134 rcu_read_lock(); 1135 xas_for_each(&xas, page, ULONG_MAX) { 1136 if (xas_retry(&xas, page)) 1137 continue; 1138 1139 if (!xa_is_value(page)) 1140 continue; 1141 1142 entry = radix_to_swp_entry(page); 1143 if (swp_type(entry) != type) 1144 continue; 1145 if (frontswap && 1146 !frontswap_test(swap_info[type], swp_offset(entry))) 1147 continue; 1148 1149 indices[ret] = xas.xa_index; 1150 entries[ret] = page; 1151 1152 if (need_resched()) { 1153 xas_pause(&xas); 1154 cond_resched_rcu(); 1155 } 1156 if (++ret == nr_entries) 1157 break; 1158 } 1159 rcu_read_unlock(); 1160 1161 return ret; 1162 } 1163 1164 /* 1165 * Move the swapped pages for an inode to page cache. Returns the count 1166 * of pages swapped in, or the error in case of failure. 1167 */ 1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1169 pgoff_t *indices) 1170 { 1171 int i = 0; 1172 int ret = 0; 1173 int error = 0; 1174 struct address_space *mapping = inode->i_mapping; 1175 1176 for (i = 0; i < pvec.nr; i++) { 1177 struct page *page = pvec.pages[i]; 1178 1179 if (!xa_is_value(page)) 1180 continue; 1181 error = shmem_swapin_page(inode, indices[i], 1182 &page, SGP_CACHE, 1183 mapping_gfp_mask(mapping), 1184 NULL, NULL); 1185 if (error == 0) { 1186 unlock_page(page); 1187 put_page(page); 1188 ret++; 1189 } 1190 if (error == -ENOMEM) 1191 break; 1192 error = 0; 1193 } 1194 return error ? error : ret; 1195 } 1196 1197 /* 1198 * If swap found in inode, free it and move page from swapcache to filecache. 1199 */ 1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1201 bool frontswap, unsigned long *fs_pages_to_unuse) 1202 { 1203 struct address_space *mapping = inode->i_mapping; 1204 pgoff_t start = 0; 1205 struct pagevec pvec; 1206 pgoff_t indices[PAGEVEC_SIZE]; 1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1208 int ret = 0; 1209 1210 pagevec_init(&pvec); 1211 do { 1212 unsigned int nr_entries = PAGEVEC_SIZE; 1213 1214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1215 nr_entries = *fs_pages_to_unuse; 1216 1217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1218 pvec.pages, indices, 1219 type, frontswap); 1220 if (pvec.nr == 0) { 1221 ret = 0; 1222 break; 1223 } 1224 1225 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1226 if (ret < 0) 1227 break; 1228 1229 if (frontswap_partial) { 1230 *fs_pages_to_unuse -= ret; 1231 if (*fs_pages_to_unuse == 0) { 1232 ret = FRONTSWAP_PAGES_UNUSED; 1233 break; 1234 } 1235 } 1236 1237 start = indices[pvec.nr - 1]; 1238 } while (true); 1239 1240 return ret; 1241 } 1242 1243 /* 1244 * Read all the shared memory data that resides in the swap 1245 * device 'type' back into memory, so the swap device can be 1246 * unused. 1247 */ 1248 int shmem_unuse(unsigned int type, bool frontswap, 1249 unsigned long *fs_pages_to_unuse) 1250 { 1251 struct shmem_inode_info *info, *next; 1252 int error = 0; 1253 1254 if (list_empty(&shmem_swaplist)) 1255 return 0; 1256 1257 mutex_lock(&shmem_swaplist_mutex); 1258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1259 if (!info->swapped) { 1260 list_del_init(&info->swaplist); 1261 continue; 1262 } 1263 /* 1264 * Drop the swaplist mutex while searching the inode for swap; 1265 * but before doing so, make sure shmem_evict_inode() will not 1266 * remove placeholder inode from swaplist, nor let it be freed 1267 * (igrab() would protect from unlink, but not from unmount). 1268 */ 1269 atomic_inc(&info->stop_eviction); 1270 mutex_unlock(&shmem_swaplist_mutex); 1271 1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1273 fs_pages_to_unuse); 1274 cond_resched(); 1275 1276 mutex_lock(&shmem_swaplist_mutex); 1277 next = list_next_entry(info, swaplist); 1278 if (!info->swapped) 1279 list_del_init(&info->swaplist); 1280 if (atomic_dec_and_test(&info->stop_eviction)) 1281 wake_up_var(&info->stop_eviction); 1282 if (error) 1283 break; 1284 } 1285 mutex_unlock(&shmem_swaplist_mutex); 1286 1287 return error; 1288 } 1289 1290 /* 1291 * Move the page from the page cache to the swap cache. 1292 */ 1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1294 { 1295 struct shmem_inode_info *info; 1296 struct address_space *mapping; 1297 struct inode *inode; 1298 swp_entry_t swap; 1299 pgoff_t index; 1300 1301 VM_BUG_ON_PAGE(PageCompound(page), page); 1302 BUG_ON(!PageLocked(page)); 1303 mapping = page->mapping; 1304 index = page->index; 1305 inode = mapping->host; 1306 info = SHMEM_I(inode); 1307 if (info->flags & VM_LOCKED) 1308 goto redirty; 1309 if (!total_swap_pages) 1310 goto redirty; 1311 1312 /* 1313 * Our capabilities prevent regular writeback or sync from ever calling 1314 * shmem_writepage; but a stacking filesystem might use ->writepage of 1315 * its underlying filesystem, in which case tmpfs should write out to 1316 * swap only in response to memory pressure, and not for the writeback 1317 * threads or sync. 1318 */ 1319 if (!wbc->for_reclaim) { 1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1321 goto redirty; 1322 } 1323 1324 /* 1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1326 * value into swapfile.c, the only way we can correctly account for a 1327 * fallocated page arriving here is now to initialize it and write it. 1328 * 1329 * That's okay for a page already fallocated earlier, but if we have 1330 * not yet completed the fallocation, then (a) we want to keep track 1331 * of this page in case we have to undo it, and (b) it may not be a 1332 * good idea to continue anyway, once we're pushing into swap. So 1333 * reactivate the page, and let shmem_fallocate() quit when too many. 1334 */ 1335 if (!PageUptodate(page)) { 1336 if (inode->i_private) { 1337 struct shmem_falloc *shmem_falloc; 1338 spin_lock(&inode->i_lock); 1339 shmem_falloc = inode->i_private; 1340 if (shmem_falloc && 1341 !shmem_falloc->waitq && 1342 index >= shmem_falloc->start && 1343 index < shmem_falloc->next) 1344 shmem_falloc->nr_unswapped++; 1345 else 1346 shmem_falloc = NULL; 1347 spin_unlock(&inode->i_lock); 1348 if (shmem_falloc) 1349 goto redirty; 1350 } 1351 clear_highpage(page); 1352 flush_dcache_page(page); 1353 SetPageUptodate(page); 1354 } 1355 1356 swap = get_swap_page(page); 1357 if (!swap.val) 1358 goto redirty; 1359 1360 /* 1361 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1362 * if it's not already there. Do it now before the page is 1363 * moved to swap cache, when its pagelock no longer protects 1364 * the inode from eviction. But don't unlock the mutex until 1365 * we've incremented swapped, because shmem_unuse_inode() will 1366 * prune a !swapped inode from the swaplist under this mutex. 1367 */ 1368 mutex_lock(&shmem_swaplist_mutex); 1369 if (list_empty(&info->swaplist)) 1370 list_add(&info->swaplist, &shmem_swaplist); 1371 1372 if (add_to_swap_cache(page, swap, 1373 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) { 1374 spin_lock_irq(&info->lock); 1375 shmem_recalc_inode(inode); 1376 info->swapped++; 1377 spin_unlock_irq(&info->lock); 1378 1379 swap_shmem_alloc(swap); 1380 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1381 1382 mutex_unlock(&shmem_swaplist_mutex); 1383 BUG_ON(page_mapped(page)); 1384 swap_writepage(page, wbc); 1385 return 0; 1386 } 1387 1388 mutex_unlock(&shmem_swaplist_mutex); 1389 put_swap_page(page, swap); 1390 redirty: 1391 set_page_dirty(page); 1392 if (wbc->for_reclaim) 1393 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1394 unlock_page(page); 1395 return 0; 1396 } 1397 1398 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1399 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1400 { 1401 char buffer[64]; 1402 1403 if (!mpol || mpol->mode == MPOL_DEFAULT) 1404 return; /* show nothing */ 1405 1406 mpol_to_str(buffer, sizeof(buffer), mpol); 1407 1408 seq_printf(seq, ",mpol=%s", buffer); 1409 } 1410 1411 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1412 { 1413 struct mempolicy *mpol = NULL; 1414 if (sbinfo->mpol) { 1415 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1416 mpol = sbinfo->mpol; 1417 mpol_get(mpol); 1418 spin_unlock(&sbinfo->stat_lock); 1419 } 1420 return mpol; 1421 } 1422 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1423 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1424 { 1425 } 1426 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1427 { 1428 return NULL; 1429 } 1430 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1431 #ifndef CONFIG_NUMA 1432 #define vm_policy vm_private_data 1433 #endif 1434 1435 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1436 struct shmem_inode_info *info, pgoff_t index) 1437 { 1438 /* Create a pseudo vma that just contains the policy */ 1439 vma_init(vma, NULL); 1440 /* Bias interleave by inode number to distribute better across nodes */ 1441 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1442 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1443 } 1444 1445 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1446 { 1447 /* Drop reference taken by mpol_shared_policy_lookup() */ 1448 mpol_cond_put(vma->vm_policy); 1449 } 1450 1451 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1452 struct shmem_inode_info *info, pgoff_t index) 1453 { 1454 struct vm_area_struct pvma; 1455 struct page *page; 1456 struct vm_fault vmf; 1457 1458 shmem_pseudo_vma_init(&pvma, info, index); 1459 vmf.vma = &pvma; 1460 vmf.address = 0; 1461 page = swap_cluster_readahead(swap, gfp, &vmf); 1462 shmem_pseudo_vma_destroy(&pvma); 1463 1464 return page; 1465 } 1466 1467 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1468 struct shmem_inode_info *info, pgoff_t index) 1469 { 1470 struct vm_area_struct pvma; 1471 struct address_space *mapping = info->vfs_inode.i_mapping; 1472 pgoff_t hindex; 1473 struct page *page; 1474 1475 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1476 return NULL; 1477 1478 hindex = round_down(index, HPAGE_PMD_NR); 1479 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1480 XA_PRESENT)) 1481 return NULL; 1482 1483 shmem_pseudo_vma_init(&pvma, info, hindex); 1484 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1485 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1486 shmem_pseudo_vma_destroy(&pvma); 1487 if (page) 1488 prep_transhuge_page(page); 1489 return page; 1490 } 1491 1492 static struct page *shmem_alloc_page(gfp_t gfp, 1493 struct shmem_inode_info *info, pgoff_t index) 1494 { 1495 struct vm_area_struct pvma; 1496 struct page *page; 1497 1498 shmem_pseudo_vma_init(&pvma, info, index); 1499 page = alloc_page_vma(gfp, &pvma, 0); 1500 shmem_pseudo_vma_destroy(&pvma); 1501 1502 return page; 1503 } 1504 1505 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1506 struct inode *inode, 1507 pgoff_t index, bool huge) 1508 { 1509 struct shmem_inode_info *info = SHMEM_I(inode); 1510 struct page *page; 1511 int nr; 1512 int err = -ENOSPC; 1513 1514 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1515 huge = false; 1516 nr = huge ? HPAGE_PMD_NR : 1; 1517 1518 if (!shmem_inode_acct_block(inode, nr)) 1519 goto failed; 1520 1521 if (huge) 1522 page = shmem_alloc_hugepage(gfp, info, index); 1523 else 1524 page = shmem_alloc_page(gfp, info, index); 1525 if (page) { 1526 __SetPageLocked(page); 1527 __SetPageSwapBacked(page); 1528 return page; 1529 } 1530 1531 err = -ENOMEM; 1532 shmem_inode_unacct_blocks(inode, nr); 1533 failed: 1534 return ERR_PTR(err); 1535 } 1536 1537 /* 1538 * When a page is moved from swapcache to shmem filecache (either by the 1539 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1540 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1541 * ignorance of the mapping it belongs to. If that mapping has special 1542 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1543 * we may need to copy to a suitable page before moving to filecache. 1544 * 1545 * In a future release, this may well be extended to respect cpuset and 1546 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1547 * but for now it is a simple matter of zone. 1548 */ 1549 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1550 { 1551 return page_zonenum(page) > gfp_zone(gfp); 1552 } 1553 1554 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1555 struct shmem_inode_info *info, pgoff_t index) 1556 { 1557 struct page *oldpage, *newpage; 1558 struct address_space *swap_mapping; 1559 swp_entry_t entry; 1560 pgoff_t swap_index; 1561 int error; 1562 1563 oldpage = *pagep; 1564 entry.val = page_private(oldpage); 1565 swap_index = swp_offset(entry); 1566 swap_mapping = page_mapping(oldpage); 1567 1568 /* 1569 * We have arrived here because our zones are constrained, so don't 1570 * limit chance of success by further cpuset and node constraints. 1571 */ 1572 gfp &= ~GFP_CONSTRAINT_MASK; 1573 newpage = shmem_alloc_page(gfp, info, index); 1574 if (!newpage) 1575 return -ENOMEM; 1576 1577 get_page(newpage); 1578 copy_highpage(newpage, oldpage); 1579 flush_dcache_page(newpage); 1580 1581 __SetPageLocked(newpage); 1582 __SetPageSwapBacked(newpage); 1583 SetPageUptodate(newpage); 1584 set_page_private(newpage, entry.val); 1585 SetPageSwapCache(newpage); 1586 1587 /* 1588 * Our caller will very soon move newpage out of swapcache, but it's 1589 * a nice clean interface for us to replace oldpage by newpage there. 1590 */ 1591 xa_lock_irq(&swap_mapping->i_pages); 1592 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1593 if (!error) { 1594 __inc_node_page_state(newpage, NR_FILE_PAGES); 1595 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1596 } 1597 xa_unlock_irq(&swap_mapping->i_pages); 1598 1599 if (unlikely(error)) { 1600 /* 1601 * Is this possible? I think not, now that our callers check 1602 * both PageSwapCache and page_private after getting page lock; 1603 * but be defensive. Reverse old to newpage for clear and free. 1604 */ 1605 oldpage = newpage; 1606 } else { 1607 mem_cgroup_migrate(oldpage, newpage); 1608 lru_cache_add_anon(newpage); 1609 *pagep = newpage; 1610 } 1611 1612 ClearPageSwapCache(oldpage); 1613 set_page_private(oldpage, 0); 1614 1615 unlock_page(oldpage); 1616 put_page(oldpage); 1617 put_page(oldpage); 1618 return error; 1619 } 1620 1621 /* 1622 * Swap in the page pointed to by *pagep. 1623 * Caller has to make sure that *pagep contains a valid swapped page. 1624 * Returns 0 and the page in pagep if success. On failure, returns the 1625 * the error code and NULL in *pagep. 1626 */ 1627 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1628 struct page **pagep, enum sgp_type sgp, 1629 gfp_t gfp, struct vm_area_struct *vma, 1630 vm_fault_t *fault_type) 1631 { 1632 struct address_space *mapping = inode->i_mapping; 1633 struct shmem_inode_info *info = SHMEM_I(inode); 1634 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1635 struct mem_cgroup *memcg; 1636 struct page *page; 1637 swp_entry_t swap; 1638 int error; 1639 1640 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1641 swap = radix_to_swp_entry(*pagep); 1642 *pagep = NULL; 1643 1644 /* Look it up and read it in.. */ 1645 page = lookup_swap_cache(swap, NULL, 0); 1646 if (!page) { 1647 /* Or update major stats only when swapin succeeds?? */ 1648 if (fault_type) { 1649 *fault_type |= VM_FAULT_MAJOR; 1650 count_vm_event(PGMAJFAULT); 1651 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1652 } 1653 /* Here we actually start the io */ 1654 page = shmem_swapin(swap, gfp, info, index); 1655 if (!page) { 1656 error = -ENOMEM; 1657 goto failed; 1658 } 1659 } 1660 1661 /* We have to do this with page locked to prevent races */ 1662 lock_page(page); 1663 if (!PageSwapCache(page) || page_private(page) != swap.val || 1664 !shmem_confirm_swap(mapping, index, swap)) { 1665 error = -EEXIST; 1666 goto unlock; 1667 } 1668 if (!PageUptodate(page)) { 1669 error = -EIO; 1670 goto failed; 1671 } 1672 wait_on_page_writeback(page); 1673 1674 if (shmem_should_replace_page(page, gfp)) { 1675 error = shmem_replace_page(&page, gfp, info, index); 1676 if (error) 1677 goto failed; 1678 } 1679 1680 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1681 false); 1682 if (!error) { 1683 error = shmem_add_to_page_cache(page, mapping, index, 1684 swp_to_radix_entry(swap), gfp); 1685 /* 1686 * We already confirmed swap under page lock, and make 1687 * no memory allocation here, so usually no possibility 1688 * of error; but free_swap_and_cache() only trylocks a 1689 * page, so it is just possible that the entry has been 1690 * truncated or holepunched since swap was confirmed. 1691 * shmem_undo_range() will have done some of the 1692 * unaccounting, now delete_from_swap_cache() will do 1693 * the rest. 1694 */ 1695 if (error) { 1696 mem_cgroup_cancel_charge(page, memcg, false); 1697 delete_from_swap_cache(page); 1698 } 1699 } 1700 if (error) 1701 goto failed; 1702 1703 mem_cgroup_commit_charge(page, memcg, true, false); 1704 1705 spin_lock_irq(&info->lock); 1706 info->swapped--; 1707 shmem_recalc_inode(inode); 1708 spin_unlock_irq(&info->lock); 1709 1710 if (sgp == SGP_WRITE) 1711 mark_page_accessed(page); 1712 1713 delete_from_swap_cache(page); 1714 set_page_dirty(page); 1715 swap_free(swap); 1716 1717 *pagep = page; 1718 return 0; 1719 failed: 1720 if (!shmem_confirm_swap(mapping, index, swap)) 1721 error = -EEXIST; 1722 unlock: 1723 if (page) { 1724 unlock_page(page); 1725 put_page(page); 1726 } 1727 1728 return error; 1729 } 1730 1731 /* 1732 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1733 * 1734 * If we allocate a new one we do not mark it dirty. That's up to the 1735 * vm. If we swap it in we mark it dirty since we also free the swap 1736 * entry since a page cannot live in both the swap and page cache. 1737 * 1738 * vmf and fault_type are only supplied by shmem_fault: 1739 * otherwise they are NULL. 1740 */ 1741 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1742 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1743 struct vm_area_struct *vma, struct vm_fault *vmf, 1744 vm_fault_t *fault_type) 1745 { 1746 struct address_space *mapping = inode->i_mapping; 1747 struct shmem_inode_info *info = SHMEM_I(inode); 1748 struct shmem_sb_info *sbinfo; 1749 struct mm_struct *charge_mm; 1750 struct mem_cgroup *memcg; 1751 struct page *page; 1752 enum sgp_type sgp_huge = sgp; 1753 pgoff_t hindex = index; 1754 int error; 1755 int once = 0; 1756 int alloced = 0; 1757 1758 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1759 return -EFBIG; 1760 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1761 sgp = SGP_CACHE; 1762 repeat: 1763 if (sgp <= SGP_CACHE && 1764 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1765 return -EINVAL; 1766 } 1767 1768 sbinfo = SHMEM_SB(inode->i_sb); 1769 charge_mm = vma ? vma->vm_mm : current->mm; 1770 1771 page = find_lock_entry(mapping, index); 1772 if (xa_is_value(page)) { 1773 error = shmem_swapin_page(inode, index, &page, 1774 sgp, gfp, vma, fault_type); 1775 if (error == -EEXIST) 1776 goto repeat; 1777 1778 *pagep = page; 1779 return error; 1780 } 1781 1782 if (page && sgp == SGP_WRITE) 1783 mark_page_accessed(page); 1784 1785 /* fallocated page? */ 1786 if (page && !PageUptodate(page)) { 1787 if (sgp != SGP_READ) 1788 goto clear; 1789 unlock_page(page); 1790 put_page(page); 1791 page = NULL; 1792 } 1793 if (page || sgp == SGP_READ) { 1794 *pagep = page; 1795 return 0; 1796 } 1797 1798 /* 1799 * Fast cache lookup did not find it: 1800 * bring it back from swap or allocate. 1801 */ 1802 1803 if (vma && userfaultfd_missing(vma)) { 1804 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1805 return 0; 1806 } 1807 1808 /* shmem_symlink() */ 1809 if (mapping->a_ops != &shmem_aops) 1810 goto alloc_nohuge; 1811 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1812 goto alloc_nohuge; 1813 if (shmem_huge == SHMEM_HUGE_FORCE) 1814 goto alloc_huge; 1815 switch (sbinfo->huge) { 1816 loff_t i_size; 1817 pgoff_t off; 1818 case SHMEM_HUGE_NEVER: 1819 goto alloc_nohuge; 1820 case SHMEM_HUGE_WITHIN_SIZE: 1821 off = round_up(index, HPAGE_PMD_NR); 1822 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1823 if (i_size >= HPAGE_PMD_SIZE && 1824 i_size >> PAGE_SHIFT >= off) 1825 goto alloc_huge; 1826 /* fallthrough */ 1827 case SHMEM_HUGE_ADVISE: 1828 if (sgp_huge == SGP_HUGE) 1829 goto alloc_huge; 1830 /* TODO: implement fadvise() hints */ 1831 goto alloc_nohuge; 1832 } 1833 1834 alloc_huge: 1835 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1836 if (IS_ERR(page)) { 1837 alloc_nohuge: 1838 page = shmem_alloc_and_acct_page(gfp, inode, 1839 index, false); 1840 } 1841 if (IS_ERR(page)) { 1842 int retry = 5; 1843 1844 error = PTR_ERR(page); 1845 page = NULL; 1846 if (error != -ENOSPC) 1847 goto unlock; 1848 /* 1849 * Try to reclaim some space by splitting a huge page 1850 * beyond i_size on the filesystem. 1851 */ 1852 while (retry--) { 1853 int ret; 1854 1855 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1856 if (ret == SHRINK_STOP) 1857 break; 1858 if (ret) 1859 goto alloc_nohuge; 1860 } 1861 goto unlock; 1862 } 1863 1864 if (PageTransHuge(page)) 1865 hindex = round_down(index, HPAGE_PMD_NR); 1866 else 1867 hindex = index; 1868 1869 if (sgp == SGP_WRITE) 1870 __SetPageReferenced(page); 1871 1872 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1873 PageTransHuge(page)); 1874 if (error) 1875 goto unacct; 1876 error = shmem_add_to_page_cache(page, mapping, hindex, 1877 NULL, gfp & GFP_RECLAIM_MASK); 1878 if (error) { 1879 mem_cgroup_cancel_charge(page, memcg, 1880 PageTransHuge(page)); 1881 goto unacct; 1882 } 1883 mem_cgroup_commit_charge(page, memcg, false, 1884 PageTransHuge(page)); 1885 lru_cache_add_anon(page); 1886 1887 spin_lock_irq(&info->lock); 1888 info->alloced += compound_nr(page); 1889 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1890 shmem_recalc_inode(inode); 1891 spin_unlock_irq(&info->lock); 1892 alloced = true; 1893 1894 if (PageTransHuge(page) && 1895 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1896 hindex + HPAGE_PMD_NR - 1) { 1897 /* 1898 * Part of the huge page is beyond i_size: subject 1899 * to shrink under memory pressure. 1900 */ 1901 spin_lock(&sbinfo->shrinklist_lock); 1902 /* 1903 * _careful to defend against unlocked access to 1904 * ->shrink_list in shmem_unused_huge_shrink() 1905 */ 1906 if (list_empty_careful(&info->shrinklist)) { 1907 list_add_tail(&info->shrinklist, 1908 &sbinfo->shrinklist); 1909 sbinfo->shrinklist_len++; 1910 } 1911 spin_unlock(&sbinfo->shrinklist_lock); 1912 } 1913 1914 /* 1915 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1916 */ 1917 if (sgp == SGP_FALLOC) 1918 sgp = SGP_WRITE; 1919 clear: 1920 /* 1921 * Let SGP_WRITE caller clear ends if write does not fill page; 1922 * but SGP_FALLOC on a page fallocated earlier must initialize 1923 * it now, lest undo on failure cancel our earlier guarantee. 1924 */ 1925 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1926 struct page *head = compound_head(page); 1927 int i; 1928 1929 for (i = 0; i < compound_nr(head); i++) { 1930 clear_highpage(head + i); 1931 flush_dcache_page(head + i); 1932 } 1933 SetPageUptodate(head); 1934 } 1935 1936 /* Perhaps the file has been truncated since we checked */ 1937 if (sgp <= SGP_CACHE && 1938 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1939 if (alloced) { 1940 ClearPageDirty(page); 1941 delete_from_page_cache(page); 1942 spin_lock_irq(&info->lock); 1943 shmem_recalc_inode(inode); 1944 spin_unlock_irq(&info->lock); 1945 } 1946 error = -EINVAL; 1947 goto unlock; 1948 } 1949 *pagep = page + index - hindex; 1950 return 0; 1951 1952 /* 1953 * Error recovery. 1954 */ 1955 unacct: 1956 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1957 1958 if (PageTransHuge(page)) { 1959 unlock_page(page); 1960 put_page(page); 1961 goto alloc_nohuge; 1962 } 1963 unlock: 1964 if (page) { 1965 unlock_page(page); 1966 put_page(page); 1967 } 1968 if (error == -ENOSPC && !once++) { 1969 spin_lock_irq(&info->lock); 1970 shmem_recalc_inode(inode); 1971 spin_unlock_irq(&info->lock); 1972 goto repeat; 1973 } 1974 if (error == -EEXIST) 1975 goto repeat; 1976 return error; 1977 } 1978 1979 /* 1980 * This is like autoremove_wake_function, but it removes the wait queue 1981 * entry unconditionally - even if something else had already woken the 1982 * target. 1983 */ 1984 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1985 { 1986 int ret = default_wake_function(wait, mode, sync, key); 1987 list_del_init(&wait->entry); 1988 return ret; 1989 } 1990 1991 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1992 { 1993 struct vm_area_struct *vma = vmf->vma; 1994 struct inode *inode = file_inode(vma->vm_file); 1995 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1996 enum sgp_type sgp; 1997 int err; 1998 vm_fault_t ret = VM_FAULT_LOCKED; 1999 2000 /* 2001 * Trinity finds that probing a hole which tmpfs is punching can 2002 * prevent the hole-punch from ever completing: which in turn 2003 * locks writers out with its hold on i_mutex. So refrain from 2004 * faulting pages into the hole while it's being punched. Although 2005 * shmem_undo_range() does remove the additions, it may be unable to 2006 * keep up, as each new page needs its own unmap_mapping_range() call, 2007 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2008 * 2009 * It does not matter if we sometimes reach this check just before the 2010 * hole-punch begins, so that one fault then races with the punch: 2011 * we just need to make racing faults a rare case. 2012 * 2013 * The implementation below would be much simpler if we just used a 2014 * standard mutex or completion: but we cannot take i_mutex in fault, 2015 * and bloating every shmem inode for this unlikely case would be sad. 2016 */ 2017 if (unlikely(inode->i_private)) { 2018 struct shmem_falloc *shmem_falloc; 2019 2020 spin_lock(&inode->i_lock); 2021 shmem_falloc = inode->i_private; 2022 if (shmem_falloc && 2023 shmem_falloc->waitq && 2024 vmf->pgoff >= shmem_falloc->start && 2025 vmf->pgoff < shmem_falloc->next) { 2026 struct file *fpin; 2027 wait_queue_head_t *shmem_falloc_waitq; 2028 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2029 2030 ret = VM_FAULT_NOPAGE; 2031 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2032 if (fpin) 2033 ret = VM_FAULT_RETRY; 2034 2035 shmem_falloc_waitq = shmem_falloc->waitq; 2036 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2037 TASK_UNINTERRUPTIBLE); 2038 spin_unlock(&inode->i_lock); 2039 schedule(); 2040 2041 /* 2042 * shmem_falloc_waitq points into the shmem_fallocate() 2043 * stack of the hole-punching task: shmem_falloc_waitq 2044 * is usually invalid by the time we reach here, but 2045 * finish_wait() does not dereference it in that case; 2046 * though i_lock needed lest racing with wake_up_all(). 2047 */ 2048 spin_lock(&inode->i_lock); 2049 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2050 spin_unlock(&inode->i_lock); 2051 2052 if (fpin) 2053 fput(fpin); 2054 return ret; 2055 } 2056 spin_unlock(&inode->i_lock); 2057 } 2058 2059 sgp = SGP_CACHE; 2060 2061 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2062 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2063 sgp = SGP_NOHUGE; 2064 else if (vma->vm_flags & VM_HUGEPAGE) 2065 sgp = SGP_HUGE; 2066 2067 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2068 gfp, vma, vmf, &ret); 2069 if (err) 2070 return vmf_error(err); 2071 return ret; 2072 } 2073 2074 unsigned long shmem_get_unmapped_area(struct file *file, 2075 unsigned long uaddr, unsigned long len, 2076 unsigned long pgoff, unsigned long flags) 2077 { 2078 unsigned long (*get_area)(struct file *, 2079 unsigned long, unsigned long, unsigned long, unsigned long); 2080 unsigned long addr; 2081 unsigned long offset; 2082 unsigned long inflated_len; 2083 unsigned long inflated_addr; 2084 unsigned long inflated_offset; 2085 2086 if (len > TASK_SIZE) 2087 return -ENOMEM; 2088 2089 get_area = current->mm->get_unmapped_area; 2090 addr = get_area(file, uaddr, len, pgoff, flags); 2091 2092 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2093 return addr; 2094 if (IS_ERR_VALUE(addr)) 2095 return addr; 2096 if (addr & ~PAGE_MASK) 2097 return addr; 2098 if (addr > TASK_SIZE - len) 2099 return addr; 2100 2101 if (shmem_huge == SHMEM_HUGE_DENY) 2102 return addr; 2103 if (len < HPAGE_PMD_SIZE) 2104 return addr; 2105 if (flags & MAP_FIXED) 2106 return addr; 2107 /* 2108 * Our priority is to support MAP_SHARED mapped hugely; 2109 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2110 * But if caller specified an address hint, respect that as before. 2111 */ 2112 if (uaddr) 2113 return addr; 2114 2115 if (shmem_huge != SHMEM_HUGE_FORCE) { 2116 struct super_block *sb; 2117 2118 if (file) { 2119 VM_BUG_ON(file->f_op != &shmem_file_operations); 2120 sb = file_inode(file)->i_sb; 2121 } else { 2122 /* 2123 * Called directly from mm/mmap.c, or drivers/char/mem.c 2124 * for "/dev/zero", to create a shared anonymous object. 2125 */ 2126 if (IS_ERR(shm_mnt)) 2127 return addr; 2128 sb = shm_mnt->mnt_sb; 2129 } 2130 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2131 return addr; 2132 } 2133 2134 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2135 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2136 return addr; 2137 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2138 return addr; 2139 2140 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2141 if (inflated_len > TASK_SIZE) 2142 return addr; 2143 if (inflated_len < len) 2144 return addr; 2145 2146 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2147 if (IS_ERR_VALUE(inflated_addr)) 2148 return addr; 2149 if (inflated_addr & ~PAGE_MASK) 2150 return addr; 2151 2152 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2153 inflated_addr += offset - inflated_offset; 2154 if (inflated_offset > offset) 2155 inflated_addr += HPAGE_PMD_SIZE; 2156 2157 if (inflated_addr > TASK_SIZE - len) 2158 return addr; 2159 return inflated_addr; 2160 } 2161 2162 #ifdef CONFIG_NUMA 2163 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2164 { 2165 struct inode *inode = file_inode(vma->vm_file); 2166 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2167 } 2168 2169 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2170 unsigned long addr) 2171 { 2172 struct inode *inode = file_inode(vma->vm_file); 2173 pgoff_t index; 2174 2175 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2176 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2177 } 2178 #endif 2179 2180 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2181 { 2182 struct inode *inode = file_inode(file); 2183 struct shmem_inode_info *info = SHMEM_I(inode); 2184 int retval = -ENOMEM; 2185 2186 spin_lock_irq(&info->lock); 2187 if (lock && !(info->flags & VM_LOCKED)) { 2188 if (!user_shm_lock(inode->i_size, user)) 2189 goto out_nomem; 2190 info->flags |= VM_LOCKED; 2191 mapping_set_unevictable(file->f_mapping); 2192 } 2193 if (!lock && (info->flags & VM_LOCKED) && user) { 2194 user_shm_unlock(inode->i_size, user); 2195 info->flags &= ~VM_LOCKED; 2196 mapping_clear_unevictable(file->f_mapping); 2197 } 2198 retval = 0; 2199 2200 out_nomem: 2201 spin_unlock_irq(&info->lock); 2202 return retval; 2203 } 2204 2205 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2206 { 2207 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2208 2209 if (info->seals & F_SEAL_FUTURE_WRITE) { 2210 /* 2211 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2212 * "future write" seal active. 2213 */ 2214 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2215 return -EPERM; 2216 2217 /* 2218 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2219 * MAP_SHARED and read-only, take care to not allow mprotect to 2220 * revert protections on such mappings. Do this only for shared 2221 * mappings. For private mappings, don't need to mask 2222 * VM_MAYWRITE as we still want them to be COW-writable. 2223 */ 2224 if (vma->vm_flags & VM_SHARED) 2225 vma->vm_flags &= ~(VM_MAYWRITE); 2226 } 2227 2228 file_accessed(file); 2229 vma->vm_ops = &shmem_vm_ops; 2230 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2231 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2232 (vma->vm_end & HPAGE_PMD_MASK)) { 2233 khugepaged_enter(vma, vma->vm_flags); 2234 } 2235 return 0; 2236 } 2237 2238 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2239 umode_t mode, dev_t dev, unsigned long flags) 2240 { 2241 struct inode *inode; 2242 struct shmem_inode_info *info; 2243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2244 2245 if (shmem_reserve_inode(sb)) 2246 return NULL; 2247 2248 inode = new_inode(sb); 2249 if (inode) { 2250 inode->i_ino = get_next_ino(); 2251 inode_init_owner(inode, dir, mode); 2252 inode->i_blocks = 0; 2253 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2254 inode->i_generation = prandom_u32(); 2255 info = SHMEM_I(inode); 2256 memset(info, 0, (char *)inode - (char *)info); 2257 spin_lock_init(&info->lock); 2258 atomic_set(&info->stop_eviction, 0); 2259 info->seals = F_SEAL_SEAL; 2260 info->flags = flags & VM_NORESERVE; 2261 INIT_LIST_HEAD(&info->shrinklist); 2262 INIT_LIST_HEAD(&info->swaplist); 2263 simple_xattrs_init(&info->xattrs); 2264 cache_no_acl(inode); 2265 2266 switch (mode & S_IFMT) { 2267 default: 2268 inode->i_op = &shmem_special_inode_operations; 2269 init_special_inode(inode, mode, dev); 2270 break; 2271 case S_IFREG: 2272 inode->i_mapping->a_ops = &shmem_aops; 2273 inode->i_op = &shmem_inode_operations; 2274 inode->i_fop = &shmem_file_operations; 2275 mpol_shared_policy_init(&info->policy, 2276 shmem_get_sbmpol(sbinfo)); 2277 break; 2278 case S_IFDIR: 2279 inc_nlink(inode); 2280 /* Some things misbehave if size == 0 on a directory */ 2281 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2282 inode->i_op = &shmem_dir_inode_operations; 2283 inode->i_fop = &simple_dir_operations; 2284 break; 2285 case S_IFLNK: 2286 /* 2287 * Must not load anything in the rbtree, 2288 * mpol_free_shared_policy will not be called. 2289 */ 2290 mpol_shared_policy_init(&info->policy, NULL); 2291 break; 2292 } 2293 2294 lockdep_annotate_inode_mutex_key(inode); 2295 } else 2296 shmem_free_inode(sb); 2297 return inode; 2298 } 2299 2300 bool shmem_mapping(struct address_space *mapping) 2301 { 2302 return mapping->a_ops == &shmem_aops; 2303 } 2304 2305 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2306 pmd_t *dst_pmd, 2307 struct vm_area_struct *dst_vma, 2308 unsigned long dst_addr, 2309 unsigned long src_addr, 2310 bool zeropage, 2311 struct page **pagep) 2312 { 2313 struct inode *inode = file_inode(dst_vma->vm_file); 2314 struct shmem_inode_info *info = SHMEM_I(inode); 2315 struct address_space *mapping = inode->i_mapping; 2316 gfp_t gfp = mapping_gfp_mask(mapping); 2317 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2318 struct mem_cgroup *memcg; 2319 spinlock_t *ptl; 2320 void *page_kaddr; 2321 struct page *page; 2322 pte_t _dst_pte, *dst_pte; 2323 int ret; 2324 pgoff_t offset, max_off; 2325 2326 ret = -ENOMEM; 2327 if (!shmem_inode_acct_block(inode, 1)) 2328 goto out; 2329 2330 if (!*pagep) { 2331 page = shmem_alloc_page(gfp, info, pgoff); 2332 if (!page) 2333 goto out_unacct_blocks; 2334 2335 if (!zeropage) { /* mcopy_atomic */ 2336 page_kaddr = kmap_atomic(page); 2337 ret = copy_from_user(page_kaddr, 2338 (const void __user *)src_addr, 2339 PAGE_SIZE); 2340 kunmap_atomic(page_kaddr); 2341 2342 /* fallback to copy_from_user outside mmap_sem */ 2343 if (unlikely(ret)) { 2344 *pagep = page; 2345 shmem_inode_unacct_blocks(inode, 1); 2346 /* don't free the page */ 2347 return -ENOENT; 2348 } 2349 } else { /* mfill_zeropage_atomic */ 2350 clear_highpage(page); 2351 } 2352 } else { 2353 page = *pagep; 2354 *pagep = NULL; 2355 } 2356 2357 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2358 __SetPageLocked(page); 2359 __SetPageSwapBacked(page); 2360 __SetPageUptodate(page); 2361 2362 ret = -EFAULT; 2363 offset = linear_page_index(dst_vma, dst_addr); 2364 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2365 if (unlikely(offset >= max_off)) 2366 goto out_release; 2367 2368 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false); 2369 if (ret) 2370 goto out_release; 2371 2372 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2373 gfp & GFP_RECLAIM_MASK); 2374 if (ret) 2375 goto out_release_uncharge; 2376 2377 mem_cgroup_commit_charge(page, memcg, false, false); 2378 2379 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2380 if (dst_vma->vm_flags & VM_WRITE) 2381 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2382 else { 2383 /* 2384 * We don't set the pte dirty if the vma has no 2385 * VM_WRITE permission, so mark the page dirty or it 2386 * could be freed from under us. We could do it 2387 * unconditionally before unlock_page(), but doing it 2388 * only if VM_WRITE is not set is faster. 2389 */ 2390 set_page_dirty(page); 2391 } 2392 2393 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2394 2395 ret = -EFAULT; 2396 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2397 if (unlikely(offset >= max_off)) 2398 goto out_release_uncharge_unlock; 2399 2400 ret = -EEXIST; 2401 if (!pte_none(*dst_pte)) 2402 goto out_release_uncharge_unlock; 2403 2404 lru_cache_add_anon(page); 2405 2406 spin_lock(&info->lock); 2407 info->alloced++; 2408 inode->i_blocks += BLOCKS_PER_PAGE; 2409 shmem_recalc_inode(inode); 2410 spin_unlock(&info->lock); 2411 2412 inc_mm_counter(dst_mm, mm_counter_file(page)); 2413 page_add_file_rmap(page, false); 2414 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2415 2416 /* No need to invalidate - it was non-present before */ 2417 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2418 pte_unmap_unlock(dst_pte, ptl); 2419 unlock_page(page); 2420 ret = 0; 2421 out: 2422 return ret; 2423 out_release_uncharge_unlock: 2424 pte_unmap_unlock(dst_pte, ptl); 2425 ClearPageDirty(page); 2426 delete_from_page_cache(page); 2427 out_release_uncharge: 2428 mem_cgroup_cancel_charge(page, memcg, false); 2429 out_release: 2430 unlock_page(page); 2431 put_page(page); 2432 out_unacct_blocks: 2433 shmem_inode_unacct_blocks(inode, 1); 2434 goto out; 2435 } 2436 2437 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2438 pmd_t *dst_pmd, 2439 struct vm_area_struct *dst_vma, 2440 unsigned long dst_addr, 2441 unsigned long src_addr, 2442 struct page **pagep) 2443 { 2444 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2445 dst_addr, src_addr, false, pagep); 2446 } 2447 2448 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2449 pmd_t *dst_pmd, 2450 struct vm_area_struct *dst_vma, 2451 unsigned long dst_addr) 2452 { 2453 struct page *page = NULL; 2454 2455 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2456 dst_addr, 0, true, &page); 2457 } 2458 2459 #ifdef CONFIG_TMPFS 2460 static const struct inode_operations shmem_symlink_inode_operations; 2461 static const struct inode_operations shmem_short_symlink_operations; 2462 2463 #ifdef CONFIG_TMPFS_XATTR 2464 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2465 #else 2466 #define shmem_initxattrs NULL 2467 #endif 2468 2469 static int 2470 shmem_write_begin(struct file *file, struct address_space *mapping, 2471 loff_t pos, unsigned len, unsigned flags, 2472 struct page **pagep, void **fsdata) 2473 { 2474 struct inode *inode = mapping->host; 2475 struct shmem_inode_info *info = SHMEM_I(inode); 2476 pgoff_t index = pos >> PAGE_SHIFT; 2477 2478 /* i_mutex is held by caller */ 2479 if (unlikely(info->seals & (F_SEAL_GROW | 2480 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2481 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2482 return -EPERM; 2483 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2484 return -EPERM; 2485 } 2486 2487 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2488 } 2489 2490 static int 2491 shmem_write_end(struct file *file, struct address_space *mapping, 2492 loff_t pos, unsigned len, unsigned copied, 2493 struct page *page, void *fsdata) 2494 { 2495 struct inode *inode = mapping->host; 2496 2497 if (pos + copied > inode->i_size) 2498 i_size_write(inode, pos + copied); 2499 2500 if (!PageUptodate(page)) { 2501 struct page *head = compound_head(page); 2502 if (PageTransCompound(page)) { 2503 int i; 2504 2505 for (i = 0; i < HPAGE_PMD_NR; i++) { 2506 if (head + i == page) 2507 continue; 2508 clear_highpage(head + i); 2509 flush_dcache_page(head + i); 2510 } 2511 } 2512 if (copied < PAGE_SIZE) { 2513 unsigned from = pos & (PAGE_SIZE - 1); 2514 zero_user_segments(page, 0, from, 2515 from + copied, PAGE_SIZE); 2516 } 2517 SetPageUptodate(head); 2518 } 2519 set_page_dirty(page); 2520 unlock_page(page); 2521 put_page(page); 2522 2523 return copied; 2524 } 2525 2526 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2527 { 2528 struct file *file = iocb->ki_filp; 2529 struct inode *inode = file_inode(file); 2530 struct address_space *mapping = inode->i_mapping; 2531 pgoff_t index; 2532 unsigned long offset; 2533 enum sgp_type sgp = SGP_READ; 2534 int error = 0; 2535 ssize_t retval = 0; 2536 loff_t *ppos = &iocb->ki_pos; 2537 2538 /* 2539 * Might this read be for a stacking filesystem? Then when reading 2540 * holes of a sparse file, we actually need to allocate those pages, 2541 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2542 */ 2543 if (!iter_is_iovec(to)) 2544 sgp = SGP_CACHE; 2545 2546 index = *ppos >> PAGE_SHIFT; 2547 offset = *ppos & ~PAGE_MASK; 2548 2549 for (;;) { 2550 struct page *page = NULL; 2551 pgoff_t end_index; 2552 unsigned long nr, ret; 2553 loff_t i_size = i_size_read(inode); 2554 2555 end_index = i_size >> PAGE_SHIFT; 2556 if (index > end_index) 2557 break; 2558 if (index == end_index) { 2559 nr = i_size & ~PAGE_MASK; 2560 if (nr <= offset) 2561 break; 2562 } 2563 2564 error = shmem_getpage(inode, index, &page, sgp); 2565 if (error) { 2566 if (error == -EINVAL) 2567 error = 0; 2568 break; 2569 } 2570 if (page) { 2571 if (sgp == SGP_CACHE) 2572 set_page_dirty(page); 2573 unlock_page(page); 2574 } 2575 2576 /* 2577 * We must evaluate after, since reads (unlike writes) 2578 * are called without i_mutex protection against truncate 2579 */ 2580 nr = PAGE_SIZE; 2581 i_size = i_size_read(inode); 2582 end_index = i_size >> PAGE_SHIFT; 2583 if (index == end_index) { 2584 nr = i_size & ~PAGE_MASK; 2585 if (nr <= offset) { 2586 if (page) 2587 put_page(page); 2588 break; 2589 } 2590 } 2591 nr -= offset; 2592 2593 if (page) { 2594 /* 2595 * If users can be writing to this page using arbitrary 2596 * virtual addresses, take care about potential aliasing 2597 * before reading the page on the kernel side. 2598 */ 2599 if (mapping_writably_mapped(mapping)) 2600 flush_dcache_page(page); 2601 /* 2602 * Mark the page accessed if we read the beginning. 2603 */ 2604 if (!offset) 2605 mark_page_accessed(page); 2606 } else { 2607 page = ZERO_PAGE(0); 2608 get_page(page); 2609 } 2610 2611 /* 2612 * Ok, we have the page, and it's up-to-date, so 2613 * now we can copy it to user space... 2614 */ 2615 ret = copy_page_to_iter(page, offset, nr, to); 2616 retval += ret; 2617 offset += ret; 2618 index += offset >> PAGE_SHIFT; 2619 offset &= ~PAGE_MASK; 2620 2621 put_page(page); 2622 if (!iov_iter_count(to)) 2623 break; 2624 if (ret < nr) { 2625 error = -EFAULT; 2626 break; 2627 } 2628 cond_resched(); 2629 } 2630 2631 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2632 file_accessed(file); 2633 return retval ? retval : error; 2634 } 2635 2636 /* 2637 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2638 */ 2639 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2640 pgoff_t index, pgoff_t end, int whence) 2641 { 2642 struct page *page; 2643 struct pagevec pvec; 2644 pgoff_t indices[PAGEVEC_SIZE]; 2645 bool done = false; 2646 int i; 2647 2648 pagevec_init(&pvec); 2649 pvec.nr = 1; /* start small: we may be there already */ 2650 while (!done) { 2651 pvec.nr = find_get_entries(mapping, index, 2652 pvec.nr, pvec.pages, indices); 2653 if (!pvec.nr) { 2654 if (whence == SEEK_DATA) 2655 index = end; 2656 break; 2657 } 2658 for (i = 0; i < pvec.nr; i++, index++) { 2659 if (index < indices[i]) { 2660 if (whence == SEEK_HOLE) { 2661 done = true; 2662 break; 2663 } 2664 index = indices[i]; 2665 } 2666 page = pvec.pages[i]; 2667 if (page && !xa_is_value(page)) { 2668 if (!PageUptodate(page)) 2669 page = NULL; 2670 } 2671 if (index >= end || 2672 (page && whence == SEEK_DATA) || 2673 (!page && whence == SEEK_HOLE)) { 2674 done = true; 2675 break; 2676 } 2677 } 2678 pagevec_remove_exceptionals(&pvec); 2679 pagevec_release(&pvec); 2680 pvec.nr = PAGEVEC_SIZE; 2681 cond_resched(); 2682 } 2683 return index; 2684 } 2685 2686 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2687 { 2688 struct address_space *mapping = file->f_mapping; 2689 struct inode *inode = mapping->host; 2690 pgoff_t start, end; 2691 loff_t new_offset; 2692 2693 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2694 return generic_file_llseek_size(file, offset, whence, 2695 MAX_LFS_FILESIZE, i_size_read(inode)); 2696 inode_lock(inode); 2697 /* We're holding i_mutex so we can access i_size directly */ 2698 2699 if (offset < 0 || offset >= inode->i_size) 2700 offset = -ENXIO; 2701 else { 2702 start = offset >> PAGE_SHIFT; 2703 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2704 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2705 new_offset <<= PAGE_SHIFT; 2706 if (new_offset > offset) { 2707 if (new_offset < inode->i_size) 2708 offset = new_offset; 2709 else if (whence == SEEK_DATA) 2710 offset = -ENXIO; 2711 else 2712 offset = inode->i_size; 2713 } 2714 } 2715 2716 if (offset >= 0) 2717 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2718 inode_unlock(inode); 2719 return offset; 2720 } 2721 2722 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2723 loff_t len) 2724 { 2725 struct inode *inode = file_inode(file); 2726 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2727 struct shmem_inode_info *info = SHMEM_I(inode); 2728 struct shmem_falloc shmem_falloc; 2729 pgoff_t start, index, end; 2730 int error; 2731 2732 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2733 return -EOPNOTSUPP; 2734 2735 inode_lock(inode); 2736 2737 if (mode & FALLOC_FL_PUNCH_HOLE) { 2738 struct address_space *mapping = file->f_mapping; 2739 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2740 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2741 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2742 2743 /* protected by i_mutex */ 2744 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2745 error = -EPERM; 2746 goto out; 2747 } 2748 2749 shmem_falloc.waitq = &shmem_falloc_waitq; 2750 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2751 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2752 spin_lock(&inode->i_lock); 2753 inode->i_private = &shmem_falloc; 2754 spin_unlock(&inode->i_lock); 2755 2756 if ((u64)unmap_end > (u64)unmap_start) 2757 unmap_mapping_range(mapping, unmap_start, 2758 1 + unmap_end - unmap_start, 0); 2759 shmem_truncate_range(inode, offset, offset + len - 1); 2760 /* No need to unmap again: hole-punching leaves COWed pages */ 2761 2762 spin_lock(&inode->i_lock); 2763 inode->i_private = NULL; 2764 wake_up_all(&shmem_falloc_waitq); 2765 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2766 spin_unlock(&inode->i_lock); 2767 error = 0; 2768 goto out; 2769 } 2770 2771 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2772 error = inode_newsize_ok(inode, offset + len); 2773 if (error) 2774 goto out; 2775 2776 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2777 error = -EPERM; 2778 goto out; 2779 } 2780 2781 start = offset >> PAGE_SHIFT; 2782 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2783 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2784 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2785 error = -ENOSPC; 2786 goto out; 2787 } 2788 2789 shmem_falloc.waitq = NULL; 2790 shmem_falloc.start = start; 2791 shmem_falloc.next = start; 2792 shmem_falloc.nr_falloced = 0; 2793 shmem_falloc.nr_unswapped = 0; 2794 spin_lock(&inode->i_lock); 2795 inode->i_private = &shmem_falloc; 2796 spin_unlock(&inode->i_lock); 2797 2798 for (index = start; index < end; index++) { 2799 struct page *page; 2800 2801 /* 2802 * Good, the fallocate(2) manpage permits EINTR: we may have 2803 * been interrupted because we are using up too much memory. 2804 */ 2805 if (signal_pending(current)) 2806 error = -EINTR; 2807 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2808 error = -ENOMEM; 2809 else 2810 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2811 if (error) { 2812 /* Remove the !PageUptodate pages we added */ 2813 if (index > start) { 2814 shmem_undo_range(inode, 2815 (loff_t)start << PAGE_SHIFT, 2816 ((loff_t)index << PAGE_SHIFT) - 1, true); 2817 } 2818 goto undone; 2819 } 2820 2821 /* 2822 * Inform shmem_writepage() how far we have reached. 2823 * No need for lock or barrier: we have the page lock. 2824 */ 2825 shmem_falloc.next++; 2826 if (!PageUptodate(page)) 2827 shmem_falloc.nr_falloced++; 2828 2829 /* 2830 * If !PageUptodate, leave it that way so that freeable pages 2831 * can be recognized if we need to rollback on error later. 2832 * But set_page_dirty so that memory pressure will swap rather 2833 * than free the pages we are allocating (and SGP_CACHE pages 2834 * might still be clean: we now need to mark those dirty too). 2835 */ 2836 set_page_dirty(page); 2837 unlock_page(page); 2838 put_page(page); 2839 cond_resched(); 2840 } 2841 2842 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2843 i_size_write(inode, offset + len); 2844 inode->i_ctime = current_time(inode); 2845 undone: 2846 spin_lock(&inode->i_lock); 2847 inode->i_private = NULL; 2848 spin_unlock(&inode->i_lock); 2849 out: 2850 inode_unlock(inode); 2851 return error; 2852 } 2853 2854 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2855 { 2856 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2857 2858 buf->f_type = TMPFS_MAGIC; 2859 buf->f_bsize = PAGE_SIZE; 2860 buf->f_namelen = NAME_MAX; 2861 if (sbinfo->max_blocks) { 2862 buf->f_blocks = sbinfo->max_blocks; 2863 buf->f_bavail = 2864 buf->f_bfree = sbinfo->max_blocks - 2865 percpu_counter_sum(&sbinfo->used_blocks); 2866 } 2867 if (sbinfo->max_inodes) { 2868 buf->f_files = sbinfo->max_inodes; 2869 buf->f_ffree = sbinfo->free_inodes; 2870 } 2871 /* else leave those fields 0 like simple_statfs */ 2872 return 0; 2873 } 2874 2875 /* 2876 * File creation. Allocate an inode, and we're done.. 2877 */ 2878 static int 2879 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2880 { 2881 struct inode *inode; 2882 int error = -ENOSPC; 2883 2884 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2885 if (inode) { 2886 error = simple_acl_create(dir, inode); 2887 if (error) 2888 goto out_iput; 2889 error = security_inode_init_security(inode, dir, 2890 &dentry->d_name, 2891 shmem_initxattrs, NULL); 2892 if (error && error != -EOPNOTSUPP) 2893 goto out_iput; 2894 2895 error = 0; 2896 dir->i_size += BOGO_DIRENT_SIZE; 2897 dir->i_ctime = dir->i_mtime = current_time(dir); 2898 d_instantiate(dentry, inode); 2899 dget(dentry); /* Extra count - pin the dentry in core */ 2900 } 2901 return error; 2902 out_iput: 2903 iput(inode); 2904 return error; 2905 } 2906 2907 static int 2908 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2909 { 2910 struct inode *inode; 2911 int error = -ENOSPC; 2912 2913 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2914 if (inode) { 2915 error = security_inode_init_security(inode, dir, 2916 NULL, 2917 shmem_initxattrs, NULL); 2918 if (error && error != -EOPNOTSUPP) 2919 goto out_iput; 2920 error = simple_acl_create(dir, inode); 2921 if (error) 2922 goto out_iput; 2923 d_tmpfile(dentry, inode); 2924 } 2925 return error; 2926 out_iput: 2927 iput(inode); 2928 return error; 2929 } 2930 2931 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2932 { 2933 int error; 2934 2935 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2936 return error; 2937 inc_nlink(dir); 2938 return 0; 2939 } 2940 2941 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2942 bool excl) 2943 { 2944 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2945 } 2946 2947 /* 2948 * Link a file.. 2949 */ 2950 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2951 { 2952 struct inode *inode = d_inode(old_dentry); 2953 int ret = 0; 2954 2955 /* 2956 * No ordinary (disk based) filesystem counts links as inodes; 2957 * but each new link needs a new dentry, pinning lowmem, and 2958 * tmpfs dentries cannot be pruned until they are unlinked. 2959 * But if an O_TMPFILE file is linked into the tmpfs, the 2960 * first link must skip that, to get the accounting right. 2961 */ 2962 if (inode->i_nlink) { 2963 ret = shmem_reserve_inode(inode->i_sb); 2964 if (ret) 2965 goto out; 2966 } 2967 2968 dir->i_size += BOGO_DIRENT_SIZE; 2969 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2970 inc_nlink(inode); 2971 ihold(inode); /* New dentry reference */ 2972 dget(dentry); /* Extra pinning count for the created dentry */ 2973 d_instantiate(dentry, inode); 2974 out: 2975 return ret; 2976 } 2977 2978 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2979 { 2980 struct inode *inode = d_inode(dentry); 2981 2982 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2983 shmem_free_inode(inode->i_sb); 2984 2985 dir->i_size -= BOGO_DIRENT_SIZE; 2986 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2987 drop_nlink(inode); 2988 dput(dentry); /* Undo the count from "create" - this does all the work */ 2989 return 0; 2990 } 2991 2992 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2993 { 2994 if (!simple_empty(dentry)) 2995 return -ENOTEMPTY; 2996 2997 drop_nlink(d_inode(dentry)); 2998 drop_nlink(dir); 2999 return shmem_unlink(dir, dentry); 3000 } 3001 3002 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3003 { 3004 bool old_is_dir = d_is_dir(old_dentry); 3005 bool new_is_dir = d_is_dir(new_dentry); 3006 3007 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3008 if (old_is_dir) { 3009 drop_nlink(old_dir); 3010 inc_nlink(new_dir); 3011 } else { 3012 drop_nlink(new_dir); 3013 inc_nlink(old_dir); 3014 } 3015 } 3016 old_dir->i_ctime = old_dir->i_mtime = 3017 new_dir->i_ctime = new_dir->i_mtime = 3018 d_inode(old_dentry)->i_ctime = 3019 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3020 3021 return 0; 3022 } 3023 3024 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3025 { 3026 struct dentry *whiteout; 3027 int error; 3028 3029 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3030 if (!whiteout) 3031 return -ENOMEM; 3032 3033 error = shmem_mknod(old_dir, whiteout, 3034 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3035 dput(whiteout); 3036 if (error) 3037 return error; 3038 3039 /* 3040 * Cheat and hash the whiteout while the old dentry is still in 3041 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3042 * 3043 * d_lookup() will consistently find one of them at this point, 3044 * not sure which one, but that isn't even important. 3045 */ 3046 d_rehash(whiteout); 3047 return 0; 3048 } 3049 3050 /* 3051 * The VFS layer already does all the dentry stuff for rename, 3052 * we just have to decrement the usage count for the target if 3053 * it exists so that the VFS layer correctly free's it when it 3054 * gets overwritten. 3055 */ 3056 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3057 { 3058 struct inode *inode = d_inode(old_dentry); 3059 int they_are_dirs = S_ISDIR(inode->i_mode); 3060 3061 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3062 return -EINVAL; 3063 3064 if (flags & RENAME_EXCHANGE) 3065 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3066 3067 if (!simple_empty(new_dentry)) 3068 return -ENOTEMPTY; 3069 3070 if (flags & RENAME_WHITEOUT) { 3071 int error; 3072 3073 error = shmem_whiteout(old_dir, old_dentry); 3074 if (error) 3075 return error; 3076 } 3077 3078 if (d_really_is_positive(new_dentry)) { 3079 (void) shmem_unlink(new_dir, new_dentry); 3080 if (they_are_dirs) { 3081 drop_nlink(d_inode(new_dentry)); 3082 drop_nlink(old_dir); 3083 } 3084 } else if (they_are_dirs) { 3085 drop_nlink(old_dir); 3086 inc_nlink(new_dir); 3087 } 3088 3089 old_dir->i_size -= BOGO_DIRENT_SIZE; 3090 new_dir->i_size += BOGO_DIRENT_SIZE; 3091 old_dir->i_ctime = old_dir->i_mtime = 3092 new_dir->i_ctime = new_dir->i_mtime = 3093 inode->i_ctime = current_time(old_dir); 3094 return 0; 3095 } 3096 3097 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3098 { 3099 int error; 3100 int len; 3101 struct inode *inode; 3102 struct page *page; 3103 3104 len = strlen(symname) + 1; 3105 if (len > PAGE_SIZE) 3106 return -ENAMETOOLONG; 3107 3108 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3109 VM_NORESERVE); 3110 if (!inode) 3111 return -ENOSPC; 3112 3113 error = security_inode_init_security(inode, dir, &dentry->d_name, 3114 shmem_initxattrs, NULL); 3115 if (error) { 3116 if (error != -EOPNOTSUPP) { 3117 iput(inode); 3118 return error; 3119 } 3120 error = 0; 3121 } 3122 3123 inode->i_size = len-1; 3124 if (len <= SHORT_SYMLINK_LEN) { 3125 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3126 if (!inode->i_link) { 3127 iput(inode); 3128 return -ENOMEM; 3129 } 3130 inode->i_op = &shmem_short_symlink_operations; 3131 } else { 3132 inode_nohighmem(inode); 3133 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3134 if (error) { 3135 iput(inode); 3136 return error; 3137 } 3138 inode->i_mapping->a_ops = &shmem_aops; 3139 inode->i_op = &shmem_symlink_inode_operations; 3140 memcpy(page_address(page), symname, len); 3141 SetPageUptodate(page); 3142 set_page_dirty(page); 3143 unlock_page(page); 3144 put_page(page); 3145 } 3146 dir->i_size += BOGO_DIRENT_SIZE; 3147 dir->i_ctime = dir->i_mtime = current_time(dir); 3148 d_instantiate(dentry, inode); 3149 dget(dentry); 3150 return 0; 3151 } 3152 3153 static void shmem_put_link(void *arg) 3154 { 3155 mark_page_accessed(arg); 3156 put_page(arg); 3157 } 3158 3159 static const char *shmem_get_link(struct dentry *dentry, 3160 struct inode *inode, 3161 struct delayed_call *done) 3162 { 3163 struct page *page = NULL; 3164 int error; 3165 if (!dentry) { 3166 page = find_get_page(inode->i_mapping, 0); 3167 if (!page) 3168 return ERR_PTR(-ECHILD); 3169 if (!PageUptodate(page)) { 3170 put_page(page); 3171 return ERR_PTR(-ECHILD); 3172 } 3173 } else { 3174 error = shmem_getpage(inode, 0, &page, SGP_READ); 3175 if (error) 3176 return ERR_PTR(error); 3177 unlock_page(page); 3178 } 3179 set_delayed_call(done, shmem_put_link, page); 3180 return page_address(page); 3181 } 3182 3183 #ifdef CONFIG_TMPFS_XATTR 3184 /* 3185 * Superblocks without xattr inode operations may get some security.* xattr 3186 * support from the LSM "for free". As soon as we have any other xattrs 3187 * like ACLs, we also need to implement the security.* handlers at 3188 * filesystem level, though. 3189 */ 3190 3191 /* 3192 * Callback for security_inode_init_security() for acquiring xattrs. 3193 */ 3194 static int shmem_initxattrs(struct inode *inode, 3195 const struct xattr *xattr_array, 3196 void *fs_info) 3197 { 3198 struct shmem_inode_info *info = SHMEM_I(inode); 3199 const struct xattr *xattr; 3200 struct simple_xattr *new_xattr; 3201 size_t len; 3202 3203 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3204 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3205 if (!new_xattr) 3206 return -ENOMEM; 3207 3208 len = strlen(xattr->name) + 1; 3209 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3210 GFP_KERNEL); 3211 if (!new_xattr->name) { 3212 kfree(new_xattr); 3213 return -ENOMEM; 3214 } 3215 3216 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3217 XATTR_SECURITY_PREFIX_LEN); 3218 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3219 xattr->name, len); 3220 3221 simple_xattr_list_add(&info->xattrs, new_xattr); 3222 } 3223 3224 return 0; 3225 } 3226 3227 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3228 struct dentry *unused, struct inode *inode, 3229 const char *name, void *buffer, size_t size) 3230 { 3231 struct shmem_inode_info *info = SHMEM_I(inode); 3232 3233 name = xattr_full_name(handler, name); 3234 return simple_xattr_get(&info->xattrs, name, buffer, size); 3235 } 3236 3237 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3238 struct dentry *unused, struct inode *inode, 3239 const char *name, const void *value, 3240 size_t size, int flags) 3241 { 3242 struct shmem_inode_info *info = SHMEM_I(inode); 3243 3244 name = xattr_full_name(handler, name); 3245 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3246 } 3247 3248 static const struct xattr_handler shmem_security_xattr_handler = { 3249 .prefix = XATTR_SECURITY_PREFIX, 3250 .get = shmem_xattr_handler_get, 3251 .set = shmem_xattr_handler_set, 3252 }; 3253 3254 static const struct xattr_handler shmem_trusted_xattr_handler = { 3255 .prefix = XATTR_TRUSTED_PREFIX, 3256 .get = shmem_xattr_handler_get, 3257 .set = shmem_xattr_handler_set, 3258 }; 3259 3260 static const struct xattr_handler *shmem_xattr_handlers[] = { 3261 #ifdef CONFIG_TMPFS_POSIX_ACL 3262 &posix_acl_access_xattr_handler, 3263 &posix_acl_default_xattr_handler, 3264 #endif 3265 &shmem_security_xattr_handler, 3266 &shmem_trusted_xattr_handler, 3267 NULL 3268 }; 3269 3270 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3271 { 3272 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3273 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3274 } 3275 #endif /* CONFIG_TMPFS_XATTR */ 3276 3277 static const struct inode_operations shmem_short_symlink_operations = { 3278 .get_link = simple_get_link, 3279 #ifdef CONFIG_TMPFS_XATTR 3280 .listxattr = shmem_listxattr, 3281 #endif 3282 }; 3283 3284 static const struct inode_operations shmem_symlink_inode_operations = { 3285 .get_link = shmem_get_link, 3286 #ifdef CONFIG_TMPFS_XATTR 3287 .listxattr = shmem_listxattr, 3288 #endif 3289 }; 3290 3291 static struct dentry *shmem_get_parent(struct dentry *child) 3292 { 3293 return ERR_PTR(-ESTALE); 3294 } 3295 3296 static int shmem_match(struct inode *ino, void *vfh) 3297 { 3298 __u32 *fh = vfh; 3299 __u64 inum = fh[2]; 3300 inum = (inum << 32) | fh[1]; 3301 return ino->i_ino == inum && fh[0] == ino->i_generation; 3302 } 3303 3304 /* Find any alias of inode, but prefer a hashed alias */ 3305 static struct dentry *shmem_find_alias(struct inode *inode) 3306 { 3307 struct dentry *alias = d_find_alias(inode); 3308 3309 return alias ?: d_find_any_alias(inode); 3310 } 3311 3312 3313 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3314 struct fid *fid, int fh_len, int fh_type) 3315 { 3316 struct inode *inode; 3317 struct dentry *dentry = NULL; 3318 u64 inum; 3319 3320 if (fh_len < 3) 3321 return NULL; 3322 3323 inum = fid->raw[2]; 3324 inum = (inum << 32) | fid->raw[1]; 3325 3326 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3327 shmem_match, fid->raw); 3328 if (inode) { 3329 dentry = shmem_find_alias(inode); 3330 iput(inode); 3331 } 3332 3333 return dentry; 3334 } 3335 3336 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3337 struct inode *parent) 3338 { 3339 if (*len < 3) { 3340 *len = 3; 3341 return FILEID_INVALID; 3342 } 3343 3344 if (inode_unhashed(inode)) { 3345 /* Unfortunately insert_inode_hash is not idempotent, 3346 * so as we hash inodes here rather than at creation 3347 * time, we need a lock to ensure we only try 3348 * to do it once 3349 */ 3350 static DEFINE_SPINLOCK(lock); 3351 spin_lock(&lock); 3352 if (inode_unhashed(inode)) 3353 __insert_inode_hash(inode, 3354 inode->i_ino + inode->i_generation); 3355 spin_unlock(&lock); 3356 } 3357 3358 fh[0] = inode->i_generation; 3359 fh[1] = inode->i_ino; 3360 fh[2] = ((__u64)inode->i_ino) >> 32; 3361 3362 *len = 3; 3363 return 1; 3364 } 3365 3366 static const struct export_operations shmem_export_ops = { 3367 .get_parent = shmem_get_parent, 3368 .encode_fh = shmem_encode_fh, 3369 .fh_to_dentry = shmem_fh_to_dentry, 3370 }; 3371 3372 enum shmem_param { 3373 Opt_gid, 3374 Opt_huge, 3375 Opt_mode, 3376 Opt_mpol, 3377 Opt_nr_blocks, 3378 Opt_nr_inodes, 3379 Opt_size, 3380 Opt_uid, 3381 }; 3382 3383 static const struct fs_parameter_spec shmem_param_specs[] = { 3384 fsparam_u32 ("gid", Opt_gid), 3385 fsparam_enum ("huge", Opt_huge), 3386 fsparam_u32oct("mode", Opt_mode), 3387 fsparam_string("mpol", Opt_mpol), 3388 fsparam_string("nr_blocks", Opt_nr_blocks), 3389 fsparam_string("nr_inodes", Opt_nr_inodes), 3390 fsparam_string("size", Opt_size), 3391 fsparam_u32 ("uid", Opt_uid), 3392 {} 3393 }; 3394 3395 static const struct fs_parameter_enum shmem_param_enums[] = { 3396 { Opt_huge, "never", SHMEM_HUGE_NEVER }, 3397 { Opt_huge, "always", SHMEM_HUGE_ALWAYS }, 3398 { Opt_huge, "within_size", SHMEM_HUGE_WITHIN_SIZE }, 3399 { Opt_huge, "advise", SHMEM_HUGE_ADVISE }, 3400 {} 3401 }; 3402 3403 const struct fs_parameter_description shmem_fs_parameters = { 3404 .name = "tmpfs", 3405 .specs = shmem_param_specs, 3406 .enums = shmem_param_enums, 3407 }; 3408 3409 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3410 { 3411 struct shmem_options *ctx = fc->fs_private; 3412 struct fs_parse_result result; 3413 unsigned long long size; 3414 char *rest; 3415 int opt; 3416 3417 opt = fs_parse(fc, &shmem_fs_parameters, param, &result); 3418 if (opt < 0) 3419 return opt; 3420 3421 switch (opt) { 3422 case Opt_size: 3423 size = memparse(param->string, &rest); 3424 if (*rest == '%') { 3425 size <<= PAGE_SHIFT; 3426 size *= totalram_pages(); 3427 do_div(size, 100); 3428 rest++; 3429 } 3430 if (*rest) 3431 goto bad_value; 3432 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3433 ctx->seen |= SHMEM_SEEN_BLOCKS; 3434 break; 3435 case Opt_nr_blocks: 3436 ctx->blocks = memparse(param->string, &rest); 3437 if (*rest) 3438 goto bad_value; 3439 ctx->seen |= SHMEM_SEEN_BLOCKS; 3440 break; 3441 case Opt_nr_inodes: 3442 ctx->inodes = memparse(param->string, &rest); 3443 if (*rest) 3444 goto bad_value; 3445 ctx->seen |= SHMEM_SEEN_INODES; 3446 break; 3447 case Opt_mode: 3448 ctx->mode = result.uint_32 & 07777; 3449 break; 3450 case Opt_uid: 3451 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3452 if (!uid_valid(ctx->uid)) 3453 goto bad_value; 3454 break; 3455 case Opt_gid: 3456 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3457 if (!gid_valid(ctx->gid)) 3458 goto bad_value; 3459 break; 3460 case Opt_huge: 3461 ctx->huge = result.uint_32; 3462 if (ctx->huge != SHMEM_HUGE_NEVER && 3463 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 3464 has_transparent_hugepage())) 3465 goto unsupported_parameter; 3466 ctx->seen |= SHMEM_SEEN_HUGE; 3467 break; 3468 case Opt_mpol: 3469 if (IS_ENABLED(CONFIG_NUMA)) { 3470 mpol_put(ctx->mpol); 3471 ctx->mpol = NULL; 3472 if (mpol_parse_str(param->string, &ctx->mpol)) 3473 goto bad_value; 3474 break; 3475 } 3476 goto unsupported_parameter; 3477 } 3478 return 0; 3479 3480 unsupported_parameter: 3481 return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key); 3482 bad_value: 3483 return invalf(fc, "tmpfs: Bad value for '%s'", param->key); 3484 } 3485 3486 static int shmem_parse_options(struct fs_context *fc, void *data) 3487 { 3488 char *options = data; 3489 3490 if (options) { 3491 int err = security_sb_eat_lsm_opts(options, &fc->security); 3492 if (err) 3493 return err; 3494 } 3495 3496 while (options != NULL) { 3497 char *this_char = options; 3498 for (;;) { 3499 /* 3500 * NUL-terminate this option: unfortunately, 3501 * mount options form a comma-separated list, 3502 * but mpol's nodelist may also contain commas. 3503 */ 3504 options = strchr(options, ','); 3505 if (options == NULL) 3506 break; 3507 options++; 3508 if (!isdigit(*options)) { 3509 options[-1] = '\0'; 3510 break; 3511 } 3512 } 3513 if (*this_char) { 3514 char *value = strchr(this_char,'='); 3515 size_t len = 0; 3516 int err; 3517 3518 if (value) { 3519 *value++ = '\0'; 3520 len = strlen(value); 3521 } 3522 err = vfs_parse_fs_string(fc, this_char, value, len); 3523 if (err < 0) 3524 return err; 3525 } 3526 } 3527 return 0; 3528 } 3529 3530 /* 3531 * Reconfigure a shmem filesystem. 3532 * 3533 * Note that we disallow change from limited->unlimited blocks/inodes while any 3534 * are in use; but we must separately disallow unlimited->limited, because in 3535 * that case we have no record of how much is already in use. 3536 */ 3537 static int shmem_reconfigure(struct fs_context *fc) 3538 { 3539 struct shmem_options *ctx = fc->fs_private; 3540 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3541 unsigned long inodes; 3542 const char *err; 3543 3544 spin_lock(&sbinfo->stat_lock); 3545 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3546 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3547 if (!sbinfo->max_blocks) { 3548 err = "Cannot retroactively limit size"; 3549 goto out; 3550 } 3551 if (percpu_counter_compare(&sbinfo->used_blocks, 3552 ctx->blocks) > 0) { 3553 err = "Too small a size for current use"; 3554 goto out; 3555 } 3556 } 3557 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3558 if (!sbinfo->max_inodes) { 3559 err = "Cannot retroactively limit inodes"; 3560 goto out; 3561 } 3562 if (ctx->inodes < inodes) { 3563 err = "Too few inodes for current use"; 3564 goto out; 3565 } 3566 } 3567 3568 if (ctx->seen & SHMEM_SEEN_HUGE) 3569 sbinfo->huge = ctx->huge; 3570 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3571 sbinfo->max_blocks = ctx->blocks; 3572 if (ctx->seen & SHMEM_SEEN_INODES) { 3573 sbinfo->max_inodes = ctx->inodes; 3574 sbinfo->free_inodes = ctx->inodes - inodes; 3575 } 3576 3577 /* 3578 * Preserve previous mempolicy unless mpol remount option was specified. 3579 */ 3580 if (ctx->mpol) { 3581 mpol_put(sbinfo->mpol); 3582 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3583 ctx->mpol = NULL; 3584 } 3585 spin_unlock(&sbinfo->stat_lock); 3586 return 0; 3587 out: 3588 spin_unlock(&sbinfo->stat_lock); 3589 return invalf(fc, "tmpfs: %s", err); 3590 } 3591 3592 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3593 { 3594 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3595 3596 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3597 seq_printf(seq, ",size=%luk", 3598 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3599 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3600 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3601 if (sbinfo->mode != (0777 | S_ISVTX)) 3602 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3603 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3604 seq_printf(seq, ",uid=%u", 3605 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3606 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3607 seq_printf(seq, ",gid=%u", 3608 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3609 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3610 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3611 if (sbinfo->huge) 3612 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3613 #endif 3614 shmem_show_mpol(seq, sbinfo->mpol); 3615 return 0; 3616 } 3617 3618 #endif /* CONFIG_TMPFS */ 3619 3620 static void shmem_put_super(struct super_block *sb) 3621 { 3622 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3623 3624 percpu_counter_destroy(&sbinfo->used_blocks); 3625 mpol_put(sbinfo->mpol); 3626 kfree(sbinfo); 3627 sb->s_fs_info = NULL; 3628 } 3629 3630 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3631 { 3632 struct shmem_options *ctx = fc->fs_private; 3633 struct inode *inode; 3634 struct shmem_sb_info *sbinfo; 3635 int err = -ENOMEM; 3636 3637 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3638 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3639 L1_CACHE_BYTES), GFP_KERNEL); 3640 if (!sbinfo) 3641 return -ENOMEM; 3642 3643 sb->s_fs_info = sbinfo; 3644 3645 #ifdef CONFIG_TMPFS 3646 /* 3647 * Per default we only allow half of the physical ram per 3648 * tmpfs instance, limiting inodes to one per page of lowmem; 3649 * but the internal instance is left unlimited. 3650 */ 3651 if (!(sb->s_flags & SB_KERNMOUNT)) { 3652 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3653 ctx->blocks = shmem_default_max_blocks(); 3654 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3655 ctx->inodes = shmem_default_max_inodes(); 3656 } else { 3657 sb->s_flags |= SB_NOUSER; 3658 } 3659 sb->s_export_op = &shmem_export_ops; 3660 sb->s_flags |= SB_NOSEC; 3661 #else 3662 sb->s_flags |= SB_NOUSER; 3663 #endif 3664 sbinfo->max_blocks = ctx->blocks; 3665 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3666 sbinfo->uid = ctx->uid; 3667 sbinfo->gid = ctx->gid; 3668 sbinfo->mode = ctx->mode; 3669 sbinfo->huge = ctx->huge; 3670 sbinfo->mpol = ctx->mpol; 3671 ctx->mpol = NULL; 3672 3673 spin_lock_init(&sbinfo->stat_lock); 3674 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3675 goto failed; 3676 spin_lock_init(&sbinfo->shrinklist_lock); 3677 INIT_LIST_HEAD(&sbinfo->shrinklist); 3678 3679 sb->s_maxbytes = MAX_LFS_FILESIZE; 3680 sb->s_blocksize = PAGE_SIZE; 3681 sb->s_blocksize_bits = PAGE_SHIFT; 3682 sb->s_magic = TMPFS_MAGIC; 3683 sb->s_op = &shmem_ops; 3684 sb->s_time_gran = 1; 3685 #ifdef CONFIG_TMPFS_XATTR 3686 sb->s_xattr = shmem_xattr_handlers; 3687 #endif 3688 #ifdef CONFIG_TMPFS_POSIX_ACL 3689 sb->s_flags |= SB_POSIXACL; 3690 #endif 3691 uuid_gen(&sb->s_uuid); 3692 3693 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3694 if (!inode) 3695 goto failed; 3696 inode->i_uid = sbinfo->uid; 3697 inode->i_gid = sbinfo->gid; 3698 sb->s_root = d_make_root(inode); 3699 if (!sb->s_root) 3700 goto failed; 3701 return 0; 3702 3703 failed: 3704 shmem_put_super(sb); 3705 return err; 3706 } 3707 3708 static int shmem_get_tree(struct fs_context *fc) 3709 { 3710 return get_tree_nodev(fc, shmem_fill_super); 3711 } 3712 3713 static void shmem_free_fc(struct fs_context *fc) 3714 { 3715 struct shmem_options *ctx = fc->fs_private; 3716 3717 if (ctx) { 3718 mpol_put(ctx->mpol); 3719 kfree(ctx); 3720 } 3721 } 3722 3723 static const struct fs_context_operations shmem_fs_context_ops = { 3724 .free = shmem_free_fc, 3725 .get_tree = shmem_get_tree, 3726 #ifdef CONFIG_TMPFS 3727 .parse_monolithic = shmem_parse_options, 3728 .parse_param = shmem_parse_one, 3729 .reconfigure = shmem_reconfigure, 3730 #endif 3731 }; 3732 3733 static struct kmem_cache *shmem_inode_cachep; 3734 3735 static struct inode *shmem_alloc_inode(struct super_block *sb) 3736 { 3737 struct shmem_inode_info *info; 3738 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3739 if (!info) 3740 return NULL; 3741 return &info->vfs_inode; 3742 } 3743 3744 static void shmem_free_in_core_inode(struct inode *inode) 3745 { 3746 if (S_ISLNK(inode->i_mode)) 3747 kfree(inode->i_link); 3748 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3749 } 3750 3751 static void shmem_destroy_inode(struct inode *inode) 3752 { 3753 if (S_ISREG(inode->i_mode)) 3754 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3755 } 3756 3757 static void shmem_init_inode(void *foo) 3758 { 3759 struct shmem_inode_info *info = foo; 3760 inode_init_once(&info->vfs_inode); 3761 } 3762 3763 static void shmem_init_inodecache(void) 3764 { 3765 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3766 sizeof(struct shmem_inode_info), 3767 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3768 } 3769 3770 static void shmem_destroy_inodecache(void) 3771 { 3772 kmem_cache_destroy(shmem_inode_cachep); 3773 } 3774 3775 static const struct address_space_operations shmem_aops = { 3776 .writepage = shmem_writepage, 3777 .set_page_dirty = __set_page_dirty_no_writeback, 3778 #ifdef CONFIG_TMPFS 3779 .write_begin = shmem_write_begin, 3780 .write_end = shmem_write_end, 3781 #endif 3782 #ifdef CONFIG_MIGRATION 3783 .migratepage = migrate_page, 3784 #endif 3785 .error_remove_page = generic_error_remove_page, 3786 }; 3787 3788 static const struct file_operations shmem_file_operations = { 3789 .mmap = shmem_mmap, 3790 .get_unmapped_area = shmem_get_unmapped_area, 3791 #ifdef CONFIG_TMPFS 3792 .llseek = shmem_file_llseek, 3793 .read_iter = shmem_file_read_iter, 3794 .write_iter = generic_file_write_iter, 3795 .fsync = noop_fsync, 3796 .splice_read = generic_file_splice_read, 3797 .splice_write = iter_file_splice_write, 3798 .fallocate = shmem_fallocate, 3799 #endif 3800 }; 3801 3802 static const struct inode_operations shmem_inode_operations = { 3803 .getattr = shmem_getattr, 3804 .setattr = shmem_setattr, 3805 #ifdef CONFIG_TMPFS_XATTR 3806 .listxattr = shmem_listxattr, 3807 .set_acl = simple_set_acl, 3808 #endif 3809 }; 3810 3811 static const struct inode_operations shmem_dir_inode_operations = { 3812 #ifdef CONFIG_TMPFS 3813 .create = shmem_create, 3814 .lookup = simple_lookup, 3815 .link = shmem_link, 3816 .unlink = shmem_unlink, 3817 .symlink = shmem_symlink, 3818 .mkdir = shmem_mkdir, 3819 .rmdir = shmem_rmdir, 3820 .mknod = shmem_mknod, 3821 .rename = shmem_rename2, 3822 .tmpfile = shmem_tmpfile, 3823 #endif 3824 #ifdef CONFIG_TMPFS_XATTR 3825 .listxattr = shmem_listxattr, 3826 #endif 3827 #ifdef CONFIG_TMPFS_POSIX_ACL 3828 .setattr = shmem_setattr, 3829 .set_acl = simple_set_acl, 3830 #endif 3831 }; 3832 3833 static const struct inode_operations shmem_special_inode_operations = { 3834 #ifdef CONFIG_TMPFS_XATTR 3835 .listxattr = shmem_listxattr, 3836 #endif 3837 #ifdef CONFIG_TMPFS_POSIX_ACL 3838 .setattr = shmem_setattr, 3839 .set_acl = simple_set_acl, 3840 #endif 3841 }; 3842 3843 static const struct super_operations shmem_ops = { 3844 .alloc_inode = shmem_alloc_inode, 3845 .free_inode = shmem_free_in_core_inode, 3846 .destroy_inode = shmem_destroy_inode, 3847 #ifdef CONFIG_TMPFS 3848 .statfs = shmem_statfs, 3849 .show_options = shmem_show_options, 3850 #endif 3851 .evict_inode = shmem_evict_inode, 3852 .drop_inode = generic_delete_inode, 3853 .put_super = shmem_put_super, 3854 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3855 .nr_cached_objects = shmem_unused_huge_count, 3856 .free_cached_objects = shmem_unused_huge_scan, 3857 #endif 3858 }; 3859 3860 static const struct vm_operations_struct shmem_vm_ops = { 3861 .fault = shmem_fault, 3862 .map_pages = filemap_map_pages, 3863 #ifdef CONFIG_NUMA 3864 .set_policy = shmem_set_policy, 3865 .get_policy = shmem_get_policy, 3866 #endif 3867 }; 3868 3869 int shmem_init_fs_context(struct fs_context *fc) 3870 { 3871 struct shmem_options *ctx; 3872 3873 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3874 if (!ctx) 3875 return -ENOMEM; 3876 3877 ctx->mode = 0777 | S_ISVTX; 3878 ctx->uid = current_fsuid(); 3879 ctx->gid = current_fsgid(); 3880 3881 fc->fs_private = ctx; 3882 fc->ops = &shmem_fs_context_ops; 3883 return 0; 3884 } 3885 3886 static struct file_system_type shmem_fs_type = { 3887 .owner = THIS_MODULE, 3888 .name = "tmpfs", 3889 .init_fs_context = shmem_init_fs_context, 3890 #ifdef CONFIG_TMPFS 3891 .parameters = &shmem_fs_parameters, 3892 #endif 3893 .kill_sb = kill_litter_super, 3894 .fs_flags = FS_USERNS_MOUNT, 3895 }; 3896 3897 int __init shmem_init(void) 3898 { 3899 int error; 3900 3901 shmem_init_inodecache(); 3902 3903 error = register_filesystem(&shmem_fs_type); 3904 if (error) { 3905 pr_err("Could not register tmpfs\n"); 3906 goto out2; 3907 } 3908 3909 shm_mnt = kern_mount(&shmem_fs_type); 3910 if (IS_ERR(shm_mnt)) { 3911 error = PTR_ERR(shm_mnt); 3912 pr_err("Could not kern_mount tmpfs\n"); 3913 goto out1; 3914 } 3915 3916 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3917 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3918 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3919 else 3920 shmem_huge = 0; /* just in case it was patched */ 3921 #endif 3922 return 0; 3923 3924 out1: 3925 unregister_filesystem(&shmem_fs_type); 3926 out2: 3927 shmem_destroy_inodecache(); 3928 shm_mnt = ERR_PTR(error); 3929 return error; 3930 } 3931 3932 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3933 static ssize_t shmem_enabled_show(struct kobject *kobj, 3934 struct kobj_attribute *attr, char *buf) 3935 { 3936 static const int values[] = { 3937 SHMEM_HUGE_ALWAYS, 3938 SHMEM_HUGE_WITHIN_SIZE, 3939 SHMEM_HUGE_ADVISE, 3940 SHMEM_HUGE_NEVER, 3941 SHMEM_HUGE_DENY, 3942 SHMEM_HUGE_FORCE, 3943 }; 3944 int i, count; 3945 3946 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3947 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3948 3949 count += sprintf(buf + count, fmt, 3950 shmem_format_huge(values[i])); 3951 } 3952 buf[count - 1] = '\n'; 3953 return count; 3954 } 3955 3956 static ssize_t shmem_enabled_store(struct kobject *kobj, 3957 struct kobj_attribute *attr, const char *buf, size_t count) 3958 { 3959 char tmp[16]; 3960 int huge; 3961 3962 if (count + 1 > sizeof(tmp)) 3963 return -EINVAL; 3964 memcpy(tmp, buf, count); 3965 tmp[count] = '\0'; 3966 if (count && tmp[count - 1] == '\n') 3967 tmp[count - 1] = '\0'; 3968 3969 huge = shmem_parse_huge(tmp); 3970 if (huge == -EINVAL) 3971 return -EINVAL; 3972 if (!has_transparent_hugepage() && 3973 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3974 return -EINVAL; 3975 3976 shmem_huge = huge; 3977 if (shmem_huge > SHMEM_HUGE_DENY) 3978 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3979 return count; 3980 } 3981 3982 struct kobj_attribute shmem_enabled_attr = 3983 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3984 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3985 3986 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3987 bool shmem_huge_enabled(struct vm_area_struct *vma) 3988 { 3989 struct inode *inode = file_inode(vma->vm_file); 3990 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3991 loff_t i_size; 3992 pgoff_t off; 3993 3994 if ((vma->vm_flags & VM_NOHUGEPAGE) || 3995 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 3996 return false; 3997 if (shmem_huge == SHMEM_HUGE_FORCE) 3998 return true; 3999 if (shmem_huge == SHMEM_HUGE_DENY) 4000 return false; 4001 switch (sbinfo->huge) { 4002 case SHMEM_HUGE_NEVER: 4003 return false; 4004 case SHMEM_HUGE_ALWAYS: 4005 return true; 4006 case SHMEM_HUGE_WITHIN_SIZE: 4007 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4008 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4009 if (i_size >= HPAGE_PMD_SIZE && 4010 i_size >> PAGE_SHIFT >= off) 4011 return true; 4012 /* fall through */ 4013 case SHMEM_HUGE_ADVISE: 4014 /* TODO: implement fadvise() hints */ 4015 return (vma->vm_flags & VM_HUGEPAGE); 4016 default: 4017 VM_BUG_ON(1); 4018 return false; 4019 } 4020 } 4021 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4022 4023 #else /* !CONFIG_SHMEM */ 4024 4025 /* 4026 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4027 * 4028 * This is intended for small system where the benefits of the full 4029 * shmem code (swap-backed and resource-limited) are outweighed by 4030 * their complexity. On systems without swap this code should be 4031 * effectively equivalent, but much lighter weight. 4032 */ 4033 4034 static struct file_system_type shmem_fs_type = { 4035 .name = "tmpfs", 4036 .init_fs_context = ramfs_init_fs_context, 4037 .parameters = &ramfs_fs_parameters, 4038 .kill_sb = kill_litter_super, 4039 .fs_flags = FS_USERNS_MOUNT, 4040 }; 4041 4042 int __init shmem_init(void) 4043 { 4044 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4045 4046 shm_mnt = kern_mount(&shmem_fs_type); 4047 BUG_ON(IS_ERR(shm_mnt)); 4048 4049 return 0; 4050 } 4051 4052 int shmem_unuse(unsigned int type, bool frontswap, 4053 unsigned long *fs_pages_to_unuse) 4054 { 4055 return 0; 4056 } 4057 4058 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4059 { 4060 return 0; 4061 } 4062 4063 void shmem_unlock_mapping(struct address_space *mapping) 4064 { 4065 } 4066 4067 #ifdef CONFIG_MMU 4068 unsigned long shmem_get_unmapped_area(struct file *file, 4069 unsigned long addr, unsigned long len, 4070 unsigned long pgoff, unsigned long flags) 4071 { 4072 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4073 } 4074 #endif 4075 4076 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4077 { 4078 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4079 } 4080 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4081 4082 #define shmem_vm_ops generic_file_vm_ops 4083 #define shmem_file_operations ramfs_file_operations 4084 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4085 #define shmem_acct_size(flags, size) 0 4086 #define shmem_unacct_size(flags, size) do {} while (0) 4087 4088 #endif /* CONFIG_SHMEM */ 4089 4090 /* common code */ 4091 4092 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4093 unsigned long flags, unsigned int i_flags) 4094 { 4095 struct inode *inode; 4096 struct file *res; 4097 4098 if (IS_ERR(mnt)) 4099 return ERR_CAST(mnt); 4100 4101 if (size < 0 || size > MAX_LFS_FILESIZE) 4102 return ERR_PTR(-EINVAL); 4103 4104 if (shmem_acct_size(flags, size)) 4105 return ERR_PTR(-ENOMEM); 4106 4107 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4108 flags); 4109 if (unlikely(!inode)) { 4110 shmem_unacct_size(flags, size); 4111 return ERR_PTR(-ENOSPC); 4112 } 4113 inode->i_flags |= i_flags; 4114 inode->i_size = size; 4115 clear_nlink(inode); /* It is unlinked */ 4116 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4117 if (!IS_ERR(res)) 4118 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4119 &shmem_file_operations); 4120 if (IS_ERR(res)) 4121 iput(inode); 4122 return res; 4123 } 4124 4125 /** 4126 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4127 * kernel internal. There will be NO LSM permission checks against the 4128 * underlying inode. So users of this interface must do LSM checks at a 4129 * higher layer. The users are the big_key and shm implementations. LSM 4130 * checks are provided at the key or shm level rather than the inode. 4131 * @name: name for dentry (to be seen in /proc/<pid>/maps 4132 * @size: size to be set for the file 4133 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4134 */ 4135 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4136 { 4137 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4138 } 4139 4140 /** 4141 * shmem_file_setup - get an unlinked file living in tmpfs 4142 * @name: name for dentry (to be seen in /proc/<pid>/maps 4143 * @size: size to be set for the file 4144 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4145 */ 4146 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4147 { 4148 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4149 } 4150 EXPORT_SYMBOL_GPL(shmem_file_setup); 4151 4152 /** 4153 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4154 * @mnt: the tmpfs mount where the file will be created 4155 * @name: name for dentry (to be seen in /proc/<pid>/maps 4156 * @size: size to be set for the file 4157 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4158 */ 4159 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4160 loff_t size, unsigned long flags) 4161 { 4162 return __shmem_file_setup(mnt, name, size, flags, 0); 4163 } 4164 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4165 4166 /** 4167 * shmem_zero_setup - setup a shared anonymous mapping 4168 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4169 */ 4170 int shmem_zero_setup(struct vm_area_struct *vma) 4171 { 4172 struct file *file; 4173 loff_t size = vma->vm_end - vma->vm_start; 4174 4175 /* 4176 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4177 * between XFS directory reading and selinux: since this file is only 4178 * accessible to the user through its mapping, use S_PRIVATE flag to 4179 * bypass file security, in the same way as shmem_kernel_file_setup(). 4180 */ 4181 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4182 if (IS_ERR(file)) 4183 return PTR_ERR(file); 4184 4185 if (vma->vm_file) 4186 fput(vma->vm_file); 4187 vma->vm_file = file; 4188 vma->vm_ops = &shmem_vm_ops; 4189 4190 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4191 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4192 (vma->vm_end & HPAGE_PMD_MASK)) { 4193 khugepaged_enter(vma, vma->vm_flags); 4194 } 4195 4196 return 0; 4197 } 4198 4199 /** 4200 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4201 * @mapping: the page's address_space 4202 * @index: the page index 4203 * @gfp: the page allocator flags to use if allocating 4204 * 4205 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4206 * with any new page allocations done using the specified allocation flags. 4207 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4208 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4209 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4210 * 4211 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4212 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4213 */ 4214 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4215 pgoff_t index, gfp_t gfp) 4216 { 4217 #ifdef CONFIG_SHMEM 4218 struct inode *inode = mapping->host; 4219 struct page *page; 4220 int error; 4221 4222 BUG_ON(mapping->a_ops != &shmem_aops); 4223 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4224 gfp, NULL, NULL, NULL); 4225 if (error) 4226 page = ERR_PTR(error); 4227 else 4228 unlock_page(page); 4229 return page; 4230 #else 4231 /* 4232 * The tiny !SHMEM case uses ramfs without swap 4233 */ 4234 return read_cache_page_gfp(mapping, index, gfp); 4235 #endif 4236 } 4237 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4238