xref: /openbmc/linux/mm/shmem.c (revision c0605cd6)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include <linux/iversion.h>
42 #include "swap.h"
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 struct shmem_options {
110 	unsigned long long blocks;
111 	unsigned long long inodes;
112 	struct mempolicy *mpol;
113 	kuid_t uid;
114 	kgid_t gid;
115 	umode_t mode;
116 	bool full_inums;
117 	int huge;
118 	int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
140 			     struct folio **foliop, enum sgp_type sgp,
141 			     gfp_t gfp, struct vm_area_struct *vma,
142 			     vm_fault_t *fault_type);
143 
144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
145 {
146 	return sb->s_fs_info;
147 }
148 
149 /*
150  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
151  * for shared memory and for shared anonymous (/dev/zero) mappings
152  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
153  * consistent with the pre-accounting of private mappings ...
154  */
155 static inline int shmem_acct_size(unsigned long flags, loff_t size)
156 {
157 	return (flags & VM_NORESERVE) ?
158 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
159 }
160 
161 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
162 {
163 	if (!(flags & VM_NORESERVE))
164 		vm_unacct_memory(VM_ACCT(size));
165 }
166 
167 static inline int shmem_reacct_size(unsigned long flags,
168 		loff_t oldsize, loff_t newsize)
169 {
170 	if (!(flags & VM_NORESERVE)) {
171 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
172 			return security_vm_enough_memory_mm(current->mm,
173 					VM_ACCT(newsize) - VM_ACCT(oldsize));
174 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
175 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
176 	}
177 	return 0;
178 }
179 
180 /*
181  * ... whereas tmpfs objects are accounted incrementally as
182  * pages are allocated, in order to allow large sparse files.
183  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
184  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185  */
186 static inline int shmem_acct_block(unsigned long flags, long pages)
187 {
188 	if (!(flags & VM_NORESERVE))
189 		return 0;
190 
191 	return security_vm_enough_memory_mm(current->mm,
192 			pages * VM_ACCT(PAGE_SIZE));
193 }
194 
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 {
197 	if (flags & VM_NORESERVE)
198 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
199 }
200 
201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
202 {
203 	struct shmem_inode_info *info = SHMEM_I(inode);
204 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
205 
206 	if (shmem_acct_block(info->flags, pages))
207 		return false;
208 
209 	if (sbinfo->max_blocks) {
210 		if (percpu_counter_compare(&sbinfo->used_blocks,
211 					   sbinfo->max_blocks - pages) > 0)
212 			goto unacct;
213 		percpu_counter_add(&sbinfo->used_blocks, pages);
214 	}
215 
216 	return true;
217 
218 unacct:
219 	shmem_unacct_blocks(info->flags, pages);
220 	return false;
221 }
222 
223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 
228 	if (sbinfo->max_blocks)
229 		percpu_counter_sub(&sbinfo->used_blocks, pages);
230 	shmem_unacct_blocks(info->flags, pages);
231 }
232 
233 static const struct super_operations shmem_ops;
234 const struct address_space_operations shmem_aops;
235 static const struct file_operations shmem_file_operations;
236 static const struct inode_operations shmem_inode_operations;
237 static const struct inode_operations shmem_dir_inode_operations;
238 static const struct inode_operations shmem_special_inode_operations;
239 static const struct vm_operations_struct shmem_vm_ops;
240 static struct file_system_type shmem_fs_type;
241 
242 bool vma_is_shmem(struct vm_area_struct *vma)
243 {
244 	return vma->vm_ops == &shmem_vm_ops;
245 }
246 
247 static LIST_HEAD(shmem_swaplist);
248 static DEFINE_MUTEX(shmem_swaplist_mutex);
249 
250 /*
251  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
252  * produces a novel ino for the newly allocated inode.
253  *
254  * It may also be called when making a hard link to permit the space needed by
255  * each dentry. However, in that case, no new inode number is needed since that
256  * internally draws from another pool of inode numbers (currently global
257  * get_next_ino()). This case is indicated by passing NULL as inop.
258  */
259 #define SHMEM_INO_BATCH 1024
260 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
261 {
262 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
263 	ino_t ino;
264 
265 	if (!(sb->s_flags & SB_KERNMOUNT)) {
266 		raw_spin_lock(&sbinfo->stat_lock);
267 		if (sbinfo->max_inodes) {
268 			if (!sbinfo->free_inodes) {
269 				raw_spin_unlock(&sbinfo->stat_lock);
270 				return -ENOSPC;
271 			}
272 			sbinfo->free_inodes--;
273 		}
274 		if (inop) {
275 			ino = sbinfo->next_ino++;
276 			if (unlikely(is_zero_ino(ino)))
277 				ino = sbinfo->next_ino++;
278 			if (unlikely(!sbinfo->full_inums &&
279 				     ino > UINT_MAX)) {
280 				/*
281 				 * Emulate get_next_ino uint wraparound for
282 				 * compatibility
283 				 */
284 				if (IS_ENABLED(CONFIG_64BIT))
285 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
286 						__func__, MINOR(sb->s_dev));
287 				sbinfo->next_ino = 1;
288 				ino = sbinfo->next_ino++;
289 			}
290 			*inop = ino;
291 		}
292 		raw_spin_unlock(&sbinfo->stat_lock);
293 	} else if (inop) {
294 		/*
295 		 * __shmem_file_setup, one of our callers, is lock-free: it
296 		 * doesn't hold stat_lock in shmem_reserve_inode since
297 		 * max_inodes is always 0, and is called from potentially
298 		 * unknown contexts. As such, use a per-cpu batched allocator
299 		 * which doesn't require the per-sb stat_lock unless we are at
300 		 * the batch boundary.
301 		 *
302 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
303 		 * shmem mounts are not exposed to userspace, so we don't need
304 		 * to worry about things like glibc compatibility.
305 		 */
306 		ino_t *next_ino;
307 
308 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
309 		ino = *next_ino;
310 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
311 			raw_spin_lock(&sbinfo->stat_lock);
312 			ino = sbinfo->next_ino;
313 			sbinfo->next_ino += SHMEM_INO_BATCH;
314 			raw_spin_unlock(&sbinfo->stat_lock);
315 			if (unlikely(is_zero_ino(ino)))
316 				ino++;
317 		}
318 		*inop = ino;
319 		*next_ino = ++ino;
320 		put_cpu();
321 	}
322 
323 	return 0;
324 }
325 
326 static void shmem_free_inode(struct super_block *sb)
327 {
328 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
329 	if (sbinfo->max_inodes) {
330 		raw_spin_lock(&sbinfo->stat_lock);
331 		sbinfo->free_inodes++;
332 		raw_spin_unlock(&sbinfo->stat_lock);
333 	}
334 }
335 
336 /**
337  * shmem_recalc_inode - recalculate the block usage of an inode
338  * @inode: inode to recalc
339  *
340  * We have to calculate the free blocks since the mm can drop
341  * undirtied hole pages behind our back.
342  *
343  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
344  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
345  *
346  * It has to be called with the spinlock held.
347  */
348 static void shmem_recalc_inode(struct inode *inode)
349 {
350 	struct shmem_inode_info *info = SHMEM_I(inode);
351 	long freed;
352 
353 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
354 	if (freed > 0) {
355 		info->alloced -= freed;
356 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
357 		shmem_inode_unacct_blocks(inode, freed);
358 	}
359 }
360 
361 bool shmem_charge(struct inode *inode, long pages)
362 {
363 	struct shmem_inode_info *info = SHMEM_I(inode);
364 	unsigned long flags;
365 
366 	if (!shmem_inode_acct_block(inode, pages))
367 		return false;
368 
369 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
370 	inode->i_mapping->nrpages += pages;
371 
372 	spin_lock_irqsave(&info->lock, flags);
373 	info->alloced += pages;
374 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
375 	shmem_recalc_inode(inode);
376 	spin_unlock_irqrestore(&info->lock, flags);
377 
378 	return true;
379 }
380 
381 void shmem_uncharge(struct inode *inode, long pages)
382 {
383 	struct shmem_inode_info *info = SHMEM_I(inode);
384 	unsigned long flags;
385 
386 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
387 
388 	spin_lock_irqsave(&info->lock, flags);
389 	info->alloced -= pages;
390 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
391 	shmem_recalc_inode(inode);
392 	spin_unlock_irqrestore(&info->lock, flags);
393 
394 	shmem_inode_unacct_blocks(inode, pages);
395 }
396 
397 /*
398  * Replace item expected in xarray by a new item, while holding xa_lock.
399  */
400 static int shmem_replace_entry(struct address_space *mapping,
401 			pgoff_t index, void *expected, void *replacement)
402 {
403 	XA_STATE(xas, &mapping->i_pages, index);
404 	void *item;
405 
406 	VM_BUG_ON(!expected);
407 	VM_BUG_ON(!replacement);
408 	item = xas_load(&xas);
409 	if (item != expected)
410 		return -ENOENT;
411 	xas_store(&xas, replacement);
412 	return 0;
413 }
414 
415 /*
416  * Sometimes, before we decide whether to proceed or to fail, we must check
417  * that an entry was not already brought back from swap by a racing thread.
418  *
419  * Checking page is not enough: by the time a SwapCache page is locked, it
420  * might be reused, and again be SwapCache, using the same swap as before.
421  */
422 static bool shmem_confirm_swap(struct address_space *mapping,
423 			       pgoff_t index, swp_entry_t swap)
424 {
425 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
426 }
427 
428 /*
429  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
430  *
431  * SHMEM_HUGE_NEVER:
432  *	disables huge pages for the mount;
433  * SHMEM_HUGE_ALWAYS:
434  *	enables huge pages for the mount;
435  * SHMEM_HUGE_WITHIN_SIZE:
436  *	only allocate huge pages if the page will be fully within i_size,
437  *	also respect fadvise()/madvise() hints;
438  * SHMEM_HUGE_ADVISE:
439  *	only allocate huge pages if requested with fadvise()/madvise();
440  */
441 
442 #define SHMEM_HUGE_NEVER	0
443 #define SHMEM_HUGE_ALWAYS	1
444 #define SHMEM_HUGE_WITHIN_SIZE	2
445 #define SHMEM_HUGE_ADVISE	3
446 
447 /*
448  * Special values.
449  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
450  *
451  * SHMEM_HUGE_DENY:
452  *	disables huge on shm_mnt and all mounts, for emergency use;
453  * SHMEM_HUGE_FORCE:
454  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
455  *
456  */
457 #define SHMEM_HUGE_DENY		(-1)
458 #define SHMEM_HUGE_FORCE	(-2)
459 
460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
461 /* ifdef here to avoid bloating shmem.o when not necessary */
462 
463 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
464 
465 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
466 		   pgoff_t index, bool shmem_huge_force)
467 {
468 	loff_t i_size;
469 
470 	if (!S_ISREG(inode->i_mode))
471 		return false;
472 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
473 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
474 		return false;
475 	if (shmem_huge_force)
476 		return true;
477 	if (shmem_huge == SHMEM_HUGE_FORCE)
478 		return true;
479 	if (shmem_huge == SHMEM_HUGE_DENY)
480 		return false;
481 
482 	switch (SHMEM_SB(inode->i_sb)->huge) {
483 	case SHMEM_HUGE_ALWAYS:
484 		return true;
485 	case SHMEM_HUGE_WITHIN_SIZE:
486 		index = round_up(index + 1, HPAGE_PMD_NR);
487 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
488 		if (i_size >> PAGE_SHIFT >= index)
489 			return true;
490 		fallthrough;
491 	case SHMEM_HUGE_ADVISE:
492 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
493 			return true;
494 		fallthrough;
495 	default:
496 		return false;
497 	}
498 }
499 
500 #if defined(CONFIG_SYSFS)
501 static int shmem_parse_huge(const char *str)
502 {
503 	if (!strcmp(str, "never"))
504 		return SHMEM_HUGE_NEVER;
505 	if (!strcmp(str, "always"))
506 		return SHMEM_HUGE_ALWAYS;
507 	if (!strcmp(str, "within_size"))
508 		return SHMEM_HUGE_WITHIN_SIZE;
509 	if (!strcmp(str, "advise"))
510 		return SHMEM_HUGE_ADVISE;
511 	if (!strcmp(str, "deny"))
512 		return SHMEM_HUGE_DENY;
513 	if (!strcmp(str, "force"))
514 		return SHMEM_HUGE_FORCE;
515 	return -EINVAL;
516 }
517 #endif
518 
519 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
520 static const char *shmem_format_huge(int huge)
521 {
522 	switch (huge) {
523 	case SHMEM_HUGE_NEVER:
524 		return "never";
525 	case SHMEM_HUGE_ALWAYS:
526 		return "always";
527 	case SHMEM_HUGE_WITHIN_SIZE:
528 		return "within_size";
529 	case SHMEM_HUGE_ADVISE:
530 		return "advise";
531 	case SHMEM_HUGE_DENY:
532 		return "deny";
533 	case SHMEM_HUGE_FORCE:
534 		return "force";
535 	default:
536 		VM_BUG_ON(1);
537 		return "bad_val";
538 	}
539 }
540 #endif
541 
542 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
543 		struct shrink_control *sc, unsigned long nr_to_split)
544 {
545 	LIST_HEAD(list), *pos, *next;
546 	LIST_HEAD(to_remove);
547 	struct inode *inode;
548 	struct shmem_inode_info *info;
549 	struct folio *folio;
550 	unsigned long batch = sc ? sc->nr_to_scan : 128;
551 	int split = 0;
552 
553 	if (list_empty(&sbinfo->shrinklist))
554 		return SHRINK_STOP;
555 
556 	spin_lock(&sbinfo->shrinklist_lock);
557 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
558 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
559 
560 		/* pin the inode */
561 		inode = igrab(&info->vfs_inode);
562 
563 		/* inode is about to be evicted */
564 		if (!inode) {
565 			list_del_init(&info->shrinklist);
566 			goto next;
567 		}
568 
569 		/* Check if there's anything to gain */
570 		if (round_up(inode->i_size, PAGE_SIZE) ==
571 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
572 			list_move(&info->shrinklist, &to_remove);
573 			goto next;
574 		}
575 
576 		list_move(&info->shrinklist, &list);
577 next:
578 		sbinfo->shrinklist_len--;
579 		if (!--batch)
580 			break;
581 	}
582 	spin_unlock(&sbinfo->shrinklist_lock);
583 
584 	list_for_each_safe(pos, next, &to_remove) {
585 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
586 		inode = &info->vfs_inode;
587 		list_del_init(&info->shrinklist);
588 		iput(inode);
589 	}
590 
591 	list_for_each_safe(pos, next, &list) {
592 		int ret;
593 		pgoff_t index;
594 
595 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
596 		inode = &info->vfs_inode;
597 
598 		if (nr_to_split && split >= nr_to_split)
599 			goto move_back;
600 
601 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
602 		folio = filemap_get_folio(inode->i_mapping, index);
603 		if (!folio)
604 			goto drop;
605 
606 		/* No huge page at the end of the file: nothing to split */
607 		if (!folio_test_large(folio)) {
608 			folio_put(folio);
609 			goto drop;
610 		}
611 
612 		/*
613 		 * Move the inode on the list back to shrinklist if we failed
614 		 * to lock the page at this time.
615 		 *
616 		 * Waiting for the lock may lead to deadlock in the
617 		 * reclaim path.
618 		 */
619 		if (!folio_trylock(folio)) {
620 			folio_put(folio);
621 			goto move_back;
622 		}
623 
624 		ret = split_folio(folio);
625 		folio_unlock(folio);
626 		folio_put(folio);
627 
628 		/* If split failed move the inode on the list back to shrinklist */
629 		if (ret)
630 			goto move_back;
631 
632 		split++;
633 drop:
634 		list_del_init(&info->shrinklist);
635 		goto put;
636 move_back:
637 		/*
638 		 * Make sure the inode is either on the global list or deleted
639 		 * from any local list before iput() since it could be deleted
640 		 * in another thread once we put the inode (then the local list
641 		 * is corrupted).
642 		 */
643 		spin_lock(&sbinfo->shrinklist_lock);
644 		list_move(&info->shrinklist, &sbinfo->shrinklist);
645 		sbinfo->shrinklist_len++;
646 		spin_unlock(&sbinfo->shrinklist_lock);
647 put:
648 		iput(inode);
649 	}
650 
651 	return split;
652 }
653 
654 static long shmem_unused_huge_scan(struct super_block *sb,
655 		struct shrink_control *sc)
656 {
657 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658 
659 	if (!READ_ONCE(sbinfo->shrinklist_len))
660 		return SHRINK_STOP;
661 
662 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664 
665 static long shmem_unused_huge_count(struct super_block *sb,
666 		struct shrink_control *sc)
667 {
668 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669 	return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672 
673 #define shmem_huge SHMEM_HUGE_DENY
674 
675 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
676 		   pgoff_t index, bool shmem_huge_force)
677 {
678 	return false;
679 }
680 
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682 		struct shrink_control *sc, unsigned long nr_to_split)
683 {
684 	return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687 
688 /*
689  * Like filemap_add_folio, but error if expected item has gone.
690  */
691 static int shmem_add_to_page_cache(struct folio *folio,
692 				   struct address_space *mapping,
693 				   pgoff_t index, void *expected, gfp_t gfp,
694 				   struct mm_struct *charge_mm)
695 {
696 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
697 	long nr = folio_nr_pages(folio);
698 	int error;
699 
700 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
701 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
702 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
703 	VM_BUG_ON(expected && folio_test_large(folio));
704 
705 	folio_ref_add(folio, nr);
706 	folio->mapping = mapping;
707 	folio->index = index;
708 
709 	if (!folio_test_swapcache(folio)) {
710 		error = mem_cgroup_charge(folio, charge_mm, gfp);
711 		if (error) {
712 			if (folio_test_pmd_mappable(folio)) {
713 				count_vm_event(THP_FILE_FALLBACK);
714 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
715 			}
716 			goto error;
717 		}
718 	}
719 	folio_throttle_swaprate(folio, gfp);
720 
721 	do {
722 		xas_lock_irq(&xas);
723 		if (expected != xas_find_conflict(&xas)) {
724 			xas_set_err(&xas, -EEXIST);
725 			goto unlock;
726 		}
727 		if (expected && xas_find_conflict(&xas)) {
728 			xas_set_err(&xas, -EEXIST);
729 			goto unlock;
730 		}
731 		xas_store(&xas, folio);
732 		if (xas_error(&xas))
733 			goto unlock;
734 		if (folio_test_pmd_mappable(folio)) {
735 			count_vm_event(THP_FILE_ALLOC);
736 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
737 		}
738 		mapping->nrpages += nr;
739 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
740 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
741 unlock:
742 		xas_unlock_irq(&xas);
743 	} while (xas_nomem(&xas, gfp));
744 
745 	if (xas_error(&xas)) {
746 		error = xas_error(&xas);
747 		goto error;
748 	}
749 
750 	return 0;
751 error:
752 	folio->mapping = NULL;
753 	folio_ref_sub(folio, nr);
754 	return error;
755 }
756 
757 /*
758  * Like delete_from_page_cache, but substitutes swap for @folio.
759  */
760 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
761 {
762 	struct address_space *mapping = folio->mapping;
763 	long nr = folio_nr_pages(folio);
764 	int error;
765 
766 	xa_lock_irq(&mapping->i_pages);
767 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
768 	folio->mapping = NULL;
769 	mapping->nrpages -= nr;
770 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
771 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
772 	xa_unlock_irq(&mapping->i_pages);
773 	folio_put(folio);
774 	BUG_ON(error);
775 }
776 
777 /*
778  * Remove swap entry from page cache, free the swap and its page cache.
779  */
780 static int shmem_free_swap(struct address_space *mapping,
781 			   pgoff_t index, void *radswap)
782 {
783 	void *old;
784 
785 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
786 	if (old != radswap)
787 		return -ENOENT;
788 	free_swap_and_cache(radix_to_swp_entry(radswap));
789 	return 0;
790 }
791 
792 /*
793  * Determine (in bytes) how many of the shmem object's pages mapped by the
794  * given offsets are swapped out.
795  *
796  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
797  * as long as the inode doesn't go away and racy results are not a problem.
798  */
799 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
800 						pgoff_t start, pgoff_t end)
801 {
802 	XA_STATE(xas, &mapping->i_pages, start);
803 	struct page *page;
804 	unsigned long swapped = 0;
805 
806 	rcu_read_lock();
807 	xas_for_each(&xas, page, end - 1) {
808 		if (xas_retry(&xas, page))
809 			continue;
810 		if (xa_is_value(page))
811 			swapped++;
812 
813 		if (need_resched()) {
814 			xas_pause(&xas);
815 			cond_resched_rcu();
816 		}
817 	}
818 
819 	rcu_read_unlock();
820 
821 	return swapped << PAGE_SHIFT;
822 }
823 
824 /*
825  * Determine (in bytes) how many of the shmem object's pages mapped by the
826  * given vma is swapped out.
827  *
828  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
829  * as long as the inode doesn't go away and racy results are not a problem.
830  */
831 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
832 {
833 	struct inode *inode = file_inode(vma->vm_file);
834 	struct shmem_inode_info *info = SHMEM_I(inode);
835 	struct address_space *mapping = inode->i_mapping;
836 	unsigned long swapped;
837 
838 	/* Be careful as we don't hold info->lock */
839 	swapped = READ_ONCE(info->swapped);
840 
841 	/*
842 	 * The easier cases are when the shmem object has nothing in swap, or
843 	 * the vma maps it whole. Then we can simply use the stats that we
844 	 * already track.
845 	 */
846 	if (!swapped)
847 		return 0;
848 
849 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
850 		return swapped << PAGE_SHIFT;
851 
852 	/* Here comes the more involved part */
853 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
854 					vma->vm_pgoff + vma_pages(vma));
855 }
856 
857 /*
858  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
859  */
860 void shmem_unlock_mapping(struct address_space *mapping)
861 {
862 	struct folio_batch fbatch;
863 	pgoff_t index = 0;
864 
865 	folio_batch_init(&fbatch);
866 	/*
867 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
868 	 */
869 	while (!mapping_unevictable(mapping) &&
870 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
871 		check_move_unevictable_folios(&fbatch);
872 		folio_batch_release(&fbatch);
873 		cond_resched();
874 	}
875 }
876 
877 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
878 {
879 	struct folio *folio;
880 
881 	/*
882 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
883 	 * beyond i_size, and reports fallocated pages as holes.
884 	 */
885 	folio = __filemap_get_folio(inode->i_mapping, index,
886 					FGP_ENTRY | FGP_LOCK, 0);
887 	if (!xa_is_value(folio))
888 		return folio;
889 	/*
890 	 * But read a page back from swap if any of it is within i_size
891 	 * (although in some cases this is just a waste of time).
892 	 */
893 	folio = NULL;
894 	shmem_get_folio(inode, index, &folio, SGP_READ);
895 	return folio;
896 }
897 
898 /*
899  * Remove range of pages and swap entries from page cache, and free them.
900  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
901  */
902 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
903 								 bool unfalloc)
904 {
905 	struct address_space *mapping = inode->i_mapping;
906 	struct shmem_inode_info *info = SHMEM_I(inode);
907 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
908 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
909 	struct folio_batch fbatch;
910 	pgoff_t indices[PAGEVEC_SIZE];
911 	struct folio *folio;
912 	bool same_folio;
913 	long nr_swaps_freed = 0;
914 	pgoff_t index;
915 	int i;
916 
917 	if (lend == -1)
918 		end = -1;	/* unsigned, so actually very big */
919 
920 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
921 		info->fallocend = start;
922 
923 	folio_batch_init(&fbatch);
924 	index = start;
925 	while (index < end && find_lock_entries(mapping, index, end - 1,
926 			&fbatch, indices)) {
927 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
928 			folio = fbatch.folios[i];
929 
930 			index = indices[i];
931 
932 			if (xa_is_value(folio)) {
933 				if (unfalloc)
934 					continue;
935 				nr_swaps_freed += !shmem_free_swap(mapping,
936 								index, folio);
937 				continue;
938 			}
939 			index += folio_nr_pages(folio) - 1;
940 
941 			if (!unfalloc || !folio_test_uptodate(folio))
942 				truncate_inode_folio(mapping, folio);
943 			folio_unlock(folio);
944 		}
945 		folio_batch_remove_exceptionals(&fbatch);
946 		folio_batch_release(&fbatch);
947 		cond_resched();
948 		index++;
949 	}
950 
951 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
952 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
953 	if (folio) {
954 		same_folio = lend < folio_pos(folio) + folio_size(folio);
955 		folio_mark_dirty(folio);
956 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
957 			start = folio->index + folio_nr_pages(folio);
958 			if (same_folio)
959 				end = folio->index;
960 		}
961 		folio_unlock(folio);
962 		folio_put(folio);
963 		folio = NULL;
964 	}
965 
966 	if (!same_folio)
967 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
968 	if (folio) {
969 		folio_mark_dirty(folio);
970 		if (!truncate_inode_partial_folio(folio, lstart, lend))
971 			end = folio->index;
972 		folio_unlock(folio);
973 		folio_put(folio);
974 	}
975 
976 	index = start;
977 	while (index < end) {
978 		cond_resched();
979 
980 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
981 				indices)) {
982 			/* If all gone or hole-punch or unfalloc, we're done */
983 			if (index == start || end != -1)
984 				break;
985 			/* But if truncating, restart to make sure all gone */
986 			index = start;
987 			continue;
988 		}
989 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
990 			folio = fbatch.folios[i];
991 
992 			index = indices[i];
993 			if (xa_is_value(folio)) {
994 				if (unfalloc)
995 					continue;
996 				if (shmem_free_swap(mapping, index, folio)) {
997 					/* Swap was replaced by page: retry */
998 					index--;
999 					break;
1000 				}
1001 				nr_swaps_freed++;
1002 				continue;
1003 			}
1004 
1005 			folio_lock(folio);
1006 
1007 			if (!unfalloc || !folio_test_uptodate(folio)) {
1008 				if (folio_mapping(folio) != mapping) {
1009 					/* Page was replaced by swap: retry */
1010 					folio_unlock(folio);
1011 					index--;
1012 					break;
1013 				}
1014 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1015 						folio);
1016 				truncate_inode_folio(mapping, folio);
1017 			}
1018 			index = folio->index + folio_nr_pages(folio) - 1;
1019 			folio_unlock(folio);
1020 		}
1021 		folio_batch_remove_exceptionals(&fbatch);
1022 		folio_batch_release(&fbatch);
1023 		index++;
1024 	}
1025 
1026 	spin_lock_irq(&info->lock);
1027 	info->swapped -= nr_swaps_freed;
1028 	shmem_recalc_inode(inode);
1029 	spin_unlock_irq(&info->lock);
1030 }
1031 
1032 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1033 {
1034 	shmem_undo_range(inode, lstart, lend, false);
1035 	inode->i_ctime = inode->i_mtime = current_time(inode);
1036 	inode_inc_iversion(inode);
1037 }
1038 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1039 
1040 static int shmem_getattr(struct user_namespace *mnt_userns,
1041 			 const struct path *path, struct kstat *stat,
1042 			 u32 request_mask, unsigned int query_flags)
1043 {
1044 	struct inode *inode = path->dentry->d_inode;
1045 	struct shmem_inode_info *info = SHMEM_I(inode);
1046 
1047 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1048 		spin_lock_irq(&info->lock);
1049 		shmem_recalc_inode(inode);
1050 		spin_unlock_irq(&info->lock);
1051 	}
1052 	if (info->fsflags & FS_APPEND_FL)
1053 		stat->attributes |= STATX_ATTR_APPEND;
1054 	if (info->fsflags & FS_IMMUTABLE_FL)
1055 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1056 	if (info->fsflags & FS_NODUMP_FL)
1057 		stat->attributes |= STATX_ATTR_NODUMP;
1058 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1059 			STATX_ATTR_IMMUTABLE |
1060 			STATX_ATTR_NODUMP);
1061 	generic_fillattr(&init_user_ns, inode, stat);
1062 
1063 	if (shmem_is_huge(NULL, inode, 0, false))
1064 		stat->blksize = HPAGE_PMD_SIZE;
1065 
1066 	if (request_mask & STATX_BTIME) {
1067 		stat->result_mask |= STATX_BTIME;
1068 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076 			 struct dentry *dentry, struct iattr *attr)
1077 {
1078 	struct inode *inode = d_inode(dentry);
1079 	struct shmem_inode_info *info = SHMEM_I(inode);
1080 	int error;
1081 	bool update_mtime = false;
1082 	bool update_ctime = true;
1083 
1084 	error = setattr_prepare(&init_user_ns, dentry, attr);
1085 	if (error)
1086 		return error;
1087 
1088 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1089 		loff_t oldsize = inode->i_size;
1090 		loff_t newsize = attr->ia_size;
1091 
1092 		/* protected by i_rwsem */
1093 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1094 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1095 			return -EPERM;
1096 
1097 		if (newsize != oldsize) {
1098 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1099 					oldsize, newsize);
1100 			if (error)
1101 				return error;
1102 			i_size_write(inode, newsize);
1103 			update_mtime = true;
1104 		} else {
1105 			update_ctime = false;
1106 		}
1107 		if (newsize <= oldsize) {
1108 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1109 			if (oldsize > holebegin)
1110 				unmap_mapping_range(inode->i_mapping,
1111 							holebegin, 0, 1);
1112 			if (info->alloced)
1113 				shmem_truncate_range(inode,
1114 							newsize, (loff_t)-1);
1115 			/* unmap again to remove racily COWed private pages */
1116 			if (oldsize > holebegin)
1117 				unmap_mapping_range(inode->i_mapping,
1118 							holebegin, 0, 1);
1119 		}
1120 	}
1121 
1122 	setattr_copy(&init_user_ns, inode, attr);
1123 	if (attr->ia_valid & ATTR_MODE)
1124 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1125 	if (!error && update_ctime) {
1126 		inode->i_ctime = current_time(inode);
1127 		if (update_mtime)
1128 			inode->i_mtime = inode->i_ctime;
1129 		inode_inc_iversion(inode);
1130 	}
1131 	return error;
1132 }
1133 
1134 static void shmem_evict_inode(struct inode *inode)
1135 {
1136 	struct shmem_inode_info *info = SHMEM_I(inode);
1137 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1138 
1139 	if (shmem_mapping(inode->i_mapping)) {
1140 		shmem_unacct_size(info->flags, inode->i_size);
1141 		inode->i_size = 0;
1142 		mapping_set_exiting(inode->i_mapping);
1143 		shmem_truncate_range(inode, 0, (loff_t)-1);
1144 		if (!list_empty(&info->shrinklist)) {
1145 			spin_lock(&sbinfo->shrinklist_lock);
1146 			if (!list_empty(&info->shrinklist)) {
1147 				list_del_init(&info->shrinklist);
1148 				sbinfo->shrinklist_len--;
1149 			}
1150 			spin_unlock(&sbinfo->shrinklist_lock);
1151 		}
1152 		while (!list_empty(&info->swaplist)) {
1153 			/* Wait while shmem_unuse() is scanning this inode... */
1154 			wait_var_event(&info->stop_eviction,
1155 				       !atomic_read(&info->stop_eviction));
1156 			mutex_lock(&shmem_swaplist_mutex);
1157 			/* ...but beware of the race if we peeked too early */
1158 			if (!atomic_read(&info->stop_eviction))
1159 				list_del_init(&info->swaplist);
1160 			mutex_unlock(&shmem_swaplist_mutex);
1161 		}
1162 	}
1163 
1164 	simple_xattrs_free(&info->xattrs);
1165 	WARN_ON(inode->i_blocks);
1166 	shmem_free_inode(inode->i_sb);
1167 	clear_inode(inode);
1168 }
1169 
1170 static int shmem_find_swap_entries(struct address_space *mapping,
1171 				   pgoff_t start, struct folio_batch *fbatch,
1172 				   pgoff_t *indices, unsigned int type)
1173 {
1174 	XA_STATE(xas, &mapping->i_pages, start);
1175 	struct folio *folio;
1176 	swp_entry_t entry;
1177 
1178 	rcu_read_lock();
1179 	xas_for_each(&xas, folio, ULONG_MAX) {
1180 		if (xas_retry(&xas, folio))
1181 			continue;
1182 
1183 		if (!xa_is_value(folio))
1184 			continue;
1185 
1186 		entry = radix_to_swp_entry(folio);
1187 		/*
1188 		 * swapin error entries can be found in the mapping. But they're
1189 		 * deliberately ignored here as we've done everything we can do.
1190 		 */
1191 		if (swp_type(entry) != type)
1192 			continue;
1193 
1194 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1195 		if (!folio_batch_add(fbatch, folio))
1196 			break;
1197 
1198 		if (need_resched()) {
1199 			xas_pause(&xas);
1200 			cond_resched_rcu();
1201 		}
1202 	}
1203 	rcu_read_unlock();
1204 
1205 	return xas.xa_index;
1206 }
1207 
1208 /*
1209  * Move the swapped pages for an inode to page cache. Returns the count
1210  * of pages swapped in, or the error in case of failure.
1211  */
1212 static int shmem_unuse_swap_entries(struct inode *inode,
1213 		struct folio_batch *fbatch, pgoff_t *indices)
1214 {
1215 	int i = 0;
1216 	int ret = 0;
1217 	int error = 0;
1218 	struct address_space *mapping = inode->i_mapping;
1219 
1220 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1221 		struct folio *folio = fbatch->folios[i];
1222 
1223 		if (!xa_is_value(folio))
1224 			continue;
1225 		error = shmem_swapin_folio(inode, indices[i],
1226 					  &folio, SGP_CACHE,
1227 					  mapping_gfp_mask(mapping),
1228 					  NULL, NULL);
1229 		if (error == 0) {
1230 			folio_unlock(folio);
1231 			folio_put(folio);
1232 			ret++;
1233 		}
1234 		if (error == -ENOMEM)
1235 			break;
1236 		error = 0;
1237 	}
1238 	return error ? error : ret;
1239 }
1240 
1241 /*
1242  * If swap found in inode, free it and move page from swapcache to filecache.
1243  */
1244 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1245 {
1246 	struct address_space *mapping = inode->i_mapping;
1247 	pgoff_t start = 0;
1248 	struct folio_batch fbatch;
1249 	pgoff_t indices[PAGEVEC_SIZE];
1250 	int ret = 0;
1251 
1252 	do {
1253 		folio_batch_init(&fbatch);
1254 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1255 		if (folio_batch_count(&fbatch) == 0) {
1256 			ret = 0;
1257 			break;
1258 		}
1259 
1260 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1261 		if (ret < 0)
1262 			break;
1263 
1264 		start = indices[folio_batch_count(&fbatch) - 1];
1265 	} while (true);
1266 
1267 	return ret;
1268 }
1269 
1270 /*
1271  * Read all the shared memory data that resides in the swap
1272  * device 'type' back into memory, so the swap device can be
1273  * unused.
1274  */
1275 int shmem_unuse(unsigned int type)
1276 {
1277 	struct shmem_inode_info *info, *next;
1278 	int error = 0;
1279 
1280 	if (list_empty(&shmem_swaplist))
1281 		return 0;
1282 
1283 	mutex_lock(&shmem_swaplist_mutex);
1284 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1285 		if (!info->swapped) {
1286 			list_del_init(&info->swaplist);
1287 			continue;
1288 		}
1289 		/*
1290 		 * Drop the swaplist mutex while searching the inode for swap;
1291 		 * but before doing so, make sure shmem_evict_inode() will not
1292 		 * remove placeholder inode from swaplist, nor let it be freed
1293 		 * (igrab() would protect from unlink, but not from unmount).
1294 		 */
1295 		atomic_inc(&info->stop_eviction);
1296 		mutex_unlock(&shmem_swaplist_mutex);
1297 
1298 		error = shmem_unuse_inode(&info->vfs_inode, type);
1299 		cond_resched();
1300 
1301 		mutex_lock(&shmem_swaplist_mutex);
1302 		next = list_next_entry(info, swaplist);
1303 		if (!info->swapped)
1304 			list_del_init(&info->swaplist);
1305 		if (atomic_dec_and_test(&info->stop_eviction))
1306 			wake_up_var(&info->stop_eviction);
1307 		if (error)
1308 			break;
1309 	}
1310 	mutex_unlock(&shmem_swaplist_mutex);
1311 
1312 	return error;
1313 }
1314 
1315 /*
1316  * Move the page from the page cache to the swap cache.
1317  */
1318 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1319 {
1320 	struct folio *folio = page_folio(page);
1321 	struct shmem_inode_info *info;
1322 	struct address_space *mapping;
1323 	struct inode *inode;
1324 	swp_entry_t swap;
1325 	pgoff_t index;
1326 
1327 	/*
1328 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1329 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1330 	 * and its shmem_writeback() needs them to be split when swapping.
1331 	 */
1332 	if (folio_test_large(folio)) {
1333 		/* Ensure the subpages are still dirty */
1334 		folio_test_set_dirty(folio);
1335 		if (split_huge_page(page) < 0)
1336 			goto redirty;
1337 		folio = page_folio(page);
1338 		folio_clear_dirty(folio);
1339 	}
1340 
1341 	BUG_ON(!folio_test_locked(folio));
1342 	mapping = folio->mapping;
1343 	index = folio->index;
1344 	inode = mapping->host;
1345 	info = SHMEM_I(inode);
1346 	if (info->flags & VM_LOCKED)
1347 		goto redirty;
1348 	if (!total_swap_pages)
1349 		goto redirty;
1350 
1351 	/*
1352 	 * Our capabilities prevent regular writeback or sync from ever calling
1353 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1354 	 * its underlying filesystem, in which case tmpfs should write out to
1355 	 * swap only in response to memory pressure, and not for the writeback
1356 	 * threads or sync.
1357 	 */
1358 	if (!wbc->for_reclaim) {
1359 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1360 		goto redirty;
1361 	}
1362 
1363 	/*
1364 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1365 	 * value into swapfile.c, the only way we can correctly account for a
1366 	 * fallocated folio arriving here is now to initialize it and write it.
1367 	 *
1368 	 * That's okay for a folio already fallocated earlier, but if we have
1369 	 * not yet completed the fallocation, then (a) we want to keep track
1370 	 * of this folio in case we have to undo it, and (b) it may not be a
1371 	 * good idea to continue anyway, once we're pushing into swap.  So
1372 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1373 	 */
1374 	if (!folio_test_uptodate(folio)) {
1375 		if (inode->i_private) {
1376 			struct shmem_falloc *shmem_falloc;
1377 			spin_lock(&inode->i_lock);
1378 			shmem_falloc = inode->i_private;
1379 			if (shmem_falloc &&
1380 			    !shmem_falloc->waitq &&
1381 			    index >= shmem_falloc->start &&
1382 			    index < shmem_falloc->next)
1383 				shmem_falloc->nr_unswapped++;
1384 			else
1385 				shmem_falloc = NULL;
1386 			spin_unlock(&inode->i_lock);
1387 			if (shmem_falloc)
1388 				goto redirty;
1389 		}
1390 		folio_zero_range(folio, 0, folio_size(folio));
1391 		flush_dcache_folio(folio);
1392 		folio_mark_uptodate(folio);
1393 	}
1394 
1395 	swap = folio_alloc_swap(folio);
1396 	if (!swap.val)
1397 		goto redirty;
1398 
1399 	/*
1400 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1401 	 * if it's not already there.  Do it now before the folio is
1402 	 * moved to swap cache, when its pagelock no longer protects
1403 	 * the inode from eviction.  But don't unlock the mutex until
1404 	 * we've incremented swapped, because shmem_unuse_inode() will
1405 	 * prune a !swapped inode from the swaplist under this mutex.
1406 	 */
1407 	mutex_lock(&shmem_swaplist_mutex);
1408 	if (list_empty(&info->swaplist))
1409 		list_add(&info->swaplist, &shmem_swaplist);
1410 
1411 	if (add_to_swap_cache(folio, swap,
1412 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1413 			NULL) == 0) {
1414 		spin_lock_irq(&info->lock);
1415 		shmem_recalc_inode(inode);
1416 		info->swapped++;
1417 		spin_unlock_irq(&info->lock);
1418 
1419 		swap_shmem_alloc(swap);
1420 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1421 
1422 		mutex_unlock(&shmem_swaplist_mutex);
1423 		BUG_ON(folio_mapped(folio));
1424 		swap_writepage(&folio->page, wbc);
1425 		return 0;
1426 	}
1427 
1428 	mutex_unlock(&shmem_swaplist_mutex);
1429 	put_swap_folio(folio, swap);
1430 redirty:
1431 	folio_mark_dirty(folio);
1432 	if (wbc->for_reclaim)
1433 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1434 	folio_unlock(folio);
1435 	return 0;
1436 }
1437 
1438 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1439 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1440 {
1441 	char buffer[64];
1442 
1443 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1444 		return;		/* show nothing */
1445 
1446 	mpol_to_str(buffer, sizeof(buffer), mpol);
1447 
1448 	seq_printf(seq, ",mpol=%s", buffer);
1449 }
1450 
1451 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1452 {
1453 	struct mempolicy *mpol = NULL;
1454 	if (sbinfo->mpol) {
1455 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1456 		mpol = sbinfo->mpol;
1457 		mpol_get(mpol);
1458 		raw_spin_unlock(&sbinfo->stat_lock);
1459 	}
1460 	return mpol;
1461 }
1462 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1463 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1464 {
1465 }
1466 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1467 {
1468 	return NULL;
1469 }
1470 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1471 #ifndef CONFIG_NUMA
1472 #define vm_policy vm_private_data
1473 #endif
1474 
1475 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1476 		struct shmem_inode_info *info, pgoff_t index)
1477 {
1478 	/* Create a pseudo vma that just contains the policy */
1479 	vma_init(vma, NULL);
1480 	/* Bias interleave by inode number to distribute better across nodes */
1481 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1482 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1483 }
1484 
1485 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1486 {
1487 	/* Drop reference taken by mpol_shared_policy_lookup() */
1488 	mpol_cond_put(vma->vm_policy);
1489 }
1490 
1491 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1492 			struct shmem_inode_info *info, pgoff_t index)
1493 {
1494 	struct vm_area_struct pvma;
1495 	struct page *page;
1496 	struct vm_fault vmf = {
1497 		.vma = &pvma,
1498 	};
1499 
1500 	shmem_pseudo_vma_init(&pvma, info, index);
1501 	page = swap_cluster_readahead(swap, gfp, &vmf);
1502 	shmem_pseudo_vma_destroy(&pvma);
1503 
1504 	if (!page)
1505 		return NULL;
1506 	return page_folio(page);
1507 }
1508 
1509 /*
1510  * Make sure huge_gfp is always more limited than limit_gfp.
1511  * Some of the flags set permissions, while others set limitations.
1512  */
1513 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1514 {
1515 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1516 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1517 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1518 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1519 
1520 	/* Allow allocations only from the originally specified zones. */
1521 	result |= zoneflags;
1522 
1523 	/*
1524 	 * Minimize the result gfp by taking the union with the deny flags,
1525 	 * and the intersection of the allow flags.
1526 	 */
1527 	result |= (limit_gfp & denyflags);
1528 	result |= (huge_gfp & limit_gfp) & allowflags;
1529 
1530 	return result;
1531 }
1532 
1533 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1534 		struct shmem_inode_info *info, pgoff_t index)
1535 {
1536 	struct vm_area_struct pvma;
1537 	struct address_space *mapping = info->vfs_inode.i_mapping;
1538 	pgoff_t hindex;
1539 	struct folio *folio;
1540 
1541 	hindex = round_down(index, HPAGE_PMD_NR);
1542 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1543 								XA_PRESENT))
1544 		return NULL;
1545 
1546 	shmem_pseudo_vma_init(&pvma, info, hindex);
1547 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1548 	shmem_pseudo_vma_destroy(&pvma);
1549 	if (!folio)
1550 		count_vm_event(THP_FILE_FALLBACK);
1551 	return folio;
1552 }
1553 
1554 static struct folio *shmem_alloc_folio(gfp_t gfp,
1555 			struct shmem_inode_info *info, pgoff_t index)
1556 {
1557 	struct vm_area_struct pvma;
1558 	struct folio *folio;
1559 
1560 	shmem_pseudo_vma_init(&pvma, info, index);
1561 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1562 	shmem_pseudo_vma_destroy(&pvma);
1563 
1564 	return folio;
1565 }
1566 
1567 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1568 		pgoff_t index, bool huge)
1569 {
1570 	struct shmem_inode_info *info = SHMEM_I(inode);
1571 	struct folio *folio;
1572 	int nr;
1573 	int err = -ENOSPC;
1574 
1575 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1576 		huge = false;
1577 	nr = huge ? HPAGE_PMD_NR : 1;
1578 
1579 	if (!shmem_inode_acct_block(inode, nr))
1580 		goto failed;
1581 
1582 	if (huge)
1583 		folio = shmem_alloc_hugefolio(gfp, info, index);
1584 	else
1585 		folio = shmem_alloc_folio(gfp, info, index);
1586 	if (folio) {
1587 		__folio_set_locked(folio);
1588 		__folio_set_swapbacked(folio);
1589 		return folio;
1590 	}
1591 
1592 	err = -ENOMEM;
1593 	shmem_inode_unacct_blocks(inode, nr);
1594 failed:
1595 	return ERR_PTR(err);
1596 }
1597 
1598 /*
1599  * When a page is moved from swapcache to shmem filecache (either by the
1600  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1601  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1602  * ignorance of the mapping it belongs to.  If that mapping has special
1603  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1604  * we may need to copy to a suitable page before moving to filecache.
1605  *
1606  * In a future release, this may well be extended to respect cpuset and
1607  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1608  * but for now it is a simple matter of zone.
1609  */
1610 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1611 {
1612 	return folio_zonenum(folio) > gfp_zone(gfp);
1613 }
1614 
1615 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1616 				struct shmem_inode_info *info, pgoff_t index)
1617 {
1618 	struct folio *old, *new;
1619 	struct address_space *swap_mapping;
1620 	swp_entry_t entry;
1621 	pgoff_t swap_index;
1622 	int error;
1623 
1624 	old = *foliop;
1625 	entry = folio_swap_entry(old);
1626 	swap_index = swp_offset(entry);
1627 	swap_mapping = swap_address_space(entry);
1628 
1629 	/*
1630 	 * We have arrived here because our zones are constrained, so don't
1631 	 * limit chance of success by further cpuset and node constraints.
1632 	 */
1633 	gfp &= ~GFP_CONSTRAINT_MASK;
1634 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1635 	new = shmem_alloc_folio(gfp, info, index);
1636 	if (!new)
1637 		return -ENOMEM;
1638 
1639 	folio_get(new);
1640 	folio_copy(new, old);
1641 	flush_dcache_folio(new);
1642 
1643 	__folio_set_locked(new);
1644 	__folio_set_swapbacked(new);
1645 	folio_mark_uptodate(new);
1646 	folio_set_swap_entry(new, entry);
1647 	folio_set_swapcache(new);
1648 
1649 	/*
1650 	 * Our caller will very soon move newpage out of swapcache, but it's
1651 	 * a nice clean interface for us to replace oldpage by newpage there.
1652 	 */
1653 	xa_lock_irq(&swap_mapping->i_pages);
1654 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1655 	if (!error) {
1656 		mem_cgroup_migrate(old, new);
1657 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1658 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1659 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1660 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1661 	}
1662 	xa_unlock_irq(&swap_mapping->i_pages);
1663 
1664 	if (unlikely(error)) {
1665 		/*
1666 		 * Is this possible?  I think not, now that our callers check
1667 		 * both PageSwapCache and page_private after getting page lock;
1668 		 * but be defensive.  Reverse old to newpage for clear and free.
1669 		 */
1670 		old = new;
1671 	} else {
1672 		folio_add_lru(new);
1673 		*foliop = new;
1674 	}
1675 
1676 	folio_clear_swapcache(old);
1677 	old->private = NULL;
1678 
1679 	folio_unlock(old);
1680 	folio_put_refs(old, 2);
1681 	return error;
1682 }
1683 
1684 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1685 					 struct folio *folio, swp_entry_t swap)
1686 {
1687 	struct address_space *mapping = inode->i_mapping;
1688 	struct shmem_inode_info *info = SHMEM_I(inode);
1689 	swp_entry_t swapin_error;
1690 	void *old;
1691 
1692 	swapin_error = make_swapin_error_entry(&folio->page);
1693 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1694 			     swp_to_radix_entry(swap),
1695 			     swp_to_radix_entry(swapin_error), 0);
1696 	if (old != swp_to_radix_entry(swap))
1697 		return;
1698 
1699 	folio_wait_writeback(folio);
1700 	delete_from_swap_cache(folio);
1701 	spin_lock_irq(&info->lock);
1702 	/*
1703 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1704 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1705 	 * shmem_evict_inode.
1706 	 */
1707 	info->alloced--;
1708 	info->swapped--;
1709 	shmem_recalc_inode(inode);
1710 	spin_unlock_irq(&info->lock);
1711 	swap_free(swap);
1712 }
1713 
1714 /*
1715  * Swap in the folio pointed to by *foliop.
1716  * Caller has to make sure that *foliop contains a valid swapped folio.
1717  * Returns 0 and the folio in foliop if success. On failure, returns the
1718  * error code and NULL in *foliop.
1719  */
1720 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1721 			     struct folio **foliop, enum sgp_type sgp,
1722 			     gfp_t gfp, struct vm_area_struct *vma,
1723 			     vm_fault_t *fault_type)
1724 {
1725 	struct address_space *mapping = inode->i_mapping;
1726 	struct shmem_inode_info *info = SHMEM_I(inode);
1727 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1728 	struct folio *folio = NULL;
1729 	swp_entry_t swap;
1730 	int error;
1731 
1732 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1733 	swap = radix_to_swp_entry(*foliop);
1734 	*foliop = NULL;
1735 
1736 	if (is_swapin_error_entry(swap))
1737 		return -EIO;
1738 
1739 	/* Look it up and read it in.. */
1740 	folio = swap_cache_get_folio(swap, NULL, 0);
1741 	if (!folio) {
1742 		/* Or update major stats only when swapin succeeds?? */
1743 		if (fault_type) {
1744 			*fault_type |= VM_FAULT_MAJOR;
1745 			count_vm_event(PGMAJFAULT);
1746 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1747 		}
1748 		/* Here we actually start the io */
1749 		folio = shmem_swapin(swap, gfp, info, index);
1750 		if (!folio) {
1751 			error = -ENOMEM;
1752 			goto failed;
1753 		}
1754 	}
1755 
1756 	/* We have to do this with folio locked to prevent races */
1757 	folio_lock(folio);
1758 	if (!folio_test_swapcache(folio) ||
1759 	    folio_swap_entry(folio).val != swap.val ||
1760 	    !shmem_confirm_swap(mapping, index, swap)) {
1761 		error = -EEXIST;
1762 		goto unlock;
1763 	}
1764 	if (!folio_test_uptodate(folio)) {
1765 		error = -EIO;
1766 		goto failed;
1767 	}
1768 	folio_wait_writeback(folio);
1769 
1770 	/*
1771 	 * Some architectures may have to restore extra metadata to the
1772 	 * folio after reading from swap.
1773 	 */
1774 	arch_swap_restore(swap, folio);
1775 
1776 	if (shmem_should_replace_folio(folio, gfp)) {
1777 		error = shmem_replace_folio(&folio, gfp, info, index);
1778 		if (error)
1779 			goto failed;
1780 	}
1781 
1782 	error = shmem_add_to_page_cache(folio, mapping, index,
1783 					swp_to_radix_entry(swap), gfp,
1784 					charge_mm);
1785 	if (error)
1786 		goto failed;
1787 
1788 	spin_lock_irq(&info->lock);
1789 	info->swapped--;
1790 	shmem_recalc_inode(inode);
1791 	spin_unlock_irq(&info->lock);
1792 
1793 	if (sgp == SGP_WRITE)
1794 		folio_mark_accessed(folio);
1795 
1796 	delete_from_swap_cache(folio);
1797 	folio_mark_dirty(folio);
1798 	swap_free(swap);
1799 
1800 	*foliop = folio;
1801 	return 0;
1802 failed:
1803 	if (!shmem_confirm_swap(mapping, index, swap))
1804 		error = -EEXIST;
1805 	if (error == -EIO)
1806 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1807 unlock:
1808 	if (folio) {
1809 		folio_unlock(folio);
1810 		folio_put(folio);
1811 	}
1812 
1813 	return error;
1814 }
1815 
1816 /*
1817  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1818  *
1819  * If we allocate a new one we do not mark it dirty. That's up to the
1820  * vm. If we swap it in we mark it dirty since we also free the swap
1821  * entry since a page cannot live in both the swap and page cache.
1822  *
1823  * vma, vmf, and fault_type are only supplied by shmem_fault:
1824  * otherwise they are NULL.
1825  */
1826 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1827 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1828 		struct vm_area_struct *vma, struct vm_fault *vmf,
1829 		vm_fault_t *fault_type)
1830 {
1831 	struct address_space *mapping = inode->i_mapping;
1832 	struct shmem_inode_info *info = SHMEM_I(inode);
1833 	struct shmem_sb_info *sbinfo;
1834 	struct mm_struct *charge_mm;
1835 	struct folio *folio;
1836 	pgoff_t hindex = index;
1837 	gfp_t huge_gfp;
1838 	int error;
1839 	int once = 0;
1840 	int alloced = 0;
1841 
1842 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1843 		return -EFBIG;
1844 repeat:
1845 	if (sgp <= SGP_CACHE &&
1846 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1847 		return -EINVAL;
1848 	}
1849 
1850 	sbinfo = SHMEM_SB(inode->i_sb);
1851 	charge_mm = vma ? vma->vm_mm : NULL;
1852 
1853 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1854 	if (folio && vma && userfaultfd_minor(vma)) {
1855 		if (!xa_is_value(folio)) {
1856 			folio_unlock(folio);
1857 			folio_put(folio);
1858 		}
1859 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1860 		return 0;
1861 	}
1862 
1863 	if (xa_is_value(folio)) {
1864 		error = shmem_swapin_folio(inode, index, &folio,
1865 					  sgp, gfp, vma, fault_type);
1866 		if (error == -EEXIST)
1867 			goto repeat;
1868 
1869 		*foliop = folio;
1870 		return error;
1871 	}
1872 
1873 	if (folio) {
1874 		hindex = folio->index;
1875 		if (sgp == SGP_WRITE)
1876 			folio_mark_accessed(folio);
1877 		if (folio_test_uptodate(folio))
1878 			goto out;
1879 		/* fallocated folio */
1880 		if (sgp != SGP_READ)
1881 			goto clear;
1882 		folio_unlock(folio);
1883 		folio_put(folio);
1884 	}
1885 
1886 	/*
1887 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1888 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1889 	 */
1890 	*foliop = NULL;
1891 	if (sgp == SGP_READ)
1892 		return 0;
1893 	if (sgp == SGP_NOALLOC)
1894 		return -ENOENT;
1895 
1896 	/*
1897 	 * Fast cache lookup and swap lookup did not find it: allocate.
1898 	 */
1899 
1900 	if (vma && userfaultfd_missing(vma)) {
1901 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1902 		return 0;
1903 	}
1904 
1905 	if (!shmem_is_huge(vma, inode, index, false))
1906 		goto alloc_nohuge;
1907 
1908 	huge_gfp = vma_thp_gfp_mask(vma);
1909 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1910 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1911 	if (IS_ERR(folio)) {
1912 alloc_nohuge:
1913 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1914 	}
1915 	if (IS_ERR(folio)) {
1916 		int retry = 5;
1917 
1918 		error = PTR_ERR(folio);
1919 		folio = NULL;
1920 		if (error != -ENOSPC)
1921 			goto unlock;
1922 		/*
1923 		 * Try to reclaim some space by splitting a large folio
1924 		 * beyond i_size on the filesystem.
1925 		 */
1926 		while (retry--) {
1927 			int ret;
1928 
1929 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1930 			if (ret == SHRINK_STOP)
1931 				break;
1932 			if (ret)
1933 				goto alloc_nohuge;
1934 		}
1935 		goto unlock;
1936 	}
1937 
1938 	hindex = round_down(index, folio_nr_pages(folio));
1939 
1940 	if (sgp == SGP_WRITE)
1941 		__folio_set_referenced(folio);
1942 
1943 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1944 					NULL, gfp & GFP_RECLAIM_MASK,
1945 					charge_mm);
1946 	if (error)
1947 		goto unacct;
1948 	folio_add_lru(folio);
1949 
1950 	spin_lock_irq(&info->lock);
1951 	info->alloced += folio_nr_pages(folio);
1952 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1953 	shmem_recalc_inode(inode);
1954 	spin_unlock_irq(&info->lock);
1955 	alloced = true;
1956 
1957 	if (folio_test_pmd_mappable(folio) &&
1958 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1959 					folio_next_index(folio) - 1) {
1960 		/*
1961 		 * Part of the large folio is beyond i_size: subject
1962 		 * to shrink under memory pressure.
1963 		 */
1964 		spin_lock(&sbinfo->shrinklist_lock);
1965 		/*
1966 		 * _careful to defend against unlocked access to
1967 		 * ->shrink_list in shmem_unused_huge_shrink()
1968 		 */
1969 		if (list_empty_careful(&info->shrinklist)) {
1970 			list_add_tail(&info->shrinklist,
1971 				      &sbinfo->shrinklist);
1972 			sbinfo->shrinklist_len++;
1973 		}
1974 		spin_unlock(&sbinfo->shrinklist_lock);
1975 	}
1976 
1977 	/*
1978 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1979 	 */
1980 	if (sgp == SGP_FALLOC)
1981 		sgp = SGP_WRITE;
1982 clear:
1983 	/*
1984 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1985 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1986 	 * it now, lest undo on failure cancel our earlier guarantee.
1987 	 */
1988 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1989 		long i, n = folio_nr_pages(folio);
1990 
1991 		for (i = 0; i < n; i++)
1992 			clear_highpage(folio_page(folio, i));
1993 		flush_dcache_folio(folio);
1994 		folio_mark_uptodate(folio);
1995 	}
1996 
1997 	/* Perhaps the file has been truncated since we checked */
1998 	if (sgp <= SGP_CACHE &&
1999 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2000 		if (alloced) {
2001 			folio_clear_dirty(folio);
2002 			filemap_remove_folio(folio);
2003 			spin_lock_irq(&info->lock);
2004 			shmem_recalc_inode(inode);
2005 			spin_unlock_irq(&info->lock);
2006 		}
2007 		error = -EINVAL;
2008 		goto unlock;
2009 	}
2010 out:
2011 	*foliop = folio;
2012 	return 0;
2013 
2014 	/*
2015 	 * Error recovery.
2016 	 */
2017 unacct:
2018 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2019 
2020 	if (folio_test_large(folio)) {
2021 		folio_unlock(folio);
2022 		folio_put(folio);
2023 		goto alloc_nohuge;
2024 	}
2025 unlock:
2026 	if (folio) {
2027 		folio_unlock(folio);
2028 		folio_put(folio);
2029 	}
2030 	if (error == -ENOSPC && !once++) {
2031 		spin_lock_irq(&info->lock);
2032 		shmem_recalc_inode(inode);
2033 		spin_unlock_irq(&info->lock);
2034 		goto repeat;
2035 	}
2036 	if (error == -EEXIST)
2037 		goto repeat;
2038 	return error;
2039 }
2040 
2041 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2042 		enum sgp_type sgp)
2043 {
2044 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2045 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2046 }
2047 
2048 /*
2049  * This is like autoremove_wake_function, but it removes the wait queue
2050  * entry unconditionally - even if something else had already woken the
2051  * target.
2052  */
2053 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2054 {
2055 	int ret = default_wake_function(wait, mode, sync, key);
2056 	list_del_init(&wait->entry);
2057 	return ret;
2058 }
2059 
2060 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2061 {
2062 	struct vm_area_struct *vma = vmf->vma;
2063 	struct inode *inode = file_inode(vma->vm_file);
2064 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2065 	struct folio *folio = NULL;
2066 	int err;
2067 	vm_fault_t ret = VM_FAULT_LOCKED;
2068 
2069 	/*
2070 	 * Trinity finds that probing a hole which tmpfs is punching can
2071 	 * prevent the hole-punch from ever completing: which in turn
2072 	 * locks writers out with its hold on i_rwsem.  So refrain from
2073 	 * faulting pages into the hole while it's being punched.  Although
2074 	 * shmem_undo_range() does remove the additions, it may be unable to
2075 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2076 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2077 	 *
2078 	 * It does not matter if we sometimes reach this check just before the
2079 	 * hole-punch begins, so that one fault then races with the punch:
2080 	 * we just need to make racing faults a rare case.
2081 	 *
2082 	 * The implementation below would be much simpler if we just used a
2083 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2084 	 * and bloating every shmem inode for this unlikely case would be sad.
2085 	 */
2086 	if (unlikely(inode->i_private)) {
2087 		struct shmem_falloc *shmem_falloc;
2088 
2089 		spin_lock(&inode->i_lock);
2090 		shmem_falloc = inode->i_private;
2091 		if (shmem_falloc &&
2092 		    shmem_falloc->waitq &&
2093 		    vmf->pgoff >= shmem_falloc->start &&
2094 		    vmf->pgoff < shmem_falloc->next) {
2095 			struct file *fpin;
2096 			wait_queue_head_t *shmem_falloc_waitq;
2097 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2098 
2099 			ret = VM_FAULT_NOPAGE;
2100 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2101 			if (fpin)
2102 				ret = VM_FAULT_RETRY;
2103 
2104 			shmem_falloc_waitq = shmem_falloc->waitq;
2105 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2106 					TASK_UNINTERRUPTIBLE);
2107 			spin_unlock(&inode->i_lock);
2108 			schedule();
2109 
2110 			/*
2111 			 * shmem_falloc_waitq points into the shmem_fallocate()
2112 			 * stack of the hole-punching task: shmem_falloc_waitq
2113 			 * is usually invalid by the time we reach here, but
2114 			 * finish_wait() does not dereference it in that case;
2115 			 * though i_lock needed lest racing with wake_up_all().
2116 			 */
2117 			spin_lock(&inode->i_lock);
2118 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2119 			spin_unlock(&inode->i_lock);
2120 
2121 			if (fpin)
2122 				fput(fpin);
2123 			return ret;
2124 		}
2125 		spin_unlock(&inode->i_lock);
2126 	}
2127 
2128 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2129 				  gfp, vma, vmf, &ret);
2130 	if (err)
2131 		return vmf_error(err);
2132 	if (folio)
2133 		vmf->page = folio_file_page(folio, vmf->pgoff);
2134 	return ret;
2135 }
2136 
2137 unsigned long shmem_get_unmapped_area(struct file *file,
2138 				      unsigned long uaddr, unsigned long len,
2139 				      unsigned long pgoff, unsigned long flags)
2140 {
2141 	unsigned long (*get_area)(struct file *,
2142 		unsigned long, unsigned long, unsigned long, unsigned long);
2143 	unsigned long addr;
2144 	unsigned long offset;
2145 	unsigned long inflated_len;
2146 	unsigned long inflated_addr;
2147 	unsigned long inflated_offset;
2148 
2149 	if (len > TASK_SIZE)
2150 		return -ENOMEM;
2151 
2152 	get_area = current->mm->get_unmapped_area;
2153 	addr = get_area(file, uaddr, len, pgoff, flags);
2154 
2155 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2156 		return addr;
2157 	if (IS_ERR_VALUE(addr))
2158 		return addr;
2159 	if (addr & ~PAGE_MASK)
2160 		return addr;
2161 	if (addr > TASK_SIZE - len)
2162 		return addr;
2163 
2164 	if (shmem_huge == SHMEM_HUGE_DENY)
2165 		return addr;
2166 	if (len < HPAGE_PMD_SIZE)
2167 		return addr;
2168 	if (flags & MAP_FIXED)
2169 		return addr;
2170 	/*
2171 	 * Our priority is to support MAP_SHARED mapped hugely;
2172 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2173 	 * But if caller specified an address hint and we allocated area there
2174 	 * successfully, respect that as before.
2175 	 */
2176 	if (uaddr == addr)
2177 		return addr;
2178 
2179 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2180 		struct super_block *sb;
2181 
2182 		if (file) {
2183 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2184 			sb = file_inode(file)->i_sb;
2185 		} else {
2186 			/*
2187 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2188 			 * for "/dev/zero", to create a shared anonymous object.
2189 			 */
2190 			if (IS_ERR(shm_mnt))
2191 				return addr;
2192 			sb = shm_mnt->mnt_sb;
2193 		}
2194 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2195 			return addr;
2196 	}
2197 
2198 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2199 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2200 		return addr;
2201 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2202 		return addr;
2203 
2204 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2205 	if (inflated_len > TASK_SIZE)
2206 		return addr;
2207 	if (inflated_len < len)
2208 		return addr;
2209 
2210 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2211 	if (IS_ERR_VALUE(inflated_addr))
2212 		return addr;
2213 	if (inflated_addr & ~PAGE_MASK)
2214 		return addr;
2215 
2216 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2217 	inflated_addr += offset - inflated_offset;
2218 	if (inflated_offset > offset)
2219 		inflated_addr += HPAGE_PMD_SIZE;
2220 
2221 	if (inflated_addr > TASK_SIZE - len)
2222 		return addr;
2223 	return inflated_addr;
2224 }
2225 
2226 #ifdef CONFIG_NUMA
2227 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2228 {
2229 	struct inode *inode = file_inode(vma->vm_file);
2230 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2231 }
2232 
2233 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2234 					  unsigned long addr)
2235 {
2236 	struct inode *inode = file_inode(vma->vm_file);
2237 	pgoff_t index;
2238 
2239 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2240 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2241 }
2242 #endif
2243 
2244 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2245 {
2246 	struct inode *inode = file_inode(file);
2247 	struct shmem_inode_info *info = SHMEM_I(inode);
2248 	int retval = -ENOMEM;
2249 
2250 	/*
2251 	 * What serializes the accesses to info->flags?
2252 	 * ipc_lock_object() when called from shmctl_do_lock(),
2253 	 * no serialization needed when called from shm_destroy().
2254 	 */
2255 	if (lock && !(info->flags & VM_LOCKED)) {
2256 		if (!user_shm_lock(inode->i_size, ucounts))
2257 			goto out_nomem;
2258 		info->flags |= VM_LOCKED;
2259 		mapping_set_unevictable(file->f_mapping);
2260 	}
2261 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2262 		user_shm_unlock(inode->i_size, ucounts);
2263 		info->flags &= ~VM_LOCKED;
2264 		mapping_clear_unevictable(file->f_mapping);
2265 	}
2266 	retval = 0;
2267 
2268 out_nomem:
2269 	return retval;
2270 }
2271 
2272 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2273 {
2274 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2275 	int ret;
2276 
2277 	ret = seal_check_future_write(info->seals, vma);
2278 	if (ret)
2279 		return ret;
2280 
2281 	/* arm64 - allow memory tagging on RAM-based files */
2282 	vma->vm_flags |= VM_MTE_ALLOWED;
2283 
2284 	file_accessed(file);
2285 	vma->vm_ops = &shmem_vm_ops;
2286 	return 0;
2287 }
2288 
2289 #ifdef CONFIG_TMPFS_XATTR
2290 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2291 
2292 /*
2293  * chattr's fsflags are unrelated to extended attributes,
2294  * but tmpfs has chosen to enable them under the same config option.
2295  */
2296 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2297 {
2298 	unsigned int i_flags = 0;
2299 
2300 	if (fsflags & FS_NOATIME_FL)
2301 		i_flags |= S_NOATIME;
2302 	if (fsflags & FS_APPEND_FL)
2303 		i_flags |= S_APPEND;
2304 	if (fsflags & FS_IMMUTABLE_FL)
2305 		i_flags |= S_IMMUTABLE;
2306 	/*
2307 	 * But FS_NODUMP_FL does not require any action in i_flags.
2308 	 */
2309 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2310 }
2311 #else
2312 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2313 {
2314 }
2315 #define shmem_initxattrs NULL
2316 #endif
2317 
2318 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2319 				     umode_t mode, dev_t dev, unsigned long flags)
2320 {
2321 	struct inode *inode;
2322 	struct shmem_inode_info *info;
2323 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2324 	ino_t ino;
2325 
2326 	if (shmem_reserve_inode(sb, &ino))
2327 		return NULL;
2328 
2329 	inode = new_inode(sb);
2330 	if (inode) {
2331 		inode->i_ino = ino;
2332 		inode_init_owner(&init_user_ns, inode, dir, mode);
2333 		inode->i_blocks = 0;
2334 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2335 		inode->i_generation = get_random_u32();
2336 		info = SHMEM_I(inode);
2337 		memset(info, 0, (char *)inode - (char *)info);
2338 		spin_lock_init(&info->lock);
2339 		atomic_set(&info->stop_eviction, 0);
2340 		info->seals = F_SEAL_SEAL;
2341 		info->flags = flags & VM_NORESERVE;
2342 		info->i_crtime = inode->i_mtime;
2343 		info->fsflags = (dir == NULL) ? 0 :
2344 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2345 		if (info->fsflags)
2346 			shmem_set_inode_flags(inode, info->fsflags);
2347 		INIT_LIST_HEAD(&info->shrinklist);
2348 		INIT_LIST_HEAD(&info->swaplist);
2349 		simple_xattrs_init(&info->xattrs);
2350 		cache_no_acl(inode);
2351 		mapping_set_large_folios(inode->i_mapping);
2352 
2353 		switch (mode & S_IFMT) {
2354 		default:
2355 			inode->i_op = &shmem_special_inode_operations;
2356 			init_special_inode(inode, mode, dev);
2357 			break;
2358 		case S_IFREG:
2359 			inode->i_mapping->a_ops = &shmem_aops;
2360 			inode->i_op = &shmem_inode_operations;
2361 			inode->i_fop = &shmem_file_operations;
2362 			mpol_shared_policy_init(&info->policy,
2363 						 shmem_get_sbmpol(sbinfo));
2364 			break;
2365 		case S_IFDIR:
2366 			inc_nlink(inode);
2367 			/* Some things misbehave if size == 0 on a directory */
2368 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2369 			inode->i_op = &shmem_dir_inode_operations;
2370 			inode->i_fop = &simple_dir_operations;
2371 			break;
2372 		case S_IFLNK:
2373 			/*
2374 			 * Must not load anything in the rbtree,
2375 			 * mpol_free_shared_policy will not be called.
2376 			 */
2377 			mpol_shared_policy_init(&info->policy, NULL);
2378 			break;
2379 		}
2380 
2381 		lockdep_annotate_inode_mutex_key(inode);
2382 	} else
2383 		shmem_free_inode(sb);
2384 	return inode;
2385 }
2386 
2387 #ifdef CONFIG_USERFAULTFD
2388 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2389 			   pmd_t *dst_pmd,
2390 			   struct vm_area_struct *dst_vma,
2391 			   unsigned long dst_addr,
2392 			   unsigned long src_addr,
2393 			   bool zeropage, bool wp_copy,
2394 			   struct page **pagep)
2395 {
2396 	struct inode *inode = file_inode(dst_vma->vm_file);
2397 	struct shmem_inode_info *info = SHMEM_I(inode);
2398 	struct address_space *mapping = inode->i_mapping;
2399 	gfp_t gfp = mapping_gfp_mask(mapping);
2400 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2401 	void *page_kaddr;
2402 	struct folio *folio;
2403 	int ret;
2404 	pgoff_t max_off;
2405 
2406 	if (!shmem_inode_acct_block(inode, 1)) {
2407 		/*
2408 		 * We may have got a page, returned -ENOENT triggering a retry,
2409 		 * and now we find ourselves with -ENOMEM. Release the page, to
2410 		 * avoid a BUG_ON in our caller.
2411 		 */
2412 		if (unlikely(*pagep)) {
2413 			put_page(*pagep);
2414 			*pagep = NULL;
2415 		}
2416 		return -ENOMEM;
2417 	}
2418 
2419 	if (!*pagep) {
2420 		ret = -ENOMEM;
2421 		folio = shmem_alloc_folio(gfp, info, pgoff);
2422 		if (!folio)
2423 			goto out_unacct_blocks;
2424 
2425 		if (!zeropage) {	/* COPY */
2426 			page_kaddr = kmap_local_folio(folio, 0);
2427 			ret = copy_from_user(page_kaddr,
2428 					     (const void __user *)src_addr,
2429 					     PAGE_SIZE);
2430 			kunmap_local(page_kaddr);
2431 
2432 			/* fallback to copy_from_user outside mmap_lock */
2433 			if (unlikely(ret)) {
2434 				*pagep = &folio->page;
2435 				ret = -ENOENT;
2436 				/* don't free the page */
2437 				goto out_unacct_blocks;
2438 			}
2439 
2440 			flush_dcache_folio(folio);
2441 		} else {		/* ZEROPAGE */
2442 			clear_user_highpage(&folio->page, dst_addr);
2443 		}
2444 	} else {
2445 		folio = page_folio(*pagep);
2446 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2447 		*pagep = NULL;
2448 	}
2449 
2450 	VM_BUG_ON(folio_test_locked(folio));
2451 	VM_BUG_ON(folio_test_swapbacked(folio));
2452 	__folio_set_locked(folio);
2453 	__folio_set_swapbacked(folio);
2454 	__folio_mark_uptodate(folio);
2455 
2456 	ret = -EFAULT;
2457 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2458 	if (unlikely(pgoff >= max_off))
2459 		goto out_release;
2460 
2461 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2462 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2463 	if (ret)
2464 		goto out_release;
2465 
2466 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2467 				       &folio->page, true, wp_copy);
2468 	if (ret)
2469 		goto out_delete_from_cache;
2470 
2471 	spin_lock_irq(&info->lock);
2472 	info->alloced++;
2473 	inode->i_blocks += BLOCKS_PER_PAGE;
2474 	shmem_recalc_inode(inode);
2475 	spin_unlock_irq(&info->lock);
2476 
2477 	folio_unlock(folio);
2478 	return 0;
2479 out_delete_from_cache:
2480 	filemap_remove_folio(folio);
2481 out_release:
2482 	folio_unlock(folio);
2483 	folio_put(folio);
2484 out_unacct_blocks:
2485 	shmem_inode_unacct_blocks(inode, 1);
2486 	return ret;
2487 }
2488 #endif /* CONFIG_USERFAULTFD */
2489 
2490 #ifdef CONFIG_TMPFS
2491 static const struct inode_operations shmem_symlink_inode_operations;
2492 static const struct inode_operations shmem_short_symlink_operations;
2493 
2494 static int
2495 shmem_write_begin(struct file *file, struct address_space *mapping,
2496 			loff_t pos, unsigned len,
2497 			struct page **pagep, void **fsdata)
2498 {
2499 	struct inode *inode = mapping->host;
2500 	struct shmem_inode_info *info = SHMEM_I(inode);
2501 	pgoff_t index = pos >> PAGE_SHIFT;
2502 	struct folio *folio;
2503 	int ret = 0;
2504 
2505 	/* i_rwsem is held by caller */
2506 	if (unlikely(info->seals & (F_SEAL_GROW |
2507 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2508 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2509 			return -EPERM;
2510 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2511 			return -EPERM;
2512 	}
2513 
2514 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2515 
2516 	if (ret)
2517 		return ret;
2518 
2519 	*pagep = folio_file_page(folio, index);
2520 	if (PageHWPoison(*pagep)) {
2521 		folio_unlock(folio);
2522 		folio_put(folio);
2523 		*pagep = NULL;
2524 		return -EIO;
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 static int
2531 shmem_write_end(struct file *file, struct address_space *mapping,
2532 			loff_t pos, unsigned len, unsigned copied,
2533 			struct page *page, void *fsdata)
2534 {
2535 	struct inode *inode = mapping->host;
2536 
2537 	if (pos + copied > inode->i_size)
2538 		i_size_write(inode, pos + copied);
2539 
2540 	if (!PageUptodate(page)) {
2541 		struct page *head = compound_head(page);
2542 		if (PageTransCompound(page)) {
2543 			int i;
2544 
2545 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2546 				if (head + i == page)
2547 					continue;
2548 				clear_highpage(head + i);
2549 				flush_dcache_page(head + i);
2550 			}
2551 		}
2552 		if (copied < PAGE_SIZE) {
2553 			unsigned from = pos & (PAGE_SIZE - 1);
2554 			zero_user_segments(page, 0, from,
2555 					from + copied, PAGE_SIZE);
2556 		}
2557 		SetPageUptodate(head);
2558 	}
2559 	set_page_dirty(page);
2560 	unlock_page(page);
2561 	put_page(page);
2562 
2563 	return copied;
2564 }
2565 
2566 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2567 {
2568 	struct file *file = iocb->ki_filp;
2569 	struct inode *inode = file_inode(file);
2570 	struct address_space *mapping = inode->i_mapping;
2571 	pgoff_t index;
2572 	unsigned long offset;
2573 	int error = 0;
2574 	ssize_t retval = 0;
2575 	loff_t *ppos = &iocb->ki_pos;
2576 
2577 	index = *ppos >> PAGE_SHIFT;
2578 	offset = *ppos & ~PAGE_MASK;
2579 
2580 	for (;;) {
2581 		struct folio *folio = NULL;
2582 		struct page *page = NULL;
2583 		pgoff_t end_index;
2584 		unsigned long nr, ret;
2585 		loff_t i_size = i_size_read(inode);
2586 
2587 		end_index = i_size >> PAGE_SHIFT;
2588 		if (index > end_index)
2589 			break;
2590 		if (index == end_index) {
2591 			nr = i_size & ~PAGE_MASK;
2592 			if (nr <= offset)
2593 				break;
2594 		}
2595 
2596 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2597 		if (error) {
2598 			if (error == -EINVAL)
2599 				error = 0;
2600 			break;
2601 		}
2602 		if (folio) {
2603 			folio_unlock(folio);
2604 
2605 			page = folio_file_page(folio, index);
2606 			if (PageHWPoison(page)) {
2607 				folio_put(folio);
2608 				error = -EIO;
2609 				break;
2610 			}
2611 		}
2612 
2613 		/*
2614 		 * We must evaluate after, since reads (unlike writes)
2615 		 * are called without i_rwsem protection against truncate
2616 		 */
2617 		nr = PAGE_SIZE;
2618 		i_size = i_size_read(inode);
2619 		end_index = i_size >> PAGE_SHIFT;
2620 		if (index == end_index) {
2621 			nr = i_size & ~PAGE_MASK;
2622 			if (nr <= offset) {
2623 				if (folio)
2624 					folio_put(folio);
2625 				break;
2626 			}
2627 		}
2628 		nr -= offset;
2629 
2630 		if (folio) {
2631 			/*
2632 			 * If users can be writing to this page using arbitrary
2633 			 * virtual addresses, take care about potential aliasing
2634 			 * before reading the page on the kernel side.
2635 			 */
2636 			if (mapping_writably_mapped(mapping))
2637 				flush_dcache_page(page);
2638 			/*
2639 			 * Mark the page accessed if we read the beginning.
2640 			 */
2641 			if (!offset)
2642 				folio_mark_accessed(folio);
2643 			/*
2644 			 * Ok, we have the page, and it's up-to-date, so
2645 			 * now we can copy it to user space...
2646 			 */
2647 			ret = copy_page_to_iter(page, offset, nr, to);
2648 			folio_put(folio);
2649 
2650 		} else if (user_backed_iter(to)) {
2651 			/*
2652 			 * Copy to user tends to be so well optimized, but
2653 			 * clear_user() not so much, that it is noticeably
2654 			 * faster to copy the zero page instead of clearing.
2655 			 */
2656 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2657 		} else {
2658 			/*
2659 			 * But submitting the same page twice in a row to
2660 			 * splice() - or others? - can result in confusion:
2661 			 * so don't attempt that optimization on pipes etc.
2662 			 */
2663 			ret = iov_iter_zero(nr, to);
2664 		}
2665 
2666 		retval += ret;
2667 		offset += ret;
2668 		index += offset >> PAGE_SHIFT;
2669 		offset &= ~PAGE_MASK;
2670 
2671 		if (!iov_iter_count(to))
2672 			break;
2673 		if (ret < nr) {
2674 			error = -EFAULT;
2675 			break;
2676 		}
2677 		cond_resched();
2678 	}
2679 
2680 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2681 	file_accessed(file);
2682 	return retval ? retval : error;
2683 }
2684 
2685 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2686 {
2687 	struct address_space *mapping = file->f_mapping;
2688 	struct inode *inode = mapping->host;
2689 
2690 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2691 		return generic_file_llseek_size(file, offset, whence,
2692 					MAX_LFS_FILESIZE, i_size_read(inode));
2693 	if (offset < 0)
2694 		return -ENXIO;
2695 
2696 	inode_lock(inode);
2697 	/* We're holding i_rwsem so we can access i_size directly */
2698 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2699 	if (offset >= 0)
2700 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2701 	inode_unlock(inode);
2702 	return offset;
2703 }
2704 
2705 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2706 							 loff_t len)
2707 {
2708 	struct inode *inode = file_inode(file);
2709 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2710 	struct shmem_inode_info *info = SHMEM_I(inode);
2711 	struct shmem_falloc shmem_falloc;
2712 	pgoff_t start, index, end, undo_fallocend;
2713 	int error;
2714 
2715 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2716 		return -EOPNOTSUPP;
2717 
2718 	inode_lock(inode);
2719 
2720 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2721 		struct address_space *mapping = file->f_mapping;
2722 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2723 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2724 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2725 
2726 		/* protected by i_rwsem */
2727 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2728 			error = -EPERM;
2729 			goto out;
2730 		}
2731 
2732 		shmem_falloc.waitq = &shmem_falloc_waitq;
2733 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2734 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2735 		spin_lock(&inode->i_lock);
2736 		inode->i_private = &shmem_falloc;
2737 		spin_unlock(&inode->i_lock);
2738 
2739 		if ((u64)unmap_end > (u64)unmap_start)
2740 			unmap_mapping_range(mapping, unmap_start,
2741 					    1 + unmap_end - unmap_start, 0);
2742 		shmem_truncate_range(inode, offset, offset + len - 1);
2743 		/* No need to unmap again: hole-punching leaves COWed pages */
2744 
2745 		spin_lock(&inode->i_lock);
2746 		inode->i_private = NULL;
2747 		wake_up_all(&shmem_falloc_waitq);
2748 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2749 		spin_unlock(&inode->i_lock);
2750 		error = 0;
2751 		goto out;
2752 	}
2753 
2754 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2755 	error = inode_newsize_ok(inode, offset + len);
2756 	if (error)
2757 		goto out;
2758 
2759 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2760 		error = -EPERM;
2761 		goto out;
2762 	}
2763 
2764 	start = offset >> PAGE_SHIFT;
2765 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2766 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2767 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2768 		error = -ENOSPC;
2769 		goto out;
2770 	}
2771 
2772 	shmem_falloc.waitq = NULL;
2773 	shmem_falloc.start = start;
2774 	shmem_falloc.next  = start;
2775 	shmem_falloc.nr_falloced = 0;
2776 	shmem_falloc.nr_unswapped = 0;
2777 	spin_lock(&inode->i_lock);
2778 	inode->i_private = &shmem_falloc;
2779 	spin_unlock(&inode->i_lock);
2780 
2781 	/*
2782 	 * info->fallocend is only relevant when huge pages might be
2783 	 * involved: to prevent split_huge_page() freeing fallocated
2784 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2785 	 */
2786 	undo_fallocend = info->fallocend;
2787 	if (info->fallocend < end)
2788 		info->fallocend = end;
2789 
2790 	for (index = start; index < end; ) {
2791 		struct folio *folio;
2792 
2793 		/*
2794 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2795 		 * been interrupted because we are using up too much memory.
2796 		 */
2797 		if (signal_pending(current))
2798 			error = -EINTR;
2799 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2800 			error = -ENOMEM;
2801 		else
2802 			error = shmem_get_folio(inode, index, &folio,
2803 						SGP_FALLOC);
2804 		if (error) {
2805 			info->fallocend = undo_fallocend;
2806 			/* Remove the !uptodate folios we added */
2807 			if (index > start) {
2808 				shmem_undo_range(inode,
2809 				    (loff_t)start << PAGE_SHIFT,
2810 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2811 			}
2812 			goto undone;
2813 		}
2814 
2815 		/*
2816 		 * Here is a more important optimization than it appears:
2817 		 * a second SGP_FALLOC on the same large folio will clear it,
2818 		 * making it uptodate and un-undoable if we fail later.
2819 		 */
2820 		index = folio_next_index(folio);
2821 		/* Beware 32-bit wraparound */
2822 		if (!index)
2823 			index--;
2824 
2825 		/*
2826 		 * Inform shmem_writepage() how far we have reached.
2827 		 * No need for lock or barrier: we have the page lock.
2828 		 */
2829 		if (!folio_test_uptodate(folio))
2830 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2831 		shmem_falloc.next = index;
2832 
2833 		/*
2834 		 * If !uptodate, leave it that way so that freeable folios
2835 		 * can be recognized if we need to rollback on error later.
2836 		 * But mark it dirty so that memory pressure will swap rather
2837 		 * than free the folios we are allocating (and SGP_CACHE folios
2838 		 * might still be clean: we now need to mark those dirty too).
2839 		 */
2840 		folio_mark_dirty(folio);
2841 		folio_unlock(folio);
2842 		folio_put(folio);
2843 		cond_resched();
2844 	}
2845 
2846 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2847 		i_size_write(inode, offset + len);
2848 undone:
2849 	spin_lock(&inode->i_lock);
2850 	inode->i_private = NULL;
2851 	spin_unlock(&inode->i_lock);
2852 out:
2853 	if (!error)
2854 		file_modified(file);
2855 	inode_unlock(inode);
2856 	return error;
2857 }
2858 
2859 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2860 {
2861 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2862 
2863 	buf->f_type = TMPFS_MAGIC;
2864 	buf->f_bsize = PAGE_SIZE;
2865 	buf->f_namelen = NAME_MAX;
2866 	if (sbinfo->max_blocks) {
2867 		buf->f_blocks = sbinfo->max_blocks;
2868 		buf->f_bavail =
2869 		buf->f_bfree  = sbinfo->max_blocks -
2870 				percpu_counter_sum(&sbinfo->used_blocks);
2871 	}
2872 	if (sbinfo->max_inodes) {
2873 		buf->f_files = sbinfo->max_inodes;
2874 		buf->f_ffree = sbinfo->free_inodes;
2875 	}
2876 	/* else leave those fields 0 like simple_statfs */
2877 
2878 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2879 
2880 	return 0;
2881 }
2882 
2883 /*
2884  * File creation. Allocate an inode, and we're done..
2885  */
2886 static int
2887 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2888 	    struct dentry *dentry, umode_t mode, dev_t dev)
2889 {
2890 	struct inode *inode;
2891 	int error = -ENOSPC;
2892 
2893 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2894 	if (inode) {
2895 		error = simple_acl_create(dir, inode);
2896 		if (error)
2897 			goto out_iput;
2898 		error = security_inode_init_security(inode, dir,
2899 						     &dentry->d_name,
2900 						     shmem_initxattrs, NULL);
2901 		if (error && error != -EOPNOTSUPP)
2902 			goto out_iput;
2903 
2904 		error = 0;
2905 		dir->i_size += BOGO_DIRENT_SIZE;
2906 		dir->i_ctime = dir->i_mtime = current_time(dir);
2907 		inode_inc_iversion(dir);
2908 		d_instantiate(dentry, inode);
2909 		dget(dentry); /* Extra count - pin the dentry in core */
2910 	}
2911 	return error;
2912 out_iput:
2913 	iput(inode);
2914 	return error;
2915 }
2916 
2917 static int
2918 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2919 	      struct file *file, umode_t mode)
2920 {
2921 	struct inode *inode;
2922 	int error = -ENOSPC;
2923 
2924 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2925 	if (inode) {
2926 		error = security_inode_init_security(inode, dir,
2927 						     NULL,
2928 						     shmem_initxattrs, NULL);
2929 		if (error && error != -EOPNOTSUPP)
2930 			goto out_iput;
2931 		error = simple_acl_create(dir, inode);
2932 		if (error)
2933 			goto out_iput;
2934 		d_tmpfile(file, inode);
2935 	}
2936 	return finish_open_simple(file, error);
2937 out_iput:
2938 	iput(inode);
2939 	return error;
2940 }
2941 
2942 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2943 		       struct dentry *dentry, umode_t mode)
2944 {
2945 	int error;
2946 
2947 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2948 				 mode | S_IFDIR, 0)))
2949 		return error;
2950 	inc_nlink(dir);
2951 	return 0;
2952 }
2953 
2954 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2955 			struct dentry *dentry, umode_t mode, bool excl)
2956 {
2957 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2958 }
2959 
2960 /*
2961  * Link a file..
2962  */
2963 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2964 {
2965 	struct inode *inode = d_inode(old_dentry);
2966 	int ret = 0;
2967 
2968 	/*
2969 	 * No ordinary (disk based) filesystem counts links as inodes;
2970 	 * but each new link needs a new dentry, pinning lowmem, and
2971 	 * tmpfs dentries cannot be pruned until they are unlinked.
2972 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2973 	 * first link must skip that, to get the accounting right.
2974 	 */
2975 	if (inode->i_nlink) {
2976 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2977 		if (ret)
2978 			goto out;
2979 	}
2980 
2981 	dir->i_size += BOGO_DIRENT_SIZE;
2982 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2983 	inode_inc_iversion(dir);
2984 	inc_nlink(inode);
2985 	ihold(inode);	/* New dentry reference */
2986 	dget(dentry);		/* Extra pinning count for the created dentry */
2987 	d_instantiate(dentry, inode);
2988 out:
2989 	return ret;
2990 }
2991 
2992 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2993 {
2994 	struct inode *inode = d_inode(dentry);
2995 
2996 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2997 		shmem_free_inode(inode->i_sb);
2998 
2999 	dir->i_size -= BOGO_DIRENT_SIZE;
3000 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3001 	inode_inc_iversion(dir);
3002 	drop_nlink(inode);
3003 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3004 	return 0;
3005 }
3006 
3007 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3008 {
3009 	if (!simple_empty(dentry))
3010 		return -ENOTEMPTY;
3011 
3012 	drop_nlink(d_inode(dentry));
3013 	drop_nlink(dir);
3014 	return shmem_unlink(dir, dentry);
3015 }
3016 
3017 static int shmem_whiteout(struct user_namespace *mnt_userns,
3018 			  struct inode *old_dir, struct dentry *old_dentry)
3019 {
3020 	struct dentry *whiteout;
3021 	int error;
3022 
3023 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3024 	if (!whiteout)
3025 		return -ENOMEM;
3026 
3027 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3028 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3029 	dput(whiteout);
3030 	if (error)
3031 		return error;
3032 
3033 	/*
3034 	 * Cheat and hash the whiteout while the old dentry is still in
3035 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3036 	 *
3037 	 * d_lookup() will consistently find one of them at this point,
3038 	 * not sure which one, but that isn't even important.
3039 	 */
3040 	d_rehash(whiteout);
3041 	return 0;
3042 }
3043 
3044 /*
3045  * The VFS layer already does all the dentry stuff for rename,
3046  * we just have to decrement the usage count for the target if
3047  * it exists so that the VFS layer correctly free's it when it
3048  * gets overwritten.
3049  */
3050 static int shmem_rename2(struct user_namespace *mnt_userns,
3051 			 struct inode *old_dir, struct dentry *old_dentry,
3052 			 struct inode *new_dir, struct dentry *new_dentry,
3053 			 unsigned int flags)
3054 {
3055 	struct inode *inode = d_inode(old_dentry);
3056 	int they_are_dirs = S_ISDIR(inode->i_mode);
3057 
3058 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3059 		return -EINVAL;
3060 
3061 	if (flags & RENAME_EXCHANGE)
3062 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3063 
3064 	if (!simple_empty(new_dentry))
3065 		return -ENOTEMPTY;
3066 
3067 	if (flags & RENAME_WHITEOUT) {
3068 		int error;
3069 
3070 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3071 		if (error)
3072 			return error;
3073 	}
3074 
3075 	if (d_really_is_positive(new_dentry)) {
3076 		(void) shmem_unlink(new_dir, new_dentry);
3077 		if (they_are_dirs) {
3078 			drop_nlink(d_inode(new_dentry));
3079 			drop_nlink(old_dir);
3080 		}
3081 	} else if (they_are_dirs) {
3082 		drop_nlink(old_dir);
3083 		inc_nlink(new_dir);
3084 	}
3085 
3086 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3087 	new_dir->i_size += BOGO_DIRENT_SIZE;
3088 	old_dir->i_ctime = old_dir->i_mtime =
3089 	new_dir->i_ctime = new_dir->i_mtime =
3090 	inode->i_ctime = current_time(old_dir);
3091 	inode_inc_iversion(old_dir);
3092 	inode_inc_iversion(new_dir);
3093 	return 0;
3094 }
3095 
3096 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3097 			 struct dentry *dentry, const char *symname)
3098 {
3099 	int error;
3100 	int len;
3101 	struct inode *inode;
3102 	struct folio *folio;
3103 
3104 	len = strlen(symname) + 1;
3105 	if (len > PAGE_SIZE)
3106 		return -ENAMETOOLONG;
3107 
3108 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3109 				VM_NORESERVE);
3110 	if (!inode)
3111 		return -ENOSPC;
3112 
3113 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3114 					     shmem_initxattrs, NULL);
3115 	if (error && error != -EOPNOTSUPP) {
3116 		iput(inode);
3117 		return error;
3118 	}
3119 
3120 	inode->i_size = len-1;
3121 	if (len <= SHORT_SYMLINK_LEN) {
3122 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3123 		if (!inode->i_link) {
3124 			iput(inode);
3125 			return -ENOMEM;
3126 		}
3127 		inode->i_op = &shmem_short_symlink_operations;
3128 	} else {
3129 		inode_nohighmem(inode);
3130 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3131 		if (error) {
3132 			iput(inode);
3133 			return error;
3134 		}
3135 		inode->i_mapping->a_ops = &shmem_aops;
3136 		inode->i_op = &shmem_symlink_inode_operations;
3137 		memcpy(folio_address(folio), symname, len);
3138 		folio_mark_uptodate(folio);
3139 		folio_mark_dirty(folio);
3140 		folio_unlock(folio);
3141 		folio_put(folio);
3142 	}
3143 	dir->i_size += BOGO_DIRENT_SIZE;
3144 	dir->i_ctime = dir->i_mtime = current_time(dir);
3145 	inode_inc_iversion(dir);
3146 	d_instantiate(dentry, inode);
3147 	dget(dentry);
3148 	return 0;
3149 }
3150 
3151 static void shmem_put_link(void *arg)
3152 {
3153 	folio_mark_accessed(arg);
3154 	folio_put(arg);
3155 }
3156 
3157 static const char *shmem_get_link(struct dentry *dentry,
3158 				  struct inode *inode,
3159 				  struct delayed_call *done)
3160 {
3161 	struct folio *folio = NULL;
3162 	int error;
3163 
3164 	if (!dentry) {
3165 		folio = filemap_get_folio(inode->i_mapping, 0);
3166 		if (!folio)
3167 			return ERR_PTR(-ECHILD);
3168 		if (PageHWPoison(folio_page(folio, 0)) ||
3169 		    !folio_test_uptodate(folio)) {
3170 			folio_put(folio);
3171 			return ERR_PTR(-ECHILD);
3172 		}
3173 	} else {
3174 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3175 		if (error)
3176 			return ERR_PTR(error);
3177 		if (!folio)
3178 			return ERR_PTR(-ECHILD);
3179 		if (PageHWPoison(folio_page(folio, 0))) {
3180 			folio_unlock(folio);
3181 			folio_put(folio);
3182 			return ERR_PTR(-ECHILD);
3183 		}
3184 		folio_unlock(folio);
3185 	}
3186 	set_delayed_call(done, shmem_put_link, folio);
3187 	return folio_address(folio);
3188 }
3189 
3190 #ifdef CONFIG_TMPFS_XATTR
3191 
3192 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3193 {
3194 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3195 
3196 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3197 
3198 	return 0;
3199 }
3200 
3201 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3202 			      struct dentry *dentry, struct fileattr *fa)
3203 {
3204 	struct inode *inode = d_inode(dentry);
3205 	struct shmem_inode_info *info = SHMEM_I(inode);
3206 
3207 	if (fileattr_has_fsx(fa))
3208 		return -EOPNOTSUPP;
3209 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3210 		return -EOPNOTSUPP;
3211 
3212 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3213 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3214 
3215 	shmem_set_inode_flags(inode, info->fsflags);
3216 	inode->i_ctime = current_time(inode);
3217 	inode_inc_iversion(inode);
3218 	return 0;
3219 }
3220 
3221 /*
3222  * Superblocks without xattr inode operations may get some security.* xattr
3223  * support from the LSM "for free". As soon as we have any other xattrs
3224  * like ACLs, we also need to implement the security.* handlers at
3225  * filesystem level, though.
3226  */
3227 
3228 /*
3229  * Callback for security_inode_init_security() for acquiring xattrs.
3230  */
3231 static int shmem_initxattrs(struct inode *inode,
3232 			    const struct xattr *xattr_array,
3233 			    void *fs_info)
3234 {
3235 	struct shmem_inode_info *info = SHMEM_I(inode);
3236 	const struct xattr *xattr;
3237 	struct simple_xattr *new_xattr;
3238 	size_t len;
3239 
3240 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3241 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3242 		if (!new_xattr)
3243 			return -ENOMEM;
3244 
3245 		len = strlen(xattr->name) + 1;
3246 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3247 					  GFP_KERNEL);
3248 		if (!new_xattr->name) {
3249 			kvfree(new_xattr);
3250 			return -ENOMEM;
3251 		}
3252 
3253 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3254 		       XATTR_SECURITY_PREFIX_LEN);
3255 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3256 		       xattr->name, len);
3257 
3258 		simple_xattr_list_add(&info->xattrs, new_xattr);
3259 	}
3260 
3261 	return 0;
3262 }
3263 
3264 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3265 				   struct dentry *unused, struct inode *inode,
3266 				   const char *name, void *buffer, size_t size)
3267 {
3268 	struct shmem_inode_info *info = SHMEM_I(inode);
3269 
3270 	name = xattr_full_name(handler, name);
3271 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3272 }
3273 
3274 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3275 				   struct user_namespace *mnt_userns,
3276 				   struct dentry *unused, struct inode *inode,
3277 				   const char *name, const void *value,
3278 				   size_t size, int flags)
3279 {
3280 	struct shmem_inode_info *info = SHMEM_I(inode);
3281 	int err;
3282 
3283 	name = xattr_full_name(handler, name);
3284 	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3285 	if (!err) {
3286 		inode->i_ctime = current_time(inode);
3287 		inode_inc_iversion(inode);
3288 	}
3289 	return err;
3290 }
3291 
3292 static const struct xattr_handler shmem_security_xattr_handler = {
3293 	.prefix = XATTR_SECURITY_PREFIX,
3294 	.get = shmem_xattr_handler_get,
3295 	.set = shmem_xattr_handler_set,
3296 };
3297 
3298 static const struct xattr_handler shmem_trusted_xattr_handler = {
3299 	.prefix = XATTR_TRUSTED_PREFIX,
3300 	.get = shmem_xattr_handler_get,
3301 	.set = shmem_xattr_handler_set,
3302 };
3303 
3304 static const struct xattr_handler *shmem_xattr_handlers[] = {
3305 #ifdef CONFIG_TMPFS_POSIX_ACL
3306 	&posix_acl_access_xattr_handler,
3307 	&posix_acl_default_xattr_handler,
3308 #endif
3309 	&shmem_security_xattr_handler,
3310 	&shmem_trusted_xattr_handler,
3311 	NULL
3312 };
3313 
3314 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3315 {
3316 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3317 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3318 }
3319 #endif /* CONFIG_TMPFS_XATTR */
3320 
3321 static const struct inode_operations shmem_short_symlink_operations = {
3322 	.getattr	= shmem_getattr,
3323 	.get_link	= simple_get_link,
3324 #ifdef CONFIG_TMPFS_XATTR
3325 	.listxattr	= shmem_listxattr,
3326 #endif
3327 };
3328 
3329 static const struct inode_operations shmem_symlink_inode_operations = {
3330 	.getattr	= shmem_getattr,
3331 	.get_link	= shmem_get_link,
3332 #ifdef CONFIG_TMPFS_XATTR
3333 	.listxattr	= shmem_listxattr,
3334 #endif
3335 };
3336 
3337 static struct dentry *shmem_get_parent(struct dentry *child)
3338 {
3339 	return ERR_PTR(-ESTALE);
3340 }
3341 
3342 static int shmem_match(struct inode *ino, void *vfh)
3343 {
3344 	__u32 *fh = vfh;
3345 	__u64 inum = fh[2];
3346 	inum = (inum << 32) | fh[1];
3347 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3348 }
3349 
3350 /* Find any alias of inode, but prefer a hashed alias */
3351 static struct dentry *shmem_find_alias(struct inode *inode)
3352 {
3353 	struct dentry *alias = d_find_alias(inode);
3354 
3355 	return alias ?: d_find_any_alias(inode);
3356 }
3357 
3358 
3359 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3360 		struct fid *fid, int fh_len, int fh_type)
3361 {
3362 	struct inode *inode;
3363 	struct dentry *dentry = NULL;
3364 	u64 inum;
3365 
3366 	if (fh_len < 3)
3367 		return NULL;
3368 
3369 	inum = fid->raw[2];
3370 	inum = (inum << 32) | fid->raw[1];
3371 
3372 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3373 			shmem_match, fid->raw);
3374 	if (inode) {
3375 		dentry = shmem_find_alias(inode);
3376 		iput(inode);
3377 	}
3378 
3379 	return dentry;
3380 }
3381 
3382 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3383 				struct inode *parent)
3384 {
3385 	if (*len < 3) {
3386 		*len = 3;
3387 		return FILEID_INVALID;
3388 	}
3389 
3390 	if (inode_unhashed(inode)) {
3391 		/* Unfortunately insert_inode_hash is not idempotent,
3392 		 * so as we hash inodes here rather than at creation
3393 		 * time, we need a lock to ensure we only try
3394 		 * to do it once
3395 		 */
3396 		static DEFINE_SPINLOCK(lock);
3397 		spin_lock(&lock);
3398 		if (inode_unhashed(inode))
3399 			__insert_inode_hash(inode,
3400 					    inode->i_ino + inode->i_generation);
3401 		spin_unlock(&lock);
3402 	}
3403 
3404 	fh[0] = inode->i_generation;
3405 	fh[1] = inode->i_ino;
3406 	fh[2] = ((__u64)inode->i_ino) >> 32;
3407 
3408 	*len = 3;
3409 	return 1;
3410 }
3411 
3412 static const struct export_operations shmem_export_ops = {
3413 	.get_parent     = shmem_get_parent,
3414 	.encode_fh      = shmem_encode_fh,
3415 	.fh_to_dentry	= shmem_fh_to_dentry,
3416 };
3417 
3418 enum shmem_param {
3419 	Opt_gid,
3420 	Opt_huge,
3421 	Opt_mode,
3422 	Opt_mpol,
3423 	Opt_nr_blocks,
3424 	Opt_nr_inodes,
3425 	Opt_size,
3426 	Opt_uid,
3427 	Opt_inode32,
3428 	Opt_inode64,
3429 };
3430 
3431 static const struct constant_table shmem_param_enums_huge[] = {
3432 	{"never",	SHMEM_HUGE_NEVER },
3433 	{"always",	SHMEM_HUGE_ALWAYS },
3434 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3435 	{"advise",	SHMEM_HUGE_ADVISE },
3436 	{}
3437 };
3438 
3439 const struct fs_parameter_spec shmem_fs_parameters[] = {
3440 	fsparam_u32   ("gid",		Opt_gid),
3441 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3442 	fsparam_u32oct("mode",		Opt_mode),
3443 	fsparam_string("mpol",		Opt_mpol),
3444 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3445 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3446 	fsparam_string("size",		Opt_size),
3447 	fsparam_u32   ("uid",		Opt_uid),
3448 	fsparam_flag  ("inode32",	Opt_inode32),
3449 	fsparam_flag  ("inode64",	Opt_inode64),
3450 	{}
3451 };
3452 
3453 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3454 {
3455 	struct shmem_options *ctx = fc->fs_private;
3456 	struct fs_parse_result result;
3457 	unsigned long long size;
3458 	char *rest;
3459 	int opt;
3460 
3461 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3462 	if (opt < 0)
3463 		return opt;
3464 
3465 	switch (opt) {
3466 	case Opt_size:
3467 		size = memparse(param->string, &rest);
3468 		if (*rest == '%') {
3469 			size <<= PAGE_SHIFT;
3470 			size *= totalram_pages();
3471 			do_div(size, 100);
3472 			rest++;
3473 		}
3474 		if (*rest)
3475 			goto bad_value;
3476 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3477 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3478 		break;
3479 	case Opt_nr_blocks:
3480 		ctx->blocks = memparse(param->string, &rest);
3481 		if (*rest || ctx->blocks > S64_MAX)
3482 			goto bad_value;
3483 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3484 		break;
3485 	case Opt_nr_inodes:
3486 		ctx->inodes = memparse(param->string, &rest);
3487 		if (*rest)
3488 			goto bad_value;
3489 		ctx->seen |= SHMEM_SEEN_INODES;
3490 		break;
3491 	case Opt_mode:
3492 		ctx->mode = result.uint_32 & 07777;
3493 		break;
3494 	case Opt_uid:
3495 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3496 		if (!uid_valid(ctx->uid))
3497 			goto bad_value;
3498 		break;
3499 	case Opt_gid:
3500 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3501 		if (!gid_valid(ctx->gid))
3502 			goto bad_value;
3503 		break;
3504 	case Opt_huge:
3505 		ctx->huge = result.uint_32;
3506 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3507 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3508 		      has_transparent_hugepage()))
3509 			goto unsupported_parameter;
3510 		ctx->seen |= SHMEM_SEEN_HUGE;
3511 		break;
3512 	case Opt_mpol:
3513 		if (IS_ENABLED(CONFIG_NUMA)) {
3514 			mpol_put(ctx->mpol);
3515 			ctx->mpol = NULL;
3516 			if (mpol_parse_str(param->string, &ctx->mpol))
3517 				goto bad_value;
3518 			break;
3519 		}
3520 		goto unsupported_parameter;
3521 	case Opt_inode32:
3522 		ctx->full_inums = false;
3523 		ctx->seen |= SHMEM_SEEN_INUMS;
3524 		break;
3525 	case Opt_inode64:
3526 		if (sizeof(ino_t) < 8) {
3527 			return invalfc(fc,
3528 				       "Cannot use inode64 with <64bit inums in kernel\n");
3529 		}
3530 		ctx->full_inums = true;
3531 		ctx->seen |= SHMEM_SEEN_INUMS;
3532 		break;
3533 	}
3534 	return 0;
3535 
3536 unsupported_parameter:
3537 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3538 bad_value:
3539 	return invalfc(fc, "Bad value for '%s'", param->key);
3540 }
3541 
3542 static int shmem_parse_options(struct fs_context *fc, void *data)
3543 {
3544 	char *options = data;
3545 
3546 	if (options) {
3547 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3548 		if (err)
3549 			return err;
3550 	}
3551 
3552 	while (options != NULL) {
3553 		char *this_char = options;
3554 		for (;;) {
3555 			/*
3556 			 * NUL-terminate this option: unfortunately,
3557 			 * mount options form a comma-separated list,
3558 			 * but mpol's nodelist may also contain commas.
3559 			 */
3560 			options = strchr(options, ',');
3561 			if (options == NULL)
3562 				break;
3563 			options++;
3564 			if (!isdigit(*options)) {
3565 				options[-1] = '\0';
3566 				break;
3567 			}
3568 		}
3569 		if (*this_char) {
3570 			char *value = strchr(this_char, '=');
3571 			size_t len = 0;
3572 			int err;
3573 
3574 			if (value) {
3575 				*value++ = '\0';
3576 				len = strlen(value);
3577 			}
3578 			err = vfs_parse_fs_string(fc, this_char, value, len);
3579 			if (err < 0)
3580 				return err;
3581 		}
3582 	}
3583 	return 0;
3584 }
3585 
3586 /*
3587  * Reconfigure a shmem filesystem.
3588  *
3589  * Note that we disallow change from limited->unlimited blocks/inodes while any
3590  * are in use; but we must separately disallow unlimited->limited, because in
3591  * that case we have no record of how much is already in use.
3592  */
3593 static int shmem_reconfigure(struct fs_context *fc)
3594 {
3595 	struct shmem_options *ctx = fc->fs_private;
3596 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3597 	unsigned long inodes;
3598 	struct mempolicy *mpol = NULL;
3599 	const char *err;
3600 
3601 	raw_spin_lock(&sbinfo->stat_lock);
3602 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3603 
3604 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3605 		if (!sbinfo->max_blocks) {
3606 			err = "Cannot retroactively limit size";
3607 			goto out;
3608 		}
3609 		if (percpu_counter_compare(&sbinfo->used_blocks,
3610 					   ctx->blocks) > 0) {
3611 			err = "Too small a size for current use";
3612 			goto out;
3613 		}
3614 	}
3615 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3616 		if (!sbinfo->max_inodes) {
3617 			err = "Cannot retroactively limit inodes";
3618 			goto out;
3619 		}
3620 		if (ctx->inodes < inodes) {
3621 			err = "Too few inodes for current use";
3622 			goto out;
3623 		}
3624 	}
3625 
3626 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3627 	    sbinfo->next_ino > UINT_MAX) {
3628 		err = "Current inum too high to switch to 32-bit inums";
3629 		goto out;
3630 	}
3631 
3632 	if (ctx->seen & SHMEM_SEEN_HUGE)
3633 		sbinfo->huge = ctx->huge;
3634 	if (ctx->seen & SHMEM_SEEN_INUMS)
3635 		sbinfo->full_inums = ctx->full_inums;
3636 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3637 		sbinfo->max_blocks  = ctx->blocks;
3638 	if (ctx->seen & SHMEM_SEEN_INODES) {
3639 		sbinfo->max_inodes  = ctx->inodes;
3640 		sbinfo->free_inodes = ctx->inodes - inodes;
3641 	}
3642 
3643 	/*
3644 	 * Preserve previous mempolicy unless mpol remount option was specified.
3645 	 */
3646 	if (ctx->mpol) {
3647 		mpol = sbinfo->mpol;
3648 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3649 		ctx->mpol = NULL;
3650 	}
3651 	raw_spin_unlock(&sbinfo->stat_lock);
3652 	mpol_put(mpol);
3653 	return 0;
3654 out:
3655 	raw_spin_unlock(&sbinfo->stat_lock);
3656 	return invalfc(fc, "%s", err);
3657 }
3658 
3659 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3660 {
3661 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3662 
3663 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3664 		seq_printf(seq, ",size=%luk",
3665 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3666 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3667 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3668 	if (sbinfo->mode != (0777 | S_ISVTX))
3669 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3670 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3671 		seq_printf(seq, ",uid=%u",
3672 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3673 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3674 		seq_printf(seq, ",gid=%u",
3675 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3676 
3677 	/*
3678 	 * Showing inode{64,32} might be useful even if it's the system default,
3679 	 * since then people don't have to resort to checking both here and
3680 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3681 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3682 	 *
3683 	 * We hide it when inode64 isn't the default and we are using 32-bit
3684 	 * inodes, since that probably just means the feature isn't even under
3685 	 * consideration.
3686 	 *
3687 	 * As such:
3688 	 *
3689 	 *                     +-----------------+-----------------+
3690 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3691 	 *  +------------------+-----------------+-----------------+
3692 	 *  | full_inums=true  | show            | show            |
3693 	 *  | full_inums=false | show            | hide            |
3694 	 *  +------------------+-----------------+-----------------+
3695 	 *
3696 	 */
3697 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3698 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3700 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3701 	if (sbinfo->huge)
3702 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3703 #endif
3704 	shmem_show_mpol(seq, sbinfo->mpol);
3705 	return 0;
3706 }
3707 
3708 #endif /* CONFIG_TMPFS */
3709 
3710 static void shmem_put_super(struct super_block *sb)
3711 {
3712 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3713 
3714 	free_percpu(sbinfo->ino_batch);
3715 	percpu_counter_destroy(&sbinfo->used_blocks);
3716 	mpol_put(sbinfo->mpol);
3717 	kfree(sbinfo);
3718 	sb->s_fs_info = NULL;
3719 }
3720 
3721 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3722 {
3723 	struct shmem_options *ctx = fc->fs_private;
3724 	struct inode *inode;
3725 	struct shmem_sb_info *sbinfo;
3726 
3727 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3728 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3729 				L1_CACHE_BYTES), GFP_KERNEL);
3730 	if (!sbinfo)
3731 		return -ENOMEM;
3732 
3733 	sb->s_fs_info = sbinfo;
3734 
3735 #ifdef CONFIG_TMPFS
3736 	/*
3737 	 * Per default we only allow half of the physical ram per
3738 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3739 	 * but the internal instance is left unlimited.
3740 	 */
3741 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3742 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3743 			ctx->blocks = shmem_default_max_blocks();
3744 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3745 			ctx->inodes = shmem_default_max_inodes();
3746 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3747 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3748 	} else {
3749 		sb->s_flags |= SB_NOUSER;
3750 	}
3751 	sb->s_export_op = &shmem_export_ops;
3752 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3753 #else
3754 	sb->s_flags |= SB_NOUSER;
3755 #endif
3756 	sbinfo->max_blocks = ctx->blocks;
3757 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3758 	if (sb->s_flags & SB_KERNMOUNT) {
3759 		sbinfo->ino_batch = alloc_percpu(ino_t);
3760 		if (!sbinfo->ino_batch)
3761 			goto failed;
3762 	}
3763 	sbinfo->uid = ctx->uid;
3764 	sbinfo->gid = ctx->gid;
3765 	sbinfo->full_inums = ctx->full_inums;
3766 	sbinfo->mode = ctx->mode;
3767 	sbinfo->huge = ctx->huge;
3768 	sbinfo->mpol = ctx->mpol;
3769 	ctx->mpol = NULL;
3770 
3771 	raw_spin_lock_init(&sbinfo->stat_lock);
3772 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3773 		goto failed;
3774 	spin_lock_init(&sbinfo->shrinklist_lock);
3775 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3776 
3777 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3778 	sb->s_blocksize = PAGE_SIZE;
3779 	sb->s_blocksize_bits = PAGE_SHIFT;
3780 	sb->s_magic = TMPFS_MAGIC;
3781 	sb->s_op = &shmem_ops;
3782 	sb->s_time_gran = 1;
3783 #ifdef CONFIG_TMPFS_XATTR
3784 	sb->s_xattr = shmem_xattr_handlers;
3785 #endif
3786 #ifdef CONFIG_TMPFS_POSIX_ACL
3787 	sb->s_flags |= SB_POSIXACL;
3788 #endif
3789 	uuid_gen(&sb->s_uuid);
3790 
3791 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3792 	if (!inode)
3793 		goto failed;
3794 	inode->i_uid = sbinfo->uid;
3795 	inode->i_gid = sbinfo->gid;
3796 	sb->s_root = d_make_root(inode);
3797 	if (!sb->s_root)
3798 		goto failed;
3799 	return 0;
3800 
3801 failed:
3802 	shmem_put_super(sb);
3803 	return -ENOMEM;
3804 }
3805 
3806 static int shmem_get_tree(struct fs_context *fc)
3807 {
3808 	return get_tree_nodev(fc, shmem_fill_super);
3809 }
3810 
3811 static void shmem_free_fc(struct fs_context *fc)
3812 {
3813 	struct shmem_options *ctx = fc->fs_private;
3814 
3815 	if (ctx) {
3816 		mpol_put(ctx->mpol);
3817 		kfree(ctx);
3818 	}
3819 }
3820 
3821 static const struct fs_context_operations shmem_fs_context_ops = {
3822 	.free			= shmem_free_fc,
3823 	.get_tree		= shmem_get_tree,
3824 #ifdef CONFIG_TMPFS
3825 	.parse_monolithic	= shmem_parse_options,
3826 	.parse_param		= shmem_parse_one,
3827 	.reconfigure		= shmem_reconfigure,
3828 #endif
3829 };
3830 
3831 static struct kmem_cache *shmem_inode_cachep;
3832 
3833 static struct inode *shmem_alloc_inode(struct super_block *sb)
3834 {
3835 	struct shmem_inode_info *info;
3836 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3837 	if (!info)
3838 		return NULL;
3839 	return &info->vfs_inode;
3840 }
3841 
3842 static void shmem_free_in_core_inode(struct inode *inode)
3843 {
3844 	if (S_ISLNK(inode->i_mode))
3845 		kfree(inode->i_link);
3846 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3847 }
3848 
3849 static void shmem_destroy_inode(struct inode *inode)
3850 {
3851 	if (S_ISREG(inode->i_mode))
3852 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3853 }
3854 
3855 static void shmem_init_inode(void *foo)
3856 {
3857 	struct shmem_inode_info *info = foo;
3858 	inode_init_once(&info->vfs_inode);
3859 }
3860 
3861 static void shmem_init_inodecache(void)
3862 {
3863 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3864 				sizeof(struct shmem_inode_info),
3865 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3866 }
3867 
3868 static void shmem_destroy_inodecache(void)
3869 {
3870 	kmem_cache_destroy(shmem_inode_cachep);
3871 }
3872 
3873 /* Keep the page in page cache instead of truncating it */
3874 static int shmem_error_remove_page(struct address_space *mapping,
3875 				   struct page *page)
3876 {
3877 	return 0;
3878 }
3879 
3880 const struct address_space_operations shmem_aops = {
3881 	.writepage	= shmem_writepage,
3882 	.dirty_folio	= noop_dirty_folio,
3883 #ifdef CONFIG_TMPFS
3884 	.write_begin	= shmem_write_begin,
3885 	.write_end	= shmem_write_end,
3886 #endif
3887 #ifdef CONFIG_MIGRATION
3888 	.migrate_folio	= migrate_folio,
3889 #endif
3890 	.error_remove_page = shmem_error_remove_page,
3891 };
3892 EXPORT_SYMBOL(shmem_aops);
3893 
3894 static const struct file_operations shmem_file_operations = {
3895 	.mmap		= shmem_mmap,
3896 	.get_unmapped_area = shmem_get_unmapped_area,
3897 #ifdef CONFIG_TMPFS
3898 	.llseek		= shmem_file_llseek,
3899 	.read_iter	= shmem_file_read_iter,
3900 	.write_iter	= generic_file_write_iter,
3901 	.fsync		= noop_fsync,
3902 	.splice_read	= generic_file_splice_read,
3903 	.splice_write	= iter_file_splice_write,
3904 	.fallocate	= shmem_fallocate,
3905 #endif
3906 };
3907 
3908 static const struct inode_operations shmem_inode_operations = {
3909 	.getattr	= shmem_getattr,
3910 	.setattr	= shmem_setattr,
3911 #ifdef CONFIG_TMPFS_XATTR
3912 	.listxattr	= shmem_listxattr,
3913 	.set_acl	= simple_set_acl,
3914 	.fileattr_get	= shmem_fileattr_get,
3915 	.fileattr_set	= shmem_fileattr_set,
3916 #endif
3917 };
3918 
3919 static const struct inode_operations shmem_dir_inode_operations = {
3920 #ifdef CONFIG_TMPFS
3921 	.getattr	= shmem_getattr,
3922 	.create		= shmem_create,
3923 	.lookup		= simple_lookup,
3924 	.link		= shmem_link,
3925 	.unlink		= shmem_unlink,
3926 	.symlink	= shmem_symlink,
3927 	.mkdir		= shmem_mkdir,
3928 	.rmdir		= shmem_rmdir,
3929 	.mknod		= shmem_mknod,
3930 	.rename		= shmem_rename2,
3931 	.tmpfile	= shmem_tmpfile,
3932 #endif
3933 #ifdef CONFIG_TMPFS_XATTR
3934 	.listxattr	= shmem_listxattr,
3935 	.fileattr_get	= shmem_fileattr_get,
3936 	.fileattr_set	= shmem_fileattr_set,
3937 #endif
3938 #ifdef CONFIG_TMPFS_POSIX_ACL
3939 	.setattr	= shmem_setattr,
3940 	.set_acl	= simple_set_acl,
3941 #endif
3942 };
3943 
3944 static const struct inode_operations shmem_special_inode_operations = {
3945 	.getattr	= shmem_getattr,
3946 #ifdef CONFIG_TMPFS_XATTR
3947 	.listxattr	= shmem_listxattr,
3948 #endif
3949 #ifdef CONFIG_TMPFS_POSIX_ACL
3950 	.setattr	= shmem_setattr,
3951 	.set_acl	= simple_set_acl,
3952 #endif
3953 };
3954 
3955 static const struct super_operations shmem_ops = {
3956 	.alloc_inode	= shmem_alloc_inode,
3957 	.free_inode	= shmem_free_in_core_inode,
3958 	.destroy_inode	= shmem_destroy_inode,
3959 #ifdef CONFIG_TMPFS
3960 	.statfs		= shmem_statfs,
3961 	.show_options	= shmem_show_options,
3962 #endif
3963 	.evict_inode	= shmem_evict_inode,
3964 	.drop_inode	= generic_delete_inode,
3965 	.put_super	= shmem_put_super,
3966 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3967 	.nr_cached_objects	= shmem_unused_huge_count,
3968 	.free_cached_objects	= shmem_unused_huge_scan,
3969 #endif
3970 };
3971 
3972 static const struct vm_operations_struct shmem_vm_ops = {
3973 	.fault		= shmem_fault,
3974 	.map_pages	= filemap_map_pages,
3975 #ifdef CONFIG_NUMA
3976 	.set_policy     = shmem_set_policy,
3977 	.get_policy     = shmem_get_policy,
3978 #endif
3979 };
3980 
3981 int shmem_init_fs_context(struct fs_context *fc)
3982 {
3983 	struct shmem_options *ctx;
3984 
3985 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3986 	if (!ctx)
3987 		return -ENOMEM;
3988 
3989 	ctx->mode = 0777 | S_ISVTX;
3990 	ctx->uid = current_fsuid();
3991 	ctx->gid = current_fsgid();
3992 
3993 	fc->fs_private = ctx;
3994 	fc->ops = &shmem_fs_context_ops;
3995 	return 0;
3996 }
3997 
3998 static struct file_system_type shmem_fs_type = {
3999 	.owner		= THIS_MODULE,
4000 	.name		= "tmpfs",
4001 	.init_fs_context = shmem_init_fs_context,
4002 #ifdef CONFIG_TMPFS
4003 	.parameters	= shmem_fs_parameters,
4004 #endif
4005 	.kill_sb	= kill_litter_super,
4006 	.fs_flags	= FS_USERNS_MOUNT,
4007 };
4008 
4009 void __init shmem_init(void)
4010 {
4011 	int error;
4012 
4013 	shmem_init_inodecache();
4014 
4015 	error = register_filesystem(&shmem_fs_type);
4016 	if (error) {
4017 		pr_err("Could not register tmpfs\n");
4018 		goto out2;
4019 	}
4020 
4021 	shm_mnt = kern_mount(&shmem_fs_type);
4022 	if (IS_ERR(shm_mnt)) {
4023 		error = PTR_ERR(shm_mnt);
4024 		pr_err("Could not kern_mount tmpfs\n");
4025 		goto out1;
4026 	}
4027 
4028 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4029 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4030 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4031 	else
4032 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4033 #endif
4034 	return;
4035 
4036 out1:
4037 	unregister_filesystem(&shmem_fs_type);
4038 out2:
4039 	shmem_destroy_inodecache();
4040 	shm_mnt = ERR_PTR(error);
4041 }
4042 
4043 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4044 static ssize_t shmem_enabled_show(struct kobject *kobj,
4045 				  struct kobj_attribute *attr, char *buf)
4046 {
4047 	static const int values[] = {
4048 		SHMEM_HUGE_ALWAYS,
4049 		SHMEM_HUGE_WITHIN_SIZE,
4050 		SHMEM_HUGE_ADVISE,
4051 		SHMEM_HUGE_NEVER,
4052 		SHMEM_HUGE_DENY,
4053 		SHMEM_HUGE_FORCE,
4054 	};
4055 	int len = 0;
4056 	int i;
4057 
4058 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4059 		len += sysfs_emit_at(buf, len,
4060 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4061 				     i ? " " : "",
4062 				     shmem_format_huge(values[i]));
4063 	}
4064 
4065 	len += sysfs_emit_at(buf, len, "\n");
4066 
4067 	return len;
4068 }
4069 
4070 static ssize_t shmem_enabled_store(struct kobject *kobj,
4071 		struct kobj_attribute *attr, const char *buf, size_t count)
4072 {
4073 	char tmp[16];
4074 	int huge;
4075 
4076 	if (count + 1 > sizeof(tmp))
4077 		return -EINVAL;
4078 	memcpy(tmp, buf, count);
4079 	tmp[count] = '\0';
4080 	if (count && tmp[count - 1] == '\n')
4081 		tmp[count - 1] = '\0';
4082 
4083 	huge = shmem_parse_huge(tmp);
4084 	if (huge == -EINVAL)
4085 		return -EINVAL;
4086 	if (!has_transparent_hugepage() &&
4087 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4088 		return -EINVAL;
4089 
4090 	shmem_huge = huge;
4091 	if (shmem_huge > SHMEM_HUGE_DENY)
4092 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4093 	return count;
4094 }
4095 
4096 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4097 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4098 
4099 #else /* !CONFIG_SHMEM */
4100 
4101 /*
4102  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4103  *
4104  * This is intended for small system where the benefits of the full
4105  * shmem code (swap-backed and resource-limited) are outweighed by
4106  * their complexity. On systems without swap this code should be
4107  * effectively equivalent, but much lighter weight.
4108  */
4109 
4110 static struct file_system_type shmem_fs_type = {
4111 	.name		= "tmpfs",
4112 	.init_fs_context = ramfs_init_fs_context,
4113 	.parameters	= ramfs_fs_parameters,
4114 	.kill_sb	= kill_litter_super,
4115 	.fs_flags	= FS_USERNS_MOUNT,
4116 };
4117 
4118 void __init shmem_init(void)
4119 {
4120 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4121 
4122 	shm_mnt = kern_mount(&shmem_fs_type);
4123 	BUG_ON(IS_ERR(shm_mnt));
4124 }
4125 
4126 int shmem_unuse(unsigned int type)
4127 {
4128 	return 0;
4129 }
4130 
4131 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4132 {
4133 	return 0;
4134 }
4135 
4136 void shmem_unlock_mapping(struct address_space *mapping)
4137 {
4138 }
4139 
4140 #ifdef CONFIG_MMU
4141 unsigned long shmem_get_unmapped_area(struct file *file,
4142 				      unsigned long addr, unsigned long len,
4143 				      unsigned long pgoff, unsigned long flags)
4144 {
4145 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4146 }
4147 #endif
4148 
4149 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4150 {
4151 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4152 }
4153 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4154 
4155 #define shmem_vm_ops				generic_file_vm_ops
4156 #define shmem_file_operations			ramfs_file_operations
4157 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4158 #define shmem_acct_size(flags, size)		0
4159 #define shmem_unacct_size(flags, size)		do {} while (0)
4160 
4161 #endif /* CONFIG_SHMEM */
4162 
4163 /* common code */
4164 
4165 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4166 				       unsigned long flags, unsigned int i_flags)
4167 {
4168 	struct inode *inode;
4169 	struct file *res;
4170 
4171 	if (IS_ERR(mnt))
4172 		return ERR_CAST(mnt);
4173 
4174 	if (size < 0 || size > MAX_LFS_FILESIZE)
4175 		return ERR_PTR(-EINVAL);
4176 
4177 	if (shmem_acct_size(flags, size))
4178 		return ERR_PTR(-ENOMEM);
4179 
4180 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4181 				flags);
4182 	if (unlikely(!inode)) {
4183 		shmem_unacct_size(flags, size);
4184 		return ERR_PTR(-ENOSPC);
4185 	}
4186 	inode->i_flags |= i_flags;
4187 	inode->i_size = size;
4188 	clear_nlink(inode);	/* It is unlinked */
4189 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4190 	if (!IS_ERR(res))
4191 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4192 				&shmem_file_operations);
4193 	if (IS_ERR(res))
4194 		iput(inode);
4195 	return res;
4196 }
4197 
4198 /**
4199  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4200  * 	kernel internal.  There will be NO LSM permission checks against the
4201  * 	underlying inode.  So users of this interface must do LSM checks at a
4202  *	higher layer.  The users are the big_key and shm implementations.  LSM
4203  *	checks are provided at the key or shm level rather than the inode.
4204  * @name: name for dentry (to be seen in /proc/<pid>/maps
4205  * @size: size to be set for the file
4206  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4207  */
4208 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4209 {
4210 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4211 }
4212 
4213 /**
4214  * shmem_file_setup - get an unlinked file living in tmpfs
4215  * @name: name for dentry (to be seen in /proc/<pid>/maps
4216  * @size: size to be set for the file
4217  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4218  */
4219 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4220 {
4221 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4222 }
4223 EXPORT_SYMBOL_GPL(shmem_file_setup);
4224 
4225 /**
4226  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4227  * @mnt: the tmpfs mount where the file will be created
4228  * @name: name for dentry (to be seen in /proc/<pid>/maps
4229  * @size: size to be set for the file
4230  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4231  */
4232 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4233 				       loff_t size, unsigned long flags)
4234 {
4235 	return __shmem_file_setup(mnt, name, size, flags, 0);
4236 }
4237 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4238 
4239 /**
4240  * shmem_zero_setup - setup a shared anonymous mapping
4241  * @vma: the vma to be mmapped is prepared by do_mmap
4242  */
4243 int shmem_zero_setup(struct vm_area_struct *vma)
4244 {
4245 	struct file *file;
4246 	loff_t size = vma->vm_end - vma->vm_start;
4247 
4248 	/*
4249 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4250 	 * between XFS directory reading and selinux: since this file is only
4251 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4252 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4253 	 */
4254 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4255 	if (IS_ERR(file))
4256 		return PTR_ERR(file);
4257 
4258 	if (vma->vm_file)
4259 		fput(vma->vm_file);
4260 	vma->vm_file = file;
4261 	vma->vm_ops = &shmem_vm_ops;
4262 
4263 	return 0;
4264 }
4265 
4266 /**
4267  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4268  * @mapping:	the page's address_space
4269  * @index:	the page index
4270  * @gfp:	the page allocator flags to use if allocating
4271  *
4272  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4273  * with any new page allocations done using the specified allocation flags.
4274  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4275  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4276  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4277  *
4278  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4279  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4280  */
4281 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4282 					 pgoff_t index, gfp_t gfp)
4283 {
4284 #ifdef CONFIG_SHMEM
4285 	struct inode *inode = mapping->host;
4286 	struct folio *folio;
4287 	struct page *page;
4288 	int error;
4289 
4290 	BUG_ON(!shmem_mapping(mapping));
4291 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4292 				  gfp, NULL, NULL, NULL);
4293 	if (error)
4294 		return ERR_PTR(error);
4295 
4296 	folio_unlock(folio);
4297 	page = folio_file_page(folio, index);
4298 	if (PageHWPoison(page)) {
4299 		folio_put(folio);
4300 		return ERR_PTR(-EIO);
4301 	}
4302 
4303 	return page;
4304 #else
4305 	/*
4306 	 * The tiny !SHMEM case uses ramfs without swap
4307 	 */
4308 	return read_cache_page_gfp(mapping, index, gfp);
4309 #endif
4310 }
4311 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4312