xref: /openbmc/linux/mm/shmem.c (revision b737eecd)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	bool full_inums;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 				struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 			     struct page **pagep, enum sgp_type sgp,
145 			     gfp_t gfp, struct vm_area_struct *vma,
146 			     vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp,
149 		gfp_t gfp, struct vm_area_struct *vma,
150 		struct vm_fault *vmf, vm_fault_t *fault_type);
151 
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 		struct page **pagep, enum sgp_type sgp)
154 {
155 	return shmem_getpage_gfp(inode, index, pagep, sgp,
156 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158 
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175 
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
182 static inline int shmem_reacct_size(unsigned long flags,
183 		loff_t oldsize, loff_t newsize)
184 {
185 	if (!(flags & VM_NORESERVE)) {
186 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 			return security_vm_enough_memory_mm(current->mm,
188 					VM_ACCT(newsize) - VM_ACCT(oldsize));
189 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 	}
192 	return 0;
193 }
194 
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 	if (!(flags & VM_NORESERVE))
204 		return 0;
205 
206 	return security_vm_enough_memory_mm(current->mm,
207 			pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 
221 	if (shmem_acct_block(info->flags, pages))
222 		return false;
223 
224 	if (sbinfo->max_blocks) {
225 		if (percpu_counter_compare(&sbinfo->used_blocks,
226 					   sbinfo->max_blocks - pages) > 0)
227 			goto unacct;
228 		percpu_counter_add(&sbinfo->used_blocks, pages);
229 	}
230 
231 	return true;
232 
233 unacct:
234 	shmem_unacct_blocks(info->flags, pages);
235 	return false;
236 }
237 
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 	struct shmem_inode_info *info = SHMEM_I(inode);
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 
243 	if (sbinfo->max_blocks)
244 		percpu_counter_sub(&sbinfo->used_blocks, pages);
245 	shmem_unacct_blocks(info->flags, pages);
246 }
247 
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256 
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 	return vma->vm_ops == &shmem_vm_ops;
260 }
261 
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 	ino_t ino;
279 
280 	if (!(sb->s_flags & SB_KERNMOUNT)) {
281 		spin_lock(&sbinfo->stat_lock);
282 		if (sbinfo->max_inodes) {
283 			if (!sbinfo->free_inodes) {
284 				spin_unlock(&sbinfo->stat_lock);
285 				return -ENOSPC;
286 			}
287 			sbinfo->free_inodes--;
288 		}
289 		if (inop) {
290 			ino = sbinfo->next_ino++;
291 			if (unlikely(is_zero_ino(ino)))
292 				ino = sbinfo->next_ino++;
293 			if (unlikely(!sbinfo->full_inums &&
294 				     ino > UINT_MAX)) {
295 				/*
296 				 * Emulate get_next_ino uint wraparound for
297 				 * compatibility
298 				 */
299 				if (IS_ENABLED(CONFIG_64BIT))
300 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 						__func__, MINOR(sb->s_dev));
302 				sbinfo->next_ino = 1;
303 				ino = sbinfo->next_ino++;
304 			}
305 			*inop = ino;
306 		}
307 		spin_unlock(&sbinfo->stat_lock);
308 	} else if (inop) {
309 		/*
310 		 * __shmem_file_setup, one of our callers, is lock-free: it
311 		 * doesn't hold stat_lock in shmem_reserve_inode since
312 		 * max_inodes is always 0, and is called from potentially
313 		 * unknown contexts. As such, use a per-cpu batched allocator
314 		 * which doesn't require the per-sb stat_lock unless we are at
315 		 * the batch boundary.
316 		 *
317 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 		 * shmem mounts are not exposed to userspace, so we don't need
319 		 * to worry about things like glibc compatibility.
320 		 */
321 		ino_t *next_ino;
322 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 		ino = *next_ino;
324 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 			spin_lock(&sbinfo->stat_lock);
326 			ino = sbinfo->next_ino;
327 			sbinfo->next_ino += SHMEM_INO_BATCH;
328 			spin_unlock(&sbinfo->stat_lock);
329 			if (unlikely(is_zero_ino(ino)))
330 				ino++;
331 		}
332 		*inop = ino;
333 		*next_ino = ++ino;
334 		put_cpu();
335 	}
336 
337 	return 0;
338 }
339 
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 	if (sbinfo->max_inodes) {
344 		spin_lock(&sbinfo->stat_lock);
345 		sbinfo->free_inodes++;
346 		spin_unlock(&sbinfo->stat_lock);
347 	}
348 }
349 
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 	struct shmem_inode_info *info = SHMEM_I(inode);
365 	long freed;
366 
367 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 	if (freed > 0) {
369 		info->alloced -= freed;
370 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 		shmem_inode_unacct_blocks(inode, freed);
372 	}
373 }
374 
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 	struct shmem_inode_info *info = SHMEM_I(inode);
378 	unsigned long flags;
379 
380 	if (!shmem_inode_acct_block(inode, pages))
381 		return false;
382 
383 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 	inode->i_mapping->nrpages += pages;
385 
386 	spin_lock_irqsave(&info->lock, flags);
387 	info->alloced += pages;
388 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 	shmem_recalc_inode(inode);
390 	spin_unlock_irqrestore(&info->lock, flags);
391 
392 	return true;
393 }
394 
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 	struct shmem_inode_info *info = SHMEM_I(inode);
398 	unsigned long flags;
399 
400 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
401 
402 	spin_lock_irqsave(&info->lock, flags);
403 	info->alloced -= pages;
404 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 	shmem_recalc_inode(inode);
406 	spin_unlock_irqrestore(&info->lock, flags);
407 
408 	shmem_inode_unacct_blocks(inode, pages);
409 }
410 
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415 			pgoff_t index, void *expected, void *replacement)
416 {
417 	XA_STATE(xas, &mapping->i_pages, index);
418 	void *item;
419 
420 	VM_BUG_ON(!expected);
421 	VM_BUG_ON(!replacement);
422 	item = xas_load(&xas);
423 	if (item != expected)
424 		return -ENOENT;
425 	xas_store(&xas, replacement);
426 	return 0;
427 }
428 
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 			       pgoff_t index, swp_entry_t swap)
438 {
439 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441 
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *	disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *	enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *	only allocate huge pages if the page will be fully within i_size,
451  *	also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *	only allocate huge pages if requested with fadvise()/madvise();
454  */
455 
456 #define SHMEM_HUGE_NEVER	0
457 #define SHMEM_HUGE_ALWAYS	1
458 #define SHMEM_HUGE_WITHIN_SIZE	2
459 #define SHMEM_HUGE_ADVISE	3
460 
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *	disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY		(-1)
472 #define SHMEM_HUGE_FORCE	(-2)
473 
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476 
477 static int shmem_huge __read_mostly;
478 
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 	if (!strcmp(str, "never"))
483 		return SHMEM_HUGE_NEVER;
484 	if (!strcmp(str, "always"))
485 		return SHMEM_HUGE_ALWAYS;
486 	if (!strcmp(str, "within_size"))
487 		return SHMEM_HUGE_WITHIN_SIZE;
488 	if (!strcmp(str, "advise"))
489 		return SHMEM_HUGE_ADVISE;
490 	if (!strcmp(str, "deny"))
491 		return SHMEM_HUGE_DENY;
492 	if (!strcmp(str, "force"))
493 		return SHMEM_HUGE_FORCE;
494 	return -EINVAL;
495 }
496 #endif
497 
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 	switch (huge) {
502 	case SHMEM_HUGE_NEVER:
503 		return "never";
504 	case SHMEM_HUGE_ALWAYS:
505 		return "always";
506 	case SHMEM_HUGE_WITHIN_SIZE:
507 		return "within_size";
508 	case SHMEM_HUGE_ADVISE:
509 		return "advise";
510 	case SHMEM_HUGE_DENY:
511 		return "deny";
512 	case SHMEM_HUGE_FORCE:
513 		return "force";
514 	default:
515 		VM_BUG_ON(1);
516 		return "bad_val";
517 	}
518 }
519 #endif
520 
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 		struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 	LIST_HEAD(list), *pos, *next;
525 	LIST_HEAD(to_remove);
526 	struct inode *inode;
527 	struct shmem_inode_info *info;
528 	struct page *page;
529 	unsigned long batch = sc ? sc->nr_to_scan : 128;
530 	int removed = 0, split = 0;
531 
532 	if (list_empty(&sbinfo->shrinklist))
533 		return SHRINK_STOP;
534 
535 	spin_lock(&sbinfo->shrinklist_lock);
536 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
538 
539 		/* pin the inode */
540 		inode = igrab(&info->vfs_inode);
541 
542 		/* inode is about to be evicted */
543 		if (!inode) {
544 			list_del_init(&info->shrinklist);
545 			removed++;
546 			goto next;
547 		}
548 
549 		/* Check if there's anything to gain */
550 		if (round_up(inode->i_size, PAGE_SIZE) ==
551 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 			list_move(&info->shrinklist, &to_remove);
553 			removed++;
554 			goto next;
555 		}
556 
557 		list_move(&info->shrinklist, &list);
558 next:
559 		if (!--batch)
560 			break;
561 	}
562 	spin_unlock(&sbinfo->shrinklist_lock);
563 
564 	list_for_each_safe(pos, next, &to_remove) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 		inode = &info->vfs_inode;
567 		list_del_init(&info->shrinklist);
568 		iput(inode);
569 	}
570 
571 	list_for_each_safe(pos, next, &list) {
572 		int ret;
573 
574 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 		inode = &info->vfs_inode;
576 
577 		if (nr_to_split && split >= nr_to_split)
578 			goto leave;
579 
580 		page = find_get_page(inode->i_mapping,
581 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 		if (!page)
583 			goto drop;
584 
585 		/* No huge page at the end of the file: nothing to split */
586 		if (!PageTransHuge(page)) {
587 			put_page(page);
588 			goto drop;
589 		}
590 
591 		/*
592 		 * Leave the inode on the list if we failed to lock
593 		 * the page at this time.
594 		 *
595 		 * Waiting for the lock may lead to deadlock in the
596 		 * reclaim path.
597 		 */
598 		if (!trylock_page(page)) {
599 			put_page(page);
600 			goto leave;
601 		}
602 
603 		ret = split_huge_page(page);
604 		unlock_page(page);
605 		put_page(page);
606 
607 		/* If split failed leave the inode on the list */
608 		if (ret)
609 			goto leave;
610 
611 		split++;
612 drop:
613 		list_del_init(&info->shrinklist);
614 		removed++;
615 leave:
616 		iput(inode);
617 	}
618 
619 	spin_lock(&sbinfo->shrinklist_lock);
620 	list_splice_tail(&list, &sbinfo->shrinklist);
621 	sbinfo->shrinklist_len -= removed;
622 	spin_unlock(&sbinfo->shrinklist_lock);
623 
624 	return split;
625 }
626 
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 		struct shrink_control *sc)
629 {
630 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631 
632 	if (!READ_ONCE(sbinfo->shrinklist_len))
633 		return SHRINK_STOP;
634 
635 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637 
638 static long shmem_unused_huge_count(struct super_block *sb,
639 		struct shrink_control *sc)
640 {
641 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 	return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645 
646 #define shmem_huge SHMEM_HUGE_DENY
647 
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 		struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654 
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 	    shmem_huge != SHMEM_HUGE_DENY)
660 		return true;
661 	return false;
662 }
663 
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668 				   struct address_space *mapping,
669 				   pgoff_t index, void *expected, gfp_t gfp,
670 				   struct mm_struct *charge_mm)
671 {
672 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 	unsigned long i = 0;
674 	unsigned long nr = compound_nr(page);
675 	int error;
676 
677 	VM_BUG_ON_PAGE(PageTail(page), page);
678 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 	VM_BUG_ON_PAGE(!PageLocked(page), page);
680 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 	VM_BUG_ON(expected && PageTransHuge(page));
682 
683 	page_ref_add(page, nr);
684 	page->mapping = mapping;
685 	page->index = index;
686 
687 	if (!PageSwapCache(page)) {
688 		error = mem_cgroup_charge(page, charge_mm, gfp);
689 		if (error) {
690 			if (PageTransHuge(page)) {
691 				count_vm_event(THP_FILE_FALLBACK);
692 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 			}
694 			goto error;
695 		}
696 	}
697 	cgroup_throttle_swaprate(page, gfp);
698 
699 	do {
700 		void *entry;
701 		xas_lock_irq(&xas);
702 		entry = xas_find_conflict(&xas);
703 		if (entry != expected)
704 			xas_set_err(&xas, -EEXIST);
705 		xas_create_range(&xas);
706 		if (xas_error(&xas))
707 			goto unlock;
708 next:
709 		xas_store(&xas, page);
710 		if (++i < nr) {
711 			xas_next(&xas);
712 			goto next;
713 		}
714 		if (PageTransHuge(page)) {
715 			count_vm_event(THP_FILE_ALLOC);
716 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717 		}
718 		mapping->nrpages += nr;
719 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 		xas_unlock_irq(&xas);
723 	} while (xas_nomem(&xas, gfp));
724 
725 	if (xas_error(&xas)) {
726 		error = xas_error(&xas);
727 		goto error;
728 	}
729 
730 	return 0;
731 error:
732 	page->mapping = NULL;
733 	page_ref_sub(page, nr);
734 	return error;
735 }
736 
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 	struct address_space *mapping = page->mapping;
743 	int error;
744 
745 	VM_BUG_ON_PAGE(PageCompound(page), page);
746 
747 	xa_lock_irq(&mapping->i_pages);
748 	error = shmem_replace_entry(mapping, page->index, page, radswap);
749 	page->mapping = NULL;
750 	mapping->nrpages--;
751 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
752 	__dec_lruvec_page_state(page, NR_SHMEM);
753 	xa_unlock_irq(&mapping->i_pages);
754 	put_page(page);
755 	BUG_ON(error);
756 }
757 
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762 			   pgoff_t index, void *radswap)
763 {
764 	void *old;
765 
766 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 	if (old != radswap)
768 		return -ENOENT;
769 	free_swap_and_cache(radix_to_swp_entry(radswap));
770 	return 0;
771 }
772 
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 						pgoff_t start, pgoff_t end)
782 {
783 	XA_STATE(xas, &mapping->i_pages, start);
784 	struct page *page;
785 	unsigned long swapped = 0;
786 
787 	rcu_read_lock();
788 	xas_for_each(&xas, page, end - 1) {
789 		if (xas_retry(&xas, page))
790 			continue;
791 		if (xa_is_value(page))
792 			swapped++;
793 
794 		if (need_resched()) {
795 			xas_pause(&xas);
796 			cond_resched_rcu();
797 		}
798 	}
799 
800 	rcu_read_unlock();
801 
802 	return swapped << PAGE_SHIFT;
803 }
804 
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 	struct inode *inode = file_inode(vma->vm_file);
815 	struct shmem_inode_info *info = SHMEM_I(inode);
816 	struct address_space *mapping = inode->i_mapping;
817 	unsigned long swapped;
818 
819 	/* Be careful as we don't hold info->lock */
820 	swapped = READ_ONCE(info->swapped);
821 
822 	/*
823 	 * The easier cases are when the shmem object has nothing in swap, or
824 	 * the vma maps it whole. Then we can simply use the stats that we
825 	 * already track.
826 	 */
827 	if (!swapped)
828 		return 0;
829 
830 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 		return swapped << PAGE_SHIFT;
832 
833 	/* Here comes the more involved part */
834 	return shmem_partial_swap_usage(mapping,
835 			linear_page_index(vma, vma->vm_start),
836 			linear_page_index(vma, vma->vm_end));
837 }
838 
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 	struct pagevec pvec;
845 	pgoff_t index = 0;
846 
847 	pagevec_init(&pvec);
848 	/*
849 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 	 */
851 	while (!mapping_unevictable(mapping)) {
852 		if (!pagevec_lookup(&pvec, mapping, &index))
853 			break;
854 		check_move_unevictable_pages(&pvec);
855 		pagevec_release(&pvec);
856 		cond_resched();
857 	}
858 }
859 
860 /*
861  * Check whether a hole-punch or truncation needs to split a huge page,
862  * returning true if no split was required, or the split has been successful.
863  *
864  * Eviction (or truncation to 0 size) should never need to split a huge page;
865  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866  * head, and then succeeded to trylock on tail.
867  *
868  * A split can only succeed when there are no additional references on the
869  * huge page: so the split below relies upon find_get_entries() having stopped
870  * when it found a subpage of the huge page, without getting further references.
871  */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874 	if (!PageTransCompound(page))
875 		return true;
876 
877 	/* Just proceed to delete a huge page wholly within the range punched */
878 	if (PageHead(page) &&
879 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 		return true;
881 
882 	/* Try to split huge page, so we can truly punch the hole or truncate */
883 	return split_huge_page(page) >= 0;
884 }
885 
886 /*
887  * Remove range of pages and swap entries from page cache, and free them.
888  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889  */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 								 bool unfalloc)
892 {
893 	struct address_space *mapping = inode->i_mapping;
894 	struct shmem_inode_info *info = SHMEM_I(inode);
895 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899 	struct pagevec pvec;
900 	pgoff_t indices[PAGEVEC_SIZE];
901 	long nr_swaps_freed = 0;
902 	pgoff_t index;
903 	int i;
904 
905 	if (lend == -1)
906 		end = -1;	/* unsigned, so actually very big */
907 
908 	pagevec_init(&pvec);
909 	index = start;
910 	while (index < end && find_lock_entries(mapping, index, end - 1,
911 			&pvec, indices)) {
912 		for (i = 0; i < pagevec_count(&pvec); i++) {
913 			struct page *page = pvec.pages[i];
914 
915 			index = indices[i];
916 
917 			if (xa_is_value(page)) {
918 				if (unfalloc)
919 					continue;
920 				nr_swaps_freed += !shmem_free_swap(mapping,
921 								index, page);
922 				continue;
923 			}
924 			index += thp_nr_pages(page) - 1;
925 
926 			if (!unfalloc || !PageUptodate(page))
927 				truncate_inode_page(mapping, page);
928 			unlock_page(page);
929 		}
930 		pagevec_remove_exceptionals(&pvec);
931 		pagevec_release(&pvec);
932 		cond_resched();
933 		index++;
934 	}
935 
936 	if (partial_start) {
937 		struct page *page = NULL;
938 		shmem_getpage(inode, start - 1, &page, SGP_READ);
939 		if (page) {
940 			unsigned int top = PAGE_SIZE;
941 			if (start > end) {
942 				top = partial_end;
943 				partial_end = 0;
944 			}
945 			zero_user_segment(page, partial_start, top);
946 			set_page_dirty(page);
947 			unlock_page(page);
948 			put_page(page);
949 		}
950 	}
951 	if (partial_end) {
952 		struct page *page = NULL;
953 		shmem_getpage(inode, end, &page, SGP_READ);
954 		if (page) {
955 			zero_user_segment(page, 0, partial_end);
956 			set_page_dirty(page);
957 			unlock_page(page);
958 			put_page(page);
959 		}
960 	}
961 	if (start >= end)
962 		return;
963 
964 	index = start;
965 	while (index < end) {
966 		cond_resched();
967 
968 		if (!find_get_entries(mapping, index, end - 1, &pvec,
969 				indices)) {
970 			/* If all gone or hole-punch or unfalloc, we're done */
971 			if (index == start || end != -1)
972 				break;
973 			/* But if truncating, restart to make sure all gone */
974 			index = start;
975 			continue;
976 		}
977 		for (i = 0; i < pagevec_count(&pvec); i++) {
978 			struct page *page = pvec.pages[i];
979 
980 			index = indices[i];
981 			if (xa_is_value(page)) {
982 				if (unfalloc)
983 					continue;
984 				if (shmem_free_swap(mapping, index, page)) {
985 					/* Swap was replaced by page: retry */
986 					index--;
987 					break;
988 				}
989 				nr_swaps_freed++;
990 				continue;
991 			}
992 
993 			lock_page(page);
994 
995 			if (!unfalloc || !PageUptodate(page)) {
996 				if (page_mapping(page) != mapping) {
997 					/* Page was replaced by swap: retry */
998 					unlock_page(page);
999 					index--;
1000 					break;
1001 				}
1002 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 				if (shmem_punch_compound(page, start, end))
1004 					truncate_inode_page(mapping, page);
1005 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006 					/* Wipe the page and don't get stuck */
1007 					clear_highpage(page);
1008 					flush_dcache_page(page);
1009 					set_page_dirty(page);
1010 					if (index <
1011 					    round_up(start, HPAGE_PMD_NR))
1012 						start = index + 1;
1013 				}
1014 			}
1015 			unlock_page(page);
1016 		}
1017 		pagevec_remove_exceptionals(&pvec);
1018 		pagevec_release(&pvec);
1019 		index++;
1020 	}
1021 
1022 	spin_lock_irq(&info->lock);
1023 	info->swapped -= nr_swaps_freed;
1024 	shmem_recalc_inode(inode);
1025 	spin_unlock_irq(&info->lock);
1026 }
1027 
1028 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029 {
1030 	shmem_undo_range(inode, lstart, lend, false);
1031 	inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034 
1035 static int shmem_getattr(struct user_namespace *mnt_userns,
1036 			 const struct path *path, struct kstat *stat,
1037 			 u32 request_mask, unsigned int query_flags)
1038 {
1039 	struct inode *inode = path->dentry->d_inode;
1040 	struct shmem_inode_info *info = SHMEM_I(inode);
1041 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042 
1043 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044 		spin_lock_irq(&info->lock);
1045 		shmem_recalc_inode(inode);
1046 		spin_unlock_irq(&info->lock);
1047 	}
1048 	generic_fillattr(&init_user_ns, inode, stat);
1049 
1050 	if (is_huge_enabled(sb_info))
1051 		stat->blksize = HPAGE_PMD_SIZE;
1052 
1053 	return 0;
1054 }
1055 
1056 static int shmem_setattr(struct user_namespace *mnt_userns,
1057 			 struct dentry *dentry, struct iattr *attr)
1058 {
1059 	struct inode *inode = d_inode(dentry);
1060 	struct shmem_inode_info *info = SHMEM_I(inode);
1061 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062 	int error;
1063 
1064 	error = setattr_prepare(&init_user_ns, dentry, attr);
1065 	if (error)
1066 		return error;
1067 
1068 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 		loff_t oldsize = inode->i_size;
1070 		loff_t newsize = attr->ia_size;
1071 
1072 		/* protected by i_mutex */
1073 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 			return -EPERM;
1076 
1077 		if (newsize != oldsize) {
1078 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 					oldsize, newsize);
1080 			if (error)
1081 				return error;
1082 			i_size_write(inode, newsize);
1083 			inode->i_ctime = inode->i_mtime = current_time(inode);
1084 		}
1085 		if (newsize <= oldsize) {
1086 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087 			if (oldsize > holebegin)
1088 				unmap_mapping_range(inode->i_mapping,
1089 							holebegin, 0, 1);
1090 			if (info->alloced)
1091 				shmem_truncate_range(inode,
1092 							newsize, (loff_t)-1);
1093 			/* unmap again to remove racily COWed private pages */
1094 			if (oldsize > holebegin)
1095 				unmap_mapping_range(inode->i_mapping,
1096 							holebegin, 0, 1);
1097 
1098 			/*
1099 			 * Part of the huge page can be beyond i_size: subject
1100 			 * to shrink under memory pressure.
1101 			 */
1102 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103 				spin_lock(&sbinfo->shrinklist_lock);
1104 				/*
1105 				 * _careful to defend against unlocked access to
1106 				 * ->shrink_list in shmem_unused_huge_shrink()
1107 				 */
1108 				if (list_empty_careful(&info->shrinklist)) {
1109 					list_add_tail(&info->shrinklist,
1110 							&sbinfo->shrinklist);
1111 					sbinfo->shrinklist_len++;
1112 				}
1113 				spin_unlock(&sbinfo->shrinklist_lock);
1114 			}
1115 		}
1116 	}
1117 
1118 	setattr_copy(&init_user_ns, inode, attr);
1119 	if (attr->ia_valid & ATTR_MODE)
1120 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 	return error;
1122 }
1123 
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 	struct shmem_inode_info *info = SHMEM_I(inode);
1127 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128 
1129 	if (shmem_mapping(inode->i_mapping)) {
1130 		shmem_unacct_size(info->flags, inode->i_size);
1131 		inode->i_size = 0;
1132 		shmem_truncate_range(inode, 0, (loff_t)-1);
1133 		if (!list_empty(&info->shrinklist)) {
1134 			spin_lock(&sbinfo->shrinklist_lock);
1135 			if (!list_empty(&info->shrinklist)) {
1136 				list_del_init(&info->shrinklist);
1137 				sbinfo->shrinklist_len--;
1138 			}
1139 			spin_unlock(&sbinfo->shrinklist_lock);
1140 		}
1141 		while (!list_empty(&info->swaplist)) {
1142 			/* Wait while shmem_unuse() is scanning this inode... */
1143 			wait_var_event(&info->stop_eviction,
1144 				       !atomic_read(&info->stop_eviction));
1145 			mutex_lock(&shmem_swaplist_mutex);
1146 			/* ...but beware of the race if we peeked too early */
1147 			if (!atomic_read(&info->stop_eviction))
1148 				list_del_init(&info->swaplist);
1149 			mutex_unlock(&shmem_swaplist_mutex);
1150 		}
1151 	}
1152 
1153 	simple_xattrs_free(&info->xattrs);
1154 	WARN_ON(inode->i_blocks);
1155 	shmem_free_inode(inode->i_sb);
1156 	clear_inode(inode);
1157 }
1158 
1159 extern struct swap_info_struct *swap_info[];
1160 
1161 static int shmem_find_swap_entries(struct address_space *mapping,
1162 				   pgoff_t start, unsigned int nr_entries,
1163 				   struct page **entries, pgoff_t *indices,
1164 				   unsigned int type, bool frontswap)
1165 {
1166 	XA_STATE(xas, &mapping->i_pages, start);
1167 	struct page *page;
1168 	swp_entry_t entry;
1169 	unsigned int ret = 0;
1170 
1171 	if (!nr_entries)
1172 		return 0;
1173 
1174 	rcu_read_lock();
1175 	xas_for_each(&xas, page, ULONG_MAX) {
1176 		if (xas_retry(&xas, page))
1177 			continue;
1178 
1179 		if (!xa_is_value(page))
1180 			continue;
1181 
1182 		entry = radix_to_swp_entry(page);
1183 		if (swp_type(entry) != type)
1184 			continue;
1185 		if (frontswap &&
1186 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1187 			continue;
1188 
1189 		indices[ret] = xas.xa_index;
1190 		entries[ret] = page;
1191 
1192 		if (need_resched()) {
1193 			xas_pause(&xas);
1194 			cond_resched_rcu();
1195 		}
1196 		if (++ret == nr_entries)
1197 			break;
1198 	}
1199 	rcu_read_unlock();
1200 
1201 	return ret;
1202 }
1203 
1204 /*
1205  * Move the swapped pages for an inode to page cache. Returns the count
1206  * of pages swapped in, or the error in case of failure.
1207  */
1208 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 				    pgoff_t *indices)
1210 {
1211 	int i = 0;
1212 	int ret = 0;
1213 	int error = 0;
1214 	struct address_space *mapping = inode->i_mapping;
1215 
1216 	for (i = 0; i < pvec.nr; i++) {
1217 		struct page *page = pvec.pages[i];
1218 
1219 		if (!xa_is_value(page))
1220 			continue;
1221 		error = shmem_swapin_page(inode, indices[i],
1222 					  &page, SGP_CACHE,
1223 					  mapping_gfp_mask(mapping),
1224 					  NULL, NULL);
1225 		if (error == 0) {
1226 			unlock_page(page);
1227 			put_page(page);
1228 			ret++;
1229 		}
1230 		if (error == -ENOMEM)
1231 			break;
1232 		error = 0;
1233 	}
1234 	return error ? error : ret;
1235 }
1236 
1237 /*
1238  * If swap found in inode, free it and move page from swapcache to filecache.
1239  */
1240 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1242 {
1243 	struct address_space *mapping = inode->i_mapping;
1244 	pgoff_t start = 0;
1245 	struct pagevec pvec;
1246 	pgoff_t indices[PAGEVEC_SIZE];
1247 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 	int ret = 0;
1249 
1250 	pagevec_init(&pvec);
1251 	do {
1252 		unsigned int nr_entries = PAGEVEC_SIZE;
1253 
1254 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 			nr_entries = *fs_pages_to_unuse;
1256 
1257 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 						  pvec.pages, indices,
1259 						  type, frontswap);
1260 		if (pvec.nr == 0) {
1261 			ret = 0;
1262 			break;
1263 		}
1264 
1265 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 		if (ret < 0)
1267 			break;
1268 
1269 		if (frontswap_partial) {
1270 			*fs_pages_to_unuse -= ret;
1271 			if (*fs_pages_to_unuse == 0) {
1272 				ret = FRONTSWAP_PAGES_UNUSED;
1273 				break;
1274 			}
1275 		}
1276 
1277 		start = indices[pvec.nr - 1];
1278 	} while (true);
1279 
1280 	return ret;
1281 }
1282 
1283 /*
1284  * Read all the shared memory data that resides in the swap
1285  * device 'type' back into memory, so the swap device can be
1286  * unused.
1287  */
1288 int shmem_unuse(unsigned int type, bool frontswap,
1289 		unsigned long *fs_pages_to_unuse)
1290 {
1291 	struct shmem_inode_info *info, *next;
1292 	int error = 0;
1293 
1294 	if (list_empty(&shmem_swaplist))
1295 		return 0;
1296 
1297 	mutex_lock(&shmem_swaplist_mutex);
1298 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 		if (!info->swapped) {
1300 			list_del_init(&info->swaplist);
1301 			continue;
1302 		}
1303 		/*
1304 		 * Drop the swaplist mutex while searching the inode for swap;
1305 		 * but before doing so, make sure shmem_evict_inode() will not
1306 		 * remove placeholder inode from swaplist, nor let it be freed
1307 		 * (igrab() would protect from unlink, but not from unmount).
1308 		 */
1309 		atomic_inc(&info->stop_eviction);
1310 		mutex_unlock(&shmem_swaplist_mutex);
1311 
1312 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313 					  fs_pages_to_unuse);
1314 		cond_resched();
1315 
1316 		mutex_lock(&shmem_swaplist_mutex);
1317 		next = list_next_entry(info, swaplist);
1318 		if (!info->swapped)
1319 			list_del_init(&info->swaplist);
1320 		if (atomic_dec_and_test(&info->stop_eviction))
1321 			wake_up_var(&info->stop_eviction);
1322 		if (error)
1323 			break;
1324 	}
1325 	mutex_unlock(&shmem_swaplist_mutex);
1326 
1327 	return error;
1328 }
1329 
1330 /*
1331  * Move the page from the page cache to the swap cache.
1332  */
1333 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334 {
1335 	struct shmem_inode_info *info;
1336 	struct address_space *mapping;
1337 	struct inode *inode;
1338 	swp_entry_t swap;
1339 	pgoff_t index;
1340 
1341 	VM_BUG_ON_PAGE(PageCompound(page), page);
1342 	BUG_ON(!PageLocked(page));
1343 	mapping = page->mapping;
1344 	index = page->index;
1345 	inode = mapping->host;
1346 	info = SHMEM_I(inode);
1347 	if (info->flags & VM_LOCKED)
1348 		goto redirty;
1349 	if (!total_swap_pages)
1350 		goto redirty;
1351 
1352 	/*
1353 	 * Our capabilities prevent regular writeback or sync from ever calling
1354 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 	 * its underlying filesystem, in which case tmpfs should write out to
1356 	 * swap only in response to memory pressure, and not for the writeback
1357 	 * threads or sync.
1358 	 */
1359 	if (!wbc->for_reclaim) {
1360 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1361 		goto redirty;
1362 	}
1363 
1364 	/*
1365 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 	 * value into swapfile.c, the only way we can correctly account for a
1367 	 * fallocated page arriving here is now to initialize it and write it.
1368 	 *
1369 	 * That's okay for a page already fallocated earlier, but if we have
1370 	 * not yet completed the fallocation, then (a) we want to keep track
1371 	 * of this page in case we have to undo it, and (b) it may not be a
1372 	 * good idea to continue anyway, once we're pushing into swap.  So
1373 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1374 	 */
1375 	if (!PageUptodate(page)) {
1376 		if (inode->i_private) {
1377 			struct shmem_falloc *shmem_falloc;
1378 			spin_lock(&inode->i_lock);
1379 			shmem_falloc = inode->i_private;
1380 			if (shmem_falloc &&
1381 			    !shmem_falloc->waitq &&
1382 			    index >= shmem_falloc->start &&
1383 			    index < shmem_falloc->next)
1384 				shmem_falloc->nr_unswapped++;
1385 			else
1386 				shmem_falloc = NULL;
1387 			spin_unlock(&inode->i_lock);
1388 			if (shmem_falloc)
1389 				goto redirty;
1390 		}
1391 		clear_highpage(page);
1392 		flush_dcache_page(page);
1393 		SetPageUptodate(page);
1394 	}
1395 
1396 	swap = get_swap_page(page);
1397 	if (!swap.val)
1398 		goto redirty;
1399 
1400 	/*
1401 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402 	 * if it's not already there.  Do it now before the page is
1403 	 * moved to swap cache, when its pagelock no longer protects
1404 	 * the inode from eviction.  But don't unlock the mutex until
1405 	 * we've incremented swapped, because shmem_unuse_inode() will
1406 	 * prune a !swapped inode from the swaplist under this mutex.
1407 	 */
1408 	mutex_lock(&shmem_swaplist_mutex);
1409 	if (list_empty(&info->swaplist))
1410 		list_add(&info->swaplist, &shmem_swaplist);
1411 
1412 	if (add_to_swap_cache(page, swap,
1413 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 			NULL) == 0) {
1415 		spin_lock_irq(&info->lock);
1416 		shmem_recalc_inode(inode);
1417 		info->swapped++;
1418 		spin_unlock_irq(&info->lock);
1419 
1420 		swap_shmem_alloc(swap);
1421 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422 
1423 		mutex_unlock(&shmem_swaplist_mutex);
1424 		BUG_ON(page_mapped(page));
1425 		swap_writepage(page, wbc);
1426 		return 0;
1427 	}
1428 
1429 	mutex_unlock(&shmem_swaplist_mutex);
1430 	put_swap_page(page, swap);
1431 redirty:
1432 	set_page_dirty(page);
1433 	if (wbc->for_reclaim)
1434 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1435 	unlock_page(page);
1436 	return 0;
1437 }
1438 
1439 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1440 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441 {
1442 	char buffer[64];
1443 
1444 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1445 		return;		/* show nothing */
1446 
1447 	mpol_to_str(buffer, sizeof(buffer), mpol);
1448 
1449 	seq_printf(seq, ",mpol=%s", buffer);
1450 }
1451 
1452 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453 {
1454 	struct mempolicy *mpol = NULL;
1455 	if (sbinfo->mpol) {
1456 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1457 		mpol = sbinfo->mpol;
1458 		mpol_get(mpol);
1459 		spin_unlock(&sbinfo->stat_lock);
1460 	}
1461 	return mpol;
1462 }
1463 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 }
1467 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468 {
1469 	return NULL;
1470 }
1471 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472 #ifndef CONFIG_NUMA
1473 #define vm_policy vm_private_data
1474 #endif
1475 
1476 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 		struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 	/* Create a pseudo vma that just contains the policy */
1480 	vma_init(vma, NULL);
1481 	/* Bias interleave by inode number to distribute better across nodes */
1482 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484 }
1485 
1486 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487 {
1488 	/* Drop reference taken by mpol_shared_policy_lookup() */
1489 	mpol_cond_put(vma->vm_policy);
1490 }
1491 
1492 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 			struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 	struct vm_area_struct pvma;
1496 	struct page *page;
1497 	struct vm_fault vmf = {
1498 		.vma = &pvma,
1499 	};
1500 
1501 	shmem_pseudo_vma_init(&pvma, info, index);
1502 	page = swap_cluster_readahead(swap, gfp, &vmf);
1503 	shmem_pseudo_vma_destroy(&pvma);
1504 
1505 	return page;
1506 }
1507 
1508 /*
1509  * Make sure huge_gfp is always more limited than limit_gfp.
1510  * Some of the flags set permissions, while others set limitations.
1511  */
1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513 {
1514 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518 
1519 	/* Allow allocations only from the originally specified zones. */
1520 	result |= zoneflags;
1521 
1522 	/*
1523 	 * Minimize the result gfp by taking the union with the deny flags,
1524 	 * and the intersection of the allow flags.
1525 	 */
1526 	result |= (limit_gfp & denyflags);
1527 	result |= (huge_gfp & limit_gfp) & allowflags;
1528 
1529 	return result;
1530 }
1531 
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 		struct shmem_inode_info *info, pgoff_t index)
1534 {
1535 	struct vm_area_struct pvma;
1536 	struct address_space *mapping = info->vfs_inode.i_mapping;
1537 	pgoff_t hindex;
1538 	struct page *page;
1539 
1540 	hindex = round_down(index, HPAGE_PMD_NR);
1541 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 								XA_PRESENT))
1543 		return NULL;
1544 
1545 	shmem_pseudo_vma_init(&pvma, info, hindex);
1546 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 			       true);
1548 	shmem_pseudo_vma_destroy(&pvma);
1549 	if (page)
1550 		prep_transhuge_page(page);
1551 	else
1552 		count_vm_event(THP_FILE_FALLBACK);
1553 	return page;
1554 }
1555 
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557 			struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 	struct vm_area_struct pvma;
1560 	struct page *page;
1561 
1562 	shmem_pseudo_vma_init(&pvma, info, index);
1563 	page = alloc_page_vma(gfp, &pvma, 0);
1564 	shmem_pseudo_vma_destroy(&pvma);
1565 
1566 	return page;
1567 }
1568 
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570 		struct inode *inode,
1571 		pgoff_t index, bool huge)
1572 {
1573 	struct shmem_inode_info *info = SHMEM_I(inode);
1574 	struct page *page;
1575 	int nr;
1576 	int err = -ENOSPC;
1577 
1578 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 		huge = false;
1580 	nr = huge ? HPAGE_PMD_NR : 1;
1581 
1582 	if (!shmem_inode_acct_block(inode, nr))
1583 		goto failed;
1584 
1585 	if (huge)
1586 		page = shmem_alloc_hugepage(gfp, info, index);
1587 	else
1588 		page = shmem_alloc_page(gfp, info, index);
1589 	if (page) {
1590 		__SetPageLocked(page);
1591 		__SetPageSwapBacked(page);
1592 		return page;
1593 	}
1594 
1595 	err = -ENOMEM;
1596 	shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 	return ERR_PTR(err);
1599 }
1600 
1601 /*
1602  * When a page is moved from swapcache to shmem filecache (either by the
1603  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605  * ignorance of the mapping it belongs to.  If that mapping has special
1606  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607  * we may need to copy to a suitable page before moving to filecache.
1608  *
1609  * In a future release, this may well be extended to respect cpuset and
1610  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611  * but for now it is a simple matter of zone.
1612  */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615 	return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617 
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 				struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 	struct page *oldpage, *newpage;
1622 	struct address_space *swap_mapping;
1623 	swp_entry_t entry;
1624 	pgoff_t swap_index;
1625 	int error;
1626 
1627 	oldpage = *pagep;
1628 	entry.val = page_private(oldpage);
1629 	swap_index = swp_offset(entry);
1630 	swap_mapping = page_mapping(oldpage);
1631 
1632 	/*
1633 	 * We have arrived here because our zones are constrained, so don't
1634 	 * limit chance of success by further cpuset and node constraints.
1635 	 */
1636 	gfp &= ~GFP_CONSTRAINT_MASK;
1637 	newpage = shmem_alloc_page(gfp, info, index);
1638 	if (!newpage)
1639 		return -ENOMEM;
1640 
1641 	get_page(newpage);
1642 	copy_highpage(newpage, oldpage);
1643 	flush_dcache_page(newpage);
1644 
1645 	__SetPageLocked(newpage);
1646 	__SetPageSwapBacked(newpage);
1647 	SetPageUptodate(newpage);
1648 	set_page_private(newpage, entry.val);
1649 	SetPageSwapCache(newpage);
1650 
1651 	/*
1652 	 * Our caller will very soon move newpage out of swapcache, but it's
1653 	 * a nice clean interface for us to replace oldpage by newpage there.
1654 	 */
1655 	xa_lock_irq(&swap_mapping->i_pages);
1656 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 	if (!error) {
1658 		mem_cgroup_migrate(oldpage, newpage);
1659 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661 	}
1662 	xa_unlock_irq(&swap_mapping->i_pages);
1663 
1664 	if (unlikely(error)) {
1665 		/*
1666 		 * Is this possible?  I think not, now that our callers check
1667 		 * both PageSwapCache and page_private after getting page lock;
1668 		 * but be defensive.  Reverse old to newpage for clear and free.
1669 		 */
1670 		oldpage = newpage;
1671 	} else {
1672 		lru_cache_add(newpage);
1673 		*pagep = newpage;
1674 	}
1675 
1676 	ClearPageSwapCache(oldpage);
1677 	set_page_private(oldpage, 0);
1678 
1679 	unlock_page(oldpage);
1680 	put_page(oldpage);
1681 	put_page(oldpage);
1682 	return error;
1683 }
1684 
1685 /*
1686  * Swap in the page pointed to by *pagep.
1687  * Caller has to make sure that *pagep contains a valid swapped page.
1688  * Returns 0 and the page in pagep if success. On failure, returns the
1689  * error code and NULL in *pagep.
1690  */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 			     struct page **pagep, enum sgp_type sgp,
1693 			     gfp_t gfp, struct vm_area_struct *vma,
1694 			     vm_fault_t *fault_type)
1695 {
1696 	struct address_space *mapping = inode->i_mapping;
1697 	struct shmem_inode_info *info = SHMEM_I(inode);
1698 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1699 	struct page *page;
1700 	swp_entry_t swap;
1701 	int error;
1702 
1703 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1704 	swap = radix_to_swp_entry(*pagep);
1705 	*pagep = NULL;
1706 
1707 	/* Look it up and read it in.. */
1708 	page = lookup_swap_cache(swap, NULL, 0);
1709 	if (!page) {
1710 		/* Or update major stats only when swapin succeeds?? */
1711 		if (fault_type) {
1712 			*fault_type |= VM_FAULT_MAJOR;
1713 			count_vm_event(PGMAJFAULT);
1714 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1715 		}
1716 		/* Here we actually start the io */
1717 		page = shmem_swapin(swap, gfp, info, index);
1718 		if (!page) {
1719 			error = -ENOMEM;
1720 			goto failed;
1721 		}
1722 	}
1723 
1724 	/* We have to do this with page locked to prevent races */
1725 	lock_page(page);
1726 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1727 	    !shmem_confirm_swap(mapping, index, swap)) {
1728 		error = -EEXIST;
1729 		goto unlock;
1730 	}
1731 	if (!PageUptodate(page)) {
1732 		error = -EIO;
1733 		goto failed;
1734 	}
1735 	wait_on_page_writeback(page);
1736 
1737 	/*
1738 	 * Some architectures may have to restore extra metadata to the
1739 	 * physical page after reading from swap.
1740 	 */
1741 	arch_swap_restore(swap, page);
1742 
1743 	if (shmem_should_replace_page(page, gfp)) {
1744 		error = shmem_replace_page(&page, gfp, info, index);
1745 		if (error)
1746 			goto failed;
1747 	}
1748 
1749 	error = shmem_add_to_page_cache(page, mapping, index,
1750 					swp_to_radix_entry(swap), gfp,
1751 					charge_mm);
1752 	if (error)
1753 		goto failed;
1754 
1755 	spin_lock_irq(&info->lock);
1756 	info->swapped--;
1757 	shmem_recalc_inode(inode);
1758 	spin_unlock_irq(&info->lock);
1759 
1760 	if (sgp == SGP_WRITE)
1761 		mark_page_accessed(page);
1762 
1763 	delete_from_swap_cache(page);
1764 	set_page_dirty(page);
1765 	swap_free(swap);
1766 
1767 	*pagep = page;
1768 	return 0;
1769 failed:
1770 	if (!shmem_confirm_swap(mapping, index, swap))
1771 		error = -EEXIST;
1772 unlock:
1773 	if (page) {
1774 		unlock_page(page);
1775 		put_page(page);
1776 	}
1777 
1778 	return error;
1779 }
1780 
1781 /*
1782  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1783  *
1784  * If we allocate a new one we do not mark it dirty. That's up to the
1785  * vm. If we swap it in we mark it dirty since we also free the swap
1786  * entry since a page cannot live in both the swap and page cache.
1787  *
1788  * vmf and fault_type are only supplied by shmem_fault:
1789  * otherwise they are NULL.
1790  */
1791 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1792 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1793 	struct vm_area_struct *vma, struct vm_fault *vmf,
1794 			vm_fault_t *fault_type)
1795 {
1796 	struct address_space *mapping = inode->i_mapping;
1797 	struct shmem_inode_info *info = SHMEM_I(inode);
1798 	struct shmem_sb_info *sbinfo;
1799 	struct mm_struct *charge_mm;
1800 	struct page *page;
1801 	enum sgp_type sgp_huge = sgp;
1802 	pgoff_t hindex = index;
1803 	gfp_t huge_gfp;
1804 	int error;
1805 	int once = 0;
1806 	int alloced = 0;
1807 
1808 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1809 		return -EFBIG;
1810 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1811 		sgp = SGP_CACHE;
1812 repeat:
1813 	if (sgp <= SGP_CACHE &&
1814 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1815 		return -EINVAL;
1816 	}
1817 
1818 	sbinfo = SHMEM_SB(inode->i_sb);
1819 	charge_mm = vma ? vma->vm_mm : current->mm;
1820 
1821 	page = pagecache_get_page(mapping, index,
1822 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1823 	if (xa_is_value(page)) {
1824 		error = shmem_swapin_page(inode, index, &page,
1825 					  sgp, gfp, vma, fault_type);
1826 		if (error == -EEXIST)
1827 			goto repeat;
1828 
1829 		*pagep = page;
1830 		return error;
1831 	}
1832 
1833 	if (page)
1834 		hindex = page->index;
1835 	if (page && sgp == SGP_WRITE)
1836 		mark_page_accessed(page);
1837 
1838 	/* fallocated page? */
1839 	if (page && !PageUptodate(page)) {
1840 		if (sgp != SGP_READ)
1841 			goto clear;
1842 		unlock_page(page);
1843 		put_page(page);
1844 		page = NULL;
1845 		hindex = index;
1846 	}
1847 	if (page || sgp == SGP_READ)
1848 		goto out;
1849 
1850 	/*
1851 	 * Fast cache lookup did not find it:
1852 	 * bring it back from swap or allocate.
1853 	 */
1854 
1855 	if (vma && userfaultfd_missing(vma)) {
1856 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1857 		return 0;
1858 	}
1859 
1860 	/* shmem_symlink() */
1861 	if (!shmem_mapping(mapping))
1862 		goto alloc_nohuge;
1863 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1864 		goto alloc_nohuge;
1865 	if (shmem_huge == SHMEM_HUGE_FORCE)
1866 		goto alloc_huge;
1867 	switch (sbinfo->huge) {
1868 	case SHMEM_HUGE_NEVER:
1869 		goto alloc_nohuge;
1870 	case SHMEM_HUGE_WITHIN_SIZE: {
1871 		loff_t i_size;
1872 		pgoff_t off;
1873 
1874 		off = round_up(index, HPAGE_PMD_NR);
1875 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1876 		if (i_size >= HPAGE_PMD_SIZE &&
1877 		    i_size >> PAGE_SHIFT >= off)
1878 			goto alloc_huge;
1879 
1880 		fallthrough;
1881 	}
1882 	case SHMEM_HUGE_ADVISE:
1883 		if (sgp_huge == SGP_HUGE)
1884 			goto alloc_huge;
1885 		/* TODO: implement fadvise() hints */
1886 		goto alloc_nohuge;
1887 	}
1888 
1889 alloc_huge:
1890 	huge_gfp = vma_thp_gfp_mask(vma);
1891 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1892 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1893 	if (IS_ERR(page)) {
1894 alloc_nohuge:
1895 		page = shmem_alloc_and_acct_page(gfp, inode,
1896 						 index, false);
1897 	}
1898 	if (IS_ERR(page)) {
1899 		int retry = 5;
1900 
1901 		error = PTR_ERR(page);
1902 		page = NULL;
1903 		if (error != -ENOSPC)
1904 			goto unlock;
1905 		/*
1906 		 * Try to reclaim some space by splitting a huge page
1907 		 * beyond i_size on the filesystem.
1908 		 */
1909 		while (retry--) {
1910 			int ret;
1911 
1912 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1913 			if (ret == SHRINK_STOP)
1914 				break;
1915 			if (ret)
1916 				goto alloc_nohuge;
1917 		}
1918 		goto unlock;
1919 	}
1920 
1921 	if (PageTransHuge(page))
1922 		hindex = round_down(index, HPAGE_PMD_NR);
1923 	else
1924 		hindex = index;
1925 
1926 	if (sgp == SGP_WRITE)
1927 		__SetPageReferenced(page);
1928 
1929 	error = shmem_add_to_page_cache(page, mapping, hindex,
1930 					NULL, gfp & GFP_RECLAIM_MASK,
1931 					charge_mm);
1932 	if (error)
1933 		goto unacct;
1934 	lru_cache_add(page);
1935 
1936 	spin_lock_irq(&info->lock);
1937 	info->alloced += compound_nr(page);
1938 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1939 	shmem_recalc_inode(inode);
1940 	spin_unlock_irq(&info->lock);
1941 	alloced = true;
1942 
1943 	if (PageTransHuge(page) &&
1944 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1945 			hindex + HPAGE_PMD_NR - 1) {
1946 		/*
1947 		 * Part of the huge page is beyond i_size: subject
1948 		 * to shrink under memory pressure.
1949 		 */
1950 		spin_lock(&sbinfo->shrinklist_lock);
1951 		/*
1952 		 * _careful to defend against unlocked access to
1953 		 * ->shrink_list in shmem_unused_huge_shrink()
1954 		 */
1955 		if (list_empty_careful(&info->shrinklist)) {
1956 			list_add_tail(&info->shrinklist,
1957 				      &sbinfo->shrinklist);
1958 			sbinfo->shrinklist_len++;
1959 		}
1960 		spin_unlock(&sbinfo->shrinklist_lock);
1961 	}
1962 
1963 	/*
1964 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1965 	 */
1966 	if (sgp == SGP_FALLOC)
1967 		sgp = SGP_WRITE;
1968 clear:
1969 	/*
1970 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1971 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1972 	 * it now, lest undo on failure cancel our earlier guarantee.
1973 	 */
1974 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1975 		int i;
1976 
1977 		for (i = 0; i < compound_nr(page); i++) {
1978 			clear_highpage(page + i);
1979 			flush_dcache_page(page + i);
1980 		}
1981 		SetPageUptodate(page);
1982 	}
1983 
1984 	/* Perhaps the file has been truncated since we checked */
1985 	if (sgp <= SGP_CACHE &&
1986 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1987 		if (alloced) {
1988 			ClearPageDirty(page);
1989 			delete_from_page_cache(page);
1990 			spin_lock_irq(&info->lock);
1991 			shmem_recalc_inode(inode);
1992 			spin_unlock_irq(&info->lock);
1993 		}
1994 		error = -EINVAL;
1995 		goto unlock;
1996 	}
1997 out:
1998 	*pagep = page + index - hindex;
1999 	return 0;
2000 
2001 	/*
2002 	 * Error recovery.
2003 	 */
2004 unacct:
2005 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2006 
2007 	if (PageTransHuge(page)) {
2008 		unlock_page(page);
2009 		put_page(page);
2010 		goto alloc_nohuge;
2011 	}
2012 unlock:
2013 	if (page) {
2014 		unlock_page(page);
2015 		put_page(page);
2016 	}
2017 	if (error == -ENOSPC && !once++) {
2018 		spin_lock_irq(&info->lock);
2019 		shmem_recalc_inode(inode);
2020 		spin_unlock_irq(&info->lock);
2021 		goto repeat;
2022 	}
2023 	if (error == -EEXIST)
2024 		goto repeat;
2025 	return error;
2026 }
2027 
2028 /*
2029  * This is like autoremove_wake_function, but it removes the wait queue
2030  * entry unconditionally - even if something else had already woken the
2031  * target.
2032  */
2033 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2034 {
2035 	int ret = default_wake_function(wait, mode, sync, key);
2036 	list_del_init(&wait->entry);
2037 	return ret;
2038 }
2039 
2040 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2041 {
2042 	struct vm_area_struct *vma = vmf->vma;
2043 	struct inode *inode = file_inode(vma->vm_file);
2044 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2045 	enum sgp_type sgp;
2046 	int err;
2047 	vm_fault_t ret = VM_FAULT_LOCKED;
2048 
2049 	/*
2050 	 * Trinity finds that probing a hole which tmpfs is punching can
2051 	 * prevent the hole-punch from ever completing: which in turn
2052 	 * locks writers out with its hold on i_mutex.  So refrain from
2053 	 * faulting pages into the hole while it's being punched.  Although
2054 	 * shmem_undo_range() does remove the additions, it may be unable to
2055 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2056 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2057 	 *
2058 	 * It does not matter if we sometimes reach this check just before the
2059 	 * hole-punch begins, so that one fault then races with the punch:
2060 	 * we just need to make racing faults a rare case.
2061 	 *
2062 	 * The implementation below would be much simpler if we just used a
2063 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2064 	 * and bloating every shmem inode for this unlikely case would be sad.
2065 	 */
2066 	if (unlikely(inode->i_private)) {
2067 		struct shmem_falloc *shmem_falloc;
2068 
2069 		spin_lock(&inode->i_lock);
2070 		shmem_falloc = inode->i_private;
2071 		if (shmem_falloc &&
2072 		    shmem_falloc->waitq &&
2073 		    vmf->pgoff >= shmem_falloc->start &&
2074 		    vmf->pgoff < shmem_falloc->next) {
2075 			struct file *fpin;
2076 			wait_queue_head_t *shmem_falloc_waitq;
2077 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2078 
2079 			ret = VM_FAULT_NOPAGE;
2080 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2081 			if (fpin)
2082 				ret = VM_FAULT_RETRY;
2083 
2084 			shmem_falloc_waitq = shmem_falloc->waitq;
2085 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2086 					TASK_UNINTERRUPTIBLE);
2087 			spin_unlock(&inode->i_lock);
2088 			schedule();
2089 
2090 			/*
2091 			 * shmem_falloc_waitq points into the shmem_fallocate()
2092 			 * stack of the hole-punching task: shmem_falloc_waitq
2093 			 * is usually invalid by the time we reach here, but
2094 			 * finish_wait() does not dereference it in that case;
2095 			 * though i_lock needed lest racing with wake_up_all().
2096 			 */
2097 			spin_lock(&inode->i_lock);
2098 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2099 			spin_unlock(&inode->i_lock);
2100 
2101 			if (fpin)
2102 				fput(fpin);
2103 			return ret;
2104 		}
2105 		spin_unlock(&inode->i_lock);
2106 	}
2107 
2108 	sgp = SGP_CACHE;
2109 
2110 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2111 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2112 		sgp = SGP_NOHUGE;
2113 	else if (vma->vm_flags & VM_HUGEPAGE)
2114 		sgp = SGP_HUGE;
2115 
2116 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2117 				  gfp, vma, vmf, &ret);
2118 	if (err)
2119 		return vmf_error(err);
2120 	return ret;
2121 }
2122 
2123 unsigned long shmem_get_unmapped_area(struct file *file,
2124 				      unsigned long uaddr, unsigned long len,
2125 				      unsigned long pgoff, unsigned long flags)
2126 {
2127 	unsigned long (*get_area)(struct file *,
2128 		unsigned long, unsigned long, unsigned long, unsigned long);
2129 	unsigned long addr;
2130 	unsigned long offset;
2131 	unsigned long inflated_len;
2132 	unsigned long inflated_addr;
2133 	unsigned long inflated_offset;
2134 
2135 	if (len > TASK_SIZE)
2136 		return -ENOMEM;
2137 
2138 	get_area = current->mm->get_unmapped_area;
2139 	addr = get_area(file, uaddr, len, pgoff, flags);
2140 
2141 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2142 		return addr;
2143 	if (IS_ERR_VALUE(addr))
2144 		return addr;
2145 	if (addr & ~PAGE_MASK)
2146 		return addr;
2147 	if (addr > TASK_SIZE - len)
2148 		return addr;
2149 
2150 	if (shmem_huge == SHMEM_HUGE_DENY)
2151 		return addr;
2152 	if (len < HPAGE_PMD_SIZE)
2153 		return addr;
2154 	if (flags & MAP_FIXED)
2155 		return addr;
2156 	/*
2157 	 * Our priority is to support MAP_SHARED mapped hugely;
2158 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2159 	 * But if caller specified an address hint and we allocated area there
2160 	 * successfully, respect that as before.
2161 	 */
2162 	if (uaddr == addr)
2163 		return addr;
2164 
2165 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2166 		struct super_block *sb;
2167 
2168 		if (file) {
2169 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2170 			sb = file_inode(file)->i_sb;
2171 		} else {
2172 			/*
2173 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2174 			 * for "/dev/zero", to create a shared anonymous object.
2175 			 */
2176 			if (IS_ERR(shm_mnt))
2177 				return addr;
2178 			sb = shm_mnt->mnt_sb;
2179 		}
2180 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2181 			return addr;
2182 	}
2183 
2184 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2185 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2186 		return addr;
2187 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2188 		return addr;
2189 
2190 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2191 	if (inflated_len > TASK_SIZE)
2192 		return addr;
2193 	if (inflated_len < len)
2194 		return addr;
2195 
2196 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2197 	if (IS_ERR_VALUE(inflated_addr))
2198 		return addr;
2199 	if (inflated_addr & ~PAGE_MASK)
2200 		return addr;
2201 
2202 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2203 	inflated_addr += offset - inflated_offset;
2204 	if (inflated_offset > offset)
2205 		inflated_addr += HPAGE_PMD_SIZE;
2206 
2207 	if (inflated_addr > TASK_SIZE - len)
2208 		return addr;
2209 	return inflated_addr;
2210 }
2211 
2212 #ifdef CONFIG_NUMA
2213 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2214 {
2215 	struct inode *inode = file_inode(vma->vm_file);
2216 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2217 }
2218 
2219 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2220 					  unsigned long addr)
2221 {
2222 	struct inode *inode = file_inode(vma->vm_file);
2223 	pgoff_t index;
2224 
2225 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2226 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2227 }
2228 #endif
2229 
2230 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2231 {
2232 	struct inode *inode = file_inode(file);
2233 	struct shmem_inode_info *info = SHMEM_I(inode);
2234 	int retval = -ENOMEM;
2235 
2236 	/*
2237 	 * What serializes the accesses to info->flags?
2238 	 * ipc_lock_object() when called from shmctl_do_lock(),
2239 	 * no serialization needed when called from shm_destroy().
2240 	 */
2241 	if (lock && !(info->flags & VM_LOCKED)) {
2242 		if (!user_shm_lock(inode->i_size, user))
2243 			goto out_nomem;
2244 		info->flags |= VM_LOCKED;
2245 		mapping_set_unevictable(file->f_mapping);
2246 	}
2247 	if (!lock && (info->flags & VM_LOCKED) && user) {
2248 		user_shm_unlock(inode->i_size, user);
2249 		info->flags &= ~VM_LOCKED;
2250 		mapping_clear_unevictable(file->f_mapping);
2251 	}
2252 	retval = 0;
2253 
2254 out_nomem:
2255 	return retval;
2256 }
2257 
2258 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2259 {
2260 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2261 
2262 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2263 		/*
2264 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2265 		 * "future write" seal active.
2266 		 */
2267 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2268 			return -EPERM;
2269 
2270 		/*
2271 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2272 		 * MAP_SHARED and read-only, take care to not allow mprotect to
2273 		 * revert protections on such mappings. Do this only for shared
2274 		 * mappings. For private mappings, don't need to mask
2275 		 * VM_MAYWRITE as we still want them to be COW-writable.
2276 		 */
2277 		if (vma->vm_flags & VM_SHARED)
2278 			vma->vm_flags &= ~(VM_MAYWRITE);
2279 	}
2280 
2281 	/* arm64 - allow memory tagging on RAM-based files */
2282 	vma->vm_flags |= VM_MTE_ALLOWED;
2283 
2284 	file_accessed(file);
2285 	vma->vm_ops = &shmem_vm_ops;
2286 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2287 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2288 			(vma->vm_end & HPAGE_PMD_MASK)) {
2289 		khugepaged_enter(vma, vma->vm_flags);
2290 	}
2291 	return 0;
2292 }
2293 
2294 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2295 				     umode_t mode, dev_t dev, unsigned long flags)
2296 {
2297 	struct inode *inode;
2298 	struct shmem_inode_info *info;
2299 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2300 	ino_t ino;
2301 
2302 	if (shmem_reserve_inode(sb, &ino))
2303 		return NULL;
2304 
2305 	inode = new_inode(sb);
2306 	if (inode) {
2307 		inode->i_ino = ino;
2308 		inode_init_owner(&init_user_ns, inode, dir, mode);
2309 		inode->i_blocks = 0;
2310 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2311 		inode->i_generation = prandom_u32();
2312 		info = SHMEM_I(inode);
2313 		memset(info, 0, (char *)inode - (char *)info);
2314 		spin_lock_init(&info->lock);
2315 		atomic_set(&info->stop_eviction, 0);
2316 		info->seals = F_SEAL_SEAL;
2317 		info->flags = flags & VM_NORESERVE;
2318 		INIT_LIST_HEAD(&info->shrinklist);
2319 		INIT_LIST_HEAD(&info->swaplist);
2320 		simple_xattrs_init(&info->xattrs);
2321 		cache_no_acl(inode);
2322 
2323 		switch (mode & S_IFMT) {
2324 		default:
2325 			inode->i_op = &shmem_special_inode_operations;
2326 			init_special_inode(inode, mode, dev);
2327 			break;
2328 		case S_IFREG:
2329 			inode->i_mapping->a_ops = &shmem_aops;
2330 			inode->i_op = &shmem_inode_operations;
2331 			inode->i_fop = &shmem_file_operations;
2332 			mpol_shared_policy_init(&info->policy,
2333 						 shmem_get_sbmpol(sbinfo));
2334 			break;
2335 		case S_IFDIR:
2336 			inc_nlink(inode);
2337 			/* Some things misbehave if size == 0 on a directory */
2338 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2339 			inode->i_op = &shmem_dir_inode_operations;
2340 			inode->i_fop = &simple_dir_operations;
2341 			break;
2342 		case S_IFLNK:
2343 			/*
2344 			 * Must not load anything in the rbtree,
2345 			 * mpol_free_shared_policy will not be called.
2346 			 */
2347 			mpol_shared_policy_init(&info->policy, NULL);
2348 			break;
2349 		}
2350 
2351 		lockdep_annotate_inode_mutex_key(inode);
2352 	} else
2353 		shmem_free_inode(sb);
2354 	return inode;
2355 }
2356 
2357 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2358 				  pmd_t *dst_pmd,
2359 				  struct vm_area_struct *dst_vma,
2360 				  unsigned long dst_addr,
2361 				  unsigned long src_addr,
2362 				  bool zeropage,
2363 				  struct page **pagep)
2364 {
2365 	struct inode *inode = file_inode(dst_vma->vm_file);
2366 	struct shmem_inode_info *info = SHMEM_I(inode);
2367 	struct address_space *mapping = inode->i_mapping;
2368 	gfp_t gfp = mapping_gfp_mask(mapping);
2369 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2370 	spinlock_t *ptl;
2371 	void *page_kaddr;
2372 	struct page *page;
2373 	pte_t _dst_pte, *dst_pte;
2374 	int ret;
2375 	pgoff_t offset, max_off;
2376 
2377 	ret = -ENOMEM;
2378 	if (!shmem_inode_acct_block(inode, 1))
2379 		goto out;
2380 
2381 	if (!*pagep) {
2382 		page = shmem_alloc_page(gfp, info, pgoff);
2383 		if (!page)
2384 			goto out_unacct_blocks;
2385 
2386 		if (!zeropage) {	/* mcopy_atomic */
2387 			page_kaddr = kmap_atomic(page);
2388 			ret = copy_from_user(page_kaddr,
2389 					     (const void __user *)src_addr,
2390 					     PAGE_SIZE);
2391 			kunmap_atomic(page_kaddr);
2392 
2393 			/* fallback to copy_from_user outside mmap_lock */
2394 			if (unlikely(ret)) {
2395 				*pagep = page;
2396 				shmem_inode_unacct_blocks(inode, 1);
2397 				/* don't free the page */
2398 				return -ENOENT;
2399 			}
2400 		} else {		/* mfill_zeropage_atomic */
2401 			clear_highpage(page);
2402 		}
2403 	} else {
2404 		page = *pagep;
2405 		*pagep = NULL;
2406 	}
2407 
2408 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2409 	__SetPageLocked(page);
2410 	__SetPageSwapBacked(page);
2411 	__SetPageUptodate(page);
2412 
2413 	ret = -EFAULT;
2414 	offset = linear_page_index(dst_vma, dst_addr);
2415 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2416 	if (unlikely(offset >= max_off))
2417 		goto out_release;
2418 
2419 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2420 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2421 	if (ret)
2422 		goto out_release;
2423 
2424 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2425 	if (dst_vma->vm_flags & VM_WRITE)
2426 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2427 	else {
2428 		/*
2429 		 * We don't set the pte dirty if the vma has no
2430 		 * VM_WRITE permission, so mark the page dirty or it
2431 		 * could be freed from under us. We could do it
2432 		 * unconditionally before unlock_page(), but doing it
2433 		 * only if VM_WRITE is not set is faster.
2434 		 */
2435 		set_page_dirty(page);
2436 	}
2437 
2438 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2439 
2440 	ret = -EFAULT;
2441 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2442 	if (unlikely(offset >= max_off))
2443 		goto out_release_unlock;
2444 
2445 	ret = -EEXIST;
2446 	if (!pte_none(*dst_pte))
2447 		goto out_release_unlock;
2448 
2449 	lru_cache_add(page);
2450 
2451 	spin_lock_irq(&info->lock);
2452 	info->alloced++;
2453 	inode->i_blocks += BLOCKS_PER_PAGE;
2454 	shmem_recalc_inode(inode);
2455 	spin_unlock_irq(&info->lock);
2456 
2457 	inc_mm_counter(dst_mm, mm_counter_file(page));
2458 	page_add_file_rmap(page, false);
2459 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2460 
2461 	/* No need to invalidate - it was non-present before */
2462 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2463 	pte_unmap_unlock(dst_pte, ptl);
2464 	unlock_page(page);
2465 	ret = 0;
2466 out:
2467 	return ret;
2468 out_release_unlock:
2469 	pte_unmap_unlock(dst_pte, ptl);
2470 	ClearPageDirty(page);
2471 	delete_from_page_cache(page);
2472 out_release:
2473 	unlock_page(page);
2474 	put_page(page);
2475 out_unacct_blocks:
2476 	shmem_inode_unacct_blocks(inode, 1);
2477 	goto out;
2478 }
2479 
2480 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2481 			   pmd_t *dst_pmd,
2482 			   struct vm_area_struct *dst_vma,
2483 			   unsigned long dst_addr,
2484 			   unsigned long src_addr,
2485 			   struct page **pagep)
2486 {
2487 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2488 				      dst_addr, src_addr, false, pagep);
2489 }
2490 
2491 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2492 			     pmd_t *dst_pmd,
2493 			     struct vm_area_struct *dst_vma,
2494 			     unsigned long dst_addr)
2495 {
2496 	struct page *page = NULL;
2497 
2498 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2499 				      dst_addr, 0, true, &page);
2500 }
2501 
2502 #ifdef CONFIG_TMPFS
2503 static const struct inode_operations shmem_symlink_inode_operations;
2504 static const struct inode_operations shmem_short_symlink_operations;
2505 
2506 #ifdef CONFIG_TMPFS_XATTR
2507 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2508 #else
2509 #define shmem_initxattrs NULL
2510 #endif
2511 
2512 static int
2513 shmem_write_begin(struct file *file, struct address_space *mapping,
2514 			loff_t pos, unsigned len, unsigned flags,
2515 			struct page **pagep, void **fsdata)
2516 {
2517 	struct inode *inode = mapping->host;
2518 	struct shmem_inode_info *info = SHMEM_I(inode);
2519 	pgoff_t index = pos >> PAGE_SHIFT;
2520 
2521 	/* i_mutex is held by caller */
2522 	if (unlikely(info->seals & (F_SEAL_GROW |
2523 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2524 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2525 			return -EPERM;
2526 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2527 			return -EPERM;
2528 	}
2529 
2530 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2531 }
2532 
2533 static int
2534 shmem_write_end(struct file *file, struct address_space *mapping,
2535 			loff_t pos, unsigned len, unsigned copied,
2536 			struct page *page, void *fsdata)
2537 {
2538 	struct inode *inode = mapping->host;
2539 
2540 	if (pos + copied > inode->i_size)
2541 		i_size_write(inode, pos + copied);
2542 
2543 	if (!PageUptodate(page)) {
2544 		struct page *head = compound_head(page);
2545 		if (PageTransCompound(page)) {
2546 			int i;
2547 
2548 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2549 				if (head + i == page)
2550 					continue;
2551 				clear_highpage(head + i);
2552 				flush_dcache_page(head + i);
2553 			}
2554 		}
2555 		if (copied < PAGE_SIZE) {
2556 			unsigned from = pos & (PAGE_SIZE - 1);
2557 			zero_user_segments(page, 0, from,
2558 					from + copied, PAGE_SIZE);
2559 		}
2560 		SetPageUptodate(head);
2561 	}
2562 	set_page_dirty(page);
2563 	unlock_page(page);
2564 	put_page(page);
2565 
2566 	return copied;
2567 }
2568 
2569 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2570 {
2571 	struct file *file = iocb->ki_filp;
2572 	struct inode *inode = file_inode(file);
2573 	struct address_space *mapping = inode->i_mapping;
2574 	pgoff_t index;
2575 	unsigned long offset;
2576 	enum sgp_type sgp = SGP_READ;
2577 	int error = 0;
2578 	ssize_t retval = 0;
2579 	loff_t *ppos = &iocb->ki_pos;
2580 
2581 	/*
2582 	 * Might this read be for a stacking filesystem?  Then when reading
2583 	 * holes of a sparse file, we actually need to allocate those pages,
2584 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2585 	 */
2586 	if (!iter_is_iovec(to))
2587 		sgp = SGP_CACHE;
2588 
2589 	index = *ppos >> PAGE_SHIFT;
2590 	offset = *ppos & ~PAGE_MASK;
2591 
2592 	for (;;) {
2593 		struct page *page = NULL;
2594 		pgoff_t end_index;
2595 		unsigned long nr, ret;
2596 		loff_t i_size = i_size_read(inode);
2597 
2598 		end_index = i_size >> PAGE_SHIFT;
2599 		if (index > end_index)
2600 			break;
2601 		if (index == end_index) {
2602 			nr = i_size & ~PAGE_MASK;
2603 			if (nr <= offset)
2604 				break;
2605 		}
2606 
2607 		error = shmem_getpage(inode, index, &page, sgp);
2608 		if (error) {
2609 			if (error == -EINVAL)
2610 				error = 0;
2611 			break;
2612 		}
2613 		if (page) {
2614 			if (sgp == SGP_CACHE)
2615 				set_page_dirty(page);
2616 			unlock_page(page);
2617 		}
2618 
2619 		/*
2620 		 * We must evaluate after, since reads (unlike writes)
2621 		 * are called without i_mutex protection against truncate
2622 		 */
2623 		nr = PAGE_SIZE;
2624 		i_size = i_size_read(inode);
2625 		end_index = i_size >> PAGE_SHIFT;
2626 		if (index == end_index) {
2627 			nr = i_size & ~PAGE_MASK;
2628 			if (nr <= offset) {
2629 				if (page)
2630 					put_page(page);
2631 				break;
2632 			}
2633 		}
2634 		nr -= offset;
2635 
2636 		if (page) {
2637 			/*
2638 			 * If users can be writing to this page using arbitrary
2639 			 * virtual addresses, take care about potential aliasing
2640 			 * before reading the page on the kernel side.
2641 			 */
2642 			if (mapping_writably_mapped(mapping))
2643 				flush_dcache_page(page);
2644 			/*
2645 			 * Mark the page accessed if we read the beginning.
2646 			 */
2647 			if (!offset)
2648 				mark_page_accessed(page);
2649 		} else {
2650 			page = ZERO_PAGE(0);
2651 			get_page(page);
2652 		}
2653 
2654 		/*
2655 		 * Ok, we have the page, and it's up-to-date, so
2656 		 * now we can copy it to user space...
2657 		 */
2658 		ret = copy_page_to_iter(page, offset, nr, to);
2659 		retval += ret;
2660 		offset += ret;
2661 		index += offset >> PAGE_SHIFT;
2662 		offset &= ~PAGE_MASK;
2663 
2664 		put_page(page);
2665 		if (!iov_iter_count(to))
2666 			break;
2667 		if (ret < nr) {
2668 			error = -EFAULT;
2669 			break;
2670 		}
2671 		cond_resched();
2672 	}
2673 
2674 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2675 	file_accessed(file);
2676 	return retval ? retval : error;
2677 }
2678 
2679 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2680 {
2681 	struct address_space *mapping = file->f_mapping;
2682 	struct inode *inode = mapping->host;
2683 
2684 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2685 		return generic_file_llseek_size(file, offset, whence,
2686 					MAX_LFS_FILESIZE, i_size_read(inode));
2687 	if (offset < 0)
2688 		return -ENXIO;
2689 
2690 	inode_lock(inode);
2691 	/* We're holding i_mutex so we can access i_size directly */
2692 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2693 	if (offset >= 0)
2694 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2695 	inode_unlock(inode);
2696 	return offset;
2697 }
2698 
2699 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2700 							 loff_t len)
2701 {
2702 	struct inode *inode = file_inode(file);
2703 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2704 	struct shmem_inode_info *info = SHMEM_I(inode);
2705 	struct shmem_falloc shmem_falloc;
2706 	pgoff_t start, index, end;
2707 	int error;
2708 
2709 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2710 		return -EOPNOTSUPP;
2711 
2712 	inode_lock(inode);
2713 
2714 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2715 		struct address_space *mapping = file->f_mapping;
2716 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2717 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2718 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2719 
2720 		/* protected by i_mutex */
2721 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2722 			error = -EPERM;
2723 			goto out;
2724 		}
2725 
2726 		shmem_falloc.waitq = &shmem_falloc_waitq;
2727 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2728 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2729 		spin_lock(&inode->i_lock);
2730 		inode->i_private = &shmem_falloc;
2731 		spin_unlock(&inode->i_lock);
2732 
2733 		if ((u64)unmap_end > (u64)unmap_start)
2734 			unmap_mapping_range(mapping, unmap_start,
2735 					    1 + unmap_end - unmap_start, 0);
2736 		shmem_truncate_range(inode, offset, offset + len - 1);
2737 		/* No need to unmap again: hole-punching leaves COWed pages */
2738 
2739 		spin_lock(&inode->i_lock);
2740 		inode->i_private = NULL;
2741 		wake_up_all(&shmem_falloc_waitq);
2742 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2743 		spin_unlock(&inode->i_lock);
2744 		error = 0;
2745 		goto out;
2746 	}
2747 
2748 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2749 	error = inode_newsize_ok(inode, offset + len);
2750 	if (error)
2751 		goto out;
2752 
2753 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2754 		error = -EPERM;
2755 		goto out;
2756 	}
2757 
2758 	start = offset >> PAGE_SHIFT;
2759 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2760 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2761 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2762 		error = -ENOSPC;
2763 		goto out;
2764 	}
2765 
2766 	shmem_falloc.waitq = NULL;
2767 	shmem_falloc.start = start;
2768 	shmem_falloc.next  = start;
2769 	shmem_falloc.nr_falloced = 0;
2770 	shmem_falloc.nr_unswapped = 0;
2771 	spin_lock(&inode->i_lock);
2772 	inode->i_private = &shmem_falloc;
2773 	spin_unlock(&inode->i_lock);
2774 
2775 	for (index = start; index < end; index++) {
2776 		struct page *page;
2777 
2778 		/*
2779 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2780 		 * been interrupted because we are using up too much memory.
2781 		 */
2782 		if (signal_pending(current))
2783 			error = -EINTR;
2784 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2785 			error = -ENOMEM;
2786 		else
2787 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2788 		if (error) {
2789 			/* Remove the !PageUptodate pages we added */
2790 			if (index > start) {
2791 				shmem_undo_range(inode,
2792 				    (loff_t)start << PAGE_SHIFT,
2793 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2794 			}
2795 			goto undone;
2796 		}
2797 
2798 		/*
2799 		 * Inform shmem_writepage() how far we have reached.
2800 		 * No need for lock or barrier: we have the page lock.
2801 		 */
2802 		shmem_falloc.next++;
2803 		if (!PageUptodate(page))
2804 			shmem_falloc.nr_falloced++;
2805 
2806 		/*
2807 		 * If !PageUptodate, leave it that way so that freeable pages
2808 		 * can be recognized if we need to rollback on error later.
2809 		 * But set_page_dirty so that memory pressure will swap rather
2810 		 * than free the pages we are allocating (and SGP_CACHE pages
2811 		 * might still be clean: we now need to mark those dirty too).
2812 		 */
2813 		set_page_dirty(page);
2814 		unlock_page(page);
2815 		put_page(page);
2816 		cond_resched();
2817 	}
2818 
2819 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2820 		i_size_write(inode, offset + len);
2821 	inode->i_ctime = current_time(inode);
2822 undone:
2823 	spin_lock(&inode->i_lock);
2824 	inode->i_private = NULL;
2825 	spin_unlock(&inode->i_lock);
2826 out:
2827 	inode_unlock(inode);
2828 	return error;
2829 }
2830 
2831 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2832 {
2833 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2834 
2835 	buf->f_type = TMPFS_MAGIC;
2836 	buf->f_bsize = PAGE_SIZE;
2837 	buf->f_namelen = NAME_MAX;
2838 	if (sbinfo->max_blocks) {
2839 		buf->f_blocks = sbinfo->max_blocks;
2840 		buf->f_bavail =
2841 		buf->f_bfree  = sbinfo->max_blocks -
2842 				percpu_counter_sum(&sbinfo->used_blocks);
2843 	}
2844 	if (sbinfo->max_inodes) {
2845 		buf->f_files = sbinfo->max_inodes;
2846 		buf->f_ffree = sbinfo->free_inodes;
2847 	}
2848 	/* else leave those fields 0 like simple_statfs */
2849 	return 0;
2850 }
2851 
2852 /*
2853  * File creation. Allocate an inode, and we're done..
2854  */
2855 static int
2856 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2857 	    struct dentry *dentry, umode_t mode, dev_t dev)
2858 {
2859 	struct inode *inode;
2860 	int error = -ENOSPC;
2861 
2862 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2863 	if (inode) {
2864 		error = simple_acl_create(dir, inode);
2865 		if (error)
2866 			goto out_iput;
2867 		error = security_inode_init_security(inode, dir,
2868 						     &dentry->d_name,
2869 						     shmem_initxattrs, NULL);
2870 		if (error && error != -EOPNOTSUPP)
2871 			goto out_iput;
2872 
2873 		error = 0;
2874 		dir->i_size += BOGO_DIRENT_SIZE;
2875 		dir->i_ctime = dir->i_mtime = current_time(dir);
2876 		d_instantiate(dentry, inode);
2877 		dget(dentry); /* Extra count - pin the dentry in core */
2878 	}
2879 	return error;
2880 out_iput:
2881 	iput(inode);
2882 	return error;
2883 }
2884 
2885 static int
2886 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2887 	      struct dentry *dentry, umode_t mode)
2888 {
2889 	struct inode *inode;
2890 	int error = -ENOSPC;
2891 
2892 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2893 	if (inode) {
2894 		error = security_inode_init_security(inode, dir,
2895 						     NULL,
2896 						     shmem_initxattrs, NULL);
2897 		if (error && error != -EOPNOTSUPP)
2898 			goto out_iput;
2899 		error = simple_acl_create(dir, inode);
2900 		if (error)
2901 			goto out_iput;
2902 		d_tmpfile(dentry, inode);
2903 	}
2904 	return error;
2905 out_iput:
2906 	iput(inode);
2907 	return error;
2908 }
2909 
2910 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2911 		       struct dentry *dentry, umode_t mode)
2912 {
2913 	int error;
2914 
2915 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2916 				 mode | S_IFDIR, 0)))
2917 		return error;
2918 	inc_nlink(dir);
2919 	return 0;
2920 }
2921 
2922 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2923 			struct dentry *dentry, umode_t mode, bool excl)
2924 {
2925 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2926 }
2927 
2928 /*
2929  * Link a file..
2930  */
2931 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2932 {
2933 	struct inode *inode = d_inode(old_dentry);
2934 	int ret = 0;
2935 
2936 	/*
2937 	 * No ordinary (disk based) filesystem counts links as inodes;
2938 	 * but each new link needs a new dentry, pinning lowmem, and
2939 	 * tmpfs dentries cannot be pruned until they are unlinked.
2940 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2941 	 * first link must skip that, to get the accounting right.
2942 	 */
2943 	if (inode->i_nlink) {
2944 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2945 		if (ret)
2946 			goto out;
2947 	}
2948 
2949 	dir->i_size += BOGO_DIRENT_SIZE;
2950 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2951 	inc_nlink(inode);
2952 	ihold(inode);	/* New dentry reference */
2953 	dget(dentry);		/* Extra pinning count for the created dentry */
2954 	d_instantiate(dentry, inode);
2955 out:
2956 	return ret;
2957 }
2958 
2959 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2960 {
2961 	struct inode *inode = d_inode(dentry);
2962 
2963 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2964 		shmem_free_inode(inode->i_sb);
2965 
2966 	dir->i_size -= BOGO_DIRENT_SIZE;
2967 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2968 	drop_nlink(inode);
2969 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2970 	return 0;
2971 }
2972 
2973 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2974 {
2975 	if (!simple_empty(dentry))
2976 		return -ENOTEMPTY;
2977 
2978 	drop_nlink(d_inode(dentry));
2979 	drop_nlink(dir);
2980 	return shmem_unlink(dir, dentry);
2981 }
2982 
2983 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2984 {
2985 	bool old_is_dir = d_is_dir(old_dentry);
2986 	bool new_is_dir = d_is_dir(new_dentry);
2987 
2988 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2989 		if (old_is_dir) {
2990 			drop_nlink(old_dir);
2991 			inc_nlink(new_dir);
2992 		} else {
2993 			drop_nlink(new_dir);
2994 			inc_nlink(old_dir);
2995 		}
2996 	}
2997 	old_dir->i_ctime = old_dir->i_mtime =
2998 	new_dir->i_ctime = new_dir->i_mtime =
2999 	d_inode(old_dentry)->i_ctime =
3000 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3001 
3002 	return 0;
3003 }
3004 
3005 static int shmem_whiteout(struct user_namespace *mnt_userns,
3006 			  struct inode *old_dir, struct dentry *old_dentry)
3007 {
3008 	struct dentry *whiteout;
3009 	int error;
3010 
3011 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3012 	if (!whiteout)
3013 		return -ENOMEM;
3014 
3015 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3016 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3017 	dput(whiteout);
3018 	if (error)
3019 		return error;
3020 
3021 	/*
3022 	 * Cheat and hash the whiteout while the old dentry is still in
3023 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3024 	 *
3025 	 * d_lookup() will consistently find one of them at this point,
3026 	 * not sure which one, but that isn't even important.
3027 	 */
3028 	d_rehash(whiteout);
3029 	return 0;
3030 }
3031 
3032 /*
3033  * The VFS layer already does all the dentry stuff for rename,
3034  * we just have to decrement the usage count for the target if
3035  * it exists so that the VFS layer correctly free's it when it
3036  * gets overwritten.
3037  */
3038 static int shmem_rename2(struct user_namespace *mnt_userns,
3039 			 struct inode *old_dir, struct dentry *old_dentry,
3040 			 struct inode *new_dir, struct dentry *new_dentry,
3041 			 unsigned int flags)
3042 {
3043 	struct inode *inode = d_inode(old_dentry);
3044 	int they_are_dirs = S_ISDIR(inode->i_mode);
3045 
3046 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3047 		return -EINVAL;
3048 
3049 	if (flags & RENAME_EXCHANGE)
3050 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3051 
3052 	if (!simple_empty(new_dentry))
3053 		return -ENOTEMPTY;
3054 
3055 	if (flags & RENAME_WHITEOUT) {
3056 		int error;
3057 
3058 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3059 		if (error)
3060 			return error;
3061 	}
3062 
3063 	if (d_really_is_positive(new_dentry)) {
3064 		(void) shmem_unlink(new_dir, new_dentry);
3065 		if (they_are_dirs) {
3066 			drop_nlink(d_inode(new_dentry));
3067 			drop_nlink(old_dir);
3068 		}
3069 	} else if (they_are_dirs) {
3070 		drop_nlink(old_dir);
3071 		inc_nlink(new_dir);
3072 	}
3073 
3074 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3075 	new_dir->i_size += BOGO_DIRENT_SIZE;
3076 	old_dir->i_ctime = old_dir->i_mtime =
3077 	new_dir->i_ctime = new_dir->i_mtime =
3078 	inode->i_ctime = current_time(old_dir);
3079 	return 0;
3080 }
3081 
3082 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3083 			 struct dentry *dentry, const char *symname)
3084 {
3085 	int error;
3086 	int len;
3087 	struct inode *inode;
3088 	struct page *page;
3089 
3090 	len = strlen(symname) + 1;
3091 	if (len > PAGE_SIZE)
3092 		return -ENAMETOOLONG;
3093 
3094 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3095 				VM_NORESERVE);
3096 	if (!inode)
3097 		return -ENOSPC;
3098 
3099 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3100 					     shmem_initxattrs, NULL);
3101 	if (error && error != -EOPNOTSUPP) {
3102 		iput(inode);
3103 		return error;
3104 	}
3105 
3106 	inode->i_size = len-1;
3107 	if (len <= SHORT_SYMLINK_LEN) {
3108 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3109 		if (!inode->i_link) {
3110 			iput(inode);
3111 			return -ENOMEM;
3112 		}
3113 		inode->i_op = &shmem_short_symlink_operations;
3114 	} else {
3115 		inode_nohighmem(inode);
3116 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3117 		if (error) {
3118 			iput(inode);
3119 			return error;
3120 		}
3121 		inode->i_mapping->a_ops = &shmem_aops;
3122 		inode->i_op = &shmem_symlink_inode_operations;
3123 		memcpy(page_address(page), symname, len);
3124 		SetPageUptodate(page);
3125 		set_page_dirty(page);
3126 		unlock_page(page);
3127 		put_page(page);
3128 	}
3129 	dir->i_size += BOGO_DIRENT_SIZE;
3130 	dir->i_ctime = dir->i_mtime = current_time(dir);
3131 	d_instantiate(dentry, inode);
3132 	dget(dentry);
3133 	return 0;
3134 }
3135 
3136 static void shmem_put_link(void *arg)
3137 {
3138 	mark_page_accessed(arg);
3139 	put_page(arg);
3140 }
3141 
3142 static const char *shmem_get_link(struct dentry *dentry,
3143 				  struct inode *inode,
3144 				  struct delayed_call *done)
3145 {
3146 	struct page *page = NULL;
3147 	int error;
3148 	if (!dentry) {
3149 		page = find_get_page(inode->i_mapping, 0);
3150 		if (!page)
3151 			return ERR_PTR(-ECHILD);
3152 		if (!PageUptodate(page)) {
3153 			put_page(page);
3154 			return ERR_PTR(-ECHILD);
3155 		}
3156 	} else {
3157 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3158 		if (error)
3159 			return ERR_PTR(error);
3160 		unlock_page(page);
3161 	}
3162 	set_delayed_call(done, shmem_put_link, page);
3163 	return page_address(page);
3164 }
3165 
3166 #ifdef CONFIG_TMPFS_XATTR
3167 /*
3168  * Superblocks without xattr inode operations may get some security.* xattr
3169  * support from the LSM "for free". As soon as we have any other xattrs
3170  * like ACLs, we also need to implement the security.* handlers at
3171  * filesystem level, though.
3172  */
3173 
3174 /*
3175  * Callback for security_inode_init_security() for acquiring xattrs.
3176  */
3177 static int shmem_initxattrs(struct inode *inode,
3178 			    const struct xattr *xattr_array,
3179 			    void *fs_info)
3180 {
3181 	struct shmem_inode_info *info = SHMEM_I(inode);
3182 	const struct xattr *xattr;
3183 	struct simple_xattr *new_xattr;
3184 	size_t len;
3185 
3186 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3187 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3188 		if (!new_xattr)
3189 			return -ENOMEM;
3190 
3191 		len = strlen(xattr->name) + 1;
3192 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3193 					  GFP_KERNEL);
3194 		if (!new_xattr->name) {
3195 			kvfree(new_xattr);
3196 			return -ENOMEM;
3197 		}
3198 
3199 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3200 		       XATTR_SECURITY_PREFIX_LEN);
3201 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3202 		       xattr->name, len);
3203 
3204 		simple_xattr_list_add(&info->xattrs, new_xattr);
3205 	}
3206 
3207 	return 0;
3208 }
3209 
3210 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3211 				   struct dentry *unused, struct inode *inode,
3212 				   const char *name, void *buffer, size_t size)
3213 {
3214 	struct shmem_inode_info *info = SHMEM_I(inode);
3215 
3216 	name = xattr_full_name(handler, name);
3217 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3218 }
3219 
3220 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3221 				   struct user_namespace *mnt_userns,
3222 				   struct dentry *unused, struct inode *inode,
3223 				   const char *name, const void *value,
3224 				   size_t size, int flags)
3225 {
3226 	struct shmem_inode_info *info = SHMEM_I(inode);
3227 
3228 	name = xattr_full_name(handler, name);
3229 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3230 }
3231 
3232 static const struct xattr_handler shmem_security_xattr_handler = {
3233 	.prefix = XATTR_SECURITY_PREFIX,
3234 	.get = shmem_xattr_handler_get,
3235 	.set = shmem_xattr_handler_set,
3236 };
3237 
3238 static const struct xattr_handler shmem_trusted_xattr_handler = {
3239 	.prefix = XATTR_TRUSTED_PREFIX,
3240 	.get = shmem_xattr_handler_get,
3241 	.set = shmem_xattr_handler_set,
3242 };
3243 
3244 static const struct xattr_handler *shmem_xattr_handlers[] = {
3245 #ifdef CONFIG_TMPFS_POSIX_ACL
3246 	&posix_acl_access_xattr_handler,
3247 	&posix_acl_default_xattr_handler,
3248 #endif
3249 	&shmem_security_xattr_handler,
3250 	&shmem_trusted_xattr_handler,
3251 	NULL
3252 };
3253 
3254 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3255 {
3256 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3257 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3258 }
3259 #endif /* CONFIG_TMPFS_XATTR */
3260 
3261 static const struct inode_operations shmem_short_symlink_operations = {
3262 	.get_link	= simple_get_link,
3263 #ifdef CONFIG_TMPFS_XATTR
3264 	.listxattr	= shmem_listxattr,
3265 #endif
3266 };
3267 
3268 static const struct inode_operations shmem_symlink_inode_operations = {
3269 	.get_link	= shmem_get_link,
3270 #ifdef CONFIG_TMPFS_XATTR
3271 	.listxattr	= shmem_listxattr,
3272 #endif
3273 };
3274 
3275 static struct dentry *shmem_get_parent(struct dentry *child)
3276 {
3277 	return ERR_PTR(-ESTALE);
3278 }
3279 
3280 static int shmem_match(struct inode *ino, void *vfh)
3281 {
3282 	__u32 *fh = vfh;
3283 	__u64 inum = fh[2];
3284 	inum = (inum << 32) | fh[1];
3285 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3286 }
3287 
3288 /* Find any alias of inode, but prefer a hashed alias */
3289 static struct dentry *shmem_find_alias(struct inode *inode)
3290 {
3291 	struct dentry *alias = d_find_alias(inode);
3292 
3293 	return alias ?: d_find_any_alias(inode);
3294 }
3295 
3296 
3297 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3298 		struct fid *fid, int fh_len, int fh_type)
3299 {
3300 	struct inode *inode;
3301 	struct dentry *dentry = NULL;
3302 	u64 inum;
3303 
3304 	if (fh_len < 3)
3305 		return NULL;
3306 
3307 	inum = fid->raw[2];
3308 	inum = (inum << 32) | fid->raw[1];
3309 
3310 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3311 			shmem_match, fid->raw);
3312 	if (inode) {
3313 		dentry = shmem_find_alias(inode);
3314 		iput(inode);
3315 	}
3316 
3317 	return dentry;
3318 }
3319 
3320 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3321 				struct inode *parent)
3322 {
3323 	if (*len < 3) {
3324 		*len = 3;
3325 		return FILEID_INVALID;
3326 	}
3327 
3328 	if (inode_unhashed(inode)) {
3329 		/* Unfortunately insert_inode_hash is not idempotent,
3330 		 * so as we hash inodes here rather than at creation
3331 		 * time, we need a lock to ensure we only try
3332 		 * to do it once
3333 		 */
3334 		static DEFINE_SPINLOCK(lock);
3335 		spin_lock(&lock);
3336 		if (inode_unhashed(inode))
3337 			__insert_inode_hash(inode,
3338 					    inode->i_ino + inode->i_generation);
3339 		spin_unlock(&lock);
3340 	}
3341 
3342 	fh[0] = inode->i_generation;
3343 	fh[1] = inode->i_ino;
3344 	fh[2] = ((__u64)inode->i_ino) >> 32;
3345 
3346 	*len = 3;
3347 	return 1;
3348 }
3349 
3350 static const struct export_operations shmem_export_ops = {
3351 	.get_parent     = shmem_get_parent,
3352 	.encode_fh      = shmem_encode_fh,
3353 	.fh_to_dentry	= shmem_fh_to_dentry,
3354 };
3355 
3356 enum shmem_param {
3357 	Opt_gid,
3358 	Opt_huge,
3359 	Opt_mode,
3360 	Opt_mpol,
3361 	Opt_nr_blocks,
3362 	Opt_nr_inodes,
3363 	Opt_size,
3364 	Opt_uid,
3365 	Opt_inode32,
3366 	Opt_inode64,
3367 };
3368 
3369 static const struct constant_table shmem_param_enums_huge[] = {
3370 	{"never",	SHMEM_HUGE_NEVER },
3371 	{"always",	SHMEM_HUGE_ALWAYS },
3372 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3373 	{"advise",	SHMEM_HUGE_ADVISE },
3374 	{}
3375 };
3376 
3377 const struct fs_parameter_spec shmem_fs_parameters[] = {
3378 	fsparam_u32   ("gid",		Opt_gid),
3379 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3380 	fsparam_u32oct("mode",		Opt_mode),
3381 	fsparam_string("mpol",		Opt_mpol),
3382 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3383 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3384 	fsparam_string("size",		Opt_size),
3385 	fsparam_u32   ("uid",		Opt_uid),
3386 	fsparam_flag  ("inode32",	Opt_inode32),
3387 	fsparam_flag  ("inode64",	Opt_inode64),
3388 	{}
3389 };
3390 
3391 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3392 {
3393 	struct shmem_options *ctx = fc->fs_private;
3394 	struct fs_parse_result result;
3395 	unsigned long long size;
3396 	char *rest;
3397 	int opt;
3398 
3399 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3400 	if (opt < 0)
3401 		return opt;
3402 
3403 	switch (opt) {
3404 	case Opt_size:
3405 		size = memparse(param->string, &rest);
3406 		if (*rest == '%') {
3407 			size <<= PAGE_SHIFT;
3408 			size *= totalram_pages();
3409 			do_div(size, 100);
3410 			rest++;
3411 		}
3412 		if (*rest)
3413 			goto bad_value;
3414 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3415 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3416 		break;
3417 	case Opt_nr_blocks:
3418 		ctx->blocks = memparse(param->string, &rest);
3419 		if (*rest)
3420 			goto bad_value;
3421 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3422 		break;
3423 	case Opt_nr_inodes:
3424 		ctx->inodes = memparse(param->string, &rest);
3425 		if (*rest)
3426 			goto bad_value;
3427 		ctx->seen |= SHMEM_SEEN_INODES;
3428 		break;
3429 	case Opt_mode:
3430 		ctx->mode = result.uint_32 & 07777;
3431 		break;
3432 	case Opt_uid:
3433 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3434 		if (!uid_valid(ctx->uid))
3435 			goto bad_value;
3436 		break;
3437 	case Opt_gid:
3438 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3439 		if (!gid_valid(ctx->gid))
3440 			goto bad_value;
3441 		break;
3442 	case Opt_huge:
3443 		ctx->huge = result.uint_32;
3444 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3445 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3446 		      has_transparent_hugepage()))
3447 			goto unsupported_parameter;
3448 		ctx->seen |= SHMEM_SEEN_HUGE;
3449 		break;
3450 	case Opt_mpol:
3451 		if (IS_ENABLED(CONFIG_NUMA)) {
3452 			mpol_put(ctx->mpol);
3453 			ctx->mpol = NULL;
3454 			if (mpol_parse_str(param->string, &ctx->mpol))
3455 				goto bad_value;
3456 			break;
3457 		}
3458 		goto unsupported_parameter;
3459 	case Opt_inode32:
3460 		ctx->full_inums = false;
3461 		ctx->seen |= SHMEM_SEEN_INUMS;
3462 		break;
3463 	case Opt_inode64:
3464 		if (sizeof(ino_t) < 8) {
3465 			return invalfc(fc,
3466 				       "Cannot use inode64 with <64bit inums in kernel\n");
3467 		}
3468 		ctx->full_inums = true;
3469 		ctx->seen |= SHMEM_SEEN_INUMS;
3470 		break;
3471 	}
3472 	return 0;
3473 
3474 unsupported_parameter:
3475 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3476 bad_value:
3477 	return invalfc(fc, "Bad value for '%s'", param->key);
3478 }
3479 
3480 static int shmem_parse_options(struct fs_context *fc, void *data)
3481 {
3482 	char *options = data;
3483 
3484 	if (options) {
3485 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3486 		if (err)
3487 			return err;
3488 	}
3489 
3490 	while (options != NULL) {
3491 		char *this_char = options;
3492 		for (;;) {
3493 			/*
3494 			 * NUL-terminate this option: unfortunately,
3495 			 * mount options form a comma-separated list,
3496 			 * but mpol's nodelist may also contain commas.
3497 			 */
3498 			options = strchr(options, ',');
3499 			if (options == NULL)
3500 				break;
3501 			options++;
3502 			if (!isdigit(*options)) {
3503 				options[-1] = '\0';
3504 				break;
3505 			}
3506 		}
3507 		if (*this_char) {
3508 			char *value = strchr(this_char,'=');
3509 			size_t len = 0;
3510 			int err;
3511 
3512 			if (value) {
3513 				*value++ = '\0';
3514 				len = strlen(value);
3515 			}
3516 			err = vfs_parse_fs_string(fc, this_char, value, len);
3517 			if (err < 0)
3518 				return err;
3519 		}
3520 	}
3521 	return 0;
3522 }
3523 
3524 /*
3525  * Reconfigure a shmem filesystem.
3526  *
3527  * Note that we disallow change from limited->unlimited blocks/inodes while any
3528  * are in use; but we must separately disallow unlimited->limited, because in
3529  * that case we have no record of how much is already in use.
3530  */
3531 static int shmem_reconfigure(struct fs_context *fc)
3532 {
3533 	struct shmem_options *ctx = fc->fs_private;
3534 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3535 	unsigned long inodes;
3536 	const char *err;
3537 
3538 	spin_lock(&sbinfo->stat_lock);
3539 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3540 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3541 		if (!sbinfo->max_blocks) {
3542 			err = "Cannot retroactively limit size";
3543 			goto out;
3544 		}
3545 		if (percpu_counter_compare(&sbinfo->used_blocks,
3546 					   ctx->blocks) > 0) {
3547 			err = "Too small a size for current use";
3548 			goto out;
3549 		}
3550 	}
3551 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3552 		if (!sbinfo->max_inodes) {
3553 			err = "Cannot retroactively limit inodes";
3554 			goto out;
3555 		}
3556 		if (ctx->inodes < inodes) {
3557 			err = "Too few inodes for current use";
3558 			goto out;
3559 		}
3560 	}
3561 
3562 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3563 	    sbinfo->next_ino > UINT_MAX) {
3564 		err = "Current inum too high to switch to 32-bit inums";
3565 		goto out;
3566 	}
3567 
3568 	if (ctx->seen & SHMEM_SEEN_HUGE)
3569 		sbinfo->huge = ctx->huge;
3570 	if (ctx->seen & SHMEM_SEEN_INUMS)
3571 		sbinfo->full_inums = ctx->full_inums;
3572 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3573 		sbinfo->max_blocks  = ctx->blocks;
3574 	if (ctx->seen & SHMEM_SEEN_INODES) {
3575 		sbinfo->max_inodes  = ctx->inodes;
3576 		sbinfo->free_inodes = ctx->inodes - inodes;
3577 	}
3578 
3579 	/*
3580 	 * Preserve previous mempolicy unless mpol remount option was specified.
3581 	 */
3582 	if (ctx->mpol) {
3583 		mpol_put(sbinfo->mpol);
3584 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3585 		ctx->mpol = NULL;
3586 	}
3587 	spin_unlock(&sbinfo->stat_lock);
3588 	return 0;
3589 out:
3590 	spin_unlock(&sbinfo->stat_lock);
3591 	return invalfc(fc, "%s", err);
3592 }
3593 
3594 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3595 {
3596 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3597 
3598 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3599 		seq_printf(seq, ",size=%luk",
3600 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3601 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3602 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3603 	if (sbinfo->mode != (0777 | S_ISVTX))
3604 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3605 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3606 		seq_printf(seq, ",uid=%u",
3607 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3608 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3609 		seq_printf(seq, ",gid=%u",
3610 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3611 
3612 	/*
3613 	 * Showing inode{64,32} might be useful even if it's the system default,
3614 	 * since then people don't have to resort to checking both here and
3615 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3616 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3617 	 *
3618 	 * We hide it when inode64 isn't the default and we are using 32-bit
3619 	 * inodes, since that probably just means the feature isn't even under
3620 	 * consideration.
3621 	 *
3622 	 * As such:
3623 	 *
3624 	 *                     +-----------------+-----------------+
3625 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3626 	 *  +------------------+-----------------+-----------------+
3627 	 *  | full_inums=true  | show            | show            |
3628 	 *  | full_inums=false | show            | hide            |
3629 	 *  +------------------+-----------------+-----------------+
3630 	 *
3631 	 */
3632 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3633 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3634 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3635 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3636 	if (sbinfo->huge)
3637 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3638 #endif
3639 	shmem_show_mpol(seq, sbinfo->mpol);
3640 	return 0;
3641 }
3642 
3643 #endif /* CONFIG_TMPFS */
3644 
3645 static void shmem_put_super(struct super_block *sb)
3646 {
3647 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3648 
3649 	free_percpu(sbinfo->ino_batch);
3650 	percpu_counter_destroy(&sbinfo->used_blocks);
3651 	mpol_put(sbinfo->mpol);
3652 	kfree(sbinfo);
3653 	sb->s_fs_info = NULL;
3654 }
3655 
3656 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3657 {
3658 	struct shmem_options *ctx = fc->fs_private;
3659 	struct inode *inode;
3660 	struct shmem_sb_info *sbinfo;
3661 	int err = -ENOMEM;
3662 
3663 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3664 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3665 				L1_CACHE_BYTES), GFP_KERNEL);
3666 	if (!sbinfo)
3667 		return -ENOMEM;
3668 
3669 	sb->s_fs_info = sbinfo;
3670 
3671 #ifdef CONFIG_TMPFS
3672 	/*
3673 	 * Per default we only allow half of the physical ram per
3674 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3675 	 * but the internal instance is left unlimited.
3676 	 */
3677 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3678 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3679 			ctx->blocks = shmem_default_max_blocks();
3680 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3681 			ctx->inodes = shmem_default_max_inodes();
3682 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3683 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3684 	} else {
3685 		sb->s_flags |= SB_NOUSER;
3686 	}
3687 	sb->s_export_op = &shmem_export_ops;
3688 	sb->s_flags |= SB_NOSEC;
3689 #else
3690 	sb->s_flags |= SB_NOUSER;
3691 #endif
3692 	sbinfo->max_blocks = ctx->blocks;
3693 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3694 	if (sb->s_flags & SB_KERNMOUNT) {
3695 		sbinfo->ino_batch = alloc_percpu(ino_t);
3696 		if (!sbinfo->ino_batch)
3697 			goto failed;
3698 	}
3699 	sbinfo->uid = ctx->uid;
3700 	sbinfo->gid = ctx->gid;
3701 	sbinfo->full_inums = ctx->full_inums;
3702 	sbinfo->mode = ctx->mode;
3703 	sbinfo->huge = ctx->huge;
3704 	sbinfo->mpol = ctx->mpol;
3705 	ctx->mpol = NULL;
3706 
3707 	spin_lock_init(&sbinfo->stat_lock);
3708 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3709 		goto failed;
3710 	spin_lock_init(&sbinfo->shrinklist_lock);
3711 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3712 
3713 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3714 	sb->s_blocksize = PAGE_SIZE;
3715 	sb->s_blocksize_bits = PAGE_SHIFT;
3716 	sb->s_magic = TMPFS_MAGIC;
3717 	sb->s_op = &shmem_ops;
3718 	sb->s_time_gran = 1;
3719 #ifdef CONFIG_TMPFS_XATTR
3720 	sb->s_xattr = shmem_xattr_handlers;
3721 #endif
3722 #ifdef CONFIG_TMPFS_POSIX_ACL
3723 	sb->s_flags |= SB_POSIXACL;
3724 #endif
3725 	uuid_gen(&sb->s_uuid);
3726 
3727 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3728 	if (!inode)
3729 		goto failed;
3730 	inode->i_uid = sbinfo->uid;
3731 	inode->i_gid = sbinfo->gid;
3732 	sb->s_root = d_make_root(inode);
3733 	if (!sb->s_root)
3734 		goto failed;
3735 	return 0;
3736 
3737 failed:
3738 	shmem_put_super(sb);
3739 	return err;
3740 }
3741 
3742 static int shmem_get_tree(struct fs_context *fc)
3743 {
3744 	return get_tree_nodev(fc, shmem_fill_super);
3745 }
3746 
3747 static void shmem_free_fc(struct fs_context *fc)
3748 {
3749 	struct shmem_options *ctx = fc->fs_private;
3750 
3751 	if (ctx) {
3752 		mpol_put(ctx->mpol);
3753 		kfree(ctx);
3754 	}
3755 }
3756 
3757 static const struct fs_context_operations shmem_fs_context_ops = {
3758 	.free			= shmem_free_fc,
3759 	.get_tree		= shmem_get_tree,
3760 #ifdef CONFIG_TMPFS
3761 	.parse_monolithic	= shmem_parse_options,
3762 	.parse_param		= shmem_parse_one,
3763 	.reconfigure		= shmem_reconfigure,
3764 #endif
3765 };
3766 
3767 static struct kmem_cache *shmem_inode_cachep;
3768 
3769 static struct inode *shmem_alloc_inode(struct super_block *sb)
3770 {
3771 	struct shmem_inode_info *info;
3772 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3773 	if (!info)
3774 		return NULL;
3775 	return &info->vfs_inode;
3776 }
3777 
3778 static void shmem_free_in_core_inode(struct inode *inode)
3779 {
3780 	if (S_ISLNK(inode->i_mode))
3781 		kfree(inode->i_link);
3782 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3783 }
3784 
3785 static void shmem_destroy_inode(struct inode *inode)
3786 {
3787 	if (S_ISREG(inode->i_mode))
3788 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3789 }
3790 
3791 static void shmem_init_inode(void *foo)
3792 {
3793 	struct shmem_inode_info *info = foo;
3794 	inode_init_once(&info->vfs_inode);
3795 }
3796 
3797 static void shmem_init_inodecache(void)
3798 {
3799 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3800 				sizeof(struct shmem_inode_info),
3801 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3802 }
3803 
3804 static void shmem_destroy_inodecache(void)
3805 {
3806 	kmem_cache_destroy(shmem_inode_cachep);
3807 }
3808 
3809 const struct address_space_operations shmem_aops = {
3810 	.writepage	= shmem_writepage,
3811 	.set_page_dirty	= __set_page_dirty_no_writeback,
3812 #ifdef CONFIG_TMPFS
3813 	.write_begin	= shmem_write_begin,
3814 	.write_end	= shmem_write_end,
3815 #endif
3816 #ifdef CONFIG_MIGRATION
3817 	.migratepage	= migrate_page,
3818 #endif
3819 	.error_remove_page = generic_error_remove_page,
3820 };
3821 EXPORT_SYMBOL(shmem_aops);
3822 
3823 static const struct file_operations shmem_file_operations = {
3824 	.mmap		= shmem_mmap,
3825 	.get_unmapped_area = shmem_get_unmapped_area,
3826 #ifdef CONFIG_TMPFS
3827 	.llseek		= shmem_file_llseek,
3828 	.read_iter	= shmem_file_read_iter,
3829 	.write_iter	= generic_file_write_iter,
3830 	.fsync		= noop_fsync,
3831 	.splice_read	= generic_file_splice_read,
3832 	.splice_write	= iter_file_splice_write,
3833 	.fallocate	= shmem_fallocate,
3834 #endif
3835 };
3836 
3837 static const struct inode_operations shmem_inode_operations = {
3838 	.getattr	= shmem_getattr,
3839 	.setattr	= shmem_setattr,
3840 #ifdef CONFIG_TMPFS_XATTR
3841 	.listxattr	= shmem_listxattr,
3842 	.set_acl	= simple_set_acl,
3843 #endif
3844 };
3845 
3846 static const struct inode_operations shmem_dir_inode_operations = {
3847 #ifdef CONFIG_TMPFS
3848 	.create		= shmem_create,
3849 	.lookup		= simple_lookup,
3850 	.link		= shmem_link,
3851 	.unlink		= shmem_unlink,
3852 	.symlink	= shmem_symlink,
3853 	.mkdir		= shmem_mkdir,
3854 	.rmdir		= shmem_rmdir,
3855 	.mknod		= shmem_mknod,
3856 	.rename		= shmem_rename2,
3857 	.tmpfile	= shmem_tmpfile,
3858 #endif
3859 #ifdef CONFIG_TMPFS_XATTR
3860 	.listxattr	= shmem_listxattr,
3861 #endif
3862 #ifdef CONFIG_TMPFS_POSIX_ACL
3863 	.setattr	= shmem_setattr,
3864 	.set_acl	= simple_set_acl,
3865 #endif
3866 };
3867 
3868 static const struct inode_operations shmem_special_inode_operations = {
3869 #ifdef CONFIG_TMPFS_XATTR
3870 	.listxattr	= shmem_listxattr,
3871 #endif
3872 #ifdef CONFIG_TMPFS_POSIX_ACL
3873 	.setattr	= shmem_setattr,
3874 	.set_acl	= simple_set_acl,
3875 #endif
3876 };
3877 
3878 static const struct super_operations shmem_ops = {
3879 	.alloc_inode	= shmem_alloc_inode,
3880 	.free_inode	= shmem_free_in_core_inode,
3881 	.destroy_inode	= shmem_destroy_inode,
3882 #ifdef CONFIG_TMPFS
3883 	.statfs		= shmem_statfs,
3884 	.show_options	= shmem_show_options,
3885 #endif
3886 	.evict_inode	= shmem_evict_inode,
3887 	.drop_inode	= generic_delete_inode,
3888 	.put_super	= shmem_put_super,
3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3890 	.nr_cached_objects	= shmem_unused_huge_count,
3891 	.free_cached_objects	= shmem_unused_huge_scan,
3892 #endif
3893 };
3894 
3895 static const struct vm_operations_struct shmem_vm_ops = {
3896 	.fault		= shmem_fault,
3897 	.map_pages	= filemap_map_pages,
3898 #ifdef CONFIG_NUMA
3899 	.set_policy     = shmem_set_policy,
3900 	.get_policy     = shmem_get_policy,
3901 #endif
3902 };
3903 
3904 int shmem_init_fs_context(struct fs_context *fc)
3905 {
3906 	struct shmem_options *ctx;
3907 
3908 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3909 	if (!ctx)
3910 		return -ENOMEM;
3911 
3912 	ctx->mode = 0777 | S_ISVTX;
3913 	ctx->uid = current_fsuid();
3914 	ctx->gid = current_fsgid();
3915 
3916 	fc->fs_private = ctx;
3917 	fc->ops = &shmem_fs_context_ops;
3918 	return 0;
3919 }
3920 
3921 static struct file_system_type shmem_fs_type = {
3922 	.owner		= THIS_MODULE,
3923 	.name		= "tmpfs",
3924 	.init_fs_context = shmem_init_fs_context,
3925 #ifdef CONFIG_TMPFS
3926 	.parameters	= shmem_fs_parameters,
3927 #endif
3928 	.kill_sb	= kill_litter_super,
3929 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3930 };
3931 
3932 int __init shmem_init(void)
3933 {
3934 	int error;
3935 
3936 	shmem_init_inodecache();
3937 
3938 	error = register_filesystem(&shmem_fs_type);
3939 	if (error) {
3940 		pr_err("Could not register tmpfs\n");
3941 		goto out2;
3942 	}
3943 
3944 	shm_mnt = kern_mount(&shmem_fs_type);
3945 	if (IS_ERR(shm_mnt)) {
3946 		error = PTR_ERR(shm_mnt);
3947 		pr_err("Could not kern_mount tmpfs\n");
3948 		goto out1;
3949 	}
3950 
3951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3952 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3953 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3954 	else
3955 		shmem_huge = 0; /* just in case it was patched */
3956 #endif
3957 	return 0;
3958 
3959 out1:
3960 	unregister_filesystem(&shmem_fs_type);
3961 out2:
3962 	shmem_destroy_inodecache();
3963 	shm_mnt = ERR_PTR(error);
3964 	return error;
3965 }
3966 
3967 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3968 static ssize_t shmem_enabled_show(struct kobject *kobj,
3969 				  struct kobj_attribute *attr, char *buf)
3970 {
3971 	static const int values[] = {
3972 		SHMEM_HUGE_ALWAYS,
3973 		SHMEM_HUGE_WITHIN_SIZE,
3974 		SHMEM_HUGE_ADVISE,
3975 		SHMEM_HUGE_NEVER,
3976 		SHMEM_HUGE_DENY,
3977 		SHMEM_HUGE_FORCE,
3978 	};
3979 	int len = 0;
3980 	int i;
3981 
3982 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3983 		len += sysfs_emit_at(buf, len,
3984 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3985 				     i ? " " : "",
3986 				     shmem_format_huge(values[i]));
3987 	}
3988 
3989 	len += sysfs_emit_at(buf, len, "\n");
3990 
3991 	return len;
3992 }
3993 
3994 static ssize_t shmem_enabled_store(struct kobject *kobj,
3995 		struct kobj_attribute *attr, const char *buf, size_t count)
3996 {
3997 	char tmp[16];
3998 	int huge;
3999 
4000 	if (count + 1 > sizeof(tmp))
4001 		return -EINVAL;
4002 	memcpy(tmp, buf, count);
4003 	tmp[count] = '\0';
4004 	if (count && tmp[count - 1] == '\n')
4005 		tmp[count - 1] = '\0';
4006 
4007 	huge = shmem_parse_huge(tmp);
4008 	if (huge == -EINVAL)
4009 		return -EINVAL;
4010 	if (!has_transparent_hugepage() &&
4011 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4012 		return -EINVAL;
4013 
4014 	shmem_huge = huge;
4015 	if (shmem_huge > SHMEM_HUGE_DENY)
4016 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4017 	return count;
4018 }
4019 
4020 struct kobj_attribute shmem_enabled_attr =
4021 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4022 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4023 
4024 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4025 bool shmem_huge_enabled(struct vm_area_struct *vma)
4026 {
4027 	struct inode *inode = file_inode(vma->vm_file);
4028 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4029 	loff_t i_size;
4030 	pgoff_t off;
4031 
4032 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4033 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4034 		return false;
4035 	if (shmem_huge == SHMEM_HUGE_FORCE)
4036 		return true;
4037 	if (shmem_huge == SHMEM_HUGE_DENY)
4038 		return false;
4039 	switch (sbinfo->huge) {
4040 		case SHMEM_HUGE_NEVER:
4041 			return false;
4042 		case SHMEM_HUGE_ALWAYS:
4043 			return true;
4044 		case SHMEM_HUGE_WITHIN_SIZE:
4045 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4046 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4047 			if (i_size >= HPAGE_PMD_SIZE &&
4048 					i_size >> PAGE_SHIFT >= off)
4049 				return true;
4050 			fallthrough;
4051 		case SHMEM_HUGE_ADVISE:
4052 			/* TODO: implement fadvise() hints */
4053 			return (vma->vm_flags & VM_HUGEPAGE);
4054 		default:
4055 			VM_BUG_ON(1);
4056 			return false;
4057 	}
4058 }
4059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4060 
4061 #else /* !CONFIG_SHMEM */
4062 
4063 /*
4064  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4065  *
4066  * This is intended for small system where the benefits of the full
4067  * shmem code (swap-backed and resource-limited) are outweighed by
4068  * their complexity. On systems without swap this code should be
4069  * effectively equivalent, but much lighter weight.
4070  */
4071 
4072 static struct file_system_type shmem_fs_type = {
4073 	.name		= "tmpfs",
4074 	.init_fs_context = ramfs_init_fs_context,
4075 	.parameters	= ramfs_fs_parameters,
4076 	.kill_sb	= kill_litter_super,
4077 	.fs_flags	= FS_USERNS_MOUNT,
4078 };
4079 
4080 int __init shmem_init(void)
4081 {
4082 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4083 
4084 	shm_mnt = kern_mount(&shmem_fs_type);
4085 	BUG_ON(IS_ERR(shm_mnt));
4086 
4087 	return 0;
4088 }
4089 
4090 int shmem_unuse(unsigned int type, bool frontswap,
4091 		unsigned long *fs_pages_to_unuse)
4092 {
4093 	return 0;
4094 }
4095 
4096 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4097 {
4098 	return 0;
4099 }
4100 
4101 void shmem_unlock_mapping(struct address_space *mapping)
4102 {
4103 }
4104 
4105 #ifdef CONFIG_MMU
4106 unsigned long shmem_get_unmapped_area(struct file *file,
4107 				      unsigned long addr, unsigned long len,
4108 				      unsigned long pgoff, unsigned long flags)
4109 {
4110 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4111 }
4112 #endif
4113 
4114 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4115 {
4116 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4117 }
4118 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4119 
4120 #define shmem_vm_ops				generic_file_vm_ops
4121 #define shmem_file_operations			ramfs_file_operations
4122 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4123 #define shmem_acct_size(flags, size)		0
4124 #define shmem_unacct_size(flags, size)		do {} while (0)
4125 
4126 #endif /* CONFIG_SHMEM */
4127 
4128 /* common code */
4129 
4130 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4131 				       unsigned long flags, unsigned int i_flags)
4132 {
4133 	struct inode *inode;
4134 	struct file *res;
4135 
4136 	if (IS_ERR(mnt))
4137 		return ERR_CAST(mnt);
4138 
4139 	if (size < 0 || size > MAX_LFS_FILESIZE)
4140 		return ERR_PTR(-EINVAL);
4141 
4142 	if (shmem_acct_size(flags, size))
4143 		return ERR_PTR(-ENOMEM);
4144 
4145 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4146 				flags);
4147 	if (unlikely(!inode)) {
4148 		shmem_unacct_size(flags, size);
4149 		return ERR_PTR(-ENOSPC);
4150 	}
4151 	inode->i_flags |= i_flags;
4152 	inode->i_size = size;
4153 	clear_nlink(inode);	/* It is unlinked */
4154 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4155 	if (!IS_ERR(res))
4156 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4157 				&shmem_file_operations);
4158 	if (IS_ERR(res))
4159 		iput(inode);
4160 	return res;
4161 }
4162 
4163 /**
4164  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4165  * 	kernel internal.  There will be NO LSM permission checks against the
4166  * 	underlying inode.  So users of this interface must do LSM checks at a
4167  *	higher layer.  The users are the big_key and shm implementations.  LSM
4168  *	checks are provided at the key or shm level rather than the inode.
4169  * @name: name for dentry (to be seen in /proc/<pid>/maps
4170  * @size: size to be set for the file
4171  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4172  */
4173 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4174 {
4175 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4176 }
4177 
4178 /**
4179  * shmem_file_setup - get an unlinked file living in tmpfs
4180  * @name: name for dentry (to be seen in /proc/<pid>/maps
4181  * @size: size to be set for the file
4182  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4183  */
4184 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4185 {
4186 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4187 }
4188 EXPORT_SYMBOL_GPL(shmem_file_setup);
4189 
4190 /**
4191  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4192  * @mnt: the tmpfs mount where the file will be created
4193  * @name: name for dentry (to be seen in /proc/<pid>/maps
4194  * @size: size to be set for the file
4195  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4196  */
4197 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4198 				       loff_t size, unsigned long flags)
4199 {
4200 	return __shmem_file_setup(mnt, name, size, flags, 0);
4201 }
4202 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4203 
4204 /**
4205  * shmem_zero_setup - setup a shared anonymous mapping
4206  * @vma: the vma to be mmapped is prepared by do_mmap
4207  */
4208 int shmem_zero_setup(struct vm_area_struct *vma)
4209 {
4210 	struct file *file;
4211 	loff_t size = vma->vm_end - vma->vm_start;
4212 
4213 	/*
4214 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4215 	 * between XFS directory reading and selinux: since this file is only
4216 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4217 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4218 	 */
4219 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4220 	if (IS_ERR(file))
4221 		return PTR_ERR(file);
4222 
4223 	if (vma->vm_file)
4224 		fput(vma->vm_file);
4225 	vma->vm_file = file;
4226 	vma->vm_ops = &shmem_vm_ops;
4227 
4228 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4229 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4230 			(vma->vm_end & HPAGE_PMD_MASK)) {
4231 		khugepaged_enter(vma, vma->vm_flags);
4232 	}
4233 
4234 	return 0;
4235 }
4236 
4237 /**
4238  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4239  * @mapping:	the page's address_space
4240  * @index:	the page index
4241  * @gfp:	the page allocator flags to use if allocating
4242  *
4243  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4244  * with any new page allocations done using the specified allocation flags.
4245  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4246  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4247  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4248  *
4249  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4250  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4251  */
4252 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4253 					 pgoff_t index, gfp_t gfp)
4254 {
4255 #ifdef CONFIG_SHMEM
4256 	struct inode *inode = mapping->host;
4257 	struct page *page;
4258 	int error;
4259 
4260 	BUG_ON(!shmem_mapping(mapping));
4261 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4262 				  gfp, NULL, NULL, NULL);
4263 	if (error)
4264 		page = ERR_PTR(error);
4265 	else
4266 		unlock_page(page);
4267 	return page;
4268 #else
4269 	/*
4270 	 * The tiny !SHMEM case uses ramfs without swap
4271 	 */
4272 	return read_cache_page_gfp(mapping, index, gfp);
4273 #endif
4274 }
4275 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4276