1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 struct shmem_options { 111 unsigned long long blocks; 112 unsigned long long inodes; 113 struct mempolicy *mpol; 114 kuid_t uid; 115 kgid_t gid; 116 umode_t mode; 117 bool full_inums; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 #define SHMEM_SEEN_INUMS 8 124 }; 125 126 #ifdef CONFIG_TMPFS 127 static unsigned long shmem_default_max_blocks(void) 128 { 129 return totalram_pages() / 2; 130 } 131 132 static unsigned long shmem_default_max_inodes(void) 133 { 134 unsigned long nr_pages = totalram_pages(); 135 136 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 137 } 138 #endif 139 140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 141 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 142 struct shmem_inode_info *info, pgoff_t index); 143 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 144 struct page **pagep, enum sgp_type sgp, 145 gfp_t gfp, struct vm_area_struct *vma, 146 vm_fault_t *fault_type); 147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp, 149 gfp_t gfp, struct vm_area_struct *vma, 150 struct vm_fault *vmf, vm_fault_t *fault_type); 151 152 int shmem_getpage(struct inode *inode, pgoff_t index, 153 struct page **pagep, enum sgp_type sgp) 154 { 155 return shmem_getpage_gfp(inode, index, pagep, sgp, 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 157 } 158 159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 160 { 161 return sb->s_fs_info; 162 } 163 164 /* 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 166 * for shared memory and for shared anonymous (/dev/zero) mappings 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 168 * consistent with the pre-accounting of private mappings ... 169 */ 170 static inline int shmem_acct_size(unsigned long flags, loff_t size) 171 { 172 return (flags & VM_NORESERVE) ? 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 174 } 175 176 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 177 { 178 if (!(flags & VM_NORESERVE)) 179 vm_unacct_memory(VM_ACCT(size)); 180 } 181 182 static inline int shmem_reacct_size(unsigned long flags, 183 loff_t oldsize, loff_t newsize) 184 { 185 if (!(flags & VM_NORESERVE)) { 186 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 187 return security_vm_enough_memory_mm(current->mm, 188 VM_ACCT(newsize) - VM_ACCT(oldsize)); 189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 191 } 192 return 0; 193 } 194 195 /* 196 * ... whereas tmpfs objects are accounted incrementally as 197 * pages are allocated, in order to allow large sparse files. 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 200 */ 201 static inline int shmem_acct_block(unsigned long flags, long pages) 202 { 203 if (!(flags & VM_NORESERVE)) 204 return 0; 205 206 return security_vm_enough_memory_mm(current->mm, 207 pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 217 { 218 struct shmem_inode_info *info = SHMEM_I(inode); 219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 220 221 if (shmem_acct_block(info->flags, pages)) 222 return false; 223 224 if (sbinfo->max_blocks) { 225 if (percpu_counter_compare(&sbinfo->used_blocks, 226 sbinfo->max_blocks - pages) > 0) 227 goto unacct; 228 percpu_counter_add(&sbinfo->used_blocks, pages); 229 } 230 231 return true; 232 233 unacct: 234 shmem_unacct_blocks(info->flags, pages); 235 return false; 236 } 237 238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 239 { 240 struct shmem_inode_info *info = SHMEM_I(inode); 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 243 if (sbinfo->max_blocks) 244 percpu_counter_sub(&sbinfo->used_blocks, pages); 245 shmem_unacct_blocks(info->flags, pages); 246 } 247 248 static const struct super_operations shmem_ops; 249 const struct address_space_operations shmem_aops; 250 static const struct file_operations shmem_file_operations; 251 static const struct inode_operations shmem_inode_operations; 252 static const struct inode_operations shmem_dir_inode_operations; 253 static const struct inode_operations shmem_special_inode_operations; 254 static const struct vm_operations_struct shmem_vm_ops; 255 static struct file_system_type shmem_fs_type; 256 257 bool vma_is_shmem(struct vm_area_struct *vma) 258 { 259 return vma->vm_ops == &shmem_vm_ops; 260 } 261 262 static LIST_HEAD(shmem_swaplist); 263 static DEFINE_MUTEX(shmem_swaplist_mutex); 264 265 /* 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 267 * produces a novel ino for the newly allocated inode. 268 * 269 * It may also be called when making a hard link to permit the space needed by 270 * each dentry. However, in that case, no new inode number is needed since that 271 * internally draws from another pool of inode numbers (currently global 272 * get_next_ino()). This case is indicated by passing NULL as inop. 273 */ 274 #define SHMEM_INO_BATCH 1024 275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 276 { 277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 278 ino_t ino; 279 280 if (!(sb->s_flags & SB_KERNMOUNT)) { 281 spin_lock(&sbinfo->stat_lock); 282 if (sbinfo->max_inodes) { 283 if (!sbinfo->free_inodes) { 284 spin_unlock(&sbinfo->stat_lock); 285 return -ENOSPC; 286 } 287 sbinfo->free_inodes--; 288 } 289 if (inop) { 290 ino = sbinfo->next_ino++; 291 if (unlikely(is_zero_ino(ino))) 292 ino = sbinfo->next_ino++; 293 if (unlikely(!sbinfo->full_inums && 294 ino > UINT_MAX)) { 295 /* 296 * Emulate get_next_ino uint wraparound for 297 * compatibility 298 */ 299 if (IS_ENABLED(CONFIG_64BIT)) 300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 301 __func__, MINOR(sb->s_dev)); 302 sbinfo->next_ino = 1; 303 ino = sbinfo->next_ino++; 304 } 305 *inop = ino; 306 } 307 spin_unlock(&sbinfo->stat_lock); 308 } else if (inop) { 309 /* 310 * __shmem_file_setup, one of our callers, is lock-free: it 311 * doesn't hold stat_lock in shmem_reserve_inode since 312 * max_inodes is always 0, and is called from potentially 313 * unknown contexts. As such, use a per-cpu batched allocator 314 * which doesn't require the per-sb stat_lock unless we are at 315 * the batch boundary. 316 * 317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 318 * shmem mounts are not exposed to userspace, so we don't need 319 * to worry about things like glibc compatibility. 320 */ 321 ino_t *next_ino; 322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 323 ino = *next_ino; 324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 325 spin_lock(&sbinfo->stat_lock); 326 ino = sbinfo->next_ino; 327 sbinfo->next_ino += SHMEM_INO_BATCH; 328 spin_unlock(&sbinfo->stat_lock); 329 if (unlikely(is_zero_ino(ino))) 330 ino++; 331 } 332 *inop = ino; 333 *next_ino = ++ino; 334 put_cpu(); 335 } 336 337 return 0; 338 } 339 340 static void shmem_free_inode(struct super_block *sb) 341 { 342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 343 if (sbinfo->max_inodes) { 344 spin_lock(&sbinfo->stat_lock); 345 sbinfo->free_inodes++; 346 spin_unlock(&sbinfo->stat_lock); 347 } 348 } 349 350 /** 351 * shmem_recalc_inode - recalculate the block usage of an inode 352 * @inode: inode to recalc 353 * 354 * We have to calculate the free blocks since the mm can drop 355 * undirtied hole pages behind our back. 356 * 357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 359 * 360 * It has to be called with the spinlock held. 361 */ 362 static void shmem_recalc_inode(struct inode *inode) 363 { 364 struct shmem_inode_info *info = SHMEM_I(inode); 365 long freed; 366 367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 368 if (freed > 0) { 369 info->alloced -= freed; 370 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 371 shmem_inode_unacct_blocks(inode, freed); 372 } 373 } 374 375 bool shmem_charge(struct inode *inode, long pages) 376 { 377 struct shmem_inode_info *info = SHMEM_I(inode); 378 unsigned long flags; 379 380 if (!shmem_inode_acct_block(inode, pages)) 381 return false; 382 383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 384 inode->i_mapping->nrpages += pages; 385 386 spin_lock_irqsave(&info->lock, flags); 387 info->alloced += pages; 388 inode->i_blocks += pages * BLOCKS_PER_PAGE; 389 shmem_recalc_inode(inode); 390 spin_unlock_irqrestore(&info->lock, flags); 391 392 return true; 393 } 394 395 void shmem_uncharge(struct inode *inode, long pages) 396 { 397 struct shmem_inode_info *info = SHMEM_I(inode); 398 unsigned long flags; 399 400 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 401 402 spin_lock_irqsave(&info->lock, flags); 403 info->alloced -= pages; 404 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 405 shmem_recalc_inode(inode); 406 spin_unlock_irqrestore(&info->lock, flags); 407 408 shmem_inode_unacct_blocks(inode, pages); 409 } 410 411 /* 412 * Replace item expected in xarray by a new item, while holding xa_lock. 413 */ 414 static int shmem_replace_entry(struct address_space *mapping, 415 pgoff_t index, void *expected, void *replacement) 416 { 417 XA_STATE(xas, &mapping->i_pages, index); 418 void *item; 419 420 VM_BUG_ON(!expected); 421 VM_BUG_ON(!replacement); 422 item = xas_load(&xas); 423 if (item != expected) 424 return -ENOENT; 425 xas_store(&xas, replacement); 426 return 0; 427 } 428 429 /* 430 * Sometimes, before we decide whether to proceed or to fail, we must check 431 * that an entry was not already brought back from swap by a racing thread. 432 * 433 * Checking page is not enough: by the time a SwapCache page is locked, it 434 * might be reused, and again be SwapCache, using the same swap as before. 435 */ 436 static bool shmem_confirm_swap(struct address_space *mapping, 437 pgoff_t index, swp_entry_t swap) 438 { 439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 440 } 441 442 /* 443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 444 * 445 * SHMEM_HUGE_NEVER: 446 * disables huge pages for the mount; 447 * SHMEM_HUGE_ALWAYS: 448 * enables huge pages for the mount; 449 * SHMEM_HUGE_WITHIN_SIZE: 450 * only allocate huge pages if the page will be fully within i_size, 451 * also respect fadvise()/madvise() hints; 452 * SHMEM_HUGE_ADVISE: 453 * only allocate huge pages if requested with fadvise()/madvise(); 454 */ 455 456 #define SHMEM_HUGE_NEVER 0 457 #define SHMEM_HUGE_ALWAYS 1 458 #define SHMEM_HUGE_WITHIN_SIZE 2 459 #define SHMEM_HUGE_ADVISE 3 460 461 /* 462 * Special values. 463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 464 * 465 * SHMEM_HUGE_DENY: 466 * disables huge on shm_mnt and all mounts, for emergency use; 467 * SHMEM_HUGE_FORCE: 468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 469 * 470 */ 471 #define SHMEM_HUGE_DENY (-1) 472 #define SHMEM_HUGE_FORCE (-2) 473 474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 475 /* ifdef here to avoid bloating shmem.o when not necessary */ 476 477 static int shmem_huge __read_mostly; 478 479 #if defined(CONFIG_SYSFS) 480 static int shmem_parse_huge(const char *str) 481 { 482 if (!strcmp(str, "never")) 483 return SHMEM_HUGE_NEVER; 484 if (!strcmp(str, "always")) 485 return SHMEM_HUGE_ALWAYS; 486 if (!strcmp(str, "within_size")) 487 return SHMEM_HUGE_WITHIN_SIZE; 488 if (!strcmp(str, "advise")) 489 return SHMEM_HUGE_ADVISE; 490 if (!strcmp(str, "deny")) 491 return SHMEM_HUGE_DENY; 492 if (!strcmp(str, "force")) 493 return SHMEM_HUGE_FORCE; 494 return -EINVAL; 495 } 496 #endif 497 498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 499 static const char *shmem_format_huge(int huge) 500 { 501 switch (huge) { 502 case SHMEM_HUGE_NEVER: 503 return "never"; 504 case SHMEM_HUGE_ALWAYS: 505 return "always"; 506 case SHMEM_HUGE_WITHIN_SIZE: 507 return "within_size"; 508 case SHMEM_HUGE_ADVISE: 509 return "advise"; 510 case SHMEM_HUGE_DENY: 511 return "deny"; 512 case SHMEM_HUGE_FORCE: 513 return "force"; 514 default: 515 VM_BUG_ON(1); 516 return "bad_val"; 517 } 518 } 519 #endif 520 521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 522 struct shrink_control *sc, unsigned long nr_to_split) 523 { 524 LIST_HEAD(list), *pos, *next; 525 LIST_HEAD(to_remove); 526 struct inode *inode; 527 struct shmem_inode_info *info; 528 struct page *page; 529 unsigned long batch = sc ? sc->nr_to_scan : 128; 530 int removed = 0, split = 0; 531 532 if (list_empty(&sbinfo->shrinklist)) 533 return SHRINK_STOP; 534 535 spin_lock(&sbinfo->shrinklist_lock); 536 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 537 info = list_entry(pos, struct shmem_inode_info, shrinklist); 538 539 /* pin the inode */ 540 inode = igrab(&info->vfs_inode); 541 542 /* inode is about to be evicted */ 543 if (!inode) { 544 list_del_init(&info->shrinklist); 545 removed++; 546 goto next; 547 } 548 549 /* Check if there's anything to gain */ 550 if (round_up(inode->i_size, PAGE_SIZE) == 551 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 552 list_move(&info->shrinklist, &to_remove); 553 removed++; 554 goto next; 555 } 556 557 list_move(&info->shrinklist, &list); 558 next: 559 if (!--batch) 560 break; 561 } 562 spin_unlock(&sbinfo->shrinklist_lock); 563 564 list_for_each_safe(pos, next, &to_remove) { 565 info = list_entry(pos, struct shmem_inode_info, shrinklist); 566 inode = &info->vfs_inode; 567 list_del_init(&info->shrinklist); 568 iput(inode); 569 } 570 571 list_for_each_safe(pos, next, &list) { 572 int ret; 573 574 info = list_entry(pos, struct shmem_inode_info, shrinklist); 575 inode = &info->vfs_inode; 576 577 if (nr_to_split && split >= nr_to_split) 578 goto leave; 579 580 page = find_get_page(inode->i_mapping, 581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 582 if (!page) 583 goto drop; 584 585 /* No huge page at the end of the file: nothing to split */ 586 if (!PageTransHuge(page)) { 587 put_page(page); 588 goto drop; 589 } 590 591 /* 592 * Leave the inode on the list if we failed to lock 593 * the page at this time. 594 * 595 * Waiting for the lock may lead to deadlock in the 596 * reclaim path. 597 */ 598 if (!trylock_page(page)) { 599 put_page(page); 600 goto leave; 601 } 602 603 ret = split_huge_page(page); 604 unlock_page(page); 605 put_page(page); 606 607 /* If split failed leave the inode on the list */ 608 if (ret) 609 goto leave; 610 611 split++; 612 drop: 613 list_del_init(&info->shrinklist); 614 removed++; 615 leave: 616 iput(inode); 617 } 618 619 spin_lock(&sbinfo->shrinklist_lock); 620 list_splice_tail(&list, &sbinfo->shrinklist); 621 sbinfo->shrinklist_len -= removed; 622 spin_unlock(&sbinfo->shrinklist_lock); 623 624 return split; 625 } 626 627 static long shmem_unused_huge_scan(struct super_block *sb, 628 struct shrink_control *sc) 629 { 630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 631 632 if (!READ_ONCE(sbinfo->shrinklist_len)) 633 return SHRINK_STOP; 634 635 return shmem_unused_huge_shrink(sbinfo, sc, 0); 636 } 637 638 static long shmem_unused_huge_count(struct super_block *sb, 639 struct shrink_control *sc) 640 { 641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 642 return READ_ONCE(sbinfo->shrinklist_len); 643 } 644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 645 646 #define shmem_huge SHMEM_HUGE_DENY 647 648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 649 struct shrink_control *sc, unsigned long nr_to_split) 650 { 651 return 0; 652 } 653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 654 655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 656 { 657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 659 shmem_huge != SHMEM_HUGE_DENY) 660 return true; 661 return false; 662 } 663 664 /* 665 * Like add_to_page_cache_locked, but error if expected item has gone. 666 */ 667 static int shmem_add_to_page_cache(struct page *page, 668 struct address_space *mapping, 669 pgoff_t index, void *expected, gfp_t gfp, 670 struct mm_struct *charge_mm) 671 { 672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 673 unsigned long i = 0; 674 unsigned long nr = compound_nr(page); 675 int error; 676 677 VM_BUG_ON_PAGE(PageTail(page), page); 678 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 679 VM_BUG_ON_PAGE(!PageLocked(page), page); 680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 681 VM_BUG_ON(expected && PageTransHuge(page)); 682 683 page_ref_add(page, nr); 684 page->mapping = mapping; 685 page->index = index; 686 687 if (!PageSwapCache(page)) { 688 error = mem_cgroup_charge(page, charge_mm, gfp); 689 if (error) { 690 if (PageTransHuge(page)) { 691 count_vm_event(THP_FILE_FALLBACK); 692 count_vm_event(THP_FILE_FALLBACK_CHARGE); 693 } 694 goto error; 695 } 696 } 697 cgroup_throttle_swaprate(page, gfp); 698 699 do { 700 void *entry; 701 xas_lock_irq(&xas); 702 entry = xas_find_conflict(&xas); 703 if (entry != expected) 704 xas_set_err(&xas, -EEXIST); 705 xas_create_range(&xas); 706 if (xas_error(&xas)) 707 goto unlock; 708 next: 709 xas_store(&xas, page); 710 if (++i < nr) { 711 xas_next(&xas); 712 goto next; 713 } 714 if (PageTransHuge(page)) { 715 count_vm_event(THP_FILE_ALLOC); 716 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); 717 } 718 mapping->nrpages += nr; 719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 720 __mod_lruvec_page_state(page, NR_SHMEM, nr); 721 unlock: 722 xas_unlock_irq(&xas); 723 } while (xas_nomem(&xas, gfp)); 724 725 if (xas_error(&xas)) { 726 error = xas_error(&xas); 727 goto error; 728 } 729 730 return 0; 731 error: 732 page->mapping = NULL; 733 page_ref_sub(page, nr); 734 return error; 735 } 736 737 /* 738 * Like delete_from_page_cache, but substitutes swap for page. 739 */ 740 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 741 { 742 struct address_space *mapping = page->mapping; 743 int error; 744 745 VM_BUG_ON_PAGE(PageCompound(page), page); 746 747 xa_lock_irq(&mapping->i_pages); 748 error = shmem_replace_entry(mapping, page->index, page, radswap); 749 page->mapping = NULL; 750 mapping->nrpages--; 751 __dec_lruvec_page_state(page, NR_FILE_PAGES); 752 __dec_lruvec_page_state(page, NR_SHMEM); 753 xa_unlock_irq(&mapping->i_pages); 754 put_page(page); 755 BUG_ON(error); 756 } 757 758 /* 759 * Remove swap entry from page cache, free the swap and its page cache. 760 */ 761 static int shmem_free_swap(struct address_space *mapping, 762 pgoff_t index, void *radswap) 763 { 764 void *old; 765 766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 767 if (old != radswap) 768 return -ENOENT; 769 free_swap_and_cache(radix_to_swp_entry(radswap)); 770 return 0; 771 } 772 773 /* 774 * Determine (in bytes) how many of the shmem object's pages mapped by the 775 * given offsets are swapped out. 776 * 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 778 * as long as the inode doesn't go away and racy results are not a problem. 779 */ 780 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 781 pgoff_t start, pgoff_t end) 782 { 783 XA_STATE(xas, &mapping->i_pages, start); 784 struct page *page; 785 unsigned long swapped = 0; 786 787 rcu_read_lock(); 788 xas_for_each(&xas, page, end - 1) { 789 if (xas_retry(&xas, page)) 790 continue; 791 if (xa_is_value(page)) 792 swapped++; 793 794 if (need_resched()) { 795 xas_pause(&xas); 796 cond_resched_rcu(); 797 } 798 } 799 800 rcu_read_unlock(); 801 802 return swapped << PAGE_SHIFT; 803 } 804 805 /* 806 * Determine (in bytes) how many of the shmem object's pages mapped by the 807 * given vma is swapped out. 808 * 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 810 * as long as the inode doesn't go away and racy results are not a problem. 811 */ 812 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 813 { 814 struct inode *inode = file_inode(vma->vm_file); 815 struct shmem_inode_info *info = SHMEM_I(inode); 816 struct address_space *mapping = inode->i_mapping; 817 unsigned long swapped; 818 819 /* Be careful as we don't hold info->lock */ 820 swapped = READ_ONCE(info->swapped); 821 822 /* 823 * The easier cases are when the shmem object has nothing in swap, or 824 * the vma maps it whole. Then we can simply use the stats that we 825 * already track. 826 */ 827 if (!swapped) 828 return 0; 829 830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 831 return swapped << PAGE_SHIFT; 832 833 /* Here comes the more involved part */ 834 return shmem_partial_swap_usage(mapping, 835 linear_page_index(vma, vma->vm_start), 836 linear_page_index(vma, vma->vm_end)); 837 } 838 839 /* 840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 841 */ 842 void shmem_unlock_mapping(struct address_space *mapping) 843 { 844 struct pagevec pvec; 845 pgoff_t index = 0; 846 847 pagevec_init(&pvec); 848 /* 849 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 850 */ 851 while (!mapping_unevictable(mapping)) { 852 if (!pagevec_lookup(&pvec, mapping, &index)) 853 break; 854 check_move_unevictable_pages(&pvec); 855 pagevec_release(&pvec); 856 cond_resched(); 857 } 858 } 859 860 /* 861 * Check whether a hole-punch or truncation needs to split a huge page, 862 * returning true if no split was required, or the split has been successful. 863 * 864 * Eviction (or truncation to 0 size) should never need to split a huge page; 865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 866 * head, and then succeeded to trylock on tail. 867 * 868 * A split can only succeed when there are no additional references on the 869 * huge page: so the split below relies upon find_get_entries() having stopped 870 * when it found a subpage of the huge page, without getting further references. 871 */ 872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 873 { 874 if (!PageTransCompound(page)) 875 return true; 876 877 /* Just proceed to delete a huge page wholly within the range punched */ 878 if (PageHead(page) && 879 page->index >= start && page->index + HPAGE_PMD_NR <= end) 880 return true; 881 882 /* Try to split huge page, so we can truly punch the hole or truncate */ 883 return split_huge_page(page) >= 0; 884 } 885 886 /* 887 * Remove range of pages and swap entries from page cache, and free them. 888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 889 */ 890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 891 bool unfalloc) 892 { 893 struct address_space *mapping = inode->i_mapping; 894 struct shmem_inode_info *info = SHMEM_I(inode); 895 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 896 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 897 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 898 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 899 struct pagevec pvec; 900 pgoff_t indices[PAGEVEC_SIZE]; 901 long nr_swaps_freed = 0; 902 pgoff_t index; 903 int i; 904 905 if (lend == -1) 906 end = -1; /* unsigned, so actually very big */ 907 908 pagevec_init(&pvec); 909 index = start; 910 while (index < end && find_lock_entries(mapping, index, end - 1, 911 &pvec, indices)) { 912 for (i = 0; i < pagevec_count(&pvec); i++) { 913 struct page *page = pvec.pages[i]; 914 915 index = indices[i]; 916 917 if (xa_is_value(page)) { 918 if (unfalloc) 919 continue; 920 nr_swaps_freed += !shmem_free_swap(mapping, 921 index, page); 922 continue; 923 } 924 index += thp_nr_pages(page) - 1; 925 926 if (!unfalloc || !PageUptodate(page)) 927 truncate_inode_page(mapping, page); 928 unlock_page(page); 929 } 930 pagevec_remove_exceptionals(&pvec); 931 pagevec_release(&pvec); 932 cond_resched(); 933 index++; 934 } 935 936 if (partial_start) { 937 struct page *page = NULL; 938 shmem_getpage(inode, start - 1, &page, SGP_READ); 939 if (page) { 940 unsigned int top = PAGE_SIZE; 941 if (start > end) { 942 top = partial_end; 943 partial_end = 0; 944 } 945 zero_user_segment(page, partial_start, top); 946 set_page_dirty(page); 947 unlock_page(page); 948 put_page(page); 949 } 950 } 951 if (partial_end) { 952 struct page *page = NULL; 953 shmem_getpage(inode, end, &page, SGP_READ); 954 if (page) { 955 zero_user_segment(page, 0, partial_end); 956 set_page_dirty(page); 957 unlock_page(page); 958 put_page(page); 959 } 960 } 961 if (start >= end) 962 return; 963 964 index = start; 965 while (index < end) { 966 cond_resched(); 967 968 if (!find_get_entries(mapping, index, end - 1, &pvec, 969 indices)) { 970 /* If all gone or hole-punch or unfalloc, we're done */ 971 if (index == start || end != -1) 972 break; 973 /* But if truncating, restart to make sure all gone */ 974 index = start; 975 continue; 976 } 977 for (i = 0; i < pagevec_count(&pvec); i++) { 978 struct page *page = pvec.pages[i]; 979 980 index = indices[i]; 981 if (xa_is_value(page)) { 982 if (unfalloc) 983 continue; 984 if (shmem_free_swap(mapping, index, page)) { 985 /* Swap was replaced by page: retry */ 986 index--; 987 break; 988 } 989 nr_swaps_freed++; 990 continue; 991 } 992 993 lock_page(page); 994 995 if (!unfalloc || !PageUptodate(page)) { 996 if (page_mapping(page) != mapping) { 997 /* Page was replaced by swap: retry */ 998 unlock_page(page); 999 index--; 1000 break; 1001 } 1002 VM_BUG_ON_PAGE(PageWriteback(page), page); 1003 if (shmem_punch_compound(page, start, end)) 1004 truncate_inode_page(mapping, page); 1005 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1006 /* Wipe the page and don't get stuck */ 1007 clear_highpage(page); 1008 flush_dcache_page(page); 1009 set_page_dirty(page); 1010 if (index < 1011 round_up(start, HPAGE_PMD_NR)) 1012 start = index + 1; 1013 } 1014 } 1015 unlock_page(page); 1016 } 1017 pagevec_remove_exceptionals(&pvec); 1018 pagevec_release(&pvec); 1019 index++; 1020 } 1021 1022 spin_lock_irq(&info->lock); 1023 info->swapped -= nr_swaps_freed; 1024 shmem_recalc_inode(inode); 1025 spin_unlock_irq(&info->lock); 1026 } 1027 1028 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1029 { 1030 shmem_undo_range(inode, lstart, lend, false); 1031 inode->i_ctime = inode->i_mtime = current_time(inode); 1032 } 1033 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1034 1035 static int shmem_getattr(struct user_namespace *mnt_userns, 1036 const struct path *path, struct kstat *stat, 1037 u32 request_mask, unsigned int query_flags) 1038 { 1039 struct inode *inode = path->dentry->d_inode; 1040 struct shmem_inode_info *info = SHMEM_I(inode); 1041 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1042 1043 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1044 spin_lock_irq(&info->lock); 1045 shmem_recalc_inode(inode); 1046 spin_unlock_irq(&info->lock); 1047 } 1048 generic_fillattr(&init_user_ns, inode, stat); 1049 1050 if (is_huge_enabled(sb_info)) 1051 stat->blksize = HPAGE_PMD_SIZE; 1052 1053 return 0; 1054 } 1055 1056 static int shmem_setattr(struct user_namespace *mnt_userns, 1057 struct dentry *dentry, struct iattr *attr) 1058 { 1059 struct inode *inode = d_inode(dentry); 1060 struct shmem_inode_info *info = SHMEM_I(inode); 1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1062 int error; 1063 1064 error = setattr_prepare(&init_user_ns, dentry, attr); 1065 if (error) 1066 return error; 1067 1068 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1069 loff_t oldsize = inode->i_size; 1070 loff_t newsize = attr->ia_size; 1071 1072 /* protected by i_mutex */ 1073 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1074 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1075 return -EPERM; 1076 1077 if (newsize != oldsize) { 1078 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1079 oldsize, newsize); 1080 if (error) 1081 return error; 1082 i_size_write(inode, newsize); 1083 inode->i_ctime = inode->i_mtime = current_time(inode); 1084 } 1085 if (newsize <= oldsize) { 1086 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1087 if (oldsize > holebegin) 1088 unmap_mapping_range(inode->i_mapping, 1089 holebegin, 0, 1); 1090 if (info->alloced) 1091 shmem_truncate_range(inode, 1092 newsize, (loff_t)-1); 1093 /* unmap again to remove racily COWed private pages */ 1094 if (oldsize > holebegin) 1095 unmap_mapping_range(inode->i_mapping, 1096 holebegin, 0, 1); 1097 1098 /* 1099 * Part of the huge page can be beyond i_size: subject 1100 * to shrink under memory pressure. 1101 */ 1102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1103 spin_lock(&sbinfo->shrinklist_lock); 1104 /* 1105 * _careful to defend against unlocked access to 1106 * ->shrink_list in shmem_unused_huge_shrink() 1107 */ 1108 if (list_empty_careful(&info->shrinklist)) { 1109 list_add_tail(&info->shrinklist, 1110 &sbinfo->shrinklist); 1111 sbinfo->shrinklist_len++; 1112 } 1113 spin_unlock(&sbinfo->shrinklist_lock); 1114 } 1115 } 1116 } 1117 1118 setattr_copy(&init_user_ns, inode, attr); 1119 if (attr->ia_valid & ATTR_MODE) 1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1121 return error; 1122 } 1123 1124 static void shmem_evict_inode(struct inode *inode) 1125 { 1126 struct shmem_inode_info *info = SHMEM_I(inode); 1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1128 1129 if (shmem_mapping(inode->i_mapping)) { 1130 shmem_unacct_size(info->flags, inode->i_size); 1131 inode->i_size = 0; 1132 shmem_truncate_range(inode, 0, (loff_t)-1); 1133 if (!list_empty(&info->shrinklist)) { 1134 spin_lock(&sbinfo->shrinklist_lock); 1135 if (!list_empty(&info->shrinklist)) { 1136 list_del_init(&info->shrinklist); 1137 sbinfo->shrinklist_len--; 1138 } 1139 spin_unlock(&sbinfo->shrinklist_lock); 1140 } 1141 while (!list_empty(&info->swaplist)) { 1142 /* Wait while shmem_unuse() is scanning this inode... */ 1143 wait_var_event(&info->stop_eviction, 1144 !atomic_read(&info->stop_eviction)); 1145 mutex_lock(&shmem_swaplist_mutex); 1146 /* ...but beware of the race if we peeked too early */ 1147 if (!atomic_read(&info->stop_eviction)) 1148 list_del_init(&info->swaplist); 1149 mutex_unlock(&shmem_swaplist_mutex); 1150 } 1151 } 1152 1153 simple_xattrs_free(&info->xattrs); 1154 WARN_ON(inode->i_blocks); 1155 shmem_free_inode(inode->i_sb); 1156 clear_inode(inode); 1157 } 1158 1159 extern struct swap_info_struct *swap_info[]; 1160 1161 static int shmem_find_swap_entries(struct address_space *mapping, 1162 pgoff_t start, unsigned int nr_entries, 1163 struct page **entries, pgoff_t *indices, 1164 unsigned int type, bool frontswap) 1165 { 1166 XA_STATE(xas, &mapping->i_pages, start); 1167 struct page *page; 1168 swp_entry_t entry; 1169 unsigned int ret = 0; 1170 1171 if (!nr_entries) 1172 return 0; 1173 1174 rcu_read_lock(); 1175 xas_for_each(&xas, page, ULONG_MAX) { 1176 if (xas_retry(&xas, page)) 1177 continue; 1178 1179 if (!xa_is_value(page)) 1180 continue; 1181 1182 entry = radix_to_swp_entry(page); 1183 if (swp_type(entry) != type) 1184 continue; 1185 if (frontswap && 1186 !frontswap_test(swap_info[type], swp_offset(entry))) 1187 continue; 1188 1189 indices[ret] = xas.xa_index; 1190 entries[ret] = page; 1191 1192 if (need_resched()) { 1193 xas_pause(&xas); 1194 cond_resched_rcu(); 1195 } 1196 if (++ret == nr_entries) 1197 break; 1198 } 1199 rcu_read_unlock(); 1200 1201 return ret; 1202 } 1203 1204 /* 1205 * Move the swapped pages for an inode to page cache. Returns the count 1206 * of pages swapped in, or the error in case of failure. 1207 */ 1208 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1209 pgoff_t *indices) 1210 { 1211 int i = 0; 1212 int ret = 0; 1213 int error = 0; 1214 struct address_space *mapping = inode->i_mapping; 1215 1216 for (i = 0; i < pvec.nr; i++) { 1217 struct page *page = pvec.pages[i]; 1218 1219 if (!xa_is_value(page)) 1220 continue; 1221 error = shmem_swapin_page(inode, indices[i], 1222 &page, SGP_CACHE, 1223 mapping_gfp_mask(mapping), 1224 NULL, NULL); 1225 if (error == 0) { 1226 unlock_page(page); 1227 put_page(page); 1228 ret++; 1229 } 1230 if (error == -ENOMEM) 1231 break; 1232 error = 0; 1233 } 1234 return error ? error : ret; 1235 } 1236 1237 /* 1238 * If swap found in inode, free it and move page from swapcache to filecache. 1239 */ 1240 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1241 bool frontswap, unsigned long *fs_pages_to_unuse) 1242 { 1243 struct address_space *mapping = inode->i_mapping; 1244 pgoff_t start = 0; 1245 struct pagevec pvec; 1246 pgoff_t indices[PAGEVEC_SIZE]; 1247 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1248 int ret = 0; 1249 1250 pagevec_init(&pvec); 1251 do { 1252 unsigned int nr_entries = PAGEVEC_SIZE; 1253 1254 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1255 nr_entries = *fs_pages_to_unuse; 1256 1257 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1258 pvec.pages, indices, 1259 type, frontswap); 1260 if (pvec.nr == 0) { 1261 ret = 0; 1262 break; 1263 } 1264 1265 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1266 if (ret < 0) 1267 break; 1268 1269 if (frontswap_partial) { 1270 *fs_pages_to_unuse -= ret; 1271 if (*fs_pages_to_unuse == 0) { 1272 ret = FRONTSWAP_PAGES_UNUSED; 1273 break; 1274 } 1275 } 1276 1277 start = indices[pvec.nr - 1]; 1278 } while (true); 1279 1280 return ret; 1281 } 1282 1283 /* 1284 * Read all the shared memory data that resides in the swap 1285 * device 'type' back into memory, so the swap device can be 1286 * unused. 1287 */ 1288 int shmem_unuse(unsigned int type, bool frontswap, 1289 unsigned long *fs_pages_to_unuse) 1290 { 1291 struct shmem_inode_info *info, *next; 1292 int error = 0; 1293 1294 if (list_empty(&shmem_swaplist)) 1295 return 0; 1296 1297 mutex_lock(&shmem_swaplist_mutex); 1298 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1299 if (!info->swapped) { 1300 list_del_init(&info->swaplist); 1301 continue; 1302 } 1303 /* 1304 * Drop the swaplist mutex while searching the inode for swap; 1305 * but before doing so, make sure shmem_evict_inode() will not 1306 * remove placeholder inode from swaplist, nor let it be freed 1307 * (igrab() would protect from unlink, but not from unmount). 1308 */ 1309 atomic_inc(&info->stop_eviction); 1310 mutex_unlock(&shmem_swaplist_mutex); 1311 1312 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1313 fs_pages_to_unuse); 1314 cond_resched(); 1315 1316 mutex_lock(&shmem_swaplist_mutex); 1317 next = list_next_entry(info, swaplist); 1318 if (!info->swapped) 1319 list_del_init(&info->swaplist); 1320 if (atomic_dec_and_test(&info->stop_eviction)) 1321 wake_up_var(&info->stop_eviction); 1322 if (error) 1323 break; 1324 } 1325 mutex_unlock(&shmem_swaplist_mutex); 1326 1327 return error; 1328 } 1329 1330 /* 1331 * Move the page from the page cache to the swap cache. 1332 */ 1333 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1334 { 1335 struct shmem_inode_info *info; 1336 struct address_space *mapping; 1337 struct inode *inode; 1338 swp_entry_t swap; 1339 pgoff_t index; 1340 1341 VM_BUG_ON_PAGE(PageCompound(page), page); 1342 BUG_ON(!PageLocked(page)); 1343 mapping = page->mapping; 1344 index = page->index; 1345 inode = mapping->host; 1346 info = SHMEM_I(inode); 1347 if (info->flags & VM_LOCKED) 1348 goto redirty; 1349 if (!total_swap_pages) 1350 goto redirty; 1351 1352 /* 1353 * Our capabilities prevent regular writeback or sync from ever calling 1354 * shmem_writepage; but a stacking filesystem might use ->writepage of 1355 * its underlying filesystem, in which case tmpfs should write out to 1356 * swap only in response to memory pressure, and not for the writeback 1357 * threads or sync. 1358 */ 1359 if (!wbc->for_reclaim) { 1360 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1361 goto redirty; 1362 } 1363 1364 /* 1365 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1366 * value into swapfile.c, the only way we can correctly account for a 1367 * fallocated page arriving here is now to initialize it and write it. 1368 * 1369 * That's okay for a page already fallocated earlier, but if we have 1370 * not yet completed the fallocation, then (a) we want to keep track 1371 * of this page in case we have to undo it, and (b) it may not be a 1372 * good idea to continue anyway, once we're pushing into swap. So 1373 * reactivate the page, and let shmem_fallocate() quit when too many. 1374 */ 1375 if (!PageUptodate(page)) { 1376 if (inode->i_private) { 1377 struct shmem_falloc *shmem_falloc; 1378 spin_lock(&inode->i_lock); 1379 shmem_falloc = inode->i_private; 1380 if (shmem_falloc && 1381 !shmem_falloc->waitq && 1382 index >= shmem_falloc->start && 1383 index < shmem_falloc->next) 1384 shmem_falloc->nr_unswapped++; 1385 else 1386 shmem_falloc = NULL; 1387 spin_unlock(&inode->i_lock); 1388 if (shmem_falloc) 1389 goto redirty; 1390 } 1391 clear_highpage(page); 1392 flush_dcache_page(page); 1393 SetPageUptodate(page); 1394 } 1395 1396 swap = get_swap_page(page); 1397 if (!swap.val) 1398 goto redirty; 1399 1400 /* 1401 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1402 * if it's not already there. Do it now before the page is 1403 * moved to swap cache, when its pagelock no longer protects 1404 * the inode from eviction. But don't unlock the mutex until 1405 * we've incremented swapped, because shmem_unuse_inode() will 1406 * prune a !swapped inode from the swaplist under this mutex. 1407 */ 1408 mutex_lock(&shmem_swaplist_mutex); 1409 if (list_empty(&info->swaplist)) 1410 list_add(&info->swaplist, &shmem_swaplist); 1411 1412 if (add_to_swap_cache(page, swap, 1413 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1414 NULL) == 0) { 1415 spin_lock_irq(&info->lock); 1416 shmem_recalc_inode(inode); 1417 info->swapped++; 1418 spin_unlock_irq(&info->lock); 1419 1420 swap_shmem_alloc(swap); 1421 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1422 1423 mutex_unlock(&shmem_swaplist_mutex); 1424 BUG_ON(page_mapped(page)); 1425 swap_writepage(page, wbc); 1426 return 0; 1427 } 1428 1429 mutex_unlock(&shmem_swaplist_mutex); 1430 put_swap_page(page, swap); 1431 redirty: 1432 set_page_dirty(page); 1433 if (wbc->for_reclaim) 1434 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1435 unlock_page(page); 1436 return 0; 1437 } 1438 1439 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1440 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1441 { 1442 char buffer[64]; 1443 1444 if (!mpol || mpol->mode == MPOL_DEFAULT) 1445 return; /* show nothing */ 1446 1447 mpol_to_str(buffer, sizeof(buffer), mpol); 1448 1449 seq_printf(seq, ",mpol=%s", buffer); 1450 } 1451 1452 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1453 { 1454 struct mempolicy *mpol = NULL; 1455 if (sbinfo->mpol) { 1456 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1457 mpol = sbinfo->mpol; 1458 mpol_get(mpol); 1459 spin_unlock(&sbinfo->stat_lock); 1460 } 1461 return mpol; 1462 } 1463 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1464 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1465 { 1466 } 1467 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1468 { 1469 return NULL; 1470 } 1471 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1472 #ifndef CONFIG_NUMA 1473 #define vm_policy vm_private_data 1474 #endif 1475 1476 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1477 struct shmem_inode_info *info, pgoff_t index) 1478 { 1479 /* Create a pseudo vma that just contains the policy */ 1480 vma_init(vma, NULL); 1481 /* Bias interleave by inode number to distribute better across nodes */ 1482 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1483 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1484 } 1485 1486 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1487 { 1488 /* Drop reference taken by mpol_shared_policy_lookup() */ 1489 mpol_cond_put(vma->vm_policy); 1490 } 1491 1492 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1493 struct shmem_inode_info *info, pgoff_t index) 1494 { 1495 struct vm_area_struct pvma; 1496 struct page *page; 1497 struct vm_fault vmf = { 1498 .vma = &pvma, 1499 }; 1500 1501 shmem_pseudo_vma_init(&pvma, info, index); 1502 page = swap_cluster_readahead(swap, gfp, &vmf); 1503 shmem_pseudo_vma_destroy(&pvma); 1504 1505 return page; 1506 } 1507 1508 /* 1509 * Make sure huge_gfp is always more limited than limit_gfp. 1510 * Some of the flags set permissions, while others set limitations. 1511 */ 1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1513 { 1514 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1515 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1516 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1517 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1518 1519 /* Allow allocations only from the originally specified zones. */ 1520 result |= zoneflags; 1521 1522 /* 1523 * Minimize the result gfp by taking the union with the deny flags, 1524 * and the intersection of the allow flags. 1525 */ 1526 result |= (limit_gfp & denyflags); 1527 result |= (huge_gfp & limit_gfp) & allowflags; 1528 1529 return result; 1530 } 1531 1532 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1533 struct shmem_inode_info *info, pgoff_t index) 1534 { 1535 struct vm_area_struct pvma; 1536 struct address_space *mapping = info->vfs_inode.i_mapping; 1537 pgoff_t hindex; 1538 struct page *page; 1539 1540 hindex = round_down(index, HPAGE_PMD_NR); 1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1542 XA_PRESENT)) 1543 return NULL; 1544 1545 shmem_pseudo_vma_init(&pvma, info, hindex); 1546 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), 1547 true); 1548 shmem_pseudo_vma_destroy(&pvma); 1549 if (page) 1550 prep_transhuge_page(page); 1551 else 1552 count_vm_event(THP_FILE_FALLBACK); 1553 return page; 1554 } 1555 1556 static struct page *shmem_alloc_page(gfp_t gfp, 1557 struct shmem_inode_info *info, pgoff_t index) 1558 { 1559 struct vm_area_struct pvma; 1560 struct page *page; 1561 1562 shmem_pseudo_vma_init(&pvma, info, index); 1563 page = alloc_page_vma(gfp, &pvma, 0); 1564 shmem_pseudo_vma_destroy(&pvma); 1565 1566 return page; 1567 } 1568 1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1570 struct inode *inode, 1571 pgoff_t index, bool huge) 1572 { 1573 struct shmem_inode_info *info = SHMEM_I(inode); 1574 struct page *page; 1575 int nr; 1576 int err = -ENOSPC; 1577 1578 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1579 huge = false; 1580 nr = huge ? HPAGE_PMD_NR : 1; 1581 1582 if (!shmem_inode_acct_block(inode, nr)) 1583 goto failed; 1584 1585 if (huge) 1586 page = shmem_alloc_hugepage(gfp, info, index); 1587 else 1588 page = shmem_alloc_page(gfp, info, index); 1589 if (page) { 1590 __SetPageLocked(page); 1591 __SetPageSwapBacked(page); 1592 return page; 1593 } 1594 1595 err = -ENOMEM; 1596 shmem_inode_unacct_blocks(inode, nr); 1597 failed: 1598 return ERR_PTR(err); 1599 } 1600 1601 /* 1602 * When a page is moved from swapcache to shmem filecache (either by the 1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1605 * ignorance of the mapping it belongs to. If that mapping has special 1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1607 * we may need to copy to a suitable page before moving to filecache. 1608 * 1609 * In a future release, this may well be extended to respect cpuset and 1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1611 * but for now it is a simple matter of zone. 1612 */ 1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1614 { 1615 return page_zonenum(page) > gfp_zone(gfp); 1616 } 1617 1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1619 struct shmem_inode_info *info, pgoff_t index) 1620 { 1621 struct page *oldpage, *newpage; 1622 struct address_space *swap_mapping; 1623 swp_entry_t entry; 1624 pgoff_t swap_index; 1625 int error; 1626 1627 oldpage = *pagep; 1628 entry.val = page_private(oldpage); 1629 swap_index = swp_offset(entry); 1630 swap_mapping = page_mapping(oldpage); 1631 1632 /* 1633 * We have arrived here because our zones are constrained, so don't 1634 * limit chance of success by further cpuset and node constraints. 1635 */ 1636 gfp &= ~GFP_CONSTRAINT_MASK; 1637 newpage = shmem_alloc_page(gfp, info, index); 1638 if (!newpage) 1639 return -ENOMEM; 1640 1641 get_page(newpage); 1642 copy_highpage(newpage, oldpage); 1643 flush_dcache_page(newpage); 1644 1645 __SetPageLocked(newpage); 1646 __SetPageSwapBacked(newpage); 1647 SetPageUptodate(newpage); 1648 set_page_private(newpage, entry.val); 1649 SetPageSwapCache(newpage); 1650 1651 /* 1652 * Our caller will very soon move newpage out of swapcache, but it's 1653 * a nice clean interface for us to replace oldpage by newpage there. 1654 */ 1655 xa_lock_irq(&swap_mapping->i_pages); 1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1657 if (!error) { 1658 mem_cgroup_migrate(oldpage, newpage); 1659 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1660 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1661 } 1662 xa_unlock_irq(&swap_mapping->i_pages); 1663 1664 if (unlikely(error)) { 1665 /* 1666 * Is this possible? I think not, now that our callers check 1667 * both PageSwapCache and page_private after getting page lock; 1668 * but be defensive. Reverse old to newpage for clear and free. 1669 */ 1670 oldpage = newpage; 1671 } else { 1672 lru_cache_add(newpage); 1673 *pagep = newpage; 1674 } 1675 1676 ClearPageSwapCache(oldpage); 1677 set_page_private(oldpage, 0); 1678 1679 unlock_page(oldpage); 1680 put_page(oldpage); 1681 put_page(oldpage); 1682 return error; 1683 } 1684 1685 /* 1686 * Swap in the page pointed to by *pagep. 1687 * Caller has to make sure that *pagep contains a valid swapped page. 1688 * Returns 0 and the page in pagep if success. On failure, returns the 1689 * error code and NULL in *pagep. 1690 */ 1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1692 struct page **pagep, enum sgp_type sgp, 1693 gfp_t gfp, struct vm_area_struct *vma, 1694 vm_fault_t *fault_type) 1695 { 1696 struct address_space *mapping = inode->i_mapping; 1697 struct shmem_inode_info *info = SHMEM_I(inode); 1698 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1699 struct page *page; 1700 swp_entry_t swap; 1701 int error; 1702 1703 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1704 swap = radix_to_swp_entry(*pagep); 1705 *pagep = NULL; 1706 1707 /* Look it up and read it in.. */ 1708 page = lookup_swap_cache(swap, NULL, 0); 1709 if (!page) { 1710 /* Or update major stats only when swapin succeeds?? */ 1711 if (fault_type) { 1712 *fault_type |= VM_FAULT_MAJOR; 1713 count_vm_event(PGMAJFAULT); 1714 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1715 } 1716 /* Here we actually start the io */ 1717 page = shmem_swapin(swap, gfp, info, index); 1718 if (!page) { 1719 error = -ENOMEM; 1720 goto failed; 1721 } 1722 } 1723 1724 /* We have to do this with page locked to prevent races */ 1725 lock_page(page); 1726 if (!PageSwapCache(page) || page_private(page) != swap.val || 1727 !shmem_confirm_swap(mapping, index, swap)) { 1728 error = -EEXIST; 1729 goto unlock; 1730 } 1731 if (!PageUptodate(page)) { 1732 error = -EIO; 1733 goto failed; 1734 } 1735 wait_on_page_writeback(page); 1736 1737 /* 1738 * Some architectures may have to restore extra metadata to the 1739 * physical page after reading from swap. 1740 */ 1741 arch_swap_restore(swap, page); 1742 1743 if (shmem_should_replace_page(page, gfp)) { 1744 error = shmem_replace_page(&page, gfp, info, index); 1745 if (error) 1746 goto failed; 1747 } 1748 1749 error = shmem_add_to_page_cache(page, mapping, index, 1750 swp_to_radix_entry(swap), gfp, 1751 charge_mm); 1752 if (error) 1753 goto failed; 1754 1755 spin_lock_irq(&info->lock); 1756 info->swapped--; 1757 shmem_recalc_inode(inode); 1758 spin_unlock_irq(&info->lock); 1759 1760 if (sgp == SGP_WRITE) 1761 mark_page_accessed(page); 1762 1763 delete_from_swap_cache(page); 1764 set_page_dirty(page); 1765 swap_free(swap); 1766 1767 *pagep = page; 1768 return 0; 1769 failed: 1770 if (!shmem_confirm_swap(mapping, index, swap)) 1771 error = -EEXIST; 1772 unlock: 1773 if (page) { 1774 unlock_page(page); 1775 put_page(page); 1776 } 1777 1778 return error; 1779 } 1780 1781 /* 1782 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1783 * 1784 * If we allocate a new one we do not mark it dirty. That's up to the 1785 * vm. If we swap it in we mark it dirty since we also free the swap 1786 * entry since a page cannot live in both the swap and page cache. 1787 * 1788 * vmf and fault_type are only supplied by shmem_fault: 1789 * otherwise they are NULL. 1790 */ 1791 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1792 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1793 struct vm_area_struct *vma, struct vm_fault *vmf, 1794 vm_fault_t *fault_type) 1795 { 1796 struct address_space *mapping = inode->i_mapping; 1797 struct shmem_inode_info *info = SHMEM_I(inode); 1798 struct shmem_sb_info *sbinfo; 1799 struct mm_struct *charge_mm; 1800 struct page *page; 1801 enum sgp_type sgp_huge = sgp; 1802 pgoff_t hindex = index; 1803 gfp_t huge_gfp; 1804 int error; 1805 int once = 0; 1806 int alloced = 0; 1807 1808 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1809 return -EFBIG; 1810 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1811 sgp = SGP_CACHE; 1812 repeat: 1813 if (sgp <= SGP_CACHE && 1814 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1815 return -EINVAL; 1816 } 1817 1818 sbinfo = SHMEM_SB(inode->i_sb); 1819 charge_mm = vma ? vma->vm_mm : current->mm; 1820 1821 page = pagecache_get_page(mapping, index, 1822 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); 1823 if (xa_is_value(page)) { 1824 error = shmem_swapin_page(inode, index, &page, 1825 sgp, gfp, vma, fault_type); 1826 if (error == -EEXIST) 1827 goto repeat; 1828 1829 *pagep = page; 1830 return error; 1831 } 1832 1833 if (page) 1834 hindex = page->index; 1835 if (page && sgp == SGP_WRITE) 1836 mark_page_accessed(page); 1837 1838 /* fallocated page? */ 1839 if (page && !PageUptodate(page)) { 1840 if (sgp != SGP_READ) 1841 goto clear; 1842 unlock_page(page); 1843 put_page(page); 1844 page = NULL; 1845 hindex = index; 1846 } 1847 if (page || sgp == SGP_READ) 1848 goto out; 1849 1850 /* 1851 * Fast cache lookup did not find it: 1852 * bring it back from swap or allocate. 1853 */ 1854 1855 if (vma && userfaultfd_missing(vma)) { 1856 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1857 return 0; 1858 } 1859 1860 /* shmem_symlink() */ 1861 if (!shmem_mapping(mapping)) 1862 goto alloc_nohuge; 1863 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1864 goto alloc_nohuge; 1865 if (shmem_huge == SHMEM_HUGE_FORCE) 1866 goto alloc_huge; 1867 switch (sbinfo->huge) { 1868 case SHMEM_HUGE_NEVER: 1869 goto alloc_nohuge; 1870 case SHMEM_HUGE_WITHIN_SIZE: { 1871 loff_t i_size; 1872 pgoff_t off; 1873 1874 off = round_up(index, HPAGE_PMD_NR); 1875 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1876 if (i_size >= HPAGE_PMD_SIZE && 1877 i_size >> PAGE_SHIFT >= off) 1878 goto alloc_huge; 1879 1880 fallthrough; 1881 } 1882 case SHMEM_HUGE_ADVISE: 1883 if (sgp_huge == SGP_HUGE) 1884 goto alloc_huge; 1885 /* TODO: implement fadvise() hints */ 1886 goto alloc_nohuge; 1887 } 1888 1889 alloc_huge: 1890 huge_gfp = vma_thp_gfp_mask(vma); 1891 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1892 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); 1893 if (IS_ERR(page)) { 1894 alloc_nohuge: 1895 page = shmem_alloc_and_acct_page(gfp, inode, 1896 index, false); 1897 } 1898 if (IS_ERR(page)) { 1899 int retry = 5; 1900 1901 error = PTR_ERR(page); 1902 page = NULL; 1903 if (error != -ENOSPC) 1904 goto unlock; 1905 /* 1906 * Try to reclaim some space by splitting a huge page 1907 * beyond i_size on the filesystem. 1908 */ 1909 while (retry--) { 1910 int ret; 1911 1912 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1913 if (ret == SHRINK_STOP) 1914 break; 1915 if (ret) 1916 goto alloc_nohuge; 1917 } 1918 goto unlock; 1919 } 1920 1921 if (PageTransHuge(page)) 1922 hindex = round_down(index, HPAGE_PMD_NR); 1923 else 1924 hindex = index; 1925 1926 if (sgp == SGP_WRITE) 1927 __SetPageReferenced(page); 1928 1929 error = shmem_add_to_page_cache(page, mapping, hindex, 1930 NULL, gfp & GFP_RECLAIM_MASK, 1931 charge_mm); 1932 if (error) 1933 goto unacct; 1934 lru_cache_add(page); 1935 1936 spin_lock_irq(&info->lock); 1937 info->alloced += compound_nr(page); 1938 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1939 shmem_recalc_inode(inode); 1940 spin_unlock_irq(&info->lock); 1941 alloced = true; 1942 1943 if (PageTransHuge(page) && 1944 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1945 hindex + HPAGE_PMD_NR - 1) { 1946 /* 1947 * Part of the huge page is beyond i_size: subject 1948 * to shrink under memory pressure. 1949 */ 1950 spin_lock(&sbinfo->shrinklist_lock); 1951 /* 1952 * _careful to defend against unlocked access to 1953 * ->shrink_list in shmem_unused_huge_shrink() 1954 */ 1955 if (list_empty_careful(&info->shrinklist)) { 1956 list_add_tail(&info->shrinklist, 1957 &sbinfo->shrinklist); 1958 sbinfo->shrinklist_len++; 1959 } 1960 spin_unlock(&sbinfo->shrinklist_lock); 1961 } 1962 1963 /* 1964 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1965 */ 1966 if (sgp == SGP_FALLOC) 1967 sgp = SGP_WRITE; 1968 clear: 1969 /* 1970 * Let SGP_WRITE caller clear ends if write does not fill page; 1971 * but SGP_FALLOC on a page fallocated earlier must initialize 1972 * it now, lest undo on failure cancel our earlier guarantee. 1973 */ 1974 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1975 int i; 1976 1977 for (i = 0; i < compound_nr(page); i++) { 1978 clear_highpage(page + i); 1979 flush_dcache_page(page + i); 1980 } 1981 SetPageUptodate(page); 1982 } 1983 1984 /* Perhaps the file has been truncated since we checked */ 1985 if (sgp <= SGP_CACHE && 1986 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1987 if (alloced) { 1988 ClearPageDirty(page); 1989 delete_from_page_cache(page); 1990 spin_lock_irq(&info->lock); 1991 shmem_recalc_inode(inode); 1992 spin_unlock_irq(&info->lock); 1993 } 1994 error = -EINVAL; 1995 goto unlock; 1996 } 1997 out: 1998 *pagep = page + index - hindex; 1999 return 0; 2000 2001 /* 2002 * Error recovery. 2003 */ 2004 unacct: 2005 shmem_inode_unacct_blocks(inode, compound_nr(page)); 2006 2007 if (PageTransHuge(page)) { 2008 unlock_page(page); 2009 put_page(page); 2010 goto alloc_nohuge; 2011 } 2012 unlock: 2013 if (page) { 2014 unlock_page(page); 2015 put_page(page); 2016 } 2017 if (error == -ENOSPC && !once++) { 2018 spin_lock_irq(&info->lock); 2019 shmem_recalc_inode(inode); 2020 spin_unlock_irq(&info->lock); 2021 goto repeat; 2022 } 2023 if (error == -EEXIST) 2024 goto repeat; 2025 return error; 2026 } 2027 2028 /* 2029 * This is like autoremove_wake_function, but it removes the wait queue 2030 * entry unconditionally - even if something else had already woken the 2031 * target. 2032 */ 2033 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2034 { 2035 int ret = default_wake_function(wait, mode, sync, key); 2036 list_del_init(&wait->entry); 2037 return ret; 2038 } 2039 2040 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2041 { 2042 struct vm_area_struct *vma = vmf->vma; 2043 struct inode *inode = file_inode(vma->vm_file); 2044 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2045 enum sgp_type sgp; 2046 int err; 2047 vm_fault_t ret = VM_FAULT_LOCKED; 2048 2049 /* 2050 * Trinity finds that probing a hole which tmpfs is punching can 2051 * prevent the hole-punch from ever completing: which in turn 2052 * locks writers out with its hold on i_mutex. So refrain from 2053 * faulting pages into the hole while it's being punched. Although 2054 * shmem_undo_range() does remove the additions, it may be unable to 2055 * keep up, as each new page needs its own unmap_mapping_range() call, 2056 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2057 * 2058 * It does not matter if we sometimes reach this check just before the 2059 * hole-punch begins, so that one fault then races with the punch: 2060 * we just need to make racing faults a rare case. 2061 * 2062 * The implementation below would be much simpler if we just used a 2063 * standard mutex or completion: but we cannot take i_mutex in fault, 2064 * and bloating every shmem inode for this unlikely case would be sad. 2065 */ 2066 if (unlikely(inode->i_private)) { 2067 struct shmem_falloc *shmem_falloc; 2068 2069 spin_lock(&inode->i_lock); 2070 shmem_falloc = inode->i_private; 2071 if (shmem_falloc && 2072 shmem_falloc->waitq && 2073 vmf->pgoff >= shmem_falloc->start && 2074 vmf->pgoff < shmem_falloc->next) { 2075 struct file *fpin; 2076 wait_queue_head_t *shmem_falloc_waitq; 2077 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2078 2079 ret = VM_FAULT_NOPAGE; 2080 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2081 if (fpin) 2082 ret = VM_FAULT_RETRY; 2083 2084 shmem_falloc_waitq = shmem_falloc->waitq; 2085 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2086 TASK_UNINTERRUPTIBLE); 2087 spin_unlock(&inode->i_lock); 2088 schedule(); 2089 2090 /* 2091 * shmem_falloc_waitq points into the shmem_fallocate() 2092 * stack of the hole-punching task: shmem_falloc_waitq 2093 * is usually invalid by the time we reach here, but 2094 * finish_wait() does not dereference it in that case; 2095 * though i_lock needed lest racing with wake_up_all(). 2096 */ 2097 spin_lock(&inode->i_lock); 2098 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2099 spin_unlock(&inode->i_lock); 2100 2101 if (fpin) 2102 fput(fpin); 2103 return ret; 2104 } 2105 spin_unlock(&inode->i_lock); 2106 } 2107 2108 sgp = SGP_CACHE; 2109 2110 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2111 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2112 sgp = SGP_NOHUGE; 2113 else if (vma->vm_flags & VM_HUGEPAGE) 2114 sgp = SGP_HUGE; 2115 2116 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2117 gfp, vma, vmf, &ret); 2118 if (err) 2119 return vmf_error(err); 2120 return ret; 2121 } 2122 2123 unsigned long shmem_get_unmapped_area(struct file *file, 2124 unsigned long uaddr, unsigned long len, 2125 unsigned long pgoff, unsigned long flags) 2126 { 2127 unsigned long (*get_area)(struct file *, 2128 unsigned long, unsigned long, unsigned long, unsigned long); 2129 unsigned long addr; 2130 unsigned long offset; 2131 unsigned long inflated_len; 2132 unsigned long inflated_addr; 2133 unsigned long inflated_offset; 2134 2135 if (len > TASK_SIZE) 2136 return -ENOMEM; 2137 2138 get_area = current->mm->get_unmapped_area; 2139 addr = get_area(file, uaddr, len, pgoff, flags); 2140 2141 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2142 return addr; 2143 if (IS_ERR_VALUE(addr)) 2144 return addr; 2145 if (addr & ~PAGE_MASK) 2146 return addr; 2147 if (addr > TASK_SIZE - len) 2148 return addr; 2149 2150 if (shmem_huge == SHMEM_HUGE_DENY) 2151 return addr; 2152 if (len < HPAGE_PMD_SIZE) 2153 return addr; 2154 if (flags & MAP_FIXED) 2155 return addr; 2156 /* 2157 * Our priority is to support MAP_SHARED mapped hugely; 2158 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2159 * But if caller specified an address hint and we allocated area there 2160 * successfully, respect that as before. 2161 */ 2162 if (uaddr == addr) 2163 return addr; 2164 2165 if (shmem_huge != SHMEM_HUGE_FORCE) { 2166 struct super_block *sb; 2167 2168 if (file) { 2169 VM_BUG_ON(file->f_op != &shmem_file_operations); 2170 sb = file_inode(file)->i_sb; 2171 } else { 2172 /* 2173 * Called directly from mm/mmap.c, or drivers/char/mem.c 2174 * for "/dev/zero", to create a shared anonymous object. 2175 */ 2176 if (IS_ERR(shm_mnt)) 2177 return addr; 2178 sb = shm_mnt->mnt_sb; 2179 } 2180 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2181 return addr; 2182 } 2183 2184 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2185 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2186 return addr; 2187 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2188 return addr; 2189 2190 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2191 if (inflated_len > TASK_SIZE) 2192 return addr; 2193 if (inflated_len < len) 2194 return addr; 2195 2196 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2197 if (IS_ERR_VALUE(inflated_addr)) 2198 return addr; 2199 if (inflated_addr & ~PAGE_MASK) 2200 return addr; 2201 2202 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2203 inflated_addr += offset - inflated_offset; 2204 if (inflated_offset > offset) 2205 inflated_addr += HPAGE_PMD_SIZE; 2206 2207 if (inflated_addr > TASK_SIZE - len) 2208 return addr; 2209 return inflated_addr; 2210 } 2211 2212 #ifdef CONFIG_NUMA 2213 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2214 { 2215 struct inode *inode = file_inode(vma->vm_file); 2216 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2217 } 2218 2219 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2220 unsigned long addr) 2221 { 2222 struct inode *inode = file_inode(vma->vm_file); 2223 pgoff_t index; 2224 2225 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2226 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2227 } 2228 #endif 2229 2230 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2231 { 2232 struct inode *inode = file_inode(file); 2233 struct shmem_inode_info *info = SHMEM_I(inode); 2234 int retval = -ENOMEM; 2235 2236 /* 2237 * What serializes the accesses to info->flags? 2238 * ipc_lock_object() when called from shmctl_do_lock(), 2239 * no serialization needed when called from shm_destroy(). 2240 */ 2241 if (lock && !(info->flags & VM_LOCKED)) { 2242 if (!user_shm_lock(inode->i_size, user)) 2243 goto out_nomem; 2244 info->flags |= VM_LOCKED; 2245 mapping_set_unevictable(file->f_mapping); 2246 } 2247 if (!lock && (info->flags & VM_LOCKED) && user) { 2248 user_shm_unlock(inode->i_size, user); 2249 info->flags &= ~VM_LOCKED; 2250 mapping_clear_unevictable(file->f_mapping); 2251 } 2252 retval = 0; 2253 2254 out_nomem: 2255 return retval; 2256 } 2257 2258 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2259 { 2260 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2261 2262 if (info->seals & F_SEAL_FUTURE_WRITE) { 2263 /* 2264 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2265 * "future write" seal active. 2266 */ 2267 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2268 return -EPERM; 2269 2270 /* 2271 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2272 * MAP_SHARED and read-only, take care to not allow mprotect to 2273 * revert protections on such mappings. Do this only for shared 2274 * mappings. For private mappings, don't need to mask 2275 * VM_MAYWRITE as we still want them to be COW-writable. 2276 */ 2277 if (vma->vm_flags & VM_SHARED) 2278 vma->vm_flags &= ~(VM_MAYWRITE); 2279 } 2280 2281 /* arm64 - allow memory tagging on RAM-based files */ 2282 vma->vm_flags |= VM_MTE_ALLOWED; 2283 2284 file_accessed(file); 2285 vma->vm_ops = &shmem_vm_ops; 2286 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2287 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2288 (vma->vm_end & HPAGE_PMD_MASK)) { 2289 khugepaged_enter(vma, vma->vm_flags); 2290 } 2291 return 0; 2292 } 2293 2294 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2295 umode_t mode, dev_t dev, unsigned long flags) 2296 { 2297 struct inode *inode; 2298 struct shmem_inode_info *info; 2299 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2300 ino_t ino; 2301 2302 if (shmem_reserve_inode(sb, &ino)) 2303 return NULL; 2304 2305 inode = new_inode(sb); 2306 if (inode) { 2307 inode->i_ino = ino; 2308 inode_init_owner(&init_user_ns, inode, dir, mode); 2309 inode->i_blocks = 0; 2310 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2311 inode->i_generation = prandom_u32(); 2312 info = SHMEM_I(inode); 2313 memset(info, 0, (char *)inode - (char *)info); 2314 spin_lock_init(&info->lock); 2315 atomic_set(&info->stop_eviction, 0); 2316 info->seals = F_SEAL_SEAL; 2317 info->flags = flags & VM_NORESERVE; 2318 INIT_LIST_HEAD(&info->shrinklist); 2319 INIT_LIST_HEAD(&info->swaplist); 2320 simple_xattrs_init(&info->xattrs); 2321 cache_no_acl(inode); 2322 2323 switch (mode & S_IFMT) { 2324 default: 2325 inode->i_op = &shmem_special_inode_operations; 2326 init_special_inode(inode, mode, dev); 2327 break; 2328 case S_IFREG: 2329 inode->i_mapping->a_ops = &shmem_aops; 2330 inode->i_op = &shmem_inode_operations; 2331 inode->i_fop = &shmem_file_operations; 2332 mpol_shared_policy_init(&info->policy, 2333 shmem_get_sbmpol(sbinfo)); 2334 break; 2335 case S_IFDIR: 2336 inc_nlink(inode); 2337 /* Some things misbehave if size == 0 on a directory */ 2338 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2339 inode->i_op = &shmem_dir_inode_operations; 2340 inode->i_fop = &simple_dir_operations; 2341 break; 2342 case S_IFLNK: 2343 /* 2344 * Must not load anything in the rbtree, 2345 * mpol_free_shared_policy will not be called. 2346 */ 2347 mpol_shared_policy_init(&info->policy, NULL); 2348 break; 2349 } 2350 2351 lockdep_annotate_inode_mutex_key(inode); 2352 } else 2353 shmem_free_inode(sb); 2354 return inode; 2355 } 2356 2357 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2358 pmd_t *dst_pmd, 2359 struct vm_area_struct *dst_vma, 2360 unsigned long dst_addr, 2361 unsigned long src_addr, 2362 bool zeropage, 2363 struct page **pagep) 2364 { 2365 struct inode *inode = file_inode(dst_vma->vm_file); 2366 struct shmem_inode_info *info = SHMEM_I(inode); 2367 struct address_space *mapping = inode->i_mapping; 2368 gfp_t gfp = mapping_gfp_mask(mapping); 2369 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2370 spinlock_t *ptl; 2371 void *page_kaddr; 2372 struct page *page; 2373 pte_t _dst_pte, *dst_pte; 2374 int ret; 2375 pgoff_t offset, max_off; 2376 2377 ret = -ENOMEM; 2378 if (!shmem_inode_acct_block(inode, 1)) 2379 goto out; 2380 2381 if (!*pagep) { 2382 page = shmem_alloc_page(gfp, info, pgoff); 2383 if (!page) 2384 goto out_unacct_blocks; 2385 2386 if (!zeropage) { /* mcopy_atomic */ 2387 page_kaddr = kmap_atomic(page); 2388 ret = copy_from_user(page_kaddr, 2389 (const void __user *)src_addr, 2390 PAGE_SIZE); 2391 kunmap_atomic(page_kaddr); 2392 2393 /* fallback to copy_from_user outside mmap_lock */ 2394 if (unlikely(ret)) { 2395 *pagep = page; 2396 shmem_inode_unacct_blocks(inode, 1); 2397 /* don't free the page */ 2398 return -ENOENT; 2399 } 2400 } else { /* mfill_zeropage_atomic */ 2401 clear_highpage(page); 2402 } 2403 } else { 2404 page = *pagep; 2405 *pagep = NULL; 2406 } 2407 2408 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2409 __SetPageLocked(page); 2410 __SetPageSwapBacked(page); 2411 __SetPageUptodate(page); 2412 2413 ret = -EFAULT; 2414 offset = linear_page_index(dst_vma, dst_addr); 2415 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2416 if (unlikely(offset >= max_off)) 2417 goto out_release; 2418 2419 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2420 gfp & GFP_RECLAIM_MASK, dst_mm); 2421 if (ret) 2422 goto out_release; 2423 2424 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2425 if (dst_vma->vm_flags & VM_WRITE) 2426 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2427 else { 2428 /* 2429 * We don't set the pte dirty if the vma has no 2430 * VM_WRITE permission, so mark the page dirty or it 2431 * could be freed from under us. We could do it 2432 * unconditionally before unlock_page(), but doing it 2433 * only if VM_WRITE is not set is faster. 2434 */ 2435 set_page_dirty(page); 2436 } 2437 2438 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2439 2440 ret = -EFAULT; 2441 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2442 if (unlikely(offset >= max_off)) 2443 goto out_release_unlock; 2444 2445 ret = -EEXIST; 2446 if (!pte_none(*dst_pte)) 2447 goto out_release_unlock; 2448 2449 lru_cache_add(page); 2450 2451 spin_lock_irq(&info->lock); 2452 info->alloced++; 2453 inode->i_blocks += BLOCKS_PER_PAGE; 2454 shmem_recalc_inode(inode); 2455 spin_unlock_irq(&info->lock); 2456 2457 inc_mm_counter(dst_mm, mm_counter_file(page)); 2458 page_add_file_rmap(page, false); 2459 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2460 2461 /* No need to invalidate - it was non-present before */ 2462 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2463 pte_unmap_unlock(dst_pte, ptl); 2464 unlock_page(page); 2465 ret = 0; 2466 out: 2467 return ret; 2468 out_release_unlock: 2469 pte_unmap_unlock(dst_pte, ptl); 2470 ClearPageDirty(page); 2471 delete_from_page_cache(page); 2472 out_release: 2473 unlock_page(page); 2474 put_page(page); 2475 out_unacct_blocks: 2476 shmem_inode_unacct_blocks(inode, 1); 2477 goto out; 2478 } 2479 2480 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2481 pmd_t *dst_pmd, 2482 struct vm_area_struct *dst_vma, 2483 unsigned long dst_addr, 2484 unsigned long src_addr, 2485 struct page **pagep) 2486 { 2487 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2488 dst_addr, src_addr, false, pagep); 2489 } 2490 2491 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2492 pmd_t *dst_pmd, 2493 struct vm_area_struct *dst_vma, 2494 unsigned long dst_addr) 2495 { 2496 struct page *page = NULL; 2497 2498 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2499 dst_addr, 0, true, &page); 2500 } 2501 2502 #ifdef CONFIG_TMPFS 2503 static const struct inode_operations shmem_symlink_inode_operations; 2504 static const struct inode_operations shmem_short_symlink_operations; 2505 2506 #ifdef CONFIG_TMPFS_XATTR 2507 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2508 #else 2509 #define shmem_initxattrs NULL 2510 #endif 2511 2512 static int 2513 shmem_write_begin(struct file *file, struct address_space *mapping, 2514 loff_t pos, unsigned len, unsigned flags, 2515 struct page **pagep, void **fsdata) 2516 { 2517 struct inode *inode = mapping->host; 2518 struct shmem_inode_info *info = SHMEM_I(inode); 2519 pgoff_t index = pos >> PAGE_SHIFT; 2520 2521 /* i_mutex is held by caller */ 2522 if (unlikely(info->seals & (F_SEAL_GROW | 2523 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2524 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2525 return -EPERM; 2526 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2527 return -EPERM; 2528 } 2529 2530 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2531 } 2532 2533 static int 2534 shmem_write_end(struct file *file, struct address_space *mapping, 2535 loff_t pos, unsigned len, unsigned copied, 2536 struct page *page, void *fsdata) 2537 { 2538 struct inode *inode = mapping->host; 2539 2540 if (pos + copied > inode->i_size) 2541 i_size_write(inode, pos + copied); 2542 2543 if (!PageUptodate(page)) { 2544 struct page *head = compound_head(page); 2545 if (PageTransCompound(page)) { 2546 int i; 2547 2548 for (i = 0; i < HPAGE_PMD_NR; i++) { 2549 if (head + i == page) 2550 continue; 2551 clear_highpage(head + i); 2552 flush_dcache_page(head + i); 2553 } 2554 } 2555 if (copied < PAGE_SIZE) { 2556 unsigned from = pos & (PAGE_SIZE - 1); 2557 zero_user_segments(page, 0, from, 2558 from + copied, PAGE_SIZE); 2559 } 2560 SetPageUptodate(head); 2561 } 2562 set_page_dirty(page); 2563 unlock_page(page); 2564 put_page(page); 2565 2566 return copied; 2567 } 2568 2569 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2570 { 2571 struct file *file = iocb->ki_filp; 2572 struct inode *inode = file_inode(file); 2573 struct address_space *mapping = inode->i_mapping; 2574 pgoff_t index; 2575 unsigned long offset; 2576 enum sgp_type sgp = SGP_READ; 2577 int error = 0; 2578 ssize_t retval = 0; 2579 loff_t *ppos = &iocb->ki_pos; 2580 2581 /* 2582 * Might this read be for a stacking filesystem? Then when reading 2583 * holes of a sparse file, we actually need to allocate those pages, 2584 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2585 */ 2586 if (!iter_is_iovec(to)) 2587 sgp = SGP_CACHE; 2588 2589 index = *ppos >> PAGE_SHIFT; 2590 offset = *ppos & ~PAGE_MASK; 2591 2592 for (;;) { 2593 struct page *page = NULL; 2594 pgoff_t end_index; 2595 unsigned long nr, ret; 2596 loff_t i_size = i_size_read(inode); 2597 2598 end_index = i_size >> PAGE_SHIFT; 2599 if (index > end_index) 2600 break; 2601 if (index == end_index) { 2602 nr = i_size & ~PAGE_MASK; 2603 if (nr <= offset) 2604 break; 2605 } 2606 2607 error = shmem_getpage(inode, index, &page, sgp); 2608 if (error) { 2609 if (error == -EINVAL) 2610 error = 0; 2611 break; 2612 } 2613 if (page) { 2614 if (sgp == SGP_CACHE) 2615 set_page_dirty(page); 2616 unlock_page(page); 2617 } 2618 2619 /* 2620 * We must evaluate after, since reads (unlike writes) 2621 * are called without i_mutex protection against truncate 2622 */ 2623 nr = PAGE_SIZE; 2624 i_size = i_size_read(inode); 2625 end_index = i_size >> PAGE_SHIFT; 2626 if (index == end_index) { 2627 nr = i_size & ~PAGE_MASK; 2628 if (nr <= offset) { 2629 if (page) 2630 put_page(page); 2631 break; 2632 } 2633 } 2634 nr -= offset; 2635 2636 if (page) { 2637 /* 2638 * If users can be writing to this page using arbitrary 2639 * virtual addresses, take care about potential aliasing 2640 * before reading the page on the kernel side. 2641 */ 2642 if (mapping_writably_mapped(mapping)) 2643 flush_dcache_page(page); 2644 /* 2645 * Mark the page accessed if we read the beginning. 2646 */ 2647 if (!offset) 2648 mark_page_accessed(page); 2649 } else { 2650 page = ZERO_PAGE(0); 2651 get_page(page); 2652 } 2653 2654 /* 2655 * Ok, we have the page, and it's up-to-date, so 2656 * now we can copy it to user space... 2657 */ 2658 ret = copy_page_to_iter(page, offset, nr, to); 2659 retval += ret; 2660 offset += ret; 2661 index += offset >> PAGE_SHIFT; 2662 offset &= ~PAGE_MASK; 2663 2664 put_page(page); 2665 if (!iov_iter_count(to)) 2666 break; 2667 if (ret < nr) { 2668 error = -EFAULT; 2669 break; 2670 } 2671 cond_resched(); 2672 } 2673 2674 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2675 file_accessed(file); 2676 return retval ? retval : error; 2677 } 2678 2679 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2680 { 2681 struct address_space *mapping = file->f_mapping; 2682 struct inode *inode = mapping->host; 2683 2684 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2685 return generic_file_llseek_size(file, offset, whence, 2686 MAX_LFS_FILESIZE, i_size_read(inode)); 2687 if (offset < 0) 2688 return -ENXIO; 2689 2690 inode_lock(inode); 2691 /* We're holding i_mutex so we can access i_size directly */ 2692 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2693 if (offset >= 0) 2694 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2695 inode_unlock(inode); 2696 return offset; 2697 } 2698 2699 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2700 loff_t len) 2701 { 2702 struct inode *inode = file_inode(file); 2703 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2704 struct shmem_inode_info *info = SHMEM_I(inode); 2705 struct shmem_falloc shmem_falloc; 2706 pgoff_t start, index, end; 2707 int error; 2708 2709 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2710 return -EOPNOTSUPP; 2711 2712 inode_lock(inode); 2713 2714 if (mode & FALLOC_FL_PUNCH_HOLE) { 2715 struct address_space *mapping = file->f_mapping; 2716 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2717 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2718 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2719 2720 /* protected by i_mutex */ 2721 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2722 error = -EPERM; 2723 goto out; 2724 } 2725 2726 shmem_falloc.waitq = &shmem_falloc_waitq; 2727 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2728 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2729 spin_lock(&inode->i_lock); 2730 inode->i_private = &shmem_falloc; 2731 spin_unlock(&inode->i_lock); 2732 2733 if ((u64)unmap_end > (u64)unmap_start) 2734 unmap_mapping_range(mapping, unmap_start, 2735 1 + unmap_end - unmap_start, 0); 2736 shmem_truncate_range(inode, offset, offset + len - 1); 2737 /* No need to unmap again: hole-punching leaves COWed pages */ 2738 2739 spin_lock(&inode->i_lock); 2740 inode->i_private = NULL; 2741 wake_up_all(&shmem_falloc_waitq); 2742 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2743 spin_unlock(&inode->i_lock); 2744 error = 0; 2745 goto out; 2746 } 2747 2748 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2749 error = inode_newsize_ok(inode, offset + len); 2750 if (error) 2751 goto out; 2752 2753 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2754 error = -EPERM; 2755 goto out; 2756 } 2757 2758 start = offset >> PAGE_SHIFT; 2759 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2760 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2761 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2762 error = -ENOSPC; 2763 goto out; 2764 } 2765 2766 shmem_falloc.waitq = NULL; 2767 shmem_falloc.start = start; 2768 shmem_falloc.next = start; 2769 shmem_falloc.nr_falloced = 0; 2770 shmem_falloc.nr_unswapped = 0; 2771 spin_lock(&inode->i_lock); 2772 inode->i_private = &shmem_falloc; 2773 spin_unlock(&inode->i_lock); 2774 2775 for (index = start; index < end; index++) { 2776 struct page *page; 2777 2778 /* 2779 * Good, the fallocate(2) manpage permits EINTR: we may have 2780 * been interrupted because we are using up too much memory. 2781 */ 2782 if (signal_pending(current)) 2783 error = -EINTR; 2784 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2785 error = -ENOMEM; 2786 else 2787 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2788 if (error) { 2789 /* Remove the !PageUptodate pages we added */ 2790 if (index > start) { 2791 shmem_undo_range(inode, 2792 (loff_t)start << PAGE_SHIFT, 2793 ((loff_t)index << PAGE_SHIFT) - 1, true); 2794 } 2795 goto undone; 2796 } 2797 2798 /* 2799 * Inform shmem_writepage() how far we have reached. 2800 * No need for lock or barrier: we have the page lock. 2801 */ 2802 shmem_falloc.next++; 2803 if (!PageUptodate(page)) 2804 shmem_falloc.nr_falloced++; 2805 2806 /* 2807 * If !PageUptodate, leave it that way so that freeable pages 2808 * can be recognized if we need to rollback on error later. 2809 * But set_page_dirty so that memory pressure will swap rather 2810 * than free the pages we are allocating (and SGP_CACHE pages 2811 * might still be clean: we now need to mark those dirty too). 2812 */ 2813 set_page_dirty(page); 2814 unlock_page(page); 2815 put_page(page); 2816 cond_resched(); 2817 } 2818 2819 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2820 i_size_write(inode, offset + len); 2821 inode->i_ctime = current_time(inode); 2822 undone: 2823 spin_lock(&inode->i_lock); 2824 inode->i_private = NULL; 2825 spin_unlock(&inode->i_lock); 2826 out: 2827 inode_unlock(inode); 2828 return error; 2829 } 2830 2831 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2832 { 2833 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2834 2835 buf->f_type = TMPFS_MAGIC; 2836 buf->f_bsize = PAGE_SIZE; 2837 buf->f_namelen = NAME_MAX; 2838 if (sbinfo->max_blocks) { 2839 buf->f_blocks = sbinfo->max_blocks; 2840 buf->f_bavail = 2841 buf->f_bfree = sbinfo->max_blocks - 2842 percpu_counter_sum(&sbinfo->used_blocks); 2843 } 2844 if (sbinfo->max_inodes) { 2845 buf->f_files = sbinfo->max_inodes; 2846 buf->f_ffree = sbinfo->free_inodes; 2847 } 2848 /* else leave those fields 0 like simple_statfs */ 2849 return 0; 2850 } 2851 2852 /* 2853 * File creation. Allocate an inode, and we're done.. 2854 */ 2855 static int 2856 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2857 struct dentry *dentry, umode_t mode, dev_t dev) 2858 { 2859 struct inode *inode; 2860 int error = -ENOSPC; 2861 2862 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2863 if (inode) { 2864 error = simple_acl_create(dir, inode); 2865 if (error) 2866 goto out_iput; 2867 error = security_inode_init_security(inode, dir, 2868 &dentry->d_name, 2869 shmem_initxattrs, NULL); 2870 if (error && error != -EOPNOTSUPP) 2871 goto out_iput; 2872 2873 error = 0; 2874 dir->i_size += BOGO_DIRENT_SIZE; 2875 dir->i_ctime = dir->i_mtime = current_time(dir); 2876 d_instantiate(dentry, inode); 2877 dget(dentry); /* Extra count - pin the dentry in core */ 2878 } 2879 return error; 2880 out_iput: 2881 iput(inode); 2882 return error; 2883 } 2884 2885 static int 2886 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2887 struct dentry *dentry, umode_t mode) 2888 { 2889 struct inode *inode; 2890 int error = -ENOSPC; 2891 2892 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2893 if (inode) { 2894 error = security_inode_init_security(inode, dir, 2895 NULL, 2896 shmem_initxattrs, NULL); 2897 if (error && error != -EOPNOTSUPP) 2898 goto out_iput; 2899 error = simple_acl_create(dir, inode); 2900 if (error) 2901 goto out_iput; 2902 d_tmpfile(dentry, inode); 2903 } 2904 return error; 2905 out_iput: 2906 iput(inode); 2907 return error; 2908 } 2909 2910 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2911 struct dentry *dentry, umode_t mode) 2912 { 2913 int error; 2914 2915 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2916 mode | S_IFDIR, 0))) 2917 return error; 2918 inc_nlink(dir); 2919 return 0; 2920 } 2921 2922 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2923 struct dentry *dentry, umode_t mode, bool excl) 2924 { 2925 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2926 } 2927 2928 /* 2929 * Link a file.. 2930 */ 2931 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2932 { 2933 struct inode *inode = d_inode(old_dentry); 2934 int ret = 0; 2935 2936 /* 2937 * No ordinary (disk based) filesystem counts links as inodes; 2938 * but each new link needs a new dentry, pinning lowmem, and 2939 * tmpfs dentries cannot be pruned until they are unlinked. 2940 * But if an O_TMPFILE file is linked into the tmpfs, the 2941 * first link must skip that, to get the accounting right. 2942 */ 2943 if (inode->i_nlink) { 2944 ret = shmem_reserve_inode(inode->i_sb, NULL); 2945 if (ret) 2946 goto out; 2947 } 2948 2949 dir->i_size += BOGO_DIRENT_SIZE; 2950 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2951 inc_nlink(inode); 2952 ihold(inode); /* New dentry reference */ 2953 dget(dentry); /* Extra pinning count for the created dentry */ 2954 d_instantiate(dentry, inode); 2955 out: 2956 return ret; 2957 } 2958 2959 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2960 { 2961 struct inode *inode = d_inode(dentry); 2962 2963 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2964 shmem_free_inode(inode->i_sb); 2965 2966 dir->i_size -= BOGO_DIRENT_SIZE; 2967 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2968 drop_nlink(inode); 2969 dput(dentry); /* Undo the count from "create" - this does all the work */ 2970 return 0; 2971 } 2972 2973 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2974 { 2975 if (!simple_empty(dentry)) 2976 return -ENOTEMPTY; 2977 2978 drop_nlink(d_inode(dentry)); 2979 drop_nlink(dir); 2980 return shmem_unlink(dir, dentry); 2981 } 2982 2983 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2984 { 2985 bool old_is_dir = d_is_dir(old_dentry); 2986 bool new_is_dir = d_is_dir(new_dentry); 2987 2988 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2989 if (old_is_dir) { 2990 drop_nlink(old_dir); 2991 inc_nlink(new_dir); 2992 } else { 2993 drop_nlink(new_dir); 2994 inc_nlink(old_dir); 2995 } 2996 } 2997 old_dir->i_ctime = old_dir->i_mtime = 2998 new_dir->i_ctime = new_dir->i_mtime = 2999 d_inode(old_dentry)->i_ctime = 3000 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3001 3002 return 0; 3003 } 3004 3005 static int shmem_whiteout(struct user_namespace *mnt_userns, 3006 struct inode *old_dir, struct dentry *old_dentry) 3007 { 3008 struct dentry *whiteout; 3009 int error; 3010 3011 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3012 if (!whiteout) 3013 return -ENOMEM; 3014 3015 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 3016 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3017 dput(whiteout); 3018 if (error) 3019 return error; 3020 3021 /* 3022 * Cheat and hash the whiteout while the old dentry is still in 3023 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3024 * 3025 * d_lookup() will consistently find one of them at this point, 3026 * not sure which one, but that isn't even important. 3027 */ 3028 d_rehash(whiteout); 3029 return 0; 3030 } 3031 3032 /* 3033 * The VFS layer already does all the dentry stuff for rename, 3034 * we just have to decrement the usage count for the target if 3035 * it exists so that the VFS layer correctly free's it when it 3036 * gets overwritten. 3037 */ 3038 static int shmem_rename2(struct user_namespace *mnt_userns, 3039 struct inode *old_dir, struct dentry *old_dentry, 3040 struct inode *new_dir, struct dentry *new_dentry, 3041 unsigned int flags) 3042 { 3043 struct inode *inode = d_inode(old_dentry); 3044 int they_are_dirs = S_ISDIR(inode->i_mode); 3045 3046 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3047 return -EINVAL; 3048 3049 if (flags & RENAME_EXCHANGE) 3050 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3051 3052 if (!simple_empty(new_dentry)) 3053 return -ENOTEMPTY; 3054 3055 if (flags & RENAME_WHITEOUT) { 3056 int error; 3057 3058 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3059 if (error) 3060 return error; 3061 } 3062 3063 if (d_really_is_positive(new_dentry)) { 3064 (void) shmem_unlink(new_dir, new_dentry); 3065 if (they_are_dirs) { 3066 drop_nlink(d_inode(new_dentry)); 3067 drop_nlink(old_dir); 3068 } 3069 } else if (they_are_dirs) { 3070 drop_nlink(old_dir); 3071 inc_nlink(new_dir); 3072 } 3073 3074 old_dir->i_size -= BOGO_DIRENT_SIZE; 3075 new_dir->i_size += BOGO_DIRENT_SIZE; 3076 old_dir->i_ctime = old_dir->i_mtime = 3077 new_dir->i_ctime = new_dir->i_mtime = 3078 inode->i_ctime = current_time(old_dir); 3079 return 0; 3080 } 3081 3082 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3083 struct dentry *dentry, const char *symname) 3084 { 3085 int error; 3086 int len; 3087 struct inode *inode; 3088 struct page *page; 3089 3090 len = strlen(symname) + 1; 3091 if (len > PAGE_SIZE) 3092 return -ENAMETOOLONG; 3093 3094 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3095 VM_NORESERVE); 3096 if (!inode) 3097 return -ENOSPC; 3098 3099 error = security_inode_init_security(inode, dir, &dentry->d_name, 3100 shmem_initxattrs, NULL); 3101 if (error && error != -EOPNOTSUPP) { 3102 iput(inode); 3103 return error; 3104 } 3105 3106 inode->i_size = len-1; 3107 if (len <= SHORT_SYMLINK_LEN) { 3108 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3109 if (!inode->i_link) { 3110 iput(inode); 3111 return -ENOMEM; 3112 } 3113 inode->i_op = &shmem_short_symlink_operations; 3114 } else { 3115 inode_nohighmem(inode); 3116 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3117 if (error) { 3118 iput(inode); 3119 return error; 3120 } 3121 inode->i_mapping->a_ops = &shmem_aops; 3122 inode->i_op = &shmem_symlink_inode_operations; 3123 memcpy(page_address(page), symname, len); 3124 SetPageUptodate(page); 3125 set_page_dirty(page); 3126 unlock_page(page); 3127 put_page(page); 3128 } 3129 dir->i_size += BOGO_DIRENT_SIZE; 3130 dir->i_ctime = dir->i_mtime = current_time(dir); 3131 d_instantiate(dentry, inode); 3132 dget(dentry); 3133 return 0; 3134 } 3135 3136 static void shmem_put_link(void *arg) 3137 { 3138 mark_page_accessed(arg); 3139 put_page(arg); 3140 } 3141 3142 static const char *shmem_get_link(struct dentry *dentry, 3143 struct inode *inode, 3144 struct delayed_call *done) 3145 { 3146 struct page *page = NULL; 3147 int error; 3148 if (!dentry) { 3149 page = find_get_page(inode->i_mapping, 0); 3150 if (!page) 3151 return ERR_PTR(-ECHILD); 3152 if (!PageUptodate(page)) { 3153 put_page(page); 3154 return ERR_PTR(-ECHILD); 3155 } 3156 } else { 3157 error = shmem_getpage(inode, 0, &page, SGP_READ); 3158 if (error) 3159 return ERR_PTR(error); 3160 unlock_page(page); 3161 } 3162 set_delayed_call(done, shmem_put_link, page); 3163 return page_address(page); 3164 } 3165 3166 #ifdef CONFIG_TMPFS_XATTR 3167 /* 3168 * Superblocks without xattr inode operations may get some security.* xattr 3169 * support from the LSM "for free". As soon as we have any other xattrs 3170 * like ACLs, we also need to implement the security.* handlers at 3171 * filesystem level, though. 3172 */ 3173 3174 /* 3175 * Callback for security_inode_init_security() for acquiring xattrs. 3176 */ 3177 static int shmem_initxattrs(struct inode *inode, 3178 const struct xattr *xattr_array, 3179 void *fs_info) 3180 { 3181 struct shmem_inode_info *info = SHMEM_I(inode); 3182 const struct xattr *xattr; 3183 struct simple_xattr *new_xattr; 3184 size_t len; 3185 3186 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3187 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3188 if (!new_xattr) 3189 return -ENOMEM; 3190 3191 len = strlen(xattr->name) + 1; 3192 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3193 GFP_KERNEL); 3194 if (!new_xattr->name) { 3195 kvfree(new_xattr); 3196 return -ENOMEM; 3197 } 3198 3199 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3200 XATTR_SECURITY_PREFIX_LEN); 3201 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3202 xattr->name, len); 3203 3204 simple_xattr_list_add(&info->xattrs, new_xattr); 3205 } 3206 3207 return 0; 3208 } 3209 3210 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3211 struct dentry *unused, struct inode *inode, 3212 const char *name, void *buffer, size_t size) 3213 { 3214 struct shmem_inode_info *info = SHMEM_I(inode); 3215 3216 name = xattr_full_name(handler, name); 3217 return simple_xattr_get(&info->xattrs, name, buffer, size); 3218 } 3219 3220 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3221 struct user_namespace *mnt_userns, 3222 struct dentry *unused, struct inode *inode, 3223 const char *name, const void *value, 3224 size_t size, int flags) 3225 { 3226 struct shmem_inode_info *info = SHMEM_I(inode); 3227 3228 name = xattr_full_name(handler, name); 3229 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3230 } 3231 3232 static const struct xattr_handler shmem_security_xattr_handler = { 3233 .prefix = XATTR_SECURITY_PREFIX, 3234 .get = shmem_xattr_handler_get, 3235 .set = shmem_xattr_handler_set, 3236 }; 3237 3238 static const struct xattr_handler shmem_trusted_xattr_handler = { 3239 .prefix = XATTR_TRUSTED_PREFIX, 3240 .get = shmem_xattr_handler_get, 3241 .set = shmem_xattr_handler_set, 3242 }; 3243 3244 static const struct xattr_handler *shmem_xattr_handlers[] = { 3245 #ifdef CONFIG_TMPFS_POSIX_ACL 3246 &posix_acl_access_xattr_handler, 3247 &posix_acl_default_xattr_handler, 3248 #endif 3249 &shmem_security_xattr_handler, 3250 &shmem_trusted_xattr_handler, 3251 NULL 3252 }; 3253 3254 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3255 { 3256 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3257 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3258 } 3259 #endif /* CONFIG_TMPFS_XATTR */ 3260 3261 static const struct inode_operations shmem_short_symlink_operations = { 3262 .get_link = simple_get_link, 3263 #ifdef CONFIG_TMPFS_XATTR 3264 .listxattr = shmem_listxattr, 3265 #endif 3266 }; 3267 3268 static const struct inode_operations shmem_symlink_inode_operations = { 3269 .get_link = shmem_get_link, 3270 #ifdef CONFIG_TMPFS_XATTR 3271 .listxattr = shmem_listxattr, 3272 #endif 3273 }; 3274 3275 static struct dentry *shmem_get_parent(struct dentry *child) 3276 { 3277 return ERR_PTR(-ESTALE); 3278 } 3279 3280 static int shmem_match(struct inode *ino, void *vfh) 3281 { 3282 __u32 *fh = vfh; 3283 __u64 inum = fh[2]; 3284 inum = (inum << 32) | fh[1]; 3285 return ino->i_ino == inum && fh[0] == ino->i_generation; 3286 } 3287 3288 /* Find any alias of inode, but prefer a hashed alias */ 3289 static struct dentry *shmem_find_alias(struct inode *inode) 3290 { 3291 struct dentry *alias = d_find_alias(inode); 3292 3293 return alias ?: d_find_any_alias(inode); 3294 } 3295 3296 3297 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3298 struct fid *fid, int fh_len, int fh_type) 3299 { 3300 struct inode *inode; 3301 struct dentry *dentry = NULL; 3302 u64 inum; 3303 3304 if (fh_len < 3) 3305 return NULL; 3306 3307 inum = fid->raw[2]; 3308 inum = (inum << 32) | fid->raw[1]; 3309 3310 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3311 shmem_match, fid->raw); 3312 if (inode) { 3313 dentry = shmem_find_alias(inode); 3314 iput(inode); 3315 } 3316 3317 return dentry; 3318 } 3319 3320 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3321 struct inode *parent) 3322 { 3323 if (*len < 3) { 3324 *len = 3; 3325 return FILEID_INVALID; 3326 } 3327 3328 if (inode_unhashed(inode)) { 3329 /* Unfortunately insert_inode_hash is not idempotent, 3330 * so as we hash inodes here rather than at creation 3331 * time, we need a lock to ensure we only try 3332 * to do it once 3333 */ 3334 static DEFINE_SPINLOCK(lock); 3335 spin_lock(&lock); 3336 if (inode_unhashed(inode)) 3337 __insert_inode_hash(inode, 3338 inode->i_ino + inode->i_generation); 3339 spin_unlock(&lock); 3340 } 3341 3342 fh[0] = inode->i_generation; 3343 fh[1] = inode->i_ino; 3344 fh[2] = ((__u64)inode->i_ino) >> 32; 3345 3346 *len = 3; 3347 return 1; 3348 } 3349 3350 static const struct export_operations shmem_export_ops = { 3351 .get_parent = shmem_get_parent, 3352 .encode_fh = shmem_encode_fh, 3353 .fh_to_dentry = shmem_fh_to_dentry, 3354 }; 3355 3356 enum shmem_param { 3357 Opt_gid, 3358 Opt_huge, 3359 Opt_mode, 3360 Opt_mpol, 3361 Opt_nr_blocks, 3362 Opt_nr_inodes, 3363 Opt_size, 3364 Opt_uid, 3365 Opt_inode32, 3366 Opt_inode64, 3367 }; 3368 3369 static const struct constant_table shmem_param_enums_huge[] = { 3370 {"never", SHMEM_HUGE_NEVER }, 3371 {"always", SHMEM_HUGE_ALWAYS }, 3372 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3373 {"advise", SHMEM_HUGE_ADVISE }, 3374 {} 3375 }; 3376 3377 const struct fs_parameter_spec shmem_fs_parameters[] = { 3378 fsparam_u32 ("gid", Opt_gid), 3379 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3380 fsparam_u32oct("mode", Opt_mode), 3381 fsparam_string("mpol", Opt_mpol), 3382 fsparam_string("nr_blocks", Opt_nr_blocks), 3383 fsparam_string("nr_inodes", Opt_nr_inodes), 3384 fsparam_string("size", Opt_size), 3385 fsparam_u32 ("uid", Opt_uid), 3386 fsparam_flag ("inode32", Opt_inode32), 3387 fsparam_flag ("inode64", Opt_inode64), 3388 {} 3389 }; 3390 3391 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3392 { 3393 struct shmem_options *ctx = fc->fs_private; 3394 struct fs_parse_result result; 3395 unsigned long long size; 3396 char *rest; 3397 int opt; 3398 3399 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3400 if (opt < 0) 3401 return opt; 3402 3403 switch (opt) { 3404 case Opt_size: 3405 size = memparse(param->string, &rest); 3406 if (*rest == '%') { 3407 size <<= PAGE_SHIFT; 3408 size *= totalram_pages(); 3409 do_div(size, 100); 3410 rest++; 3411 } 3412 if (*rest) 3413 goto bad_value; 3414 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3415 ctx->seen |= SHMEM_SEEN_BLOCKS; 3416 break; 3417 case Opt_nr_blocks: 3418 ctx->blocks = memparse(param->string, &rest); 3419 if (*rest) 3420 goto bad_value; 3421 ctx->seen |= SHMEM_SEEN_BLOCKS; 3422 break; 3423 case Opt_nr_inodes: 3424 ctx->inodes = memparse(param->string, &rest); 3425 if (*rest) 3426 goto bad_value; 3427 ctx->seen |= SHMEM_SEEN_INODES; 3428 break; 3429 case Opt_mode: 3430 ctx->mode = result.uint_32 & 07777; 3431 break; 3432 case Opt_uid: 3433 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3434 if (!uid_valid(ctx->uid)) 3435 goto bad_value; 3436 break; 3437 case Opt_gid: 3438 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3439 if (!gid_valid(ctx->gid)) 3440 goto bad_value; 3441 break; 3442 case Opt_huge: 3443 ctx->huge = result.uint_32; 3444 if (ctx->huge != SHMEM_HUGE_NEVER && 3445 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3446 has_transparent_hugepage())) 3447 goto unsupported_parameter; 3448 ctx->seen |= SHMEM_SEEN_HUGE; 3449 break; 3450 case Opt_mpol: 3451 if (IS_ENABLED(CONFIG_NUMA)) { 3452 mpol_put(ctx->mpol); 3453 ctx->mpol = NULL; 3454 if (mpol_parse_str(param->string, &ctx->mpol)) 3455 goto bad_value; 3456 break; 3457 } 3458 goto unsupported_parameter; 3459 case Opt_inode32: 3460 ctx->full_inums = false; 3461 ctx->seen |= SHMEM_SEEN_INUMS; 3462 break; 3463 case Opt_inode64: 3464 if (sizeof(ino_t) < 8) { 3465 return invalfc(fc, 3466 "Cannot use inode64 with <64bit inums in kernel\n"); 3467 } 3468 ctx->full_inums = true; 3469 ctx->seen |= SHMEM_SEEN_INUMS; 3470 break; 3471 } 3472 return 0; 3473 3474 unsupported_parameter: 3475 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3476 bad_value: 3477 return invalfc(fc, "Bad value for '%s'", param->key); 3478 } 3479 3480 static int shmem_parse_options(struct fs_context *fc, void *data) 3481 { 3482 char *options = data; 3483 3484 if (options) { 3485 int err = security_sb_eat_lsm_opts(options, &fc->security); 3486 if (err) 3487 return err; 3488 } 3489 3490 while (options != NULL) { 3491 char *this_char = options; 3492 for (;;) { 3493 /* 3494 * NUL-terminate this option: unfortunately, 3495 * mount options form a comma-separated list, 3496 * but mpol's nodelist may also contain commas. 3497 */ 3498 options = strchr(options, ','); 3499 if (options == NULL) 3500 break; 3501 options++; 3502 if (!isdigit(*options)) { 3503 options[-1] = '\0'; 3504 break; 3505 } 3506 } 3507 if (*this_char) { 3508 char *value = strchr(this_char,'='); 3509 size_t len = 0; 3510 int err; 3511 3512 if (value) { 3513 *value++ = '\0'; 3514 len = strlen(value); 3515 } 3516 err = vfs_parse_fs_string(fc, this_char, value, len); 3517 if (err < 0) 3518 return err; 3519 } 3520 } 3521 return 0; 3522 } 3523 3524 /* 3525 * Reconfigure a shmem filesystem. 3526 * 3527 * Note that we disallow change from limited->unlimited blocks/inodes while any 3528 * are in use; but we must separately disallow unlimited->limited, because in 3529 * that case we have no record of how much is already in use. 3530 */ 3531 static int shmem_reconfigure(struct fs_context *fc) 3532 { 3533 struct shmem_options *ctx = fc->fs_private; 3534 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3535 unsigned long inodes; 3536 const char *err; 3537 3538 spin_lock(&sbinfo->stat_lock); 3539 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3540 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3541 if (!sbinfo->max_blocks) { 3542 err = "Cannot retroactively limit size"; 3543 goto out; 3544 } 3545 if (percpu_counter_compare(&sbinfo->used_blocks, 3546 ctx->blocks) > 0) { 3547 err = "Too small a size for current use"; 3548 goto out; 3549 } 3550 } 3551 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3552 if (!sbinfo->max_inodes) { 3553 err = "Cannot retroactively limit inodes"; 3554 goto out; 3555 } 3556 if (ctx->inodes < inodes) { 3557 err = "Too few inodes for current use"; 3558 goto out; 3559 } 3560 } 3561 3562 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3563 sbinfo->next_ino > UINT_MAX) { 3564 err = "Current inum too high to switch to 32-bit inums"; 3565 goto out; 3566 } 3567 3568 if (ctx->seen & SHMEM_SEEN_HUGE) 3569 sbinfo->huge = ctx->huge; 3570 if (ctx->seen & SHMEM_SEEN_INUMS) 3571 sbinfo->full_inums = ctx->full_inums; 3572 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3573 sbinfo->max_blocks = ctx->blocks; 3574 if (ctx->seen & SHMEM_SEEN_INODES) { 3575 sbinfo->max_inodes = ctx->inodes; 3576 sbinfo->free_inodes = ctx->inodes - inodes; 3577 } 3578 3579 /* 3580 * Preserve previous mempolicy unless mpol remount option was specified. 3581 */ 3582 if (ctx->mpol) { 3583 mpol_put(sbinfo->mpol); 3584 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3585 ctx->mpol = NULL; 3586 } 3587 spin_unlock(&sbinfo->stat_lock); 3588 return 0; 3589 out: 3590 spin_unlock(&sbinfo->stat_lock); 3591 return invalfc(fc, "%s", err); 3592 } 3593 3594 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3595 { 3596 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3597 3598 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3599 seq_printf(seq, ",size=%luk", 3600 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3601 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3602 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3603 if (sbinfo->mode != (0777 | S_ISVTX)) 3604 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3605 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3606 seq_printf(seq, ",uid=%u", 3607 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3608 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3609 seq_printf(seq, ",gid=%u", 3610 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3611 3612 /* 3613 * Showing inode{64,32} might be useful even if it's the system default, 3614 * since then people don't have to resort to checking both here and 3615 * /proc/config.gz to confirm 64-bit inums were successfully applied 3616 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3617 * 3618 * We hide it when inode64 isn't the default and we are using 32-bit 3619 * inodes, since that probably just means the feature isn't even under 3620 * consideration. 3621 * 3622 * As such: 3623 * 3624 * +-----------------+-----------------+ 3625 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3626 * +------------------+-----------------+-----------------+ 3627 * | full_inums=true | show | show | 3628 * | full_inums=false | show | hide | 3629 * +------------------+-----------------+-----------------+ 3630 * 3631 */ 3632 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3633 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3634 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3635 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3636 if (sbinfo->huge) 3637 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3638 #endif 3639 shmem_show_mpol(seq, sbinfo->mpol); 3640 return 0; 3641 } 3642 3643 #endif /* CONFIG_TMPFS */ 3644 3645 static void shmem_put_super(struct super_block *sb) 3646 { 3647 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3648 3649 free_percpu(sbinfo->ino_batch); 3650 percpu_counter_destroy(&sbinfo->used_blocks); 3651 mpol_put(sbinfo->mpol); 3652 kfree(sbinfo); 3653 sb->s_fs_info = NULL; 3654 } 3655 3656 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3657 { 3658 struct shmem_options *ctx = fc->fs_private; 3659 struct inode *inode; 3660 struct shmem_sb_info *sbinfo; 3661 int err = -ENOMEM; 3662 3663 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3664 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3665 L1_CACHE_BYTES), GFP_KERNEL); 3666 if (!sbinfo) 3667 return -ENOMEM; 3668 3669 sb->s_fs_info = sbinfo; 3670 3671 #ifdef CONFIG_TMPFS 3672 /* 3673 * Per default we only allow half of the physical ram per 3674 * tmpfs instance, limiting inodes to one per page of lowmem; 3675 * but the internal instance is left unlimited. 3676 */ 3677 if (!(sb->s_flags & SB_KERNMOUNT)) { 3678 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3679 ctx->blocks = shmem_default_max_blocks(); 3680 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3681 ctx->inodes = shmem_default_max_inodes(); 3682 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3683 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3684 } else { 3685 sb->s_flags |= SB_NOUSER; 3686 } 3687 sb->s_export_op = &shmem_export_ops; 3688 sb->s_flags |= SB_NOSEC; 3689 #else 3690 sb->s_flags |= SB_NOUSER; 3691 #endif 3692 sbinfo->max_blocks = ctx->blocks; 3693 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3694 if (sb->s_flags & SB_KERNMOUNT) { 3695 sbinfo->ino_batch = alloc_percpu(ino_t); 3696 if (!sbinfo->ino_batch) 3697 goto failed; 3698 } 3699 sbinfo->uid = ctx->uid; 3700 sbinfo->gid = ctx->gid; 3701 sbinfo->full_inums = ctx->full_inums; 3702 sbinfo->mode = ctx->mode; 3703 sbinfo->huge = ctx->huge; 3704 sbinfo->mpol = ctx->mpol; 3705 ctx->mpol = NULL; 3706 3707 spin_lock_init(&sbinfo->stat_lock); 3708 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3709 goto failed; 3710 spin_lock_init(&sbinfo->shrinklist_lock); 3711 INIT_LIST_HEAD(&sbinfo->shrinklist); 3712 3713 sb->s_maxbytes = MAX_LFS_FILESIZE; 3714 sb->s_blocksize = PAGE_SIZE; 3715 sb->s_blocksize_bits = PAGE_SHIFT; 3716 sb->s_magic = TMPFS_MAGIC; 3717 sb->s_op = &shmem_ops; 3718 sb->s_time_gran = 1; 3719 #ifdef CONFIG_TMPFS_XATTR 3720 sb->s_xattr = shmem_xattr_handlers; 3721 #endif 3722 #ifdef CONFIG_TMPFS_POSIX_ACL 3723 sb->s_flags |= SB_POSIXACL; 3724 #endif 3725 uuid_gen(&sb->s_uuid); 3726 3727 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3728 if (!inode) 3729 goto failed; 3730 inode->i_uid = sbinfo->uid; 3731 inode->i_gid = sbinfo->gid; 3732 sb->s_root = d_make_root(inode); 3733 if (!sb->s_root) 3734 goto failed; 3735 return 0; 3736 3737 failed: 3738 shmem_put_super(sb); 3739 return err; 3740 } 3741 3742 static int shmem_get_tree(struct fs_context *fc) 3743 { 3744 return get_tree_nodev(fc, shmem_fill_super); 3745 } 3746 3747 static void shmem_free_fc(struct fs_context *fc) 3748 { 3749 struct shmem_options *ctx = fc->fs_private; 3750 3751 if (ctx) { 3752 mpol_put(ctx->mpol); 3753 kfree(ctx); 3754 } 3755 } 3756 3757 static const struct fs_context_operations shmem_fs_context_ops = { 3758 .free = shmem_free_fc, 3759 .get_tree = shmem_get_tree, 3760 #ifdef CONFIG_TMPFS 3761 .parse_monolithic = shmem_parse_options, 3762 .parse_param = shmem_parse_one, 3763 .reconfigure = shmem_reconfigure, 3764 #endif 3765 }; 3766 3767 static struct kmem_cache *shmem_inode_cachep; 3768 3769 static struct inode *shmem_alloc_inode(struct super_block *sb) 3770 { 3771 struct shmem_inode_info *info; 3772 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3773 if (!info) 3774 return NULL; 3775 return &info->vfs_inode; 3776 } 3777 3778 static void shmem_free_in_core_inode(struct inode *inode) 3779 { 3780 if (S_ISLNK(inode->i_mode)) 3781 kfree(inode->i_link); 3782 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3783 } 3784 3785 static void shmem_destroy_inode(struct inode *inode) 3786 { 3787 if (S_ISREG(inode->i_mode)) 3788 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3789 } 3790 3791 static void shmem_init_inode(void *foo) 3792 { 3793 struct shmem_inode_info *info = foo; 3794 inode_init_once(&info->vfs_inode); 3795 } 3796 3797 static void shmem_init_inodecache(void) 3798 { 3799 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3800 sizeof(struct shmem_inode_info), 3801 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3802 } 3803 3804 static void shmem_destroy_inodecache(void) 3805 { 3806 kmem_cache_destroy(shmem_inode_cachep); 3807 } 3808 3809 const struct address_space_operations shmem_aops = { 3810 .writepage = shmem_writepage, 3811 .set_page_dirty = __set_page_dirty_no_writeback, 3812 #ifdef CONFIG_TMPFS 3813 .write_begin = shmem_write_begin, 3814 .write_end = shmem_write_end, 3815 #endif 3816 #ifdef CONFIG_MIGRATION 3817 .migratepage = migrate_page, 3818 #endif 3819 .error_remove_page = generic_error_remove_page, 3820 }; 3821 EXPORT_SYMBOL(shmem_aops); 3822 3823 static const struct file_operations shmem_file_operations = { 3824 .mmap = shmem_mmap, 3825 .get_unmapped_area = shmem_get_unmapped_area, 3826 #ifdef CONFIG_TMPFS 3827 .llseek = shmem_file_llseek, 3828 .read_iter = shmem_file_read_iter, 3829 .write_iter = generic_file_write_iter, 3830 .fsync = noop_fsync, 3831 .splice_read = generic_file_splice_read, 3832 .splice_write = iter_file_splice_write, 3833 .fallocate = shmem_fallocate, 3834 #endif 3835 }; 3836 3837 static const struct inode_operations shmem_inode_operations = { 3838 .getattr = shmem_getattr, 3839 .setattr = shmem_setattr, 3840 #ifdef CONFIG_TMPFS_XATTR 3841 .listxattr = shmem_listxattr, 3842 .set_acl = simple_set_acl, 3843 #endif 3844 }; 3845 3846 static const struct inode_operations shmem_dir_inode_operations = { 3847 #ifdef CONFIG_TMPFS 3848 .create = shmem_create, 3849 .lookup = simple_lookup, 3850 .link = shmem_link, 3851 .unlink = shmem_unlink, 3852 .symlink = shmem_symlink, 3853 .mkdir = shmem_mkdir, 3854 .rmdir = shmem_rmdir, 3855 .mknod = shmem_mknod, 3856 .rename = shmem_rename2, 3857 .tmpfile = shmem_tmpfile, 3858 #endif 3859 #ifdef CONFIG_TMPFS_XATTR 3860 .listxattr = shmem_listxattr, 3861 #endif 3862 #ifdef CONFIG_TMPFS_POSIX_ACL 3863 .setattr = shmem_setattr, 3864 .set_acl = simple_set_acl, 3865 #endif 3866 }; 3867 3868 static const struct inode_operations shmem_special_inode_operations = { 3869 #ifdef CONFIG_TMPFS_XATTR 3870 .listxattr = shmem_listxattr, 3871 #endif 3872 #ifdef CONFIG_TMPFS_POSIX_ACL 3873 .setattr = shmem_setattr, 3874 .set_acl = simple_set_acl, 3875 #endif 3876 }; 3877 3878 static const struct super_operations shmem_ops = { 3879 .alloc_inode = shmem_alloc_inode, 3880 .free_inode = shmem_free_in_core_inode, 3881 .destroy_inode = shmem_destroy_inode, 3882 #ifdef CONFIG_TMPFS 3883 .statfs = shmem_statfs, 3884 .show_options = shmem_show_options, 3885 #endif 3886 .evict_inode = shmem_evict_inode, 3887 .drop_inode = generic_delete_inode, 3888 .put_super = shmem_put_super, 3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3890 .nr_cached_objects = shmem_unused_huge_count, 3891 .free_cached_objects = shmem_unused_huge_scan, 3892 #endif 3893 }; 3894 3895 static const struct vm_operations_struct shmem_vm_ops = { 3896 .fault = shmem_fault, 3897 .map_pages = filemap_map_pages, 3898 #ifdef CONFIG_NUMA 3899 .set_policy = shmem_set_policy, 3900 .get_policy = shmem_get_policy, 3901 #endif 3902 }; 3903 3904 int shmem_init_fs_context(struct fs_context *fc) 3905 { 3906 struct shmem_options *ctx; 3907 3908 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3909 if (!ctx) 3910 return -ENOMEM; 3911 3912 ctx->mode = 0777 | S_ISVTX; 3913 ctx->uid = current_fsuid(); 3914 ctx->gid = current_fsgid(); 3915 3916 fc->fs_private = ctx; 3917 fc->ops = &shmem_fs_context_ops; 3918 return 0; 3919 } 3920 3921 static struct file_system_type shmem_fs_type = { 3922 .owner = THIS_MODULE, 3923 .name = "tmpfs", 3924 .init_fs_context = shmem_init_fs_context, 3925 #ifdef CONFIG_TMPFS 3926 .parameters = shmem_fs_parameters, 3927 #endif 3928 .kill_sb = kill_litter_super, 3929 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT, 3930 }; 3931 3932 int __init shmem_init(void) 3933 { 3934 int error; 3935 3936 shmem_init_inodecache(); 3937 3938 error = register_filesystem(&shmem_fs_type); 3939 if (error) { 3940 pr_err("Could not register tmpfs\n"); 3941 goto out2; 3942 } 3943 3944 shm_mnt = kern_mount(&shmem_fs_type); 3945 if (IS_ERR(shm_mnt)) { 3946 error = PTR_ERR(shm_mnt); 3947 pr_err("Could not kern_mount tmpfs\n"); 3948 goto out1; 3949 } 3950 3951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3952 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3953 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3954 else 3955 shmem_huge = 0; /* just in case it was patched */ 3956 #endif 3957 return 0; 3958 3959 out1: 3960 unregister_filesystem(&shmem_fs_type); 3961 out2: 3962 shmem_destroy_inodecache(); 3963 shm_mnt = ERR_PTR(error); 3964 return error; 3965 } 3966 3967 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3968 static ssize_t shmem_enabled_show(struct kobject *kobj, 3969 struct kobj_attribute *attr, char *buf) 3970 { 3971 static const int values[] = { 3972 SHMEM_HUGE_ALWAYS, 3973 SHMEM_HUGE_WITHIN_SIZE, 3974 SHMEM_HUGE_ADVISE, 3975 SHMEM_HUGE_NEVER, 3976 SHMEM_HUGE_DENY, 3977 SHMEM_HUGE_FORCE, 3978 }; 3979 int len = 0; 3980 int i; 3981 3982 for (i = 0; i < ARRAY_SIZE(values); i++) { 3983 len += sysfs_emit_at(buf, len, 3984 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3985 i ? " " : "", 3986 shmem_format_huge(values[i])); 3987 } 3988 3989 len += sysfs_emit_at(buf, len, "\n"); 3990 3991 return len; 3992 } 3993 3994 static ssize_t shmem_enabled_store(struct kobject *kobj, 3995 struct kobj_attribute *attr, const char *buf, size_t count) 3996 { 3997 char tmp[16]; 3998 int huge; 3999 4000 if (count + 1 > sizeof(tmp)) 4001 return -EINVAL; 4002 memcpy(tmp, buf, count); 4003 tmp[count] = '\0'; 4004 if (count && tmp[count - 1] == '\n') 4005 tmp[count - 1] = '\0'; 4006 4007 huge = shmem_parse_huge(tmp); 4008 if (huge == -EINVAL) 4009 return -EINVAL; 4010 if (!has_transparent_hugepage() && 4011 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4012 return -EINVAL; 4013 4014 shmem_huge = huge; 4015 if (shmem_huge > SHMEM_HUGE_DENY) 4016 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4017 return count; 4018 } 4019 4020 struct kobj_attribute shmem_enabled_attr = 4021 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4022 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4023 4024 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4025 bool shmem_huge_enabled(struct vm_area_struct *vma) 4026 { 4027 struct inode *inode = file_inode(vma->vm_file); 4028 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4029 loff_t i_size; 4030 pgoff_t off; 4031 4032 if ((vma->vm_flags & VM_NOHUGEPAGE) || 4033 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 4034 return false; 4035 if (shmem_huge == SHMEM_HUGE_FORCE) 4036 return true; 4037 if (shmem_huge == SHMEM_HUGE_DENY) 4038 return false; 4039 switch (sbinfo->huge) { 4040 case SHMEM_HUGE_NEVER: 4041 return false; 4042 case SHMEM_HUGE_ALWAYS: 4043 return true; 4044 case SHMEM_HUGE_WITHIN_SIZE: 4045 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4046 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4047 if (i_size >= HPAGE_PMD_SIZE && 4048 i_size >> PAGE_SHIFT >= off) 4049 return true; 4050 fallthrough; 4051 case SHMEM_HUGE_ADVISE: 4052 /* TODO: implement fadvise() hints */ 4053 return (vma->vm_flags & VM_HUGEPAGE); 4054 default: 4055 VM_BUG_ON(1); 4056 return false; 4057 } 4058 } 4059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4060 4061 #else /* !CONFIG_SHMEM */ 4062 4063 /* 4064 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4065 * 4066 * This is intended for small system where the benefits of the full 4067 * shmem code (swap-backed and resource-limited) are outweighed by 4068 * their complexity. On systems without swap this code should be 4069 * effectively equivalent, but much lighter weight. 4070 */ 4071 4072 static struct file_system_type shmem_fs_type = { 4073 .name = "tmpfs", 4074 .init_fs_context = ramfs_init_fs_context, 4075 .parameters = ramfs_fs_parameters, 4076 .kill_sb = kill_litter_super, 4077 .fs_flags = FS_USERNS_MOUNT, 4078 }; 4079 4080 int __init shmem_init(void) 4081 { 4082 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4083 4084 shm_mnt = kern_mount(&shmem_fs_type); 4085 BUG_ON(IS_ERR(shm_mnt)); 4086 4087 return 0; 4088 } 4089 4090 int shmem_unuse(unsigned int type, bool frontswap, 4091 unsigned long *fs_pages_to_unuse) 4092 { 4093 return 0; 4094 } 4095 4096 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4097 { 4098 return 0; 4099 } 4100 4101 void shmem_unlock_mapping(struct address_space *mapping) 4102 { 4103 } 4104 4105 #ifdef CONFIG_MMU 4106 unsigned long shmem_get_unmapped_area(struct file *file, 4107 unsigned long addr, unsigned long len, 4108 unsigned long pgoff, unsigned long flags) 4109 { 4110 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4111 } 4112 #endif 4113 4114 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4115 { 4116 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4117 } 4118 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4119 4120 #define shmem_vm_ops generic_file_vm_ops 4121 #define shmem_file_operations ramfs_file_operations 4122 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4123 #define shmem_acct_size(flags, size) 0 4124 #define shmem_unacct_size(flags, size) do {} while (0) 4125 4126 #endif /* CONFIG_SHMEM */ 4127 4128 /* common code */ 4129 4130 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4131 unsigned long flags, unsigned int i_flags) 4132 { 4133 struct inode *inode; 4134 struct file *res; 4135 4136 if (IS_ERR(mnt)) 4137 return ERR_CAST(mnt); 4138 4139 if (size < 0 || size > MAX_LFS_FILESIZE) 4140 return ERR_PTR(-EINVAL); 4141 4142 if (shmem_acct_size(flags, size)) 4143 return ERR_PTR(-ENOMEM); 4144 4145 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4146 flags); 4147 if (unlikely(!inode)) { 4148 shmem_unacct_size(flags, size); 4149 return ERR_PTR(-ENOSPC); 4150 } 4151 inode->i_flags |= i_flags; 4152 inode->i_size = size; 4153 clear_nlink(inode); /* It is unlinked */ 4154 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4155 if (!IS_ERR(res)) 4156 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4157 &shmem_file_operations); 4158 if (IS_ERR(res)) 4159 iput(inode); 4160 return res; 4161 } 4162 4163 /** 4164 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4165 * kernel internal. There will be NO LSM permission checks against the 4166 * underlying inode. So users of this interface must do LSM checks at a 4167 * higher layer. The users are the big_key and shm implementations. LSM 4168 * checks are provided at the key or shm level rather than the inode. 4169 * @name: name for dentry (to be seen in /proc/<pid>/maps 4170 * @size: size to be set for the file 4171 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4172 */ 4173 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4174 { 4175 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4176 } 4177 4178 /** 4179 * shmem_file_setup - get an unlinked file living in tmpfs 4180 * @name: name for dentry (to be seen in /proc/<pid>/maps 4181 * @size: size to be set for the file 4182 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4183 */ 4184 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4185 { 4186 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4187 } 4188 EXPORT_SYMBOL_GPL(shmem_file_setup); 4189 4190 /** 4191 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4192 * @mnt: the tmpfs mount where the file will be created 4193 * @name: name for dentry (to be seen in /proc/<pid>/maps 4194 * @size: size to be set for the file 4195 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4196 */ 4197 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4198 loff_t size, unsigned long flags) 4199 { 4200 return __shmem_file_setup(mnt, name, size, flags, 0); 4201 } 4202 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4203 4204 /** 4205 * shmem_zero_setup - setup a shared anonymous mapping 4206 * @vma: the vma to be mmapped is prepared by do_mmap 4207 */ 4208 int shmem_zero_setup(struct vm_area_struct *vma) 4209 { 4210 struct file *file; 4211 loff_t size = vma->vm_end - vma->vm_start; 4212 4213 /* 4214 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4215 * between XFS directory reading and selinux: since this file is only 4216 * accessible to the user through its mapping, use S_PRIVATE flag to 4217 * bypass file security, in the same way as shmem_kernel_file_setup(). 4218 */ 4219 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4220 if (IS_ERR(file)) 4221 return PTR_ERR(file); 4222 4223 if (vma->vm_file) 4224 fput(vma->vm_file); 4225 vma->vm_file = file; 4226 vma->vm_ops = &shmem_vm_ops; 4227 4228 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4229 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4230 (vma->vm_end & HPAGE_PMD_MASK)) { 4231 khugepaged_enter(vma, vma->vm_flags); 4232 } 4233 4234 return 0; 4235 } 4236 4237 /** 4238 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4239 * @mapping: the page's address_space 4240 * @index: the page index 4241 * @gfp: the page allocator flags to use if allocating 4242 * 4243 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4244 * with any new page allocations done using the specified allocation flags. 4245 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4246 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4247 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4248 * 4249 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4250 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4251 */ 4252 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4253 pgoff_t index, gfp_t gfp) 4254 { 4255 #ifdef CONFIG_SHMEM 4256 struct inode *inode = mapping->host; 4257 struct page *page; 4258 int error; 4259 4260 BUG_ON(!shmem_mapping(mapping)); 4261 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4262 gfp, NULL, NULL, NULL); 4263 if (error) 4264 page = ERR_PTR(error); 4265 else 4266 unlock_page(page); 4267 return page; 4268 #else 4269 /* 4270 * The tiny !SHMEM case uses ramfs without swap 4271 */ 4272 return read_cache_page_gfp(mapping, index, gfp); 4273 #endif 4274 } 4275 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4276