xref: /openbmc/linux/mm/shmem.c (revision b732539e)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38 
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40 
41 static struct vfsmount *shm_mnt;
42 
43 #ifdef CONFIG_SHMEM
44 /*
45  * This virtual memory filesystem is heavily based on the ramfs. It
46  * extends ramfs by the ability to use swap and honor resource limits
47  * which makes it a completely usable filesystem.
48  */
49 
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_mutex making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 		struct page **pagep, enum sgp_type sgp,
125 		gfp_t gfp, struct vm_area_struct *vma,
126 		struct vm_fault *vmf, int *fault_type);
127 
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 		struct page **pagep, enum sgp_type sgp)
130 {
131 	return shmem_getpage_gfp(inode, index, pagep, sgp,
132 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134 
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137 	return sb->s_fs_info;
138 }
139 
140 /*
141  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142  * for shared memory and for shared anonymous (/dev/zero) mappings
143  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144  * consistent with the pre-accounting of private mappings ...
145  */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148 	return (flags & VM_NORESERVE) ?
149 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151 
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154 	if (!(flags & VM_NORESERVE))
155 		vm_unacct_memory(VM_ACCT(size));
156 }
157 
158 static inline int shmem_reacct_size(unsigned long flags,
159 		loff_t oldsize, loff_t newsize)
160 {
161 	if (!(flags & VM_NORESERVE)) {
162 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 			return security_vm_enough_memory_mm(current->mm,
164 					VM_ACCT(newsize) - VM_ACCT(oldsize));
165 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 	}
168 	return 0;
169 }
170 
171 /*
172  * ... whereas tmpfs objects are accounted incrementally as
173  * pages are allocated, in order to allow large sparse files.
174  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176  */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		return 0;
181 
182 	return security_vm_enough_memory_mm(current->mm,
183 			pages * VM_ACCT(PAGE_SIZE));
184 }
185 
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 	if (flags & VM_NORESERVE)
189 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191 
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194 	struct shmem_inode_info *info = SHMEM_I(inode);
195 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196 
197 	if (shmem_acct_block(info->flags, pages))
198 		return false;
199 
200 	if (sbinfo->max_blocks) {
201 		if (percpu_counter_compare(&sbinfo->used_blocks,
202 					   sbinfo->max_blocks - pages) > 0)
203 			goto unacct;
204 		percpu_counter_add(&sbinfo->used_blocks, pages);
205 	}
206 
207 	return true;
208 
209 unacct:
210 	shmem_unacct_blocks(info->flags, pages);
211 	return false;
212 }
213 
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216 	struct shmem_inode_info *info = SHMEM_I(inode);
217 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 
219 	if (sbinfo->max_blocks)
220 		percpu_counter_sub(&sbinfo->used_blocks, pages);
221 	shmem_unacct_blocks(info->flags, pages);
222 }
223 
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232 
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235 	return vma->vm_ops == &shmem_vm_ops;
236 }
237 
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240 
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 	if (sbinfo->max_inodes) {
245 		spin_lock(&sbinfo->stat_lock);
246 		if (!sbinfo->free_inodes) {
247 			spin_unlock(&sbinfo->stat_lock);
248 			return -ENOSPC;
249 		}
250 		sbinfo->free_inodes--;
251 		spin_unlock(&sbinfo->stat_lock);
252 	}
253 	return 0;
254 }
255 
256 static void shmem_free_inode(struct super_block *sb)
257 {
258 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 	if (sbinfo->max_inodes) {
260 		spin_lock(&sbinfo->stat_lock);
261 		sbinfo->free_inodes++;
262 		spin_unlock(&sbinfo->stat_lock);
263 	}
264 }
265 
266 /**
267  * shmem_recalc_inode - recalculate the block usage of an inode
268  * @inode: inode to recalc
269  *
270  * We have to calculate the free blocks since the mm can drop
271  * undirtied hole pages behind our back.
272  *
273  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
274  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275  *
276  * It has to be called with the spinlock held.
277  */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280 	struct shmem_inode_info *info = SHMEM_I(inode);
281 	long freed;
282 
283 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 	if (freed > 0) {
285 		info->alloced -= freed;
286 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 		shmem_inode_unacct_blocks(inode, freed);
288 	}
289 }
290 
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293 	struct shmem_inode_info *info = SHMEM_I(inode);
294 	unsigned long flags;
295 
296 	if (!shmem_inode_acct_block(inode, pages))
297 		return false;
298 
299 	spin_lock_irqsave(&info->lock, flags);
300 	info->alloced += pages;
301 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 	shmem_recalc_inode(inode);
303 	spin_unlock_irqrestore(&info->lock, flags);
304 	inode->i_mapping->nrpages += pages;
305 
306 	return true;
307 }
308 
309 void shmem_uncharge(struct inode *inode, long pages)
310 {
311 	struct shmem_inode_info *info = SHMEM_I(inode);
312 	unsigned long flags;
313 
314 	spin_lock_irqsave(&info->lock, flags);
315 	info->alloced -= pages;
316 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 	shmem_recalc_inode(inode);
318 	spin_unlock_irqrestore(&info->lock, flags);
319 
320 	shmem_inode_unacct_blocks(inode, pages);
321 }
322 
323 /*
324  * Replace item expected in radix tree by a new item, while holding tree lock.
325  */
326 static int shmem_radix_tree_replace(struct address_space *mapping,
327 			pgoff_t index, void *expected, void *replacement)
328 {
329 	struct radix_tree_node *node;
330 	void **pslot;
331 	void *item;
332 
333 	VM_BUG_ON(!expected);
334 	VM_BUG_ON(!replacement);
335 	item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
336 	if (!item)
337 		return -ENOENT;
338 	if (item != expected)
339 		return -ENOENT;
340 	__radix_tree_replace(&mapping->i_pages, node, pslot,
341 			     replacement, NULL);
342 	return 0;
343 }
344 
345 /*
346  * Sometimes, before we decide whether to proceed or to fail, we must check
347  * that an entry was not already brought back from swap by a racing thread.
348  *
349  * Checking page is not enough: by the time a SwapCache page is locked, it
350  * might be reused, and again be SwapCache, using the same swap as before.
351  */
352 static bool shmem_confirm_swap(struct address_space *mapping,
353 			       pgoff_t index, swp_entry_t swap)
354 {
355 	void *item;
356 
357 	rcu_read_lock();
358 	item = radix_tree_lookup(&mapping->i_pages, index);
359 	rcu_read_unlock();
360 	return item == swp_to_radix_entry(swap);
361 }
362 
363 /*
364  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365  *
366  * SHMEM_HUGE_NEVER:
367  *	disables huge pages for the mount;
368  * SHMEM_HUGE_ALWAYS:
369  *	enables huge pages for the mount;
370  * SHMEM_HUGE_WITHIN_SIZE:
371  *	only allocate huge pages if the page will be fully within i_size,
372  *	also respect fadvise()/madvise() hints;
373  * SHMEM_HUGE_ADVISE:
374  *	only allocate huge pages if requested with fadvise()/madvise();
375  */
376 
377 #define SHMEM_HUGE_NEVER	0
378 #define SHMEM_HUGE_ALWAYS	1
379 #define SHMEM_HUGE_WITHIN_SIZE	2
380 #define SHMEM_HUGE_ADVISE	3
381 
382 /*
383  * Special values.
384  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385  *
386  * SHMEM_HUGE_DENY:
387  *	disables huge on shm_mnt and all mounts, for emergency use;
388  * SHMEM_HUGE_FORCE:
389  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390  *
391  */
392 #define SHMEM_HUGE_DENY		(-1)
393 #define SHMEM_HUGE_FORCE	(-2)
394 
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
397 
398 int shmem_huge __read_mostly;
399 
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str)
402 {
403 	if (!strcmp(str, "never"))
404 		return SHMEM_HUGE_NEVER;
405 	if (!strcmp(str, "always"))
406 		return SHMEM_HUGE_ALWAYS;
407 	if (!strcmp(str, "within_size"))
408 		return SHMEM_HUGE_WITHIN_SIZE;
409 	if (!strcmp(str, "advise"))
410 		return SHMEM_HUGE_ADVISE;
411 	if (!strcmp(str, "deny"))
412 		return SHMEM_HUGE_DENY;
413 	if (!strcmp(str, "force"))
414 		return SHMEM_HUGE_FORCE;
415 	return -EINVAL;
416 }
417 
418 static const char *shmem_format_huge(int huge)
419 {
420 	switch (huge) {
421 	case SHMEM_HUGE_NEVER:
422 		return "never";
423 	case SHMEM_HUGE_ALWAYS:
424 		return "always";
425 	case SHMEM_HUGE_WITHIN_SIZE:
426 		return "within_size";
427 	case SHMEM_HUGE_ADVISE:
428 		return "advise";
429 	case SHMEM_HUGE_DENY:
430 		return "deny";
431 	case SHMEM_HUGE_FORCE:
432 		return "force";
433 	default:
434 		VM_BUG_ON(1);
435 		return "bad_val";
436 	}
437 }
438 #endif
439 
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 		struct shrink_control *sc, unsigned long nr_to_split)
442 {
443 	LIST_HEAD(list), *pos, *next;
444 	LIST_HEAD(to_remove);
445 	struct inode *inode;
446 	struct shmem_inode_info *info;
447 	struct page *page;
448 	unsigned long batch = sc ? sc->nr_to_scan : 128;
449 	int removed = 0, split = 0;
450 
451 	if (list_empty(&sbinfo->shrinklist))
452 		return SHRINK_STOP;
453 
454 	spin_lock(&sbinfo->shrinklist_lock);
455 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
457 
458 		/* pin the inode */
459 		inode = igrab(&info->vfs_inode);
460 
461 		/* inode is about to be evicted */
462 		if (!inode) {
463 			list_del_init(&info->shrinklist);
464 			removed++;
465 			goto next;
466 		}
467 
468 		/* Check if there's anything to gain */
469 		if (round_up(inode->i_size, PAGE_SIZE) ==
470 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
471 			list_move(&info->shrinklist, &to_remove);
472 			removed++;
473 			goto next;
474 		}
475 
476 		list_move(&info->shrinklist, &list);
477 next:
478 		if (!--batch)
479 			break;
480 	}
481 	spin_unlock(&sbinfo->shrinklist_lock);
482 
483 	list_for_each_safe(pos, next, &to_remove) {
484 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 		inode = &info->vfs_inode;
486 		list_del_init(&info->shrinklist);
487 		iput(inode);
488 	}
489 
490 	list_for_each_safe(pos, next, &list) {
491 		int ret;
492 
493 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 		inode = &info->vfs_inode;
495 
496 		if (nr_to_split && split >= nr_to_split)
497 			goto leave;
498 
499 		page = find_get_page(inode->i_mapping,
500 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 		if (!page)
502 			goto drop;
503 
504 		/* No huge page at the end of the file: nothing to split */
505 		if (!PageTransHuge(page)) {
506 			put_page(page);
507 			goto drop;
508 		}
509 
510 		/*
511 		 * Leave the inode on the list if we failed to lock
512 		 * the page at this time.
513 		 *
514 		 * Waiting for the lock may lead to deadlock in the
515 		 * reclaim path.
516 		 */
517 		if (!trylock_page(page)) {
518 			put_page(page);
519 			goto leave;
520 		}
521 
522 		ret = split_huge_page(page);
523 		unlock_page(page);
524 		put_page(page);
525 
526 		/* If split failed leave the inode on the list */
527 		if (ret)
528 			goto leave;
529 
530 		split++;
531 drop:
532 		list_del_init(&info->shrinklist);
533 		removed++;
534 leave:
535 		iput(inode);
536 	}
537 
538 	spin_lock(&sbinfo->shrinklist_lock);
539 	list_splice_tail(&list, &sbinfo->shrinklist);
540 	sbinfo->shrinklist_len -= removed;
541 	spin_unlock(&sbinfo->shrinklist_lock);
542 
543 	return split;
544 }
545 
546 static long shmem_unused_huge_scan(struct super_block *sb,
547 		struct shrink_control *sc)
548 {
549 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550 
551 	if (!READ_ONCE(sbinfo->shrinklist_len))
552 		return SHRINK_STOP;
553 
554 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
555 }
556 
557 static long shmem_unused_huge_count(struct super_block *sb,
558 		struct shrink_control *sc)
559 {
560 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 	return READ_ONCE(sbinfo->shrinklist_len);
562 }
563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
564 
565 #define shmem_huge SHMEM_HUGE_DENY
566 
567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 		struct shrink_control *sc, unsigned long nr_to_split)
569 {
570 	return 0;
571 }
572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
573 
574 /*
575  * Like add_to_page_cache_locked, but error if expected item has gone.
576  */
577 static int shmem_add_to_page_cache(struct page *page,
578 				   struct address_space *mapping,
579 				   pgoff_t index, void *expected)
580 {
581 	int error, nr = hpage_nr_pages(page);
582 
583 	VM_BUG_ON_PAGE(PageTail(page), page);
584 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
585 	VM_BUG_ON_PAGE(!PageLocked(page), page);
586 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
587 	VM_BUG_ON(expected && PageTransHuge(page));
588 
589 	page_ref_add(page, nr);
590 	page->mapping = mapping;
591 	page->index = index;
592 
593 	xa_lock_irq(&mapping->i_pages);
594 	if (PageTransHuge(page)) {
595 		void __rcu **results;
596 		pgoff_t idx;
597 		int i;
598 
599 		error = 0;
600 		if (radix_tree_gang_lookup_slot(&mapping->i_pages,
601 					&results, &idx, index, 1) &&
602 				idx < index + HPAGE_PMD_NR) {
603 			error = -EEXIST;
604 		}
605 
606 		if (!error) {
607 			for (i = 0; i < HPAGE_PMD_NR; i++) {
608 				error = radix_tree_insert(&mapping->i_pages,
609 						index + i, page + i);
610 				VM_BUG_ON(error);
611 			}
612 			count_vm_event(THP_FILE_ALLOC);
613 		}
614 	} else if (!expected) {
615 		error = radix_tree_insert(&mapping->i_pages, index, page);
616 	} else {
617 		error = shmem_radix_tree_replace(mapping, index, expected,
618 								 page);
619 	}
620 
621 	if (!error) {
622 		mapping->nrpages += nr;
623 		if (PageTransHuge(page))
624 			__inc_node_page_state(page, NR_SHMEM_THPS);
625 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
626 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
627 		xa_unlock_irq(&mapping->i_pages);
628 	} else {
629 		page->mapping = NULL;
630 		xa_unlock_irq(&mapping->i_pages);
631 		page_ref_sub(page, nr);
632 	}
633 	return error;
634 }
635 
636 /*
637  * Like delete_from_page_cache, but substitutes swap for page.
638  */
639 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640 {
641 	struct address_space *mapping = page->mapping;
642 	int error;
643 
644 	VM_BUG_ON_PAGE(PageCompound(page), page);
645 
646 	xa_lock_irq(&mapping->i_pages);
647 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
648 	page->mapping = NULL;
649 	mapping->nrpages--;
650 	__dec_node_page_state(page, NR_FILE_PAGES);
651 	__dec_node_page_state(page, NR_SHMEM);
652 	xa_unlock_irq(&mapping->i_pages);
653 	put_page(page);
654 	BUG_ON(error);
655 }
656 
657 /*
658  * Remove swap entry from radix tree, free the swap and its page cache.
659  */
660 static int shmem_free_swap(struct address_space *mapping,
661 			   pgoff_t index, void *radswap)
662 {
663 	void *old;
664 
665 	xa_lock_irq(&mapping->i_pages);
666 	old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
667 	xa_unlock_irq(&mapping->i_pages);
668 	if (old != radswap)
669 		return -ENOENT;
670 	free_swap_and_cache(radix_to_swp_entry(radswap));
671 	return 0;
672 }
673 
674 /*
675  * Determine (in bytes) how many of the shmem object's pages mapped by the
676  * given offsets are swapped out.
677  *
678  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
679  * as long as the inode doesn't go away and racy results are not a problem.
680  */
681 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
682 						pgoff_t start, pgoff_t end)
683 {
684 	struct radix_tree_iter iter;
685 	void **slot;
686 	struct page *page;
687 	unsigned long swapped = 0;
688 
689 	rcu_read_lock();
690 
691 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
692 		if (iter.index >= end)
693 			break;
694 
695 		page = radix_tree_deref_slot(slot);
696 
697 		if (radix_tree_deref_retry(page)) {
698 			slot = radix_tree_iter_retry(&iter);
699 			continue;
700 		}
701 
702 		if (radix_tree_exceptional_entry(page))
703 			swapped++;
704 
705 		if (need_resched()) {
706 			slot = radix_tree_iter_resume(slot, &iter);
707 			cond_resched_rcu();
708 		}
709 	}
710 
711 	rcu_read_unlock();
712 
713 	return swapped << PAGE_SHIFT;
714 }
715 
716 /*
717  * Determine (in bytes) how many of the shmem object's pages mapped by the
718  * given vma is swapped out.
719  *
720  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
721  * as long as the inode doesn't go away and racy results are not a problem.
722  */
723 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
724 {
725 	struct inode *inode = file_inode(vma->vm_file);
726 	struct shmem_inode_info *info = SHMEM_I(inode);
727 	struct address_space *mapping = inode->i_mapping;
728 	unsigned long swapped;
729 
730 	/* Be careful as we don't hold info->lock */
731 	swapped = READ_ONCE(info->swapped);
732 
733 	/*
734 	 * The easier cases are when the shmem object has nothing in swap, or
735 	 * the vma maps it whole. Then we can simply use the stats that we
736 	 * already track.
737 	 */
738 	if (!swapped)
739 		return 0;
740 
741 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
742 		return swapped << PAGE_SHIFT;
743 
744 	/* Here comes the more involved part */
745 	return shmem_partial_swap_usage(mapping,
746 			linear_page_index(vma, vma->vm_start),
747 			linear_page_index(vma, vma->vm_end));
748 }
749 
750 /*
751  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
752  */
753 void shmem_unlock_mapping(struct address_space *mapping)
754 {
755 	struct pagevec pvec;
756 	pgoff_t indices[PAGEVEC_SIZE];
757 	pgoff_t index = 0;
758 
759 	pagevec_init(&pvec);
760 	/*
761 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
762 	 */
763 	while (!mapping_unevictable(mapping)) {
764 		/*
765 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
767 		 */
768 		pvec.nr = find_get_entries(mapping, index,
769 					   PAGEVEC_SIZE, pvec.pages, indices);
770 		if (!pvec.nr)
771 			break;
772 		index = indices[pvec.nr - 1] + 1;
773 		pagevec_remove_exceptionals(&pvec);
774 		check_move_unevictable_pages(pvec.pages, pvec.nr);
775 		pagevec_release(&pvec);
776 		cond_resched();
777 	}
778 }
779 
780 /*
781  * Remove range of pages and swap entries from radix tree, and free them.
782  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
783  */
784 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
785 								 bool unfalloc)
786 {
787 	struct address_space *mapping = inode->i_mapping;
788 	struct shmem_inode_info *info = SHMEM_I(inode);
789 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
791 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
792 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
793 	struct pagevec pvec;
794 	pgoff_t indices[PAGEVEC_SIZE];
795 	long nr_swaps_freed = 0;
796 	pgoff_t index;
797 	int i;
798 
799 	if (lend == -1)
800 		end = -1;	/* unsigned, so actually very big */
801 
802 	pagevec_init(&pvec);
803 	index = start;
804 	while (index < end) {
805 		pvec.nr = find_get_entries(mapping, index,
806 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
807 			pvec.pages, indices);
808 		if (!pvec.nr)
809 			break;
810 		for (i = 0; i < pagevec_count(&pvec); i++) {
811 			struct page *page = pvec.pages[i];
812 
813 			index = indices[i];
814 			if (index >= end)
815 				break;
816 
817 			if (radix_tree_exceptional_entry(page)) {
818 				if (unfalloc)
819 					continue;
820 				nr_swaps_freed += !shmem_free_swap(mapping,
821 								index, page);
822 				continue;
823 			}
824 
825 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
826 
827 			if (!trylock_page(page))
828 				continue;
829 
830 			if (PageTransTail(page)) {
831 				/* Middle of THP: zero out the page */
832 				clear_highpage(page);
833 				unlock_page(page);
834 				continue;
835 			} else if (PageTransHuge(page)) {
836 				if (index == round_down(end, HPAGE_PMD_NR)) {
837 					/*
838 					 * Range ends in the middle of THP:
839 					 * zero out the page
840 					 */
841 					clear_highpage(page);
842 					unlock_page(page);
843 					continue;
844 				}
845 				index += HPAGE_PMD_NR - 1;
846 				i += HPAGE_PMD_NR - 1;
847 			}
848 
849 			if (!unfalloc || !PageUptodate(page)) {
850 				VM_BUG_ON_PAGE(PageTail(page), page);
851 				if (page_mapping(page) == mapping) {
852 					VM_BUG_ON_PAGE(PageWriteback(page), page);
853 					truncate_inode_page(mapping, page);
854 				}
855 			}
856 			unlock_page(page);
857 		}
858 		pagevec_remove_exceptionals(&pvec);
859 		pagevec_release(&pvec);
860 		cond_resched();
861 		index++;
862 	}
863 
864 	if (partial_start) {
865 		struct page *page = NULL;
866 		shmem_getpage(inode, start - 1, &page, SGP_READ);
867 		if (page) {
868 			unsigned int top = PAGE_SIZE;
869 			if (start > end) {
870 				top = partial_end;
871 				partial_end = 0;
872 			}
873 			zero_user_segment(page, partial_start, top);
874 			set_page_dirty(page);
875 			unlock_page(page);
876 			put_page(page);
877 		}
878 	}
879 	if (partial_end) {
880 		struct page *page = NULL;
881 		shmem_getpage(inode, end, &page, SGP_READ);
882 		if (page) {
883 			zero_user_segment(page, 0, partial_end);
884 			set_page_dirty(page);
885 			unlock_page(page);
886 			put_page(page);
887 		}
888 	}
889 	if (start >= end)
890 		return;
891 
892 	index = start;
893 	while (index < end) {
894 		cond_resched();
895 
896 		pvec.nr = find_get_entries(mapping, index,
897 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
898 				pvec.pages, indices);
899 		if (!pvec.nr) {
900 			/* If all gone or hole-punch or unfalloc, we're done */
901 			if (index == start || end != -1)
902 				break;
903 			/* But if truncating, restart to make sure all gone */
904 			index = start;
905 			continue;
906 		}
907 		for (i = 0; i < pagevec_count(&pvec); i++) {
908 			struct page *page = pvec.pages[i];
909 
910 			index = indices[i];
911 			if (index >= end)
912 				break;
913 
914 			if (radix_tree_exceptional_entry(page)) {
915 				if (unfalloc)
916 					continue;
917 				if (shmem_free_swap(mapping, index, page)) {
918 					/* Swap was replaced by page: retry */
919 					index--;
920 					break;
921 				}
922 				nr_swaps_freed++;
923 				continue;
924 			}
925 
926 			lock_page(page);
927 
928 			if (PageTransTail(page)) {
929 				/* Middle of THP: zero out the page */
930 				clear_highpage(page);
931 				unlock_page(page);
932 				/*
933 				 * Partial thp truncate due 'start' in middle
934 				 * of THP: don't need to look on these pages
935 				 * again on !pvec.nr restart.
936 				 */
937 				if (index != round_down(end, HPAGE_PMD_NR))
938 					start++;
939 				continue;
940 			} else if (PageTransHuge(page)) {
941 				if (index == round_down(end, HPAGE_PMD_NR)) {
942 					/*
943 					 * Range ends in the middle of THP:
944 					 * zero out the page
945 					 */
946 					clear_highpage(page);
947 					unlock_page(page);
948 					continue;
949 				}
950 				index += HPAGE_PMD_NR - 1;
951 				i += HPAGE_PMD_NR - 1;
952 			}
953 
954 			if (!unfalloc || !PageUptodate(page)) {
955 				VM_BUG_ON_PAGE(PageTail(page), page);
956 				if (page_mapping(page) == mapping) {
957 					VM_BUG_ON_PAGE(PageWriteback(page), page);
958 					truncate_inode_page(mapping, page);
959 				} else {
960 					/* Page was replaced by swap: retry */
961 					unlock_page(page);
962 					index--;
963 					break;
964 				}
965 			}
966 			unlock_page(page);
967 		}
968 		pagevec_remove_exceptionals(&pvec);
969 		pagevec_release(&pvec);
970 		index++;
971 	}
972 
973 	spin_lock_irq(&info->lock);
974 	info->swapped -= nr_swaps_freed;
975 	shmem_recalc_inode(inode);
976 	spin_unlock_irq(&info->lock);
977 }
978 
979 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
980 {
981 	shmem_undo_range(inode, lstart, lend, false);
982 	inode->i_ctime = inode->i_mtime = current_time(inode);
983 }
984 EXPORT_SYMBOL_GPL(shmem_truncate_range);
985 
986 static int shmem_getattr(const struct path *path, struct kstat *stat,
987 			 u32 request_mask, unsigned int query_flags)
988 {
989 	struct inode *inode = path->dentry->d_inode;
990 	struct shmem_inode_info *info = SHMEM_I(inode);
991 
992 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
993 		spin_lock_irq(&info->lock);
994 		shmem_recalc_inode(inode);
995 		spin_unlock_irq(&info->lock);
996 	}
997 	generic_fillattr(inode, stat);
998 	return 0;
999 }
1000 
1001 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1002 {
1003 	struct inode *inode = d_inode(dentry);
1004 	struct shmem_inode_info *info = SHMEM_I(inode);
1005 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1006 	int error;
1007 
1008 	error = setattr_prepare(dentry, attr);
1009 	if (error)
1010 		return error;
1011 
1012 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1013 		loff_t oldsize = inode->i_size;
1014 		loff_t newsize = attr->ia_size;
1015 
1016 		/* protected by i_mutex */
1017 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1018 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1019 			return -EPERM;
1020 
1021 		if (newsize != oldsize) {
1022 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1023 					oldsize, newsize);
1024 			if (error)
1025 				return error;
1026 			i_size_write(inode, newsize);
1027 			inode->i_ctime = inode->i_mtime = current_time(inode);
1028 		}
1029 		if (newsize <= oldsize) {
1030 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1031 			if (oldsize > holebegin)
1032 				unmap_mapping_range(inode->i_mapping,
1033 							holebegin, 0, 1);
1034 			if (info->alloced)
1035 				shmem_truncate_range(inode,
1036 							newsize, (loff_t)-1);
1037 			/* unmap again to remove racily COWed private pages */
1038 			if (oldsize > holebegin)
1039 				unmap_mapping_range(inode->i_mapping,
1040 							holebegin, 0, 1);
1041 
1042 			/*
1043 			 * Part of the huge page can be beyond i_size: subject
1044 			 * to shrink under memory pressure.
1045 			 */
1046 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1047 				spin_lock(&sbinfo->shrinklist_lock);
1048 				/*
1049 				 * _careful to defend against unlocked access to
1050 				 * ->shrink_list in shmem_unused_huge_shrink()
1051 				 */
1052 				if (list_empty_careful(&info->shrinklist)) {
1053 					list_add_tail(&info->shrinklist,
1054 							&sbinfo->shrinklist);
1055 					sbinfo->shrinklist_len++;
1056 				}
1057 				spin_unlock(&sbinfo->shrinklist_lock);
1058 			}
1059 		}
1060 	}
1061 
1062 	setattr_copy(inode, attr);
1063 	if (attr->ia_valid & ATTR_MODE)
1064 		error = posix_acl_chmod(inode, inode->i_mode);
1065 	return error;
1066 }
1067 
1068 static void shmem_evict_inode(struct inode *inode)
1069 {
1070 	struct shmem_inode_info *info = SHMEM_I(inode);
1071 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1072 
1073 	if (inode->i_mapping->a_ops == &shmem_aops) {
1074 		shmem_unacct_size(info->flags, inode->i_size);
1075 		inode->i_size = 0;
1076 		shmem_truncate_range(inode, 0, (loff_t)-1);
1077 		if (!list_empty(&info->shrinklist)) {
1078 			spin_lock(&sbinfo->shrinklist_lock);
1079 			if (!list_empty(&info->shrinklist)) {
1080 				list_del_init(&info->shrinklist);
1081 				sbinfo->shrinklist_len--;
1082 			}
1083 			spin_unlock(&sbinfo->shrinklist_lock);
1084 		}
1085 		if (!list_empty(&info->swaplist)) {
1086 			mutex_lock(&shmem_swaplist_mutex);
1087 			list_del_init(&info->swaplist);
1088 			mutex_unlock(&shmem_swaplist_mutex);
1089 		}
1090 	}
1091 
1092 	simple_xattrs_free(&info->xattrs);
1093 	WARN_ON(inode->i_blocks);
1094 	shmem_free_inode(inode->i_sb);
1095 	clear_inode(inode);
1096 }
1097 
1098 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099 {
1100 	struct radix_tree_iter iter;
1101 	void **slot;
1102 	unsigned long found = -1;
1103 	unsigned int checked = 0;
1104 
1105 	rcu_read_lock();
1106 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1107 		if (*slot == item) {
1108 			found = iter.index;
1109 			break;
1110 		}
1111 		checked++;
1112 		if ((checked % 4096) != 0)
1113 			continue;
1114 		slot = radix_tree_iter_resume(slot, &iter);
1115 		cond_resched_rcu();
1116 	}
1117 
1118 	rcu_read_unlock();
1119 	return found;
1120 }
1121 
1122 /*
1123  * If swap found in inode, free it and move page from swapcache to filecache.
1124  */
1125 static int shmem_unuse_inode(struct shmem_inode_info *info,
1126 			     swp_entry_t swap, struct page **pagep)
1127 {
1128 	struct address_space *mapping = info->vfs_inode.i_mapping;
1129 	void *radswap;
1130 	pgoff_t index;
1131 	gfp_t gfp;
1132 	int error = 0;
1133 
1134 	radswap = swp_to_radix_entry(swap);
1135 	index = find_swap_entry(&mapping->i_pages, radswap);
1136 	if (index == -1)
1137 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1138 
1139 	/*
1140 	 * Move _head_ to start search for next from here.
1141 	 * But be careful: shmem_evict_inode checks list_empty without taking
1142 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1143 	 * would appear empty, if it were the only one on shmem_swaplist.
1144 	 */
1145 	if (shmem_swaplist.next != &info->swaplist)
1146 		list_move_tail(&shmem_swaplist, &info->swaplist);
1147 
1148 	gfp = mapping_gfp_mask(mapping);
1149 	if (shmem_should_replace_page(*pagep, gfp)) {
1150 		mutex_unlock(&shmem_swaplist_mutex);
1151 		error = shmem_replace_page(pagep, gfp, info, index);
1152 		mutex_lock(&shmem_swaplist_mutex);
1153 		/*
1154 		 * We needed to drop mutex to make that restrictive page
1155 		 * allocation, but the inode might have been freed while we
1156 		 * dropped it: although a racing shmem_evict_inode() cannot
1157 		 * complete without emptying the radix_tree, our page lock
1158 		 * on this swapcache page is not enough to prevent that -
1159 		 * free_swap_and_cache() of our swap entry will only
1160 		 * trylock_page(), removing swap from radix_tree whatever.
1161 		 *
1162 		 * We must not proceed to shmem_add_to_page_cache() if the
1163 		 * inode has been freed, but of course we cannot rely on
1164 		 * inode or mapping or info to check that.  However, we can
1165 		 * safely check if our swap entry is still in use (and here
1166 		 * it can't have got reused for another page): if it's still
1167 		 * in use, then the inode cannot have been freed yet, and we
1168 		 * can safely proceed (if it's no longer in use, that tells
1169 		 * nothing about the inode, but we don't need to unuse swap).
1170 		 */
1171 		if (!page_swapcount(*pagep))
1172 			error = -ENOENT;
1173 	}
1174 
1175 	/*
1176 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1179 	 */
1180 	if (!error)
1181 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1182 						radswap);
1183 	if (error != -ENOMEM) {
1184 		/*
1185 		 * Truncation and eviction use free_swap_and_cache(), which
1186 		 * only does trylock page: if we raced, best clean up here.
1187 		 */
1188 		delete_from_swap_cache(*pagep);
1189 		set_page_dirty(*pagep);
1190 		if (!error) {
1191 			spin_lock_irq(&info->lock);
1192 			info->swapped--;
1193 			spin_unlock_irq(&info->lock);
1194 			swap_free(swap);
1195 		}
1196 	}
1197 	return error;
1198 }
1199 
1200 /*
1201  * Search through swapped inodes to find and replace swap by page.
1202  */
1203 int shmem_unuse(swp_entry_t swap, struct page *page)
1204 {
1205 	struct list_head *this, *next;
1206 	struct shmem_inode_info *info;
1207 	struct mem_cgroup *memcg;
1208 	int error = 0;
1209 
1210 	/*
1211 	 * There's a faint possibility that swap page was replaced before
1212 	 * caller locked it: caller will come back later with the right page.
1213 	 */
1214 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1215 		goto out;
1216 
1217 	/*
1218 	 * Charge page using GFP_KERNEL while we can wait, before taking
1219 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220 	 * Charged back to the user (not to caller) when swap account is used.
1221 	 */
1222 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223 			false);
1224 	if (error)
1225 		goto out;
1226 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1227 	error = -EAGAIN;
1228 
1229 	mutex_lock(&shmem_swaplist_mutex);
1230 	list_for_each_safe(this, next, &shmem_swaplist) {
1231 		info = list_entry(this, struct shmem_inode_info, swaplist);
1232 		if (info->swapped)
1233 			error = shmem_unuse_inode(info, swap, &page);
1234 		else
1235 			list_del_init(&info->swaplist);
1236 		cond_resched();
1237 		if (error != -EAGAIN)
1238 			break;
1239 		/* found nothing in this: move on to search the next */
1240 	}
1241 	mutex_unlock(&shmem_swaplist_mutex);
1242 
1243 	if (error) {
1244 		if (error != -ENOMEM)
1245 			error = 0;
1246 		mem_cgroup_cancel_charge(page, memcg, false);
1247 	} else
1248 		mem_cgroup_commit_charge(page, memcg, true, false);
1249 out:
1250 	unlock_page(page);
1251 	put_page(page);
1252 	return error;
1253 }
1254 
1255 /*
1256  * Move the page from the page cache to the swap cache.
1257  */
1258 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259 {
1260 	struct shmem_inode_info *info;
1261 	struct address_space *mapping;
1262 	struct inode *inode;
1263 	swp_entry_t swap;
1264 	pgoff_t index;
1265 
1266 	VM_BUG_ON_PAGE(PageCompound(page), page);
1267 	BUG_ON(!PageLocked(page));
1268 	mapping = page->mapping;
1269 	index = page->index;
1270 	inode = mapping->host;
1271 	info = SHMEM_I(inode);
1272 	if (info->flags & VM_LOCKED)
1273 		goto redirty;
1274 	if (!total_swap_pages)
1275 		goto redirty;
1276 
1277 	/*
1278 	 * Our capabilities prevent regular writeback or sync from ever calling
1279 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280 	 * its underlying filesystem, in which case tmpfs should write out to
1281 	 * swap only in response to memory pressure, and not for the writeback
1282 	 * threads or sync.
1283 	 */
1284 	if (!wbc->for_reclaim) {
1285 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1286 		goto redirty;
1287 	}
1288 
1289 	/*
1290 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291 	 * value into swapfile.c, the only way we can correctly account for a
1292 	 * fallocated page arriving here is now to initialize it and write it.
1293 	 *
1294 	 * That's okay for a page already fallocated earlier, but if we have
1295 	 * not yet completed the fallocation, then (a) we want to keep track
1296 	 * of this page in case we have to undo it, and (b) it may not be a
1297 	 * good idea to continue anyway, once we're pushing into swap.  So
1298 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1299 	 */
1300 	if (!PageUptodate(page)) {
1301 		if (inode->i_private) {
1302 			struct shmem_falloc *shmem_falloc;
1303 			spin_lock(&inode->i_lock);
1304 			shmem_falloc = inode->i_private;
1305 			if (shmem_falloc &&
1306 			    !shmem_falloc->waitq &&
1307 			    index >= shmem_falloc->start &&
1308 			    index < shmem_falloc->next)
1309 				shmem_falloc->nr_unswapped++;
1310 			else
1311 				shmem_falloc = NULL;
1312 			spin_unlock(&inode->i_lock);
1313 			if (shmem_falloc)
1314 				goto redirty;
1315 		}
1316 		clear_highpage(page);
1317 		flush_dcache_page(page);
1318 		SetPageUptodate(page);
1319 	}
1320 
1321 	swap = get_swap_page(page);
1322 	if (!swap.val)
1323 		goto redirty;
1324 
1325 	if (mem_cgroup_try_charge_swap(page, swap))
1326 		goto free_swap;
1327 
1328 	/*
1329 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1330 	 * if it's not already there.  Do it now before the page is
1331 	 * moved to swap cache, when its pagelock no longer protects
1332 	 * the inode from eviction.  But don't unlock the mutex until
1333 	 * we've incremented swapped, because shmem_unuse_inode() will
1334 	 * prune a !swapped inode from the swaplist under this mutex.
1335 	 */
1336 	mutex_lock(&shmem_swaplist_mutex);
1337 	if (list_empty(&info->swaplist))
1338 		list_add_tail(&info->swaplist, &shmem_swaplist);
1339 
1340 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1341 		spin_lock_irq(&info->lock);
1342 		shmem_recalc_inode(inode);
1343 		info->swapped++;
1344 		spin_unlock_irq(&info->lock);
1345 
1346 		swap_shmem_alloc(swap);
1347 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348 
1349 		mutex_unlock(&shmem_swaplist_mutex);
1350 		BUG_ON(page_mapped(page));
1351 		swap_writepage(page, wbc);
1352 		return 0;
1353 	}
1354 
1355 	mutex_unlock(&shmem_swaplist_mutex);
1356 free_swap:
1357 	put_swap_page(page, swap);
1358 redirty:
1359 	set_page_dirty(page);
1360 	if (wbc->for_reclaim)
1361 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1362 	unlock_page(page);
1363 	return 0;
1364 }
1365 
1366 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368 {
1369 	char buffer[64];
1370 
1371 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1372 		return;		/* show nothing */
1373 
1374 	mpol_to_str(buffer, sizeof(buffer), mpol);
1375 
1376 	seq_printf(seq, ",mpol=%s", buffer);
1377 }
1378 
1379 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380 {
1381 	struct mempolicy *mpol = NULL;
1382 	if (sbinfo->mpol) {
1383 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1384 		mpol = sbinfo->mpol;
1385 		mpol_get(mpol);
1386 		spin_unlock(&sbinfo->stat_lock);
1387 	}
1388 	return mpol;
1389 }
1390 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392 {
1393 }
1394 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395 {
1396 	return NULL;
1397 }
1398 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399 #ifndef CONFIG_NUMA
1400 #define vm_policy vm_private_data
1401 #endif
1402 
1403 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404 		struct shmem_inode_info *info, pgoff_t index)
1405 {
1406 	/* Create a pseudo vma that just contains the policy */
1407 	vma->vm_start = 0;
1408 	/* Bias interleave by inode number to distribute better across nodes */
1409 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410 	vma->vm_ops = NULL;
1411 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412 }
1413 
1414 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415 {
1416 	/* Drop reference taken by mpol_shared_policy_lookup() */
1417 	mpol_cond_put(vma->vm_policy);
1418 }
1419 
1420 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421 			struct shmem_inode_info *info, pgoff_t index)
1422 {
1423 	struct vm_area_struct pvma;
1424 	struct page *page;
1425 	struct vm_fault vmf;
1426 
1427 	shmem_pseudo_vma_init(&pvma, info, index);
1428 	vmf.vma = &pvma;
1429 	vmf.address = 0;
1430 	page = swap_cluster_readahead(swap, gfp, &vmf);
1431 	shmem_pseudo_vma_destroy(&pvma);
1432 
1433 	return page;
1434 }
1435 
1436 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1437 		struct shmem_inode_info *info, pgoff_t index)
1438 {
1439 	struct vm_area_struct pvma;
1440 	struct inode *inode = &info->vfs_inode;
1441 	struct address_space *mapping = inode->i_mapping;
1442 	pgoff_t idx, hindex;
1443 	void __rcu **results;
1444 	struct page *page;
1445 
1446 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1447 		return NULL;
1448 
1449 	hindex = round_down(index, HPAGE_PMD_NR);
1450 	rcu_read_lock();
1451 	if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1452 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1453 		rcu_read_unlock();
1454 		return NULL;
1455 	}
1456 	rcu_read_unlock();
1457 
1458 	shmem_pseudo_vma_init(&pvma, info, hindex);
1459 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1460 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1461 	shmem_pseudo_vma_destroy(&pvma);
1462 	if (page)
1463 		prep_transhuge_page(page);
1464 	return page;
1465 }
1466 
1467 static struct page *shmem_alloc_page(gfp_t gfp,
1468 			struct shmem_inode_info *info, pgoff_t index)
1469 {
1470 	struct vm_area_struct pvma;
1471 	struct page *page;
1472 
1473 	shmem_pseudo_vma_init(&pvma, info, index);
1474 	page = alloc_page_vma(gfp, &pvma, 0);
1475 	shmem_pseudo_vma_destroy(&pvma);
1476 
1477 	return page;
1478 }
1479 
1480 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1481 		struct inode *inode,
1482 		pgoff_t index, bool huge)
1483 {
1484 	struct shmem_inode_info *info = SHMEM_I(inode);
1485 	struct page *page;
1486 	int nr;
1487 	int err = -ENOSPC;
1488 
1489 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1490 		huge = false;
1491 	nr = huge ? HPAGE_PMD_NR : 1;
1492 
1493 	if (!shmem_inode_acct_block(inode, nr))
1494 		goto failed;
1495 
1496 	if (huge)
1497 		page = shmem_alloc_hugepage(gfp, info, index);
1498 	else
1499 		page = shmem_alloc_page(gfp, info, index);
1500 	if (page) {
1501 		__SetPageLocked(page);
1502 		__SetPageSwapBacked(page);
1503 		return page;
1504 	}
1505 
1506 	err = -ENOMEM;
1507 	shmem_inode_unacct_blocks(inode, nr);
1508 failed:
1509 	return ERR_PTR(err);
1510 }
1511 
1512 /*
1513  * When a page is moved from swapcache to shmem filecache (either by the
1514  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1515  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1516  * ignorance of the mapping it belongs to.  If that mapping has special
1517  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1518  * we may need to copy to a suitable page before moving to filecache.
1519  *
1520  * In a future release, this may well be extended to respect cpuset and
1521  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1522  * but for now it is a simple matter of zone.
1523  */
1524 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1525 {
1526 	return page_zonenum(page) > gfp_zone(gfp);
1527 }
1528 
1529 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1530 				struct shmem_inode_info *info, pgoff_t index)
1531 {
1532 	struct page *oldpage, *newpage;
1533 	struct address_space *swap_mapping;
1534 	pgoff_t swap_index;
1535 	int error;
1536 
1537 	oldpage = *pagep;
1538 	swap_index = page_private(oldpage);
1539 	swap_mapping = page_mapping(oldpage);
1540 
1541 	/*
1542 	 * We have arrived here because our zones are constrained, so don't
1543 	 * limit chance of success by further cpuset and node constraints.
1544 	 */
1545 	gfp &= ~GFP_CONSTRAINT_MASK;
1546 	newpage = shmem_alloc_page(gfp, info, index);
1547 	if (!newpage)
1548 		return -ENOMEM;
1549 
1550 	get_page(newpage);
1551 	copy_highpage(newpage, oldpage);
1552 	flush_dcache_page(newpage);
1553 
1554 	__SetPageLocked(newpage);
1555 	__SetPageSwapBacked(newpage);
1556 	SetPageUptodate(newpage);
1557 	set_page_private(newpage, swap_index);
1558 	SetPageSwapCache(newpage);
1559 
1560 	/*
1561 	 * Our caller will very soon move newpage out of swapcache, but it's
1562 	 * a nice clean interface for us to replace oldpage by newpage there.
1563 	 */
1564 	xa_lock_irq(&swap_mapping->i_pages);
1565 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1566 								   newpage);
1567 	if (!error) {
1568 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1569 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1570 	}
1571 	xa_unlock_irq(&swap_mapping->i_pages);
1572 
1573 	if (unlikely(error)) {
1574 		/*
1575 		 * Is this possible?  I think not, now that our callers check
1576 		 * both PageSwapCache and page_private after getting page lock;
1577 		 * but be defensive.  Reverse old to newpage for clear and free.
1578 		 */
1579 		oldpage = newpage;
1580 	} else {
1581 		mem_cgroup_migrate(oldpage, newpage);
1582 		lru_cache_add_anon(newpage);
1583 		*pagep = newpage;
1584 	}
1585 
1586 	ClearPageSwapCache(oldpage);
1587 	set_page_private(oldpage, 0);
1588 
1589 	unlock_page(oldpage);
1590 	put_page(oldpage);
1591 	put_page(oldpage);
1592 	return error;
1593 }
1594 
1595 /*
1596  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1597  *
1598  * If we allocate a new one we do not mark it dirty. That's up to the
1599  * vm. If we swap it in we mark it dirty since we also free the swap
1600  * entry since a page cannot live in both the swap and page cache.
1601  *
1602  * fault_mm and fault_type are only supplied by shmem_fault:
1603  * otherwise they are NULL.
1604  */
1605 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1606 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1607 	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1608 {
1609 	struct address_space *mapping = inode->i_mapping;
1610 	struct shmem_inode_info *info = SHMEM_I(inode);
1611 	struct shmem_sb_info *sbinfo;
1612 	struct mm_struct *charge_mm;
1613 	struct mem_cgroup *memcg;
1614 	struct page *page;
1615 	swp_entry_t swap;
1616 	enum sgp_type sgp_huge = sgp;
1617 	pgoff_t hindex = index;
1618 	int error;
1619 	int once = 0;
1620 	int alloced = 0;
1621 
1622 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1623 		return -EFBIG;
1624 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1625 		sgp = SGP_CACHE;
1626 repeat:
1627 	swap.val = 0;
1628 	page = find_lock_entry(mapping, index);
1629 	if (radix_tree_exceptional_entry(page)) {
1630 		swap = radix_to_swp_entry(page);
1631 		page = NULL;
1632 	}
1633 
1634 	if (sgp <= SGP_CACHE &&
1635 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1636 		error = -EINVAL;
1637 		goto unlock;
1638 	}
1639 
1640 	if (page && sgp == SGP_WRITE)
1641 		mark_page_accessed(page);
1642 
1643 	/* fallocated page? */
1644 	if (page && !PageUptodate(page)) {
1645 		if (sgp != SGP_READ)
1646 			goto clear;
1647 		unlock_page(page);
1648 		put_page(page);
1649 		page = NULL;
1650 	}
1651 	if (page || (sgp == SGP_READ && !swap.val)) {
1652 		*pagep = page;
1653 		return 0;
1654 	}
1655 
1656 	/*
1657 	 * Fast cache lookup did not find it:
1658 	 * bring it back from swap or allocate.
1659 	 */
1660 	sbinfo = SHMEM_SB(inode->i_sb);
1661 	charge_mm = vma ? vma->vm_mm : current->mm;
1662 
1663 	if (swap.val) {
1664 		/* Look it up and read it in.. */
1665 		page = lookup_swap_cache(swap, NULL, 0);
1666 		if (!page) {
1667 			/* Or update major stats only when swapin succeeds?? */
1668 			if (fault_type) {
1669 				*fault_type |= VM_FAULT_MAJOR;
1670 				count_vm_event(PGMAJFAULT);
1671 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1672 			}
1673 			/* Here we actually start the io */
1674 			page = shmem_swapin(swap, gfp, info, index);
1675 			if (!page) {
1676 				error = -ENOMEM;
1677 				goto failed;
1678 			}
1679 		}
1680 
1681 		/* We have to do this with page locked to prevent races */
1682 		lock_page(page);
1683 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1684 		    !shmem_confirm_swap(mapping, index, swap)) {
1685 			error = -EEXIST;	/* try again */
1686 			goto unlock;
1687 		}
1688 		if (!PageUptodate(page)) {
1689 			error = -EIO;
1690 			goto failed;
1691 		}
1692 		wait_on_page_writeback(page);
1693 
1694 		if (shmem_should_replace_page(page, gfp)) {
1695 			error = shmem_replace_page(&page, gfp, info, index);
1696 			if (error)
1697 				goto failed;
1698 		}
1699 
1700 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1701 				false);
1702 		if (!error) {
1703 			error = shmem_add_to_page_cache(page, mapping, index,
1704 						swp_to_radix_entry(swap));
1705 			/*
1706 			 * We already confirmed swap under page lock, and make
1707 			 * no memory allocation here, so usually no possibility
1708 			 * of error; but free_swap_and_cache() only trylocks a
1709 			 * page, so it is just possible that the entry has been
1710 			 * truncated or holepunched since swap was confirmed.
1711 			 * shmem_undo_range() will have done some of the
1712 			 * unaccounting, now delete_from_swap_cache() will do
1713 			 * the rest.
1714 			 * Reset swap.val? No, leave it so "failed" goes back to
1715 			 * "repeat": reading a hole and writing should succeed.
1716 			 */
1717 			if (error) {
1718 				mem_cgroup_cancel_charge(page, memcg, false);
1719 				delete_from_swap_cache(page);
1720 			}
1721 		}
1722 		if (error)
1723 			goto failed;
1724 
1725 		mem_cgroup_commit_charge(page, memcg, true, false);
1726 
1727 		spin_lock_irq(&info->lock);
1728 		info->swapped--;
1729 		shmem_recalc_inode(inode);
1730 		spin_unlock_irq(&info->lock);
1731 
1732 		if (sgp == SGP_WRITE)
1733 			mark_page_accessed(page);
1734 
1735 		delete_from_swap_cache(page);
1736 		set_page_dirty(page);
1737 		swap_free(swap);
1738 
1739 	} else {
1740 		if (vma && userfaultfd_missing(vma)) {
1741 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1742 			return 0;
1743 		}
1744 
1745 		/* shmem_symlink() */
1746 		if (mapping->a_ops != &shmem_aops)
1747 			goto alloc_nohuge;
1748 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1749 			goto alloc_nohuge;
1750 		if (shmem_huge == SHMEM_HUGE_FORCE)
1751 			goto alloc_huge;
1752 		switch (sbinfo->huge) {
1753 			loff_t i_size;
1754 			pgoff_t off;
1755 		case SHMEM_HUGE_NEVER:
1756 			goto alloc_nohuge;
1757 		case SHMEM_HUGE_WITHIN_SIZE:
1758 			off = round_up(index, HPAGE_PMD_NR);
1759 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1760 			if (i_size >= HPAGE_PMD_SIZE &&
1761 					i_size >> PAGE_SHIFT >= off)
1762 				goto alloc_huge;
1763 			/* fallthrough */
1764 		case SHMEM_HUGE_ADVISE:
1765 			if (sgp_huge == SGP_HUGE)
1766 				goto alloc_huge;
1767 			/* TODO: implement fadvise() hints */
1768 			goto alloc_nohuge;
1769 		}
1770 
1771 alloc_huge:
1772 		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1773 		if (IS_ERR(page)) {
1774 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1775 					index, false);
1776 		}
1777 		if (IS_ERR(page)) {
1778 			int retry = 5;
1779 			error = PTR_ERR(page);
1780 			page = NULL;
1781 			if (error != -ENOSPC)
1782 				goto failed;
1783 			/*
1784 			 * Try to reclaim some spece by splitting a huge page
1785 			 * beyond i_size on the filesystem.
1786 			 */
1787 			while (retry--) {
1788 				int ret;
1789 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1790 				if (ret == SHRINK_STOP)
1791 					break;
1792 				if (ret)
1793 					goto alloc_nohuge;
1794 			}
1795 			goto failed;
1796 		}
1797 
1798 		if (PageTransHuge(page))
1799 			hindex = round_down(index, HPAGE_PMD_NR);
1800 		else
1801 			hindex = index;
1802 
1803 		if (sgp == SGP_WRITE)
1804 			__SetPageReferenced(page);
1805 
1806 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1807 				PageTransHuge(page));
1808 		if (error)
1809 			goto unacct;
1810 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1811 				compound_order(page));
1812 		if (!error) {
1813 			error = shmem_add_to_page_cache(page, mapping, hindex,
1814 							NULL);
1815 			radix_tree_preload_end();
1816 		}
1817 		if (error) {
1818 			mem_cgroup_cancel_charge(page, memcg,
1819 					PageTransHuge(page));
1820 			goto unacct;
1821 		}
1822 		mem_cgroup_commit_charge(page, memcg, false,
1823 				PageTransHuge(page));
1824 		lru_cache_add_anon(page);
1825 
1826 		spin_lock_irq(&info->lock);
1827 		info->alloced += 1 << compound_order(page);
1828 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1829 		shmem_recalc_inode(inode);
1830 		spin_unlock_irq(&info->lock);
1831 		alloced = true;
1832 
1833 		if (PageTransHuge(page) &&
1834 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1835 				hindex + HPAGE_PMD_NR - 1) {
1836 			/*
1837 			 * Part of the huge page is beyond i_size: subject
1838 			 * to shrink under memory pressure.
1839 			 */
1840 			spin_lock(&sbinfo->shrinklist_lock);
1841 			/*
1842 			 * _careful to defend against unlocked access to
1843 			 * ->shrink_list in shmem_unused_huge_shrink()
1844 			 */
1845 			if (list_empty_careful(&info->shrinklist)) {
1846 				list_add_tail(&info->shrinklist,
1847 						&sbinfo->shrinklist);
1848 				sbinfo->shrinklist_len++;
1849 			}
1850 			spin_unlock(&sbinfo->shrinklist_lock);
1851 		}
1852 
1853 		/*
1854 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1855 		 */
1856 		if (sgp == SGP_FALLOC)
1857 			sgp = SGP_WRITE;
1858 clear:
1859 		/*
1860 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1861 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1862 		 * it now, lest undo on failure cancel our earlier guarantee.
1863 		 */
1864 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1865 			struct page *head = compound_head(page);
1866 			int i;
1867 
1868 			for (i = 0; i < (1 << compound_order(head)); i++) {
1869 				clear_highpage(head + i);
1870 				flush_dcache_page(head + i);
1871 			}
1872 			SetPageUptodate(head);
1873 		}
1874 	}
1875 
1876 	/* Perhaps the file has been truncated since we checked */
1877 	if (sgp <= SGP_CACHE &&
1878 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1879 		if (alloced) {
1880 			ClearPageDirty(page);
1881 			delete_from_page_cache(page);
1882 			spin_lock_irq(&info->lock);
1883 			shmem_recalc_inode(inode);
1884 			spin_unlock_irq(&info->lock);
1885 		}
1886 		error = -EINVAL;
1887 		goto unlock;
1888 	}
1889 	*pagep = page + index - hindex;
1890 	return 0;
1891 
1892 	/*
1893 	 * Error recovery.
1894 	 */
1895 unacct:
1896 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1897 
1898 	if (PageTransHuge(page)) {
1899 		unlock_page(page);
1900 		put_page(page);
1901 		goto alloc_nohuge;
1902 	}
1903 failed:
1904 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1905 		error = -EEXIST;
1906 unlock:
1907 	if (page) {
1908 		unlock_page(page);
1909 		put_page(page);
1910 	}
1911 	if (error == -ENOSPC && !once++) {
1912 		spin_lock_irq(&info->lock);
1913 		shmem_recalc_inode(inode);
1914 		spin_unlock_irq(&info->lock);
1915 		goto repeat;
1916 	}
1917 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1918 		goto repeat;
1919 	return error;
1920 }
1921 
1922 /*
1923  * This is like autoremove_wake_function, but it removes the wait queue
1924  * entry unconditionally - even if something else had already woken the
1925  * target.
1926  */
1927 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1928 {
1929 	int ret = default_wake_function(wait, mode, sync, key);
1930 	list_del_init(&wait->entry);
1931 	return ret;
1932 }
1933 
1934 static int shmem_fault(struct vm_fault *vmf)
1935 {
1936 	struct vm_area_struct *vma = vmf->vma;
1937 	struct inode *inode = file_inode(vma->vm_file);
1938 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1939 	enum sgp_type sgp;
1940 	int error;
1941 	int ret = VM_FAULT_LOCKED;
1942 
1943 	/*
1944 	 * Trinity finds that probing a hole which tmpfs is punching can
1945 	 * prevent the hole-punch from ever completing: which in turn
1946 	 * locks writers out with its hold on i_mutex.  So refrain from
1947 	 * faulting pages into the hole while it's being punched.  Although
1948 	 * shmem_undo_range() does remove the additions, it may be unable to
1949 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1950 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1951 	 *
1952 	 * It does not matter if we sometimes reach this check just before the
1953 	 * hole-punch begins, so that one fault then races with the punch:
1954 	 * we just need to make racing faults a rare case.
1955 	 *
1956 	 * The implementation below would be much simpler if we just used a
1957 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1958 	 * and bloating every shmem inode for this unlikely case would be sad.
1959 	 */
1960 	if (unlikely(inode->i_private)) {
1961 		struct shmem_falloc *shmem_falloc;
1962 
1963 		spin_lock(&inode->i_lock);
1964 		shmem_falloc = inode->i_private;
1965 		if (shmem_falloc &&
1966 		    shmem_falloc->waitq &&
1967 		    vmf->pgoff >= shmem_falloc->start &&
1968 		    vmf->pgoff < shmem_falloc->next) {
1969 			wait_queue_head_t *shmem_falloc_waitq;
1970 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1971 
1972 			ret = VM_FAULT_NOPAGE;
1973 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1974 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1975 				/* It's polite to up mmap_sem if we can */
1976 				up_read(&vma->vm_mm->mmap_sem);
1977 				ret = VM_FAULT_RETRY;
1978 			}
1979 
1980 			shmem_falloc_waitq = shmem_falloc->waitq;
1981 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1982 					TASK_UNINTERRUPTIBLE);
1983 			spin_unlock(&inode->i_lock);
1984 			schedule();
1985 
1986 			/*
1987 			 * shmem_falloc_waitq points into the shmem_fallocate()
1988 			 * stack of the hole-punching task: shmem_falloc_waitq
1989 			 * is usually invalid by the time we reach here, but
1990 			 * finish_wait() does not dereference it in that case;
1991 			 * though i_lock needed lest racing with wake_up_all().
1992 			 */
1993 			spin_lock(&inode->i_lock);
1994 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1995 			spin_unlock(&inode->i_lock);
1996 			return ret;
1997 		}
1998 		spin_unlock(&inode->i_lock);
1999 	}
2000 
2001 	sgp = SGP_CACHE;
2002 
2003 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2004 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2005 		sgp = SGP_NOHUGE;
2006 	else if (vma->vm_flags & VM_HUGEPAGE)
2007 		sgp = SGP_HUGE;
2008 
2009 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2010 				  gfp, vma, vmf, &ret);
2011 	if (error)
2012 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2013 	return ret;
2014 }
2015 
2016 unsigned long shmem_get_unmapped_area(struct file *file,
2017 				      unsigned long uaddr, unsigned long len,
2018 				      unsigned long pgoff, unsigned long flags)
2019 {
2020 	unsigned long (*get_area)(struct file *,
2021 		unsigned long, unsigned long, unsigned long, unsigned long);
2022 	unsigned long addr;
2023 	unsigned long offset;
2024 	unsigned long inflated_len;
2025 	unsigned long inflated_addr;
2026 	unsigned long inflated_offset;
2027 
2028 	if (len > TASK_SIZE)
2029 		return -ENOMEM;
2030 
2031 	get_area = current->mm->get_unmapped_area;
2032 	addr = get_area(file, uaddr, len, pgoff, flags);
2033 
2034 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2035 		return addr;
2036 	if (IS_ERR_VALUE(addr))
2037 		return addr;
2038 	if (addr & ~PAGE_MASK)
2039 		return addr;
2040 	if (addr > TASK_SIZE - len)
2041 		return addr;
2042 
2043 	if (shmem_huge == SHMEM_HUGE_DENY)
2044 		return addr;
2045 	if (len < HPAGE_PMD_SIZE)
2046 		return addr;
2047 	if (flags & MAP_FIXED)
2048 		return addr;
2049 	/*
2050 	 * Our priority is to support MAP_SHARED mapped hugely;
2051 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2052 	 * But if caller specified an address hint, respect that as before.
2053 	 */
2054 	if (uaddr)
2055 		return addr;
2056 
2057 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2058 		struct super_block *sb;
2059 
2060 		if (file) {
2061 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2062 			sb = file_inode(file)->i_sb;
2063 		} else {
2064 			/*
2065 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2066 			 * for "/dev/zero", to create a shared anonymous object.
2067 			 */
2068 			if (IS_ERR(shm_mnt))
2069 				return addr;
2070 			sb = shm_mnt->mnt_sb;
2071 		}
2072 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2073 			return addr;
2074 	}
2075 
2076 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2077 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2078 		return addr;
2079 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2080 		return addr;
2081 
2082 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2083 	if (inflated_len > TASK_SIZE)
2084 		return addr;
2085 	if (inflated_len < len)
2086 		return addr;
2087 
2088 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2089 	if (IS_ERR_VALUE(inflated_addr))
2090 		return addr;
2091 	if (inflated_addr & ~PAGE_MASK)
2092 		return addr;
2093 
2094 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2095 	inflated_addr += offset - inflated_offset;
2096 	if (inflated_offset > offset)
2097 		inflated_addr += HPAGE_PMD_SIZE;
2098 
2099 	if (inflated_addr > TASK_SIZE - len)
2100 		return addr;
2101 	return inflated_addr;
2102 }
2103 
2104 #ifdef CONFIG_NUMA
2105 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2106 {
2107 	struct inode *inode = file_inode(vma->vm_file);
2108 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2109 }
2110 
2111 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2112 					  unsigned long addr)
2113 {
2114 	struct inode *inode = file_inode(vma->vm_file);
2115 	pgoff_t index;
2116 
2117 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2118 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2119 }
2120 #endif
2121 
2122 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2123 {
2124 	struct inode *inode = file_inode(file);
2125 	struct shmem_inode_info *info = SHMEM_I(inode);
2126 	int retval = -ENOMEM;
2127 
2128 	spin_lock_irq(&info->lock);
2129 	if (lock && !(info->flags & VM_LOCKED)) {
2130 		if (!user_shm_lock(inode->i_size, user))
2131 			goto out_nomem;
2132 		info->flags |= VM_LOCKED;
2133 		mapping_set_unevictable(file->f_mapping);
2134 	}
2135 	if (!lock && (info->flags & VM_LOCKED) && user) {
2136 		user_shm_unlock(inode->i_size, user);
2137 		info->flags &= ~VM_LOCKED;
2138 		mapping_clear_unevictable(file->f_mapping);
2139 	}
2140 	retval = 0;
2141 
2142 out_nomem:
2143 	spin_unlock_irq(&info->lock);
2144 	return retval;
2145 }
2146 
2147 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2148 {
2149 	file_accessed(file);
2150 	vma->vm_ops = &shmem_vm_ops;
2151 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2152 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2153 			(vma->vm_end & HPAGE_PMD_MASK)) {
2154 		khugepaged_enter(vma, vma->vm_flags);
2155 	}
2156 	return 0;
2157 }
2158 
2159 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2160 				     umode_t mode, dev_t dev, unsigned long flags)
2161 {
2162 	struct inode *inode;
2163 	struct shmem_inode_info *info;
2164 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2165 
2166 	if (shmem_reserve_inode(sb))
2167 		return NULL;
2168 
2169 	inode = new_inode(sb);
2170 	if (inode) {
2171 		inode->i_ino = get_next_ino();
2172 		inode_init_owner(inode, dir, mode);
2173 		inode->i_blocks = 0;
2174 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2175 		inode->i_generation = get_seconds();
2176 		info = SHMEM_I(inode);
2177 		memset(info, 0, (char *)inode - (char *)info);
2178 		spin_lock_init(&info->lock);
2179 		info->seals = F_SEAL_SEAL;
2180 		info->flags = flags & VM_NORESERVE;
2181 		INIT_LIST_HEAD(&info->shrinklist);
2182 		INIT_LIST_HEAD(&info->swaplist);
2183 		simple_xattrs_init(&info->xattrs);
2184 		cache_no_acl(inode);
2185 
2186 		switch (mode & S_IFMT) {
2187 		default:
2188 			inode->i_op = &shmem_special_inode_operations;
2189 			init_special_inode(inode, mode, dev);
2190 			break;
2191 		case S_IFREG:
2192 			inode->i_mapping->a_ops = &shmem_aops;
2193 			inode->i_op = &shmem_inode_operations;
2194 			inode->i_fop = &shmem_file_operations;
2195 			mpol_shared_policy_init(&info->policy,
2196 						 shmem_get_sbmpol(sbinfo));
2197 			break;
2198 		case S_IFDIR:
2199 			inc_nlink(inode);
2200 			/* Some things misbehave if size == 0 on a directory */
2201 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2202 			inode->i_op = &shmem_dir_inode_operations;
2203 			inode->i_fop = &simple_dir_operations;
2204 			break;
2205 		case S_IFLNK:
2206 			/*
2207 			 * Must not load anything in the rbtree,
2208 			 * mpol_free_shared_policy will not be called.
2209 			 */
2210 			mpol_shared_policy_init(&info->policy, NULL);
2211 			break;
2212 		}
2213 	} else
2214 		shmem_free_inode(sb);
2215 	return inode;
2216 }
2217 
2218 bool shmem_mapping(struct address_space *mapping)
2219 {
2220 	return mapping->a_ops == &shmem_aops;
2221 }
2222 
2223 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2224 				  pmd_t *dst_pmd,
2225 				  struct vm_area_struct *dst_vma,
2226 				  unsigned long dst_addr,
2227 				  unsigned long src_addr,
2228 				  bool zeropage,
2229 				  struct page **pagep)
2230 {
2231 	struct inode *inode = file_inode(dst_vma->vm_file);
2232 	struct shmem_inode_info *info = SHMEM_I(inode);
2233 	struct address_space *mapping = inode->i_mapping;
2234 	gfp_t gfp = mapping_gfp_mask(mapping);
2235 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2236 	struct mem_cgroup *memcg;
2237 	spinlock_t *ptl;
2238 	void *page_kaddr;
2239 	struct page *page;
2240 	pte_t _dst_pte, *dst_pte;
2241 	int ret;
2242 
2243 	ret = -ENOMEM;
2244 	if (!shmem_inode_acct_block(inode, 1))
2245 		goto out;
2246 
2247 	if (!*pagep) {
2248 		page = shmem_alloc_page(gfp, info, pgoff);
2249 		if (!page)
2250 			goto out_unacct_blocks;
2251 
2252 		if (!zeropage) {	/* mcopy_atomic */
2253 			page_kaddr = kmap_atomic(page);
2254 			ret = copy_from_user(page_kaddr,
2255 					     (const void __user *)src_addr,
2256 					     PAGE_SIZE);
2257 			kunmap_atomic(page_kaddr);
2258 
2259 			/* fallback to copy_from_user outside mmap_sem */
2260 			if (unlikely(ret)) {
2261 				*pagep = page;
2262 				shmem_inode_unacct_blocks(inode, 1);
2263 				/* don't free the page */
2264 				return -EFAULT;
2265 			}
2266 		} else {		/* mfill_zeropage_atomic */
2267 			clear_highpage(page);
2268 		}
2269 	} else {
2270 		page = *pagep;
2271 		*pagep = NULL;
2272 	}
2273 
2274 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2275 	__SetPageLocked(page);
2276 	__SetPageSwapBacked(page);
2277 	__SetPageUptodate(page);
2278 
2279 	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2280 	if (ret)
2281 		goto out_release;
2282 
2283 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2284 	if (!ret) {
2285 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2286 		radix_tree_preload_end();
2287 	}
2288 	if (ret)
2289 		goto out_release_uncharge;
2290 
2291 	mem_cgroup_commit_charge(page, memcg, false, false);
2292 
2293 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2294 	if (dst_vma->vm_flags & VM_WRITE)
2295 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2296 
2297 	ret = -EEXIST;
2298 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2299 	if (!pte_none(*dst_pte))
2300 		goto out_release_uncharge_unlock;
2301 
2302 	lru_cache_add_anon(page);
2303 
2304 	spin_lock(&info->lock);
2305 	info->alloced++;
2306 	inode->i_blocks += BLOCKS_PER_PAGE;
2307 	shmem_recalc_inode(inode);
2308 	spin_unlock(&info->lock);
2309 
2310 	inc_mm_counter(dst_mm, mm_counter_file(page));
2311 	page_add_file_rmap(page, false);
2312 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2313 
2314 	/* No need to invalidate - it was non-present before */
2315 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2316 	unlock_page(page);
2317 	pte_unmap_unlock(dst_pte, ptl);
2318 	ret = 0;
2319 out:
2320 	return ret;
2321 out_release_uncharge_unlock:
2322 	pte_unmap_unlock(dst_pte, ptl);
2323 out_release_uncharge:
2324 	mem_cgroup_cancel_charge(page, memcg, false);
2325 out_release:
2326 	unlock_page(page);
2327 	put_page(page);
2328 out_unacct_blocks:
2329 	shmem_inode_unacct_blocks(inode, 1);
2330 	goto out;
2331 }
2332 
2333 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2334 			   pmd_t *dst_pmd,
2335 			   struct vm_area_struct *dst_vma,
2336 			   unsigned long dst_addr,
2337 			   unsigned long src_addr,
2338 			   struct page **pagep)
2339 {
2340 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2341 				      dst_addr, src_addr, false, pagep);
2342 }
2343 
2344 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2345 			     pmd_t *dst_pmd,
2346 			     struct vm_area_struct *dst_vma,
2347 			     unsigned long dst_addr)
2348 {
2349 	struct page *page = NULL;
2350 
2351 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2352 				      dst_addr, 0, true, &page);
2353 }
2354 
2355 #ifdef CONFIG_TMPFS
2356 static const struct inode_operations shmem_symlink_inode_operations;
2357 static const struct inode_operations shmem_short_symlink_operations;
2358 
2359 #ifdef CONFIG_TMPFS_XATTR
2360 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2361 #else
2362 #define shmem_initxattrs NULL
2363 #endif
2364 
2365 static int
2366 shmem_write_begin(struct file *file, struct address_space *mapping,
2367 			loff_t pos, unsigned len, unsigned flags,
2368 			struct page **pagep, void **fsdata)
2369 {
2370 	struct inode *inode = mapping->host;
2371 	struct shmem_inode_info *info = SHMEM_I(inode);
2372 	pgoff_t index = pos >> PAGE_SHIFT;
2373 
2374 	/* i_mutex is held by caller */
2375 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2376 		if (info->seals & F_SEAL_WRITE)
2377 			return -EPERM;
2378 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2379 			return -EPERM;
2380 	}
2381 
2382 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2383 }
2384 
2385 static int
2386 shmem_write_end(struct file *file, struct address_space *mapping,
2387 			loff_t pos, unsigned len, unsigned copied,
2388 			struct page *page, void *fsdata)
2389 {
2390 	struct inode *inode = mapping->host;
2391 
2392 	if (pos + copied > inode->i_size)
2393 		i_size_write(inode, pos + copied);
2394 
2395 	if (!PageUptodate(page)) {
2396 		struct page *head = compound_head(page);
2397 		if (PageTransCompound(page)) {
2398 			int i;
2399 
2400 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2401 				if (head + i == page)
2402 					continue;
2403 				clear_highpage(head + i);
2404 				flush_dcache_page(head + i);
2405 			}
2406 		}
2407 		if (copied < PAGE_SIZE) {
2408 			unsigned from = pos & (PAGE_SIZE - 1);
2409 			zero_user_segments(page, 0, from,
2410 					from + copied, PAGE_SIZE);
2411 		}
2412 		SetPageUptodate(head);
2413 	}
2414 	set_page_dirty(page);
2415 	unlock_page(page);
2416 	put_page(page);
2417 
2418 	return copied;
2419 }
2420 
2421 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2422 {
2423 	struct file *file = iocb->ki_filp;
2424 	struct inode *inode = file_inode(file);
2425 	struct address_space *mapping = inode->i_mapping;
2426 	pgoff_t index;
2427 	unsigned long offset;
2428 	enum sgp_type sgp = SGP_READ;
2429 	int error = 0;
2430 	ssize_t retval = 0;
2431 	loff_t *ppos = &iocb->ki_pos;
2432 
2433 	/*
2434 	 * Might this read be for a stacking filesystem?  Then when reading
2435 	 * holes of a sparse file, we actually need to allocate those pages,
2436 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2437 	 */
2438 	if (!iter_is_iovec(to))
2439 		sgp = SGP_CACHE;
2440 
2441 	index = *ppos >> PAGE_SHIFT;
2442 	offset = *ppos & ~PAGE_MASK;
2443 
2444 	for (;;) {
2445 		struct page *page = NULL;
2446 		pgoff_t end_index;
2447 		unsigned long nr, ret;
2448 		loff_t i_size = i_size_read(inode);
2449 
2450 		end_index = i_size >> PAGE_SHIFT;
2451 		if (index > end_index)
2452 			break;
2453 		if (index == end_index) {
2454 			nr = i_size & ~PAGE_MASK;
2455 			if (nr <= offset)
2456 				break;
2457 		}
2458 
2459 		error = shmem_getpage(inode, index, &page, sgp);
2460 		if (error) {
2461 			if (error == -EINVAL)
2462 				error = 0;
2463 			break;
2464 		}
2465 		if (page) {
2466 			if (sgp == SGP_CACHE)
2467 				set_page_dirty(page);
2468 			unlock_page(page);
2469 		}
2470 
2471 		/*
2472 		 * We must evaluate after, since reads (unlike writes)
2473 		 * are called without i_mutex protection against truncate
2474 		 */
2475 		nr = PAGE_SIZE;
2476 		i_size = i_size_read(inode);
2477 		end_index = i_size >> PAGE_SHIFT;
2478 		if (index == end_index) {
2479 			nr = i_size & ~PAGE_MASK;
2480 			if (nr <= offset) {
2481 				if (page)
2482 					put_page(page);
2483 				break;
2484 			}
2485 		}
2486 		nr -= offset;
2487 
2488 		if (page) {
2489 			/*
2490 			 * If users can be writing to this page using arbitrary
2491 			 * virtual addresses, take care about potential aliasing
2492 			 * before reading the page on the kernel side.
2493 			 */
2494 			if (mapping_writably_mapped(mapping))
2495 				flush_dcache_page(page);
2496 			/*
2497 			 * Mark the page accessed if we read the beginning.
2498 			 */
2499 			if (!offset)
2500 				mark_page_accessed(page);
2501 		} else {
2502 			page = ZERO_PAGE(0);
2503 			get_page(page);
2504 		}
2505 
2506 		/*
2507 		 * Ok, we have the page, and it's up-to-date, so
2508 		 * now we can copy it to user space...
2509 		 */
2510 		ret = copy_page_to_iter(page, offset, nr, to);
2511 		retval += ret;
2512 		offset += ret;
2513 		index += offset >> PAGE_SHIFT;
2514 		offset &= ~PAGE_MASK;
2515 
2516 		put_page(page);
2517 		if (!iov_iter_count(to))
2518 			break;
2519 		if (ret < nr) {
2520 			error = -EFAULT;
2521 			break;
2522 		}
2523 		cond_resched();
2524 	}
2525 
2526 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2527 	file_accessed(file);
2528 	return retval ? retval : error;
2529 }
2530 
2531 /*
2532  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2533  */
2534 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2535 				    pgoff_t index, pgoff_t end, int whence)
2536 {
2537 	struct page *page;
2538 	struct pagevec pvec;
2539 	pgoff_t indices[PAGEVEC_SIZE];
2540 	bool done = false;
2541 	int i;
2542 
2543 	pagevec_init(&pvec);
2544 	pvec.nr = 1;		/* start small: we may be there already */
2545 	while (!done) {
2546 		pvec.nr = find_get_entries(mapping, index,
2547 					pvec.nr, pvec.pages, indices);
2548 		if (!pvec.nr) {
2549 			if (whence == SEEK_DATA)
2550 				index = end;
2551 			break;
2552 		}
2553 		for (i = 0; i < pvec.nr; i++, index++) {
2554 			if (index < indices[i]) {
2555 				if (whence == SEEK_HOLE) {
2556 					done = true;
2557 					break;
2558 				}
2559 				index = indices[i];
2560 			}
2561 			page = pvec.pages[i];
2562 			if (page && !radix_tree_exceptional_entry(page)) {
2563 				if (!PageUptodate(page))
2564 					page = NULL;
2565 			}
2566 			if (index >= end ||
2567 			    (page && whence == SEEK_DATA) ||
2568 			    (!page && whence == SEEK_HOLE)) {
2569 				done = true;
2570 				break;
2571 			}
2572 		}
2573 		pagevec_remove_exceptionals(&pvec);
2574 		pagevec_release(&pvec);
2575 		pvec.nr = PAGEVEC_SIZE;
2576 		cond_resched();
2577 	}
2578 	return index;
2579 }
2580 
2581 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2582 {
2583 	struct address_space *mapping = file->f_mapping;
2584 	struct inode *inode = mapping->host;
2585 	pgoff_t start, end;
2586 	loff_t new_offset;
2587 
2588 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2589 		return generic_file_llseek_size(file, offset, whence,
2590 					MAX_LFS_FILESIZE, i_size_read(inode));
2591 	inode_lock(inode);
2592 	/* We're holding i_mutex so we can access i_size directly */
2593 
2594 	if (offset < 0)
2595 		offset = -EINVAL;
2596 	else if (offset >= inode->i_size)
2597 		offset = -ENXIO;
2598 	else {
2599 		start = offset >> PAGE_SHIFT;
2600 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2601 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2602 		new_offset <<= PAGE_SHIFT;
2603 		if (new_offset > offset) {
2604 			if (new_offset < inode->i_size)
2605 				offset = new_offset;
2606 			else if (whence == SEEK_DATA)
2607 				offset = -ENXIO;
2608 			else
2609 				offset = inode->i_size;
2610 		}
2611 	}
2612 
2613 	if (offset >= 0)
2614 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2615 	inode_unlock(inode);
2616 	return offset;
2617 }
2618 
2619 /*
2620  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2621  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2622  */
2623 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2624 #define LAST_SCAN               4       /* about 150ms max */
2625 
2626 static void shmem_tag_pins(struct address_space *mapping)
2627 {
2628 	struct radix_tree_iter iter;
2629 	void **slot;
2630 	pgoff_t start;
2631 	struct page *page;
2632 
2633 	lru_add_drain();
2634 	start = 0;
2635 	rcu_read_lock();
2636 
2637 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
2638 		page = radix_tree_deref_slot(slot);
2639 		if (!page || radix_tree_exception(page)) {
2640 			if (radix_tree_deref_retry(page)) {
2641 				slot = radix_tree_iter_retry(&iter);
2642 				continue;
2643 			}
2644 		} else if (page_count(page) - page_mapcount(page) > 1) {
2645 			xa_lock_irq(&mapping->i_pages);
2646 			radix_tree_tag_set(&mapping->i_pages, iter.index,
2647 					   SHMEM_TAG_PINNED);
2648 			xa_unlock_irq(&mapping->i_pages);
2649 		}
2650 
2651 		if (need_resched()) {
2652 			slot = radix_tree_iter_resume(slot, &iter);
2653 			cond_resched_rcu();
2654 		}
2655 	}
2656 	rcu_read_unlock();
2657 }
2658 
2659 /*
2660  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2661  * via get_user_pages(), drivers might have some pending I/O without any active
2662  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2663  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2664  * them to be dropped.
2665  * The caller must guarantee that no new user will acquire writable references
2666  * to those pages to avoid races.
2667  */
2668 static int shmem_wait_for_pins(struct address_space *mapping)
2669 {
2670 	struct radix_tree_iter iter;
2671 	void **slot;
2672 	pgoff_t start;
2673 	struct page *page;
2674 	int error, scan;
2675 
2676 	shmem_tag_pins(mapping);
2677 
2678 	error = 0;
2679 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2680 		if (!radix_tree_tagged(&mapping->i_pages, SHMEM_TAG_PINNED))
2681 			break;
2682 
2683 		if (!scan)
2684 			lru_add_drain_all();
2685 		else if (schedule_timeout_killable((HZ << scan) / 200))
2686 			scan = LAST_SCAN;
2687 
2688 		start = 0;
2689 		rcu_read_lock();
2690 		radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter,
2691 					   start, SHMEM_TAG_PINNED) {
2692 
2693 			page = radix_tree_deref_slot(slot);
2694 			if (radix_tree_exception(page)) {
2695 				if (radix_tree_deref_retry(page)) {
2696 					slot = radix_tree_iter_retry(&iter);
2697 					continue;
2698 				}
2699 
2700 				page = NULL;
2701 			}
2702 
2703 			if (page &&
2704 			    page_count(page) - page_mapcount(page) != 1) {
2705 				if (scan < LAST_SCAN)
2706 					goto continue_resched;
2707 
2708 				/*
2709 				 * On the last scan, we clean up all those tags
2710 				 * we inserted; but make a note that we still
2711 				 * found pages pinned.
2712 				 */
2713 				error = -EBUSY;
2714 			}
2715 
2716 			xa_lock_irq(&mapping->i_pages);
2717 			radix_tree_tag_clear(&mapping->i_pages,
2718 					     iter.index, SHMEM_TAG_PINNED);
2719 			xa_unlock_irq(&mapping->i_pages);
2720 continue_resched:
2721 			if (need_resched()) {
2722 				slot = radix_tree_iter_resume(slot, &iter);
2723 				cond_resched_rcu();
2724 			}
2725 		}
2726 		rcu_read_unlock();
2727 	}
2728 
2729 	return error;
2730 }
2731 
2732 static unsigned int *memfd_file_seals_ptr(struct file *file)
2733 {
2734 	if (file->f_op == &shmem_file_operations)
2735 		return &SHMEM_I(file_inode(file))->seals;
2736 
2737 #ifdef CONFIG_HUGETLBFS
2738 	if (file->f_op == &hugetlbfs_file_operations)
2739 		return &HUGETLBFS_I(file_inode(file))->seals;
2740 #endif
2741 
2742 	return NULL;
2743 }
2744 
2745 #define F_ALL_SEALS (F_SEAL_SEAL | \
2746 		     F_SEAL_SHRINK | \
2747 		     F_SEAL_GROW | \
2748 		     F_SEAL_WRITE)
2749 
2750 static int memfd_add_seals(struct file *file, unsigned int seals)
2751 {
2752 	struct inode *inode = file_inode(file);
2753 	unsigned int *file_seals;
2754 	int error;
2755 
2756 	/*
2757 	 * SEALING
2758 	 * Sealing allows multiple parties to share a shmem-file but restrict
2759 	 * access to a specific subset of file operations. Seals can only be
2760 	 * added, but never removed. This way, mutually untrusted parties can
2761 	 * share common memory regions with a well-defined policy. A malicious
2762 	 * peer can thus never perform unwanted operations on a shared object.
2763 	 *
2764 	 * Seals are only supported on special shmem-files and always affect
2765 	 * the whole underlying inode. Once a seal is set, it may prevent some
2766 	 * kinds of access to the file. Currently, the following seals are
2767 	 * defined:
2768 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2769 	 *   SEAL_SHRINK: Prevent the file from shrinking
2770 	 *   SEAL_GROW: Prevent the file from growing
2771 	 *   SEAL_WRITE: Prevent write access to the file
2772 	 *
2773 	 * As we don't require any trust relationship between two parties, we
2774 	 * must prevent seals from being removed. Therefore, sealing a file
2775 	 * only adds a given set of seals to the file, it never touches
2776 	 * existing seals. Furthermore, the "setting seals"-operation can be
2777 	 * sealed itself, which basically prevents any further seal from being
2778 	 * added.
2779 	 *
2780 	 * Semantics of sealing are only defined on volatile files. Only
2781 	 * anonymous shmem files support sealing. More importantly, seals are
2782 	 * never written to disk. Therefore, there's no plan to support it on
2783 	 * other file types.
2784 	 */
2785 
2786 	if (!(file->f_mode & FMODE_WRITE))
2787 		return -EPERM;
2788 	if (seals & ~(unsigned int)F_ALL_SEALS)
2789 		return -EINVAL;
2790 
2791 	inode_lock(inode);
2792 
2793 	file_seals = memfd_file_seals_ptr(file);
2794 	if (!file_seals) {
2795 		error = -EINVAL;
2796 		goto unlock;
2797 	}
2798 
2799 	if (*file_seals & F_SEAL_SEAL) {
2800 		error = -EPERM;
2801 		goto unlock;
2802 	}
2803 
2804 	if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
2805 		error = mapping_deny_writable(file->f_mapping);
2806 		if (error)
2807 			goto unlock;
2808 
2809 		error = shmem_wait_for_pins(file->f_mapping);
2810 		if (error) {
2811 			mapping_allow_writable(file->f_mapping);
2812 			goto unlock;
2813 		}
2814 	}
2815 
2816 	*file_seals |= seals;
2817 	error = 0;
2818 
2819 unlock:
2820 	inode_unlock(inode);
2821 	return error;
2822 }
2823 
2824 static int memfd_get_seals(struct file *file)
2825 {
2826 	unsigned int *seals = memfd_file_seals_ptr(file);
2827 
2828 	return seals ? *seals : -EINVAL;
2829 }
2830 
2831 long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2832 {
2833 	long error;
2834 
2835 	switch (cmd) {
2836 	case F_ADD_SEALS:
2837 		/* disallow upper 32bit */
2838 		if (arg > UINT_MAX)
2839 			return -EINVAL;
2840 
2841 		error = memfd_add_seals(file, arg);
2842 		break;
2843 	case F_GET_SEALS:
2844 		error = memfd_get_seals(file);
2845 		break;
2846 	default:
2847 		error = -EINVAL;
2848 		break;
2849 	}
2850 
2851 	return error;
2852 }
2853 
2854 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2855 							 loff_t len)
2856 {
2857 	struct inode *inode = file_inode(file);
2858 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2859 	struct shmem_inode_info *info = SHMEM_I(inode);
2860 	struct shmem_falloc shmem_falloc;
2861 	pgoff_t start, index, end;
2862 	int error;
2863 
2864 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2865 		return -EOPNOTSUPP;
2866 
2867 	inode_lock(inode);
2868 
2869 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2870 		struct address_space *mapping = file->f_mapping;
2871 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2872 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2873 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2874 
2875 		/* protected by i_mutex */
2876 		if (info->seals & F_SEAL_WRITE) {
2877 			error = -EPERM;
2878 			goto out;
2879 		}
2880 
2881 		shmem_falloc.waitq = &shmem_falloc_waitq;
2882 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2883 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2884 		spin_lock(&inode->i_lock);
2885 		inode->i_private = &shmem_falloc;
2886 		spin_unlock(&inode->i_lock);
2887 
2888 		if ((u64)unmap_end > (u64)unmap_start)
2889 			unmap_mapping_range(mapping, unmap_start,
2890 					    1 + unmap_end - unmap_start, 0);
2891 		shmem_truncate_range(inode, offset, offset + len - 1);
2892 		/* No need to unmap again: hole-punching leaves COWed pages */
2893 
2894 		spin_lock(&inode->i_lock);
2895 		inode->i_private = NULL;
2896 		wake_up_all(&shmem_falloc_waitq);
2897 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2898 		spin_unlock(&inode->i_lock);
2899 		error = 0;
2900 		goto out;
2901 	}
2902 
2903 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2904 	error = inode_newsize_ok(inode, offset + len);
2905 	if (error)
2906 		goto out;
2907 
2908 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2909 		error = -EPERM;
2910 		goto out;
2911 	}
2912 
2913 	start = offset >> PAGE_SHIFT;
2914 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2915 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2916 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2917 		error = -ENOSPC;
2918 		goto out;
2919 	}
2920 
2921 	shmem_falloc.waitq = NULL;
2922 	shmem_falloc.start = start;
2923 	shmem_falloc.next  = start;
2924 	shmem_falloc.nr_falloced = 0;
2925 	shmem_falloc.nr_unswapped = 0;
2926 	spin_lock(&inode->i_lock);
2927 	inode->i_private = &shmem_falloc;
2928 	spin_unlock(&inode->i_lock);
2929 
2930 	for (index = start; index < end; index++) {
2931 		struct page *page;
2932 
2933 		/*
2934 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2935 		 * been interrupted because we are using up too much memory.
2936 		 */
2937 		if (signal_pending(current))
2938 			error = -EINTR;
2939 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2940 			error = -ENOMEM;
2941 		else
2942 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2943 		if (error) {
2944 			/* Remove the !PageUptodate pages we added */
2945 			if (index > start) {
2946 				shmem_undo_range(inode,
2947 				    (loff_t)start << PAGE_SHIFT,
2948 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2949 			}
2950 			goto undone;
2951 		}
2952 
2953 		/*
2954 		 * Inform shmem_writepage() how far we have reached.
2955 		 * No need for lock or barrier: we have the page lock.
2956 		 */
2957 		shmem_falloc.next++;
2958 		if (!PageUptodate(page))
2959 			shmem_falloc.nr_falloced++;
2960 
2961 		/*
2962 		 * If !PageUptodate, leave it that way so that freeable pages
2963 		 * can be recognized if we need to rollback on error later.
2964 		 * But set_page_dirty so that memory pressure will swap rather
2965 		 * than free the pages we are allocating (and SGP_CACHE pages
2966 		 * might still be clean: we now need to mark those dirty too).
2967 		 */
2968 		set_page_dirty(page);
2969 		unlock_page(page);
2970 		put_page(page);
2971 		cond_resched();
2972 	}
2973 
2974 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2975 		i_size_write(inode, offset + len);
2976 	inode->i_ctime = current_time(inode);
2977 undone:
2978 	spin_lock(&inode->i_lock);
2979 	inode->i_private = NULL;
2980 	spin_unlock(&inode->i_lock);
2981 out:
2982 	inode_unlock(inode);
2983 	return error;
2984 }
2985 
2986 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2987 {
2988 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2989 
2990 	buf->f_type = TMPFS_MAGIC;
2991 	buf->f_bsize = PAGE_SIZE;
2992 	buf->f_namelen = NAME_MAX;
2993 	if (sbinfo->max_blocks) {
2994 		buf->f_blocks = sbinfo->max_blocks;
2995 		buf->f_bavail =
2996 		buf->f_bfree  = sbinfo->max_blocks -
2997 				percpu_counter_sum(&sbinfo->used_blocks);
2998 	}
2999 	if (sbinfo->max_inodes) {
3000 		buf->f_files = sbinfo->max_inodes;
3001 		buf->f_ffree = sbinfo->free_inodes;
3002 	}
3003 	/* else leave those fields 0 like simple_statfs */
3004 	return 0;
3005 }
3006 
3007 /*
3008  * File creation. Allocate an inode, and we're done..
3009  */
3010 static int
3011 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3012 {
3013 	struct inode *inode;
3014 	int error = -ENOSPC;
3015 
3016 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3017 	if (inode) {
3018 		error = simple_acl_create(dir, inode);
3019 		if (error)
3020 			goto out_iput;
3021 		error = security_inode_init_security(inode, dir,
3022 						     &dentry->d_name,
3023 						     shmem_initxattrs, NULL);
3024 		if (error && error != -EOPNOTSUPP)
3025 			goto out_iput;
3026 
3027 		error = 0;
3028 		dir->i_size += BOGO_DIRENT_SIZE;
3029 		dir->i_ctime = dir->i_mtime = current_time(dir);
3030 		d_instantiate(dentry, inode);
3031 		dget(dentry); /* Extra count - pin the dentry in core */
3032 	}
3033 	return error;
3034 out_iput:
3035 	iput(inode);
3036 	return error;
3037 }
3038 
3039 static int
3040 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3041 {
3042 	struct inode *inode;
3043 	int error = -ENOSPC;
3044 
3045 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3046 	if (inode) {
3047 		error = security_inode_init_security(inode, dir,
3048 						     NULL,
3049 						     shmem_initxattrs, NULL);
3050 		if (error && error != -EOPNOTSUPP)
3051 			goto out_iput;
3052 		error = simple_acl_create(dir, inode);
3053 		if (error)
3054 			goto out_iput;
3055 		d_tmpfile(dentry, inode);
3056 	}
3057 	return error;
3058 out_iput:
3059 	iput(inode);
3060 	return error;
3061 }
3062 
3063 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3064 {
3065 	int error;
3066 
3067 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3068 		return error;
3069 	inc_nlink(dir);
3070 	return 0;
3071 }
3072 
3073 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3074 		bool excl)
3075 {
3076 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3077 }
3078 
3079 /*
3080  * Link a file..
3081  */
3082 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3083 {
3084 	struct inode *inode = d_inode(old_dentry);
3085 	int ret;
3086 
3087 	/*
3088 	 * No ordinary (disk based) filesystem counts links as inodes;
3089 	 * but each new link needs a new dentry, pinning lowmem, and
3090 	 * tmpfs dentries cannot be pruned until they are unlinked.
3091 	 */
3092 	ret = shmem_reserve_inode(inode->i_sb);
3093 	if (ret)
3094 		goto out;
3095 
3096 	dir->i_size += BOGO_DIRENT_SIZE;
3097 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3098 	inc_nlink(inode);
3099 	ihold(inode);	/* New dentry reference */
3100 	dget(dentry);		/* Extra pinning count for the created dentry */
3101 	d_instantiate(dentry, inode);
3102 out:
3103 	return ret;
3104 }
3105 
3106 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3107 {
3108 	struct inode *inode = d_inode(dentry);
3109 
3110 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3111 		shmem_free_inode(inode->i_sb);
3112 
3113 	dir->i_size -= BOGO_DIRENT_SIZE;
3114 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3115 	drop_nlink(inode);
3116 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3117 	return 0;
3118 }
3119 
3120 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3121 {
3122 	if (!simple_empty(dentry))
3123 		return -ENOTEMPTY;
3124 
3125 	drop_nlink(d_inode(dentry));
3126 	drop_nlink(dir);
3127 	return shmem_unlink(dir, dentry);
3128 }
3129 
3130 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3131 {
3132 	bool old_is_dir = d_is_dir(old_dentry);
3133 	bool new_is_dir = d_is_dir(new_dentry);
3134 
3135 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3136 		if (old_is_dir) {
3137 			drop_nlink(old_dir);
3138 			inc_nlink(new_dir);
3139 		} else {
3140 			drop_nlink(new_dir);
3141 			inc_nlink(old_dir);
3142 		}
3143 	}
3144 	old_dir->i_ctime = old_dir->i_mtime =
3145 	new_dir->i_ctime = new_dir->i_mtime =
3146 	d_inode(old_dentry)->i_ctime =
3147 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3148 
3149 	return 0;
3150 }
3151 
3152 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3153 {
3154 	struct dentry *whiteout;
3155 	int error;
3156 
3157 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3158 	if (!whiteout)
3159 		return -ENOMEM;
3160 
3161 	error = shmem_mknod(old_dir, whiteout,
3162 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3163 	dput(whiteout);
3164 	if (error)
3165 		return error;
3166 
3167 	/*
3168 	 * Cheat and hash the whiteout while the old dentry is still in
3169 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3170 	 *
3171 	 * d_lookup() will consistently find one of them at this point,
3172 	 * not sure which one, but that isn't even important.
3173 	 */
3174 	d_rehash(whiteout);
3175 	return 0;
3176 }
3177 
3178 /*
3179  * The VFS layer already does all the dentry stuff for rename,
3180  * we just have to decrement the usage count for the target if
3181  * it exists so that the VFS layer correctly free's it when it
3182  * gets overwritten.
3183  */
3184 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3185 {
3186 	struct inode *inode = d_inode(old_dentry);
3187 	int they_are_dirs = S_ISDIR(inode->i_mode);
3188 
3189 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3190 		return -EINVAL;
3191 
3192 	if (flags & RENAME_EXCHANGE)
3193 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3194 
3195 	if (!simple_empty(new_dentry))
3196 		return -ENOTEMPTY;
3197 
3198 	if (flags & RENAME_WHITEOUT) {
3199 		int error;
3200 
3201 		error = shmem_whiteout(old_dir, old_dentry);
3202 		if (error)
3203 			return error;
3204 	}
3205 
3206 	if (d_really_is_positive(new_dentry)) {
3207 		(void) shmem_unlink(new_dir, new_dentry);
3208 		if (they_are_dirs) {
3209 			drop_nlink(d_inode(new_dentry));
3210 			drop_nlink(old_dir);
3211 		}
3212 	} else if (they_are_dirs) {
3213 		drop_nlink(old_dir);
3214 		inc_nlink(new_dir);
3215 	}
3216 
3217 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3218 	new_dir->i_size += BOGO_DIRENT_SIZE;
3219 	old_dir->i_ctime = old_dir->i_mtime =
3220 	new_dir->i_ctime = new_dir->i_mtime =
3221 	inode->i_ctime = current_time(old_dir);
3222 	return 0;
3223 }
3224 
3225 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3226 {
3227 	int error;
3228 	int len;
3229 	struct inode *inode;
3230 	struct page *page;
3231 
3232 	len = strlen(symname) + 1;
3233 	if (len > PAGE_SIZE)
3234 		return -ENAMETOOLONG;
3235 
3236 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3237 	if (!inode)
3238 		return -ENOSPC;
3239 
3240 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3241 					     shmem_initxattrs, NULL);
3242 	if (error) {
3243 		if (error != -EOPNOTSUPP) {
3244 			iput(inode);
3245 			return error;
3246 		}
3247 		error = 0;
3248 	}
3249 
3250 	inode->i_size = len-1;
3251 	if (len <= SHORT_SYMLINK_LEN) {
3252 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3253 		if (!inode->i_link) {
3254 			iput(inode);
3255 			return -ENOMEM;
3256 		}
3257 		inode->i_op = &shmem_short_symlink_operations;
3258 	} else {
3259 		inode_nohighmem(inode);
3260 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3261 		if (error) {
3262 			iput(inode);
3263 			return error;
3264 		}
3265 		inode->i_mapping->a_ops = &shmem_aops;
3266 		inode->i_op = &shmem_symlink_inode_operations;
3267 		memcpy(page_address(page), symname, len);
3268 		SetPageUptodate(page);
3269 		set_page_dirty(page);
3270 		unlock_page(page);
3271 		put_page(page);
3272 	}
3273 	dir->i_size += BOGO_DIRENT_SIZE;
3274 	dir->i_ctime = dir->i_mtime = current_time(dir);
3275 	d_instantiate(dentry, inode);
3276 	dget(dentry);
3277 	return 0;
3278 }
3279 
3280 static void shmem_put_link(void *arg)
3281 {
3282 	mark_page_accessed(arg);
3283 	put_page(arg);
3284 }
3285 
3286 static const char *shmem_get_link(struct dentry *dentry,
3287 				  struct inode *inode,
3288 				  struct delayed_call *done)
3289 {
3290 	struct page *page = NULL;
3291 	int error;
3292 	if (!dentry) {
3293 		page = find_get_page(inode->i_mapping, 0);
3294 		if (!page)
3295 			return ERR_PTR(-ECHILD);
3296 		if (!PageUptodate(page)) {
3297 			put_page(page);
3298 			return ERR_PTR(-ECHILD);
3299 		}
3300 	} else {
3301 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3302 		if (error)
3303 			return ERR_PTR(error);
3304 		unlock_page(page);
3305 	}
3306 	set_delayed_call(done, shmem_put_link, page);
3307 	return page_address(page);
3308 }
3309 
3310 #ifdef CONFIG_TMPFS_XATTR
3311 /*
3312  * Superblocks without xattr inode operations may get some security.* xattr
3313  * support from the LSM "for free". As soon as we have any other xattrs
3314  * like ACLs, we also need to implement the security.* handlers at
3315  * filesystem level, though.
3316  */
3317 
3318 /*
3319  * Callback for security_inode_init_security() for acquiring xattrs.
3320  */
3321 static int shmem_initxattrs(struct inode *inode,
3322 			    const struct xattr *xattr_array,
3323 			    void *fs_info)
3324 {
3325 	struct shmem_inode_info *info = SHMEM_I(inode);
3326 	const struct xattr *xattr;
3327 	struct simple_xattr *new_xattr;
3328 	size_t len;
3329 
3330 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3331 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3332 		if (!new_xattr)
3333 			return -ENOMEM;
3334 
3335 		len = strlen(xattr->name) + 1;
3336 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3337 					  GFP_KERNEL);
3338 		if (!new_xattr->name) {
3339 			kfree(new_xattr);
3340 			return -ENOMEM;
3341 		}
3342 
3343 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3344 		       XATTR_SECURITY_PREFIX_LEN);
3345 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3346 		       xattr->name, len);
3347 
3348 		simple_xattr_list_add(&info->xattrs, new_xattr);
3349 	}
3350 
3351 	return 0;
3352 }
3353 
3354 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3355 				   struct dentry *unused, struct inode *inode,
3356 				   const char *name, void *buffer, size_t size)
3357 {
3358 	struct shmem_inode_info *info = SHMEM_I(inode);
3359 
3360 	name = xattr_full_name(handler, name);
3361 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3362 }
3363 
3364 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3365 				   struct dentry *unused, struct inode *inode,
3366 				   const char *name, const void *value,
3367 				   size_t size, int flags)
3368 {
3369 	struct shmem_inode_info *info = SHMEM_I(inode);
3370 
3371 	name = xattr_full_name(handler, name);
3372 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3373 }
3374 
3375 static const struct xattr_handler shmem_security_xattr_handler = {
3376 	.prefix = XATTR_SECURITY_PREFIX,
3377 	.get = shmem_xattr_handler_get,
3378 	.set = shmem_xattr_handler_set,
3379 };
3380 
3381 static const struct xattr_handler shmem_trusted_xattr_handler = {
3382 	.prefix = XATTR_TRUSTED_PREFIX,
3383 	.get = shmem_xattr_handler_get,
3384 	.set = shmem_xattr_handler_set,
3385 };
3386 
3387 static const struct xattr_handler *shmem_xattr_handlers[] = {
3388 #ifdef CONFIG_TMPFS_POSIX_ACL
3389 	&posix_acl_access_xattr_handler,
3390 	&posix_acl_default_xattr_handler,
3391 #endif
3392 	&shmem_security_xattr_handler,
3393 	&shmem_trusted_xattr_handler,
3394 	NULL
3395 };
3396 
3397 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3398 {
3399 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3400 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3401 }
3402 #endif /* CONFIG_TMPFS_XATTR */
3403 
3404 static const struct inode_operations shmem_short_symlink_operations = {
3405 	.get_link	= simple_get_link,
3406 #ifdef CONFIG_TMPFS_XATTR
3407 	.listxattr	= shmem_listxattr,
3408 #endif
3409 };
3410 
3411 static const struct inode_operations shmem_symlink_inode_operations = {
3412 	.get_link	= shmem_get_link,
3413 #ifdef CONFIG_TMPFS_XATTR
3414 	.listxattr	= shmem_listxattr,
3415 #endif
3416 };
3417 
3418 static struct dentry *shmem_get_parent(struct dentry *child)
3419 {
3420 	return ERR_PTR(-ESTALE);
3421 }
3422 
3423 static int shmem_match(struct inode *ino, void *vfh)
3424 {
3425 	__u32 *fh = vfh;
3426 	__u64 inum = fh[2];
3427 	inum = (inum << 32) | fh[1];
3428 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3429 }
3430 
3431 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3432 		struct fid *fid, int fh_len, int fh_type)
3433 {
3434 	struct inode *inode;
3435 	struct dentry *dentry = NULL;
3436 	u64 inum;
3437 
3438 	if (fh_len < 3)
3439 		return NULL;
3440 
3441 	inum = fid->raw[2];
3442 	inum = (inum << 32) | fid->raw[1];
3443 
3444 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3445 			shmem_match, fid->raw);
3446 	if (inode) {
3447 		dentry = d_find_alias(inode);
3448 		iput(inode);
3449 	}
3450 
3451 	return dentry;
3452 }
3453 
3454 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3455 				struct inode *parent)
3456 {
3457 	if (*len < 3) {
3458 		*len = 3;
3459 		return FILEID_INVALID;
3460 	}
3461 
3462 	if (inode_unhashed(inode)) {
3463 		/* Unfortunately insert_inode_hash is not idempotent,
3464 		 * so as we hash inodes here rather than at creation
3465 		 * time, we need a lock to ensure we only try
3466 		 * to do it once
3467 		 */
3468 		static DEFINE_SPINLOCK(lock);
3469 		spin_lock(&lock);
3470 		if (inode_unhashed(inode))
3471 			__insert_inode_hash(inode,
3472 					    inode->i_ino + inode->i_generation);
3473 		spin_unlock(&lock);
3474 	}
3475 
3476 	fh[0] = inode->i_generation;
3477 	fh[1] = inode->i_ino;
3478 	fh[2] = ((__u64)inode->i_ino) >> 32;
3479 
3480 	*len = 3;
3481 	return 1;
3482 }
3483 
3484 static const struct export_operations shmem_export_ops = {
3485 	.get_parent     = shmem_get_parent,
3486 	.encode_fh      = shmem_encode_fh,
3487 	.fh_to_dentry	= shmem_fh_to_dentry,
3488 };
3489 
3490 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3491 			       bool remount)
3492 {
3493 	char *this_char, *value, *rest;
3494 	struct mempolicy *mpol = NULL;
3495 	uid_t uid;
3496 	gid_t gid;
3497 
3498 	while (options != NULL) {
3499 		this_char = options;
3500 		for (;;) {
3501 			/*
3502 			 * NUL-terminate this option: unfortunately,
3503 			 * mount options form a comma-separated list,
3504 			 * but mpol's nodelist may also contain commas.
3505 			 */
3506 			options = strchr(options, ',');
3507 			if (options == NULL)
3508 				break;
3509 			options++;
3510 			if (!isdigit(*options)) {
3511 				options[-1] = '\0';
3512 				break;
3513 			}
3514 		}
3515 		if (!*this_char)
3516 			continue;
3517 		if ((value = strchr(this_char,'=')) != NULL) {
3518 			*value++ = 0;
3519 		} else {
3520 			pr_err("tmpfs: No value for mount option '%s'\n",
3521 			       this_char);
3522 			goto error;
3523 		}
3524 
3525 		if (!strcmp(this_char,"size")) {
3526 			unsigned long long size;
3527 			size = memparse(value,&rest);
3528 			if (*rest == '%') {
3529 				size <<= PAGE_SHIFT;
3530 				size *= totalram_pages;
3531 				do_div(size, 100);
3532 				rest++;
3533 			}
3534 			if (*rest)
3535 				goto bad_val;
3536 			sbinfo->max_blocks =
3537 				DIV_ROUND_UP(size, PAGE_SIZE);
3538 		} else if (!strcmp(this_char,"nr_blocks")) {
3539 			sbinfo->max_blocks = memparse(value, &rest);
3540 			if (*rest)
3541 				goto bad_val;
3542 		} else if (!strcmp(this_char,"nr_inodes")) {
3543 			sbinfo->max_inodes = memparse(value, &rest);
3544 			if (*rest)
3545 				goto bad_val;
3546 		} else if (!strcmp(this_char,"mode")) {
3547 			if (remount)
3548 				continue;
3549 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3550 			if (*rest)
3551 				goto bad_val;
3552 		} else if (!strcmp(this_char,"uid")) {
3553 			if (remount)
3554 				continue;
3555 			uid = simple_strtoul(value, &rest, 0);
3556 			if (*rest)
3557 				goto bad_val;
3558 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3559 			if (!uid_valid(sbinfo->uid))
3560 				goto bad_val;
3561 		} else if (!strcmp(this_char,"gid")) {
3562 			if (remount)
3563 				continue;
3564 			gid = simple_strtoul(value, &rest, 0);
3565 			if (*rest)
3566 				goto bad_val;
3567 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3568 			if (!gid_valid(sbinfo->gid))
3569 				goto bad_val;
3570 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3571 		} else if (!strcmp(this_char, "huge")) {
3572 			int huge;
3573 			huge = shmem_parse_huge(value);
3574 			if (huge < 0)
3575 				goto bad_val;
3576 			if (!has_transparent_hugepage() &&
3577 					huge != SHMEM_HUGE_NEVER)
3578 				goto bad_val;
3579 			sbinfo->huge = huge;
3580 #endif
3581 #ifdef CONFIG_NUMA
3582 		} else if (!strcmp(this_char,"mpol")) {
3583 			mpol_put(mpol);
3584 			mpol = NULL;
3585 			if (mpol_parse_str(value, &mpol))
3586 				goto bad_val;
3587 #endif
3588 		} else {
3589 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3590 			goto error;
3591 		}
3592 	}
3593 	sbinfo->mpol = mpol;
3594 	return 0;
3595 
3596 bad_val:
3597 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3598 	       value, this_char);
3599 error:
3600 	mpol_put(mpol);
3601 	return 1;
3602 
3603 }
3604 
3605 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3606 {
3607 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3608 	struct shmem_sb_info config = *sbinfo;
3609 	unsigned long inodes;
3610 	int error = -EINVAL;
3611 
3612 	config.mpol = NULL;
3613 	if (shmem_parse_options(data, &config, true))
3614 		return error;
3615 
3616 	spin_lock(&sbinfo->stat_lock);
3617 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3618 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3619 		goto out;
3620 	if (config.max_inodes < inodes)
3621 		goto out;
3622 	/*
3623 	 * Those tests disallow limited->unlimited while any are in use;
3624 	 * but we must separately disallow unlimited->limited, because
3625 	 * in that case we have no record of how much is already in use.
3626 	 */
3627 	if (config.max_blocks && !sbinfo->max_blocks)
3628 		goto out;
3629 	if (config.max_inodes && !sbinfo->max_inodes)
3630 		goto out;
3631 
3632 	error = 0;
3633 	sbinfo->huge = config.huge;
3634 	sbinfo->max_blocks  = config.max_blocks;
3635 	sbinfo->max_inodes  = config.max_inodes;
3636 	sbinfo->free_inodes = config.max_inodes - inodes;
3637 
3638 	/*
3639 	 * Preserve previous mempolicy unless mpol remount option was specified.
3640 	 */
3641 	if (config.mpol) {
3642 		mpol_put(sbinfo->mpol);
3643 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3644 	}
3645 out:
3646 	spin_unlock(&sbinfo->stat_lock);
3647 	return error;
3648 }
3649 
3650 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3651 {
3652 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3653 
3654 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3655 		seq_printf(seq, ",size=%luk",
3656 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3657 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3658 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3659 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3660 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3661 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3662 		seq_printf(seq, ",uid=%u",
3663 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3664 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3665 		seq_printf(seq, ",gid=%u",
3666 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3667 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3668 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3669 	if (sbinfo->huge)
3670 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3671 #endif
3672 	shmem_show_mpol(seq, sbinfo->mpol);
3673 	return 0;
3674 }
3675 
3676 #define MFD_NAME_PREFIX "memfd:"
3677 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3678 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3679 
3680 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3681 
3682 SYSCALL_DEFINE2(memfd_create,
3683 		const char __user *, uname,
3684 		unsigned int, flags)
3685 {
3686 	unsigned int *file_seals;
3687 	struct file *file;
3688 	int fd, error;
3689 	char *name;
3690 	long len;
3691 
3692 	if (!(flags & MFD_HUGETLB)) {
3693 		if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3694 			return -EINVAL;
3695 	} else {
3696 		/* Allow huge page size encoding in flags. */
3697 		if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3698 				(MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3699 			return -EINVAL;
3700 	}
3701 
3702 	/* length includes terminating zero */
3703 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3704 	if (len <= 0)
3705 		return -EFAULT;
3706 	if (len > MFD_NAME_MAX_LEN + 1)
3707 		return -EINVAL;
3708 
3709 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3710 	if (!name)
3711 		return -ENOMEM;
3712 
3713 	strcpy(name, MFD_NAME_PREFIX);
3714 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3715 		error = -EFAULT;
3716 		goto err_name;
3717 	}
3718 
3719 	/* terminating-zero may have changed after strnlen_user() returned */
3720 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3721 		error = -EFAULT;
3722 		goto err_name;
3723 	}
3724 
3725 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3726 	if (fd < 0) {
3727 		error = fd;
3728 		goto err_name;
3729 	}
3730 
3731 	if (flags & MFD_HUGETLB) {
3732 		struct user_struct *user = NULL;
3733 
3734 		file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3735 					HUGETLB_ANONHUGE_INODE,
3736 					(flags >> MFD_HUGE_SHIFT) &
3737 					MFD_HUGE_MASK);
3738 	} else
3739 		file = shmem_file_setup(name, 0, VM_NORESERVE);
3740 	if (IS_ERR(file)) {
3741 		error = PTR_ERR(file);
3742 		goto err_fd;
3743 	}
3744 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3745 	file->f_flags |= O_RDWR | O_LARGEFILE;
3746 
3747 	if (flags & MFD_ALLOW_SEALING) {
3748 		file_seals = memfd_file_seals_ptr(file);
3749 		*file_seals &= ~F_SEAL_SEAL;
3750 	}
3751 
3752 	fd_install(fd, file);
3753 	kfree(name);
3754 	return fd;
3755 
3756 err_fd:
3757 	put_unused_fd(fd);
3758 err_name:
3759 	kfree(name);
3760 	return error;
3761 }
3762 
3763 #endif /* CONFIG_TMPFS */
3764 
3765 static void shmem_put_super(struct super_block *sb)
3766 {
3767 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3768 
3769 	percpu_counter_destroy(&sbinfo->used_blocks);
3770 	mpol_put(sbinfo->mpol);
3771 	kfree(sbinfo);
3772 	sb->s_fs_info = NULL;
3773 }
3774 
3775 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3776 {
3777 	struct inode *inode;
3778 	struct shmem_sb_info *sbinfo;
3779 	int err = -ENOMEM;
3780 
3781 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3782 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3783 				L1_CACHE_BYTES), GFP_KERNEL);
3784 	if (!sbinfo)
3785 		return -ENOMEM;
3786 
3787 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3788 	sbinfo->uid = current_fsuid();
3789 	sbinfo->gid = current_fsgid();
3790 	sb->s_fs_info = sbinfo;
3791 
3792 #ifdef CONFIG_TMPFS
3793 	/*
3794 	 * Per default we only allow half of the physical ram per
3795 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3796 	 * but the internal instance is left unlimited.
3797 	 */
3798 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3799 		sbinfo->max_blocks = shmem_default_max_blocks();
3800 		sbinfo->max_inodes = shmem_default_max_inodes();
3801 		if (shmem_parse_options(data, sbinfo, false)) {
3802 			err = -EINVAL;
3803 			goto failed;
3804 		}
3805 	} else {
3806 		sb->s_flags |= SB_NOUSER;
3807 	}
3808 	sb->s_export_op = &shmem_export_ops;
3809 	sb->s_flags |= SB_NOSEC;
3810 #else
3811 	sb->s_flags |= SB_NOUSER;
3812 #endif
3813 
3814 	spin_lock_init(&sbinfo->stat_lock);
3815 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3816 		goto failed;
3817 	sbinfo->free_inodes = sbinfo->max_inodes;
3818 	spin_lock_init(&sbinfo->shrinklist_lock);
3819 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3820 
3821 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3822 	sb->s_blocksize = PAGE_SIZE;
3823 	sb->s_blocksize_bits = PAGE_SHIFT;
3824 	sb->s_magic = TMPFS_MAGIC;
3825 	sb->s_op = &shmem_ops;
3826 	sb->s_time_gran = 1;
3827 #ifdef CONFIG_TMPFS_XATTR
3828 	sb->s_xattr = shmem_xattr_handlers;
3829 #endif
3830 #ifdef CONFIG_TMPFS_POSIX_ACL
3831 	sb->s_flags |= SB_POSIXACL;
3832 #endif
3833 	uuid_gen(&sb->s_uuid);
3834 
3835 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3836 	if (!inode)
3837 		goto failed;
3838 	inode->i_uid = sbinfo->uid;
3839 	inode->i_gid = sbinfo->gid;
3840 	sb->s_root = d_make_root(inode);
3841 	if (!sb->s_root)
3842 		goto failed;
3843 	return 0;
3844 
3845 failed:
3846 	shmem_put_super(sb);
3847 	return err;
3848 }
3849 
3850 static struct kmem_cache *shmem_inode_cachep;
3851 
3852 static struct inode *shmem_alloc_inode(struct super_block *sb)
3853 {
3854 	struct shmem_inode_info *info;
3855 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3856 	if (!info)
3857 		return NULL;
3858 	return &info->vfs_inode;
3859 }
3860 
3861 static void shmem_destroy_callback(struct rcu_head *head)
3862 {
3863 	struct inode *inode = container_of(head, struct inode, i_rcu);
3864 	if (S_ISLNK(inode->i_mode))
3865 		kfree(inode->i_link);
3866 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3867 }
3868 
3869 static void shmem_destroy_inode(struct inode *inode)
3870 {
3871 	if (S_ISREG(inode->i_mode))
3872 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3873 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3874 }
3875 
3876 static void shmem_init_inode(void *foo)
3877 {
3878 	struct shmem_inode_info *info = foo;
3879 	inode_init_once(&info->vfs_inode);
3880 }
3881 
3882 static void shmem_init_inodecache(void)
3883 {
3884 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3885 				sizeof(struct shmem_inode_info),
3886 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3887 }
3888 
3889 static void shmem_destroy_inodecache(void)
3890 {
3891 	kmem_cache_destroy(shmem_inode_cachep);
3892 }
3893 
3894 static const struct address_space_operations shmem_aops = {
3895 	.writepage	= shmem_writepage,
3896 	.set_page_dirty	= __set_page_dirty_no_writeback,
3897 #ifdef CONFIG_TMPFS
3898 	.write_begin	= shmem_write_begin,
3899 	.write_end	= shmem_write_end,
3900 #endif
3901 #ifdef CONFIG_MIGRATION
3902 	.migratepage	= migrate_page,
3903 #endif
3904 	.error_remove_page = generic_error_remove_page,
3905 };
3906 
3907 static const struct file_operations shmem_file_operations = {
3908 	.mmap		= shmem_mmap,
3909 	.get_unmapped_area = shmem_get_unmapped_area,
3910 #ifdef CONFIG_TMPFS
3911 	.llseek		= shmem_file_llseek,
3912 	.read_iter	= shmem_file_read_iter,
3913 	.write_iter	= generic_file_write_iter,
3914 	.fsync		= noop_fsync,
3915 	.splice_read	= generic_file_splice_read,
3916 	.splice_write	= iter_file_splice_write,
3917 	.fallocate	= shmem_fallocate,
3918 #endif
3919 };
3920 
3921 static const struct inode_operations shmem_inode_operations = {
3922 	.getattr	= shmem_getattr,
3923 	.setattr	= shmem_setattr,
3924 #ifdef CONFIG_TMPFS_XATTR
3925 	.listxattr	= shmem_listxattr,
3926 	.set_acl	= simple_set_acl,
3927 #endif
3928 };
3929 
3930 static const struct inode_operations shmem_dir_inode_operations = {
3931 #ifdef CONFIG_TMPFS
3932 	.create		= shmem_create,
3933 	.lookup		= simple_lookup,
3934 	.link		= shmem_link,
3935 	.unlink		= shmem_unlink,
3936 	.symlink	= shmem_symlink,
3937 	.mkdir		= shmem_mkdir,
3938 	.rmdir		= shmem_rmdir,
3939 	.mknod		= shmem_mknod,
3940 	.rename		= shmem_rename2,
3941 	.tmpfile	= shmem_tmpfile,
3942 #endif
3943 #ifdef CONFIG_TMPFS_XATTR
3944 	.listxattr	= shmem_listxattr,
3945 #endif
3946 #ifdef CONFIG_TMPFS_POSIX_ACL
3947 	.setattr	= shmem_setattr,
3948 	.set_acl	= simple_set_acl,
3949 #endif
3950 };
3951 
3952 static const struct inode_operations shmem_special_inode_operations = {
3953 #ifdef CONFIG_TMPFS_XATTR
3954 	.listxattr	= shmem_listxattr,
3955 #endif
3956 #ifdef CONFIG_TMPFS_POSIX_ACL
3957 	.setattr	= shmem_setattr,
3958 	.set_acl	= simple_set_acl,
3959 #endif
3960 };
3961 
3962 static const struct super_operations shmem_ops = {
3963 	.alloc_inode	= shmem_alloc_inode,
3964 	.destroy_inode	= shmem_destroy_inode,
3965 #ifdef CONFIG_TMPFS
3966 	.statfs		= shmem_statfs,
3967 	.remount_fs	= shmem_remount_fs,
3968 	.show_options	= shmem_show_options,
3969 #endif
3970 	.evict_inode	= shmem_evict_inode,
3971 	.drop_inode	= generic_delete_inode,
3972 	.put_super	= shmem_put_super,
3973 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3974 	.nr_cached_objects	= shmem_unused_huge_count,
3975 	.free_cached_objects	= shmem_unused_huge_scan,
3976 #endif
3977 };
3978 
3979 static const struct vm_operations_struct shmem_vm_ops = {
3980 	.fault		= shmem_fault,
3981 	.map_pages	= filemap_map_pages,
3982 #ifdef CONFIG_NUMA
3983 	.set_policy     = shmem_set_policy,
3984 	.get_policy     = shmem_get_policy,
3985 #endif
3986 };
3987 
3988 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3989 	int flags, const char *dev_name, void *data)
3990 {
3991 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3992 }
3993 
3994 static struct file_system_type shmem_fs_type = {
3995 	.owner		= THIS_MODULE,
3996 	.name		= "tmpfs",
3997 	.mount		= shmem_mount,
3998 	.kill_sb	= kill_litter_super,
3999 	.fs_flags	= FS_USERNS_MOUNT,
4000 };
4001 
4002 int __init shmem_init(void)
4003 {
4004 	int error;
4005 
4006 	/* If rootfs called this, don't re-init */
4007 	if (shmem_inode_cachep)
4008 		return 0;
4009 
4010 	shmem_init_inodecache();
4011 
4012 	error = register_filesystem(&shmem_fs_type);
4013 	if (error) {
4014 		pr_err("Could not register tmpfs\n");
4015 		goto out2;
4016 	}
4017 
4018 	shm_mnt = kern_mount(&shmem_fs_type);
4019 	if (IS_ERR(shm_mnt)) {
4020 		error = PTR_ERR(shm_mnt);
4021 		pr_err("Could not kern_mount tmpfs\n");
4022 		goto out1;
4023 	}
4024 
4025 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4026 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4027 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4028 	else
4029 		shmem_huge = 0; /* just in case it was patched */
4030 #endif
4031 	return 0;
4032 
4033 out1:
4034 	unregister_filesystem(&shmem_fs_type);
4035 out2:
4036 	shmem_destroy_inodecache();
4037 	shm_mnt = ERR_PTR(error);
4038 	return error;
4039 }
4040 
4041 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4042 static ssize_t shmem_enabled_show(struct kobject *kobj,
4043 		struct kobj_attribute *attr, char *buf)
4044 {
4045 	int values[] = {
4046 		SHMEM_HUGE_ALWAYS,
4047 		SHMEM_HUGE_WITHIN_SIZE,
4048 		SHMEM_HUGE_ADVISE,
4049 		SHMEM_HUGE_NEVER,
4050 		SHMEM_HUGE_DENY,
4051 		SHMEM_HUGE_FORCE,
4052 	};
4053 	int i, count;
4054 
4055 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4056 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4057 
4058 		count += sprintf(buf + count, fmt,
4059 				shmem_format_huge(values[i]));
4060 	}
4061 	buf[count - 1] = '\n';
4062 	return count;
4063 }
4064 
4065 static ssize_t shmem_enabled_store(struct kobject *kobj,
4066 		struct kobj_attribute *attr, const char *buf, size_t count)
4067 {
4068 	char tmp[16];
4069 	int huge;
4070 
4071 	if (count + 1 > sizeof(tmp))
4072 		return -EINVAL;
4073 	memcpy(tmp, buf, count);
4074 	tmp[count] = '\0';
4075 	if (count && tmp[count - 1] == '\n')
4076 		tmp[count - 1] = '\0';
4077 
4078 	huge = shmem_parse_huge(tmp);
4079 	if (huge == -EINVAL)
4080 		return -EINVAL;
4081 	if (!has_transparent_hugepage() &&
4082 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4083 		return -EINVAL;
4084 
4085 	shmem_huge = huge;
4086 	if (shmem_huge > SHMEM_HUGE_DENY)
4087 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4088 	return count;
4089 }
4090 
4091 struct kobj_attribute shmem_enabled_attr =
4092 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4093 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4094 
4095 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4096 bool shmem_huge_enabled(struct vm_area_struct *vma)
4097 {
4098 	struct inode *inode = file_inode(vma->vm_file);
4099 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4100 	loff_t i_size;
4101 	pgoff_t off;
4102 
4103 	if (shmem_huge == SHMEM_HUGE_FORCE)
4104 		return true;
4105 	if (shmem_huge == SHMEM_HUGE_DENY)
4106 		return false;
4107 	switch (sbinfo->huge) {
4108 		case SHMEM_HUGE_NEVER:
4109 			return false;
4110 		case SHMEM_HUGE_ALWAYS:
4111 			return true;
4112 		case SHMEM_HUGE_WITHIN_SIZE:
4113 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4114 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4115 			if (i_size >= HPAGE_PMD_SIZE &&
4116 					i_size >> PAGE_SHIFT >= off)
4117 				return true;
4118 			/* fall through */
4119 		case SHMEM_HUGE_ADVISE:
4120 			/* TODO: implement fadvise() hints */
4121 			return (vma->vm_flags & VM_HUGEPAGE);
4122 		default:
4123 			VM_BUG_ON(1);
4124 			return false;
4125 	}
4126 }
4127 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4128 
4129 #else /* !CONFIG_SHMEM */
4130 
4131 /*
4132  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4133  *
4134  * This is intended for small system where the benefits of the full
4135  * shmem code (swap-backed and resource-limited) are outweighed by
4136  * their complexity. On systems without swap this code should be
4137  * effectively equivalent, but much lighter weight.
4138  */
4139 
4140 static struct file_system_type shmem_fs_type = {
4141 	.name		= "tmpfs",
4142 	.mount		= ramfs_mount,
4143 	.kill_sb	= kill_litter_super,
4144 	.fs_flags	= FS_USERNS_MOUNT,
4145 };
4146 
4147 int __init shmem_init(void)
4148 {
4149 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4150 
4151 	shm_mnt = kern_mount(&shmem_fs_type);
4152 	BUG_ON(IS_ERR(shm_mnt));
4153 
4154 	return 0;
4155 }
4156 
4157 int shmem_unuse(swp_entry_t swap, struct page *page)
4158 {
4159 	return 0;
4160 }
4161 
4162 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4163 {
4164 	return 0;
4165 }
4166 
4167 void shmem_unlock_mapping(struct address_space *mapping)
4168 {
4169 }
4170 
4171 #ifdef CONFIG_MMU
4172 unsigned long shmem_get_unmapped_area(struct file *file,
4173 				      unsigned long addr, unsigned long len,
4174 				      unsigned long pgoff, unsigned long flags)
4175 {
4176 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4177 }
4178 #endif
4179 
4180 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4181 {
4182 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4183 }
4184 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4185 
4186 #define shmem_vm_ops				generic_file_vm_ops
4187 #define shmem_file_operations			ramfs_file_operations
4188 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4189 #define shmem_acct_size(flags, size)		0
4190 #define shmem_unacct_size(flags, size)		do {} while (0)
4191 
4192 #endif /* CONFIG_SHMEM */
4193 
4194 /* common code */
4195 
4196 static const struct dentry_operations anon_ops = {
4197 	.d_dname = simple_dname
4198 };
4199 
4200 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4201 				       unsigned long flags, unsigned int i_flags)
4202 {
4203 	struct file *res;
4204 	struct inode *inode;
4205 	struct path path;
4206 	struct super_block *sb;
4207 	struct qstr this;
4208 
4209 	if (IS_ERR(mnt))
4210 		return ERR_CAST(mnt);
4211 
4212 	if (size < 0 || size > MAX_LFS_FILESIZE)
4213 		return ERR_PTR(-EINVAL);
4214 
4215 	if (shmem_acct_size(flags, size))
4216 		return ERR_PTR(-ENOMEM);
4217 
4218 	res = ERR_PTR(-ENOMEM);
4219 	this.name = name;
4220 	this.len = strlen(name);
4221 	this.hash = 0; /* will go */
4222 	sb = mnt->mnt_sb;
4223 	path.mnt = mntget(mnt);
4224 	path.dentry = d_alloc_pseudo(sb, &this);
4225 	if (!path.dentry)
4226 		goto put_memory;
4227 	d_set_d_op(path.dentry, &anon_ops);
4228 
4229 	res = ERR_PTR(-ENOSPC);
4230 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4231 	if (!inode)
4232 		goto put_memory;
4233 
4234 	inode->i_flags |= i_flags;
4235 	d_instantiate(path.dentry, inode);
4236 	inode->i_size = size;
4237 	clear_nlink(inode);	/* It is unlinked */
4238 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4239 	if (IS_ERR(res))
4240 		goto put_path;
4241 
4242 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4243 		  &shmem_file_operations);
4244 	if (IS_ERR(res))
4245 		goto put_path;
4246 
4247 	return res;
4248 
4249 put_memory:
4250 	shmem_unacct_size(flags, size);
4251 put_path:
4252 	path_put(&path);
4253 	return res;
4254 }
4255 
4256 /**
4257  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4258  * 	kernel internal.  There will be NO LSM permission checks against the
4259  * 	underlying inode.  So users of this interface must do LSM checks at a
4260  *	higher layer.  The users are the big_key and shm implementations.  LSM
4261  *	checks are provided at the key or shm level rather than the inode.
4262  * @name: name for dentry (to be seen in /proc/<pid>/maps
4263  * @size: size to be set for the file
4264  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4265  */
4266 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4267 {
4268 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4269 }
4270 
4271 /**
4272  * shmem_file_setup - get an unlinked file living in tmpfs
4273  * @name: name for dentry (to be seen in /proc/<pid>/maps
4274  * @size: size to be set for the file
4275  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4276  */
4277 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4278 {
4279 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4280 }
4281 EXPORT_SYMBOL_GPL(shmem_file_setup);
4282 
4283 /**
4284  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4285  * @mnt: the tmpfs mount where the file will be created
4286  * @name: name for dentry (to be seen in /proc/<pid>/maps
4287  * @size: size to be set for the file
4288  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4289  */
4290 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4291 				       loff_t size, unsigned long flags)
4292 {
4293 	return __shmem_file_setup(mnt, name, size, flags, 0);
4294 }
4295 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4296 
4297 /**
4298  * shmem_zero_setup - setup a shared anonymous mapping
4299  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4300  */
4301 int shmem_zero_setup(struct vm_area_struct *vma)
4302 {
4303 	struct file *file;
4304 	loff_t size = vma->vm_end - vma->vm_start;
4305 
4306 	/*
4307 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4308 	 * between XFS directory reading and selinux: since this file is only
4309 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4310 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4311 	 */
4312 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4313 	if (IS_ERR(file))
4314 		return PTR_ERR(file);
4315 
4316 	if (vma->vm_file)
4317 		fput(vma->vm_file);
4318 	vma->vm_file = file;
4319 	vma->vm_ops = &shmem_vm_ops;
4320 
4321 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4322 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4323 			(vma->vm_end & HPAGE_PMD_MASK)) {
4324 		khugepaged_enter(vma, vma->vm_flags);
4325 	}
4326 
4327 	return 0;
4328 }
4329 
4330 /**
4331  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4332  * @mapping:	the page's address_space
4333  * @index:	the page index
4334  * @gfp:	the page allocator flags to use if allocating
4335  *
4336  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4337  * with any new page allocations done using the specified allocation flags.
4338  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4339  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4340  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4341  *
4342  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4343  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4344  */
4345 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4346 					 pgoff_t index, gfp_t gfp)
4347 {
4348 #ifdef CONFIG_SHMEM
4349 	struct inode *inode = mapping->host;
4350 	struct page *page;
4351 	int error;
4352 
4353 	BUG_ON(mapping->a_ops != &shmem_aops);
4354 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4355 				  gfp, NULL, NULL, NULL);
4356 	if (error)
4357 		page = ERR_PTR(error);
4358 	else
4359 		unlock_page(page);
4360 	return page;
4361 #else
4362 	/*
4363 	 * The tiny !SHMEM case uses ramfs without swap
4364 	 */
4365 	return read_cache_page_gfp(mapping, index, gfp);
4366 #endif
4367 }
4368 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4369