1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2005 Hugh Dickins. 10 * Copyright (C) 2002-2005 VERITAS Software Corporation. 11 * Copyright (C) 2004 Andi Kleen, SuSE Labs 12 * 13 * Extended attribute support for tmpfs: 14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 16 * 17 * tiny-shmem: 18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 19 * 20 * This file is released under the GPL. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <linux/vfs.h> 26 #include <linux/mount.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/swap.h> 32 33 static struct vfsmount *shm_mnt; 34 35 #ifdef CONFIG_SHMEM 36 /* 37 * This virtual memory filesystem is heavily based on the ramfs. It 38 * extends ramfs by the ability to use swap and honor resource limits 39 * which makes it a completely usable filesystem. 40 */ 41 42 #include <linux/xattr.h> 43 #include <linux/exportfs.h> 44 #include <linux/posix_acl.h> 45 #include <linux/generic_acl.h> 46 #include <linux/mman.h> 47 #include <linux/string.h> 48 #include <linux/slab.h> 49 #include <linux/backing-dev.h> 50 #include <linux/shmem_fs.h> 51 #include <linux/writeback.h> 52 #include <linux/blkdev.h> 53 #include <linux/security.h> 54 #include <linux/swapops.h> 55 #include <linux/mempolicy.h> 56 #include <linux/namei.h> 57 #include <linux/ctype.h> 58 #include <linux/migrate.h> 59 #include <linux/highmem.h> 60 #include <linux/seq_file.h> 61 #include <linux/magic.h> 62 63 #include <asm/uaccess.h> 64 #include <asm/div64.h> 65 #include <asm/pgtable.h> 66 67 /* 68 * The maximum size of a shmem/tmpfs file is limited by the maximum size of 69 * its triple-indirect swap vector - see illustration at shmem_swp_entry(). 70 * 71 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel, 72 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum 73 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel, 74 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout. 75 * 76 * We use / and * instead of shifts in the definitions below, so that the swap 77 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE. 78 */ 79 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) 80 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) 81 82 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) 83 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT) 84 85 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE) 86 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT)) 87 88 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ 92 #define SHMEM_PAGEIN VM_READ 93 #define SHMEM_TRUNCATE VM_WRITE 94 95 /* Definition to limit shmem_truncate's steps between cond_rescheds */ 96 #define LATENCY_LIMIT 64 97 98 /* Pretend that each entry is of this size in directory's i_size */ 99 #define BOGO_DIRENT_SIZE 20 100 101 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ 102 enum sgp_type { 103 SGP_READ, /* don't exceed i_size, don't allocate page */ 104 SGP_CACHE, /* don't exceed i_size, may allocate page */ 105 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 106 SGP_WRITE, /* may exceed i_size, may allocate page */ 107 }; 108 109 #ifdef CONFIG_TMPFS 110 static unsigned long shmem_default_max_blocks(void) 111 { 112 return totalram_pages / 2; 113 } 114 115 static unsigned long shmem_default_max_inodes(void) 116 { 117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 118 } 119 #endif 120 121 static int shmem_getpage(struct inode *inode, unsigned long idx, 122 struct page **pagep, enum sgp_type sgp, int *type); 123 124 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) 125 { 126 /* 127 * The above definition of ENTRIES_PER_PAGE, and the use of 128 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: 129 * might be reconsidered if it ever diverges from PAGE_SIZE. 130 * 131 * Mobility flags are masked out as swap vectors cannot move 132 */ 133 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO, 134 PAGE_CACHE_SHIFT-PAGE_SHIFT); 135 } 136 137 static inline void shmem_dir_free(struct page *page) 138 { 139 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); 140 } 141 142 static struct page **shmem_dir_map(struct page *page) 143 { 144 return (struct page **)kmap_atomic(page, KM_USER0); 145 } 146 147 static inline void shmem_dir_unmap(struct page **dir) 148 { 149 kunmap_atomic(dir, KM_USER0); 150 } 151 152 static swp_entry_t *shmem_swp_map(struct page *page) 153 { 154 return (swp_entry_t *)kmap_atomic(page, KM_USER1); 155 } 156 157 static inline void shmem_swp_balance_unmap(void) 158 { 159 /* 160 * When passing a pointer to an i_direct entry, to code which 161 * also handles indirect entries and so will shmem_swp_unmap, 162 * we must arrange for the preempt count to remain in balance. 163 * What kmap_atomic of a lowmem page does depends on config 164 * and architecture, so pretend to kmap_atomic some lowmem page. 165 */ 166 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); 167 } 168 169 static inline void shmem_swp_unmap(swp_entry_t *entry) 170 { 171 kunmap_atomic(entry, KM_USER1); 172 } 173 174 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 175 { 176 return sb->s_fs_info; 177 } 178 179 /* 180 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 181 * for shared memory and for shared anonymous (/dev/zero) mappings 182 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 183 * consistent with the pre-accounting of private mappings ... 184 */ 185 static inline int shmem_acct_size(unsigned long flags, loff_t size) 186 { 187 return (flags & VM_NORESERVE) ? 188 0 : security_vm_enough_memory_kern(VM_ACCT(size)); 189 } 190 191 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 192 { 193 if (!(flags & VM_NORESERVE)) 194 vm_unacct_memory(VM_ACCT(size)); 195 } 196 197 /* 198 * ... whereas tmpfs objects are accounted incrementally as 199 * pages are allocated, in order to allow huge sparse files. 200 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 201 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 202 */ 203 static inline int shmem_acct_block(unsigned long flags) 204 { 205 return (flags & VM_NORESERVE) ? 206 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0; 207 } 208 209 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 210 { 211 if (flags & VM_NORESERVE) 212 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 213 } 214 215 static const struct super_operations shmem_ops; 216 static const struct address_space_operations shmem_aops; 217 static const struct file_operations shmem_file_operations; 218 static const struct inode_operations shmem_inode_operations; 219 static const struct inode_operations shmem_dir_inode_operations; 220 static const struct inode_operations shmem_special_inode_operations; 221 static const struct vm_operations_struct shmem_vm_ops; 222 223 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 224 .ra_pages = 0, /* No readahead */ 225 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 226 .unplug_io_fn = default_unplug_io_fn, 227 }; 228 229 static LIST_HEAD(shmem_swaplist); 230 static DEFINE_MUTEX(shmem_swaplist_mutex); 231 232 static void shmem_free_blocks(struct inode *inode, long pages) 233 { 234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 235 if (sbinfo->max_blocks) { 236 spin_lock(&sbinfo->stat_lock); 237 sbinfo->free_blocks += pages; 238 inode->i_blocks -= pages*BLOCKS_PER_PAGE; 239 spin_unlock(&sbinfo->stat_lock); 240 } 241 } 242 243 static int shmem_reserve_inode(struct super_block *sb) 244 { 245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 246 if (sbinfo->max_inodes) { 247 spin_lock(&sbinfo->stat_lock); 248 if (!sbinfo->free_inodes) { 249 spin_unlock(&sbinfo->stat_lock); 250 return -ENOSPC; 251 } 252 sbinfo->free_inodes--; 253 spin_unlock(&sbinfo->stat_lock); 254 } 255 return 0; 256 } 257 258 static void shmem_free_inode(struct super_block *sb) 259 { 260 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 261 if (sbinfo->max_inodes) { 262 spin_lock(&sbinfo->stat_lock); 263 sbinfo->free_inodes++; 264 spin_unlock(&sbinfo->stat_lock); 265 } 266 } 267 268 /** 269 * shmem_recalc_inode - recalculate the size of an inode 270 * @inode: inode to recalc 271 * 272 * We have to calculate the free blocks since the mm can drop 273 * undirtied hole pages behind our back. 274 * 275 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 277 * 278 * It has to be called with the spinlock held. 279 */ 280 static void shmem_recalc_inode(struct inode *inode) 281 { 282 struct shmem_inode_info *info = SHMEM_I(inode); 283 long freed; 284 285 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 286 if (freed > 0) { 287 info->alloced -= freed; 288 shmem_unacct_blocks(info->flags, freed); 289 shmem_free_blocks(inode, freed); 290 } 291 } 292 293 /** 294 * shmem_swp_entry - find the swap vector position in the info structure 295 * @info: info structure for the inode 296 * @index: index of the page to find 297 * @page: optional page to add to the structure. Has to be preset to 298 * all zeros 299 * 300 * If there is no space allocated yet it will return NULL when 301 * page is NULL, else it will use the page for the needed block, 302 * setting it to NULL on return to indicate that it has been used. 303 * 304 * The swap vector is organized the following way: 305 * 306 * There are SHMEM_NR_DIRECT entries directly stored in the 307 * shmem_inode_info structure. So small files do not need an addional 308 * allocation. 309 * 310 * For pages with index > SHMEM_NR_DIRECT there is the pointer 311 * i_indirect which points to a page which holds in the first half 312 * doubly indirect blocks, in the second half triple indirect blocks: 313 * 314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the 315 * following layout (for SHMEM_NR_DIRECT == 16): 316 * 317 * i_indirect -> dir --> 16-19 318 * | +-> 20-23 319 * | 320 * +-->dir2 --> 24-27 321 * | +-> 28-31 322 * | +-> 32-35 323 * | +-> 36-39 324 * | 325 * +-->dir3 --> 40-43 326 * +-> 44-47 327 * +-> 48-51 328 * +-> 52-55 329 */ 330 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) 331 { 332 unsigned long offset; 333 struct page **dir; 334 struct page *subdir; 335 336 if (index < SHMEM_NR_DIRECT) { 337 shmem_swp_balance_unmap(); 338 return info->i_direct+index; 339 } 340 if (!info->i_indirect) { 341 if (page) { 342 info->i_indirect = *page; 343 *page = NULL; 344 } 345 return NULL; /* need another page */ 346 } 347 348 index -= SHMEM_NR_DIRECT; 349 offset = index % ENTRIES_PER_PAGE; 350 index /= ENTRIES_PER_PAGE; 351 dir = shmem_dir_map(info->i_indirect); 352 353 if (index >= ENTRIES_PER_PAGE/2) { 354 index -= ENTRIES_PER_PAGE/2; 355 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; 356 index %= ENTRIES_PER_PAGE; 357 subdir = *dir; 358 if (!subdir) { 359 if (page) { 360 *dir = *page; 361 *page = NULL; 362 } 363 shmem_dir_unmap(dir); 364 return NULL; /* need another page */ 365 } 366 shmem_dir_unmap(dir); 367 dir = shmem_dir_map(subdir); 368 } 369 370 dir += index; 371 subdir = *dir; 372 if (!subdir) { 373 if (!page || !(subdir = *page)) { 374 shmem_dir_unmap(dir); 375 return NULL; /* need a page */ 376 } 377 *dir = subdir; 378 *page = NULL; 379 } 380 shmem_dir_unmap(dir); 381 return shmem_swp_map(subdir) + offset; 382 } 383 384 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) 385 { 386 long incdec = value? 1: -1; 387 388 entry->val = value; 389 info->swapped += incdec; 390 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { 391 struct page *page = kmap_atomic_to_page(entry); 392 set_page_private(page, page_private(page) + incdec); 393 } 394 } 395 396 /** 397 * shmem_swp_alloc - get the position of the swap entry for the page. 398 * @info: info structure for the inode 399 * @index: index of the page to find 400 * @sgp: check and recheck i_size? skip allocation? 401 * 402 * If the entry does not exist, allocate it. 403 */ 404 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) 405 { 406 struct inode *inode = &info->vfs_inode; 407 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 408 struct page *page = NULL; 409 swp_entry_t *entry; 410 411 if (sgp != SGP_WRITE && 412 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 413 return ERR_PTR(-EINVAL); 414 415 while (!(entry = shmem_swp_entry(info, index, &page))) { 416 if (sgp == SGP_READ) 417 return shmem_swp_map(ZERO_PAGE(0)); 418 /* 419 * Test free_blocks against 1 not 0, since we have 1 data 420 * page (and perhaps indirect index pages) yet to allocate: 421 * a waste to allocate index if we cannot allocate data. 422 */ 423 if (sbinfo->max_blocks) { 424 spin_lock(&sbinfo->stat_lock); 425 if (sbinfo->free_blocks <= 1) { 426 spin_unlock(&sbinfo->stat_lock); 427 return ERR_PTR(-ENOSPC); 428 } 429 sbinfo->free_blocks--; 430 inode->i_blocks += BLOCKS_PER_PAGE; 431 spin_unlock(&sbinfo->stat_lock); 432 } 433 434 spin_unlock(&info->lock); 435 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping)); 436 if (page) 437 set_page_private(page, 0); 438 spin_lock(&info->lock); 439 440 if (!page) { 441 shmem_free_blocks(inode, 1); 442 return ERR_PTR(-ENOMEM); 443 } 444 if (sgp != SGP_WRITE && 445 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 446 entry = ERR_PTR(-EINVAL); 447 break; 448 } 449 if (info->next_index <= index) 450 info->next_index = index + 1; 451 } 452 if (page) { 453 /* another task gave its page, or truncated the file */ 454 shmem_free_blocks(inode, 1); 455 shmem_dir_free(page); 456 } 457 if (info->next_index <= index && !IS_ERR(entry)) 458 info->next_index = index + 1; 459 return entry; 460 } 461 462 /** 463 * shmem_free_swp - free some swap entries in a directory 464 * @dir: pointer to the directory 465 * @edir: pointer after last entry of the directory 466 * @punch_lock: pointer to spinlock when needed for the holepunch case 467 */ 468 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir, 469 spinlock_t *punch_lock) 470 { 471 spinlock_t *punch_unlock = NULL; 472 swp_entry_t *ptr; 473 int freed = 0; 474 475 for (ptr = dir; ptr < edir; ptr++) { 476 if (ptr->val) { 477 if (unlikely(punch_lock)) { 478 punch_unlock = punch_lock; 479 punch_lock = NULL; 480 spin_lock(punch_unlock); 481 if (!ptr->val) 482 continue; 483 } 484 free_swap_and_cache(*ptr); 485 *ptr = (swp_entry_t){0}; 486 freed++; 487 } 488 } 489 if (punch_unlock) 490 spin_unlock(punch_unlock); 491 return freed; 492 } 493 494 static int shmem_map_and_free_swp(struct page *subdir, int offset, 495 int limit, struct page ***dir, spinlock_t *punch_lock) 496 { 497 swp_entry_t *ptr; 498 int freed = 0; 499 500 ptr = shmem_swp_map(subdir); 501 for (; offset < limit; offset += LATENCY_LIMIT) { 502 int size = limit - offset; 503 if (size > LATENCY_LIMIT) 504 size = LATENCY_LIMIT; 505 freed += shmem_free_swp(ptr+offset, ptr+offset+size, 506 punch_lock); 507 if (need_resched()) { 508 shmem_swp_unmap(ptr); 509 if (*dir) { 510 shmem_dir_unmap(*dir); 511 *dir = NULL; 512 } 513 cond_resched(); 514 ptr = shmem_swp_map(subdir); 515 } 516 } 517 shmem_swp_unmap(ptr); 518 return freed; 519 } 520 521 static void shmem_free_pages(struct list_head *next) 522 { 523 struct page *page; 524 int freed = 0; 525 526 do { 527 page = container_of(next, struct page, lru); 528 next = next->next; 529 shmem_dir_free(page); 530 freed++; 531 if (freed >= LATENCY_LIMIT) { 532 cond_resched(); 533 freed = 0; 534 } 535 } while (next); 536 } 537 538 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) 539 { 540 struct shmem_inode_info *info = SHMEM_I(inode); 541 unsigned long idx; 542 unsigned long size; 543 unsigned long limit; 544 unsigned long stage; 545 unsigned long diroff; 546 struct page **dir; 547 struct page *topdir; 548 struct page *middir; 549 struct page *subdir; 550 swp_entry_t *ptr; 551 LIST_HEAD(pages_to_free); 552 long nr_pages_to_free = 0; 553 long nr_swaps_freed = 0; 554 int offset; 555 int freed; 556 int punch_hole; 557 spinlock_t *needs_lock; 558 spinlock_t *punch_lock; 559 unsigned long upper_limit; 560 561 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 562 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 563 if (idx >= info->next_index) 564 return; 565 566 spin_lock(&info->lock); 567 info->flags |= SHMEM_TRUNCATE; 568 if (likely(end == (loff_t) -1)) { 569 limit = info->next_index; 570 upper_limit = SHMEM_MAX_INDEX; 571 info->next_index = idx; 572 needs_lock = NULL; 573 punch_hole = 0; 574 } else { 575 if (end + 1 >= inode->i_size) { /* we may free a little more */ 576 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >> 577 PAGE_CACHE_SHIFT; 578 upper_limit = SHMEM_MAX_INDEX; 579 } else { 580 limit = (end + 1) >> PAGE_CACHE_SHIFT; 581 upper_limit = limit; 582 } 583 needs_lock = &info->lock; 584 punch_hole = 1; 585 } 586 587 topdir = info->i_indirect; 588 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { 589 info->i_indirect = NULL; 590 nr_pages_to_free++; 591 list_add(&topdir->lru, &pages_to_free); 592 } 593 spin_unlock(&info->lock); 594 595 if (info->swapped && idx < SHMEM_NR_DIRECT) { 596 ptr = info->i_direct; 597 size = limit; 598 if (size > SHMEM_NR_DIRECT) 599 size = SHMEM_NR_DIRECT; 600 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock); 601 } 602 603 /* 604 * If there are no indirect blocks or we are punching a hole 605 * below indirect blocks, nothing to be done. 606 */ 607 if (!topdir || limit <= SHMEM_NR_DIRECT) 608 goto done2; 609 610 /* 611 * The truncation case has already dropped info->lock, and we're safe 612 * because i_size and next_index have already been lowered, preventing 613 * access beyond. But in the punch_hole case, we still need to take 614 * the lock when updating the swap directory, because there might be 615 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or 616 * shmem_writepage. However, whenever we find we can remove a whole 617 * directory page (not at the misaligned start or end of the range), 618 * we first NULLify its pointer in the level above, and then have no 619 * need to take the lock when updating its contents: needs_lock and 620 * punch_lock (either pointing to info->lock or NULL) manage this. 621 */ 622 623 upper_limit -= SHMEM_NR_DIRECT; 624 limit -= SHMEM_NR_DIRECT; 625 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; 626 offset = idx % ENTRIES_PER_PAGE; 627 idx -= offset; 628 629 dir = shmem_dir_map(topdir); 630 stage = ENTRIES_PER_PAGEPAGE/2; 631 if (idx < ENTRIES_PER_PAGEPAGE/2) { 632 middir = topdir; 633 diroff = idx/ENTRIES_PER_PAGE; 634 } else { 635 dir += ENTRIES_PER_PAGE/2; 636 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; 637 while (stage <= idx) 638 stage += ENTRIES_PER_PAGEPAGE; 639 middir = *dir; 640 if (*dir) { 641 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % 642 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; 643 if (!diroff && !offset && upper_limit >= stage) { 644 if (needs_lock) { 645 spin_lock(needs_lock); 646 *dir = NULL; 647 spin_unlock(needs_lock); 648 needs_lock = NULL; 649 } else 650 *dir = NULL; 651 nr_pages_to_free++; 652 list_add(&middir->lru, &pages_to_free); 653 } 654 shmem_dir_unmap(dir); 655 dir = shmem_dir_map(middir); 656 } else { 657 diroff = 0; 658 offset = 0; 659 idx = stage; 660 } 661 } 662 663 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { 664 if (unlikely(idx == stage)) { 665 shmem_dir_unmap(dir); 666 dir = shmem_dir_map(topdir) + 667 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 668 while (!*dir) { 669 dir++; 670 idx += ENTRIES_PER_PAGEPAGE; 671 if (idx >= limit) 672 goto done1; 673 } 674 stage = idx + ENTRIES_PER_PAGEPAGE; 675 middir = *dir; 676 if (punch_hole) 677 needs_lock = &info->lock; 678 if (upper_limit >= stage) { 679 if (needs_lock) { 680 spin_lock(needs_lock); 681 *dir = NULL; 682 spin_unlock(needs_lock); 683 needs_lock = NULL; 684 } else 685 *dir = NULL; 686 nr_pages_to_free++; 687 list_add(&middir->lru, &pages_to_free); 688 } 689 shmem_dir_unmap(dir); 690 cond_resched(); 691 dir = shmem_dir_map(middir); 692 diroff = 0; 693 } 694 punch_lock = needs_lock; 695 subdir = dir[diroff]; 696 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) { 697 if (needs_lock) { 698 spin_lock(needs_lock); 699 dir[diroff] = NULL; 700 spin_unlock(needs_lock); 701 punch_lock = NULL; 702 } else 703 dir[diroff] = NULL; 704 nr_pages_to_free++; 705 list_add(&subdir->lru, &pages_to_free); 706 } 707 if (subdir && page_private(subdir) /* has swap entries */) { 708 size = limit - idx; 709 if (size > ENTRIES_PER_PAGE) 710 size = ENTRIES_PER_PAGE; 711 freed = shmem_map_and_free_swp(subdir, 712 offset, size, &dir, punch_lock); 713 if (!dir) 714 dir = shmem_dir_map(middir); 715 nr_swaps_freed += freed; 716 if (offset || punch_lock) { 717 spin_lock(&info->lock); 718 set_page_private(subdir, 719 page_private(subdir) - freed); 720 spin_unlock(&info->lock); 721 } else 722 BUG_ON(page_private(subdir) != freed); 723 } 724 offset = 0; 725 } 726 done1: 727 shmem_dir_unmap(dir); 728 done2: 729 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { 730 /* 731 * Call truncate_inode_pages again: racing shmem_unuse_inode 732 * may have swizzled a page in from swap since vmtruncate or 733 * generic_delete_inode did it, before we lowered next_index. 734 * Also, though shmem_getpage checks i_size before adding to 735 * cache, no recheck after: so fix the narrow window there too. 736 * 737 * Recalling truncate_inode_pages_range and unmap_mapping_range 738 * every time for punch_hole (which never got a chance to clear 739 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive, 740 * yet hardly ever necessary: try to optimize them out later. 741 */ 742 truncate_inode_pages_range(inode->i_mapping, start, end); 743 if (punch_hole) 744 unmap_mapping_range(inode->i_mapping, start, 745 end - start, 1); 746 } 747 748 spin_lock(&info->lock); 749 info->flags &= ~SHMEM_TRUNCATE; 750 info->swapped -= nr_swaps_freed; 751 if (nr_pages_to_free) 752 shmem_free_blocks(inode, nr_pages_to_free); 753 shmem_recalc_inode(inode); 754 spin_unlock(&info->lock); 755 756 /* 757 * Empty swap vector directory pages to be freed? 758 */ 759 if (!list_empty(&pages_to_free)) { 760 pages_to_free.prev->next = NULL; 761 shmem_free_pages(pages_to_free.next); 762 } 763 } 764 765 static void shmem_truncate(struct inode *inode) 766 { 767 shmem_truncate_range(inode, inode->i_size, (loff_t)-1); 768 } 769 770 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) 771 { 772 struct inode *inode = dentry->d_inode; 773 struct page *page = NULL; 774 int error; 775 776 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 777 if (attr->ia_size < inode->i_size) { 778 /* 779 * If truncating down to a partial page, then 780 * if that page is already allocated, hold it 781 * in memory until the truncation is over, so 782 * truncate_partial_page cannnot miss it were 783 * it assigned to swap. 784 */ 785 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) { 786 (void) shmem_getpage(inode, 787 attr->ia_size>>PAGE_CACHE_SHIFT, 788 &page, SGP_READ, NULL); 789 if (page) 790 unlock_page(page); 791 } 792 /* 793 * Reset SHMEM_PAGEIN flag so that shmem_truncate can 794 * detect if any pages might have been added to cache 795 * after truncate_inode_pages. But we needn't bother 796 * if it's being fully truncated to zero-length: the 797 * nrpages check is efficient enough in that case. 798 */ 799 if (attr->ia_size) { 800 struct shmem_inode_info *info = SHMEM_I(inode); 801 spin_lock(&info->lock); 802 info->flags &= ~SHMEM_PAGEIN; 803 spin_unlock(&info->lock); 804 } 805 } 806 } 807 808 error = inode_change_ok(inode, attr); 809 if (!error) 810 error = inode_setattr(inode, attr); 811 #ifdef CONFIG_TMPFS_POSIX_ACL 812 if (!error && (attr->ia_valid & ATTR_MODE)) 813 error = generic_acl_chmod(inode); 814 #endif 815 if (page) 816 page_cache_release(page); 817 return error; 818 } 819 820 static void shmem_delete_inode(struct inode *inode) 821 { 822 struct shmem_inode_info *info = SHMEM_I(inode); 823 824 if (inode->i_op->truncate == shmem_truncate) { 825 truncate_inode_pages(inode->i_mapping, 0); 826 shmem_unacct_size(info->flags, inode->i_size); 827 inode->i_size = 0; 828 shmem_truncate(inode); 829 if (!list_empty(&info->swaplist)) { 830 mutex_lock(&shmem_swaplist_mutex); 831 list_del_init(&info->swaplist); 832 mutex_unlock(&shmem_swaplist_mutex); 833 } 834 } 835 BUG_ON(inode->i_blocks); 836 shmem_free_inode(inode->i_sb); 837 clear_inode(inode); 838 } 839 840 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) 841 { 842 swp_entry_t *ptr; 843 844 for (ptr = dir; ptr < edir; ptr++) { 845 if (ptr->val == entry.val) 846 return ptr - dir; 847 } 848 return -1; 849 } 850 851 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) 852 { 853 struct inode *inode; 854 unsigned long idx; 855 unsigned long size; 856 unsigned long limit; 857 unsigned long stage; 858 struct page **dir; 859 struct page *subdir; 860 swp_entry_t *ptr; 861 int offset; 862 int error; 863 864 idx = 0; 865 ptr = info->i_direct; 866 spin_lock(&info->lock); 867 if (!info->swapped) { 868 list_del_init(&info->swaplist); 869 goto lost2; 870 } 871 limit = info->next_index; 872 size = limit; 873 if (size > SHMEM_NR_DIRECT) 874 size = SHMEM_NR_DIRECT; 875 offset = shmem_find_swp(entry, ptr, ptr+size); 876 if (offset >= 0) 877 goto found; 878 if (!info->i_indirect) 879 goto lost2; 880 881 dir = shmem_dir_map(info->i_indirect); 882 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; 883 884 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { 885 if (unlikely(idx == stage)) { 886 shmem_dir_unmap(dir-1); 887 if (cond_resched_lock(&info->lock)) { 888 /* check it has not been truncated */ 889 if (limit > info->next_index) { 890 limit = info->next_index; 891 if (idx >= limit) 892 goto lost2; 893 } 894 } 895 dir = shmem_dir_map(info->i_indirect) + 896 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 897 while (!*dir) { 898 dir++; 899 idx += ENTRIES_PER_PAGEPAGE; 900 if (idx >= limit) 901 goto lost1; 902 } 903 stage = idx + ENTRIES_PER_PAGEPAGE; 904 subdir = *dir; 905 shmem_dir_unmap(dir); 906 dir = shmem_dir_map(subdir); 907 } 908 subdir = *dir; 909 if (subdir && page_private(subdir)) { 910 ptr = shmem_swp_map(subdir); 911 size = limit - idx; 912 if (size > ENTRIES_PER_PAGE) 913 size = ENTRIES_PER_PAGE; 914 offset = shmem_find_swp(entry, ptr, ptr+size); 915 shmem_swp_unmap(ptr); 916 if (offset >= 0) { 917 shmem_dir_unmap(dir); 918 goto found; 919 } 920 } 921 } 922 lost1: 923 shmem_dir_unmap(dir-1); 924 lost2: 925 spin_unlock(&info->lock); 926 return 0; 927 found: 928 idx += offset; 929 inode = igrab(&info->vfs_inode); 930 spin_unlock(&info->lock); 931 932 /* 933 * Move _head_ to start search for next from here. 934 * But be careful: shmem_delete_inode checks list_empty without taking 935 * mutex, and there's an instant in list_move_tail when info->swaplist 936 * would appear empty, if it were the only one on shmem_swaplist. We 937 * could avoid doing it if inode NULL; or use this minor optimization. 938 */ 939 if (shmem_swaplist.next != &info->swaplist) 940 list_move_tail(&shmem_swaplist, &info->swaplist); 941 mutex_unlock(&shmem_swaplist_mutex); 942 943 error = 1; 944 if (!inode) 945 goto out; 946 /* 947 * Charge page using GFP_KERNEL while we can wait. 948 * Charged back to the user(not to caller) when swap account is used. 949 * add_to_page_cache() will be called with GFP_NOWAIT. 950 */ 951 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 952 if (error) 953 goto out; 954 error = radix_tree_preload(GFP_KERNEL); 955 if (error) { 956 mem_cgroup_uncharge_cache_page(page); 957 goto out; 958 } 959 error = 1; 960 961 spin_lock(&info->lock); 962 ptr = shmem_swp_entry(info, idx, NULL); 963 if (ptr && ptr->val == entry.val) { 964 error = add_to_page_cache_locked(page, inode->i_mapping, 965 idx, GFP_NOWAIT); 966 /* does mem_cgroup_uncharge_cache_page on error */ 967 } else /* we must compensate for our precharge above */ 968 mem_cgroup_uncharge_cache_page(page); 969 970 if (error == -EEXIST) { 971 struct page *filepage = find_get_page(inode->i_mapping, idx); 972 error = 1; 973 if (filepage) { 974 /* 975 * There might be a more uptodate page coming down 976 * from a stacked writepage: forget our swappage if so. 977 */ 978 if (PageUptodate(filepage)) 979 error = 0; 980 page_cache_release(filepage); 981 } 982 } 983 if (!error) { 984 delete_from_swap_cache(page); 985 set_page_dirty(page); 986 info->flags |= SHMEM_PAGEIN; 987 shmem_swp_set(info, ptr, 0); 988 swap_free(entry); 989 error = 1; /* not an error, but entry was found */ 990 } 991 if (ptr) 992 shmem_swp_unmap(ptr); 993 spin_unlock(&info->lock); 994 radix_tree_preload_end(); 995 out: 996 unlock_page(page); 997 page_cache_release(page); 998 iput(inode); /* allows for NULL */ 999 return error; 1000 } 1001 1002 /* 1003 * shmem_unuse() search for an eventually swapped out shmem page. 1004 */ 1005 int shmem_unuse(swp_entry_t entry, struct page *page) 1006 { 1007 struct list_head *p, *next; 1008 struct shmem_inode_info *info; 1009 int found = 0; 1010 1011 mutex_lock(&shmem_swaplist_mutex); 1012 list_for_each_safe(p, next, &shmem_swaplist) { 1013 info = list_entry(p, struct shmem_inode_info, swaplist); 1014 found = shmem_unuse_inode(info, entry, page); 1015 cond_resched(); 1016 if (found) 1017 goto out; 1018 } 1019 mutex_unlock(&shmem_swaplist_mutex); 1020 /* 1021 * Can some race bring us here? We've been holding page lock, 1022 * so I think not; but would rather try again later than BUG() 1023 */ 1024 unlock_page(page); 1025 page_cache_release(page); 1026 out: 1027 return (found < 0) ? found : 0; 1028 } 1029 1030 /* 1031 * Move the page from the page cache to the swap cache. 1032 */ 1033 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1034 { 1035 struct shmem_inode_info *info; 1036 swp_entry_t *entry, swap; 1037 struct address_space *mapping; 1038 unsigned long index; 1039 struct inode *inode; 1040 1041 BUG_ON(!PageLocked(page)); 1042 mapping = page->mapping; 1043 index = page->index; 1044 inode = mapping->host; 1045 info = SHMEM_I(inode); 1046 if (info->flags & VM_LOCKED) 1047 goto redirty; 1048 if (!total_swap_pages) 1049 goto redirty; 1050 1051 /* 1052 * shmem_backing_dev_info's capabilities prevent regular writeback or 1053 * sync from ever calling shmem_writepage; but a stacking filesystem 1054 * may use the ->writepage of its underlying filesystem, in which case 1055 * tmpfs should write out to swap only in response to memory pressure, 1056 * and not for the writeback threads or sync. However, in those cases, 1057 * we do still want to check if there's a redundant swappage to be 1058 * discarded. 1059 */ 1060 if (wbc->for_reclaim) 1061 swap = get_swap_page(); 1062 else 1063 swap.val = 0; 1064 1065 spin_lock(&info->lock); 1066 if (index >= info->next_index) { 1067 BUG_ON(!(info->flags & SHMEM_TRUNCATE)); 1068 goto unlock; 1069 } 1070 entry = shmem_swp_entry(info, index, NULL); 1071 if (entry->val) { 1072 /* 1073 * The more uptodate page coming down from a stacked 1074 * writepage should replace our old swappage. 1075 */ 1076 free_swap_and_cache(*entry); 1077 shmem_swp_set(info, entry, 0); 1078 } 1079 shmem_recalc_inode(inode); 1080 1081 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1082 remove_from_page_cache(page); 1083 shmem_swp_set(info, entry, swap.val); 1084 shmem_swp_unmap(entry); 1085 if (list_empty(&info->swaplist)) 1086 inode = igrab(inode); 1087 else 1088 inode = NULL; 1089 spin_unlock(&info->lock); 1090 swap_shmem_alloc(swap); 1091 BUG_ON(page_mapped(page)); 1092 page_cache_release(page); /* pagecache ref */ 1093 swap_writepage(page, wbc); 1094 if (inode) { 1095 mutex_lock(&shmem_swaplist_mutex); 1096 /* move instead of add in case we're racing */ 1097 list_move_tail(&info->swaplist, &shmem_swaplist); 1098 mutex_unlock(&shmem_swaplist_mutex); 1099 iput(inode); 1100 } 1101 return 0; 1102 } 1103 1104 shmem_swp_unmap(entry); 1105 unlock: 1106 spin_unlock(&info->lock); 1107 /* 1108 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 1109 * clear SWAP_HAS_CACHE flag. 1110 */ 1111 swapcache_free(swap, NULL); 1112 redirty: 1113 set_page_dirty(page); 1114 if (wbc->for_reclaim) 1115 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1116 unlock_page(page); 1117 return 0; 1118 } 1119 1120 #ifdef CONFIG_NUMA 1121 #ifdef CONFIG_TMPFS 1122 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1123 { 1124 char buffer[64]; 1125 1126 if (!mpol || mpol->mode == MPOL_DEFAULT) 1127 return; /* show nothing */ 1128 1129 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 1130 1131 seq_printf(seq, ",mpol=%s", buffer); 1132 } 1133 1134 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1135 { 1136 struct mempolicy *mpol = NULL; 1137 if (sbinfo->mpol) { 1138 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1139 mpol = sbinfo->mpol; 1140 mpol_get(mpol); 1141 spin_unlock(&sbinfo->stat_lock); 1142 } 1143 return mpol; 1144 } 1145 #endif /* CONFIG_TMPFS */ 1146 1147 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1148 struct shmem_inode_info *info, unsigned long idx) 1149 { 1150 struct mempolicy mpol, *spol; 1151 struct vm_area_struct pvma; 1152 struct page *page; 1153 1154 spol = mpol_cond_copy(&mpol, 1155 mpol_shared_policy_lookup(&info->policy, idx)); 1156 1157 /* Create a pseudo vma that just contains the policy */ 1158 pvma.vm_start = 0; 1159 pvma.vm_pgoff = idx; 1160 pvma.vm_ops = NULL; 1161 pvma.vm_policy = spol; 1162 page = swapin_readahead(entry, gfp, &pvma, 0); 1163 return page; 1164 } 1165 1166 static struct page *shmem_alloc_page(gfp_t gfp, 1167 struct shmem_inode_info *info, unsigned long idx) 1168 { 1169 struct vm_area_struct pvma; 1170 1171 /* Create a pseudo vma that just contains the policy */ 1172 pvma.vm_start = 0; 1173 pvma.vm_pgoff = idx; 1174 pvma.vm_ops = NULL; 1175 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); 1176 1177 /* 1178 * alloc_page_vma() will drop the shared policy reference 1179 */ 1180 return alloc_page_vma(gfp, &pvma, 0); 1181 } 1182 #else /* !CONFIG_NUMA */ 1183 #ifdef CONFIG_TMPFS 1184 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p) 1185 { 1186 } 1187 #endif /* CONFIG_TMPFS */ 1188 1189 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1190 struct shmem_inode_info *info, unsigned long idx) 1191 { 1192 return swapin_readahead(entry, gfp, NULL, 0); 1193 } 1194 1195 static inline struct page *shmem_alloc_page(gfp_t gfp, 1196 struct shmem_inode_info *info, unsigned long idx) 1197 { 1198 return alloc_page(gfp); 1199 } 1200 #endif /* CONFIG_NUMA */ 1201 1202 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1203 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1204 { 1205 return NULL; 1206 } 1207 #endif 1208 1209 /* 1210 * shmem_getpage - either get the page from swap or allocate a new one 1211 * 1212 * If we allocate a new one we do not mark it dirty. That's up to the 1213 * vm. If we swap it in we mark it dirty since we also free the swap 1214 * entry since a page cannot live in both the swap and page cache 1215 */ 1216 static int shmem_getpage(struct inode *inode, unsigned long idx, 1217 struct page **pagep, enum sgp_type sgp, int *type) 1218 { 1219 struct address_space *mapping = inode->i_mapping; 1220 struct shmem_inode_info *info = SHMEM_I(inode); 1221 struct shmem_sb_info *sbinfo; 1222 struct page *filepage = *pagep; 1223 struct page *swappage; 1224 swp_entry_t *entry; 1225 swp_entry_t swap; 1226 gfp_t gfp; 1227 int error; 1228 1229 if (idx >= SHMEM_MAX_INDEX) 1230 return -EFBIG; 1231 1232 if (type) 1233 *type = 0; 1234 1235 /* 1236 * Normally, filepage is NULL on entry, and either found 1237 * uptodate immediately, or allocated and zeroed, or read 1238 * in under swappage, which is then assigned to filepage. 1239 * But shmem_readpage (required for splice) passes in a locked 1240 * filepage, which may be found not uptodate by other callers 1241 * too, and may need to be copied from the swappage read in. 1242 */ 1243 repeat: 1244 if (!filepage) 1245 filepage = find_lock_page(mapping, idx); 1246 if (filepage && PageUptodate(filepage)) 1247 goto done; 1248 error = 0; 1249 gfp = mapping_gfp_mask(mapping); 1250 if (!filepage) { 1251 /* 1252 * Try to preload while we can wait, to not make a habit of 1253 * draining atomic reserves; but don't latch on to this cpu. 1254 */ 1255 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM); 1256 if (error) 1257 goto failed; 1258 radix_tree_preload_end(); 1259 } 1260 1261 spin_lock(&info->lock); 1262 shmem_recalc_inode(inode); 1263 entry = shmem_swp_alloc(info, idx, sgp); 1264 if (IS_ERR(entry)) { 1265 spin_unlock(&info->lock); 1266 error = PTR_ERR(entry); 1267 goto failed; 1268 } 1269 swap = *entry; 1270 1271 if (swap.val) { 1272 /* Look it up and read it in.. */ 1273 swappage = lookup_swap_cache(swap); 1274 if (!swappage) { 1275 shmem_swp_unmap(entry); 1276 /* here we actually do the io */ 1277 if (type && !(*type & VM_FAULT_MAJOR)) { 1278 __count_vm_event(PGMAJFAULT); 1279 *type |= VM_FAULT_MAJOR; 1280 } 1281 spin_unlock(&info->lock); 1282 swappage = shmem_swapin(swap, gfp, info, idx); 1283 if (!swappage) { 1284 spin_lock(&info->lock); 1285 entry = shmem_swp_alloc(info, idx, sgp); 1286 if (IS_ERR(entry)) 1287 error = PTR_ERR(entry); 1288 else { 1289 if (entry->val == swap.val) 1290 error = -ENOMEM; 1291 shmem_swp_unmap(entry); 1292 } 1293 spin_unlock(&info->lock); 1294 if (error) 1295 goto failed; 1296 goto repeat; 1297 } 1298 wait_on_page_locked(swappage); 1299 page_cache_release(swappage); 1300 goto repeat; 1301 } 1302 1303 /* We have to do this with page locked to prevent races */ 1304 if (!trylock_page(swappage)) { 1305 shmem_swp_unmap(entry); 1306 spin_unlock(&info->lock); 1307 wait_on_page_locked(swappage); 1308 page_cache_release(swappage); 1309 goto repeat; 1310 } 1311 if (PageWriteback(swappage)) { 1312 shmem_swp_unmap(entry); 1313 spin_unlock(&info->lock); 1314 wait_on_page_writeback(swappage); 1315 unlock_page(swappage); 1316 page_cache_release(swappage); 1317 goto repeat; 1318 } 1319 if (!PageUptodate(swappage)) { 1320 shmem_swp_unmap(entry); 1321 spin_unlock(&info->lock); 1322 unlock_page(swappage); 1323 page_cache_release(swappage); 1324 error = -EIO; 1325 goto failed; 1326 } 1327 1328 if (filepage) { 1329 shmem_swp_set(info, entry, 0); 1330 shmem_swp_unmap(entry); 1331 delete_from_swap_cache(swappage); 1332 spin_unlock(&info->lock); 1333 copy_highpage(filepage, swappage); 1334 unlock_page(swappage); 1335 page_cache_release(swappage); 1336 flush_dcache_page(filepage); 1337 SetPageUptodate(filepage); 1338 set_page_dirty(filepage); 1339 swap_free(swap); 1340 } else if (!(error = add_to_page_cache_locked(swappage, mapping, 1341 idx, GFP_NOWAIT))) { 1342 info->flags |= SHMEM_PAGEIN; 1343 shmem_swp_set(info, entry, 0); 1344 shmem_swp_unmap(entry); 1345 delete_from_swap_cache(swappage); 1346 spin_unlock(&info->lock); 1347 filepage = swappage; 1348 set_page_dirty(filepage); 1349 swap_free(swap); 1350 } else { 1351 shmem_swp_unmap(entry); 1352 spin_unlock(&info->lock); 1353 if (error == -ENOMEM) { 1354 /* 1355 * reclaim from proper memory cgroup and 1356 * call memcg's OOM if needed. 1357 */ 1358 error = mem_cgroup_shmem_charge_fallback( 1359 swappage, 1360 current->mm, 1361 gfp); 1362 if (error) { 1363 unlock_page(swappage); 1364 page_cache_release(swappage); 1365 goto failed; 1366 } 1367 } 1368 unlock_page(swappage); 1369 page_cache_release(swappage); 1370 goto repeat; 1371 } 1372 } else if (sgp == SGP_READ && !filepage) { 1373 shmem_swp_unmap(entry); 1374 filepage = find_get_page(mapping, idx); 1375 if (filepage && 1376 (!PageUptodate(filepage) || !trylock_page(filepage))) { 1377 spin_unlock(&info->lock); 1378 wait_on_page_locked(filepage); 1379 page_cache_release(filepage); 1380 filepage = NULL; 1381 goto repeat; 1382 } 1383 spin_unlock(&info->lock); 1384 } else { 1385 shmem_swp_unmap(entry); 1386 sbinfo = SHMEM_SB(inode->i_sb); 1387 if (sbinfo->max_blocks) { 1388 spin_lock(&sbinfo->stat_lock); 1389 if (sbinfo->free_blocks == 0 || 1390 shmem_acct_block(info->flags)) { 1391 spin_unlock(&sbinfo->stat_lock); 1392 spin_unlock(&info->lock); 1393 error = -ENOSPC; 1394 goto failed; 1395 } 1396 sbinfo->free_blocks--; 1397 inode->i_blocks += BLOCKS_PER_PAGE; 1398 spin_unlock(&sbinfo->stat_lock); 1399 } else if (shmem_acct_block(info->flags)) { 1400 spin_unlock(&info->lock); 1401 error = -ENOSPC; 1402 goto failed; 1403 } 1404 1405 if (!filepage) { 1406 int ret; 1407 1408 spin_unlock(&info->lock); 1409 filepage = shmem_alloc_page(gfp, info, idx); 1410 if (!filepage) { 1411 shmem_unacct_blocks(info->flags, 1); 1412 shmem_free_blocks(inode, 1); 1413 error = -ENOMEM; 1414 goto failed; 1415 } 1416 SetPageSwapBacked(filepage); 1417 1418 /* Precharge page while we can wait, compensate after */ 1419 error = mem_cgroup_cache_charge(filepage, current->mm, 1420 GFP_KERNEL); 1421 if (error) { 1422 page_cache_release(filepage); 1423 shmem_unacct_blocks(info->flags, 1); 1424 shmem_free_blocks(inode, 1); 1425 filepage = NULL; 1426 goto failed; 1427 } 1428 1429 spin_lock(&info->lock); 1430 entry = shmem_swp_alloc(info, idx, sgp); 1431 if (IS_ERR(entry)) 1432 error = PTR_ERR(entry); 1433 else { 1434 swap = *entry; 1435 shmem_swp_unmap(entry); 1436 } 1437 ret = error || swap.val; 1438 if (ret) 1439 mem_cgroup_uncharge_cache_page(filepage); 1440 else 1441 ret = add_to_page_cache_lru(filepage, mapping, 1442 idx, GFP_NOWAIT); 1443 /* 1444 * At add_to_page_cache_lru() failure, uncharge will 1445 * be done automatically. 1446 */ 1447 if (ret) { 1448 spin_unlock(&info->lock); 1449 page_cache_release(filepage); 1450 shmem_unacct_blocks(info->flags, 1); 1451 shmem_free_blocks(inode, 1); 1452 filepage = NULL; 1453 if (error) 1454 goto failed; 1455 goto repeat; 1456 } 1457 info->flags |= SHMEM_PAGEIN; 1458 } 1459 1460 info->alloced++; 1461 spin_unlock(&info->lock); 1462 clear_highpage(filepage); 1463 flush_dcache_page(filepage); 1464 SetPageUptodate(filepage); 1465 if (sgp == SGP_DIRTY) 1466 set_page_dirty(filepage); 1467 } 1468 done: 1469 *pagep = filepage; 1470 return 0; 1471 1472 failed: 1473 if (*pagep != filepage) { 1474 unlock_page(filepage); 1475 page_cache_release(filepage); 1476 } 1477 return error; 1478 } 1479 1480 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1481 { 1482 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1483 int error; 1484 int ret; 1485 1486 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 1487 return VM_FAULT_SIGBUS; 1488 1489 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1490 if (error) 1491 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1492 1493 return ret | VM_FAULT_LOCKED; 1494 } 1495 1496 #ifdef CONFIG_NUMA 1497 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) 1498 { 1499 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1500 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); 1501 } 1502 1503 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1504 unsigned long addr) 1505 { 1506 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1507 unsigned long idx; 1508 1509 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1510 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); 1511 } 1512 #endif 1513 1514 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1515 { 1516 struct inode *inode = file->f_path.dentry->d_inode; 1517 struct shmem_inode_info *info = SHMEM_I(inode); 1518 int retval = -ENOMEM; 1519 1520 spin_lock(&info->lock); 1521 if (lock && !(info->flags & VM_LOCKED)) { 1522 if (!user_shm_lock(inode->i_size, user)) 1523 goto out_nomem; 1524 info->flags |= VM_LOCKED; 1525 mapping_set_unevictable(file->f_mapping); 1526 } 1527 if (!lock && (info->flags & VM_LOCKED) && user) { 1528 user_shm_unlock(inode->i_size, user); 1529 info->flags &= ~VM_LOCKED; 1530 mapping_clear_unevictable(file->f_mapping); 1531 scan_mapping_unevictable_pages(file->f_mapping); 1532 } 1533 retval = 0; 1534 1535 out_nomem: 1536 spin_unlock(&info->lock); 1537 return retval; 1538 } 1539 1540 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1541 { 1542 file_accessed(file); 1543 vma->vm_ops = &shmem_vm_ops; 1544 vma->vm_flags |= VM_CAN_NONLINEAR; 1545 return 0; 1546 } 1547 1548 static struct inode *shmem_get_inode(struct super_block *sb, int mode, 1549 dev_t dev, unsigned long flags) 1550 { 1551 struct inode *inode; 1552 struct shmem_inode_info *info; 1553 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1554 1555 if (shmem_reserve_inode(sb)) 1556 return NULL; 1557 1558 inode = new_inode(sb); 1559 if (inode) { 1560 inode->i_mode = mode; 1561 inode->i_uid = current_fsuid(); 1562 inode->i_gid = current_fsgid(); 1563 inode->i_blocks = 0; 1564 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1565 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1566 inode->i_generation = get_seconds(); 1567 info = SHMEM_I(inode); 1568 memset(info, 0, (char *)inode - (char *)info); 1569 spin_lock_init(&info->lock); 1570 info->flags = flags & VM_NORESERVE; 1571 INIT_LIST_HEAD(&info->swaplist); 1572 cache_no_acl(inode); 1573 1574 switch (mode & S_IFMT) { 1575 default: 1576 inode->i_op = &shmem_special_inode_operations; 1577 init_special_inode(inode, mode, dev); 1578 break; 1579 case S_IFREG: 1580 inode->i_mapping->a_ops = &shmem_aops; 1581 inode->i_op = &shmem_inode_operations; 1582 inode->i_fop = &shmem_file_operations; 1583 mpol_shared_policy_init(&info->policy, 1584 shmem_get_sbmpol(sbinfo)); 1585 break; 1586 case S_IFDIR: 1587 inc_nlink(inode); 1588 /* Some things misbehave if size == 0 on a directory */ 1589 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1590 inode->i_op = &shmem_dir_inode_operations; 1591 inode->i_fop = &simple_dir_operations; 1592 break; 1593 case S_IFLNK: 1594 /* 1595 * Must not load anything in the rbtree, 1596 * mpol_free_shared_policy will not be called. 1597 */ 1598 mpol_shared_policy_init(&info->policy, NULL); 1599 break; 1600 } 1601 } else 1602 shmem_free_inode(sb); 1603 return inode; 1604 } 1605 1606 #ifdef CONFIG_TMPFS 1607 static const struct inode_operations shmem_symlink_inode_operations; 1608 static const struct inode_operations shmem_symlink_inline_operations; 1609 1610 /* 1611 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin; 1612 * but providing them allows a tmpfs file to be used for splice, sendfile, and 1613 * below the loop driver, in the generic fashion that many filesystems support. 1614 */ 1615 static int shmem_readpage(struct file *file, struct page *page) 1616 { 1617 struct inode *inode = page->mapping->host; 1618 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL); 1619 unlock_page(page); 1620 return error; 1621 } 1622 1623 static int 1624 shmem_write_begin(struct file *file, struct address_space *mapping, 1625 loff_t pos, unsigned len, unsigned flags, 1626 struct page **pagep, void **fsdata) 1627 { 1628 struct inode *inode = mapping->host; 1629 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1630 *pagep = NULL; 1631 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1632 } 1633 1634 static int 1635 shmem_write_end(struct file *file, struct address_space *mapping, 1636 loff_t pos, unsigned len, unsigned copied, 1637 struct page *page, void *fsdata) 1638 { 1639 struct inode *inode = mapping->host; 1640 1641 if (pos + copied > inode->i_size) 1642 i_size_write(inode, pos + copied); 1643 1644 set_page_dirty(page); 1645 unlock_page(page); 1646 page_cache_release(page); 1647 1648 return copied; 1649 } 1650 1651 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1652 { 1653 struct inode *inode = filp->f_path.dentry->d_inode; 1654 struct address_space *mapping = inode->i_mapping; 1655 unsigned long index, offset; 1656 enum sgp_type sgp = SGP_READ; 1657 1658 /* 1659 * Might this read be for a stacking filesystem? Then when reading 1660 * holes of a sparse file, we actually need to allocate those pages, 1661 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1662 */ 1663 if (segment_eq(get_fs(), KERNEL_DS)) 1664 sgp = SGP_DIRTY; 1665 1666 index = *ppos >> PAGE_CACHE_SHIFT; 1667 offset = *ppos & ~PAGE_CACHE_MASK; 1668 1669 for (;;) { 1670 struct page *page = NULL; 1671 unsigned long end_index, nr, ret; 1672 loff_t i_size = i_size_read(inode); 1673 1674 end_index = i_size >> PAGE_CACHE_SHIFT; 1675 if (index > end_index) 1676 break; 1677 if (index == end_index) { 1678 nr = i_size & ~PAGE_CACHE_MASK; 1679 if (nr <= offset) 1680 break; 1681 } 1682 1683 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1684 if (desc->error) { 1685 if (desc->error == -EINVAL) 1686 desc->error = 0; 1687 break; 1688 } 1689 if (page) 1690 unlock_page(page); 1691 1692 /* 1693 * We must evaluate after, since reads (unlike writes) 1694 * are called without i_mutex protection against truncate 1695 */ 1696 nr = PAGE_CACHE_SIZE; 1697 i_size = i_size_read(inode); 1698 end_index = i_size >> PAGE_CACHE_SHIFT; 1699 if (index == end_index) { 1700 nr = i_size & ~PAGE_CACHE_MASK; 1701 if (nr <= offset) { 1702 if (page) 1703 page_cache_release(page); 1704 break; 1705 } 1706 } 1707 nr -= offset; 1708 1709 if (page) { 1710 /* 1711 * If users can be writing to this page using arbitrary 1712 * virtual addresses, take care about potential aliasing 1713 * before reading the page on the kernel side. 1714 */ 1715 if (mapping_writably_mapped(mapping)) 1716 flush_dcache_page(page); 1717 /* 1718 * Mark the page accessed if we read the beginning. 1719 */ 1720 if (!offset) 1721 mark_page_accessed(page); 1722 } else { 1723 page = ZERO_PAGE(0); 1724 page_cache_get(page); 1725 } 1726 1727 /* 1728 * Ok, we have the page, and it's up-to-date, so 1729 * now we can copy it to user space... 1730 * 1731 * The actor routine returns how many bytes were actually used.. 1732 * NOTE! This may not be the same as how much of a user buffer 1733 * we filled up (we may be padding etc), so we can only update 1734 * "pos" here (the actor routine has to update the user buffer 1735 * pointers and the remaining count). 1736 */ 1737 ret = actor(desc, page, offset, nr); 1738 offset += ret; 1739 index += offset >> PAGE_CACHE_SHIFT; 1740 offset &= ~PAGE_CACHE_MASK; 1741 1742 page_cache_release(page); 1743 if (ret != nr || !desc->count) 1744 break; 1745 1746 cond_resched(); 1747 } 1748 1749 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1750 file_accessed(filp); 1751 } 1752 1753 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1754 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1755 { 1756 struct file *filp = iocb->ki_filp; 1757 ssize_t retval; 1758 unsigned long seg; 1759 size_t count; 1760 loff_t *ppos = &iocb->ki_pos; 1761 1762 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1763 if (retval) 1764 return retval; 1765 1766 for (seg = 0; seg < nr_segs; seg++) { 1767 read_descriptor_t desc; 1768 1769 desc.written = 0; 1770 desc.arg.buf = iov[seg].iov_base; 1771 desc.count = iov[seg].iov_len; 1772 if (desc.count == 0) 1773 continue; 1774 desc.error = 0; 1775 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1776 retval += desc.written; 1777 if (desc.error) { 1778 retval = retval ?: desc.error; 1779 break; 1780 } 1781 if (desc.count > 0) 1782 break; 1783 } 1784 return retval; 1785 } 1786 1787 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1788 { 1789 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1790 1791 buf->f_type = TMPFS_MAGIC; 1792 buf->f_bsize = PAGE_CACHE_SIZE; 1793 buf->f_namelen = NAME_MAX; 1794 spin_lock(&sbinfo->stat_lock); 1795 if (sbinfo->max_blocks) { 1796 buf->f_blocks = sbinfo->max_blocks; 1797 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks; 1798 } 1799 if (sbinfo->max_inodes) { 1800 buf->f_files = sbinfo->max_inodes; 1801 buf->f_ffree = sbinfo->free_inodes; 1802 } 1803 /* else leave those fields 0 like simple_statfs */ 1804 spin_unlock(&sbinfo->stat_lock); 1805 return 0; 1806 } 1807 1808 /* 1809 * File creation. Allocate an inode, and we're done.. 1810 */ 1811 static int 1812 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1813 { 1814 struct inode *inode; 1815 int error = -ENOSPC; 1816 1817 inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE); 1818 if (inode) { 1819 error = security_inode_init_security(inode, dir, NULL, NULL, 1820 NULL); 1821 if (error) { 1822 if (error != -EOPNOTSUPP) { 1823 iput(inode); 1824 return error; 1825 } 1826 } 1827 #ifdef CONFIG_TMPFS_POSIX_ACL 1828 error = generic_acl_init(inode, dir); 1829 if (error) { 1830 iput(inode); 1831 return error; 1832 } 1833 #else 1834 error = 0; 1835 #endif 1836 if (dir->i_mode & S_ISGID) { 1837 inode->i_gid = dir->i_gid; 1838 if (S_ISDIR(mode)) 1839 inode->i_mode |= S_ISGID; 1840 } 1841 dir->i_size += BOGO_DIRENT_SIZE; 1842 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1843 d_instantiate(dentry, inode); 1844 dget(dentry); /* Extra count - pin the dentry in core */ 1845 } 1846 return error; 1847 } 1848 1849 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1850 { 1851 int error; 1852 1853 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1854 return error; 1855 inc_nlink(dir); 1856 return 0; 1857 } 1858 1859 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, 1860 struct nameidata *nd) 1861 { 1862 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1863 } 1864 1865 /* 1866 * Link a file.. 1867 */ 1868 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1869 { 1870 struct inode *inode = old_dentry->d_inode; 1871 int ret; 1872 1873 /* 1874 * No ordinary (disk based) filesystem counts links as inodes; 1875 * but each new link needs a new dentry, pinning lowmem, and 1876 * tmpfs dentries cannot be pruned until they are unlinked. 1877 */ 1878 ret = shmem_reserve_inode(inode->i_sb); 1879 if (ret) 1880 goto out; 1881 1882 dir->i_size += BOGO_DIRENT_SIZE; 1883 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1884 inc_nlink(inode); 1885 atomic_inc(&inode->i_count); /* New dentry reference */ 1886 dget(dentry); /* Extra pinning count for the created dentry */ 1887 d_instantiate(dentry, inode); 1888 out: 1889 return ret; 1890 } 1891 1892 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1893 { 1894 struct inode *inode = dentry->d_inode; 1895 1896 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1897 shmem_free_inode(inode->i_sb); 1898 1899 dir->i_size -= BOGO_DIRENT_SIZE; 1900 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1901 drop_nlink(inode); 1902 dput(dentry); /* Undo the count from "create" - this does all the work */ 1903 return 0; 1904 } 1905 1906 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1907 { 1908 if (!simple_empty(dentry)) 1909 return -ENOTEMPTY; 1910 1911 drop_nlink(dentry->d_inode); 1912 drop_nlink(dir); 1913 return shmem_unlink(dir, dentry); 1914 } 1915 1916 /* 1917 * The VFS layer already does all the dentry stuff for rename, 1918 * we just have to decrement the usage count for the target if 1919 * it exists so that the VFS layer correctly free's it when it 1920 * gets overwritten. 1921 */ 1922 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1923 { 1924 struct inode *inode = old_dentry->d_inode; 1925 int they_are_dirs = S_ISDIR(inode->i_mode); 1926 1927 if (!simple_empty(new_dentry)) 1928 return -ENOTEMPTY; 1929 1930 if (new_dentry->d_inode) { 1931 (void) shmem_unlink(new_dir, new_dentry); 1932 if (they_are_dirs) 1933 drop_nlink(old_dir); 1934 } else if (they_are_dirs) { 1935 drop_nlink(old_dir); 1936 inc_nlink(new_dir); 1937 } 1938 1939 old_dir->i_size -= BOGO_DIRENT_SIZE; 1940 new_dir->i_size += BOGO_DIRENT_SIZE; 1941 old_dir->i_ctime = old_dir->i_mtime = 1942 new_dir->i_ctime = new_dir->i_mtime = 1943 inode->i_ctime = CURRENT_TIME; 1944 return 0; 1945 } 1946 1947 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1948 { 1949 int error; 1950 int len; 1951 struct inode *inode; 1952 struct page *page = NULL; 1953 char *kaddr; 1954 struct shmem_inode_info *info; 1955 1956 len = strlen(symname) + 1; 1957 if (len > PAGE_CACHE_SIZE) 1958 return -ENAMETOOLONG; 1959 1960 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 1961 if (!inode) 1962 return -ENOSPC; 1963 1964 error = security_inode_init_security(inode, dir, NULL, NULL, 1965 NULL); 1966 if (error) { 1967 if (error != -EOPNOTSUPP) { 1968 iput(inode); 1969 return error; 1970 } 1971 error = 0; 1972 } 1973 1974 info = SHMEM_I(inode); 1975 inode->i_size = len-1; 1976 if (len <= (char *)inode - (char *)info) { 1977 /* do it inline */ 1978 memcpy(info, symname, len); 1979 inode->i_op = &shmem_symlink_inline_operations; 1980 } else { 1981 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1982 if (error) { 1983 iput(inode); 1984 return error; 1985 } 1986 inode->i_mapping->a_ops = &shmem_aops; 1987 inode->i_op = &shmem_symlink_inode_operations; 1988 kaddr = kmap_atomic(page, KM_USER0); 1989 memcpy(kaddr, symname, len); 1990 kunmap_atomic(kaddr, KM_USER0); 1991 set_page_dirty(page); 1992 unlock_page(page); 1993 page_cache_release(page); 1994 } 1995 if (dir->i_mode & S_ISGID) 1996 inode->i_gid = dir->i_gid; 1997 dir->i_size += BOGO_DIRENT_SIZE; 1998 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1999 d_instantiate(dentry, inode); 2000 dget(dentry); 2001 return 0; 2002 } 2003 2004 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) 2005 { 2006 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); 2007 return NULL; 2008 } 2009 2010 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2011 { 2012 struct page *page = NULL; 2013 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2014 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); 2015 if (page) 2016 unlock_page(page); 2017 return page; 2018 } 2019 2020 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2021 { 2022 if (!IS_ERR(nd_get_link(nd))) { 2023 struct page *page = cookie; 2024 kunmap(page); 2025 mark_page_accessed(page); 2026 page_cache_release(page); 2027 } 2028 } 2029 2030 static const struct inode_operations shmem_symlink_inline_operations = { 2031 .readlink = generic_readlink, 2032 .follow_link = shmem_follow_link_inline, 2033 }; 2034 2035 static const struct inode_operations shmem_symlink_inode_operations = { 2036 .truncate = shmem_truncate, 2037 .readlink = generic_readlink, 2038 .follow_link = shmem_follow_link, 2039 .put_link = shmem_put_link, 2040 }; 2041 2042 #ifdef CONFIG_TMPFS_POSIX_ACL 2043 /* 2044 * Superblocks without xattr inode operations will get security.* xattr 2045 * support from the VFS "for free". As soon as we have any other xattrs 2046 * like ACLs, we also need to implement the security.* handlers at 2047 * filesystem level, though. 2048 */ 2049 2050 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list, 2051 size_t list_len, const char *name, 2052 size_t name_len, int handler_flags) 2053 { 2054 return security_inode_listsecurity(dentry->d_inode, list, list_len); 2055 } 2056 2057 static int shmem_xattr_security_get(struct dentry *dentry, const char *name, 2058 void *buffer, size_t size, int handler_flags) 2059 { 2060 if (strcmp(name, "") == 0) 2061 return -EINVAL; 2062 return xattr_getsecurity(dentry->d_inode, name, buffer, size); 2063 } 2064 2065 static int shmem_xattr_security_set(struct dentry *dentry, const char *name, 2066 const void *value, size_t size, int flags, int handler_flags) 2067 { 2068 if (strcmp(name, "") == 0) 2069 return -EINVAL; 2070 return security_inode_setsecurity(dentry->d_inode, name, value, 2071 size, flags); 2072 } 2073 2074 static struct xattr_handler shmem_xattr_security_handler = { 2075 .prefix = XATTR_SECURITY_PREFIX, 2076 .list = shmem_xattr_security_list, 2077 .get = shmem_xattr_security_get, 2078 .set = shmem_xattr_security_set, 2079 }; 2080 2081 static struct xattr_handler *shmem_xattr_handlers[] = { 2082 &generic_acl_access_handler, 2083 &generic_acl_default_handler, 2084 &shmem_xattr_security_handler, 2085 NULL 2086 }; 2087 #endif 2088 2089 static struct dentry *shmem_get_parent(struct dentry *child) 2090 { 2091 return ERR_PTR(-ESTALE); 2092 } 2093 2094 static int shmem_match(struct inode *ino, void *vfh) 2095 { 2096 __u32 *fh = vfh; 2097 __u64 inum = fh[2]; 2098 inum = (inum << 32) | fh[1]; 2099 return ino->i_ino == inum && fh[0] == ino->i_generation; 2100 } 2101 2102 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2103 struct fid *fid, int fh_len, int fh_type) 2104 { 2105 struct inode *inode; 2106 struct dentry *dentry = NULL; 2107 u64 inum = fid->raw[2]; 2108 inum = (inum << 32) | fid->raw[1]; 2109 2110 if (fh_len < 3) 2111 return NULL; 2112 2113 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2114 shmem_match, fid->raw); 2115 if (inode) { 2116 dentry = d_find_alias(inode); 2117 iput(inode); 2118 } 2119 2120 return dentry; 2121 } 2122 2123 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2124 int connectable) 2125 { 2126 struct inode *inode = dentry->d_inode; 2127 2128 if (*len < 3) 2129 return 255; 2130 2131 if (hlist_unhashed(&inode->i_hash)) { 2132 /* Unfortunately insert_inode_hash is not idempotent, 2133 * so as we hash inodes here rather than at creation 2134 * time, we need a lock to ensure we only try 2135 * to do it once 2136 */ 2137 static DEFINE_SPINLOCK(lock); 2138 spin_lock(&lock); 2139 if (hlist_unhashed(&inode->i_hash)) 2140 __insert_inode_hash(inode, 2141 inode->i_ino + inode->i_generation); 2142 spin_unlock(&lock); 2143 } 2144 2145 fh[0] = inode->i_generation; 2146 fh[1] = inode->i_ino; 2147 fh[2] = ((__u64)inode->i_ino) >> 32; 2148 2149 *len = 3; 2150 return 1; 2151 } 2152 2153 static const struct export_operations shmem_export_ops = { 2154 .get_parent = shmem_get_parent, 2155 .encode_fh = shmem_encode_fh, 2156 .fh_to_dentry = shmem_fh_to_dentry, 2157 }; 2158 2159 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2160 bool remount) 2161 { 2162 char *this_char, *value, *rest; 2163 2164 while (options != NULL) { 2165 this_char = options; 2166 for (;;) { 2167 /* 2168 * NUL-terminate this option: unfortunately, 2169 * mount options form a comma-separated list, 2170 * but mpol's nodelist may also contain commas. 2171 */ 2172 options = strchr(options, ','); 2173 if (options == NULL) 2174 break; 2175 options++; 2176 if (!isdigit(*options)) { 2177 options[-1] = '\0'; 2178 break; 2179 } 2180 } 2181 if (!*this_char) 2182 continue; 2183 if ((value = strchr(this_char,'=')) != NULL) { 2184 *value++ = 0; 2185 } else { 2186 printk(KERN_ERR 2187 "tmpfs: No value for mount option '%s'\n", 2188 this_char); 2189 return 1; 2190 } 2191 2192 if (!strcmp(this_char,"size")) { 2193 unsigned long long size; 2194 size = memparse(value,&rest); 2195 if (*rest == '%') { 2196 size <<= PAGE_SHIFT; 2197 size *= totalram_pages; 2198 do_div(size, 100); 2199 rest++; 2200 } 2201 if (*rest) 2202 goto bad_val; 2203 sbinfo->max_blocks = 2204 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2205 } else if (!strcmp(this_char,"nr_blocks")) { 2206 sbinfo->max_blocks = memparse(value, &rest); 2207 if (*rest) 2208 goto bad_val; 2209 } else if (!strcmp(this_char,"nr_inodes")) { 2210 sbinfo->max_inodes = memparse(value, &rest); 2211 if (*rest) 2212 goto bad_val; 2213 } else if (!strcmp(this_char,"mode")) { 2214 if (remount) 2215 continue; 2216 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2217 if (*rest) 2218 goto bad_val; 2219 } else if (!strcmp(this_char,"uid")) { 2220 if (remount) 2221 continue; 2222 sbinfo->uid = simple_strtoul(value, &rest, 0); 2223 if (*rest) 2224 goto bad_val; 2225 } else if (!strcmp(this_char,"gid")) { 2226 if (remount) 2227 continue; 2228 sbinfo->gid = simple_strtoul(value, &rest, 0); 2229 if (*rest) 2230 goto bad_val; 2231 } else if (!strcmp(this_char,"mpol")) { 2232 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2233 goto bad_val; 2234 } else { 2235 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2236 this_char); 2237 return 1; 2238 } 2239 } 2240 return 0; 2241 2242 bad_val: 2243 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2244 value, this_char); 2245 return 1; 2246 2247 } 2248 2249 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2250 { 2251 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2252 struct shmem_sb_info config = *sbinfo; 2253 unsigned long blocks; 2254 unsigned long inodes; 2255 int error = -EINVAL; 2256 2257 if (shmem_parse_options(data, &config, true)) 2258 return error; 2259 2260 spin_lock(&sbinfo->stat_lock); 2261 blocks = sbinfo->max_blocks - sbinfo->free_blocks; 2262 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2263 if (config.max_blocks < blocks) 2264 goto out; 2265 if (config.max_inodes < inodes) 2266 goto out; 2267 /* 2268 * Those tests also disallow limited->unlimited while any are in 2269 * use, so i_blocks will always be zero when max_blocks is zero; 2270 * but we must separately disallow unlimited->limited, because 2271 * in that case we have no record of how much is already in use. 2272 */ 2273 if (config.max_blocks && !sbinfo->max_blocks) 2274 goto out; 2275 if (config.max_inodes && !sbinfo->max_inodes) 2276 goto out; 2277 2278 error = 0; 2279 sbinfo->max_blocks = config.max_blocks; 2280 sbinfo->free_blocks = config.max_blocks - blocks; 2281 sbinfo->max_inodes = config.max_inodes; 2282 sbinfo->free_inodes = config.max_inodes - inodes; 2283 2284 mpol_put(sbinfo->mpol); 2285 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2286 out: 2287 spin_unlock(&sbinfo->stat_lock); 2288 return error; 2289 } 2290 2291 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs) 2292 { 2293 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb); 2294 2295 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2296 seq_printf(seq, ",size=%luk", 2297 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2298 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2299 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2300 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2301 seq_printf(seq, ",mode=%03o", sbinfo->mode); 2302 if (sbinfo->uid != 0) 2303 seq_printf(seq, ",uid=%u", sbinfo->uid); 2304 if (sbinfo->gid != 0) 2305 seq_printf(seq, ",gid=%u", sbinfo->gid); 2306 shmem_show_mpol(seq, sbinfo->mpol); 2307 return 0; 2308 } 2309 #endif /* CONFIG_TMPFS */ 2310 2311 static void shmem_put_super(struct super_block *sb) 2312 { 2313 kfree(sb->s_fs_info); 2314 sb->s_fs_info = NULL; 2315 } 2316 2317 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2318 { 2319 struct inode *inode; 2320 struct dentry *root; 2321 struct shmem_sb_info *sbinfo; 2322 int err = -ENOMEM; 2323 2324 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2325 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2326 L1_CACHE_BYTES), GFP_KERNEL); 2327 if (!sbinfo) 2328 return -ENOMEM; 2329 2330 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2331 sbinfo->uid = current_fsuid(); 2332 sbinfo->gid = current_fsgid(); 2333 sb->s_fs_info = sbinfo; 2334 2335 #ifdef CONFIG_TMPFS 2336 /* 2337 * Per default we only allow half of the physical ram per 2338 * tmpfs instance, limiting inodes to one per page of lowmem; 2339 * but the internal instance is left unlimited. 2340 */ 2341 if (!(sb->s_flags & MS_NOUSER)) { 2342 sbinfo->max_blocks = shmem_default_max_blocks(); 2343 sbinfo->max_inodes = shmem_default_max_inodes(); 2344 if (shmem_parse_options(data, sbinfo, false)) { 2345 err = -EINVAL; 2346 goto failed; 2347 } 2348 } 2349 sb->s_export_op = &shmem_export_ops; 2350 #else 2351 sb->s_flags |= MS_NOUSER; 2352 #endif 2353 2354 spin_lock_init(&sbinfo->stat_lock); 2355 sbinfo->free_blocks = sbinfo->max_blocks; 2356 sbinfo->free_inodes = sbinfo->max_inodes; 2357 2358 sb->s_maxbytes = SHMEM_MAX_BYTES; 2359 sb->s_blocksize = PAGE_CACHE_SIZE; 2360 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2361 sb->s_magic = TMPFS_MAGIC; 2362 sb->s_op = &shmem_ops; 2363 sb->s_time_gran = 1; 2364 #ifdef CONFIG_TMPFS_POSIX_ACL 2365 sb->s_xattr = shmem_xattr_handlers; 2366 sb->s_flags |= MS_POSIXACL; 2367 #endif 2368 2369 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2370 if (!inode) 2371 goto failed; 2372 inode->i_uid = sbinfo->uid; 2373 inode->i_gid = sbinfo->gid; 2374 root = d_alloc_root(inode); 2375 if (!root) 2376 goto failed_iput; 2377 sb->s_root = root; 2378 return 0; 2379 2380 failed_iput: 2381 iput(inode); 2382 failed: 2383 shmem_put_super(sb); 2384 return err; 2385 } 2386 2387 static struct kmem_cache *shmem_inode_cachep; 2388 2389 static struct inode *shmem_alloc_inode(struct super_block *sb) 2390 { 2391 struct shmem_inode_info *p; 2392 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2393 if (!p) 2394 return NULL; 2395 return &p->vfs_inode; 2396 } 2397 2398 static void shmem_destroy_inode(struct inode *inode) 2399 { 2400 if ((inode->i_mode & S_IFMT) == S_IFREG) { 2401 /* only struct inode is valid if it's an inline symlink */ 2402 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2403 } 2404 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2405 } 2406 2407 static void init_once(void *foo) 2408 { 2409 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2410 2411 inode_init_once(&p->vfs_inode); 2412 } 2413 2414 static int init_inodecache(void) 2415 { 2416 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2417 sizeof(struct shmem_inode_info), 2418 0, SLAB_PANIC, init_once); 2419 return 0; 2420 } 2421 2422 static void destroy_inodecache(void) 2423 { 2424 kmem_cache_destroy(shmem_inode_cachep); 2425 } 2426 2427 static const struct address_space_operations shmem_aops = { 2428 .writepage = shmem_writepage, 2429 .set_page_dirty = __set_page_dirty_no_writeback, 2430 #ifdef CONFIG_TMPFS 2431 .readpage = shmem_readpage, 2432 .write_begin = shmem_write_begin, 2433 .write_end = shmem_write_end, 2434 #endif 2435 .migratepage = migrate_page, 2436 .error_remove_page = generic_error_remove_page, 2437 }; 2438 2439 static const struct file_operations shmem_file_operations = { 2440 .mmap = shmem_mmap, 2441 #ifdef CONFIG_TMPFS 2442 .llseek = generic_file_llseek, 2443 .read = do_sync_read, 2444 .write = do_sync_write, 2445 .aio_read = shmem_file_aio_read, 2446 .aio_write = generic_file_aio_write, 2447 .fsync = simple_sync_file, 2448 .splice_read = generic_file_splice_read, 2449 .splice_write = generic_file_splice_write, 2450 #endif 2451 }; 2452 2453 static const struct inode_operations shmem_inode_operations = { 2454 .truncate = shmem_truncate, 2455 .setattr = shmem_notify_change, 2456 .truncate_range = shmem_truncate_range, 2457 #ifdef CONFIG_TMPFS_POSIX_ACL 2458 .setxattr = generic_setxattr, 2459 .getxattr = generic_getxattr, 2460 .listxattr = generic_listxattr, 2461 .removexattr = generic_removexattr, 2462 .check_acl = generic_check_acl, 2463 #endif 2464 2465 }; 2466 2467 static const struct inode_operations shmem_dir_inode_operations = { 2468 #ifdef CONFIG_TMPFS 2469 .create = shmem_create, 2470 .lookup = simple_lookup, 2471 .link = shmem_link, 2472 .unlink = shmem_unlink, 2473 .symlink = shmem_symlink, 2474 .mkdir = shmem_mkdir, 2475 .rmdir = shmem_rmdir, 2476 .mknod = shmem_mknod, 2477 .rename = shmem_rename, 2478 #endif 2479 #ifdef CONFIG_TMPFS_POSIX_ACL 2480 .setattr = shmem_notify_change, 2481 .setxattr = generic_setxattr, 2482 .getxattr = generic_getxattr, 2483 .listxattr = generic_listxattr, 2484 .removexattr = generic_removexattr, 2485 .check_acl = generic_check_acl, 2486 #endif 2487 }; 2488 2489 static const struct inode_operations shmem_special_inode_operations = { 2490 #ifdef CONFIG_TMPFS_POSIX_ACL 2491 .setattr = shmem_notify_change, 2492 .setxattr = generic_setxattr, 2493 .getxattr = generic_getxattr, 2494 .listxattr = generic_listxattr, 2495 .removexattr = generic_removexattr, 2496 .check_acl = generic_check_acl, 2497 #endif 2498 }; 2499 2500 static const struct super_operations shmem_ops = { 2501 .alloc_inode = shmem_alloc_inode, 2502 .destroy_inode = shmem_destroy_inode, 2503 #ifdef CONFIG_TMPFS 2504 .statfs = shmem_statfs, 2505 .remount_fs = shmem_remount_fs, 2506 .show_options = shmem_show_options, 2507 #endif 2508 .delete_inode = shmem_delete_inode, 2509 .drop_inode = generic_delete_inode, 2510 .put_super = shmem_put_super, 2511 }; 2512 2513 static const struct vm_operations_struct shmem_vm_ops = { 2514 .fault = shmem_fault, 2515 #ifdef CONFIG_NUMA 2516 .set_policy = shmem_set_policy, 2517 .get_policy = shmem_get_policy, 2518 #endif 2519 }; 2520 2521 2522 static int shmem_get_sb(struct file_system_type *fs_type, 2523 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 2524 { 2525 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt); 2526 } 2527 2528 static struct file_system_type tmpfs_fs_type = { 2529 .owner = THIS_MODULE, 2530 .name = "tmpfs", 2531 .get_sb = shmem_get_sb, 2532 .kill_sb = kill_litter_super, 2533 }; 2534 2535 int __init init_tmpfs(void) 2536 { 2537 int error; 2538 2539 error = bdi_init(&shmem_backing_dev_info); 2540 if (error) 2541 goto out4; 2542 2543 error = init_inodecache(); 2544 if (error) 2545 goto out3; 2546 2547 error = register_filesystem(&tmpfs_fs_type); 2548 if (error) { 2549 printk(KERN_ERR "Could not register tmpfs\n"); 2550 goto out2; 2551 } 2552 2553 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER, 2554 tmpfs_fs_type.name, NULL); 2555 if (IS_ERR(shm_mnt)) { 2556 error = PTR_ERR(shm_mnt); 2557 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2558 goto out1; 2559 } 2560 return 0; 2561 2562 out1: 2563 unregister_filesystem(&tmpfs_fs_type); 2564 out2: 2565 destroy_inodecache(); 2566 out3: 2567 bdi_destroy(&shmem_backing_dev_info); 2568 out4: 2569 shm_mnt = ERR_PTR(error); 2570 return error; 2571 } 2572 2573 #else /* !CONFIG_SHMEM */ 2574 2575 /* 2576 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2577 * 2578 * This is intended for small system where the benefits of the full 2579 * shmem code (swap-backed and resource-limited) are outweighed by 2580 * their complexity. On systems without swap this code should be 2581 * effectively equivalent, but much lighter weight. 2582 */ 2583 2584 #include <linux/ramfs.h> 2585 2586 static struct file_system_type tmpfs_fs_type = { 2587 .name = "tmpfs", 2588 .get_sb = ramfs_get_sb, 2589 .kill_sb = kill_litter_super, 2590 }; 2591 2592 int __init init_tmpfs(void) 2593 { 2594 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0); 2595 2596 shm_mnt = kern_mount(&tmpfs_fs_type); 2597 BUG_ON(IS_ERR(shm_mnt)); 2598 2599 return 0; 2600 } 2601 2602 int shmem_unuse(swp_entry_t entry, struct page *page) 2603 { 2604 return 0; 2605 } 2606 2607 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2608 { 2609 return 0; 2610 } 2611 2612 #define shmem_vm_ops generic_file_vm_ops 2613 #define shmem_file_operations ramfs_file_operations 2614 #define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev) 2615 #define shmem_acct_size(flags, size) 0 2616 #define shmem_unacct_size(flags, size) do {} while (0) 2617 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE 2618 2619 #endif /* CONFIG_SHMEM */ 2620 2621 /* common code */ 2622 2623 /** 2624 * shmem_file_setup - get an unlinked file living in tmpfs 2625 * @name: name for dentry (to be seen in /proc/<pid>/maps 2626 * @size: size to be set for the file 2627 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2628 */ 2629 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2630 { 2631 int error; 2632 struct file *file; 2633 struct inode *inode; 2634 struct path path; 2635 struct dentry *root; 2636 struct qstr this; 2637 2638 if (IS_ERR(shm_mnt)) 2639 return (void *)shm_mnt; 2640 2641 if (size < 0 || size > SHMEM_MAX_BYTES) 2642 return ERR_PTR(-EINVAL); 2643 2644 if (shmem_acct_size(flags, size)) 2645 return ERR_PTR(-ENOMEM); 2646 2647 error = -ENOMEM; 2648 this.name = name; 2649 this.len = strlen(name); 2650 this.hash = 0; /* will go */ 2651 root = shm_mnt->mnt_root; 2652 path.dentry = d_alloc(root, &this); 2653 if (!path.dentry) 2654 goto put_memory; 2655 path.mnt = mntget(shm_mnt); 2656 2657 error = -ENOSPC; 2658 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags); 2659 if (!inode) 2660 goto put_dentry; 2661 2662 d_instantiate(path.dentry, inode); 2663 inode->i_size = size; 2664 inode->i_nlink = 0; /* It is unlinked */ 2665 #ifndef CONFIG_MMU 2666 error = ramfs_nommu_expand_for_mapping(inode, size); 2667 if (error) 2668 goto put_dentry; 2669 #endif 2670 2671 error = -ENFILE; 2672 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 2673 &shmem_file_operations); 2674 if (!file) 2675 goto put_dentry; 2676 2677 return file; 2678 2679 put_dentry: 2680 path_put(&path); 2681 put_memory: 2682 shmem_unacct_size(flags, size); 2683 return ERR_PTR(error); 2684 } 2685 EXPORT_SYMBOL_GPL(shmem_file_setup); 2686 2687 /** 2688 * shmem_zero_setup - setup a shared anonymous mapping 2689 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2690 */ 2691 int shmem_zero_setup(struct vm_area_struct *vma) 2692 { 2693 struct file *file; 2694 loff_t size = vma->vm_end - vma->vm_start; 2695 2696 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2697 if (IS_ERR(file)) 2698 return PTR_ERR(file); 2699 2700 if (vma->vm_file) 2701 fput(vma->vm_file); 2702 vma->vm_file = file; 2703 vma->vm_ops = &shmem_vm_ops; 2704 return 0; 2705 } 2706