1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2005 Hugh Dickins. 10 * Copyright (C) 2002-2005 VERITAS Software Corporation. 11 * Copyright (C) 2004 Andi Kleen, SuSE Labs 12 * 13 * Extended attribute support for tmpfs: 14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 16 * 17 * tiny-shmem: 18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 19 * 20 * This file is released under the GPL. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <linux/vfs.h> 26 #include <linux/mount.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/swap.h> 32 #include <linux/ima.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/generic_acl.h> 46 #include <linux/mman.h> 47 #include <linux/string.h> 48 #include <linux/slab.h> 49 #include <linux/backing-dev.h> 50 #include <linux/shmem_fs.h> 51 #include <linux/writeback.h> 52 #include <linux/vfs.h> 53 #include <linux/blkdev.h> 54 #include <linux/security.h> 55 #include <linux/swapops.h> 56 #include <linux/mempolicy.h> 57 #include <linux/namei.h> 58 #include <linux/ctype.h> 59 #include <linux/migrate.h> 60 #include <linux/highmem.h> 61 #include <linux/seq_file.h> 62 #include <linux/magic.h> 63 64 #include <asm/uaccess.h> 65 #include <asm/div64.h> 66 #include <asm/pgtable.h> 67 68 /* 69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of 70 * its triple-indirect swap vector - see illustration at shmem_swp_entry(). 71 * 72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel, 73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum 74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel, 75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout. 76 * 77 * We use / and * instead of shifts in the definitions below, so that the swap 78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE. 79 */ 80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) 81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) 82 83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) 84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT) 85 86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE) 87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT)) 88 89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ 93 #define SHMEM_PAGEIN VM_READ 94 #define SHMEM_TRUNCATE VM_WRITE 95 96 /* Definition to limit shmem_truncate's steps between cond_rescheds */ 97 #define LATENCY_LIMIT 64 98 99 /* Pretend that each entry is of this size in directory's i_size */ 100 #define BOGO_DIRENT_SIZE 20 101 102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ 103 enum sgp_type { 104 SGP_READ, /* don't exceed i_size, don't allocate page */ 105 SGP_CACHE, /* don't exceed i_size, may allocate page */ 106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 107 SGP_WRITE, /* may exceed i_size, may allocate page */ 108 }; 109 110 #ifdef CONFIG_TMPFS 111 static unsigned long shmem_default_max_blocks(void) 112 { 113 return totalram_pages / 2; 114 } 115 116 static unsigned long shmem_default_max_inodes(void) 117 { 118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 119 } 120 #endif 121 122 static int shmem_getpage(struct inode *inode, unsigned long idx, 123 struct page **pagep, enum sgp_type sgp, int *type); 124 125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) 126 { 127 /* 128 * The above definition of ENTRIES_PER_PAGE, and the use of 129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: 130 * might be reconsidered if it ever diverges from PAGE_SIZE. 131 * 132 * Mobility flags are masked out as swap vectors cannot move 133 */ 134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO, 135 PAGE_CACHE_SHIFT-PAGE_SHIFT); 136 } 137 138 static inline void shmem_dir_free(struct page *page) 139 { 140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); 141 } 142 143 static struct page **shmem_dir_map(struct page *page) 144 { 145 return (struct page **)kmap_atomic(page, KM_USER0); 146 } 147 148 static inline void shmem_dir_unmap(struct page **dir) 149 { 150 kunmap_atomic(dir, KM_USER0); 151 } 152 153 static swp_entry_t *shmem_swp_map(struct page *page) 154 { 155 return (swp_entry_t *)kmap_atomic(page, KM_USER1); 156 } 157 158 static inline void shmem_swp_balance_unmap(void) 159 { 160 /* 161 * When passing a pointer to an i_direct entry, to code which 162 * also handles indirect entries and so will shmem_swp_unmap, 163 * we must arrange for the preempt count to remain in balance. 164 * What kmap_atomic of a lowmem page does depends on config 165 * and architecture, so pretend to kmap_atomic some lowmem page. 166 */ 167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); 168 } 169 170 static inline void shmem_swp_unmap(swp_entry_t *entry) 171 { 172 kunmap_atomic(entry, KM_USER1); 173 } 174 175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 176 { 177 return sb->s_fs_info; 178 } 179 180 /* 181 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 182 * for shared memory and for shared anonymous (/dev/zero) mappings 183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 184 * consistent with the pre-accounting of private mappings ... 185 */ 186 static inline int shmem_acct_size(unsigned long flags, loff_t size) 187 { 188 return (flags & VM_NORESERVE) ? 189 0 : security_vm_enough_memory_kern(VM_ACCT(size)); 190 } 191 192 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 193 { 194 if (!(flags & VM_NORESERVE)) 195 vm_unacct_memory(VM_ACCT(size)); 196 } 197 198 /* 199 * ... whereas tmpfs objects are accounted incrementally as 200 * pages are allocated, in order to allow huge sparse files. 201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 203 */ 204 static inline int shmem_acct_block(unsigned long flags) 205 { 206 return (flags & VM_NORESERVE) ? 207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0; 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 214 } 215 216 static const struct super_operations shmem_ops; 217 static const struct address_space_operations shmem_aops; 218 static const struct file_operations shmem_file_operations; 219 static const struct inode_operations shmem_inode_operations; 220 static const struct inode_operations shmem_dir_inode_operations; 221 static const struct inode_operations shmem_special_inode_operations; 222 static struct vm_operations_struct shmem_vm_ops; 223 224 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 225 .ra_pages = 0, /* No readahead */ 226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 227 .unplug_io_fn = default_unplug_io_fn, 228 }; 229 230 static LIST_HEAD(shmem_swaplist); 231 static DEFINE_MUTEX(shmem_swaplist_mutex); 232 233 static void shmem_free_blocks(struct inode *inode, long pages) 234 { 235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 236 if (sbinfo->max_blocks) { 237 spin_lock(&sbinfo->stat_lock); 238 sbinfo->free_blocks += pages; 239 inode->i_blocks -= pages*BLOCKS_PER_PAGE; 240 spin_unlock(&sbinfo->stat_lock); 241 } 242 } 243 244 static int shmem_reserve_inode(struct super_block *sb) 245 { 246 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 247 if (sbinfo->max_inodes) { 248 spin_lock(&sbinfo->stat_lock); 249 if (!sbinfo->free_inodes) { 250 spin_unlock(&sbinfo->stat_lock); 251 return -ENOSPC; 252 } 253 sbinfo->free_inodes--; 254 spin_unlock(&sbinfo->stat_lock); 255 } 256 return 0; 257 } 258 259 static void shmem_free_inode(struct super_block *sb) 260 { 261 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 262 if (sbinfo->max_inodes) { 263 spin_lock(&sbinfo->stat_lock); 264 sbinfo->free_inodes++; 265 spin_unlock(&sbinfo->stat_lock); 266 } 267 } 268 269 /** 270 * shmem_recalc_inode - recalculate the size of an inode 271 * @inode: inode to recalc 272 * 273 * We have to calculate the free blocks since the mm can drop 274 * undirtied hole pages behind our back. 275 * 276 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 278 * 279 * It has to be called with the spinlock held. 280 */ 281 static void shmem_recalc_inode(struct inode *inode) 282 { 283 struct shmem_inode_info *info = SHMEM_I(inode); 284 long freed; 285 286 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 287 if (freed > 0) { 288 info->alloced -= freed; 289 shmem_unacct_blocks(info->flags, freed); 290 shmem_free_blocks(inode, freed); 291 } 292 } 293 294 /** 295 * shmem_swp_entry - find the swap vector position in the info structure 296 * @info: info structure for the inode 297 * @index: index of the page to find 298 * @page: optional page to add to the structure. Has to be preset to 299 * all zeros 300 * 301 * If there is no space allocated yet it will return NULL when 302 * page is NULL, else it will use the page for the needed block, 303 * setting it to NULL on return to indicate that it has been used. 304 * 305 * The swap vector is organized the following way: 306 * 307 * There are SHMEM_NR_DIRECT entries directly stored in the 308 * shmem_inode_info structure. So small files do not need an addional 309 * allocation. 310 * 311 * For pages with index > SHMEM_NR_DIRECT there is the pointer 312 * i_indirect which points to a page which holds in the first half 313 * doubly indirect blocks, in the second half triple indirect blocks: 314 * 315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the 316 * following layout (for SHMEM_NR_DIRECT == 16): 317 * 318 * i_indirect -> dir --> 16-19 319 * | +-> 20-23 320 * | 321 * +-->dir2 --> 24-27 322 * | +-> 28-31 323 * | +-> 32-35 324 * | +-> 36-39 325 * | 326 * +-->dir3 --> 40-43 327 * +-> 44-47 328 * +-> 48-51 329 * +-> 52-55 330 */ 331 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) 332 { 333 unsigned long offset; 334 struct page **dir; 335 struct page *subdir; 336 337 if (index < SHMEM_NR_DIRECT) { 338 shmem_swp_balance_unmap(); 339 return info->i_direct+index; 340 } 341 if (!info->i_indirect) { 342 if (page) { 343 info->i_indirect = *page; 344 *page = NULL; 345 } 346 return NULL; /* need another page */ 347 } 348 349 index -= SHMEM_NR_DIRECT; 350 offset = index % ENTRIES_PER_PAGE; 351 index /= ENTRIES_PER_PAGE; 352 dir = shmem_dir_map(info->i_indirect); 353 354 if (index >= ENTRIES_PER_PAGE/2) { 355 index -= ENTRIES_PER_PAGE/2; 356 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; 357 index %= ENTRIES_PER_PAGE; 358 subdir = *dir; 359 if (!subdir) { 360 if (page) { 361 *dir = *page; 362 *page = NULL; 363 } 364 shmem_dir_unmap(dir); 365 return NULL; /* need another page */ 366 } 367 shmem_dir_unmap(dir); 368 dir = shmem_dir_map(subdir); 369 } 370 371 dir += index; 372 subdir = *dir; 373 if (!subdir) { 374 if (!page || !(subdir = *page)) { 375 shmem_dir_unmap(dir); 376 return NULL; /* need a page */ 377 } 378 *dir = subdir; 379 *page = NULL; 380 } 381 shmem_dir_unmap(dir); 382 return shmem_swp_map(subdir) + offset; 383 } 384 385 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) 386 { 387 long incdec = value? 1: -1; 388 389 entry->val = value; 390 info->swapped += incdec; 391 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { 392 struct page *page = kmap_atomic_to_page(entry); 393 set_page_private(page, page_private(page) + incdec); 394 } 395 } 396 397 /** 398 * shmem_swp_alloc - get the position of the swap entry for the page. 399 * @info: info structure for the inode 400 * @index: index of the page to find 401 * @sgp: check and recheck i_size? skip allocation? 402 * 403 * If the entry does not exist, allocate it. 404 */ 405 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) 406 { 407 struct inode *inode = &info->vfs_inode; 408 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 409 struct page *page = NULL; 410 swp_entry_t *entry; 411 412 if (sgp != SGP_WRITE && 413 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 414 return ERR_PTR(-EINVAL); 415 416 while (!(entry = shmem_swp_entry(info, index, &page))) { 417 if (sgp == SGP_READ) 418 return shmem_swp_map(ZERO_PAGE(0)); 419 /* 420 * Test free_blocks against 1 not 0, since we have 1 data 421 * page (and perhaps indirect index pages) yet to allocate: 422 * a waste to allocate index if we cannot allocate data. 423 */ 424 if (sbinfo->max_blocks) { 425 spin_lock(&sbinfo->stat_lock); 426 if (sbinfo->free_blocks <= 1) { 427 spin_unlock(&sbinfo->stat_lock); 428 return ERR_PTR(-ENOSPC); 429 } 430 sbinfo->free_blocks--; 431 inode->i_blocks += BLOCKS_PER_PAGE; 432 spin_unlock(&sbinfo->stat_lock); 433 } 434 435 spin_unlock(&info->lock); 436 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping)); 437 if (page) 438 set_page_private(page, 0); 439 spin_lock(&info->lock); 440 441 if (!page) { 442 shmem_free_blocks(inode, 1); 443 return ERR_PTR(-ENOMEM); 444 } 445 if (sgp != SGP_WRITE && 446 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 447 entry = ERR_PTR(-EINVAL); 448 break; 449 } 450 if (info->next_index <= index) 451 info->next_index = index + 1; 452 } 453 if (page) { 454 /* another task gave its page, or truncated the file */ 455 shmem_free_blocks(inode, 1); 456 shmem_dir_free(page); 457 } 458 if (info->next_index <= index && !IS_ERR(entry)) 459 info->next_index = index + 1; 460 return entry; 461 } 462 463 /** 464 * shmem_free_swp - free some swap entries in a directory 465 * @dir: pointer to the directory 466 * @edir: pointer after last entry of the directory 467 * @punch_lock: pointer to spinlock when needed for the holepunch case 468 */ 469 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir, 470 spinlock_t *punch_lock) 471 { 472 spinlock_t *punch_unlock = NULL; 473 swp_entry_t *ptr; 474 int freed = 0; 475 476 for (ptr = dir; ptr < edir; ptr++) { 477 if (ptr->val) { 478 if (unlikely(punch_lock)) { 479 punch_unlock = punch_lock; 480 punch_lock = NULL; 481 spin_lock(punch_unlock); 482 if (!ptr->val) 483 continue; 484 } 485 free_swap_and_cache(*ptr); 486 *ptr = (swp_entry_t){0}; 487 freed++; 488 } 489 } 490 if (punch_unlock) 491 spin_unlock(punch_unlock); 492 return freed; 493 } 494 495 static int shmem_map_and_free_swp(struct page *subdir, int offset, 496 int limit, struct page ***dir, spinlock_t *punch_lock) 497 { 498 swp_entry_t *ptr; 499 int freed = 0; 500 501 ptr = shmem_swp_map(subdir); 502 for (; offset < limit; offset += LATENCY_LIMIT) { 503 int size = limit - offset; 504 if (size > LATENCY_LIMIT) 505 size = LATENCY_LIMIT; 506 freed += shmem_free_swp(ptr+offset, ptr+offset+size, 507 punch_lock); 508 if (need_resched()) { 509 shmem_swp_unmap(ptr); 510 if (*dir) { 511 shmem_dir_unmap(*dir); 512 *dir = NULL; 513 } 514 cond_resched(); 515 ptr = shmem_swp_map(subdir); 516 } 517 } 518 shmem_swp_unmap(ptr); 519 return freed; 520 } 521 522 static void shmem_free_pages(struct list_head *next) 523 { 524 struct page *page; 525 int freed = 0; 526 527 do { 528 page = container_of(next, struct page, lru); 529 next = next->next; 530 shmem_dir_free(page); 531 freed++; 532 if (freed >= LATENCY_LIMIT) { 533 cond_resched(); 534 freed = 0; 535 } 536 } while (next); 537 } 538 539 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) 540 { 541 struct shmem_inode_info *info = SHMEM_I(inode); 542 unsigned long idx; 543 unsigned long size; 544 unsigned long limit; 545 unsigned long stage; 546 unsigned long diroff; 547 struct page **dir; 548 struct page *topdir; 549 struct page *middir; 550 struct page *subdir; 551 swp_entry_t *ptr; 552 LIST_HEAD(pages_to_free); 553 long nr_pages_to_free = 0; 554 long nr_swaps_freed = 0; 555 int offset; 556 int freed; 557 int punch_hole; 558 spinlock_t *needs_lock; 559 spinlock_t *punch_lock; 560 unsigned long upper_limit; 561 562 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 563 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 564 if (idx >= info->next_index) 565 return; 566 567 spin_lock(&info->lock); 568 info->flags |= SHMEM_TRUNCATE; 569 if (likely(end == (loff_t) -1)) { 570 limit = info->next_index; 571 upper_limit = SHMEM_MAX_INDEX; 572 info->next_index = idx; 573 needs_lock = NULL; 574 punch_hole = 0; 575 } else { 576 if (end + 1 >= inode->i_size) { /* we may free a little more */ 577 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >> 578 PAGE_CACHE_SHIFT; 579 upper_limit = SHMEM_MAX_INDEX; 580 } else { 581 limit = (end + 1) >> PAGE_CACHE_SHIFT; 582 upper_limit = limit; 583 } 584 needs_lock = &info->lock; 585 punch_hole = 1; 586 } 587 588 topdir = info->i_indirect; 589 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { 590 info->i_indirect = NULL; 591 nr_pages_to_free++; 592 list_add(&topdir->lru, &pages_to_free); 593 } 594 spin_unlock(&info->lock); 595 596 if (info->swapped && idx < SHMEM_NR_DIRECT) { 597 ptr = info->i_direct; 598 size = limit; 599 if (size > SHMEM_NR_DIRECT) 600 size = SHMEM_NR_DIRECT; 601 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock); 602 } 603 604 /* 605 * If there are no indirect blocks or we are punching a hole 606 * below indirect blocks, nothing to be done. 607 */ 608 if (!topdir || limit <= SHMEM_NR_DIRECT) 609 goto done2; 610 611 /* 612 * The truncation case has already dropped info->lock, and we're safe 613 * because i_size and next_index have already been lowered, preventing 614 * access beyond. But in the punch_hole case, we still need to take 615 * the lock when updating the swap directory, because there might be 616 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or 617 * shmem_writepage. However, whenever we find we can remove a whole 618 * directory page (not at the misaligned start or end of the range), 619 * we first NULLify its pointer in the level above, and then have no 620 * need to take the lock when updating its contents: needs_lock and 621 * punch_lock (either pointing to info->lock or NULL) manage this. 622 */ 623 624 upper_limit -= SHMEM_NR_DIRECT; 625 limit -= SHMEM_NR_DIRECT; 626 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; 627 offset = idx % ENTRIES_PER_PAGE; 628 idx -= offset; 629 630 dir = shmem_dir_map(topdir); 631 stage = ENTRIES_PER_PAGEPAGE/2; 632 if (idx < ENTRIES_PER_PAGEPAGE/2) { 633 middir = topdir; 634 diroff = idx/ENTRIES_PER_PAGE; 635 } else { 636 dir += ENTRIES_PER_PAGE/2; 637 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; 638 while (stage <= idx) 639 stage += ENTRIES_PER_PAGEPAGE; 640 middir = *dir; 641 if (*dir) { 642 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % 643 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; 644 if (!diroff && !offset && upper_limit >= stage) { 645 if (needs_lock) { 646 spin_lock(needs_lock); 647 *dir = NULL; 648 spin_unlock(needs_lock); 649 needs_lock = NULL; 650 } else 651 *dir = NULL; 652 nr_pages_to_free++; 653 list_add(&middir->lru, &pages_to_free); 654 } 655 shmem_dir_unmap(dir); 656 dir = shmem_dir_map(middir); 657 } else { 658 diroff = 0; 659 offset = 0; 660 idx = stage; 661 } 662 } 663 664 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { 665 if (unlikely(idx == stage)) { 666 shmem_dir_unmap(dir); 667 dir = shmem_dir_map(topdir) + 668 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 669 while (!*dir) { 670 dir++; 671 idx += ENTRIES_PER_PAGEPAGE; 672 if (idx >= limit) 673 goto done1; 674 } 675 stage = idx + ENTRIES_PER_PAGEPAGE; 676 middir = *dir; 677 if (punch_hole) 678 needs_lock = &info->lock; 679 if (upper_limit >= stage) { 680 if (needs_lock) { 681 spin_lock(needs_lock); 682 *dir = NULL; 683 spin_unlock(needs_lock); 684 needs_lock = NULL; 685 } else 686 *dir = NULL; 687 nr_pages_to_free++; 688 list_add(&middir->lru, &pages_to_free); 689 } 690 shmem_dir_unmap(dir); 691 cond_resched(); 692 dir = shmem_dir_map(middir); 693 diroff = 0; 694 } 695 punch_lock = needs_lock; 696 subdir = dir[diroff]; 697 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) { 698 if (needs_lock) { 699 spin_lock(needs_lock); 700 dir[diroff] = NULL; 701 spin_unlock(needs_lock); 702 punch_lock = NULL; 703 } else 704 dir[diroff] = NULL; 705 nr_pages_to_free++; 706 list_add(&subdir->lru, &pages_to_free); 707 } 708 if (subdir && page_private(subdir) /* has swap entries */) { 709 size = limit - idx; 710 if (size > ENTRIES_PER_PAGE) 711 size = ENTRIES_PER_PAGE; 712 freed = shmem_map_and_free_swp(subdir, 713 offset, size, &dir, punch_lock); 714 if (!dir) 715 dir = shmem_dir_map(middir); 716 nr_swaps_freed += freed; 717 if (offset || punch_lock) { 718 spin_lock(&info->lock); 719 set_page_private(subdir, 720 page_private(subdir) - freed); 721 spin_unlock(&info->lock); 722 } else 723 BUG_ON(page_private(subdir) != freed); 724 } 725 offset = 0; 726 } 727 done1: 728 shmem_dir_unmap(dir); 729 done2: 730 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { 731 /* 732 * Call truncate_inode_pages again: racing shmem_unuse_inode 733 * may have swizzled a page in from swap since vmtruncate or 734 * generic_delete_inode did it, before we lowered next_index. 735 * Also, though shmem_getpage checks i_size before adding to 736 * cache, no recheck after: so fix the narrow window there too. 737 * 738 * Recalling truncate_inode_pages_range and unmap_mapping_range 739 * every time for punch_hole (which never got a chance to clear 740 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive, 741 * yet hardly ever necessary: try to optimize them out later. 742 */ 743 truncate_inode_pages_range(inode->i_mapping, start, end); 744 if (punch_hole) 745 unmap_mapping_range(inode->i_mapping, start, 746 end - start, 1); 747 } 748 749 spin_lock(&info->lock); 750 info->flags &= ~SHMEM_TRUNCATE; 751 info->swapped -= nr_swaps_freed; 752 if (nr_pages_to_free) 753 shmem_free_blocks(inode, nr_pages_to_free); 754 shmem_recalc_inode(inode); 755 spin_unlock(&info->lock); 756 757 /* 758 * Empty swap vector directory pages to be freed? 759 */ 760 if (!list_empty(&pages_to_free)) { 761 pages_to_free.prev->next = NULL; 762 shmem_free_pages(pages_to_free.next); 763 } 764 } 765 766 static void shmem_truncate(struct inode *inode) 767 { 768 shmem_truncate_range(inode, inode->i_size, (loff_t)-1); 769 } 770 771 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) 772 { 773 struct inode *inode = dentry->d_inode; 774 struct page *page = NULL; 775 int error; 776 777 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 778 if (attr->ia_size < inode->i_size) { 779 /* 780 * If truncating down to a partial page, then 781 * if that page is already allocated, hold it 782 * in memory until the truncation is over, so 783 * truncate_partial_page cannnot miss it were 784 * it assigned to swap. 785 */ 786 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) { 787 (void) shmem_getpage(inode, 788 attr->ia_size>>PAGE_CACHE_SHIFT, 789 &page, SGP_READ, NULL); 790 if (page) 791 unlock_page(page); 792 } 793 /* 794 * Reset SHMEM_PAGEIN flag so that shmem_truncate can 795 * detect if any pages might have been added to cache 796 * after truncate_inode_pages. But we needn't bother 797 * if it's being fully truncated to zero-length: the 798 * nrpages check is efficient enough in that case. 799 */ 800 if (attr->ia_size) { 801 struct shmem_inode_info *info = SHMEM_I(inode); 802 spin_lock(&info->lock); 803 info->flags &= ~SHMEM_PAGEIN; 804 spin_unlock(&info->lock); 805 } 806 } 807 } 808 809 error = inode_change_ok(inode, attr); 810 if (!error) 811 error = inode_setattr(inode, attr); 812 #ifdef CONFIG_TMPFS_POSIX_ACL 813 if (!error && (attr->ia_valid & ATTR_MODE)) 814 error = generic_acl_chmod(inode, &shmem_acl_ops); 815 #endif 816 if (page) 817 page_cache_release(page); 818 return error; 819 } 820 821 static void shmem_delete_inode(struct inode *inode) 822 { 823 struct shmem_inode_info *info = SHMEM_I(inode); 824 825 if (inode->i_op->truncate == shmem_truncate) { 826 truncate_inode_pages(inode->i_mapping, 0); 827 shmem_unacct_size(info->flags, inode->i_size); 828 inode->i_size = 0; 829 shmem_truncate(inode); 830 if (!list_empty(&info->swaplist)) { 831 mutex_lock(&shmem_swaplist_mutex); 832 list_del_init(&info->swaplist); 833 mutex_unlock(&shmem_swaplist_mutex); 834 } 835 } 836 BUG_ON(inode->i_blocks); 837 shmem_free_inode(inode->i_sb); 838 clear_inode(inode); 839 } 840 841 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) 842 { 843 swp_entry_t *ptr; 844 845 for (ptr = dir; ptr < edir; ptr++) { 846 if (ptr->val == entry.val) 847 return ptr - dir; 848 } 849 return -1; 850 } 851 852 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) 853 { 854 struct inode *inode; 855 unsigned long idx; 856 unsigned long size; 857 unsigned long limit; 858 unsigned long stage; 859 struct page **dir; 860 struct page *subdir; 861 swp_entry_t *ptr; 862 int offset; 863 int error; 864 865 idx = 0; 866 ptr = info->i_direct; 867 spin_lock(&info->lock); 868 if (!info->swapped) { 869 list_del_init(&info->swaplist); 870 goto lost2; 871 } 872 limit = info->next_index; 873 size = limit; 874 if (size > SHMEM_NR_DIRECT) 875 size = SHMEM_NR_DIRECT; 876 offset = shmem_find_swp(entry, ptr, ptr+size); 877 if (offset >= 0) 878 goto found; 879 if (!info->i_indirect) 880 goto lost2; 881 882 dir = shmem_dir_map(info->i_indirect); 883 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; 884 885 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { 886 if (unlikely(idx == stage)) { 887 shmem_dir_unmap(dir-1); 888 if (cond_resched_lock(&info->lock)) { 889 /* check it has not been truncated */ 890 if (limit > info->next_index) { 891 limit = info->next_index; 892 if (idx >= limit) 893 goto lost2; 894 } 895 } 896 dir = shmem_dir_map(info->i_indirect) + 897 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 898 while (!*dir) { 899 dir++; 900 idx += ENTRIES_PER_PAGEPAGE; 901 if (idx >= limit) 902 goto lost1; 903 } 904 stage = idx + ENTRIES_PER_PAGEPAGE; 905 subdir = *dir; 906 shmem_dir_unmap(dir); 907 dir = shmem_dir_map(subdir); 908 } 909 subdir = *dir; 910 if (subdir && page_private(subdir)) { 911 ptr = shmem_swp_map(subdir); 912 size = limit - idx; 913 if (size > ENTRIES_PER_PAGE) 914 size = ENTRIES_PER_PAGE; 915 offset = shmem_find_swp(entry, ptr, ptr+size); 916 shmem_swp_unmap(ptr); 917 if (offset >= 0) { 918 shmem_dir_unmap(dir); 919 goto found; 920 } 921 } 922 } 923 lost1: 924 shmem_dir_unmap(dir-1); 925 lost2: 926 spin_unlock(&info->lock); 927 return 0; 928 found: 929 idx += offset; 930 inode = igrab(&info->vfs_inode); 931 spin_unlock(&info->lock); 932 933 /* 934 * Move _head_ to start search for next from here. 935 * But be careful: shmem_delete_inode checks list_empty without taking 936 * mutex, and there's an instant in list_move_tail when info->swaplist 937 * would appear empty, if it were the only one on shmem_swaplist. We 938 * could avoid doing it if inode NULL; or use this minor optimization. 939 */ 940 if (shmem_swaplist.next != &info->swaplist) 941 list_move_tail(&shmem_swaplist, &info->swaplist); 942 mutex_unlock(&shmem_swaplist_mutex); 943 944 error = 1; 945 if (!inode) 946 goto out; 947 /* 948 * Charge page using GFP_KERNEL while we can wait. 949 * Charged back to the user(not to caller) when swap account is used. 950 * add_to_page_cache() will be called with GFP_NOWAIT. 951 */ 952 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 953 if (error) 954 goto out; 955 error = radix_tree_preload(GFP_KERNEL); 956 if (error) { 957 mem_cgroup_uncharge_cache_page(page); 958 goto out; 959 } 960 error = 1; 961 962 spin_lock(&info->lock); 963 ptr = shmem_swp_entry(info, idx, NULL); 964 if (ptr && ptr->val == entry.val) { 965 error = add_to_page_cache_locked(page, inode->i_mapping, 966 idx, GFP_NOWAIT); 967 /* does mem_cgroup_uncharge_cache_page on error */ 968 } else /* we must compensate for our precharge above */ 969 mem_cgroup_uncharge_cache_page(page); 970 971 if (error == -EEXIST) { 972 struct page *filepage = find_get_page(inode->i_mapping, idx); 973 error = 1; 974 if (filepage) { 975 /* 976 * There might be a more uptodate page coming down 977 * from a stacked writepage: forget our swappage if so. 978 */ 979 if (PageUptodate(filepage)) 980 error = 0; 981 page_cache_release(filepage); 982 } 983 } 984 if (!error) { 985 delete_from_swap_cache(page); 986 set_page_dirty(page); 987 info->flags |= SHMEM_PAGEIN; 988 shmem_swp_set(info, ptr, 0); 989 swap_free(entry); 990 error = 1; /* not an error, but entry was found */ 991 } 992 if (ptr) 993 shmem_swp_unmap(ptr); 994 spin_unlock(&info->lock); 995 radix_tree_preload_end(); 996 out: 997 unlock_page(page); 998 page_cache_release(page); 999 iput(inode); /* allows for NULL */ 1000 return error; 1001 } 1002 1003 /* 1004 * shmem_unuse() search for an eventually swapped out shmem page. 1005 */ 1006 int shmem_unuse(swp_entry_t entry, struct page *page) 1007 { 1008 struct list_head *p, *next; 1009 struct shmem_inode_info *info; 1010 int found = 0; 1011 1012 mutex_lock(&shmem_swaplist_mutex); 1013 list_for_each_safe(p, next, &shmem_swaplist) { 1014 info = list_entry(p, struct shmem_inode_info, swaplist); 1015 found = shmem_unuse_inode(info, entry, page); 1016 cond_resched(); 1017 if (found) 1018 goto out; 1019 } 1020 mutex_unlock(&shmem_swaplist_mutex); 1021 out: return found; /* 0 or 1 or -ENOMEM */ 1022 } 1023 1024 /* 1025 * Move the page from the page cache to the swap cache. 1026 */ 1027 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1028 { 1029 struct shmem_inode_info *info; 1030 swp_entry_t *entry, swap; 1031 struct address_space *mapping; 1032 unsigned long index; 1033 struct inode *inode; 1034 1035 BUG_ON(!PageLocked(page)); 1036 mapping = page->mapping; 1037 index = page->index; 1038 inode = mapping->host; 1039 info = SHMEM_I(inode); 1040 if (info->flags & VM_LOCKED) 1041 goto redirty; 1042 if (!total_swap_pages) 1043 goto redirty; 1044 1045 /* 1046 * shmem_backing_dev_info's capabilities prevent regular writeback or 1047 * sync from ever calling shmem_writepage; but a stacking filesystem 1048 * may use the ->writepage of its underlying filesystem, in which case 1049 * tmpfs should write out to swap only in response to memory pressure, 1050 * and not for pdflush or sync. However, in those cases, we do still 1051 * want to check if there's a redundant swappage to be discarded. 1052 */ 1053 if (wbc->for_reclaim) 1054 swap = get_swap_page(); 1055 else 1056 swap.val = 0; 1057 1058 spin_lock(&info->lock); 1059 if (index >= info->next_index) { 1060 BUG_ON(!(info->flags & SHMEM_TRUNCATE)); 1061 goto unlock; 1062 } 1063 entry = shmem_swp_entry(info, index, NULL); 1064 if (entry->val) { 1065 /* 1066 * The more uptodate page coming down from a stacked 1067 * writepage should replace our old swappage. 1068 */ 1069 free_swap_and_cache(*entry); 1070 shmem_swp_set(info, entry, 0); 1071 } 1072 shmem_recalc_inode(inode); 1073 1074 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1075 remove_from_page_cache(page); 1076 shmem_swp_set(info, entry, swap.val); 1077 shmem_swp_unmap(entry); 1078 if (list_empty(&info->swaplist)) 1079 inode = igrab(inode); 1080 else 1081 inode = NULL; 1082 spin_unlock(&info->lock); 1083 swap_duplicate(swap); 1084 BUG_ON(page_mapped(page)); 1085 page_cache_release(page); /* pagecache ref */ 1086 swap_writepage(page, wbc); 1087 if (inode) { 1088 mutex_lock(&shmem_swaplist_mutex); 1089 /* move instead of add in case we're racing */ 1090 list_move_tail(&info->swaplist, &shmem_swaplist); 1091 mutex_unlock(&shmem_swaplist_mutex); 1092 iput(inode); 1093 } 1094 return 0; 1095 } 1096 1097 shmem_swp_unmap(entry); 1098 unlock: 1099 spin_unlock(&info->lock); 1100 swap_free(swap); 1101 redirty: 1102 set_page_dirty(page); 1103 if (wbc->for_reclaim) 1104 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1105 unlock_page(page); 1106 return 0; 1107 } 1108 1109 #ifdef CONFIG_NUMA 1110 #ifdef CONFIG_TMPFS 1111 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1112 { 1113 char buffer[64]; 1114 1115 if (!mpol || mpol->mode == MPOL_DEFAULT) 1116 return; /* show nothing */ 1117 1118 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 1119 1120 seq_printf(seq, ",mpol=%s", buffer); 1121 } 1122 1123 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1124 { 1125 struct mempolicy *mpol = NULL; 1126 if (sbinfo->mpol) { 1127 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1128 mpol = sbinfo->mpol; 1129 mpol_get(mpol); 1130 spin_unlock(&sbinfo->stat_lock); 1131 } 1132 return mpol; 1133 } 1134 #endif /* CONFIG_TMPFS */ 1135 1136 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1137 struct shmem_inode_info *info, unsigned long idx) 1138 { 1139 struct mempolicy mpol, *spol; 1140 struct vm_area_struct pvma; 1141 struct page *page; 1142 1143 spol = mpol_cond_copy(&mpol, 1144 mpol_shared_policy_lookup(&info->policy, idx)); 1145 1146 /* Create a pseudo vma that just contains the policy */ 1147 pvma.vm_start = 0; 1148 pvma.vm_pgoff = idx; 1149 pvma.vm_ops = NULL; 1150 pvma.vm_policy = spol; 1151 page = swapin_readahead(entry, gfp, &pvma, 0); 1152 return page; 1153 } 1154 1155 static struct page *shmem_alloc_page(gfp_t gfp, 1156 struct shmem_inode_info *info, unsigned long idx) 1157 { 1158 struct vm_area_struct pvma; 1159 1160 /* Create a pseudo vma that just contains the policy */ 1161 pvma.vm_start = 0; 1162 pvma.vm_pgoff = idx; 1163 pvma.vm_ops = NULL; 1164 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); 1165 1166 /* 1167 * alloc_page_vma() will drop the shared policy reference 1168 */ 1169 return alloc_page_vma(gfp, &pvma, 0); 1170 } 1171 #else /* !CONFIG_NUMA */ 1172 #ifdef CONFIG_TMPFS 1173 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p) 1174 { 1175 } 1176 #endif /* CONFIG_TMPFS */ 1177 1178 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1179 struct shmem_inode_info *info, unsigned long idx) 1180 { 1181 return swapin_readahead(entry, gfp, NULL, 0); 1182 } 1183 1184 static inline struct page *shmem_alloc_page(gfp_t gfp, 1185 struct shmem_inode_info *info, unsigned long idx) 1186 { 1187 return alloc_page(gfp); 1188 } 1189 #endif /* CONFIG_NUMA */ 1190 1191 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1192 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1193 { 1194 return NULL; 1195 } 1196 #endif 1197 1198 /* 1199 * shmem_getpage - either get the page from swap or allocate a new one 1200 * 1201 * If we allocate a new one we do not mark it dirty. That's up to the 1202 * vm. If we swap it in we mark it dirty since we also free the swap 1203 * entry since a page cannot live in both the swap and page cache 1204 */ 1205 static int shmem_getpage(struct inode *inode, unsigned long idx, 1206 struct page **pagep, enum sgp_type sgp, int *type) 1207 { 1208 struct address_space *mapping = inode->i_mapping; 1209 struct shmem_inode_info *info = SHMEM_I(inode); 1210 struct shmem_sb_info *sbinfo; 1211 struct page *filepage = *pagep; 1212 struct page *swappage; 1213 swp_entry_t *entry; 1214 swp_entry_t swap; 1215 gfp_t gfp; 1216 int error; 1217 1218 if (idx >= SHMEM_MAX_INDEX) 1219 return -EFBIG; 1220 1221 if (type) 1222 *type = 0; 1223 1224 /* 1225 * Normally, filepage is NULL on entry, and either found 1226 * uptodate immediately, or allocated and zeroed, or read 1227 * in under swappage, which is then assigned to filepage. 1228 * But shmem_readpage (required for splice) passes in a locked 1229 * filepage, which may be found not uptodate by other callers 1230 * too, and may need to be copied from the swappage read in. 1231 */ 1232 repeat: 1233 if (!filepage) 1234 filepage = find_lock_page(mapping, idx); 1235 if (filepage && PageUptodate(filepage)) 1236 goto done; 1237 error = 0; 1238 gfp = mapping_gfp_mask(mapping); 1239 if (!filepage) { 1240 /* 1241 * Try to preload while we can wait, to not make a habit of 1242 * draining atomic reserves; but don't latch on to this cpu. 1243 */ 1244 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM); 1245 if (error) 1246 goto failed; 1247 radix_tree_preload_end(); 1248 } 1249 1250 spin_lock(&info->lock); 1251 shmem_recalc_inode(inode); 1252 entry = shmem_swp_alloc(info, idx, sgp); 1253 if (IS_ERR(entry)) { 1254 spin_unlock(&info->lock); 1255 error = PTR_ERR(entry); 1256 goto failed; 1257 } 1258 swap = *entry; 1259 1260 if (swap.val) { 1261 /* Look it up and read it in.. */ 1262 swappage = lookup_swap_cache(swap); 1263 if (!swappage) { 1264 shmem_swp_unmap(entry); 1265 /* here we actually do the io */ 1266 if (type && !(*type & VM_FAULT_MAJOR)) { 1267 __count_vm_event(PGMAJFAULT); 1268 *type |= VM_FAULT_MAJOR; 1269 } 1270 spin_unlock(&info->lock); 1271 swappage = shmem_swapin(swap, gfp, info, idx); 1272 if (!swappage) { 1273 spin_lock(&info->lock); 1274 entry = shmem_swp_alloc(info, idx, sgp); 1275 if (IS_ERR(entry)) 1276 error = PTR_ERR(entry); 1277 else { 1278 if (entry->val == swap.val) 1279 error = -ENOMEM; 1280 shmem_swp_unmap(entry); 1281 } 1282 spin_unlock(&info->lock); 1283 if (error) 1284 goto failed; 1285 goto repeat; 1286 } 1287 wait_on_page_locked(swappage); 1288 page_cache_release(swappage); 1289 goto repeat; 1290 } 1291 1292 /* We have to do this with page locked to prevent races */ 1293 if (!trylock_page(swappage)) { 1294 shmem_swp_unmap(entry); 1295 spin_unlock(&info->lock); 1296 wait_on_page_locked(swappage); 1297 page_cache_release(swappage); 1298 goto repeat; 1299 } 1300 if (PageWriteback(swappage)) { 1301 shmem_swp_unmap(entry); 1302 spin_unlock(&info->lock); 1303 wait_on_page_writeback(swappage); 1304 unlock_page(swappage); 1305 page_cache_release(swappage); 1306 goto repeat; 1307 } 1308 if (!PageUptodate(swappage)) { 1309 shmem_swp_unmap(entry); 1310 spin_unlock(&info->lock); 1311 unlock_page(swappage); 1312 page_cache_release(swappage); 1313 error = -EIO; 1314 goto failed; 1315 } 1316 1317 if (filepage) { 1318 shmem_swp_set(info, entry, 0); 1319 shmem_swp_unmap(entry); 1320 delete_from_swap_cache(swappage); 1321 spin_unlock(&info->lock); 1322 copy_highpage(filepage, swappage); 1323 unlock_page(swappage); 1324 page_cache_release(swappage); 1325 flush_dcache_page(filepage); 1326 SetPageUptodate(filepage); 1327 set_page_dirty(filepage); 1328 swap_free(swap); 1329 } else if (!(error = add_to_page_cache_locked(swappage, mapping, 1330 idx, GFP_NOWAIT))) { 1331 info->flags |= SHMEM_PAGEIN; 1332 shmem_swp_set(info, entry, 0); 1333 shmem_swp_unmap(entry); 1334 delete_from_swap_cache(swappage); 1335 spin_unlock(&info->lock); 1336 filepage = swappage; 1337 set_page_dirty(filepage); 1338 swap_free(swap); 1339 } else { 1340 shmem_swp_unmap(entry); 1341 spin_unlock(&info->lock); 1342 if (error == -ENOMEM) { 1343 /* allow reclaim from this memory cgroup */ 1344 error = mem_cgroup_shrink_usage(swappage, 1345 current->mm, 1346 gfp); 1347 if (error) { 1348 unlock_page(swappage); 1349 page_cache_release(swappage); 1350 goto failed; 1351 } 1352 } 1353 unlock_page(swappage); 1354 page_cache_release(swappage); 1355 goto repeat; 1356 } 1357 } else if (sgp == SGP_READ && !filepage) { 1358 shmem_swp_unmap(entry); 1359 filepage = find_get_page(mapping, idx); 1360 if (filepage && 1361 (!PageUptodate(filepage) || !trylock_page(filepage))) { 1362 spin_unlock(&info->lock); 1363 wait_on_page_locked(filepage); 1364 page_cache_release(filepage); 1365 filepage = NULL; 1366 goto repeat; 1367 } 1368 spin_unlock(&info->lock); 1369 } else { 1370 shmem_swp_unmap(entry); 1371 sbinfo = SHMEM_SB(inode->i_sb); 1372 if (sbinfo->max_blocks) { 1373 spin_lock(&sbinfo->stat_lock); 1374 if (sbinfo->free_blocks == 0 || 1375 shmem_acct_block(info->flags)) { 1376 spin_unlock(&sbinfo->stat_lock); 1377 spin_unlock(&info->lock); 1378 error = -ENOSPC; 1379 goto failed; 1380 } 1381 sbinfo->free_blocks--; 1382 inode->i_blocks += BLOCKS_PER_PAGE; 1383 spin_unlock(&sbinfo->stat_lock); 1384 } else if (shmem_acct_block(info->flags)) { 1385 spin_unlock(&info->lock); 1386 error = -ENOSPC; 1387 goto failed; 1388 } 1389 1390 if (!filepage) { 1391 int ret; 1392 1393 spin_unlock(&info->lock); 1394 filepage = shmem_alloc_page(gfp, info, idx); 1395 if (!filepage) { 1396 shmem_unacct_blocks(info->flags, 1); 1397 shmem_free_blocks(inode, 1); 1398 error = -ENOMEM; 1399 goto failed; 1400 } 1401 SetPageSwapBacked(filepage); 1402 1403 /* Precharge page while we can wait, compensate after */ 1404 error = mem_cgroup_cache_charge(filepage, current->mm, 1405 GFP_KERNEL); 1406 if (error) { 1407 page_cache_release(filepage); 1408 shmem_unacct_blocks(info->flags, 1); 1409 shmem_free_blocks(inode, 1); 1410 filepage = NULL; 1411 goto failed; 1412 } 1413 1414 spin_lock(&info->lock); 1415 entry = shmem_swp_alloc(info, idx, sgp); 1416 if (IS_ERR(entry)) 1417 error = PTR_ERR(entry); 1418 else { 1419 swap = *entry; 1420 shmem_swp_unmap(entry); 1421 } 1422 ret = error || swap.val; 1423 if (ret) 1424 mem_cgroup_uncharge_cache_page(filepage); 1425 else 1426 ret = add_to_page_cache_lru(filepage, mapping, 1427 idx, GFP_NOWAIT); 1428 /* 1429 * At add_to_page_cache_lru() failure, uncharge will 1430 * be done automatically. 1431 */ 1432 if (ret) { 1433 spin_unlock(&info->lock); 1434 page_cache_release(filepage); 1435 shmem_unacct_blocks(info->flags, 1); 1436 shmem_free_blocks(inode, 1); 1437 filepage = NULL; 1438 if (error) 1439 goto failed; 1440 goto repeat; 1441 } 1442 info->flags |= SHMEM_PAGEIN; 1443 } 1444 1445 info->alloced++; 1446 spin_unlock(&info->lock); 1447 clear_highpage(filepage); 1448 flush_dcache_page(filepage); 1449 SetPageUptodate(filepage); 1450 if (sgp == SGP_DIRTY) 1451 set_page_dirty(filepage); 1452 } 1453 done: 1454 *pagep = filepage; 1455 return 0; 1456 1457 failed: 1458 if (*pagep != filepage) { 1459 unlock_page(filepage); 1460 page_cache_release(filepage); 1461 } 1462 return error; 1463 } 1464 1465 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1466 { 1467 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1468 int error; 1469 int ret; 1470 1471 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 1472 return VM_FAULT_SIGBUS; 1473 1474 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1475 if (error) 1476 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1477 1478 return ret | VM_FAULT_LOCKED; 1479 } 1480 1481 #ifdef CONFIG_NUMA 1482 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) 1483 { 1484 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1485 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); 1486 } 1487 1488 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1489 unsigned long addr) 1490 { 1491 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1492 unsigned long idx; 1493 1494 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1495 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); 1496 } 1497 #endif 1498 1499 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1500 { 1501 struct inode *inode = file->f_path.dentry->d_inode; 1502 struct shmem_inode_info *info = SHMEM_I(inode); 1503 int retval = -ENOMEM; 1504 1505 spin_lock(&info->lock); 1506 if (lock && !(info->flags & VM_LOCKED)) { 1507 if (!user_shm_lock(inode->i_size, user)) 1508 goto out_nomem; 1509 info->flags |= VM_LOCKED; 1510 mapping_set_unevictable(file->f_mapping); 1511 } 1512 if (!lock && (info->flags & VM_LOCKED) && user) { 1513 user_shm_unlock(inode->i_size, user); 1514 info->flags &= ~VM_LOCKED; 1515 mapping_clear_unevictable(file->f_mapping); 1516 scan_mapping_unevictable_pages(file->f_mapping); 1517 } 1518 retval = 0; 1519 1520 out_nomem: 1521 spin_unlock(&info->lock); 1522 return retval; 1523 } 1524 1525 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1526 { 1527 file_accessed(file); 1528 vma->vm_ops = &shmem_vm_ops; 1529 vma->vm_flags |= VM_CAN_NONLINEAR; 1530 return 0; 1531 } 1532 1533 static struct inode *shmem_get_inode(struct super_block *sb, int mode, 1534 dev_t dev, unsigned long flags) 1535 { 1536 struct inode *inode; 1537 struct shmem_inode_info *info; 1538 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1539 1540 if (shmem_reserve_inode(sb)) 1541 return NULL; 1542 1543 inode = new_inode(sb); 1544 if (inode) { 1545 inode->i_mode = mode; 1546 inode->i_uid = current_fsuid(); 1547 inode->i_gid = current_fsgid(); 1548 inode->i_blocks = 0; 1549 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1550 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1551 inode->i_generation = get_seconds(); 1552 info = SHMEM_I(inode); 1553 memset(info, 0, (char *)inode - (char *)info); 1554 spin_lock_init(&info->lock); 1555 info->flags = flags & VM_NORESERVE; 1556 INIT_LIST_HEAD(&info->swaplist); 1557 1558 switch (mode & S_IFMT) { 1559 default: 1560 inode->i_op = &shmem_special_inode_operations; 1561 init_special_inode(inode, mode, dev); 1562 break; 1563 case S_IFREG: 1564 inode->i_mapping->a_ops = &shmem_aops; 1565 inode->i_op = &shmem_inode_operations; 1566 inode->i_fop = &shmem_file_operations; 1567 mpol_shared_policy_init(&info->policy, 1568 shmem_get_sbmpol(sbinfo)); 1569 break; 1570 case S_IFDIR: 1571 inc_nlink(inode); 1572 /* Some things misbehave if size == 0 on a directory */ 1573 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1574 inode->i_op = &shmem_dir_inode_operations; 1575 inode->i_fop = &simple_dir_operations; 1576 break; 1577 case S_IFLNK: 1578 /* 1579 * Must not load anything in the rbtree, 1580 * mpol_free_shared_policy will not be called. 1581 */ 1582 mpol_shared_policy_init(&info->policy, NULL); 1583 break; 1584 } 1585 } else 1586 shmem_free_inode(sb); 1587 return inode; 1588 } 1589 1590 #ifdef CONFIG_TMPFS 1591 static const struct inode_operations shmem_symlink_inode_operations; 1592 static const struct inode_operations shmem_symlink_inline_operations; 1593 1594 /* 1595 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin; 1596 * but providing them allows a tmpfs file to be used for splice, sendfile, and 1597 * below the loop driver, in the generic fashion that many filesystems support. 1598 */ 1599 static int shmem_readpage(struct file *file, struct page *page) 1600 { 1601 struct inode *inode = page->mapping->host; 1602 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL); 1603 unlock_page(page); 1604 return error; 1605 } 1606 1607 static int 1608 shmem_write_begin(struct file *file, struct address_space *mapping, 1609 loff_t pos, unsigned len, unsigned flags, 1610 struct page **pagep, void **fsdata) 1611 { 1612 struct inode *inode = mapping->host; 1613 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1614 *pagep = NULL; 1615 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1616 } 1617 1618 static int 1619 shmem_write_end(struct file *file, struct address_space *mapping, 1620 loff_t pos, unsigned len, unsigned copied, 1621 struct page *page, void *fsdata) 1622 { 1623 struct inode *inode = mapping->host; 1624 1625 if (pos + copied > inode->i_size) 1626 i_size_write(inode, pos + copied); 1627 1628 unlock_page(page); 1629 set_page_dirty(page); 1630 page_cache_release(page); 1631 1632 return copied; 1633 } 1634 1635 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1636 { 1637 struct inode *inode = filp->f_path.dentry->d_inode; 1638 struct address_space *mapping = inode->i_mapping; 1639 unsigned long index, offset; 1640 enum sgp_type sgp = SGP_READ; 1641 1642 /* 1643 * Might this read be for a stacking filesystem? Then when reading 1644 * holes of a sparse file, we actually need to allocate those pages, 1645 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1646 */ 1647 if (segment_eq(get_fs(), KERNEL_DS)) 1648 sgp = SGP_DIRTY; 1649 1650 index = *ppos >> PAGE_CACHE_SHIFT; 1651 offset = *ppos & ~PAGE_CACHE_MASK; 1652 1653 for (;;) { 1654 struct page *page = NULL; 1655 unsigned long end_index, nr, ret; 1656 loff_t i_size = i_size_read(inode); 1657 1658 end_index = i_size >> PAGE_CACHE_SHIFT; 1659 if (index > end_index) 1660 break; 1661 if (index == end_index) { 1662 nr = i_size & ~PAGE_CACHE_MASK; 1663 if (nr <= offset) 1664 break; 1665 } 1666 1667 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1668 if (desc->error) { 1669 if (desc->error == -EINVAL) 1670 desc->error = 0; 1671 break; 1672 } 1673 if (page) 1674 unlock_page(page); 1675 1676 /* 1677 * We must evaluate after, since reads (unlike writes) 1678 * are called without i_mutex protection against truncate 1679 */ 1680 nr = PAGE_CACHE_SIZE; 1681 i_size = i_size_read(inode); 1682 end_index = i_size >> PAGE_CACHE_SHIFT; 1683 if (index == end_index) { 1684 nr = i_size & ~PAGE_CACHE_MASK; 1685 if (nr <= offset) { 1686 if (page) 1687 page_cache_release(page); 1688 break; 1689 } 1690 } 1691 nr -= offset; 1692 1693 if (page) { 1694 /* 1695 * If users can be writing to this page using arbitrary 1696 * virtual addresses, take care about potential aliasing 1697 * before reading the page on the kernel side. 1698 */ 1699 if (mapping_writably_mapped(mapping)) 1700 flush_dcache_page(page); 1701 /* 1702 * Mark the page accessed if we read the beginning. 1703 */ 1704 if (!offset) 1705 mark_page_accessed(page); 1706 } else { 1707 page = ZERO_PAGE(0); 1708 page_cache_get(page); 1709 } 1710 1711 /* 1712 * Ok, we have the page, and it's up-to-date, so 1713 * now we can copy it to user space... 1714 * 1715 * The actor routine returns how many bytes were actually used.. 1716 * NOTE! This may not be the same as how much of a user buffer 1717 * we filled up (we may be padding etc), so we can only update 1718 * "pos" here (the actor routine has to update the user buffer 1719 * pointers and the remaining count). 1720 */ 1721 ret = actor(desc, page, offset, nr); 1722 offset += ret; 1723 index += offset >> PAGE_CACHE_SHIFT; 1724 offset &= ~PAGE_CACHE_MASK; 1725 1726 page_cache_release(page); 1727 if (ret != nr || !desc->count) 1728 break; 1729 1730 cond_resched(); 1731 } 1732 1733 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1734 file_accessed(filp); 1735 } 1736 1737 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1738 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1739 { 1740 struct file *filp = iocb->ki_filp; 1741 ssize_t retval; 1742 unsigned long seg; 1743 size_t count; 1744 loff_t *ppos = &iocb->ki_pos; 1745 1746 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1747 if (retval) 1748 return retval; 1749 1750 for (seg = 0; seg < nr_segs; seg++) { 1751 read_descriptor_t desc; 1752 1753 desc.written = 0; 1754 desc.arg.buf = iov[seg].iov_base; 1755 desc.count = iov[seg].iov_len; 1756 if (desc.count == 0) 1757 continue; 1758 desc.error = 0; 1759 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1760 retval += desc.written; 1761 if (desc.error) { 1762 retval = retval ?: desc.error; 1763 break; 1764 } 1765 if (desc.count > 0) 1766 break; 1767 } 1768 return retval; 1769 } 1770 1771 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1772 { 1773 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1774 1775 buf->f_type = TMPFS_MAGIC; 1776 buf->f_bsize = PAGE_CACHE_SIZE; 1777 buf->f_namelen = NAME_MAX; 1778 spin_lock(&sbinfo->stat_lock); 1779 if (sbinfo->max_blocks) { 1780 buf->f_blocks = sbinfo->max_blocks; 1781 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks; 1782 } 1783 if (sbinfo->max_inodes) { 1784 buf->f_files = sbinfo->max_inodes; 1785 buf->f_ffree = sbinfo->free_inodes; 1786 } 1787 /* else leave those fields 0 like simple_statfs */ 1788 spin_unlock(&sbinfo->stat_lock); 1789 return 0; 1790 } 1791 1792 /* 1793 * File creation. Allocate an inode, and we're done.. 1794 */ 1795 static int 1796 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1797 { 1798 struct inode *inode; 1799 int error = -ENOSPC; 1800 1801 inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE); 1802 if (inode) { 1803 error = security_inode_init_security(inode, dir, NULL, NULL, 1804 NULL); 1805 if (error) { 1806 if (error != -EOPNOTSUPP) { 1807 iput(inode); 1808 return error; 1809 } 1810 } 1811 error = shmem_acl_init(inode, dir); 1812 if (error) { 1813 iput(inode); 1814 return error; 1815 } 1816 if (dir->i_mode & S_ISGID) { 1817 inode->i_gid = dir->i_gid; 1818 if (S_ISDIR(mode)) 1819 inode->i_mode |= S_ISGID; 1820 } 1821 dir->i_size += BOGO_DIRENT_SIZE; 1822 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1823 d_instantiate(dentry, inode); 1824 dget(dentry); /* Extra count - pin the dentry in core */ 1825 } 1826 return error; 1827 } 1828 1829 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1830 { 1831 int error; 1832 1833 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1834 return error; 1835 inc_nlink(dir); 1836 return 0; 1837 } 1838 1839 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, 1840 struct nameidata *nd) 1841 { 1842 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1843 } 1844 1845 /* 1846 * Link a file.. 1847 */ 1848 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1849 { 1850 struct inode *inode = old_dentry->d_inode; 1851 int ret; 1852 1853 /* 1854 * No ordinary (disk based) filesystem counts links as inodes; 1855 * but each new link needs a new dentry, pinning lowmem, and 1856 * tmpfs dentries cannot be pruned until they are unlinked. 1857 */ 1858 ret = shmem_reserve_inode(inode->i_sb); 1859 if (ret) 1860 goto out; 1861 1862 dir->i_size += BOGO_DIRENT_SIZE; 1863 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1864 inc_nlink(inode); 1865 atomic_inc(&inode->i_count); /* New dentry reference */ 1866 dget(dentry); /* Extra pinning count for the created dentry */ 1867 d_instantiate(dentry, inode); 1868 out: 1869 return ret; 1870 } 1871 1872 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1873 { 1874 struct inode *inode = dentry->d_inode; 1875 1876 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1877 shmem_free_inode(inode->i_sb); 1878 1879 dir->i_size -= BOGO_DIRENT_SIZE; 1880 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1881 drop_nlink(inode); 1882 dput(dentry); /* Undo the count from "create" - this does all the work */ 1883 return 0; 1884 } 1885 1886 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1887 { 1888 if (!simple_empty(dentry)) 1889 return -ENOTEMPTY; 1890 1891 drop_nlink(dentry->d_inode); 1892 drop_nlink(dir); 1893 return shmem_unlink(dir, dentry); 1894 } 1895 1896 /* 1897 * The VFS layer already does all the dentry stuff for rename, 1898 * we just have to decrement the usage count for the target if 1899 * it exists so that the VFS layer correctly free's it when it 1900 * gets overwritten. 1901 */ 1902 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1903 { 1904 struct inode *inode = old_dentry->d_inode; 1905 int they_are_dirs = S_ISDIR(inode->i_mode); 1906 1907 if (!simple_empty(new_dentry)) 1908 return -ENOTEMPTY; 1909 1910 if (new_dentry->d_inode) { 1911 (void) shmem_unlink(new_dir, new_dentry); 1912 if (they_are_dirs) 1913 drop_nlink(old_dir); 1914 } else if (they_are_dirs) { 1915 drop_nlink(old_dir); 1916 inc_nlink(new_dir); 1917 } 1918 1919 old_dir->i_size -= BOGO_DIRENT_SIZE; 1920 new_dir->i_size += BOGO_DIRENT_SIZE; 1921 old_dir->i_ctime = old_dir->i_mtime = 1922 new_dir->i_ctime = new_dir->i_mtime = 1923 inode->i_ctime = CURRENT_TIME; 1924 return 0; 1925 } 1926 1927 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1928 { 1929 int error; 1930 int len; 1931 struct inode *inode; 1932 struct page *page = NULL; 1933 char *kaddr; 1934 struct shmem_inode_info *info; 1935 1936 len = strlen(symname) + 1; 1937 if (len > PAGE_CACHE_SIZE) 1938 return -ENAMETOOLONG; 1939 1940 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 1941 if (!inode) 1942 return -ENOSPC; 1943 1944 error = security_inode_init_security(inode, dir, NULL, NULL, 1945 NULL); 1946 if (error) { 1947 if (error != -EOPNOTSUPP) { 1948 iput(inode); 1949 return error; 1950 } 1951 error = 0; 1952 } 1953 1954 info = SHMEM_I(inode); 1955 inode->i_size = len-1; 1956 if (len <= (char *)inode - (char *)info) { 1957 /* do it inline */ 1958 memcpy(info, symname, len); 1959 inode->i_op = &shmem_symlink_inline_operations; 1960 } else { 1961 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1962 if (error) { 1963 iput(inode); 1964 return error; 1965 } 1966 unlock_page(page); 1967 inode->i_mapping->a_ops = &shmem_aops; 1968 inode->i_op = &shmem_symlink_inode_operations; 1969 kaddr = kmap_atomic(page, KM_USER0); 1970 memcpy(kaddr, symname, len); 1971 kunmap_atomic(kaddr, KM_USER0); 1972 set_page_dirty(page); 1973 page_cache_release(page); 1974 } 1975 if (dir->i_mode & S_ISGID) 1976 inode->i_gid = dir->i_gid; 1977 dir->i_size += BOGO_DIRENT_SIZE; 1978 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1979 d_instantiate(dentry, inode); 1980 dget(dentry); 1981 return 0; 1982 } 1983 1984 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) 1985 { 1986 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); 1987 return NULL; 1988 } 1989 1990 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 1991 { 1992 struct page *page = NULL; 1993 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 1994 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); 1995 if (page) 1996 unlock_page(page); 1997 return page; 1998 } 1999 2000 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2001 { 2002 if (!IS_ERR(nd_get_link(nd))) { 2003 struct page *page = cookie; 2004 kunmap(page); 2005 mark_page_accessed(page); 2006 page_cache_release(page); 2007 } 2008 } 2009 2010 static const struct inode_operations shmem_symlink_inline_operations = { 2011 .readlink = generic_readlink, 2012 .follow_link = shmem_follow_link_inline, 2013 }; 2014 2015 static const struct inode_operations shmem_symlink_inode_operations = { 2016 .truncate = shmem_truncate, 2017 .readlink = generic_readlink, 2018 .follow_link = shmem_follow_link, 2019 .put_link = shmem_put_link, 2020 }; 2021 2022 #ifdef CONFIG_TMPFS_POSIX_ACL 2023 /* 2024 * Superblocks without xattr inode operations will get security.* xattr 2025 * support from the VFS "for free". As soon as we have any other xattrs 2026 * like ACLs, we also need to implement the security.* handlers at 2027 * filesystem level, though. 2028 */ 2029 2030 static size_t shmem_xattr_security_list(struct inode *inode, char *list, 2031 size_t list_len, const char *name, 2032 size_t name_len) 2033 { 2034 return security_inode_listsecurity(inode, list, list_len); 2035 } 2036 2037 static int shmem_xattr_security_get(struct inode *inode, const char *name, 2038 void *buffer, size_t size) 2039 { 2040 if (strcmp(name, "") == 0) 2041 return -EINVAL; 2042 return xattr_getsecurity(inode, name, buffer, size); 2043 } 2044 2045 static int shmem_xattr_security_set(struct inode *inode, const char *name, 2046 const void *value, size_t size, int flags) 2047 { 2048 if (strcmp(name, "") == 0) 2049 return -EINVAL; 2050 return security_inode_setsecurity(inode, name, value, size, flags); 2051 } 2052 2053 static struct xattr_handler shmem_xattr_security_handler = { 2054 .prefix = XATTR_SECURITY_PREFIX, 2055 .list = shmem_xattr_security_list, 2056 .get = shmem_xattr_security_get, 2057 .set = shmem_xattr_security_set, 2058 }; 2059 2060 static struct xattr_handler *shmem_xattr_handlers[] = { 2061 &shmem_xattr_acl_access_handler, 2062 &shmem_xattr_acl_default_handler, 2063 &shmem_xattr_security_handler, 2064 NULL 2065 }; 2066 #endif 2067 2068 static struct dentry *shmem_get_parent(struct dentry *child) 2069 { 2070 return ERR_PTR(-ESTALE); 2071 } 2072 2073 static int shmem_match(struct inode *ino, void *vfh) 2074 { 2075 __u32 *fh = vfh; 2076 __u64 inum = fh[2]; 2077 inum = (inum << 32) | fh[1]; 2078 return ino->i_ino == inum && fh[0] == ino->i_generation; 2079 } 2080 2081 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2082 struct fid *fid, int fh_len, int fh_type) 2083 { 2084 struct inode *inode; 2085 struct dentry *dentry = NULL; 2086 u64 inum = fid->raw[2]; 2087 inum = (inum << 32) | fid->raw[1]; 2088 2089 if (fh_len < 3) 2090 return NULL; 2091 2092 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2093 shmem_match, fid->raw); 2094 if (inode) { 2095 dentry = d_find_alias(inode); 2096 iput(inode); 2097 } 2098 2099 return dentry; 2100 } 2101 2102 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2103 int connectable) 2104 { 2105 struct inode *inode = dentry->d_inode; 2106 2107 if (*len < 3) 2108 return 255; 2109 2110 if (hlist_unhashed(&inode->i_hash)) { 2111 /* Unfortunately insert_inode_hash is not idempotent, 2112 * so as we hash inodes here rather than at creation 2113 * time, we need a lock to ensure we only try 2114 * to do it once 2115 */ 2116 static DEFINE_SPINLOCK(lock); 2117 spin_lock(&lock); 2118 if (hlist_unhashed(&inode->i_hash)) 2119 __insert_inode_hash(inode, 2120 inode->i_ino + inode->i_generation); 2121 spin_unlock(&lock); 2122 } 2123 2124 fh[0] = inode->i_generation; 2125 fh[1] = inode->i_ino; 2126 fh[2] = ((__u64)inode->i_ino) >> 32; 2127 2128 *len = 3; 2129 return 1; 2130 } 2131 2132 static const struct export_operations shmem_export_ops = { 2133 .get_parent = shmem_get_parent, 2134 .encode_fh = shmem_encode_fh, 2135 .fh_to_dentry = shmem_fh_to_dentry, 2136 }; 2137 2138 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2139 bool remount) 2140 { 2141 char *this_char, *value, *rest; 2142 2143 while (options != NULL) { 2144 this_char = options; 2145 for (;;) { 2146 /* 2147 * NUL-terminate this option: unfortunately, 2148 * mount options form a comma-separated list, 2149 * but mpol's nodelist may also contain commas. 2150 */ 2151 options = strchr(options, ','); 2152 if (options == NULL) 2153 break; 2154 options++; 2155 if (!isdigit(*options)) { 2156 options[-1] = '\0'; 2157 break; 2158 } 2159 } 2160 if (!*this_char) 2161 continue; 2162 if ((value = strchr(this_char,'=')) != NULL) { 2163 *value++ = 0; 2164 } else { 2165 printk(KERN_ERR 2166 "tmpfs: No value for mount option '%s'\n", 2167 this_char); 2168 return 1; 2169 } 2170 2171 if (!strcmp(this_char,"size")) { 2172 unsigned long long size; 2173 size = memparse(value,&rest); 2174 if (*rest == '%') { 2175 size <<= PAGE_SHIFT; 2176 size *= totalram_pages; 2177 do_div(size, 100); 2178 rest++; 2179 } 2180 if (*rest) 2181 goto bad_val; 2182 sbinfo->max_blocks = 2183 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2184 } else if (!strcmp(this_char,"nr_blocks")) { 2185 sbinfo->max_blocks = memparse(value, &rest); 2186 if (*rest) 2187 goto bad_val; 2188 } else if (!strcmp(this_char,"nr_inodes")) { 2189 sbinfo->max_inodes = memparse(value, &rest); 2190 if (*rest) 2191 goto bad_val; 2192 } else if (!strcmp(this_char,"mode")) { 2193 if (remount) 2194 continue; 2195 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2196 if (*rest) 2197 goto bad_val; 2198 } else if (!strcmp(this_char,"uid")) { 2199 if (remount) 2200 continue; 2201 sbinfo->uid = simple_strtoul(value, &rest, 0); 2202 if (*rest) 2203 goto bad_val; 2204 } else if (!strcmp(this_char,"gid")) { 2205 if (remount) 2206 continue; 2207 sbinfo->gid = simple_strtoul(value, &rest, 0); 2208 if (*rest) 2209 goto bad_val; 2210 } else if (!strcmp(this_char,"mpol")) { 2211 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2212 goto bad_val; 2213 } else { 2214 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2215 this_char); 2216 return 1; 2217 } 2218 } 2219 return 0; 2220 2221 bad_val: 2222 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2223 value, this_char); 2224 return 1; 2225 2226 } 2227 2228 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2229 { 2230 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2231 struct shmem_sb_info config = *sbinfo; 2232 unsigned long blocks; 2233 unsigned long inodes; 2234 int error = -EINVAL; 2235 2236 if (shmem_parse_options(data, &config, true)) 2237 return error; 2238 2239 spin_lock(&sbinfo->stat_lock); 2240 blocks = sbinfo->max_blocks - sbinfo->free_blocks; 2241 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2242 if (config.max_blocks < blocks) 2243 goto out; 2244 if (config.max_inodes < inodes) 2245 goto out; 2246 /* 2247 * Those tests also disallow limited->unlimited while any are in 2248 * use, so i_blocks will always be zero when max_blocks is zero; 2249 * but we must separately disallow unlimited->limited, because 2250 * in that case we have no record of how much is already in use. 2251 */ 2252 if (config.max_blocks && !sbinfo->max_blocks) 2253 goto out; 2254 if (config.max_inodes && !sbinfo->max_inodes) 2255 goto out; 2256 2257 error = 0; 2258 sbinfo->max_blocks = config.max_blocks; 2259 sbinfo->free_blocks = config.max_blocks - blocks; 2260 sbinfo->max_inodes = config.max_inodes; 2261 sbinfo->free_inodes = config.max_inodes - inodes; 2262 2263 mpol_put(sbinfo->mpol); 2264 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2265 out: 2266 spin_unlock(&sbinfo->stat_lock); 2267 return error; 2268 } 2269 2270 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs) 2271 { 2272 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb); 2273 2274 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2275 seq_printf(seq, ",size=%luk", 2276 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2277 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2278 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2279 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2280 seq_printf(seq, ",mode=%03o", sbinfo->mode); 2281 if (sbinfo->uid != 0) 2282 seq_printf(seq, ",uid=%u", sbinfo->uid); 2283 if (sbinfo->gid != 0) 2284 seq_printf(seq, ",gid=%u", sbinfo->gid); 2285 shmem_show_mpol(seq, sbinfo->mpol); 2286 return 0; 2287 } 2288 #endif /* CONFIG_TMPFS */ 2289 2290 static void shmem_put_super(struct super_block *sb) 2291 { 2292 kfree(sb->s_fs_info); 2293 sb->s_fs_info = NULL; 2294 } 2295 2296 static int shmem_fill_super(struct super_block *sb, 2297 void *data, int silent) 2298 { 2299 struct inode *inode; 2300 struct dentry *root; 2301 struct shmem_sb_info *sbinfo; 2302 int err = -ENOMEM; 2303 2304 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2305 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info), 2306 L1_CACHE_BYTES), GFP_KERNEL); 2307 if (!sbinfo) 2308 return -ENOMEM; 2309 2310 sbinfo->max_blocks = 0; 2311 sbinfo->max_inodes = 0; 2312 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2313 sbinfo->uid = current_fsuid(); 2314 sbinfo->gid = current_fsgid(); 2315 sbinfo->mpol = NULL; 2316 sb->s_fs_info = sbinfo; 2317 2318 #ifdef CONFIG_TMPFS 2319 /* 2320 * Per default we only allow half of the physical ram per 2321 * tmpfs instance, limiting inodes to one per page of lowmem; 2322 * but the internal instance is left unlimited. 2323 */ 2324 if (!(sb->s_flags & MS_NOUSER)) { 2325 sbinfo->max_blocks = shmem_default_max_blocks(); 2326 sbinfo->max_inodes = shmem_default_max_inodes(); 2327 if (shmem_parse_options(data, sbinfo, false)) { 2328 err = -EINVAL; 2329 goto failed; 2330 } 2331 } 2332 sb->s_export_op = &shmem_export_ops; 2333 #else 2334 sb->s_flags |= MS_NOUSER; 2335 #endif 2336 2337 spin_lock_init(&sbinfo->stat_lock); 2338 sbinfo->free_blocks = sbinfo->max_blocks; 2339 sbinfo->free_inodes = sbinfo->max_inodes; 2340 2341 sb->s_maxbytes = SHMEM_MAX_BYTES; 2342 sb->s_blocksize = PAGE_CACHE_SIZE; 2343 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2344 sb->s_magic = TMPFS_MAGIC; 2345 sb->s_op = &shmem_ops; 2346 sb->s_time_gran = 1; 2347 #ifdef CONFIG_TMPFS_POSIX_ACL 2348 sb->s_xattr = shmem_xattr_handlers; 2349 sb->s_flags |= MS_POSIXACL; 2350 #endif 2351 2352 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2353 if (!inode) 2354 goto failed; 2355 inode->i_uid = sbinfo->uid; 2356 inode->i_gid = sbinfo->gid; 2357 root = d_alloc_root(inode); 2358 if (!root) 2359 goto failed_iput; 2360 sb->s_root = root; 2361 return 0; 2362 2363 failed_iput: 2364 iput(inode); 2365 failed: 2366 shmem_put_super(sb); 2367 return err; 2368 } 2369 2370 static struct kmem_cache *shmem_inode_cachep; 2371 2372 static struct inode *shmem_alloc_inode(struct super_block *sb) 2373 { 2374 struct shmem_inode_info *p; 2375 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2376 if (!p) 2377 return NULL; 2378 return &p->vfs_inode; 2379 } 2380 2381 static void shmem_destroy_inode(struct inode *inode) 2382 { 2383 if ((inode->i_mode & S_IFMT) == S_IFREG) { 2384 /* only struct inode is valid if it's an inline symlink */ 2385 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2386 } 2387 shmem_acl_destroy_inode(inode); 2388 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2389 } 2390 2391 static void init_once(void *foo) 2392 { 2393 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2394 2395 inode_init_once(&p->vfs_inode); 2396 #ifdef CONFIG_TMPFS_POSIX_ACL 2397 p->i_acl = NULL; 2398 p->i_default_acl = NULL; 2399 #endif 2400 } 2401 2402 static int init_inodecache(void) 2403 { 2404 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2405 sizeof(struct shmem_inode_info), 2406 0, SLAB_PANIC, init_once); 2407 return 0; 2408 } 2409 2410 static void destroy_inodecache(void) 2411 { 2412 kmem_cache_destroy(shmem_inode_cachep); 2413 } 2414 2415 static const struct address_space_operations shmem_aops = { 2416 .writepage = shmem_writepage, 2417 .set_page_dirty = __set_page_dirty_no_writeback, 2418 #ifdef CONFIG_TMPFS 2419 .readpage = shmem_readpage, 2420 .write_begin = shmem_write_begin, 2421 .write_end = shmem_write_end, 2422 #endif 2423 .migratepage = migrate_page, 2424 }; 2425 2426 static const struct file_operations shmem_file_operations = { 2427 .mmap = shmem_mmap, 2428 #ifdef CONFIG_TMPFS 2429 .llseek = generic_file_llseek, 2430 .read = do_sync_read, 2431 .write = do_sync_write, 2432 .aio_read = shmem_file_aio_read, 2433 .aio_write = generic_file_aio_write, 2434 .fsync = simple_sync_file, 2435 .splice_read = generic_file_splice_read, 2436 .splice_write = generic_file_splice_write, 2437 #endif 2438 }; 2439 2440 static const struct inode_operations shmem_inode_operations = { 2441 .truncate = shmem_truncate, 2442 .setattr = shmem_notify_change, 2443 .truncate_range = shmem_truncate_range, 2444 #ifdef CONFIG_TMPFS_POSIX_ACL 2445 .setxattr = generic_setxattr, 2446 .getxattr = generic_getxattr, 2447 .listxattr = generic_listxattr, 2448 .removexattr = generic_removexattr, 2449 .permission = shmem_permission, 2450 #endif 2451 2452 }; 2453 2454 static const struct inode_operations shmem_dir_inode_operations = { 2455 #ifdef CONFIG_TMPFS 2456 .create = shmem_create, 2457 .lookup = simple_lookup, 2458 .link = shmem_link, 2459 .unlink = shmem_unlink, 2460 .symlink = shmem_symlink, 2461 .mkdir = shmem_mkdir, 2462 .rmdir = shmem_rmdir, 2463 .mknod = shmem_mknod, 2464 .rename = shmem_rename, 2465 #endif 2466 #ifdef CONFIG_TMPFS_POSIX_ACL 2467 .setattr = shmem_notify_change, 2468 .setxattr = generic_setxattr, 2469 .getxattr = generic_getxattr, 2470 .listxattr = generic_listxattr, 2471 .removexattr = generic_removexattr, 2472 .permission = shmem_permission, 2473 #endif 2474 }; 2475 2476 static const struct inode_operations shmem_special_inode_operations = { 2477 #ifdef CONFIG_TMPFS_POSIX_ACL 2478 .setattr = shmem_notify_change, 2479 .setxattr = generic_setxattr, 2480 .getxattr = generic_getxattr, 2481 .listxattr = generic_listxattr, 2482 .removexattr = generic_removexattr, 2483 .permission = shmem_permission, 2484 #endif 2485 }; 2486 2487 static const struct super_operations shmem_ops = { 2488 .alloc_inode = shmem_alloc_inode, 2489 .destroy_inode = shmem_destroy_inode, 2490 #ifdef CONFIG_TMPFS 2491 .statfs = shmem_statfs, 2492 .remount_fs = shmem_remount_fs, 2493 .show_options = shmem_show_options, 2494 #endif 2495 .delete_inode = shmem_delete_inode, 2496 .drop_inode = generic_delete_inode, 2497 .put_super = shmem_put_super, 2498 }; 2499 2500 static struct vm_operations_struct shmem_vm_ops = { 2501 .fault = shmem_fault, 2502 #ifdef CONFIG_NUMA 2503 .set_policy = shmem_set_policy, 2504 .get_policy = shmem_get_policy, 2505 #endif 2506 }; 2507 2508 2509 static int shmem_get_sb(struct file_system_type *fs_type, 2510 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 2511 { 2512 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt); 2513 } 2514 2515 static struct file_system_type tmpfs_fs_type = { 2516 .owner = THIS_MODULE, 2517 .name = "tmpfs", 2518 .get_sb = shmem_get_sb, 2519 .kill_sb = kill_litter_super, 2520 }; 2521 2522 static int __init init_tmpfs(void) 2523 { 2524 int error; 2525 2526 error = bdi_init(&shmem_backing_dev_info); 2527 if (error) 2528 goto out4; 2529 2530 error = init_inodecache(); 2531 if (error) 2532 goto out3; 2533 2534 error = register_filesystem(&tmpfs_fs_type); 2535 if (error) { 2536 printk(KERN_ERR "Could not register tmpfs\n"); 2537 goto out2; 2538 } 2539 2540 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER, 2541 tmpfs_fs_type.name, NULL); 2542 if (IS_ERR(shm_mnt)) { 2543 error = PTR_ERR(shm_mnt); 2544 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2545 goto out1; 2546 } 2547 return 0; 2548 2549 out1: 2550 unregister_filesystem(&tmpfs_fs_type); 2551 out2: 2552 destroy_inodecache(); 2553 out3: 2554 bdi_destroy(&shmem_backing_dev_info); 2555 out4: 2556 shm_mnt = ERR_PTR(error); 2557 return error; 2558 } 2559 2560 #else /* !CONFIG_SHMEM */ 2561 2562 /* 2563 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2564 * 2565 * This is intended for small system where the benefits of the full 2566 * shmem code (swap-backed and resource-limited) are outweighed by 2567 * their complexity. On systems without swap this code should be 2568 * effectively equivalent, but much lighter weight. 2569 */ 2570 2571 #include <linux/ramfs.h> 2572 2573 static struct file_system_type tmpfs_fs_type = { 2574 .name = "tmpfs", 2575 .get_sb = ramfs_get_sb, 2576 .kill_sb = kill_litter_super, 2577 }; 2578 2579 static int __init init_tmpfs(void) 2580 { 2581 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0); 2582 2583 shm_mnt = kern_mount(&tmpfs_fs_type); 2584 BUG_ON(IS_ERR(shm_mnt)); 2585 2586 return 0; 2587 } 2588 2589 int shmem_unuse(swp_entry_t entry, struct page *page) 2590 { 2591 return 0; 2592 } 2593 2594 #define shmem_vm_ops generic_file_vm_ops 2595 #define shmem_file_operations ramfs_file_operations 2596 #define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev) 2597 #define shmem_acct_size(flags, size) 0 2598 #define shmem_unacct_size(flags, size) do {} while (0) 2599 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE 2600 2601 #endif /* CONFIG_SHMEM */ 2602 2603 /* common code */ 2604 2605 /** 2606 * shmem_file_setup - get an unlinked file living in tmpfs 2607 * @name: name for dentry (to be seen in /proc/<pid>/maps 2608 * @size: size to be set for the file 2609 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2610 */ 2611 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags) 2612 { 2613 int error; 2614 struct file *file; 2615 struct inode *inode; 2616 struct dentry *dentry, *root; 2617 struct qstr this; 2618 2619 if (IS_ERR(shm_mnt)) 2620 return (void *)shm_mnt; 2621 2622 if (size < 0 || size > SHMEM_MAX_BYTES) 2623 return ERR_PTR(-EINVAL); 2624 2625 if (shmem_acct_size(flags, size)) 2626 return ERR_PTR(-ENOMEM); 2627 2628 error = -ENOMEM; 2629 this.name = name; 2630 this.len = strlen(name); 2631 this.hash = 0; /* will go */ 2632 root = shm_mnt->mnt_root; 2633 dentry = d_alloc(root, &this); 2634 if (!dentry) 2635 goto put_memory; 2636 2637 error = -ENFILE; 2638 file = get_empty_filp(); 2639 if (!file) 2640 goto put_dentry; 2641 2642 error = -ENOSPC; 2643 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags); 2644 if (!inode) 2645 goto close_file; 2646 2647 d_instantiate(dentry, inode); 2648 inode->i_size = size; 2649 inode->i_nlink = 0; /* It is unlinked */ 2650 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ, 2651 &shmem_file_operations); 2652 2653 #ifndef CONFIG_MMU 2654 error = ramfs_nommu_expand_for_mapping(inode, size); 2655 if (error) 2656 goto close_file; 2657 #endif 2658 return file; 2659 2660 close_file: 2661 put_filp(file); 2662 put_dentry: 2663 dput(dentry); 2664 put_memory: 2665 shmem_unacct_size(flags, size); 2666 return ERR_PTR(error); 2667 } 2668 EXPORT_SYMBOL_GPL(shmem_file_setup); 2669 2670 /** 2671 * shmem_zero_setup - setup a shared anonymous mapping 2672 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2673 */ 2674 int shmem_zero_setup(struct vm_area_struct *vma) 2675 { 2676 struct file *file; 2677 loff_t size = vma->vm_end - vma->vm_start; 2678 2679 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2680 if (IS_ERR(file)) 2681 return PTR_ERR(file); 2682 2683 ima_shm_check(file); 2684 if (vma->vm_file) 2685 fput(vma->vm_file); 2686 vma->vm_file = file; 2687 vma->vm_ops = &shmem_vm_ops; 2688 return 0; 2689 } 2690 2691 module_init(init_tmpfs) 2692