xref: /openbmc/linux/mm/shmem.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38 
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40 
41 static struct vfsmount *shm_mnt;
42 
43 #ifdef CONFIG_SHMEM
44 /*
45  * This virtual memory filesystem is heavily based on the ramfs. It
46  * extends ramfs by the ability to use swap and honor resource limits
47  * which makes it a completely usable filesystem.
48  */
49 
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_mutex making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 		struct page **pagep, enum sgp_type sgp,
125 		gfp_t gfp, struct vm_area_struct *vma,
126 		struct vm_fault *vmf, int *fault_type);
127 
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 		struct page **pagep, enum sgp_type sgp)
130 {
131 	return shmem_getpage_gfp(inode, index, pagep, sgp,
132 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134 
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137 	return sb->s_fs_info;
138 }
139 
140 /*
141  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142  * for shared memory and for shared anonymous (/dev/zero) mappings
143  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144  * consistent with the pre-accounting of private mappings ...
145  */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148 	return (flags & VM_NORESERVE) ?
149 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151 
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154 	if (!(flags & VM_NORESERVE))
155 		vm_unacct_memory(VM_ACCT(size));
156 }
157 
158 static inline int shmem_reacct_size(unsigned long flags,
159 		loff_t oldsize, loff_t newsize)
160 {
161 	if (!(flags & VM_NORESERVE)) {
162 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 			return security_vm_enough_memory_mm(current->mm,
164 					VM_ACCT(newsize) - VM_ACCT(oldsize));
165 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 	}
168 	return 0;
169 }
170 
171 /*
172  * ... whereas tmpfs objects are accounted incrementally as
173  * pages are allocated, in order to allow large sparse files.
174  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176  */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		return 0;
181 
182 	return security_vm_enough_memory_mm(current->mm,
183 			pages * VM_ACCT(PAGE_SIZE));
184 }
185 
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 	if (flags & VM_NORESERVE)
189 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191 
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194 	struct shmem_inode_info *info = SHMEM_I(inode);
195 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196 
197 	if (shmem_acct_block(info->flags, pages))
198 		return false;
199 
200 	if (sbinfo->max_blocks) {
201 		if (percpu_counter_compare(&sbinfo->used_blocks,
202 					   sbinfo->max_blocks - pages) > 0)
203 			goto unacct;
204 		percpu_counter_add(&sbinfo->used_blocks, pages);
205 	}
206 
207 	return true;
208 
209 unacct:
210 	shmem_unacct_blocks(info->flags, pages);
211 	return false;
212 }
213 
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216 	struct shmem_inode_info *info = SHMEM_I(inode);
217 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 
219 	if (sbinfo->max_blocks)
220 		percpu_counter_sub(&sbinfo->used_blocks, pages);
221 	shmem_unacct_blocks(info->flags, pages);
222 }
223 
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232 
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235 	return vma->vm_ops == &shmem_vm_ops;
236 }
237 
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240 
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 	if (sbinfo->max_inodes) {
245 		spin_lock(&sbinfo->stat_lock);
246 		if (!sbinfo->free_inodes) {
247 			spin_unlock(&sbinfo->stat_lock);
248 			return -ENOSPC;
249 		}
250 		sbinfo->free_inodes--;
251 		spin_unlock(&sbinfo->stat_lock);
252 	}
253 	return 0;
254 }
255 
256 static void shmem_free_inode(struct super_block *sb)
257 {
258 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 	if (sbinfo->max_inodes) {
260 		spin_lock(&sbinfo->stat_lock);
261 		sbinfo->free_inodes++;
262 		spin_unlock(&sbinfo->stat_lock);
263 	}
264 }
265 
266 /**
267  * shmem_recalc_inode - recalculate the block usage of an inode
268  * @inode: inode to recalc
269  *
270  * We have to calculate the free blocks since the mm can drop
271  * undirtied hole pages behind our back.
272  *
273  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
274  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275  *
276  * It has to be called with the spinlock held.
277  */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280 	struct shmem_inode_info *info = SHMEM_I(inode);
281 	long freed;
282 
283 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 	if (freed > 0) {
285 		info->alloced -= freed;
286 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 		shmem_inode_unacct_blocks(inode, freed);
288 	}
289 }
290 
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293 	struct shmem_inode_info *info = SHMEM_I(inode);
294 	unsigned long flags;
295 
296 	if (!shmem_inode_acct_block(inode, pages))
297 		return false;
298 
299 	spin_lock_irqsave(&info->lock, flags);
300 	info->alloced += pages;
301 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 	shmem_recalc_inode(inode);
303 	spin_unlock_irqrestore(&info->lock, flags);
304 	inode->i_mapping->nrpages += pages;
305 
306 	return true;
307 }
308 
309 void shmem_uncharge(struct inode *inode, long pages)
310 {
311 	struct shmem_inode_info *info = SHMEM_I(inode);
312 	unsigned long flags;
313 
314 	spin_lock_irqsave(&info->lock, flags);
315 	info->alloced -= pages;
316 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 	shmem_recalc_inode(inode);
318 	spin_unlock_irqrestore(&info->lock, flags);
319 
320 	shmem_inode_unacct_blocks(inode, pages);
321 }
322 
323 /*
324  * Replace item expected in radix tree by a new item, while holding tree lock.
325  */
326 static int shmem_radix_tree_replace(struct address_space *mapping,
327 			pgoff_t index, void *expected, void *replacement)
328 {
329 	struct radix_tree_node *node;
330 	void **pslot;
331 	void *item;
332 
333 	VM_BUG_ON(!expected);
334 	VM_BUG_ON(!replacement);
335 	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
336 	if (!item)
337 		return -ENOENT;
338 	if (item != expected)
339 		return -ENOENT;
340 	__radix_tree_replace(&mapping->page_tree, node, pslot,
341 			     replacement, NULL);
342 	return 0;
343 }
344 
345 /*
346  * Sometimes, before we decide whether to proceed or to fail, we must check
347  * that an entry was not already brought back from swap by a racing thread.
348  *
349  * Checking page is not enough: by the time a SwapCache page is locked, it
350  * might be reused, and again be SwapCache, using the same swap as before.
351  */
352 static bool shmem_confirm_swap(struct address_space *mapping,
353 			       pgoff_t index, swp_entry_t swap)
354 {
355 	void *item;
356 
357 	rcu_read_lock();
358 	item = radix_tree_lookup(&mapping->page_tree, index);
359 	rcu_read_unlock();
360 	return item == swp_to_radix_entry(swap);
361 }
362 
363 /*
364  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365  *
366  * SHMEM_HUGE_NEVER:
367  *	disables huge pages for the mount;
368  * SHMEM_HUGE_ALWAYS:
369  *	enables huge pages for the mount;
370  * SHMEM_HUGE_WITHIN_SIZE:
371  *	only allocate huge pages if the page will be fully within i_size,
372  *	also respect fadvise()/madvise() hints;
373  * SHMEM_HUGE_ADVISE:
374  *	only allocate huge pages if requested with fadvise()/madvise();
375  */
376 
377 #define SHMEM_HUGE_NEVER	0
378 #define SHMEM_HUGE_ALWAYS	1
379 #define SHMEM_HUGE_WITHIN_SIZE	2
380 #define SHMEM_HUGE_ADVISE	3
381 
382 /*
383  * Special values.
384  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385  *
386  * SHMEM_HUGE_DENY:
387  *	disables huge on shm_mnt and all mounts, for emergency use;
388  * SHMEM_HUGE_FORCE:
389  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390  *
391  */
392 #define SHMEM_HUGE_DENY		(-1)
393 #define SHMEM_HUGE_FORCE	(-2)
394 
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
397 
398 int shmem_huge __read_mostly;
399 
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str)
402 {
403 	if (!strcmp(str, "never"))
404 		return SHMEM_HUGE_NEVER;
405 	if (!strcmp(str, "always"))
406 		return SHMEM_HUGE_ALWAYS;
407 	if (!strcmp(str, "within_size"))
408 		return SHMEM_HUGE_WITHIN_SIZE;
409 	if (!strcmp(str, "advise"))
410 		return SHMEM_HUGE_ADVISE;
411 	if (!strcmp(str, "deny"))
412 		return SHMEM_HUGE_DENY;
413 	if (!strcmp(str, "force"))
414 		return SHMEM_HUGE_FORCE;
415 	return -EINVAL;
416 }
417 
418 static const char *shmem_format_huge(int huge)
419 {
420 	switch (huge) {
421 	case SHMEM_HUGE_NEVER:
422 		return "never";
423 	case SHMEM_HUGE_ALWAYS:
424 		return "always";
425 	case SHMEM_HUGE_WITHIN_SIZE:
426 		return "within_size";
427 	case SHMEM_HUGE_ADVISE:
428 		return "advise";
429 	case SHMEM_HUGE_DENY:
430 		return "deny";
431 	case SHMEM_HUGE_FORCE:
432 		return "force";
433 	default:
434 		VM_BUG_ON(1);
435 		return "bad_val";
436 	}
437 }
438 #endif
439 
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 		struct shrink_control *sc, unsigned long nr_to_split)
442 {
443 	LIST_HEAD(list), *pos, *next;
444 	LIST_HEAD(to_remove);
445 	struct inode *inode;
446 	struct shmem_inode_info *info;
447 	struct page *page;
448 	unsigned long batch = sc ? sc->nr_to_scan : 128;
449 	int removed = 0, split = 0;
450 
451 	if (list_empty(&sbinfo->shrinklist))
452 		return SHRINK_STOP;
453 
454 	spin_lock(&sbinfo->shrinklist_lock);
455 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
457 
458 		/* pin the inode */
459 		inode = igrab(&info->vfs_inode);
460 
461 		/* inode is about to be evicted */
462 		if (!inode) {
463 			list_del_init(&info->shrinklist);
464 			removed++;
465 			goto next;
466 		}
467 
468 		/* Check if there's anything to gain */
469 		if (round_up(inode->i_size, PAGE_SIZE) ==
470 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
471 			list_move(&info->shrinklist, &to_remove);
472 			removed++;
473 			goto next;
474 		}
475 
476 		list_move(&info->shrinklist, &list);
477 next:
478 		if (!--batch)
479 			break;
480 	}
481 	spin_unlock(&sbinfo->shrinklist_lock);
482 
483 	list_for_each_safe(pos, next, &to_remove) {
484 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 		inode = &info->vfs_inode;
486 		list_del_init(&info->shrinklist);
487 		iput(inode);
488 	}
489 
490 	list_for_each_safe(pos, next, &list) {
491 		int ret;
492 
493 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 		inode = &info->vfs_inode;
495 
496 		if (nr_to_split && split >= nr_to_split)
497 			goto leave;
498 
499 		page = find_get_page(inode->i_mapping,
500 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 		if (!page)
502 			goto drop;
503 
504 		/* No huge page at the end of the file: nothing to split */
505 		if (!PageTransHuge(page)) {
506 			put_page(page);
507 			goto drop;
508 		}
509 
510 		/*
511 		 * Leave the inode on the list if we failed to lock
512 		 * the page at this time.
513 		 *
514 		 * Waiting for the lock may lead to deadlock in the
515 		 * reclaim path.
516 		 */
517 		if (!trylock_page(page)) {
518 			put_page(page);
519 			goto leave;
520 		}
521 
522 		ret = split_huge_page(page);
523 		unlock_page(page);
524 		put_page(page);
525 
526 		/* If split failed leave the inode on the list */
527 		if (ret)
528 			goto leave;
529 
530 		split++;
531 drop:
532 		list_del_init(&info->shrinklist);
533 		removed++;
534 leave:
535 		iput(inode);
536 	}
537 
538 	spin_lock(&sbinfo->shrinklist_lock);
539 	list_splice_tail(&list, &sbinfo->shrinklist);
540 	sbinfo->shrinklist_len -= removed;
541 	spin_unlock(&sbinfo->shrinklist_lock);
542 
543 	return split;
544 }
545 
546 static long shmem_unused_huge_scan(struct super_block *sb,
547 		struct shrink_control *sc)
548 {
549 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550 
551 	if (!READ_ONCE(sbinfo->shrinklist_len))
552 		return SHRINK_STOP;
553 
554 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
555 }
556 
557 static long shmem_unused_huge_count(struct super_block *sb,
558 		struct shrink_control *sc)
559 {
560 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 	return READ_ONCE(sbinfo->shrinklist_len);
562 }
563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
564 
565 #define shmem_huge SHMEM_HUGE_DENY
566 
567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 		struct shrink_control *sc, unsigned long nr_to_split)
569 {
570 	return 0;
571 }
572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
573 
574 /*
575  * Like add_to_page_cache_locked, but error if expected item has gone.
576  */
577 static int shmem_add_to_page_cache(struct page *page,
578 				   struct address_space *mapping,
579 				   pgoff_t index, void *expected)
580 {
581 	int error, nr = hpage_nr_pages(page);
582 
583 	VM_BUG_ON_PAGE(PageTail(page), page);
584 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
585 	VM_BUG_ON_PAGE(!PageLocked(page), page);
586 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
587 	VM_BUG_ON(expected && PageTransHuge(page));
588 
589 	page_ref_add(page, nr);
590 	page->mapping = mapping;
591 	page->index = index;
592 
593 	spin_lock_irq(&mapping->tree_lock);
594 	if (PageTransHuge(page)) {
595 		void __rcu **results;
596 		pgoff_t idx;
597 		int i;
598 
599 		error = 0;
600 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
601 					&results, &idx, index, 1) &&
602 				idx < index + HPAGE_PMD_NR) {
603 			error = -EEXIST;
604 		}
605 
606 		if (!error) {
607 			for (i = 0; i < HPAGE_PMD_NR; i++) {
608 				error = radix_tree_insert(&mapping->page_tree,
609 						index + i, page + i);
610 				VM_BUG_ON(error);
611 			}
612 			count_vm_event(THP_FILE_ALLOC);
613 		}
614 	} else if (!expected) {
615 		error = radix_tree_insert(&mapping->page_tree, index, page);
616 	} else {
617 		error = shmem_radix_tree_replace(mapping, index, expected,
618 								 page);
619 	}
620 
621 	if (!error) {
622 		mapping->nrpages += nr;
623 		if (PageTransHuge(page))
624 			__inc_node_page_state(page, NR_SHMEM_THPS);
625 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
626 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
627 		spin_unlock_irq(&mapping->tree_lock);
628 	} else {
629 		page->mapping = NULL;
630 		spin_unlock_irq(&mapping->tree_lock);
631 		page_ref_sub(page, nr);
632 	}
633 	return error;
634 }
635 
636 /*
637  * Like delete_from_page_cache, but substitutes swap for page.
638  */
639 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640 {
641 	struct address_space *mapping = page->mapping;
642 	int error;
643 
644 	VM_BUG_ON_PAGE(PageCompound(page), page);
645 
646 	spin_lock_irq(&mapping->tree_lock);
647 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
648 	page->mapping = NULL;
649 	mapping->nrpages--;
650 	__dec_node_page_state(page, NR_FILE_PAGES);
651 	__dec_node_page_state(page, NR_SHMEM);
652 	spin_unlock_irq(&mapping->tree_lock);
653 	put_page(page);
654 	BUG_ON(error);
655 }
656 
657 /*
658  * Remove swap entry from radix tree, free the swap and its page cache.
659  */
660 static int shmem_free_swap(struct address_space *mapping,
661 			   pgoff_t index, void *radswap)
662 {
663 	void *old;
664 
665 	spin_lock_irq(&mapping->tree_lock);
666 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
667 	spin_unlock_irq(&mapping->tree_lock);
668 	if (old != radswap)
669 		return -ENOENT;
670 	free_swap_and_cache(radix_to_swp_entry(radswap));
671 	return 0;
672 }
673 
674 /*
675  * Determine (in bytes) how many of the shmem object's pages mapped by the
676  * given offsets are swapped out.
677  *
678  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
679  * as long as the inode doesn't go away and racy results are not a problem.
680  */
681 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
682 						pgoff_t start, pgoff_t end)
683 {
684 	struct radix_tree_iter iter;
685 	void **slot;
686 	struct page *page;
687 	unsigned long swapped = 0;
688 
689 	rcu_read_lock();
690 
691 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
692 		if (iter.index >= end)
693 			break;
694 
695 		page = radix_tree_deref_slot(slot);
696 
697 		if (radix_tree_deref_retry(page)) {
698 			slot = radix_tree_iter_retry(&iter);
699 			continue;
700 		}
701 
702 		if (radix_tree_exceptional_entry(page))
703 			swapped++;
704 
705 		if (need_resched()) {
706 			slot = radix_tree_iter_resume(slot, &iter);
707 			cond_resched_rcu();
708 		}
709 	}
710 
711 	rcu_read_unlock();
712 
713 	return swapped << PAGE_SHIFT;
714 }
715 
716 /*
717  * Determine (in bytes) how many of the shmem object's pages mapped by the
718  * given vma is swapped out.
719  *
720  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
721  * as long as the inode doesn't go away and racy results are not a problem.
722  */
723 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
724 {
725 	struct inode *inode = file_inode(vma->vm_file);
726 	struct shmem_inode_info *info = SHMEM_I(inode);
727 	struct address_space *mapping = inode->i_mapping;
728 	unsigned long swapped;
729 
730 	/* Be careful as we don't hold info->lock */
731 	swapped = READ_ONCE(info->swapped);
732 
733 	/*
734 	 * The easier cases are when the shmem object has nothing in swap, or
735 	 * the vma maps it whole. Then we can simply use the stats that we
736 	 * already track.
737 	 */
738 	if (!swapped)
739 		return 0;
740 
741 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
742 		return swapped << PAGE_SHIFT;
743 
744 	/* Here comes the more involved part */
745 	return shmem_partial_swap_usage(mapping,
746 			linear_page_index(vma, vma->vm_start),
747 			linear_page_index(vma, vma->vm_end));
748 }
749 
750 /*
751  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
752  */
753 void shmem_unlock_mapping(struct address_space *mapping)
754 {
755 	struct pagevec pvec;
756 	pgoff_t indices[PAGEVEC_SIZE];
757 	pgoff_t index = 0;
758 
759 	pagevec_init(&pvec);
760 	/*
761 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
762 	 */
763 	while (!mapping_unevictable(mapping)) {
764 		/*
765 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
767 		 */
768 		pvec.nr = find_get_entries(mapping, index,
769 					   PAGEVEC_SIZE, pvec.pages, indices);
770 		if (!pvec.nr)
771 			break;
772 		index = indices[pvec.nr - 1] + 1;
773 		pagevec_remove_exceptionals(&pvec);
774 		check_move_unevictable_pages(pvec.pages, pvec.nr);
775 		pagevec_release(&pvec);
776 		cond_resched();
777 	}
778 }
779 
780 /*
781  * Remove range of pages and swap entries from radix tree, and free them.
782  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
783  */
784 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
785 								 bool unfalloc)
786 {
787 	struct address_space *mapping = inode->i_mapping;
788 	struct shmem_inode_info *info = SHMEM_I(inode);
789 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
791 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
792 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
793 	struct pagevec pvec;
794 	pgoff_t indices[PAGEVEC_SIZE];
795 	long nr_swaps_freed = 0;
796 	pgoff_t index;
797 	int i;
798 
799 	if (lend == -1)
800 		end = -1;	/* unsigned, so actually very big */
801 
802 	pagevec_init(&pvec);
803 	index = start;
804 	while (index < end) {
805 		pvec.nr = find_get_entries(mapping, index,
806 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
807 			pvec.pages, indices);
808 		if (!pvec.nr)
809 			break;
810 		for (i = 0; i < pagevec_count(&pvec); i++) {
811 			struct page *page = pvec.pages[i];
812 
813 			index = indices[i];
814 			if (index >= end)
815 				break;
816 
817 			if (radix_tree_exceptional_entry(page)) {
818 				if (unfalloc)
819 					continue;
820 				nr_swaps_freed += !shmem_free_swap(mapping,
821 								index, page);
822 				continue;
823 			}
824 
825 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
826 
827 			if (!trylock_page(page))
828 				continue;
829 
830 			if (PageTransTail(page)) {
831 				/* Middle of THP: zero out the page */
832 				clear_highpage(page);
833 				unlock_page(page);
834 				continue;
835 			} else if (PageTransHuge(page)) {
836 				if (index == round_down(end, HPAGE_PMD_NR)) {
837 					/*
838 					 * Range ends in the middle of THP:
839 					 * zero out the page
840 					 */
841 					clear_highpage(page);
842 					unlock_page(page);
843 					continue;
844 				}
845 				index += HPAGE_PMD_NR - 1;
846 				i += HPAGE_PMD_NR - 1;
847 			}
848 
849 			if (!unfalloc || !PageUptodate(page)) {
850 				VM_BUG_ON_PAGE(PageTail(page), page);
851 				if (page_mapping(page) == mapping) {
852 					VM_BUG_ON_PAGE(PageWriteback(page), page);
853 					truncate_inode_page(mapping, page);
854 				}
855 			}
856 			unlock_page(page);
857 		}
858 		pagevec_remove_exceptionals(&pvec);
859 		pagevec_release(&pvec);
860 		cond_resched();
861 		index++;
862 	}
863 
864 	if (partial_start) {
865 		struct page *page = NULL;
866 		shmem_getpage(inode, start - 1, &page, SGP_READ);
867 		if (page) {
868 			unsigned int top = PAGE_SIZE;
869 			if (start > end) {
870 				top = partial_end;
871 				partial_end = 0;
872 			}
873 			zero_user_segment(page, partial_start, top);
874 			set_page_dirty(page);
875 			unlock_page(page);
876 			put_page(page);
877 		}
878 	}
879 	if (partial_end) {
880 		struct page *page = NULL;
881 		shmem_getpage(inode, end, &page, SGP_READ);
882 		if (page) {
883 			zero_user_segment(page, 0, partial_end);
884 			set_page_dirty(page);
885 			unlock_page(page);
886 			put_page(page);
887 		}
888 	}
889 	if (start >= end)
890 		return;
891 
892 	index = start;
893 	while (index < end) {
894 		cond_resched();
895 
896 		pvec.nr = find_get_entries(mapping, index,
897 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
898 				pvec.pages, indices);
899 		if (!pvec.nr) {
900 			/* If all gone or hole-punch or unfalloc, we're done */
901 			if (index == start || end != -1)
902 				break;
903 			/* But if truncating, restart to make sure all gone */
904 			index = start;
905 			continue;
906 		}
907 		for (i = 0; i < pagevec_count(&pvec); i++) {
908 			struct page *page = pvec.pages[i];
909 
910 			index = indices[i];
911 			if (index >= end)
912 				break;
913 
914 			if (radix_tree_exceptional_entry(page)) {
915 				if (unfalloc)
916 					continue;
917 				if (shmem_free_swap(mapping, index, page)) {
918 					/* Swap was replaced by page: retry */
919 					index--;
920 					break;
921 				}
922 				nr_swaps_freed++;
923 				continue;
924 			}
925 
926 			lock_page(page);
927 
928 			if (PageTransTail(page)) {
929 				/* Middle of THP: zero out the page */
930 				clear_highpage(page);
931 				unlock_page(page);
932 				/*
933 				 * Partial thp truncate due 'start' in middle
934 				 * of THP: don't need to look on these pages
935 				 * again on !pvec.nr restart.
936 				 */
937 				if (index != round_down(end, HPAGE_PMD_NR))
938 					start++;
939 				continue;
940 			} else if (PageTransHuge(page)) {
941 				if (index == round_down(end, HPAGE_PMD_NR)) {
942 					/*
943 					 * Range ends in the middle of THP:
944 					 * zero out the page
945 					 */
946 					clear_highpage(page);
947 					unlock_page(page);
948 					continue;
949 				}
950 				index += HPAGE_PMD_NR - 1;
951 				i += HPAGE_PMD_NR - 1;
952 			}
953 
954 			if (!unfalloc || !PageUptodate(page)) {
955 				VM_BUG_ON_PAGE(PageTail(page), page);
956 				if (page_mapping(page) == mapping) {
957 					VM_BUG_ON_PAGE(PageWriteback(page), page);
958 					truncate_inode_page(mapping, page);
959 				} else {
960 					/* Page was replaced by swap: retry */
961 					unlock_page(page);
962 					index--;
963 					break;
964 				}
965 			}
966 			unlock_page(page);
967 		}
968 		pagevec_remove_exceptionals(&pvec);
969 		pagevec_release(&pvec);
970 		index++;
971 	}
972 
973 	spin_lock_irq(&info->lock);
974 	info->swapped -= nr_swaps_freed;
975 	shmem_recalc_inode(inode);
976 	spin_unlock_irq(&info->lock);
977 }
978 
979 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
980 {
981 	shmem_undo_range(inode, lstart, lend, false);
982 	inode->i_ctime = inode->i_mtime = current_time(inode);
983 }
984 EXPORT_SYMBOL_GPL(shmem_truncate_range);
985 
986 static int shmem_getattr(const struct path *path, struct kstat *stat,
987 			 u32 request_mask, unsigned int query_flags)
988 {
989 	struct inode *inode = path->dentry->d_inode;
990 	struct shmem_inode_info *info = SHMEM_I(inode);
991 
992 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
993 		spin_lock_irq(&info->lock);
994 		shmem_recalc_inode(inode);
995 		spin_unlock_irq(&info->lock);
996 	}
997 	generic_fillattr(inode, stat);
998 	return 0;
999 }
1000 
1001 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1002 {
1003 	struct inode *inode = d_inode(dentry);
1004 	struct shmem_inode_info *info = SHMEM_I(inode);
1005 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1006 	int error;
1007 
1008 	error = setattr_prepare(dentry, attr);
1009 	if (error)
1010 		return error;
1011 
1012 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1013 		loff_t oldsize = inode->i_size;
1014 		loff_t newsize = attr->ia_size;
1015 
1016 		/* protected by i_mutex */
1017 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1018 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1019 			return -EPERM;
1020 
1021 		if (newsize != oldsize) {
1022 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1023 					oldsize, newsize);
1024 			if (error)
1025 				return error;
1026 			i_size_write(inode, newsize);
1027 			inode->i_ctime = inode->i_mtime = current_time(inode);
1028 		}
1029 		if (newsize <= oldsize) {
1030 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1031 			if (oldsize > holebegin)
1032 				unmap_mapping_range(inode->i_mapping,
1033 							holebegin, 0, 1);
1034 			if (info->alloced)
1035 				shmem_truncate_range(inode,
1036 							newsize, (loff_t)-1);
1037 			/* unmap again to remove racily COWed private pages */
1038 			if (oldsize > holebegin)
1039 				unmap_mapping_range(inode->i_mapping,
1040 							holebegin, 0, 1);
1041 
1042 			/*
1043 			 * Part of the huge page can be beyond i_size: subject
1044 			 * to shrink under memory pressure.
1045 			 */
1046 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1047 				spin_lock(&sbinfo->shrinklist_lock);
1048 				/*
1049 				 * _careful to defend against unlocked access to
1050 				 * ->shrink_list in shmem_unused_huge_shrink()
1051 				 */
1052 				if (list_empty_careful(&info->shrinklist)) {
1053 					list_add_tail(&info->shrinklist,
1054 							&sbinfo->shrinklist);
1055 					sbinfo->shrinklist_len++;
1056 				}
1057 				spin_unlock(&sbinfo->shrinklist_lock);
1058 			}
1059 		}
1060 	}
1061 
1062 	setattr_copy(inode, attr);
1063 	if (attr->ia_valid & ATTR_MODE)
1064 		error = posix_acl_chmod(inode, inode->i_mode);
1065 	return error;
1066 }
1067 
1068 static void shmem_evict_inode(struct inode *inode)
1069 {
1070 	struct shmem_inode_info *info = SHMEM_I(inode);
1071 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1072 
1073 	if (inode->i_mapping->a_ops == &shmem_aops) {
1074 		shmem_unacct_size(info->flags, inode->i_size);
1075 		inode->i_size = 0;
1076 		shmem_truncate_range(inode, 0, (loff_t)-1);
1077 		if (!list_empty(&info->shrinklist)) {
1078 			spin_lock(&sbinfo->shrinklist_lock);
1079 			if (!list_empty(&info->shrinklist)) {
1080 				list_del_init(&info->shrinklist);
1081 				sbinfo->shrinklist_len--;
1082 			}
1083 			spin_unlock(&sbinfo->shrinklist_lock);
1084 		}
1085 		if (!list_empty(&info->swaplist)) {
1086 			mutex_lock(&shmem_swaplist_mutex);
1087 			list_del_init(&info->swaplist);
1088 			mutex_unlock(&shmem_swaplist_mutex);
1089 		}
1090 	}
1091 
1092 	simple_xattrs_free(&info->xattrs);
1093 	WARN_ON(inode->i_blocks);
1094 	shmem_free_inode(inode->i_sb);
1095 	clear_inode(inode);
1096 }
1097 
1098 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099 {
1100 	struct radix_tree_iter iter;
1101 	void **slot;
1102 	unsigned long found = -1;
1103 	unsigned int checked = 0;
1104 
1105 	rcu_read_lock();
1106 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1107 		if (*slot == item) {
1108 			found = iter.index;
1109 			break;
1110 		}
1111 		checked++;
1112 		if ((checked % 4096) != 0)
1113 			continue;
1114 		slot = radix_tree_iter_resume(slot, &iter);
1115 		cond_resched_rcu();
1116 	}
1117 
1118 	rcu_read_unlock();
1119 	return found;
1120 }
1121 
1122 /*
1123  * If swap found in inode, free it and move page from swapcache to filecache.
1124  */
1125 static int shmem_unuse_inode(struct shmem_inode_info *info,
1126 			     swp_entry_t swap, struct page **pagep)
1127 {
1128 	struct address_space *mapping = info->vfs_inode.i_mapping;
1129 	void *radswap;
1130 	pgoff_t index;
1131 	gfp_t gfp;
1132 	int error = 0;
1133 
1134 	radswap = swp_to_radix_entry(swap);
1135 	index = find_swap_entry(&mapping->page_tree, radswap);
1136 	if (index == -1)
1137 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1138 
1139 	/*
1140 	 * Move _head_ to start search for next from here.
1141 	 * But be careful: shmem_evict_inode checks list_empty without taking
1142 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1143 	 * would appear empty, if it were the only one on shmem_swaplist.
1144 	 */
1145 	if (shmem_swaplist.next != &info->swaplist)
1146 		list_move_tail(&shmem_swaplist, &info->swaplist);
1147 
1148 	gfp = mapping_gfp_mask(mapping);
1149 	if (shmem_should_replace_page(*pagep, gfp)) {
1150 		mutex_unlock(&shmem_swaplist_mutex);
1151 		error = shmem_replace_page(pagep, gfp, info, index);
1152 		mutex_lock(&shmem_swaplist_mutex);
1153 		/*
1154 		 * We needed to drop mutex to make that restrictive page
1155 		 * allocation, but the inode might have been freed while we
1156 		 * dropped it: although a racing shmem_evict_inode() cannot
1157 		 * complete without emptying the radix_tree, our page lock
1158 		 * on this swapcache page is not enough to prevent that -
1159 		 * free_swap_and_cache() of our swap entry will only
1160 		 * trylock_page(), removing swap from radix_tree whatever.
1161 		 *
1162 		 * We must not proceed to shmem_add_to_page_cache() if the
1163 		 * inode has been freed, but of course we cannot rely on
1164 		 * inode or mapping or info to check that.  However, we can
1165 		 * safely check if our swap entry is still in use (and here
1166 		 * it can't have got reused for another page): if it's still
1167 		 * in use, then the inode cannot have been freed yet, and we
1168 		 * can safely proceed (if it's no longer in use, that tells
1169 		 * nothing about the inode, but we don't need to unuse swap).
1170 		 */
1171 		if (!page_swapcount(*pagep))
1172 			error = -ENOENT;
1173 	}
1174 
1175 	/*
1176 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1179 	 */
1180 	if (!error)
1181 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1182 						radswap);
1183 	if (error != -ENOMEM) {
1184 		/*
1185 		 * Truncation and eviction use free_swap_and_cache(), which
1186 		 * only does trylock page: if we raced, best clean up here.
1187 		 */
1188 		delete_from_swap_cache(*pagep);
1189 		set_page_dirty(*pagep);
1190 		if (!error) {
1191 			spin_lock_irq(&info->lock);
1192 			info->swapped--;
1193 			spin_unlock_irq(&info->lock);
1194 			swap_free(swap);
1195 		}
1196 	}
1197 	return error;
1198 }
1199 
1200 /*
1201  * Search through swapped inodes to find and replace swap by page.
1202  */
1203 int shmem_unuse(swp_entry_t swap, struct page *page)
1204 {
1205 	struct list_head *this, *next;
1206 	struct shmem_inode_info *info;
1207 	struct mem_cgroup *memcg;
1208 	int error = 0;
1209 
1210 	/*
1211 	 * There's a faint possibility that swap page was replaced before
1212 	 * caller locked it: caller will come back later with the right page.
1213 	 */
1214 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1215 		goto out;
1216 
1217 	/*
1218 	 * Charge page using GFP_KERNEL while we can wait, before taking
1219 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220 	 * Charged back to the user (not to caller) when swap account is used.
1221 	 */
1222 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223 			false);
1224 	if (error)
1225 		goto out;
1226 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1227 	error = -EAGAIN;
1228 
1229 	mutex_lock(&shmem_swaplist_mutex);
1230 	list_for_each_safe(this, next, &shmem_swaplist) {
1231 		info = list_entry(this, struct shmem_inode_info, swaplist);
1232 		if (info->swapped)
1233 			error = shmem_unuse_inode(info, swap, &page);
1234 		else
1235 			list_del_init(&info->swaplist);
1236 		cond_resched();
1237 		if (error != -EAGAIN)
1238 			break;
1239 		/* found nothing in this: move on to search the next */
1240 	}
1241 	mutex_unlock(&shmem_swaplist_mutex);
1242 
1243 	if (error) {
1244 		if (error != -ENOMEM)
1245 			error = 0;
1246 		mem_cgroup_cancel_charge(page, memcg, false);
1247 	} else
1248 		mem_cgroup_commit_charge(page, memcg, true, false);
1249 out:
1250 	unlock_page(page);
1251 	put_page(page);
1252 	return error;
1253 }
1254 
1255 /*
1256  * Move the page from the page cache to the swap cache.
1257  */
1258 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259 {
1260 	struct shmem_inode_info *info;
1261 	struct address_space *mapping;
1262 	struct inode *inode;
1263 	swp_entry_t swap;
1264 	pgoff_t index;
1265 
1266 	VM_BUG_ON_PAGE(PageCompound(page), page);
1267 	BUG_ON(!PageLocked(page));
1268 	mapping = page->mapping;
1269 	index = page->index;
1270 	inode = mapping->host;
1271 	info = SHMEM_I(inode);
1272 	if (info->flags & VM_LOCKED)
1273 		goto redirty;
1274 	if (!total_swap_pages)
1275 		goto redirty;
1276 
1277 	/*
1278 	 * Our capabilities prevent regular writeback or sync from ever calling
1279 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280 	 * its underlying filesystem, in which case tmpfs should write out to
1281 	 * swap only in response to memory pressure, and not for the writeback
1282 	 * threads or sync.
1283 	 */
1284 	if (!wbc->for_reclaim) {
1285 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1286 		goto redirty;
1287 	}
1288 
1289 	/*
1290 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291 	 * value into swapfile.c, the only way we can correctly account for a
1292 	 * fallocated page arriving here is now to initialize it and write it.
1293 	 *
1294 	 * That's okay for a page already fallocated earlier, but if we have
1295 	 * not yet completed the fallocation, then (a) we want to keep track
1296 	 * of this page in case we have to undo it, and (b) it may not be a
1297 	 * good idea to continue anyway, once we're pushing into swap.  So
1298 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1299 	 */
1300 	if (!PageUptodate(page)) {
1301 		if (inode->i_private) {
1302 			struct shmem_falloc *shmem_falloc;
1303 			spin_lock(&inode->i_lock);
1304 			shmem_falloc = inode->i_private;
1305 			if (shmem_falloc &&
1306 			    !shmem_falloc->waitq &&
1307 			    index >= shmem_falloc->start &&
1308 			    index < shmem_falloc->next)
1309 				shmem_falloc->nr_unswapped++;
1310 			else
1311 				shmem_falloc = NULL;
1312 			spin_unlock(&inode->i_lock);
1313 			if (shmem_falloc)
1314 				goto redirty;
1315 		}
1316 		clear_highpage(page);
1317 		flush_dcache_page(page);
1318 		SetPageUptodate(page);
1319 	}
1320 
1321 	swap = get_swap_page(page);
1322 	if (!swap.val)
1323 		goto redirty;
1324 
1325 	if (mem_cgroup_try_charge_swap(page, swap))
1326 		goto free_swap;
1327 
1328 	/*
1329 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1330 	 * if it's not already there.  Do it now before the page is
1331 	 * moved to swap cache, when its pagelock no longer protects
1332 	 * the inode from eviction.  But don't unlock the mutex until
1333 	 * we've incremented swapped, because shmem_unuse_inode() will
1334 	 * prune a !swapped inode from the swaplist under this mutex.
1335 	 */
1336 	mutex_lock(&shmem_swaplist_mutex);
1337 	if (list_empty(&info->swaplist))
1338 		list_add_tail(&info->swaplist, &shmem_swaplist);
1339 
1340 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1341 		spin_lock_irq(&info->lock);
1342 		shmem_recalc_inode(inode);
1343 		info->swapped++;
1344 		spin_unlock_irq(&info->lock);
1345 
1346 		swap_shmem_alloc(swap);
1347 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348 
1349 		mutex_unlock(&shmem_swaplist_mutex);
1350 		BUG_ON(page_mapped(page));
1351 		swap_writepage(page, wbc);
1352 		return 0;
1353 	}
1354 
1355 	mutex_unlock(&shmem_swaplist_mutex);
1356 free_swap:
1357 	put_swap_page(page, swap);
1358 redirty:
1359 	set_page_dirty(page);
1360 	if (wbc->for_reclaim)
1361 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1362 	unlock_page(page);
1363 	return 0;
1364 }
1365 
1366 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368 {
1369 	char buffer[64];
1370 
1371 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1372 		return;		/* show nothing */
1373 
1374 	mpol_to_str(buffer, sizeof(buffer), mpol);
1375 
1376 	seq_printf(seq, ",mpol=%s", buffer);
1377 }
1378 
1379 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380 {
1381 	struct mempolicy *mpol = NULL;
1382 	if (sbinfo->mpol) {
1383 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1384 		mpol = sbinfo->mpol;
1385 		mpol_get(mpol);
1386 		spin_unlock(&sbinfo->stat_lock);
1387 	}
1388 	return mpol;
1389 }
1390 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392 {
1393 }
1394 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395 {
1396 	return NULL;
1397 }
1398 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399 #ifndef CONFIG_NUMA
1400 #define vm_policy vm_private_data
1401 #endif
1402 
1403 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404 		struct shmem_inode_info *info, pgoff_t index)
1405 {
1406 	/* Create a pseudo vma that just contains the policy */
1407 	vma->vm_start = 0;
1408 	/* Bias interleave by inode number to distribute better across nodes */
1409 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410 	vma->vm_ops = NULL;
1411 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412 }
1413 
1414 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415 {
1416 	/* Drop reference taken by mpol_shared_policy_lookup() */
1417 	mpol_cond_put(vma->vm_policy);
1418 }
1419 
1420 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421 			struct shmem_inode_info *info, pgoff_t index)
1422 {
1423 	struct vm_area_struct pvma;
1424 	struct page *page;
1425 
1426 	shmem_pseudo_vma_init(&pvma, info, index);
1427 	page = swapin_readahead(swap, gfp, &pvma, 0);
1428 	shmem_pseudo_vma_destroy(&pvma);
1429 
1430 	return page;
1431 }
1432 
1433 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1434 		struct shmem_inode_info *info, pgoff_t index)
1435 {
1436 	struct vm_area_struct pvma;
1437 	struct inode *inode = &info->vfs_inode;
1438 	struct address_space *mapping = inode->i_mapping;
1439 	pgoff_t idx, hindex;
1440 	void __rcu **results;
1441 	struct page *page;
1442 
1443 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1444 		return NULL;
1445 
1446 	hindex = round_down(index, HPAGE_PMD_NR);
1447 	rcu_read_lock();
1448 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1449 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1450 		rcu_read_unlock();
1451 		return NULL;
1452 	}
1453 	rcu_read_unlock();
1454 
1455 	shmem_pseudo_vma_init(&pvma, info, hindex);
1456 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1457 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1458 	shmem_pseudo_vma_destroy(&pvma);
1459 	if (page)
1460 		prep_transhuge_page(page);
1461 	return page;
1462 }
1463 
1464 static struct page *shmem_alloc_page(gfp_t gfp,
1465 			struct shmem_inode_info *info, pgoff_t index)
1466 {
1467 	struct vm_area_struct pvma;
1468 	struct page *page;
1469 
1470 	shmem_pseudo_vma_init(&pvma, info, index);
1471 	page = alloc_page_vma(gfp, &pvma, 0);
1472 	shmem_pseudo_vma_destroy(&pvma);
1473 
1474 	return page;
1475 }
1476 
1477 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1478 		struct inode *inode,
1479 		pgoff_t index, bool huge)
1480 {
1481 	struct shmem_inode_info *info = SHMEM_I(inode);
1482 	struct page *page;
1483 	int nr;
1484 	int err = -ENOSPC;
1485 
1486 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1487 		huge = false;
1488 	nr = huge ? HPAGE_PMD_NR : 1;
1489 
1490 	if (!shmem_inode_acct_block(inode, nr))
1491 		goto failed;
1492 
1493 	if (huge)
1494 		page = shmem_alloc_hugepage(gfp, info, index);
1495 	else
1496 		page = shmem_alloc_page(gfp, info, index);
1497 	if (page) {
1498 		__SetPageLocked(page);
1499 		__SetPageSwapBacked(page);
1500 		return page;
1501 	}
1502 
1503 	err = -ENOMEM;
1504 	shmem_inode_unacct_blocks(inode, nr);
1505 failed:
1506 	return ERR_PTR(err);
1507 }
1508 
1509 /*
1510  * When a page is moved from swapcache to shmem filecache (either by the
1511  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1512  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1513  * ignorance of the mapping it belongs to.  If that mapping has special
1514  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1515  * we may need to copy to a suitable page before moving to filecache.
1516  *
1517  * In a future release, this may well be extended to respect cpuset and
1518  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1519  * but for now it is a simple matter of zone.
1520  */
1521 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1522 {
1523 	return page_zonenum(page) > gfp_zone(gfp);
1524 }
1525 
1526 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1527 				struct shmem_inode_info *info, pgoff_t index)
1528 {
1529 	struct page *oldpage, *newpage;
1530 	struct address_space *swap_mapping;
1531 	pgoff_t swap_index;
1532 	int error;
1533 
1534 	oldpage = *pagep;
1535 	swap_index = page_private(oldpage);
1536 	swap_mapping = page_mapping(oldpage);
1537 
1538 	/*
1539 	 * We have arrived here because our zones are constrained, so don't
1540 	 * limit chance of success by further cpuset and node constraints.
1541 	 */
1542 	gfp &= ~GFP_CONSTRAINT_MASK;
1543 	newpage = shmem_alloc_page(gfp, info, index);
1544 	if (!newpage)
1545 		return -ENOMEM;
1546 
1547 	get_page(newpage);
1548 	copy_highpage(newpage, oldpage);
1549 	flush_dcache_page(newpage);
1550 
1551 	__SetPageLocked(newpage);
1552 	__SetPageSwapBacked(newpage);
1553 	SetPageUptodate(newpage);
1554 	set_page_private(newpage, swap_index);
1555 	SetPageSwapCache(newpage);
1556 
1557 	/*
1558 	 * Our caller will very soon move newpage out of swapcache, but it's
1559 	 * a nice clean interface for us to replace oldpage by newpage there.
1560 	 */
1561 	spin_lock_irq(&swap_mapping->tree_lock);
1562 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1563 								   newpage);
1564 	if (!error) {
1565 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1566 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1567 	}
1568 	spin_unlock_irq(&swap_mapping->tree_lock);
1569 
1570 	if (unlikely(error)) {
1571 		/*
1572 		 * Is this possible?  I think not, now that our callers check
1573 		 * both PageSwapCache and page_private after getting page lock;
1574 		 * but be defensive.  Reverse old to newpage for clear and free.
1575 		 */
1576 		oldpage = newpage;
1577 	} else {
1578 		mem_cgroup_migrate(oldpage, newpage);
1579 		lru_cache_add_anon(newpage);
1580 		*pagep = newpage;
1581 	}
1582 
1583 	ClearPageSwapCache(oldpage);
1584 	set_page_private(oldpage, 0);
1585 
1586 	unlock_page(oldpage);
1587 	put_page(oldpage);
1588 	put_page(oldpage);
1589 	return error;
1590 }
1591 
1592 /*
1593  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1594  *
1595  * If we allocate a new one we do not mark it dirty. That's up to the
1596  * vm. If we swap it in we mark it dirty since we also free the swap
1597  * entry since a page cannot live in both the swap and page cache.
1598  *
1599  * fault_mm and fault_type are only supplied by shmem_fault:
1600  * otherwise they are NULL.
1601  */
1602 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1603 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1604 	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1605 {
1606 	struct address_space *mapping = inode->i_mapping;
1607 	struct shmem_inode_info *info = SHMEM_I(inode);
1608 	struct shmem_sb_info *sbinfo;
1609 	struct mm_struct *charge_mm;
1610 	struct mem_cgroup *memcg;
1611 	struct page *page;
1612 	swp_entry_t swap;
1613 	enum sgp_type sgp_huge = sgp;
1614 	pgoff_t hindex = index;
1615 	int error;
1616 	int once = 0;
1617 	int alloced = 0;
1618 
1619 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1620 		return -EFBIG;
1621 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1622 		sgp = SGP_CACHE;
1623 repeat:
1624 	swap.val = 0;
1625 	page = find_lock_entry(mapping, index);
1626 	if (radix_tree_exceptional_entry(page)) {
1627 		swap = radix_to_swp_entry(page);
1628 		page = NULL;
1629 	}
1630 
1631 	if (sgp <= SGP_CACHE &&
1632 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1633 		error = -EINVAL;
1634 		goto unlock;
1635 	}
1636 
1637 	if (page && sgp == SGP_WRITE)
1638 		mark_page_accessed(page);
1639 
1640 	/* fallocated page? */
1641 	if (page && !PageUptodate(page)) {
1642 		if (sgp != SGP_READ)
1643 			goto clear;
1644 		unlock_page(page);
1645 		put_page(page);
1646 		page = NULL;
1647 	}
1648 	if (page || (sgp == SGP_READ && !swap.val)) {
1649 		*pagep = page;
1650 		return 0;
1651 	}
1652 
1653 	/*
1654 	 * Fast cache lookup did not find it:
1655 	 * bring it back from swap or allocate.
1656 	 */
1657 	sbinfo = SHMEM_SB(inode->i_sb);
1658 	charge_mm = vma ? vma->vm_mm : current->mm;
1659 
1660 	if (swap.val) {
1661 		/* Look it up and read it in.. */
1662 		page = lookup_swap_cache(swap, NULL, 0);
1663 		if (!page) {
1664 			/* Or update major stats only when swapin succeeds?? */
1665 			if (fault_type) {
1666 				*fault_type |= VM_FAULT_MAJOR;
1667 				count_vm_event(PGMAJFAULT);
1668 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1669 			}
1670 			/* Here we actually start the io */
1671 			page = shmem_swapin(swap, gfp, info, index);
1672 			if (!page) {
1673 				error = -ENOMEM;
1674 				goto failed;
1675 			}
1676 		}
1677 
1678 		/* We have to do this with page locked to prevent races */
1679 		lock_page(page);
1680 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1681 		    !shmem_confirm_swap(mapping, index, swap)) {
1682 			error = -EEXIST;	/* try again */
1683 			goto unlock;
1684 		}
1685 		if (!PageUptodate(page)) {
1686 			error = -EIO;
1687 			goto failed;
1688 		}
1689 		wait_on_page_writeback(page);
1690 
1691 		if (shmem_should_replace_page(page, gfp)) {
1692 			error = shmem_replace_page(&page, gfp, info, index);
1693 			if (error)
1694 				goto failed;
1695 		}
1696 
1697 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1698 				false);
1699 		if (!error) {
1700 			error = shmem_add_to_page_cache(page, mapping, index,
1701 						swp_to_radix_entry(swap));
1702 			/*
1703 			 * We already confirmed swap under page lock, and make
1704 			 * no memory allocation here, so usually no possibility
1705 			 * of error; but free_swap_and_cache() only trylocks a
1706 			 * page, so it is just possible that the entry has been
1707 			 * truncated or holepunched since swap was confirmed.
1708 			 * shmem_undo_range() will have done some of the
1709 			 * unaccounting, now delete_from_swap_cache() will do
1710 			 * the rest.
1711 			 * Reset swap.val? No, leave it so "failed" goes back to
1712 			 * "repeat": reading a hole and writing should succeed.
1713 			 */
1714 			if (error) {
1715 				mem_cgroup_cancel_charge(page, memcg, false);
1716 				delete_from_swap_cache(page);
1717 			}
1718 		}
1719 		if (error)
1720 			goto failed;
1721 
1722 		mem_cgroup_commit_charge(page, memcg, true, false);
1723 
1724 		spin_lock_irq(&info->lock);
1725 		info->swapped--;
1726 		shmem_recalc_inode(inode);
1727 		spin_unlock_irq(&info->lock);
1728 
1729 		if (sgp == SGP_WRITE)
1730 			mark_page_accessed(page);
1731 
1732 		delete_from_swap_cache(page);
1733 		set_page_dirty(page);
1734 		swap_free(swap);
1735 
1736 	} else {
1737 		if (vma && userfaultfd_missing(vma)) {
1738 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1739 			return 0;
1740 		}
1741 
1742 		/* shmem_symlink() */
1743 		if (mapping->a_ops != &shmem_aops)
1744 			goto alloc_nohuge;
1745 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1746 			goto alloc_nohuge;
1747 		if (shmem_huge == SHMEM_HUGE_FORCE)
1748 			goto alloc_huge;
1749 		switch (sbinfo->huge) {
1750 			loff_t i_size;
1751 			pgoff_t off;
1752 		case SHMEM_HUGE_NEVER:
1753 			goto alloc_nohuge;
1754 		case SHMEM_HUGE_WITHIN_SIZE:
1755 			off = round_up(index, HPAGE_PMD_NR);
1756 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1757 			if (i_size >= HPAGE_PMD_SIZE &&
1758 					i_size >> PAGE_SHIFT >= off)
1759 				goto alloc_huge;
1760 			/* fallthrough */
1761 		case SHMEM_HUGE_ADVISE:
1762 			if (sgp_huge == SGP_HUGE)
1763 				goto alloc_huge;
1764 			/* TODO: implement fadvise() hints */
1765 			goto alloc_nohuge;
1766 		}
1767 
1768 alloc_huge:
1769 		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1770 		if (IS_ERR(page)) {
1771 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1772 					index, false);
1773 		}
1774 		if (IS_ERR(page)) {
1775 			int retry = 5;
1776 			error = PTR_ERR(page);
1777 			page = NULL;
1778 			if (error != -ENOSPC)
1779 				goto failed;
1780 			/*
1781 			 * Try to reclaim some spece by splitting a huge page
1782 			 * beyond i_size on the filesystem.
1783 			 */
1784 			while (retry--) {
1785 				int ret;
1786 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1787 				if (ret == SHRINK_STOP)
1788 					break;
1789 				if (ret)
1790 					goto alloc_nohuge;
1791 			}
1792 			goto failed;
1793 		}
1794 
1795 		if (PageTransHuge(page))
1796 			hindex = round_down(index, HPAGE_PMD_NR);
1797 		else
1798 			hindex = index;
1799 
1800 		if (sgp == SGP_WRITE)
1801 			__SetPageReferenced(page);
1802 
1803 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1804 				PageTransHuge(page));
1805 		if (error)
1806 			goto unacct;
1807 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1808 				compound_order(page));
1809 		if (!error) {
1810 			error = shmem_add_to_page_cache(page, mapping, hindex,
1811 							NULL);
1812 			radix_tree_preload_end();
1813 		}
1814 		if (error) {
1815 			mem_cgroup_cancel_charge(page, memcg,
1816 					PageTransHuge(page));
1817 			goto unacct;
1818 		}
1819 		mem_cgroup_commit_charge(page, memcg, false,
1820 				PageTransHuge(page));
1821 		lru_cache_add_anon(page);
1822 
1823 		spin_lock_irq(&info->lock);
1824 		info->alloced += 1 << compound_order(page);
1825 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1826 		shmem_recalc_inode(inode);
1827 		spin_unlock_irq(&info->lock);
1828 		alloced = true;
1829 
1830 		if (PageTransHuge(page) &&
1831 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1832 				hindex + HPAGE_PMD_NR - 1) {
1833 			/*
1834 			 * Part of the huge page is beyond i_size: subject
1835 			 * to shrink under memory pressure.
1836 			 */
1837 			spin_lock(&sbinfo->shrinklist_lock);
1838 			/*
1839 			 * _careful to defend against unlocked access to
1840 			 * ->shrink_list in shmem_unused_huge_shrink()
1841 			 */
1842 			if (list_empty_careful(&info->shrinklist)) {
1843 				list_add_tail(&info->shrinklist,
1844 						&sbinfo->shrinklist);
1845 				sbinfo->shrinklist_len++;
1846 			}
1847 			spin_unlock(&sbinfo->shrinklist_lock);
1848 		}
1849 
1850 		/*
1851 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1852 		 */
1853 		if (sgp == SGP_FALLOC)
1854 			sgp = SGP_WRITE;
1855 clear:
1856 		/*
1857 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1858 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1859 		 * it now, lest undo on failure cancel our earlier guarantee.
1860 		 */
1861 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1862 			struct page *head = compound_head(page);
1863 			int i;
1864 
1865 			for (i = 0; i < (1 << compound_order(head)); i++) {
1866 				clear_highpage(head + i);
1867 				flush_dcache_page(head + i);
1868 			}
1869 			SetPageUptodate(head);
1870 		}
1871 	}
1872 
1873 	/* Perhaps the file has been truncated since we checked */
1874 	if (sgp <= SGP_CACHE &&
1875 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1876 		if (alloced) {
1877 			ClearPageDirty(page);
1878 			delete_from_page_cache(page);
1879 			spin_lock_irq(&info->lock);
1880 			shmem_recalc_inode(inode);
1881 			spin_unlock_irq(&info->lock);
1882 		}
1883 		error = -EINVAL;
1884 		goto unlock;
1885 	}
1886 	*pagep = page + index - hindex;
1887 	return 0;
1888 
1889 	/*
1890 	 * Error recovery.
1891 	 */
1892 unacct:
1893 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1894 
1895 	if (PageTransHuge(page)) {
1896 		unlock_page(page);
1897 		put_page(page);
1898 		goto alloc_nohuge;
1899 	}
1900 failed:
1901 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1902 		error = -EEXIST;
1903 unlock:
1904 	if (page) {
1905 		unlock_page(page);
1906 		put_page(page);
1907 	}
1908 	if (error == -ENOSPC && !once++) {
1909 		spin_lock_irq(&info->lock);
1910 		shmem_recalc_inode(inode);
1911 		spin_unlock_irq(&info->lock);
1912 		goto repeat;
1913 	}
1914 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1915 		goto repeat;
1916 	return error;
1917 }
1918 
1919 /*
1920  * This is like autoremove_wake_function, but it removes the wait queue
1921  * entry unconditionally - even if something else had already woken the
1922  * target.
1923  */
1924 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1925 {
1926 	int ret = default_wake_function(wait, mode, sync, key);
1927 	list_del_init(&wait->entry);
1928 	return ret;
1929 }
1930 
1931 static int shmem_fault(struct vm_fault *vmf)
1932 {
1933 	struct vm_area_struct *vma = vmf->vma;
1934 	struct inode *inode = file_inode(vma->vm_file);
1935 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1936 	enum sgp_type sgp;
1937 	int error;
1938 	int ret = VM_FAULT_LOCKED;
1939 
1940 	/*
1941 	 * Trinity finds that probing a hole which tmpfs is punching can
1942 	 * prevent the hole-punch from ever completing: which in turn
1943 	 * locks writers out with its hold on i_mutex.  So refrain from
1944 	 * faulting pages into the hole while it's being punched.  Although
1945 	 * shmem_undo_range() does remove the additions, it may be unable to
1946 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1947 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1948 	 *
1949 	 * It does not matter if we sometimes reach this check just before the
1950 	 * hole-punch begins, so that one fault then races with the punch:
1951 	 * we just need to make racing faults a rare case.
1952 	 *
1953 	 * The implementation below would be much simpler if we just used a
1954 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1955 	 * and bloating every shmem inode for this unlikely case would be sad.
1956 	 */
1957 	if (unlikely(inode->i_private)) {
1958 		struct shmem_falloc *shmem_falloc;
1959 
1960 		spin_lock(&inode->i_lock);
1961 		shmem_falloc = inode->i_private;
1962 		if (shmem_falloc &&
1963 		    shmem_falloc->waitq &&
1964 		    vmf->pgoff >= shmem_falloc->start &&
1965 		    vmf->pgoff < shmem_falloc->next) {
1966 			wait_queue_head_t *shmem_falloc_waitq;
1967 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1968 
1969 			ret = VM_FAULT_NOPAGE;
1970 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1971 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1972 				/* It's polite to up mmap_sem if we can */
1973 				up_read(&vma->vm_mm->mmap_sem);
1974 				ret = VM_FAULT_RETRY;
1975 			}
1976 
1977 			shmem_falloc_waitq = shmem_falloc->waitq;
1978 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1979 					TASK_UNINTERRUPTIBLE);
1980 			spin_unlock(&inode->i_lock);
1981 			schedule();
1982 
1983 			/*
1984 			 * shmem_falloc_waitq points into the shmem_fallocate()
1985 			 * stack of the hole-punching task: shmem_falloc_waitq
1986 			 * is usually invalid by the time we reach here, but
1987 			 * finish_wait() does not dereference it in that case;
1988 			 * though i_lock needed lest racing with wake_up_all().
1989 			 */
1990 			spin_lock(&inode->i_lock);
1991 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1992 			spin_unlock(&inode->i_lock);
1993 			return ret;
1994 		}
1995 		spin_unlock(&inode->i_lock);
1996 	}
1997 
1998 	sgp = SGP_CACHE;
1999 
2000 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2001 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2002 		sgp = SGP_NOHUGE;
2003 	else if (vma->vm_flags & VM_HUGEPAGE)
2004 		sgp = SGP_HUGE;
2005 
2006 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2007 				  gfp, vma, vmf, &ret);
2008 	if (error)
2009 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2010 	return ret;
2011 }
2012 
2013 unsigned long shmem_get_unmapped_area(struct file *file,
2014 				      unsigned long uaddr, unsigned long len,
2015 				      unsigned long pgoff, unsigned long flags)
2016 {
2017 	unsigned long (*get_area)(struct file *,
2018 		unsigned long, unsigned long, unsigned long, unsigned long);
2019 	unsigned long addr;
2020 	unsigned long offset;
2021 	unsigned long inflated_len;
2022 	unsigned long inflated_addr;
2023 	unsigned long inflated_offset;
2024 
2025 	if (len > TASK_SIZE)
2026 		return -ENOMEM;
2027 
2028 	get_area = current->mm->get_unmapped_area;
2029 	addr = get_area(file, uaddr, len, pgoff, flags);
2030 
2031 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2032 		return addr;
2033 	if (IS_ERR_VALUE(addr))
2034 		return addr;
2035 	if (addr & ~PAGE_MASK)
2036 		return addr;
2037 	if (addr > TASK_SIZE - len)
2038 		return addr;
2039 
2040 	if (shmem_huge == SHMEM_HUGE_DENY)
2041 		return addr;
2042 	if (len < HPAGE_PMD_SIZE)
2043 		return addr;
2044 	if (flags & MAP_FIXED)
2045 		return addr;
2046 	/*
2047 	 * Our priority is to support MAP_SHARED mapped hugely;
2048 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2049 	 * But if caller specified an address hint, respect that as before.
2050 	 */
2051 	if (uaddr)
2052 		return addr;
2053 
2054 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2055 		struct super_block *sb;
2056 
2057 		if (file) {
2058 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2059 			sb = file_inode(file)->i_sb;
2060 		} else {
2061 			/*
2062 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2063 			 * for "/dev/zero", to create a shared anonymous object.
2064 			 */
2065 			if (IS_ERR(shm_mnt))
2066 				return addr;
2067 			sb = shm_mnt->mnt_sb;
2068 		}
2069 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2070 			return addr;
2071 	}
2072 
2073 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2074 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2075 		return addr;
2076 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2077 		return addr;
2078 
2079 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2080 	if (inflated_len > TASK_SIZE)
2081 		return addr;
2082 	if (inflated_len < len)
2083 		return addr;
2084 
2085 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2086 	if (IS_ERR_VALUE(inflated_addr))
2087 		return addr;
2088 	if (inflated_addr & ~PAGE_MASK)
2089 		return addr;
2090 
2091 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2092 	inflated_addr += offset - inflated_offset;
2093 	if (inflated_offset > offset)
2094 		inflated_addr += HPAGE_PMD_SIZE;
2095 
2096 	if (inflated_addr > TASK_SIZE - len)
2097 		return addr;
2098 	return inflated_addr;
2099 }
2100 
2101 #ifdef CONFIG_NUMA
2102 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2103 {
2104 	struct inode *inode = file_inode(vma->vm_file);
2105 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2106 }
2107 
2108 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2109 					  unsigned long addr)
2110 {
2111 	struct inode *inode = file_inode(vma->vm_file);
2112 	pgoff_t index;
2113 
2114 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2115 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2116 }
2117 #endif
2118 
2119 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2120 {
2121 	struct inode *inode = file_inode(file);
2122 	struct shmem_inode_info *info = SHMEM_I(inode);
2123 	int retval = -ENOMEM;
2124 
2125 	spin_lock_irq(&info->lock);
2126 	if (lock && !(info->flags & VM_LOCKED)) {
2127 		if (!user_shm_lock(inode->i_size, user))
2128 			goto out_nomem;
2129 		info->flags |= VM_LOCKED;
2130 		mapping_set_unevictable(file->f_mapping);
2131 	}
2132 	if (!lock && (info->flags & VM_LOCKED) && user) {
2133 		user_shm_unlock(inode->i_size, user);
2134 		info->flags &= ~VM_LOCKED;
2135 		mapping_clear_unevictable(file->f_mapping);
2136 	}
2137 	retval = 0;
2138 
2139 out_nomem:
2140 	spin_unlock_irq(&info->lock);
2141 	return retval;
2142 }
2143 
2144 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2145 {
2146 	file_accessed(file);
2147 	vma->vm_ops = &shmem_vm_ops;
2148 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2149 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2150 			(vma->vm_end & HPAGE_PMD_MASK)) {
2151 		khugepaged_enter(vma, vma->vm_flags);
2152 	}
2153 	return 0;
2154 }
2155 
2156 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2157 				     umode_t mode, dev_t dev, unsigned long flags)
2158 {
2159 	struct inode *inode;
2160 	struct shmem_inode_info *info;
2161 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2162 
2163 	if (shmem_reserve_inode(sb))
2164 		return NULL;
2165 
2166 	inode = new_inode(sb);
2167 	if (inode) {
2168 		inode->i_ino = get_next_ino();
2169 		inode_init_owner(inode, dir, mode);
2170 		inode->i_blocks = 0;
2171 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2172 		inode->i_generation = get_seconds();
2173 		info = SHMEM_I(inode);
2174 		memset(info, 0, (char *)inode - (char *)info);
2175 		spin_lock_init(&info->lock);
2176 		info->seals = F_SEAL_SEAL;
2177 		info->flags = flags & VM_NORESERVE;
2178 		INIT_LIST_HEAD(&info->shrinklist);
2179 		INIT_LIST_HEAD(&info->swaplist);
2180 		simple_xattrs_init(&info->xattrs);
2181 		cache_no_acl(inode);
2182 
2183 		switch (mode & S_IFMT) {
2184 		default:
2185 			inode->i_op = &shmem_special_inode_operations;
2186 			init_special_inode(inode, mode, dev);
2187 			break;
2188 		case S_IFREG:
2189 			inode->i_mapping->a_ops = &shmem_aops;
2190 			inode->i_op = &shmem_inode_operations;
2191 			inode->i_fop = &shmem_file_operations;
2192 			mpol_shared_policy_init(&info->policy,
2193 						 shmem_get_sbmpol(sbinfo));
2194 			break;
2195 		case S_IFDIR:
2196 			inc_nlink(inode);
2197 			/* Some things misbehave if size == 0 on a directory */
2198 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2199 			inode->i_op = &shmem_dir_inode_operations;
2200 			inode->i_fop = &simple_dir_operations;
2201 			break;
2202 		case S_IFLNK:
2203 			/*
2204 			 * Must not load anything in the rbtree,
2205 			 * mpol_free_shared_policy will not be called.
2206 			 */
2207 			mpol_shared_policy_init(&info->policy, NULL);
2208 			break;
2209 		}
2210 	} else
2211 		shmem_free_inode(sb);
2212 	return inode;
2213 }
2214 
2215 bool shmem_mapping(struct address_space *mapping)
2216 {
2217 	return mapping->a_ops == &shmem_aops;
2218 }
2219 
2220 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2221 				  pmd_t *dst_pmd,
2222 				  struct vm_area_struct *dst_vma,
2223 				  unsigned long dst_addr,
2224 				  unsigned long src_addr,
2225 				  bool zeropage,
2226 				  struct page **pagep)
2227 {
2228 	struct inode *inode = file_inode(dst_vma->vm_file);
2229 	struct shmem_inode_info *info = SHMEM_I(inode);
2230 	struct address_space *mapping = inode->i_mapping;
2231 	gfp_t gfp = mapping_gfp_mask(mapping);
2232 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2233 	struct mem_cgroup *memcg;
2234 	spinlock_t *ptl;
2235 	void *page_kaddr;
2236 	struct page *page;
2237 	pte_t _dst_pte, *dst_pte;
2238 	int ret;
2239 
2240 	ret = -ENOMEM;
2241 	if (!shmem_inode_acct_block(inode, 1))
2242 		goto out;
2243 
2244 	if (!*pagep) {
2245 		page = shmem_alloc_page(gfp, info, pgoff);
2246 		if (!page)
2247 			goto out_unacct_blocks;
2248 
2249 		if (!zeropage) {	/* mcopy_atomic */
2250 			page_kaddr = kmap_atomic(page);
2251 			ret = copy_from_user(page_kaddr,
2252 					     (const void __user *)src_addr,
2253 					     PAGE_SIZE);
2254 			kunmap_atomic(page_kaddr);
2255 
2256 			/* fallback to copy_from_user outside mmap_sem */
2257 			if (unlikely(ret)) {
2258 				*pagep = page;
2259 				shmem_inode_unacct_blocks(inode, 1);
2260 				/* don't free the page */
2261 				return -EFAULT;
2262 			}
2263 		} else {		/* mfill_zeropage_atomic */
2264 			clear_highpage(page);
2265 		}
2266 	} else {
2267 		page = *pagep;
2268 		*pagep = NULL;
2269 	}
2270 
2271 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2272 	__SetPageLocked(page);
2273 	__SetPageSwapBacked(page);
2274 	__SetPageUptodate(page);
2275 
2276 	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2277 	if (ret)
2278 		goto out_release;
2279 
2280 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2281 	if (!ret) {
2282 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2283 		radix_tree_preload_end();
2284 	}
2285 	if (ret)
2286 		goto out_release_uncharge;
2287 
2288 	mem_cgroup_commit_charge(page, memcg, false, false);
2289 
2290 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2291 	if (dst_vma->vm_flags & VM_WRITE)
2292 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2293 
2294 	ret = -EEXIST;
2295 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2296 	if (!pte_none(*dst_pte))
2297 		goto out_release_uncharge_unlock;
2298 
2299 	lru_cache_add_anon(page);
2300 
2301 	spin_lock(&info->lock);
2302 	info->alloced++;
2303 	inode->i_blocks += BLOCKS_PER_PAGE;
2304 	shmem_recalc_inode(inode);
2305 	spin_unlock(&info->lock);
2306 
2307 	inc_mm_counter(dst_mm, mm_counter_file(page));
2308 	page_add_file_rmap(page, false);
2309 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2310 
2311 	/* No need to invalidate - it was non-present before */
2312 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2313 	unlock_page(page);
2314 	pte_unmap_unlock(dst_pte, ptl);
2315 	ret = 0;
2316 out:
2317 	return ret;
2318 out_release_uncharge_unlock:
2319 	pte_unmap_unlock(dst_pte, ptl);
2320 out_release_uncharge:
2321 	mem_cgroup_cancel_charge(page, memcg, false);
2322 out_release:
2323 	unlock_page(page);
2324 	put_page(page);
2325 out_unacct_blocks:
2326 	shmem_inode_unacct_blocks(inode, 1);
2327 	goto out;
2328 }
2329 
2330 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2331 			   pmd_t *dst_pmd,
2332 			   struct vm_area_struct *dst_vma,
2333 			   unsigned long dst_addr,
2334 			   unsigned long src_addr,
2335 			   struct page **pagep)
2336 {
2337 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2338 				      dst_addr, src_addr, false, pagep);
2339 }
2340 
2341 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2342 			     pmd_t *dst_pmd,
2343 			     struct vm_area_struct *dst_vma,
2344 			     unsigned long dst_addr)
2345 {
2346 	struct page *page = NULL;
2347 
2348 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2349 				      dst_addr, 0, true, &page);
2350 }
2351 
2352 #ifdef CONFIG_TMPFS
2353 static const struct inode_operations shmem_symlink_inode_operations;
2354 static const struct inode_operations shmem_short_symlink_operations;
2355 
2356 #ifdef CONFIG_TMPFS_XATTR
2357 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2358 #else
2359 #define shmem_initxattrs NULL
2360 #endif
2361 
2362 static int
2363 shmem_write_begin(struct file *file, struct address_space *mapping,
2364 			loff_t pos, unsigned len, unsigned flags,
2365 			struct page **pagep, void **fsdata)
2366 {
2367 	struct inode *inode = mapping->host;
2368 	struct shmem_inode_info *info = SHMEM_I(inode);
2369 	pgoff_t index = pos >> PAGE_SHIFT;
2370 
2371 	/* i_mutex is held by caller */
2372 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2373 		if (info->seals & F_SEAL_WRITE)
2374 			return -EPERM;
2375 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2376 			return -EPERM;
2377 	}
2378 
2379 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2380 }
2381 
2382 static int
2383 shmem_write_end(struct file *file, struct address_space *mapping,
2384 			loff_t pos, unsigned len, unsigned copied,
2385 			struct page *page, void *fsdata)
2386 {
2387 	struct inode *inode = mapping->host;
2388 
2389 	if (pos + copied > inode->i_size)
2390 		i_size_write(inode, pos + copied);
2391 
2392 	if (!PageUptodate(page)) {
2393 		struct page *head = compound_head(page);
2394 		if (PageTransCompound(page)) {
2395 			int i;
2396 
2397 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2398 				if (head + i == page)
2399 					continue;
2400 				clear_highpage(head + i);
2401 				flush_dcache_page(head + i);
2402 			}
2403 		}
2404 		if (copied < PAGE_SIZE) {
2405 			unsigned from = pos & (PAGE_SIZE - 1);
2406 			zero_user_segments(page, 0, from,
2407 					from + copied, PAGE_SIZE);
2408 		}
2409 		SetPageUptodate(head);
2410 	}
2411 	set_page_dirty(page);
2412 	unlock_page(page);
2413 	put_page(page);
2414 
2415 	return copied;
2416 }
2417 
2418 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2419 {
2420 	struct file *file = iocb->ki_filp;
2421 	struct inode *inode = file_inode(file);
2422 	struct address_space *mapping = inode->i_mapping;
2423 	pgoff_t index;
2424 	unsigned long offset;
2425 	enum sgp_type sgp = SGP_READ;
2426 	int error = 0;
2427 	ssize_t retval = 0;
2428 	loff_t *ppos = &iocb->ki_pos;
2429 
2430 	/*
2431 	 * Might this read be for a stacking filesystem?  Then when reading
2432 	 * holes of a sparse file, we actually need to allocate those pages,
2433 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2434 	 */
2435 	if (!iter_is_iovec(to))
2436 		sgp = SGP_CACHE;
2437 
2438 	index = *ppos >> PAGE_SHIFT;
2439 	offset = *ppos & ~PAGE_MASK;
2440 
2441 	for (;;) {
2442 		struct page *page = NULL;
2443 		pgoff_t end_index;
2444 		unsigned long nr, ret;
2445 		loff_t i_size = i_size_read(inode);
2446 
2447 		end_index = i_size >> PAGE_SHIFT;
2448 		if (index > end_index)
2449 			break;
2450 		if (index == end_index) {
2451 			nr = i_size & ~PAGE_MASK;
2452 			if (nr <= offset)
2453 				break;
2454 		}
2455 
2456 		error = shmem_getpage(inode, index, &page, sgp);
2457 		if (error) {
2458 			if (error == -EINVAL)
2459 				error = 0;
2460 			break;
2461 		}
2462 		if (page) {
2463 			if (sgp == SGP_CACHE)
2464 				set_page_dirty(page);
2465 			unlock_page(page);
2466 		}
2467 
2468 		/*
2469 		 * We must evaluate after, since reads (unlike writes)
2470 		 * are called without i_mutex protection against truncate
2471 		 */
2472 		nr = PAGE_SIZE;
2473 		i_size = i_size_read(inode);
2474 		end_index = i_size >> PAGE_SHIFT;
2475 		if (index == end_index) {
2476 			nr = i_size & ~PAGE_MASK;
2477 			if (nr <= offset) {
2478 				if (page)
2479 					put_page(page);
2480 				break;
2481 			}
2482 		}
2483 		nr -= offset;
2484 
2485 		if (page) {
2486 			/*
2487 			 * If users can be writing to this page using arbitrary
2488 			 * virtual addresses, take care about potential aliasing
2489 			 * before reading the page on the kernel side.
2490 			 */
2491 			if (mapping_writably_mapped(mapping))
2492 				flush_dcache_page(page);
2493 			/*
2494 			 * Mark the page accessed if we read the beginning.
2495 			 */
2496 			if (!offset)
2497 				mark_page_accessed(page);
2498 		} else {
2499 			page = ZERO_PAGE(0);
2500 			get_page(page);
2501 		}
2502 
2503 		/*
2504 		 * Ok, we have the page, and it's up-to-date, so
2505 		 * now we can copy it to user space...
2506 		 */
2507 		ret = copy_page_to_iter(page, offset, nr, to);
2508 		retval += ret;
2509 		offset += ret;
2510 		index += offset >> PAGE_SHIFT;
2511 		offset &= ~PAGE_MASK;
2512 
2513 		put_page(page);
2514 		if (!iov_iter_count(to))
2515 			break;
2516 		if (ret < nr) {
2517 			error = -EFAULT;
2518 			break;
2519 		}
2520 		cond_resched();
2521 	}
2522 
2523 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2524 	file_accessed(file);
2525 	return retval ? retval : error;
2526 }
2527 
2528 /*
2529  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2530  */
2531 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2532 				    pgoff_t index, pgoff_t end, int whence)
2533 {
2534 	struct page *page;
2535 	struct pagevec pvec;
2536 	pgoff_t indices[PAGEVEC_SIZE];
2537 	bool done = false;
2538 	int i;
2539 
2540 	pagevec_init(&pvec);
2541 	pvec.nr = 1;		/* start small: we may be there already */
2542 	while (!done) {
2543 		pvec.nr = find_get_entries(mapping, index,
2544 					pvec.nr, pvec.pages, indices);
2545 		if (!pvec.nr) {
2546 			if (whence == SEEK_DATA)
2547 				index = end;
2548 			break;
2549 		}
2550 		for (i = 0; i < pvec.nr; i++, index++) {
2551 			if (index < indices[i]) {
2552 				if (whence == SEEK_HOLE) {
2553 					done = true;
2554 					break;
2555 				}
2556 				index = indices[i];
2557 			}
2558 			page = pvec.pages[i];
2559 			if (page && !radix_tree_exceptional_entry(page)) {
2560 				if (!PageUptodate(page))
2561 					page = NULL;
2562 			}
2563 			if (index >= end ||
2564 			    (page && whence == SEEK_DATA) ||
2565 			    (!page && whence == SEEK_HOLE)) {
2566 				done = true;
2567 				break;
2568 			}
2569 		}
2570 		pagevec_remove_exceptionals(&pvec);
2571 		pagevec_release(&pvec);
2572 		pvec.nr = PAGEVEC_SIZE;
2573 		cond_resched();
2574 	}
2575 	return index;
2576 }
2577 
2578 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2579 {
2580 	struct address_space *mapping = file->f_mapping;
2581 	struct inode *inode = mapping->host;
2582 	pgoff_t start, end;
2583 	loff_t new_offset;
2584 
2585 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2586 		return generic_file_llseek_size(file, offset, whence,
2587 					MAX_LFS_FILESIZE, i_size_read(inode));
2588 	inode_lock(inode);
2589 	/* We're holding i_mutex so we can access i_size directly */
2590 
2591 	if (offset < 0)
2592 		offset = -EINVAL;
2593 	else if (offset >= inode->i_size)
2594 		offset = -ENXIO;
2595 	else {
2596 		start = offset >> PAGE_SHIFT;
2597 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2598 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2599 		new_offset <<= PAGE_SHIFT;
2600 		if (new_offset > offset) {
2601 			if (new_offset < inode->i_size)
2602 				offset = new_offset;
2603 			else if (whence == SEEK_DATA)
2604 				offset = -ENXIO;
2605 			else
2606 				offset = inode->i_size;
2607 		}
2608 	}
2609 
2610 	if (offset >= 0)
2611 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2612 	inode_unlock(inode);
2613 	return offset;
2614 }
2615 
2616 /*
2617  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2618  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2619  */
2620 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2621 #define LAST_SCAN               4       /* about 150ms max */
2622 
2623 static void shmem_tag_pins(struct address_space *mapping)
2624 {
2625 	struct radix_tree_iter iter;
2626 	void **slot;
2627 	pgoff_t start;
2628 	struct page *page;
2629 
2630 	lru_add_drain();
2631 	start = 0;
2632 	rcu_read_lock();
2633 
2634 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2635 		page = radix_tree_deref_slot(slot);
2636 		if (!page || radix_tree_exception(page)) {
2637 			if (radix_tree_deref_retry(page)) {
2638 				slot = radix_tree_iter_retry(&iter);
2639 				continue;
2640 			}
2641 		} else if (page_count(page) - page_mapcount(page) > 1) {
2642 			spin_lock_irq(&mapping->tree_lock);
2643 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2644 					   SHMEM_TAG_PINNED);
2645 			spin_unlock_irq(&mapping->tree_lock);
2646 		}
2647 
2648 		if (need_resched()) {
2649 			slot = radix_tree_iter_resume(slot, &iter);
2650 			cond_resched_rcu();
2651 		}
2652 	}
2653 	rcu_read_unlock();
2654 }
2655 
2656 /*
2657  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2658  * via get_user_pages(), drivers might have some pending I/O without any active
2659  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2660  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2661  * them to be dropped.
2662  * The caller must guarantee that no new user will acquire writable references
2663  * to those pages to avoid races.
2664  */
2665 static int shmem_wait_for_pins(struct address_space *mapping)
2666 {
2667 	struct radix_tree_iter iter;
2668 	void **slot;
2669 	pgoff_t start;
2670 	struct page *page;
2671 	int error, scan;
2672 
2673 	shmem_tag_pins(mapping);
2674 
2675 	error = 0;
2676 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2677 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2678 			break;
2679 
2680 		if (!scan)
2681 			lru_add_drain_all();
2682 		else if (schedule_timeout_killable((HZ << scan) / 200))
2683 			scan = LAST_SCAN;
2684 
2685 		start = 0;
2686 		rcu_read_lock();
2687 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2688 					   start, SHMEM_TAG_PINNED) {
2689 
2690 			page = radix_tree_deref_slot(slot);
2691 			if (radix_tree_exception(page)) {
2692 				if (radix_tree_deref_retry(page)) {
2693 					slot = radix_tree_iter_retry(&iter);
2694 					continue;
2695 				}
2696 
2697 				page = NULL;
2698 			}
2699 
2700 			if (page &&
2701 			    page_count(page) - page_mapcount(page) != 1) {
2702 				if (scan < LAST_SCAN)
2703 					goto continue_resched;
2704 
2705 				/*
2706 				 * On the last scan, we clean up all those tags
2707 				 * we inserted; but make a note that we still
2708 				 * found pages pinned.
2709 				 */
2710 				error = -EBUSY;
2711 			}
2712 
2713 			spin_lock_irq(&mapping->tree_lock);
2714 			radix_tree_tag_clear(&mapping->page_tree,
2715 					     iter.index, SHMEM_TAG_PINNED);
2716 			spin_unlock_irq(&mapping->tree_lock);
2717 continue_resched:
2718 			if (need_resched()) {
2719 				slot = radix_tree_iter_resume(slot, &iter);
2720 				cond_resched_rcu();
2721 			}
2722 		}
2723 		rcu_read_unlock();
2724 	}
2725 
2726 	return error;
2727 }
2728 
2729 static unsigned int *memfd_file_seals_ptr(struct file *file)
2730 {
2731 	if (file->f_op == &shmem_file_operations)
2732 		return &SHMEM_I(file_inode(file))->seals;
2733 
2734 #ifdef CONFIG_HUGETLBFS
2735 	if (file->f_op == &hugetlbfs_file_operations)
2736 		return &HUGETLBFS_I(file_inode(file))->seals;
2737 #endif
2738 
2739 	return NULL;
2740 }
2741 
2742 #define F_ALL_SEALS (F_SEAL_SEAL | \
2743 		     F_SEAL_SHRINK | \
2744 		     F_SEAL_GROW | \
2745 		     F_SEAL_WRITE)
2746 
2747 static int memfd_add_seals(struct file *file, unsigned int seals)
2748 {
2749 	struct inode *inode = file_inode(file);
2750 	unsigned int *file_seals;
2751 	int error;
2752 
2753 	/*
2754 	 * SEALING
2755 	 * Sealing allows multiple parties to share a shmem-file but restrict
2756 	 * access to a specific subset of file operations. Seals can only be
2757 	 * added, but never removed. This way, mutually untrusted parties can
2758 	 * share common memory regions with a well-defined policy. A malicious
2759 	 * peer can thus never perform unwanted operations on a shared object.
2760 	 *
2761 	 * Seals are only supported on special shmem-files and always affect
2762 	 * the whole underlying inode. Once a seal is set, it may prevent some
2763 	 * kinds of access to the file. Currently, the following seals are
2764 	 * defined:
2765 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2766 	 *   SEAL_SHRINK: Prevent the file from shrinking
2767 	 *   SEAL_GROW: Prevent the file from growing
2768 	 *   SEAL_WRITE: Prevent write access to the file
2769 	 *
2770 	 * As we don't require any trust relationship between two parties, we
2771 	 * must prevent seals from being removed. Therefore, sealing a file
2772 	 * only adds a given set of seals to the file, it never touches
2773 	 * existing seals. Furthermore, the "setting seals"-operation can be
2774 	 * sealed itself, which basically prevents any further seal from being
2775 	 * added.
2776 	 *
2777 	 * Semantics of sealing are only defined on volatile files. Only
2778 	 * anonymous shmem files support sealing. More importantly, seals are
2779 	 * never written to disk. Therefore, there's no plan to support it on
2780 	 * other file types.
2781 	 */
2782 
2783 	if (!(file->f_mode & FMODE_WRITE))
2784 		return -EPERM;
2785 	if (seals & ~(unsigned int)F_ALL_SEALS)
2786 		return -EINVAL;
2787 
2788 	inode_lock(inode);
2789 
2790 	file_seals = memfd_file_seals_ptr(file);
2791 	if (!file_seals) {
2792 		error = -EINVAL;
2793 		goto unlock;
2794 	}
2795 
2796 	if (*file_seals & F_SEAL_SEAL) {
2797 		error = -EPERM;
2798 		goto unlock;
2799 	}
2800 
2801 	if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
2802 		error = mapping_deny_writable(file->f_mapping);
2803 		if (error)
2804 			goto unlock;
2805 
2806 		error = shmem_wait_for_pins(file->f_mapping);
2807 		if (error) {
2808 			mapping_allow_writable(file->f_mapping);
2809 			goto unlock;
2810 		}
2811 	}
2812 
2813 	*file_seals |= seals;
2814 	error = 0;
2815 
2816 unlock:
2817 	inode_unlock(inode);
2818 	return error;
2819 }
2820 
2821 static int memfd_get_seals(struct file *file)
2822 {
2823 	unsigned int *seals = memfd_file_seals_ptr(file);
2824 
2825 	return seals ? *seals : -EINVAL;
2826 }
2827 
2828 long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2829 {
2830 	long error;
2831 
2832 	switch (cmd) {
2833 	case F_ADD_SEALS:
2834 		/* disallow upper 32bit */
2835 		if (arg > UINT_MAX)
2836 			return -EINVAL;
2837 
2838 		error = memfd_add_seals(file, arg);
2839 		break;
2840 	case F_GET_SEALS:
2841 		error = memfd_get_seals(file);
2842 		break;
2843 	default:
2844 		error = -EINVAL;
2845 		break;
2846 	}
2847 
2848 	return error;
2849 }
2850 
2851 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2852 							 loff_t len)
2853 {
2854 	struct inode *inode = file_inode(file);
2855 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2856 	struct shmem_inode_info *info = SHMEM_I(inode);
2857 	struct shmem_falloc shmem_falloc;
2858 	pgoff_t start, index, end;
2859 	int error;
2860 
2861 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2862 		return -EOPNOTSUPP;
2863 
2864 	inode_lock(inode);
2865 
2866 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2867 		struct address_space *mapping = file->f_mapping;
2868 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2869 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2870 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2871 
2872 		/* protected by i_mutex */
2873 		if (info->seals & F_SEAL_WRITE) {
2874 			error = -EPERM;
2875 			goto out;
2876 		}
2877 
2878 		shmem_falloc.waitq = &shmem_falloc_waitq;
2879 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2880 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2881 		spin_lock(&inode->i_lock);
2882 		inode->i_private = &shmem_falloc;
2883 		spin_unlock(&inode->i_lock);
2884 
2885 		if ((u64)unmap_end > (u64)unmap_start)
2886 			unmap_mapping_range(mapping, unmap_start,
2887 					    1 + unmap_end - unmap_start, 0);
2888 		shmem_truncate_range(inode, offset, offset + len - 1);
2889 		/* No need to unmap again: hole-punching leaves COWed pages */
2890 
2891 		spin_lock(&inode->i_lock);
2892 		inode->i_private = NULL;
2893 		wake_up_all(&shmem_falloc_waitq);
2894 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2895 		spin_unlock(&inode->i_lock);
2896 		error = 0;
2897 		goto out;
2898 	}
2899 
2900 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2901 	error = inode_newsize_ok(inode, offset + len);
2902 	if (error)
2903 		goto out;
2904 
2905 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2906 		error = -EPERM;
2907 		goto out;
2908 	}
2909 
2910 	start = offset >> PAGE_SHIFT;
2911 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2912 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2913 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2914 		error = -ENOSPC;
2915 		goto out;
2916 	}
2917 
2918 	shmem_falloc.waitq = NULL;
2919 	shmem_falloc.start = start;
2920 	shmem_falloc.next  = start;
2921 	shmem_falloc.nr_falloced = 0;
2922 	shmem_falloc.nr_unswapped = 0;
2923 	spin_lock(&inode->i_lock);
2924 	inode->i_private = &shmem_falloc;
2925 	spin_unlock(&inode->i_lock);
2926 
2927 	for (index = start; index < end; index++) {
2928 		struct page *page;
2929 
2930 		/*
2931 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2932 		 * been interrupted because we are using up too much memory.
2933 		 */
2934 		if (signal_pending(current))
2935 			error = -EINTR;
2936 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2937 			error = -ENOMEM;
2938 		else
2939 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2940 		if (error) {
2941 			/* Remove the !PageUptodate pages we added */
2942 			if (index > start) {
2943 				shmem_undo_range(inode,
2944 				    (loff_t)start << PAGE_SHIFT,
2945 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2946 			}
2947 			goto undone;
2948 		}
2949 
2950 		/*
2951 		 * Inform shmem_writepage() how far we have reached.
2952 		 * No need for lock or barrier: we have the page lock.
2953 		 */
2954 		shmem_falloc.next++;
2955 		if (!PageUptodate(page))
2956 			shmem_falloc.nr_falloced++;
2957 
2958 		/*
2959 		 * If !PageUptodate, leave it that way so that freeable pages
2960 		 * can be recognized if we need to rollback on error later.
2961 		 * But set_page_dirty so that memory pressure will swap rather
2962 		 * than free the pages we are allocating (and SGP_CACHE pages
2963 		 * might still be clean: we now need to mark those dirty too).
2964 		 */
2965 		set_page_dirty(page);
2966 		unlock_page(page);
2967 		put_page(page);
2968 		cond_resched();
2969 	}
2970 
2971 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2972 		i_size_write(inode, offset + len);
2973 	inode->i_ctime = current_time(inode);
2974 undone:
2975 	spin_lock(&inode->i_lock);
2976 	inode->i_private = NULL;
2977 	spin_unlock(&inode->i_lock);
2978 out:
2979 	inode_unlock(inode);
2980 	return error;
2981 }
2982 
2983 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2984 {
2985 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2986 
2987 	buf->f_type = TMPFS_MAGIC;
2988 	buf->f_bsize = PAGE_SIZE;
2989 	buf->f_namelen = NAME_MAX;
2990 	if (sbinfo->max_blocks) {
2991 		buf->f_blocks = sbinfo->max_blocks;
2992 		buf->f_bavail =
2993 		buf->f_bfree  = sbinfo->max_blocks -
2994 				percpu_counter_sum(&sbinfo->used_blocks);
2995 	}
2996 	if (sbinfo->max_inodes) {
2997 		buf->f_files = sbinfo->max_inodes;
2998 		buf->f_ffree = sbinfo->free_inodes;
2999 	}
3000 	/* else leave those fields 0 like simple_statfs */
3001 	return 0;
3002 }
3003 
3004 /*
3005  * File creation. Allocate an inode, and we're done..
3006  */
3007 static int
3008 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3009 {
3010 	struct inode *inode;
3011 	int error = -ENOSPC;
3012 
3013 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3014 	if (inode) {
3015 		error = simple_acl_create(dir, inode);
3016 		if (error)
3017 			goto out_iput;
3018 		error = security_inode_init_security(inode, dir,
3019 						     &dentry->d_name,
3020 						     shmem_initxattrs, NULL);
3021 		if (error && error != -EOPNOTSUPP)
3022 			goto out_iput;
3023 
3024 		error = 0;
3025 		dir->i_size += BOGO_DIRENT_SIZE;
3026 		dir->i_ctime = dir->i_mtime = current_time(dir);
3027 		d_instantiate(dentry, inode);
3028 		dget(dentry); /* Extra count - pin the dentry in core */
3029 	}
3030 	return error;
3031 out_iput:
3032 	iput(inode);
3033 	return error;
3034 }
3035 
3036 static int
3037 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3038 {
3039 	struct inode *inode;
3040 	int error = -ENOSPC;
3041 
3042 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3043 	if (inode) {
3044 		error = security_inode_init_security(inode, dir,
3045 						     NULL,
3046 						     shmem_initxattrs, NULL);
3047 		if (error && error != -EOPNOTSUPP)
3048 			goto out_iput;
3049 		error = simple_acl_create(dir, inode);
3050 		if (error)
3051 			goto out_iput;
3052 		d_tmpfile(dentry, inode);
3053 	}
3054 	return error;
3055 out_iput:
3056 	iput(inode);
3057 	return error;
3058 }
3059 
3060 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3061 {
3062 	int error;
3063 
3064 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3065 		return error;
3066 	inc_nlink(dir);
3067 	return 0;
3068 }
3069 
3070 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3071 		bool excl)
3072 {
3073 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3074 }
3075 
3076 /*
3077  * Link a file..
3078  */
3079 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3080 {
3081 	struct inode *inode = d_inode(old_dentry);
3082 	int ret;
3083 
3084 	/*
3085 	 * No ordinary (disk based) filesystem counts links as inodes;
3086 	 * but each new link needs a new dentry, pinning lowmem, and
3087 	 * tmpfs dentries cannot be pruned until they are unlinked.
3088 	 */
3089 	ret = shmem_reserve_inode(inode->i_sb);
3090 	if (ret)
3091 		goto out;
3092 
3093 	dir->i_size += BOGO_DIRENT_SIZE;
3094 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3095 	inc_nlink(inode);
3096 	ihold(inode);	/* New dentry reference */
3097 	dget(dentry);		/* Extra pinning count for the created dentry */
3098 	d_instantiate(dentry, inode);
3099 out:
3100 	return ret;
3101 }
3102 
3103 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3104 {
3105 	struct inode *inode = d_inode(dentry);
3106 
3107 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3108 		shmem_free_inode(inode->i_sb);
3109 
3110 	dir->i_size -= BOGO_DIRENT_SIZE;
3111 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3112 	drop_nlink(inode);
3113 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3114 	return 0;
3115 }
3116 
3117 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3118 {
3119 	if (!simple_empty(dentry))
3120 		return -ENOTEMPTY;
3121 
3122 	drop_nlink(d_inode(dentry));
3123 	drop_nlink(dir);
3124 	return shmem_unlink(dir, dentry);
3125 }
3126 
3127 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3128 {
3129 	bool old_is_dir = d_is_dir(old_dentry);
3130 	bool new_is_dir = d_is_dir(new_dentry);
3131 
3132 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3133 		if (old_is_dir) {
3134 			drop_nlink(old_dir);
3135 			inc_nlink(new_dir);
3136 		} else {
3137 			drop_nlink(new_dir);
3138 			inc_nlink(old_dir);
3139 		}
3140 	}
3141 	old_dir->i_ctime = old_dir->i_mtime =
3142 	new_dir->i_ctime = new_dir->i_mtime =
3143 	d_inode(old_dentry)->i_ctime =
3144 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3145 
3146 	return 0;
3147 }
3148 
3149 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3150 {
3151 	struct dentry *whiteout;
3152 	int error;
3153 
3154 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3155 	if (!whiteout)
3156 		return -ENOMEM;
3157 
3158 	error = shmem_mknod(old_dir, whiteout,
3159 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3160 	dput(whiteout);
3161 	if (error)
3162 		return error;
3163 
3164 	/*
3165 	 * Cheat and hash the whiteout while the old dentry is still in
3166 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3167 	 *
3168 	 * d_lookup() will consistently find one of them at this point,
3169 	 * not sure which one, but that isn't even important.
3170 	 */
3171 	d_rehash(whiteout);
3172 	return 0;
3173 }
3174 
3175 /*
3176  * The VFS layer already does all the dentry stuff for rename,
3177  * we just have to decrement the usage count for the target if
3178  * it exists so that the VFS layer correctly free's it when it
3179  * gets overwritten.
3180  */
3181 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3182 {
3183 	struct inode *inode = d_inode(old_dentry);
3184 	int they_are_dirs = S_ISDIR(inode->i_mode);
3185 
3186 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3187 		return -EINVAL;
3188 
3189 	if (flags & RENAME_EXCHANGE)
3190 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3191 
3192 	if (!simple_empty(new_dentry))
3193 		return -ENOTEMPTY;
3194 
3195 	if (flags & RENAME_WHITEOUT) {
3196 		int error;
3197 
3198 		error = shmem_whiteout(old_dir, old_dentry);
3199 		if (error)
3200 			return error;
3201 	}
3202 
3203 	if (d_really_is_positive(new_dentry)) {
3204 		(void) shmem_unlink(new_dir, new_dentry);
3205 		if (they_are_dirs) {
3206 			drop_nlink(d_inode(new_dentry));
3207 			drop_nlink(old_dir);
3208 		}
3209 	} else if (they_are_dirs) {
3210 		drop_nlink(old_dir);
3211 		inc_nlink(new_dir);
3212 	}
3213 
3214 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3215 	new_dir->i_size += BOGO_DIRENT_SIZE;
3216 	old_dir->i_ctime = old_dir->i_mtime =
3217 	new_dir->i_ctime = new_dir->i_mtime =
3218 	inode->i_ctime = current_time(old_dir);
3219 	return 0;
3220 }
3221 
3222 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3223 {
3224 	int error;
3225 	int len;
3226 	struct inode *inode;
3227 	struct page *page;
3228 
3229 	len = strlen(symname) + 1;
3230 	if (len > PAGE_SIZE)
3231 		return -ENAMETOOLONG;
3232 
3233 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3234 	if (!inode)
3235 		return -ENOSPC;
3236 
3237 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3238 					     shmem_initxattrs, NULL);
3239 	if (error) {
3240 		if (error != -EOPNOTSUPP) {
3241 			iput(inode);
3242 			return error;
3243 		}
3244 		error = 0;
3245 	}
3246 
3247 	inode->i_size = len-1;
3248 	if (len <= SHORT_SYMLINK_LEN) {
3249 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3250 		if (!inode->i_link) {
3251 			iput(inode);
3252 			return -ENOMEM;
3253 		}
3254 		inode->i_op = &shmem_short_symlink_operations;
3255 	} else {
3256 		inode_nohighmem(inode);
3257 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3258 		if (error) {
3259 			iput(inode);
3260 			return error;
3261 		}
3262 		inode->i_mapping->a_ops = &shmem_aops;
3263 		inode->i_op = &shmem_symlink_inode_operations;
3264 		memcpy(page_address(page), symname, len);
3265 		SetPageUptodate(page);
3266 		set_page_dirty(page);
3267 		unlock_page(page);
3268 		put_page(page);
3269 	}
3270 	dir->i_size += BOGO_DIRENT_SIZE;
3271 	dir->i_ctime = dir->i_mtime = current_time(dir);
3272 	d_instantiate(dentry, inode);
3273 	dget(dentry);
3274 	return 0;
3275 }
3276 
3277 static void shmem_put_link(void *arg)
3278 {
3279 	mark_page_accessed(arg);
3280 	put_page(arg);
3281 }
3282 
3283 static const char *shmem_get_link(struct dentry *dentry,
3284 				  struct inode *inode,
3285 				  struct delayed_call *done)
3286 {
3287 	struct page *page = NULL;
3288 	int error;
3289 	if (!dentry) {
3290 		page = find_get_page(inode->i_mapping, 0);
3291 		if (!page)
3292 			return ERR_PTR(-ECHILD);
3293 		if (!PageUptodate(page)) {
3294 			put_page(page);
3295 			return ERR_PTR(-ECHILD);
3296 		}
3297 	} else {
3298 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3299 		if (error)
3300 			return ERR_PTR(error);
3301 		unlock_page(page);
3302 	}
3303 	set_delayed_call(done, shmem_put_link, page);
3304 	return page_address(page);
3305 }
3306 
3307 #ifdef CONFIG_TMPFS_XATTR
3308 /*
3309  * Superblocks without xattr inode operations may get some security.* xattr
3310  * support from the LSM "for free". As soon as we have any other xattrs
3311  * like ACLs, we also need to implement the security.* handlers at
3312  * filesystem level, though.
3313  */
3314 
3315 /*
3316  * Callback for security_inode_init_security() for acquiring xattrs.
3317  */
3318 static int shmem_initxattrs(struct inode *inode,
3319 			    const struct xattr *xattr_array,
3320 			    void *fs_info)
3321 {
3322 	struct shmem_inode_info *info = SHMEM_I(inode);
3323 	const struct xattr *xattr;
3324 	struct simple_xattr *new_xattr;
3325 	size_t len;
3326 
3327 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3328 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3329 		if (!new_xattr)
3330 			return -ENOMEM;
3331 
3332 		len = strlen(xattr->name) + 1;
3333 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3334 					  GFP_KERNEL);
3335 		if (!new_xattr->name) {
3336 			kfree(new_xattr);
3337 			return -ENOMEM;
3338 		}
3339 
3340 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3341 		       XATTR_SECURITY_PREFIX_LEN);
3342 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3343 		       xattr->name, len);
3344 
3345 		simple_xattr_list_add(&info->xattrs, new_xattr);
3346 	}
3347 
3348 	return 0;
3349 }
3350 
3351 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3352 				   struct dentry *unused, struct inode *inode,
3353 				   const char *name, void *buffer, size_t size)
3354 {
3355 	struct shmem_inode_info *info = SHMEM_I(inode);
3356 
3357 	name = xattr_full_name(handler, name);
3358 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3359 }
3360 
3361 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3362 				   struct dentry *unused, struct inode *inode,
3363 				   const char *name, const void *value,
3364 				   size_t size, int flags)
3365 {
3366 	struct shmem_inode_info *info = SHMEM_I(inode);
3367 
3368 	name = xattr_full_name(handler, name);
3369 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3370 }
3371 
3372 static const struct xattr_handler shmem_security_xattr_handler = {
3373 	.prefix = XATTR_SECURITY_PREFIX,
3374 	.get = shmem_xattr_handler_get,
3375 	.set = shmem_xattr_handler_set,
3376 };
3377 
3378 static const struct xattr_handler shmem_trusted_xattr_handler = {
3379 	.prefix = XATTR_TRUSTED_PREFIX,
3380 	.get = shmem_xattr_handler_get,
3381 	.set = shmem_xattr_handler_set,
3382 };
3383 
3384 static const struct xattr_handler *shmem_xattr_handlers[] = {
3385 #ifdef CONFIG_TMPFS_POSIX_ACL
3386 	&posix_acl_access_xattr_handler,
3387 	&posix_acl_default_xattr_handler,
3388 #endif
3389 	&shmem_security_xattr_handler,
3390 	&shmem_trusted_xattr_handler,
3391 	NULL
3392 };
3393 
3394 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3395 {
3396 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3397 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3398 }
3399 #endif /* CONFIG_TMPFS_XATTR */
3400 
3401 static const struct inode_operations shmem_short_symlink_operations = {
3402 	.get_link	= simple_get_link,
3403 #ifdef CONFIG_TMPFS_XATTR
3404 	.listxattr	= shmem_listxattr,
3405 #endif
3406 };
3407 
3408 static const struct inode_operations shmem_symlink_inode_operations = {
3409 	.get_link	= shmem_get_link,
3410 #ifdef CONFIG_TMPFS_XATTR
3411 	.listxattr	= shmem_listxattr,
3412 #endif
3413 };
3414 
3415 static struct dentry *shmem_get_parent(struct dentry *child)
3416 {
3417 	return ERR_PTR(-ESTALE);
3418 }
3419 
3420 static int shmem_match(struct inode *ino, void *vfh)
3421 {
3422 	__u32 *fh = vfh;
3423 	__u64 inum = fh[2];
3424 	inum = (inum << 32) | fh[1];
3425 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3426 }
3427 
3428 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3429 		struct fid *fid, int fh_len, int fh_type)
3430 {
3431 	struct inode *inode;
3432 	struct dentry *dentry = NULL;
3433 	u64 inum;
3434 
3435 	if (fh_len < 3)
3436 		return NULL;
3437 
3438 	inum = fid->raw[2];
3439 	inum = (inum << 32) | fid->raw[1];
3440 
3441 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3442 			shmem_match, fid->raw);
3443 	if (inode) {
3444 		dentry = d_find_alias(inode);
3445 		iput(inode);
3446 	}
3447 
3448 	return dentry;
3449 }
3450 
3451 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3452 				struct inode *parent)
3453 {
3454 	if (*len < 3) {
3455 		*len = 3;
3456 		return FILEID_INVALID;
3457 	}
3458 
3459 	if (inode_unhashed(inode)) {
3460 		/* Unfortunately insert_inode_hash is not idempotent,
3461 		 * so as we hash inodes here rather than at creation
3462 		 * time, we need a lock to ensure we only try
3463 		 * to do it once
3464 		 */
3465 		static DEFINE_SPINLOCK(lock);
3466 		spin_lock(&lock);
3467 		if (inode_unhashed(inode))
3468 			__insert_inode_hash(inode,
3469 					    inode->i_ino + inode->i_generation);
3470 		spin_unlock(&lock);
3471 	}
3472 
3473 	fh[0] = inode->i_generation;
3474 	fh[1] = inode->i_ino;
3475 	fh[2] = ((__u64)inode->i_ino) >> 32;
3476 
3477 	*len = 3;
3478 	return 1;
3479 }
3480 
3481 static const struct export_operations shmem_export_ops = {
3482 	.get_parent     = shmem_get_parent,
3483 	.encode_fh      = shmem_encode_fh,
3484 	.fh_to_dentry	= shmem_fh_to_dentry,
3485 };
3486 
3487 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3488 			       bool remount)
3489 {
3490 	char *this_char, *value, *rest;
3491 	struct mempolicy *mpol = NULL;
3492 	uid_t uid;
3493 	gid_t gid;
3494 
3495 	while (options != NULL) {
3496 		this_char = options;
3497 		for (;;) {
3498 			/*
3499 			 * NUL-terminate this option: unfortunately,
3500 			 * mount options form a comma-separated list,
3501 			 * but mpol's nodelist may also contain commas.
3502 			 */
3503 			options = strchr(options, ',');
3504 			if (options == NULL)
3505 				break;
3506 			options++;
3507 			if (!isdigit(*options)) {
3508 				options[-1] = '\0';
3509 				break;
3510 			}
3511 		}
3512 		if (!*this_char)
3513 			continue;
3514 		if ((value = strchr(this_char,'=')) != NULL) {
3515 			*value++ = 0;
3516 		} else {
3517 			pr_err("tmpfs: No value for mount option '%s'\n",
3518 			       this_char);
3519 			goto error;
3520 		}
3521 
3522 		if (!strcmp(this_char,"size")) {
3523 			unsigned long long size;
3524 			size = memparse(value,&rest);
3525 			if (*rest == '%') {
3526 				size <<= PAGE_SHIFT;
3527 				size *= totalram_pages;
3528 				do_div(size, 100);
3529 				rest++;
3530 			}
3531 			if (*rest)
3532 				goto bad_val;
3533 			sbinfo->max_blocks =
3534 				DIV_ROUND_UP(size, PAGE_SIZE);
3535 		} else if (!strcmp(this_char,"nr_blocks")) {
3536 			sbinfo->max_blocks = memparse(value, &rest);
3537 			if (*rest)
3538 				goto bad_val;
3539 		} else if (!strcmp(this_char,"nr_inodes")) {
3540 			sbinfo->max_inodes = memparse(value, &rest);
3541 			if (*rest)
3542 				goto bad_val;
3543 		} else if (!strcmp(this_char,"mode")) {
3544 			if (remount)
3545 				continue;
3546 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3547 			if (*rest)
3548 				goto bad_val;
3549 		} else if (!strcmp(this_char,"uid")) {
3550 			if (remount)
3551 				continue;
3552 			uid = simple_strtoul(value, &rest, 0);
3553 			if (*rest)
3554 				goto bad_val;
3555 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3556 			if (!uid_valid(sbinfo->uid))
3557 				goto bad_val;
3558 		} else if (!strcmp(this_char,"gid")) {
3559 			if (remount)
3560 				continue;
3561 			gid = simple_strtoul(value, &rest, 0);
3562 			if (*rest)
3563 				goto bad_val;
3564 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3565 			if (!gid_valid(sbinfo->gid))
3566 				goto bad_val;
3567 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3568 		} else if (!strcmp(this_char, "huge")) {
3569 			int huge;
3570 			huge = shmem_parse_huge(value);
3571 			if (huge < 0)
3572 				goto bad_val;
3573 			if (!has_transparent_hugepage() &&
3574 					huge != SHMEM_HUGE_NEVER)
3575 				goto bad_val;
3576 			sbinfo->huge = huge;
3577 #endif
3578 #ifdef CONFIG_NUMA
3579 		} else if (!strcmp(this_char,"mpol")) {
3580 			mpol_put(mpol);
3581 			mpol = NULL;
3582 			if (mpol_parse_str(value, &mpol))
3583 				goto bad_val;
3584 #endif
3585 		} else {
3586 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3587 			goto error;
3588 		}
3589 	}
3590 	sbinfo->mpol = mpol;
3591 	return 0;
3592 
3593 bad_val:
3594 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3595 	       value, this_char);
3596 error:
3597 	mpol_put(mpol);
3598 	return 1;
3599 
3600 }
3601 
3602 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3603 {
3604 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3605 	struct shmem_sb_info config = *sbinfo;
3606 	unsigned long inodes;
3607 	int error = -EINVAL;
3608 
3609 	config.mpol = NULL;
3610 	if (shmem_parse_options(data, &config, true))
3611 		return error;
3612 
3613 	spin_lock(&sbinfo->stat_lock);
3614 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3615 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3616 		goto out;
3617 	if (config.max_inodes < inodes)
3618 		goto out;
3619 	/*
3620 	 * Those tests disallow limited->unlimited while any are in use;
3621 	 * but we must separately disallow unlimited->limited, because
3622 	 * in that case we have no record of how much is already in use.
3623 	 */
3624 	if (config.max_blocks && !sbinfo->max_blocks)
3625 		goto out;
3626 	if (config.max_inodes && !sbinfo->max_inodes)
3627 		goto out;
3628 
3629 	error = 0;
3630 	sbinfo->huge = config.huge;
3631 	sbinfo->max_blocks  = config.max_blocks;
3632 	sbinfo->max_inodes  = config.max_inodes;
3633 	sbinfo->free_inodes = config.max_inodes - inodes;
3634 
3635 	/*
3636 	 * Preserve previous mempolicy unless mpol remount option was specified.
3637 	 */
3638 	if (config.mpol) {
3639 		mpol_put(sbinfo->mpol);
3640 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3641 	}
3642 out:
3643 	spin_unlock(&sbinfo->stat_lock);
3644 	return error;
3645 }
3646 
3647 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3648 {
3649 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3650 
3651 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3652 		seq_printf(seq, ",size=%luk",
3653 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3654 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3655 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3656 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3657 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3658 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3659 		seq_printf(seq, ",uid=%u",
3660 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3661 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3662 		seq_printf(seq, ",gid=%u",
3663 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3664 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3665 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3666 	if (sbinfo->huge)
3667 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3668 #endif
3669 	shmem_show_mpol(seq, sbinfo->mpol);
3670 	return 0;
3671 }
3672 
3673 #define MFD_NAME_PREFIX "memfd:"
3674 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3675 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3676 
3677 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3678 
3679 SYSCALL_DEFINE2(memfd_create,
3680 		const char __user *, uname,
3681 		unsigned int, flags)
3682 {
3683 	unsigned int *file_seals;
3684 	struct file *file;
3685 	int fd, error;
3686 	char *name;
3687 	long len;
3688 
3689 	if (!(flags & MFD_HUGETLB)) {
3690 		if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3691 			return -EINVAL;
3692 	} else {
3693 		/* Allow huge page size encoding in flags. */
3694 		if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3695 				(MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3696 			return -EINVAL;
3697 	}
3698 
3699 	/* length includes terminating zero */
3700 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3701 	if (len <= 0)
3702 		return -EFAULT;
3703 	if (len > MFD_NAME_MAX_LEN + 1)
3704 		return -EINVAL;
3705 
3706 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3707 	if (!name)
3708 		return -ENOMEM;
3709 
3710 	strcpy(name, MFD_NAME_PREFIX);
3711 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3712 		error = -EFAULT;
3713 		goto err_name;
3714 	}
3715 
3716 	/* terminating-zero may have changed after strnlen_user() returned */
3717 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3718 		error = -EFAULT;
3719 		goto err_name;
3720 	}
3721 
3722 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3723 	if (fd < 0) {
3724 		error = fd;
3725 		goto err_name;
3726 	}
3727 
3728 	if (flags & MFD_HUGETLB) {
3729 		struct user_struct *user = NULL;
3730 
3731 		file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3732 					HUGETLB_ANONHUGE_INODE,
3733 					(flags >> MFD_HUGE_SHIFT) &
3734 					MFD_HUGE_MASK);
3735 	} else
3736 		file = shmem_file_setup(name, 0, VM_NORESERVE);
3737 	if (IS_ERR(file)) {
3738 		error = PTR_ERR(file);
3739 		goto err_fd;
3740 	}
3741 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3742 	file->f_flags |= O_RDWR | O_LARGEFILE;
3743 
3744 	if (flags & MFD_ALLOW_SEALING) {
3745 		file_seals = memfd_file_seals_ptr(file);
3746 		*file_seals &= ~F_SEAL_SEAL;
3747 	}
3748 
3749 	fd_install(fd, file);
3750 	kfree(name);
3751 	return fd;
3752 
3753 err_fd:
3754 	put_unused_fd(fd);
3755 err_name:
3756 	kfree(name);
3757 	return error;
3758 }
3759 
3760 #endif /* CONFIG_TMPFS */
3761 
3762 static void shmem_put_super(struct super_block *sb)
3763 {
3764 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3765 
3766 	percpu_counter_destroy(&sbinfo->used_blocks);
3767 	mpol_put(sbinfo->mpol);
3768 	kfree(sbinfo);
3769 	sb->s_fs_info = NULL;
3770 }
3771 
3772 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3773 {
3774 	struct inode *inode;
3775 	struct shmem_sb_info *sbinfo;
3776 	int err = -ENOMEM;
3777 
3778 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3779 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3780 				L1_CACHE_BYTES), GFP_KERNEL);
3781 	if (!sbinfo)
3782 		return -ENOMEM;
3783 
3784 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3785 	sbinfo->uid = current_fsuid();
3786 	sbinfo->gid = current_fsgid();
3787 	sb->s_fs_info = sbinfo;
3788 
3789 #ifdef CONFIG_TMPFS
3790 	/*
3791 	 * Per default we only allow half of the physical ram per
3792 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3793 	 * but the internal instance is left unlimited.
3794 	 */
3795 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3796 		sbinfo->max_blocks = shmem_default_max_blocks();
3797 		sbinfo->max_inodes = shmem_default_max_inodes();
3798 		if (shmem_parse_options(data, sbinfo, false)) {
3799 			err = -EINVAL;
3800 			goto failed;
3801 		}
3802 	} else {
3803 		sb->s_flags |= SB_NOUSER;
3804 	}
3805 	sb->s_export_op = &shmem_export_ops;
3806 	sb->s_flags |= SB_NOSEC;
3807 #else
3808 	sb->s_flags |= SB_NOUSER;
3809 #endif
3810 
3811 	spin_lock_init(&sbinfo->stat_lock);
3812 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3813 		goto failed;
3814 	sbinfo->free_inodes = sbinfo->max_inodes;
3815 	spin_lock_init(&sbinfo->shrinklist_lock);
3816 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3817 
3818 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3819 	sb->s_blocksize = PAGE_SIZE;
3820 	sb->s_blocksize_bits = PAGE_SHIFT;
3821 	sb->s_magic = TMPFS_MAGIC;
3822 	sb->s_op = &shmem_ops;
3823 	sb->s_time_gran = 1;
3824 #ifdef CONFIG_TMPFS_XATTR
3825 	sb->s_xattr = shmem_xattr_handlers;
3826 #endif
3827 #ifdef CONFIG_TMPFS_POSIX_ACL
3828 	sb->s_flags |= SB_POSIXACL;
3829 #endif
3830 	uuid_gen(&sb->s_uuid);
3831 
3832 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3833 	if (!inode)
3834 		goto failed;
3835 	inode->i_uid = sbinfo->uid;
3836 	inode->i_gid = sbinfo->gid;
3837 	sb->s_root = d_make_root(inode);
3838 	if (!sb->s_root)
3839 		goto failed;
3840 	return 0;
3841 
3842 failed:
3843 	shmem_put_super(sb);
3844 	return err;
3845 }
3846 
3847 static struct kmem_cache *shmem_inode_cachep;
3848 
3849 static struct inode *shmem_alloc_inode(struct super_block *sb)
3850 {
3851 	struct shmem_inode_info *info;
3852 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3853 	if (!info)
3854 		return NULL;
3855 	return &info->vfs_inode;
3856 }
3857 
3858 static void shmem_destroy_callback(struct rcu_head *head)
3859 {
3860 	struct inode *inode = container_of(head, struct inode, i_rcu);
3861 	if (S_ISLNK(inode->i_mode))
3862 		kfree(inode->i_link);
3863 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3864 }
3865 
3866 static void shmem_destroy_inode(struct inode *inode)
3867 {
3868 	if (S_ISREG(inode->i_mode))
3869 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3870 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3871 }
3872 
3873 static void shmem_init_inode(void *foo)
3874 {
3875 	struct shmem_inode_info *info = foo;
3876 	inode_init_once(&info->vfs_inode);
3877 }
3878 
3879 static void shmem_init_inodecache(void)
3880 {
3881 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3882 				sizeof(struct shmem_inode_info),
3883 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3884 }
3885 
3886 static void shmem_destroy_inodecache(void)
3887 {
3888 	kmem_cache_destroy(shmem_inode_cachep);
3889 }
3890 
3891 static const struct address_space_operations shmem_aops = {
3892 	.writepage	= shmem_writepage,
3893 	.set_page_dirty	= __set_page_dirty_no_writeback,
3894 #ifdef CONFIG_TMPFS
3895 	.write_begin	= shmem_write_begin,
3896 	.write_end	= shmem_write_end,
3897 #endif
3898 #ifdef CONFIG_MIGRATION
3899 	.migratepage	= migrate_page,
3900 #endif
3901 	.error_remove_page = generic_error_remove_page,
3902 };
3903 
3904 static const struct file_operations shmem_file_operations = {
3905 	.mmap		= shmem_mmap,
3906 	.get_unmapped_area = shmem_get_unmapped_area,
3907 #ifdef CONFIG_TMPFS
3908 	.llseek		= shmem_file_llseek,
3909 	.read_iter	= shmem_file_read_iter,
3910 	.write_iter	= generic_file_write_iter,
3911 	.fsync		= noop_fsync,
3912 	.splice_read	= generic_file_splice_read,
3913 	.splice_write	= iter_file_splice_write,
3914 	.fallocate	= shmem_fallocate,
3915 #endif
3916 };
3917 
3918 static const struct inode_operations shmem_inode_operations = {
3919 	.getattr	= shmem_getattr,
3920 	.setattr	= shmem_setattr,
3921 #ifdef CONFIG_TMPFS_XATTR
3922 	.listxattr	= shmem_listxattr,
3923 	.set_acl	= simple_set_acl,
3924 #endif
3925 };
3926 
3927 static const struct inode_operations shmem_dir_inode_operations = {
3928 #ifdef CONFIG_TMPFS
3929 	.create		= shmem_create,
3930 	.lookup		= simple_lookup,
3931 	.link		= shmem_link,
3932 	.unlink		= shmem_unlink,
3933 	.symlink	= shmem_symlink,
3934 	.mkdir		= shmem_mkdir,
3935 	.rmdir		= shmem_rmdir,
3936 	.mknod		= shmem_mknod,
3937 	.rename		= shmem_rename2,
3938 	.tmpfile	= shmem_tmpfile,
3939 #endif
3940 #ifdef CONFIG_TMPFS_XATTR
3941 	.listxattr	= shmem_listxattr,
3942 #endif
3943 #ifdef CONFIG_TMPFS_POSIX_ACL
3944 	.setattr	= shmem_setattr,
3945 	.set_acl	= simple_set_acl,
3946 #endif
3947 };
3948 
3949 static const struct inode_operations shmem_special_inode_operations = {
3950 #ifdef CONFIG_TMPFS_XATTR
3951 	.listxattr	= shmem_listxattr,
3952 #endif
3953 #ifdef CONFIG_TMPFS_POSIX_ACL
3954 	.setattr	= shmem_setattr,
3955 	.set_acl	= simple_set_acl,
3956 #endif
3957 };
3958 
3959 static const struct super_operations shmem_ops = {
3960 	.alloc_inode	= shmem_alloc_inode,
3961 	.destroy_inode	= shmem_destroy_inode,
3962 #ifdef CONFIG_TMPFS
3963 	.statfs		= shmem_statfs,
3964 	.remount_fs	= shmem_remount_fs,
3965 	.show_options	= shmem_show_options,
3966 #endif
3967 	.evict_inode	= shmem_evict_inode,
3968 	.drop_inode	= generic_delete_inode,
3969 	.put_super	= shmem_put_super,
3970 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3971 	.nr_cached_objects	= shmem_unused_huge_count,
3972 	.free_cached_objects	= shmem_unused_huge_scan,
3973 #endif
3974 };
3975 
3976 static const struct vm_operations_struct shmem_vm_ops = {
3977 	.fault		= shmem_fault,
3978 	.map_pages	= filemap_map_pages,
3979 #ifdef CONFIG_NUMA
3980 	.set_policy     = shmem_set_policy,
3981 	.get_policy     = shmem_get_policy,
3982 #endif
3983 };
3984 
3985 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3986 	int flags, const char *dev_name, void *data)
3987 {
3988 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3989 }
3990 
3991 static struct file_system_type shmem_fs_type = {
3992 	.owner		= THIS_MODULE,
3993 	.name		= "tmpfs",
3994 	.mount		= shmem_mount,
3995 	.kill_sb	= kill_litter_super,
3996 	.fs_flags	= FS_USERNS_MOUNT,
3997 };
3998 
3999 int __init shmem_init(void)
4000 {
4001 	int error;
4002 
4003 	/* If rootfs called this, don't re-init */
4004 	if (shmem_inode_cachep)
4005 		return 0;
4006 
4007 	shmem_init_inodecache();
4008 
4009 	error = register_filesystem(&shmem_fs_type);
4010 	if (error) {
4011 		pr_err("Could not register tmpfs\n");
4012 		goto out2;
4013 	}
4014 
4015 	shm_mnt = kern_mount(&shmem_fs_type);
4016 	if (IS_ERR(shm_mnt)) {
4017 		error = PTR_ERR(shm_mnt);
4018 		pr_err("Could not kern_mount tmpfs\n");
4019 		goto out1;
4020 	}
4021 
4022 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4023 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4024 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4025 	else
4026 		shmem_huge = 0; /* just in case it was patched */
4027 #endif
4028 	return 0;
4029 
4030 out1:
4031 	unregister_filesystem(&shmem_fs_type);
4032 out2:
4033 	shmem_destroy_inodecache();
4034 	shm_mnt = ERR_PTR(error);
4035 	return error;
4036 }
4037 
4038 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4039 static ssize_t shmem_enabled_show(struct kobject *kobj,
4040 		struct kobj_attribute *attr, char *buf)
4041 {
4042 	int values[] = {
4043 		SHMEM_HUGE_ALWAYS,
4044 		SHMEM_HUGE_WITHIN_SIZE,
4045 		SHMEM_HUGE_ADVISE,
4046 		SHMEM_HUGE_NEVER,
4047 		SHMEM_HUGE_DENY,
4048 		SHMEM_HUGE_FORCE,
4049 	};
4050 	int i, count;
4051 
4052 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4053 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4054 
4055 		count += sprintf(buf + count, fmt,
4056 				shmem_format_huge(values[i]));
4057 	}
4058 	buf[count - 1] = '\n';
4059 	return count;
4060 }
4061 
4062 static ssize_t shmem_enabled_store(struct kobject *kobj,
4063 		struct kobj_attribute *attr, const char *buf, size_t count)
4064 {
4065 	char tmp[16];
4066 	int huge;
4067 
4068 	if (count + 1 > sizeof(tmp))
4069 		return -EINVAL;
4070 	memcpy(tmp, buf, count);
4071 	tmp[count] = '\0';
4072 	if (count && tmp[count - 1] == '\n')
4073 		tmp[count - 1] = '\0';
4074 
4075 	huge = shmem_parse_huge(tmp);
4076 	if (huge == -EINVAL)
4077 		return -EINVAL;
4078 	if (!has_transparent_hugepage() &&
4079 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4080 		return -EINVAL;
4081 
4082 	shmem_huge = huge;
4083 	if (shmem_huge > SHMEM_HUGE_DENY)
4084 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4085 	return count;
4086 }
4087 
4088 struct kobj_attribute shmem_enabled_attr =
4089 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4090 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4091 
4092 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4093 bool shmem_huge_enabled(struct vm_area_struct *vma)
4094 {
4095 	struct inode *inode = file_inode(vma->vm_file);
4096 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4097 	loff_t i_size;
4098 	pgoff_t off;
4099 
4100 	if (shmem_huge == SHMEM_HUGE_FORCE)
4101 		return true;
4102 	if (shmem_huge == SHMEM_HUGE_DENY)
4103 		return false;
4104 	switch (sbinfo->huge) {
4105 		case SHMEM_HUGE_NEVER:
4106 			return false;
4107 		case SHMEM_HUGE_ALWAYS:
4108 			return true;
4109 		case SHMEM_HUGE_WITHIN_SIZE:
4110 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4111 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4112 			if (i_size >= HPAGE_PMD_SIZE &&
4113 					i_size >> PAGE_SHIFT >= off)
4114 				return true;
4115 			/* fall through */
4116 		case SHMEM_HUGE_ADVISE:
4117 			/* TODO: implement fadvise() hints */
4118 			return (vma->vm_flags & VM_HUGEPAGE);
4119 		default:
4120 			VM_BUG_ON(1);
4121 			return false;
4122 	}
4123 }
4124 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4125 
4126 #else /* !CONFIG_SHMEM */
4127 
4128 /*
4129  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4130  *
4131  * This is intended for small system where the benefits of the full
4132  * shmem code (swap-backed and resource-limited) are outweighed by
4133  * their complexity. On systems without swap this code should be
4134  * effectively equivalent, but much lighter weight.
4135  */
4136 
4137 static struct file_system_type shmem_fs_type = {
4138 	.name		= "tmpfs",
4139 	.mount		= ramfs_mount,
4140 	.kill_sb	= kill_litter_super,
4141 	.fs_flags	= FS_USERNS_MOUNT,
4142 };
4143 
4144 int __init shmem_init(void)
4145 {
4146 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4147 
4148 	shm_mnt = kern_mount(&shmem_fs_type);
4149 	BUG_ON(IS_ERR(shm_mnt));
4150 
4151 	return 0;
4152 }
4153 
4154 int shmem_unuse(swp_entry_t swap, struct page *page)
4155 {
4156 	return 0;
4157 }
4158 
4159 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4160 {
4161 	return 0;
4162 }
4163 
4164 void shmem_unlock_mapping(struct address_space *mapping)
4165 {
4166 }
4167 
4168 #ifdef CONFIG_MMU
4169 unsigned long shmem_get_unmapped_area(struct file *file,
4170 				      unsigned long addr, unsigned long len,
4171 				      unsigned long pgoff, unsigned long flags)
4172 {
4173 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4174 }
4175 #endif
4176 
4177 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4178 {
4179 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4180 }
4181 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4182 
4183 #define shmem_vm_ops				generic_file_vm_ops
4184 #define shmem_file_operations			ramfs_file_operations
4185 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4186 #define shmem_acct_size(flags, size)		0
4187 #define shmem_unacct_size(flags, size)		do {} while (0)
4188 
4189 #endif /* CONFIG_SHMEM */
4190 
4191 /* common code */
4192 
4193 static const struct dentry_operations anon_ops = {
4194 	.d_dname = simple_dname
4195 };
4196 
4197 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4198 				       unsigned long flags, unsigned int i_flags)
4199 {
4200 	struct file *res;
4201 	struct inode *inode;
4202 	struct path path;
4203 	struct super_block *sb;
4204 	struct qstr this;
4205 
4206 	if (IS_ERR(mnt))
4207 		return ERR_CAST(mnt);
4208 
4209 	if (size < 0 || size > MAX_LFS_FILESIZE)
4210 		return ERR_PTR(-EINVAL);
4211 
4212 	if (shmem_acct_size(flags, size))
4213 		return ERR_PTR(-ENOMEM);
4214 
4215 	res = ERR_PTR(-ENOMEM);
4216 	this.name = name;
4217 	this.len = strlen(name);
4218 	this.hash = 0; /* will go */
4219 	sb = mnt->mnt_sb;
4220 	path.mnt = mntget(mnt);
4221 	path.dentry = d_alloc_pseudo(sb, &this);
4222 	if (!path.dentry)
4223 		goto put_memory;
4224 	d_set_d_op(path.dentry, &anon_ops);
4225 
4226 	res = ERR_PTR(-ENOSPC);
4227 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4228 	if (!inode)
4229 		goto put_memory;
4230 
4231 	inode->i_flags |= i_flags;
4232 	d_instantiate(path.dentry, inode);
4233 	inode->i_size = size;
4234 	clear_nlink(inode);	/* It is unlinked */
4235 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4236 	if (IS_ERR(res))
4237 		goto put_path;
4238 
4239 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4240 		  &shmem_file_operations);
4241 	if (IS_ERR(res))
4242 		goto put_path;
4243 
4244 	return res;
4245 
4246 put_memory:
4247 	shmem_unacct_size(flags, size);
4248 put_path:
4249 	path_put(&path);
4250 	return res;
4251 }
4252 
4253 /**
4254  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4255  * 	kernel internal.  There will be NO LSM permission checks against the
4256  * 	underlying inode.  So users of this interface must do LSM checks at a
4257  *	higher layer.  The users are the big_key and shm implementations.  LSM
4258  *	checks are provided at the key or shm level rather than the inode.
4259  * @name: name for dentry (to be seen in /proc/<pid>/maps
4260  * @size: size to be set for the file
4261  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4262  */
4263 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4264 {
4265 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4266 }
4267 
4268 /**
4269  * shmem_file_setup - get an unlinked file living in tmpfs
4270  * @name: name for dentry (to be seen in /proc/<pid>/maps
4271  * @size: size to be set for the file
4272  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4273  */
4274 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4275 {
4276 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4277 }
4278 EXPORT_SYMBOL_GPL(shmem_file_setup);
4279 
4280 /**
4281  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4282  * @mnt: the tmpfs mount where the file will be created
4283  * @name: name for dentry (to be seen in /proc/<pid>/maps
4284  * @size: size to be set for the file
4285  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4286  */
4287 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4288 				       loff_t size, unsigned long flags)
4289 {
4290 	return __shmem_file_setup(mnt, name, size, flags, 0);
4291 }
4292 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4293 
4294 /**
4295  * shmem_zero_setup - setup a shared anonymous mapping
4296  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4297  */
4298 int shmem_zero_setup(struct vm_area_struct *vma)
4299 {
4300 	struct file *file;
4301 	loff_t size = vma->vm_end - vma->vm_start;
4302 
4303 	/*
4304 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4305 	 * between XFS directory reading and selinux: since this file is only
4306 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4307 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4308 	 */
4309 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4310 	if (IS_ERR(file))
4311 		return PTR_ERR(file);
4312 
4313 	if (vma->vm_file)
4314 		fput(vma->vm_file);
4315 	vma->vm_file = file;
4316 	vma->vm_ops = &shmem_vm_ops;
4317 
4318 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4319 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4320 			(vma->vm_end & HPAGE_PMD_MASK)) {
4321 		khugepaged_enter(vma, vma->vm_flags);
4322 	}
4323 
4324 	return 0;
4325 }
4326 
4327 /**
4328  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4329  * @mapping:	the page's address_space
4330  * @index:	the page index
4331  * @gfp:	the page allocator flags to use if allocating
4332  *
4333  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4334  * with any new page allocations done using the specified allocation flags.
4335  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4336  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4337  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4338  *
4339  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4340  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4341  */
4342 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4343 					 pgoff_t index, gfp_t gfp)
4344 {
4345 #ifdef CONFIG_SHMEM
4346 	struct inode *inode = mapping->host;
4347 	struct page *page;
4348 	int error;
4349 
4350 	BUG_ON(mapping->a_ops != &shmem_aops);
4351 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4352 				  gfp, NULL, NULL, NULL);
4353 	if (error)
4354 		page = ERR_PTR(error);
4355 	else
4356 		unlock_page(page);
4357 	return page;
4358 #else
4359 	/*
4360 	 * The tiny !SHMEM case uses ramfs without swap
4361 	 */
4362 	return read_cache_page_gfp(mapping, index, gfp);
4363 #endif
4364 }
4365 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4366