1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/sched/signal.h> 33 #include <linux/export.h> 34 #include <linux/swap.h> 35 #include <linux/uio.h> 36 #include <linux/khugepaged.h> 37 #include <linux/hugetlb.h> 38 39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 40 41 static struct vfsmount *shm_mnt; 42 43 #ifdef CONFIG_SHMEM 44 /* 45 * This virtual memory filesystem is heavily based on the ramfs. It 46 * extends ramfs by the ability to use swap and honor resource limits 47 * which makes it a completely usable filesystem. 48 */ 49 50 #include <linux/xattr.h> 51 #include <linux/exportfs.h> 52 #include <linux/posix_acl.h> 53 #include <linux/posix_acl_xattr.h> 54 #include <linux/mman.h> 55 #include <linux/string.h> 56 #include <linux/slab.h> 57 #include <linux/backing-dev.h> 58 #include <linux/shmem_fs.h> 59 #include <linux/writeback.h> 60 #include <linux/blkdev.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 #include <asm/pgtable.h> 83 84 #include "internal.h" 85 86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 88 89 /* Pretend that each entry is of this size in directory's i_size */ 90 #define BOGO_DIRENT_SIZE 20 91 92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 93 #define SHORT_SYMLINK_LEN 128 94 95 /* 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 97 * inode->i_private (with i_mutex making sure that it has only one user at 98 * a time): we would prefer not to enlarge the shmem inode just for that. 99 */ 100 struct shmem_falloc { 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 102 pgoff_t start; /* start of range currently being fallocated */ 103 pgoff_t next; /* the next page offset to be fallocated */ 104 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, 125 gfp_t gfp, struct vm_area_struct *vma, 126 struct vm_fault *vmf, int *fault_type); 127 128 int shmem_getpage(struct inode *inode, pgoff_t index, 129 struct page **pagep, enum sgp_type sgp) 130 { 131 return shmem_getpage_gfp(inode, index, pagep, sgp, 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 133 } 134 135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 136 { 137 return sb->s_fs_info; 138 } 139 140 /* 141 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 142 * for shared memory and for shared anonymous (/dev/zero) mappings 143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 144 * consistent with the pre-accounting of private mappings ... 145 */ 146 static inline int shmem_acct_size(unsigned long flags, loff_t size) 147 { 148 return (flags & VM_NORESERVE) ? 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 150 } 151 152 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 153 { 154 if (!(flags & VM_NORESERVE)) 155 vm_unacct_memory(VM_ACCT(size)); 156 } 157 158 static inline int shmem_reacct_size(unsigned long flags, 159 loff_t oldsize, loff_t newsize) 160 { 161 if (!(flags & VM_NORESERVE)) { 162 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 163 return security_vm_enough_memory_mm(current->mm, 164 VM_ACCT(newsize) - VM_ACCT(oldsize)); 165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 167 } 168 return 0; 169 } 170 171 /* 172 * ... whereas tmpfs objects are accounted incrementally as 173 * pages are allocated, in order to allow large sparse files. 174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 176 */ 177 static inline int shmem_acct_block(unsigned long flags, long pages) 178 { 179 if (!(flags & VM_NORESERVE)) 180 return 0; 181 182 return security_vm_enough_memory_mm(current->mm, 183 pages * VM_ACCT(PAGE_SIZE)); 184 } 185 186 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 187 { 188 if (flags & VM_NORESERVE) 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 190 } 191 192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 193 { 194 struct shmem_inode_info *info = SHMEM_I(inode); 195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 196 197 if (shmem_acct_block(info->flags, pages)) 198 return false; 199 200 if (sbinfo->max_blocks) { 201 if (percpu_counter_compare(&sbinfo->used_blocks, 202 sbinfo->max_blocks - pages) > 0) 203 goto unacct; 204 percpu_counter_add(&sbinfo->used_blocks, pages); 205 } 206 207 return true; 208 209 unacct: 210 shmem_unacct_blocks(info->flags, pages); 211 return false; 212 } 213 214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 215 { 216 struct shmem_inode_info *info = SHMEM_I(inode); 217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 218 219 if (sbinfo->max_blocks) 220 percpu_counter_sub(&sbinfo->used_blocks, pages); 221 shmem_unacct_blocks(info->flags, pages); 222 } 223 224 static const struct super_operations shmem_ops; 225 static const struct address_space_operations shmem_aops; 226 static const struct file_operations shmem_file_operations; 227 static const struct inode_operations shmem_inode_operations; 228 static const struct inode_operations shmem_dir_inode_operations; 229 static const struct inode_operations shmem_special_inode_operations; 230 static const struct vm_operations_struct shmem_vm_ops; 231 static struct file_system_type shmem_fs_type; 232 233 bool vma_is_shmem(struct vm_area_struct *vma) 234 { 235 return vma->vm_ops == &shmem_vm_ops; 236 } 237 238 static LIST_HEAD(shmem_swaplist); 239 static DEFINE_MUTEX(shmem_swaplist_mutex); 240 241 static int shmem_reserve_inode(struct super_block *sb) 242 { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 244 if (sbinfo->max_inodes) { 245 spin_lock(&sbinfo->stat_lock); 246 if (!sbinfo->free_inodes) { 247 spin_unlock(&sbinfo->stat_lock); 248 return -ENOSPC; 249 } 250 sbinfo->free_inodes--; 251 spin_unlock(&sbinfo->stat_lock); 252 } 253 return 0; 254 } 255 256 static void shmem_free_inode(struct super_block *sb) 257 { 258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 259 if (sbinfo->max_inodes) { 260 spin_lock(&sbinfo->stat_lock); 261 sbinfo->free_inodes++; 262 spin_unlock(&sbinfo->stat_lock); 263 } 264 } 265 266 /** 267 * shmem_recalc_inode - recalculate the block usage of an inode 268 * @inode: inode to recalc 269 * 270 * We have to calculate the free blocks since the mm can drop 271 * undirtied hole pages behind our back. 272 * 273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 275 * 276 * It has to be called with the spinlock held. 277 */ 278 static void shmem_recalc_inode(struct inode *inode) 279 { 280 struct shmem_inode_info *info = SHMEM_I(inode); 281 long freed; 282 283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 284 if (freed > 0) { 285 info->alloced -= freed; 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 287 shmem_inode_unacct_blocks(inode, freed); 288 } 289 } 290 291 bool shmem_charge(struct inode *inode, long pages) 292 { 293 struct shmem_inode_info *info = SHMEM_I(inode); 294 unsigned long flags; 295 296 if (!shmem_inode_acct_block(inode, pages)) 297 return false; 298 299 spin_lock_irqsave(&info->lock, flags); 300 info->alloced += pages; 301 inode->i_blocks += pages * BLOCKS_PER_PAGE; 302 shmem_recalc_inode(inode); 303 spin_unlock_irqrestore(&info->lock, flags); 304 inode->i_mapping->nrpages += pages; 305 306 return true; 307 } 308 309 void shmem_uncharge(struct inode *inode, long pages) 310 { 311 struct shmem_inode_info *info = SHMEM_I(inode); 312 unsigned long flags; 313 314 spin_lock_irqsave(&info->lock, flags); 315 info->alloced -= pages; 316 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 317 shmem_recalc_inode(inode); 318 spin_unlock_irqrestore(&info->lock, flags); 319 320 shmem_inode_unacct_blocks(inode, pages); 321 } 322 323 /* 324 * Replace item expected in radix tree by a new item, while holding tree lock. 325 */ 326 static int shmem_radix_tree_replace(struct address_space *mapping, 327 pgoff_t index, void *expected, void *replacement) 328 { 329 struct radix_tree_node *node; 330 void **pslot; 331 void *item; 332 333 VM_BUG_ON(!expected); 334 VM_BUG_ON(!replacement); 335 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot); 336 if (!item) 337 return -ENOENT; 338 if (item != expected) 339 return -ENOENT; 340 __radix_tree_replace(&mapping->page_tree, node, pslot, 341 replacement, NULL); 342 return 0; 343 } 344 345 /* 346 * Sometimes, before we decide whether to proceed or to fail, we must check 347 * that an entry was not already brought back from swap by a racing thread. 348 * 349 * Checking page is not enough: by the time a SwapCache page is locked, it 350 * might be reused, and again be SwapCache, using the same swap as before. 351 */ 352 static bool shmem_confirm_swap(struct address_space *mapping, 353 pgoff_t index, swp_entry_t swap) 354 { 355 void *item; 356 357 rcu_read_lock(); 358 item = radix_tree_lookup(&mapping->page_tree, index); 359 rcu_read_unlock(); 360 return item == swp_to_radix_entry(swap); 361 } 362 363 /* 364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 365 * 366 * SHMEM_HUGE_NEVER: 367 * disables huge pages for the mount; 368 * SHMEM_HUGE_ALWAYS: 369 * enables huge pages for the mount; 370 * SHMEM_HUGE_WITHIN_SIZE: 371 * only allocate huge pages if the page will be fully within i_size, 372 * also respect fadvise()/madvise() hints; 373 * SHMEM_HUGE_ADVISE: 374 * only allocate huge pages if requested with fadvise()/madvise(); 375 */ 376 377 #define SHMEM_HUGE_NEVER 0 378 #define SHMEM_HUGE_ALWAYS 1 379 #define SHMEM_HUGE_WITHIN_SIZE 2 380 #define SHMEM_HUGE_ADVISE 3 381 382 /* 383 * Special values. 384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 385 * 386 * SHMEM_HUGE_DENY: 387 * disables huge on shm_mnt and all mounts, for emergency use; 388 * SHMEM_HUGE_FORCE: 389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 390 * 391 */ 392 #define SHMEM_HUGE_DENY (-1) 393 #define SHMEM_HUGE_FORCE (-2) 394 395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 396 /* ifdef here to avoid bloating shmem.o when not necessary */ 397 398 int shmem_huge __read_mostly; 399 400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 401 static int shmem_parse_huge(const char *str) 402 { 403 if (!strcmp(str, "never")) 404 return SHMEM_HUGE_NEVER; 405 if (!strcmp(str, "always")) 406 return SHMEM_HUGE_ALWAYS; 407 if (!strcmp(str, "within_size")) 408 return SHMEM_HUGE_WITHIN_SIZE; 409 if (!strcmp(str, "advise")) 410 return SHMEM_HUGE_ADVISE; 411 if (!strcmp(str, "deny")) 412 return SHMEM_HUGE_DENY; 413 if (!strcmp(str, "force")) 414 return SHMEM_HUGE_FORCE; 415 return -EINVAL; 416 } 417 418 static const char *shmem_format_huge(int huge) 419 { 420 switch (huge) { 421 case SHMEM_HUGE_NEVER: 422 return "never"; 423 case SHMEM_HUGE_ALWAYS: 424 return "always"; 425 case SHMEM_HUGE_WITHIN_SIZE: 426 return "within_size"; 427 case SHMEM_HUGE_ADVISE: 428 return "advise"; 429 case SHMEM_HUGE_DENY: 430 return "deny"; 431 case SHMEM_HUGE_FORCE: 432 return "force"; 433 default: 434 VM_BUG_ON(1); 435 return "bad_val"; 436 } 437 } 438 #endif 439 440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 441 struct shrink_control *sc, unsigned long nr_to_split) 442 { 443 LIST_HEAD(list), *pos, *next; 444 LIST_HEAD(to_remove); 445 struct inode *inode; 446 struct shmem_inode_info *info; 447 struct page *page; 448 unsigned long batch = sc ? sc->nr_to_scan : 128; 449 int removed = 0, split = 0; 450 451 if (list_empty(&sbinfo->shrinklist)) 452 return SHRINK_STOP; 453 454 spin_lock(&sbinfo->shrinklist_lock); 455 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 456 info = list_entry(pos, struct shmem_inode_info, shrinklist); 457 458 /* pin the inode */ 459 inode = igrab(&info->vfs_inode); 460 461 /* inode is about to be evicted */ 462 if (!inode) { 463 list_del_init(&info->shrinklist); 464 removed++; 465 goto next; 466 } 467 468 /* Check if there's anything to gain */ 469 if (round_up(inode->i_size, PAGE_SIZE) == 470 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 471 list_move(&info->shrinklist, &to_remove); 472 removed++; 473 goto next; 474 } 475 476 list_move(&info->shrinklist, &list); 477 next: 478 if (!--batch) 479 break; 480 } 481 spin_unlock(&sbinfo->shrinklist_lock); 482 483 list_for_each_safe(pos, next, &to_remove) { 484 info = list_entry(pos, struct shmem_inode_info, shrinklist); 485 inode = &info->vfs_inode; 486 list_del_init(&info->shrinklist); 487 iput(inode); 488 } 489 490 list_for_each_safe(pos, next, &list) { 491 int ret; 492 493 info = list_entry(pos, struct shmem_inode_info, shrinklist); 494 inode = &info->vfs_inode; 495 496 if (nr_to_split && split >= nr_to_split) 497 goto leave; 498 499 page = find_get_page(inode->i_mapping, 500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 501 if (!page) 502 goto drop; 503 504 /* No huge page at the end of the file: nothing to split */ 505 if (!PageTransHuge(page)) { 506 put_page(page); 507 goto drop; 508 } 509 510 /* 511 * Leave the inode on the list if we failed to lock 512 * the page at this time. 513 * 514 * Waiting for the lock may lead to deadlock in the 515 * reclaim path. 516 */ 517 if (!trylock_page(page)) { 518 put_page(page); 519 goto leave; 520 } 521 522 ret = split_huge_page(page); 523 unlock_page(page); 524 put_page(page); 525 526 /* If split failed leave the inode on the list */ 527 if (ret) 528 goto leave; 529 530 split++; 531 drop: 532 list_del_init(&info->shrinklist); 533 removed++; 534 leave: 535 iput(inode); 536 } 537 538 spin_lock(&sbinfo->shrinklist_lock); 539 list_splice_tail(&list, &sbinfo->shrinklist); 540 sbinfo->shrinklist_len -= removed; 541 spin_unlock(&sbinfo->shrinklist_lock); 542 543 return split; 544 } 545 546 static long shmem_unused_huge_scan(struct super_block *sb, 547 struct shrink_control *sc) 548 { 549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 550 551 if (!READ_ONCE(sbinfo->shrinklist_len)) 552 return SHRINK_STOP; 553 554 return shmem_unused_huge_shrink(sbinfo, sc, 0); 555 } 556 557 static long shmem_unused_huge_count(struct super_block *sb, 558 struct shrink_control *sc) 559 { 560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 561 return READ_ONCE(sbinfo->shrinklist_len); 562 } 563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 564 565 #define shmem_huge SHMEM_HUGE_DENY 566 567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 568 struct shrink_control *sc, unsigned long nr_to_split) 569 { 570 return 0; 571 } 572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 573 574 /* 575 * Like add_to_page_cache_locked, but error if expected item has gone. 576 */ 577 static int shmem_add_to_page_cache(struct page *page, 578 struct address_space *mapping, 579 pgoff_t index, void *expected) 580 { 581 int error, nr = hpage_nr_pages(page); 582 583 VM_BUG_ON_PAGE(PageTail(page), page); 584 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 585 VM_BUG_ON_PAGE(!PageLocked(page), page); 586 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 587 VM_BUG_ON(expected && PageTransHuge(page)); 588 589 page_ref_add(page, nr); 590 page->mapping = mapping; 591 page->index = index; 592 593 spin_lock_irq(&mapping->tree_lock); 594 if (PageTransHuge(page)) { 595 void __rcu **results; 596 pgoff_t idx; 597 int i; 598 599 error = 0; 600 if (radix_tree_gang_lookup_slot(&mapping->page_tree, 601 &results, &idx, index, 1) && 602 idx < index + HPAGE_PMD_NR) { 603 error = -EEXIST; 604 } 605 606 if (!error) { 607 for (i = 0; i < HPAGE_PMD_NR; i++) { 608 error = radix_tree_insert(&mapping->page_tree, 609 index + i, page + i); 610 VM_BUG_ON(error); 611 } 612 count_vm_event(THP_FILE_ALLOC); 613 } 614 } else if (!expected) { 615 error = radix_tree_insert(&mapping->page_tree, index, page); 616 } else { 617 error = shmem_radix_tree_replace(mapping, index, expected, 618 page); 619 } 620 621 if (!error) { 622 mapping->nrpages += nr; 623 if (PageTransHuge(page)) 624 __inc_node_page_state(page, NR_SHMEM_THPS); 625 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 626 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 627 spin_unlock_irq(&mapping->tree_lock); 628 } else { 629 page->mapping = NULL; 630 spin_unlock_irq(&mapping->tree_lock); 631 page_ref_sub(page, nr); 632 } 633 return error; 634 } 635 636 /* 637 * Like delete_from_page_cache, but substitutes swap for page. 638 */ 639 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 640 { 641 struct address_space *mapping = page->mapping; 642 int error; 643 644 VM_BUG_ON_PAGE(PageCompound(page), page); 645 646 spin_lock_irq(&mapping->tree_lock); 647 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 648 page->mapping = NULL; 649 mapping->nrpages--; 650 __dec_node_page_state(page, NR_FILE_PAGES); 651 __dec_node_page_state(page, NR_SHMEM); 652 spin_unlock_irq(&mapping->tree_lock); 653 put_page(page); 654 BUG_ON(error); 655 } 656 657 /* 658 * Remove swap entry from radix tree, free the swap and its page cache. 659 */ 660 static int shmem_free_swap(struct address_space *mapping, 661 pgoff_t index, void *radswap) 662 { 663 void *old; 664 665 spin_lock_irq(&mapping->tree_lock); 666 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 667 spin_unlock_irq(&mapping->tree_lock); 668 if (old != radswap) 669 return -ENOENT; 670 free_swap_and_cache(radix_to_swp_entry(radswap)); 671 return 0; 672 } 673 674 /* 675 * Determine (in bytes) how many of the shmem object's pages mapped by the 676 * given offsets are swapped out. 677 * 678 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 679 * as long as the inode doesn't go away and racy results are not a problem. 680 */ 681 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 682 pgoff_t start, pgoff_t end) 683 { 684 struct radix_tree_iter iter; 685 void **slot; 686 struct page *page; 687 unsigned long swapped = 0; 688 689 rcu_read_lock(); 690 691 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 692 if (iter.index >= end) 693 break; 694 695 page = radix_tree_deref_slot(slot); 696 697 if (radix_tree_deref_retry(page)) { 698 slot = radix_tree_iter_retry(&iter); 699 continue; 700 } 701 702 if (radix_tree_exceptional_entry(page)) 703 swapped++; 704 705 if (need_resched()) { 706 slot = radix_tree_iter_resume(slot, &iter); 707 cond_resched_rcu(); 708 } 709 } 710 711 rcu_read_unlock(); 712 713 return swapped << PAGE_SHIFT; 714 } 715 716 /* 717 * Determine (in bytes) how many of the shmem object's pages mapped by the 718 * given vma is swapped out. 719 * 720 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 721 * as long as the inode doesn't go away and racy results are not a problem. 722 */ 723 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 724 { 725 struct inode *inode = file_inode(vma->vm_file); 726 struct shmem_inode_info *info = SHMEM_I(inode); 727 struct address_space *mapping = inode->i_mapping; 728 unsigned long swapped; 729 730 /* Be careful as we don't hold info->lock */ 731 swapped = READ_ONCE(info->swapped); 732 733 /* 734 * The easier cases are when the shmem object has nothing in swap, or 735 * the vma maps it whole. Then we can simply use the stats that we 736 * already track. 737 */ 738 if (!swapped) 739 return 0; 740 741 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 742 return swapped << PAGE_SHIFT; 743 744 /* Here comes the more involved part */ 745 return shmem_partial_swap_usage(mapping, 746 linear_page_index(vma, vma->vm_start), 747 linear_page_index(vma, vma->vm_end)); 748 } 749 750 /* 751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 752 */ 753 void shmem_unlock_mapping(struct address_space *mapping) 754 { 755 struct pagevec pvec; 756 pgoff_t indices[PAGEVEC_SIZE]; 757 pgoff_t index = 0; 758 759 pagevec_init(&pvec); 760 /* 761 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 762 */ 763 while (!mapping_unevictable(mapping)) { 764 /* 765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 767 */ 768 pvec.nr = find_get_entries(mapping, index, 769 PAGEVEC_SIZE, pvec.pages, indices); 770 if (!pvec.nr) 771 break; 772 index = indices[pvec.nr - 1] + 1; 773 pagevec_remove_exceptionals(&pvec); 774 check_move_unevictable_pages(pvec.pages, pvec.nr); 775 pagevec_release(&pvec); 776 cond_resched(); 777 } 778 } 779 780 /* 781 * Remove range of pages and swap entries from radix tree, and free them. 782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 783 */ 784 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 785 bool unfalloc) 786 { 787 struct address_space *mapping = inode->i_mapping; 788 struct shmem_inode_info *info = SHMEM_I(inode); 789 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 790 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 791 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 792 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 793 struct pagevec pvec; 794 pgoff_t indices[PAGEVEC_SIZE]; 795 long nr_swaps_freed = 0; 796 pgoff_t index; 797 int i; 798 799 if (lend == -1) 800 end = -1; /* unsigned, so actually very big */ 801 802 pagevec_init(&pvec); 803 index = start; 804 while (index < end) { 805 pvec.nr = find_get_entries(mapping, index, 806 min(end - index, (pgoff_t)PAGEVEC_SIZE), 807 pvec.pages, indices); 808 if (!pvec.nr) 809 break; 810 for (i = 0; i < pagevec_count(&pvec); i++) { 811 struct page *page = pvec.pages[i]; 812 813 index = indices[i]; 814 if (index >= end) 815 break; 816 817 if (radix_tree_exceptional_entry(page)) { 818 if (unfalloc) 819 continue; 820 nr_swaps_freed += !shmem_free_swap(mapping, 821 index, page); 822 continue; 823 } 824 825 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 826 827 if (!trylock_page(page)) 828 continue; 829 830 if (PageTransTail(page)) { 831 /* Middle of THP: zero out the page */ 832 clear_highpage(page); 833 unlock_page(page); 834 continue; 835 } else if (PageTransHuge(page)) { 836 if (index == round_down(end, HPAGE_PMD_NR)) { 837 /* 838 * Range ends in the middle of THP: 839 * zero out the page 840 */ 841 clear_highpage(page); 842 unlock_page(page); 843 continue; 844 } 845 index += HPAGE_PMD_NR - 1; 846 i += HPAGE_PMD_NR - 1; 847 } 848 849 if (!unfalloc || !PageUptodate(page)) { 850 VM_BUG_ON_PAGE(PageTail(page), page); 851 if (page_mapping(page) == mapping) { 852 VM_BUG_ON_PAGE(PageWriteback(page), page); 853 truncate_inode_page(mapping, page); 854 } 855 } 856 unlock_page(page); 857 } 858 pagevec_remove_exceptionals(&pvec); 859 pagevec_release(&pvec); 860 cond_resched(); 861 index++; 862 } 863 864 if (partial_start) { 865 struct page *page = NULL; 866 shmem_getpage(inode, start - 1, &page, SGP_READ); 867 if (page) { 868 unsigned int top = PAGE_SIZE; 869 if (start > end) { 870 top = partial_end; 871 partial_end = 0; 872 } 873 zero_user_segment(page, partial_start, top); 874 set_page_dirty(page); 875 unlock_page(page); 876 put_page(page); 877 } 878 } 879 if (partial_end) { 880 struct page *page = NULL; 881 shmem_getpage(inode, end, &page, SGP_READ); 882 if (page) { 883 zero_user_segment(page, 0, partial_end); 884 set_page_dirty(page); 885 unlock_page(page); 886 put_page(page); 887 } 888 } 889 if (start >= end) 890 return; 891 892 index = start; 893 while (index < end) { 894 cond_resched(); 895 896 pvec.nr = find_get_entries(mapping, index, 897 min(end - index, (pgoff_t)PAGEVEC_SIZE), 898 pvec.pages, indices); 899 if (!pvec.nr) { 900 /* If all gone or hole-punch or unfalloc, we're done */ 901 if (index == start || end != -1) 902 break; 903 /* But if truncating, restart to make sure all gone */ 904 index = start; 905 continue; 906 } 907 for (i = 0; i < pagevec_count(&pvec); i++) { 908 struct page *page = pvec.pages[i]; 909 910 index = indices[i]; 911 if (index >= end) 912 break; 913 914 if (radix_tree_exceptional_entry(page)) { 915 if (unfalloc) 916 continue; 917 if (shmem_free_swap(mapping, index, page)) { 918 /* Swap was replaced by page: retry */ 919 index--; 920 break; 921 } 922 nr_swaps_freed++; 923 continue; 924 } 925 926 lock_page(page); 927 928 if (PageTransTail(page)) { 929 /* Middle of THP: zero out the page */ 930 clear_highpage(page); 931 unlock_page(page); 932 /* 933 * Partial thp truncate due 'start' in middle 934 * of THP: don't need to look on these pages 935 * again on !pvec.nr restart. 936 */ 937 if (index != round_down(end, HPAGE_PMD_NR)) 938 start++; 939 continue; 940 } else if (PageTransHuge(page)) { 941 if (index == round_down(end, HPAGE_PMD_NR)) { 942 /* 943 * Range ends in the middle of THP: 944 * zero out the page 945 */ 946 clear_highpage(page); 947 unlock_page(page); 948 continue; 949 } 950 index += HPAGE_PMD_NR - 1; 951 i += HPAGE_PMD_NR - 1; 952 } 953 954 if (!unfalloc || !PageUptodate(page)) { 955 VM_BUG_ON_PAGE(PageTail(page), page); 956 if (page_mapping(page) == mapping) { 957 VM_BUG_ON_PAGE(PageWriteback(page), page); 958 truncate_inode_page(mapping, page); 959 } else { 960 /* Page was replaced by swap: retry */ 961 unlock_page(page); 962 index--; 963 break; 964 } 965 } 966 unlock_page(page); 967 } 968 pagevec_remove_exceptionals(&pvec); 969 pagevec_release(&pvec); 970 index++; 971 } 972 973 spin_lock_irq(&info->lock); 974 info->swapped -= nr_swaps_freed; 975 shmem_recalc_inode(inode); 976 spin_unlock_irq(&info->lock); 977 } 978 979 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 980 { 981 shmem_undo_range(inode, lstart, lend, false); 982 inode->i_ctime = inode->i_mtime = current_time(inode); 983 } 984 EXPORT_SYMBOL_GPL(shmem_truncate_range); 985 986 static int shmem_getattr(const struct path *path, struct kstat *stat, 987 u32 request_mask, unsigned int query_flags) 988 { 989 struct inode *inode = path->dentry->d_inode; 990 struct shmem_inode_info *info = SHMEM_I(inode); 991 992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 993 spin_lock_irq(&info->lock); 994 shmem_recalc_inode(inode); 995 spin_unlock_irq(&info->lock); 996 } 997 generic_fillattr(inode, stat); 998 return 0; 999 } 1000 1001 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1002 { 1003 struct inode *inode = d_inode(dentry); 1004 struct shmem_inode_info *info = SHMEM_I(inode); 1005 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1006 int error; 1007 1008 error = setattr_prepare(dentry, attr); 1009 if (error) 1010 return error; 1011 1012 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1013 loff_t oldsize = inode->i_size; 1014 loff_t newsize = attr->ia_size; 1015 1016 /* protected by i_mutex */ 1017 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1018 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1019 return -EPERM; 1020 1021 if (newsize != oldsize) { 1022 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1023 oldsize, newsize); 1024 if (error) 1025 return error; 1026 i_size_write(inode, newsize); 1027 inode->i_ctime = inode->i_mtime = current_time(inode); 1028 } 1029 if (newsize <= oldsize) { 1030 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1031 if (oldsize > holebegin) 1032 unmap_mapping_range(inode->i_mapping, 1033 holebegin, 0, 1); 1034 if (info->alloced) 1035 shmem_truncate_range(inode, 1036 newsize, (loff_t)-1); 1037 /* unmap again to remove racily COWed private pages */ 1038 if (oldsize > holebegin) 1039 unmap_mapping_range(inode->i_mapping, 1040 holebegin, 0, 1); 1041 1042 /* 1043 * Part of the huge page can be beyond i_size: subject 1044 * to shrink under memory pressure. 1045 */ 1046 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1047 spin_lock(&sbinfo->shrinklist_lock); 1048 /* 1049 * _careful to defend against unlocked access to 1050 * ->shrink_list in shmem_unused_huge_shrink() 1051 */ 1052 if (list_empty_careful(&info->shrinklist)) { 1053 list_add_tail(&info->shrinklist, 1054 &sbinfo->shrinklist); 1055 sbinfo->shrinklist_len++; 1056 } 1057 spin_unlock(&sbinfo->shrinklist_lock); 1058 } 1059 } 1060 } 1061 1062 setattr_copy(inode, attr); 1063 if (attr->ia_valid & ATTR_MODE) 1064 error = posix_acl_chmod(inode, inode->i_mode); 1065 return error; 1066 } 1067 1068 static void shmem_evict_inode(struct inode *inode) 1069 { 1070 struct shmem_inode_info *info = SHMEM_I(inode); 1071 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1072 1073 if (inode->i_mapping->a_ops == &shmem_aops) { 1074 shmem_unacct_size(info->flags, inode->i_size); 1075 inode->i_size = 0; 1076 shmem_truncate_range(inode, 0, (loff_t)-1); 1077 if (!list_empty(&info->shrinklist)) { 1078 spin_lock(&sbinfo->shrinklist_lock); 1079 if (!list_empty(&info->shrinklist)) { 1080 list_del_init(&info->shrinklist); 1081 sbinfo->shrinklist_len--; 1082 } 1083 spin_unlock(&sbinfo->shrinklist_lock); 1084 } 1085 if (!list_empty(&info->swaplist)) { 1086 mutex_lock(&shmem_swaplist_mutex); 1087 list_del_init(&info->swaplist); 1088 mutex_unlock(&shmem_swaplist_mutex); 1089 } 1090 } 1091 1092 simple_xattrs_free(&info->xattrs); 1093 WARN_ON(inode->i_blocks); 1094 shmem_free_inode(inode->i_sb); 1095 clear_inode(inode); 1096 } 1097 1098 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) 1099 { 1100 struct radix_tree_iter iter; 1101 void **slot; 1102 unsigned long found = -1; 1103 unsigned int checked = 0; 1104 1105 rcu_read_lock(); 1106 radix_tree_for_each_slot(slot, root, &iter, 0) { 1107 if (*slot == item) { 1108 found = iter.index; 1109 break; 1110 } 1111 checked++; 1112 if ((checked % 4096) != 0) 1113 continue; 1114 slot = radix_tree_iter_resume(slot, &iter); 1115 cond_resched_rcu(); 1116 } 1117 1118 rcu_read_unlock(); 1119 return found; 1120 } 1121 1122 /* 1123 * If swap found in inode, free it and move page from swapcache to filecache. 1124 */ 1125 static int shmem_unuse_inode(struct shmem_inode_info *info, 1126 swp_entry_t swap, struct page **pagep) 1127 { 1128 struct address_space *mapping = info->vfs_inode.i_mapping; 1129 void *radswap; 1130 pgoff_t index; 1131 gfp_t gfp; 1132 int error = 0; 1133 1134 radswap = swp_to_radix_entry(swap); 1135 index = find_swap_entry(&mapping->page_tree, radswap); 1136 if (index == -1) 1137 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1138 1139 /* 1140 * Move _head_ to start search for next from here. 1141 * But be careful: shmem_evict_inode checks list_empty without taking 1142 * mutex, and there's an instant in list_move_tail when info->swaplist 1143 * would appear empty, if it were the only one on shmem_swaplist. 1144 */ 1145 if (shmem_swaplist.next != &info->swaplist) 1146 list_move_tail(&shmem_swaplist, &info->swaplist); 1147 1148 gfp = mapping_gfp_mask(mapping); 1149 if (shmem_should_replace_page(*pagep, gfp)) { 1150 mutex_unlock(&shmem_swaplist_mutex); 1151 error = shmem_replace_page(pagep, gfp, info, index); 1152 mutex_lock(&shmem_swaplist_mutex); 1153 /* 1154 * We needed to drop mutex to make that restrictive page 1155 * allocation, but the inode might have been freed while we 1156 * dropped it: although a racing shmem_evict_inode() cannot 1157 * complete without emptying the radix_tree, our page lock 1158 * on this swapcache page is not enough to prevent that - 1159 * free_swap_and_cache() of our swap entry will only 1160 * trylock_page(), removing swap from radix_tree whatever. 1161 * 1162 * We must not proceed to shmem_add_to_page_cache() if the 1163 * inode has been freed, but of course we cannot rely on 1164 * inode or mapping or info to check that. However, we can 1165 * safely check if our swap entry is still in use (and here 1166 * it can't have got reused for another page): if it's still 1167 * in use, then the inode cannot have been freed yet, and we 1168 * can safely proceed (if it's no longer in use, that tells 1169 * nothing about the inode, but we don't need to unuse swap). 1170 */ 1171 if (!page_swapcount(*pagep)) 1172 error = -ENOENT; 1173 } 1174 1175 /* 1176 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1177 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1178 * beneath us (pagelock doesn't help until the page is in pagecache). 1179 */ 1180 if (!error) 1181 error = shmem_add_to_page_cache(*pagep, mapping, index, 1182 radswap); 1183 if (error != -ENOMEM) { 1184 /* 1185 * Truncation and eviction use free_swap_and_cache(), which 1186 * only does trylock page: if we raced, best clean up here. 1187 */ 1188 delete_from_swap_cache(*pagep); 1189 set_page_dirty(*pagep); 1190 if (!error) { 1191 spin_lock_irq(&info->lock); 1192 info->swapped--; 1193 spin_unlock_irq(&info->lock); 1194 swap_free(swap); 1195 } 1196 } 1197 return error; 1198 } 1199 1200 /* 1201 * Search through swapped inodes to find and replace swap by page. 1202 */ 1203 int shmem_unuse(swp_entry_t swap, struct page *page) 1204 { 1205 struct list_head *this, *next; 1206 struct shmem_inode_info *info; 1207 struct mem_cgroup *memcg; 1208 int error = 0; 1209 1210 /* 1211 * There's a faint possibility that swap page was replaced before 1212 * caller locked it: caller will come back later with the right page. 1213 */ 1214 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1215 goto out; 1216 1217 /* 1218 * Charge page using GFP_KERNEL while we can wait, before taking 1219 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1220 * Charged back to the user (not to caller) when swap account is used. 1221 */ 1222 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1223 false); 1224 if (error) 1225 goto out; 1226 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1227 error = -EAGAIN; 1228 1229 mutex_lock(&shmem_swaplist_mutex); 1230 list_for_each_safe(this, next, &shmem_swaplist) { 1231 info = list_entry(this, struct shmem_inode_info, swaplist); 1232 if (info->swapped) 1233 error = shmem_unuse_inode(info, swap, &page); 1234 else 1235 list_del_init(&info->swaplist); 1236 cond_resched(); 1237 if (error != -EAGAIN) 1238 break; 1239 /* found nothing in this: move on to search the next */ 1240 } 1241 mutex_unlock(&shmem_swaplist_mutex); 1242 1243 if (error) { 1244 if (error != -ENOMEM) 1245 error = 0; 1246 mem_cgroup_cancel_charge(page, memcg, false); 1247 } else 1248 mem_cgroup_commit_charge(page, memcg, true, false); 1249 out: 1250 unlock_page(page); 1251 put_page(page); 1252 return error; 1253 } 1254 1255 /* 1256 * Move the page from the page cache to the swap cache. 1257 */ 1258 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1259 { 1260 struct shmem_inode_info *info; 1261 struct address_space *mapping; 1262 struct inode *inode; 1263 swp_entry_t swap; 1264 pgoff_t index; 1265 1266 VM_BUG_ON_PAGE(PageCompound(page), page); 1267 BUG_ON(!PageLocked(page)); 1268 mapping = page->mapping; 1269 index = page->index; 1270 inode = mapping->host; 1271 info = SHMEM_I(inode); 1272 if (info->flags & VM_LOCKED) 1273 goto redirty; 1274 if (!total_swap_pages) 1275 goto redirty; 1276 1277 /* 1278 * Our capabilities prevent regular writeback or sync from ever calling 1279 * shmem_writepage; but a stacking filesystem might use ->writepage of 1280 * its underlying filesystem, in which case tmpfs should write out to 1281 * swap only in response to memory pressure, and not for the writeback 1282 * threads or sync. 1283 */ 1284 if (!wbc->for_reclaim) { 1285 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1286 goto redirty; 1287 } 1288 1289 /* 1290 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1291 * value into swapfile.c, the only way we can correctly account for a 1292 * fallocated page arriving here is now to initialize it and write it. 1293 * 1294 * That's okay for a page already fallocated earlier, but if we have 1295 * not yet completed the fallocation, then (a) we want to keep track 1296 * of this page in case we have to undo it, and (b) it may not be a 1297 * good idea to continue anyway, once we're pushing into swap. So 1298 * reactivate the page, and let shmem_fallocate() quit when too many. 1299 */ 1300 if (!PageUptodate(page)) { 1301 if (inode->i_private) { 1302 struct shmem_falloc *shmem_falloc; 1303 spin_lock(&inode->i_lock); 1304 shmem_falloc = inode->i_private; 1305 if (shmem_falloc && 1306 !shmem_falloc->waitq && 1307 index >= shmem_falloc->start && 1308 index < shmem_falloc->next) 1309 shmem_falloc->nr_unswapped++; 1310 else 1311 shmem_falloc = NULL; 1312 spin_unlock(&inode->i_lock); 1313 if (shmem_falloc) 1314 goto redirty; 1315 } 1316 clear_highpage(page); 1317 flush_dcache_page(page); 1318 SetPageUptodate(page); 1319 } 1320 1321 swap = get_swap_page(page); 1322 if (!swap.val) 1323 goto redirty; 1324 1325 if (mem_cgroup_try_charge_swap(page, swap)) 1326 goto free_swap; 1327 1328 /* 1329 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1330 * if it's not already there. Do it now before the page is 1331 * moved to swap cache, when its pagelock no longer protects 1332 * the inode from eviction. But don't unlock the mutex until 1333 * we've incremented swapped, because shmem_unuse_inode() will 1334 * prune a !swapped inode from the swaplist under this mutex. 1335 */ 1336 mutex_lock(&shmem_swaplist_mutex); 1337 if (list_empty(&info->swaplist)) 1338 list_add_tail(&info->swaplist, &shmem_swaplist); 1339 1340 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1341 spin_lock_irq(&info->lock); 1342 shmem_recalc_inode(inode); 1343 info->swapped++; 1344 spin_unlock_irq(&info->lock); 1345 1346 swap_shmem_alloc(swap); 1347 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1348 1349 mutex_unlock(&shmem_swaplist_mutex); 1350 BUG_ON(page_mapped(page)); 1351 swap_writepage(page, wbc); 1352 return 0; 1353 } 1354 1355 mutex_unlock(&shmem_swaplist_mutex); 1356 free_swap: 1357 put_swap_page(page, swap); 1358 redirty: 1359 set_page_dirty(page); 1360 if (wbc->for_reclaim) 1361 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1362 unlock_page(page); 1363 return 0; 1364 } 1365 1366 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1367 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1368 { 1369 char buffer[64]; 1370 1371 if (!mpol || mpol->mode == MPOL_DEFAULT) 1372 return; /* show nothing */ 1373 1374 mpol_to_str(buffer, sizeof(buffer), mpol); 1375 1376 seq_printf(seq, ",mpol=%s", buffer); 1377 } 1378 1379 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1380 { 1381 struct mempolicy *mpol = NULL; 1382 if (sbinfo->mpol) { 1383 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1384 mpol = sbinfo->mpol; 1385 mpol_get(mpol); 1386 spin_unlock(&sbinfo->stat_lock); 1387 } 1388 return mpol; 1389 } 1390 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1391 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1392 { 1393 } 1394 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1395 { 1396 return NULL; 1397 } 1398 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1399 #ifndef CONFIG_NUMA 1400 #define vm_policy vm_private_data 1401 #endif 1402 1403 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1404 struct shmem_inode_info *info, pgoff_t index) 1405 { 1406 /* Create a pseudo vma that just contains the policy */ 1407 vma->vm_start = 0; 1408 /* Bias interleave by inode number to distribute better across nodes */ 1409 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1410 vma->vm_ops = NULL; 1411 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1412 } 1413 1414 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1415 { 1416 /* Drop reference taken by mpol_shared_policy_lookup() */ 1417 mpol_cond_put(vma->vm_policy); 1418 } 1419 1420 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1421 struct shmem_inode_info *info, pgoff_t index) 1422 { 1423 struct vm_area_struct pvma; 1424 struct page *page; 1425 1426 shmem_pseudo_vma_init(&pvma, info, index); 1427 page = swapin_readahead(swap, gfp, &pvma, 0); 1428 shmem_pseudo_vma_destroy(&pvma); 1429 1430 return page; 1431 } 1432 1433 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1434 struct shmem_inode_info *info, pgoff_t index) 1435 { 1436 struct vm_area_struct pvma; 1437 struct inode *inode = &info->vfs_inode; 1438 struct address_space *mapping = inode->i_mapping; 1439 pgoff_t idx, hindex; 1440 void __rcu **results; 1441 struct page *page; 1442 1443 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1444 return NULL; 1445 1446 hindex = round_down(index, HPAGE_PMD_NR); 1447 rcu_read_lock(); 1448 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, 1449 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1450 rcu_read_unlock(); 1451 return NULL; 1452 } 1453 rcu_read_unlock(); 1454 1455 shmem_pseudo_vma_init(&pvma, info, hindex); 1456 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1457 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1458 shmem_pseudo_vma_destroy(&pvma); 1459 if (page) 1460 prep_transhuge_page(page); 1461 return page; 1462 } 1463 1464 static struct page *shmem_alloc_page(gfp_t gfp, 1465 struct shmem_inode_info *info, pgoff_t index) 1466 { 1467 struct vm_area_struct pvma; 1468 struct page *page; 1469 1470 shmem_pseudo_vma_init(&pvma, info, index); 1471 page = alloc_page_vma(gfp, &pvma, 0); 1472 shmem_pseudo_vma_destroy(&pvma); 1473 1474 return page; 1475 } 1476 1477 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1478 struct inode *inode, 1479 pgoff_t index, bool huge) 1480 { 1481 struct shmem_inode_info *info = SHMEM_I(inode); 1482 struct page *page; 1483 int nr; 1484 int err = -ENOSPC; 1485 1486 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1487 huge = false; 1488 nr = huge ? HPAGE_PMD_NR : 1; 1489 1490 if (!shmem_inode_acct_block(inode, nr)) 1491 goto failed; 1492 1493 if (huge) 1494 page = shmem_alloc_hugepage(gfp, info, index); 1495 else 1496 page = shmem_alloc_page(gfp, info, index); 1497 if (page) { 1498 __SetPageLocked(page); 1499 __SetPageSwapBacked(page); 1500 return page; 1501 } 1502 1503 err = -ENOMEM; 1504 shmem_inode_unacct_blocks(inode, nr); 1505 failed: 1506 return ERR_PTR(err); 1507 } 1508 1509 /* 1510 * When a page is moved from swapcache to shmem filecache (either by the 1511 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1512 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1513 * ignorance of the mapping it belongs to. If that mapping has special 1514 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1515 * we may need to copy to a suitable page before moving to filecache. 1516 * 1517 * In a future release, this may well be extended to respect cpuset and 1518 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1519 * but for now it is a simple matter of zone. 1520 */ 1521 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1522 { 1523 return page_zonenum(page) > gfp_zone(gfp); 1524 } 1525 1526 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1527 struct shmem_inode_info *info, pgoff_t index) 1528 { 1529 struct page *oldpage, *newpage; 1530 struct address_space *swap_mapping; 1531 pgoff_t swap_index; 1532 int error; 1533 1534 oldpage = *pagep; 1535 swap_index = page_private(oldpage); 1536 swap_mapping = page_mapping(oldpage); 1537 1538 /* 1539 * We have arrived here because our zones are constrained, so don't 1540 * limit chance of success by further cpuset and node constraints. 1541 */ 1542 gfp &= ~GFP_CONSTRAINT_MASK; 1543 newpage = shmem_alloc_page(gfp, info, index); 1544 if (!newpage) 1545 return -ENOMEM; 1546 1547 get_page(newpage); 1548 copy_highpage(newpage, oldpage); 1549 flush_dcache_page(newpage); 1550 1551 __SetPageLocked(newpage); 1552 __SetPageSwapBacked(newpage); 1553 SetPageUptodate(newpage); 1554 set_page_private(newpage, swap_index); 1555 SetPageSwapCache(newpage); 1556 1557 /* 1558 * Our caller will very soon move newpage out of swapcache, but it's 1559 * a nice clean interface for us to replace oldpage by newpage there. 1560 */ 1561 spin_lock_irq(&swap_mapping->tree_lock); 1562 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1563 newpage); 1564 if (!error) { 1565 __inc_node_page_state(newpage, NR_FILE_PAGES); 1566 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1567 } 1568 spin_unlock_irq(&swap_mapping->tree_lock); 1569 1570 if (unlikely(error)) { 1571 /* 1572 * Is this possible? I think not, now that our callers check 1573 * both PageSwapCache and page_private after getting page lock; 1574 * but be defensive. Reverse old to newpage for clear and free. 1575 */ 1576 oldpage = newpage; 1577 } else { 1578 mem_cgroup_migrate(oldpage, newpage); 1579 lru_cache_add_anon(newpage); 1580 *pagep = newpage; 1581 } 1582 1583 ClearPageSwapCache(oldpage); 1584 set_page_private(oldpage, 0); 1585 1586 unlock_page(oldpage); 1587 put_page(oldpage); 1588 put_page(oldpage); 1589 return error; 1590 } 1591 1592 /* 1593 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1594 * 1595 * If we allocate a new one we do not mark it dirty. That's up to the 1596 * vm. If we swap it in we mark it dirty since we also free the swap 1597 * entry since a page cannot live in both the swap and page cache. 1598 * 1599 * fault_mm and fault_type are only supplied by shmem_fault: 1600 * otherwise they are NULL. 1601 */ 1602 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1603 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1604 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type) 1605 { 1606 struct address_space *mapping = inode->i_mapping; 1607 struct shmem_inode_info *info = SHMEM_I(inode); 1608 struct shmem_sb_info *sbinfo; 1609 struct mm_struct *charge_mm; 1610 struct mem_cgroup *memcg; 1611 struct page *page; 1612 swp_entry_t swap; 1613 enum sgp_type sgp_huge = sgp; 1614 pgoff_t hindex = index; 1615 int error; 1616 int once = 0; 1617 int alloced = 0; 1618 1619 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1620 return -EFBIG; 1621 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1622 sgp = SGP_CACHE; 1623 repeat: 1624 swap.val = 0; 1625 page = find_lock_entry(mapping, index); 1626 if (radix_tree_exceptional_entry(page)) { 1627 swap = radix_to_swp_entry(page); 1628 page = NULL; 1629 } 1630 1631 if (sgp <= SGP_CACHE && 1632 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1633 error = -EINVAL; 1634 goto unlock; 1635 } 1636 1637 if (page && sgp == SGP_WRITE) 1638 mark_page_accessed(page); 1639 1640 /* fallocated page? */ 1641 if (page && !PageUptodate(page)) { 1642 if (sgp != SGP_READ) 1643 goto clear; 1644 unlock_page(page); 1645 put_page(page); 1646 page = NULL; 1647 } 1648 if (page || (sgp == SGP_READ && !swap.val)) { 1649 *pagep = page; 1650 return 0; 1651 } 1652 1653 /* 1654 * Fast cache lookup did not find it: 1655 * bring it back from swap or allocate. 1656 */ 1657 sbinfo = SHMEM_SB(inode->i_sb); 1658 charge_mm = vma ? vma->vm_mm : current->mm; 1659 1660 if (swap.val) { 1661 /* Look it up and read it in.. */ 1662 page = lookup_swap_cache(swap, NULL, 0); 1663 if (!page) { 1664 /* Or update major stats only when swapin succeeds?? */ 1665 if (fault_type) { 1666 *fault_type |= VM_FAULT_MAJOR; 1667 count_vm_event(PGMAJFAULT); 1668 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1669 } 1670 /* Here we actually start the io */ 1671 page = shmem_swapin(swap, gfp, info, index); 1672 if (!page) { 1673 error = -ENOMEM; 1674 goto failed; 1675 } 1676 } 1677 1678 /* We have to do this with page locked to prevent races */ 1679 lock_page(page); 1680 if (!PageSwapCache(page) || page_private(page) != swap.val || 1681 !shmem_confirm_swap(mapping, index, swap)) { 1682 error = -EEXIST; /* try again */ 1683 goto unlock; 1684 } 1685 if (!PageUptodate(page)) { 1686 error = -EIO; 1687 goto failed; 1688 } 1689 wait_on_page_writeback(page); 1690 1691 if (shmem_should_replace_page(page, gfp)) { 1692 error = shmem_replace_page(&page, gfp, info, index); 1693 if (error) 1694 goto failed; 1695 } 1696 1697 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1698 false); 1699 if (!error) { 1700 error = shmem_add_to_page_cache(page, mapping, index, 1701 swp_to_radix_entry(swap)); 1702 /* 1703 * We already confirmed swap under page lock, and make 1704 * no memory allocation here, so usually no possibility 1705 * of error; but free_swap_and_cache() only trylocks a 1706 * page, so it is just possible that the entry has been 1707 * truncated or holepunched since swap was confirmed. 1708 * shmem_undo_range() will have done some of the 1709 * unaccounting, now delete_from_swap_cache() will do 1710 * the rest. 1711 * Reset swap.val? No, leave it so "failed" goes back to 1712 * "repeat": reading a hole and writing should succeed. 1713 */ 1714 if (error) { 1715 mem_cgroup_cancel_charge(page, memcg, false); 1716 delete_from_swap_cache(page); 1717 } 1718 } 1719 if (error) 1720 goto failed; 1721 1722 mem_cgroup_commit_charge(page, memcg, true, false); 1723 1724 spin_lock_irq(&info->lock); 1725 info->swapped--; 1726 shmem_recalc_inode(inode); 1727 spin_unlock_irq(&info->lock); 1728 1729 if (sgp == SGP_WRITE) 1730 mark_page_accessed(page); 1731 1732 delete_from_swap_cache(page); 1733 set_page_dirty(page); 1734 swap_free(swap); 1735 1736 } else { 1737 if (vma && userfaultfd_missing(vma)) { 1738 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1739 return 0; 1740 } 1741 1742 /* shmem_symlink() */ 1743 if (mapping->a_ops != &shmem_aops) 1744 goto alloc_nohuge; 1745 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1746 goto alloc_nohuge; 1747 if (shmem_huge == SHMEM_HUGE_FORCE) 1748 goto alloc_huge; 1749 switch (sbinfo->huge) { 1750 loff_t i_size; 1751 pgoff_t off; 1752 case SHMEM_HUGE_NEVER: 1753 goto alloc_nohuge; 1754 case SHMEM_HUGE_WITHIN_SIZE: 1755 off = round_up(index, HPAGE_PMD_NR); 1756 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1757 if (i_size >= HPAGE_PMD_SIZE && 1758 i_size >> PAGE_SHIFT >= off) 1759 goto alloc_huge; 1760 /* fallthrough */ 1761 case SHMEM_HUGE_ADVISE: 1762 if (sgp_huge == SGP_HUGE) 1763 goto alloc_huge; 1764 /* TODO: implement fadvise() hints */ 1765 goto alloc_nohuge; 1766 } 1767 1768 alloc_huge: 1769 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1770 if (IS_ERR(page)) { 1771 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, 1772 index, false); 1773 } 1774 if (IS_ERR(page)) { 1775 int retry = 5; 1776 error = PTR_ERR(page); 1777 page = NULL; 1778 if (error != -ENOSPC) 1779 goto failed; 1780 /* 1781 * Try to reclaim some spece by splitting a huge page 1782 * beyond i_size on the filesystem. 1783 */ 1784 while (retry--) { 1785 int ret; 1786 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1787 if (ret == SHRINK_STOP) 1788 break; 1789 if (ret) 1790 goto alloc_nohuge; 1791 } 1792 goto failed; 1793 } 1794 1795 if (PageTransHuge(page)) 1796 hindex = round_down(index, HPAGE_PMD_NR); 1797 else 1798 hindex = index; 1799 1800 if (sgp == SGP_WRITE) 1801 __SetPageReferenced(page); 1802 1803 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1804 PageTransHuge(page)); 1805 if (error) 1806 goto unacct; 1807 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1808 compound_order(page)); 1809 if (!error) { 1810 error = shmem_add_to_page_cache(page, mapping, hindex, 1811 NULL); 1812 radix_tree_preload_end(); 1813 } 1814 if (error) { 1815 mem_cgroup_cancel_charge(page, memcg, 1816 PageTransHuge(page)); 1817 goto unacct; 1818 } 1819 mem_cgroup_commit_charge(page, memcg, false, 1820 PageTransHuge(page)); 1821 lru_cache_add_anon(page); 1822 1823 spin_lock_irq(&info->lock); 1824 info->alloced += 1 << compound_order(page); 1825 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1826 shmem_recalc_inode(inode); 1827 spin_unlock_irq(&info->lock); 1828 alloced = true; 1829 1830 if (PageTransHuge(page) && 1831 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1832 hindex + HPAGE_PMD_NR - 1) { 1833 /* 1834 * Part of the huge page is beyond i_size: subject 1835 * to shrink under memory pressure. 1836 */ 1837 spin_lock(&sbinfo->shrinklist_lock); 1838 /* 1839 * _careful to defend against unlocked access to 1840 * ->shrink_list in shmem_unused_huge_shrink() 1841 */ 1842 if (list_empty_careful(&info->shrinklist)) { 1843 list_add_tail(&info->shrinklist, 1844 &sbinfo->shrinklist); 1845 sbinfo->shrinklist_len++; 1846 } 1847 spin_unlock(&sbinfo->shrinklist_lock); 1848 } 1849 1850 /* 1851 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1852 */ 1853 if (sgp == SGP_FALLOC) 1854 sgp = SGP_WRITE; 1855 clear: 1856 /* 1857 * Let SGP_WRITE caller clear ends if write does not fill page; 1858 * but SGP_FALLOC on a page fallocated earlier must initialize 1859 * it now, lest undo on failure cancel our earlier guarantee. 1860 */ 1861 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1862 struct page *head = compound_head(page); 1863 int i; 1864 1865 for (i = 0; i < (1 << compound_order(head)); i++) { 1866 clear_highpage(head + i); 1867 flush_dcache_page(head + i); 1868 } 1869 SetPageUptodate(head); 1870 } 1871 } 1872 1873 /* Perhaps the file has been truncated since we checked */ 1874 if (sgp <= SGP_CACHE && 1875 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1876 if (alloced) { 1877 ClearPageDirty(page); 1878 delete_from_page_cache(page); 1879 spin_lock_irq(&info->lock); 1880 shmem_recalc_inode(inode); 1881 spin_unlock_irq(&info->lock); 1882 } 1883 error = -EINVAL; 1884 goto unlock; 1885 } 1886 *pagep = page + index - hindex; 1887 return 0; 1888 1889 /* 1890 * Error recovery. 1891 */ 1892 unacct: 1893 shmem_inode_unacct_blocks(inode, 1 << compound_order(page)); 1894 1895 if (PageTransHuge(page)) { 1896 unlock_page(page); 1897 put_page(page); 1898 goto alloc_nohuge; 1899 } 1900 failed: 1901 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1902 error = -EEXIST; 1903 unlock: 1904 if (page) { 1905 unlock_page(page); 1906 put_page(page); 1907 } 1908 if (error == -ENOSPC && !once++) { 1909 spin_lock_irq(&info->lock); 1910 shmem_recalc_inode(inode); 1911 spin_unlock_irq(&info->lock); 1912 goto repeat; 1913 } 1914 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1915 goto repeat; 1916 return error; 1917 } 1918 1919 /* 1920 * This is like autoremove_wake_function, but it removes the wait queue 1921 * entry unconditionally - even if something else had already woken the 1922 * target. 1923 */ 1924 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1925 { 1926 int ret = default_wake_function(wait, mode, sync, key); 1927 list_del_init(&wait->entry); 1928 return ret; 1929 } 1930 1931 static int shmem_fault(struct vm_fault *vmf) 1932 { 1933 struct vm_area_struct *vma = vmf->vma; 1934 struct inode *inode = file_inode(vma->vm_file); 1935 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1936 enum sgp_type sgp; 1937 int error; 1938 int ret = VM_FAULT_LOCKED; 1939 1940 /* 1941 * Trinity finds that probing a hole which tmpfs is punching can 1942 * prevent the hole-punch from ever completing: which in turn 1943 * locks writers out with its hold on i_mutex. So refrain from 1944 * faulting pages into the hole while it's being punched. Although 1945 * shmem_undo_range() does remove the additions, it may be unable to 1946 * keep up, as each new page needs its own unmap_mapping_range() call, 1947 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1948 * 1949 * It does not matter if we sometimes reach this check just before the 1950 * hole-punch begins, so that one fault then races with the punch: 1951 * we just need to make racing faults a rare case. 1952 * 1953 * The implementation below would be much simpler if we just used a 1954 * standard mutex or completion: but we cannot take i_mutex in fault, 1955 * and bloating every shmem inode for this unlikely case would be sad. 1956 */ 1957 if (unlikely(inode->i_private)) { 1958 struct shmem_falloc *shmem_falloc; 1959 1960 spin_lock(&inode->i_lock); 1961 shmem_falloc = inode->i_private; 1962 if (shmem_falloc && 1963 shmem_falloc->waitq && 1964 vmf->pgoff >= shmem_falloc->start && 1965 vmf->pgoff < shmem_falloc->next) { 1966 wait_queue_head_t *shmem_falloc_waitq; 1967 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1968 1969 ret = VM_FAULT_NOPAGE; 1970 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1971 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1972 /* It's polite to up mmap_sem if we can */ 1973 up_read(&vma->vm_mm->mmap_sem); 1974 ret = VM_FAULT_RETRY; 1975 } 1976 1977 shmem_falloc_waitq = shmem_falloc->waitq; 1978 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1979 TASK_UNINTERRUPTIBLE); 1980 spin_unlock(&inode->i_lock); 1981 schedule(); 1982 1983 /* 1984 * shmem_falloc_waitq points into the shmem_fallocate() 1985 * stack of the hole-punching task: shmem_falloc_waitq 1986 * is usually invalid by the time we reach here, but 1987 * finish_wait() does not dereference it in that case; 1988 * though i_lock needed lest racing with wake_up_all(). 1989 */ 1990 spin_lock(&inode->i_lock); 1991 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1992 spin_unlock(&inode->i_lock); 1993 return ret; 1994 } 1995 spin_unlock(&inode->i_lock); 1996 } 1997 1998 sgp = SGP_CACHE; 1999 2000 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2001 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2002 sgp = SGP_NOHUGE; 2003 else if (vma->vm_flags & VM_HUGEPAGE) 2004 sgp = SGP_HUGE; 2005 2006 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2007 gfp, vma, vmf, &ret); 2008 if (error) 2009 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 2010 return ret; 2011 } 2012 2013 unsigned long shmem_get_unmapped_area(struct file *file, 2014 unsigned long uaddr, unsigned long len, 2015 unsigned long pgoff, unsigned long flags) 2016 { 2017 unsigned long (*get_area)(struct file *, 2018 unsigned long, unsigned long, unsigned long, unsigned long); 2019 unsigned long addr; 2020 unsigned long offset; 2021 unsigned long inflated_len; 2022 unsigned long inflated_addr; 2023 unsigned long inflated_offset; 2024 2025 if (len > TASK_SIZE) 2026 return -ENOMEM; 2027 2028 get_area = current->mm->get_unmapped_area; 2029 addr = get_area(file, uaddr, len, pgoff, flags); 2030 2031 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2032 return addr; 2033 if (IS_ERR_VALUE(addr)) 2034 return addr; 2035 if (addr & ~PAGE_MASK) 2036 return addr; 2037 if (addr > TASK_SIZE - len) 2038 return addr; 2039 2040 if (shmem_huge == SHMEM_HUGE_DENY) 2041 return addr; 2042 if (len < HPAGE_PMD_SIZE) 2043 return addr; 2044 if (flags & MAP_FIXED) 2045 return addr; 2046 /* 2047 * Our priority is to support MAP_SHARED mapped hugely; 2048 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2049 * But if caller specified an address hint, respect that as before. 2050 */ 2051 if (uaddr) 2052 return addr; 2053 2054 if (shmem_huge != SHMEM_HUGE_FORCE) { 2055 struct super_block *sb; 2056 2057 if (file) { 2058 VM_BUG_ON(file->f_op != &shmem_file_operations); 2059 sb = file_inode(file)->i_sb; 2060 } else { 2061 /* 2062 * Called directly from mm/mmap.c, or drivers/char/mem.c 2063 * for "/dev/zero", to create a shared anonymous object. 2064 */ 2065 if (IS_ERR(shm_mnt)) 2066 return addr; 2067 sb = shm_mnt->mnt_sb; 2068 } 2069 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2070 return addr; 2071 } 2072 2073 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2074 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2075 return addr; 2076 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2077 return addr; 2078 2079 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2080 if (inflated_len > TASK_SIZE) 2081 return addr; 2082 if (inflated_len < len) 2083 return addr; 2084 2085 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2086 if (IS_ERR_VALUE(inflated_addr)) 2087 return addr; 2088 if (inflated_addr & ~PAGE_MASK) 2089 return addr; 2090 2091 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2092 inflated_addr += offset - inflated_offset; 2093 if (inflated_offset > offset) 2094 inflated_addr += HPAGE_PMD_SIZE; 2095 2096 if (inflated_addr > TASK_SIZE - len) 2097 return addr; 2098 return inflated_addr; 2099 } 2100 2101 #ifdef CONFIG_NUMA 2102 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2103 { 2104 struct inode *inode = file_inode(vma->vm_file); 2105 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2106 } 2107 2108 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2109 unsigned long addr) 2110 { 2111 struct inode *inode = file_inode(vma->vm_file); 2112 pgoff_t index; 2113 2114 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2115 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2116 } 2117 #endif 2118 2119 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2120 { 2121 struct inode *inode = file_inode(file); 2122 struct shmem_inode_info *info = SHMEM_I(inode); 2123 int retval = -ENOMEM; 2124 2125 spin_lock_irq(&info->lock); 2126 if (lock && !(info->flags & VM_LOCKED)) { 2127 if (!user_shm_lock(inode->i_size, user)) 2128 goto out_nomem; 2129 info->flags |= VM_LOCKED; 2130 mapping_set_unevictable(file->f_mapping); 2131 } 2132 if (!lock && (info->flags & VM_LOCKED) && user) { 2133 user_shm_unlock(inode->i_size, user); 2134 info->flags &= ~VM_LOCKED; 2135 mapping_clear_unevictable(file->f_mapping); 2136 } 2137 retval = 0; 2138 2139 out_nomem: 2140 spin_unlock_irq(&info->lock); 2141 return retval; 2142 } 2143 2144 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2145 { 2146 file_accessed(file); 2147 vma->vm_ops = &shmem_vm_ops; 2148 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2149 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2150 (vma->vm_end & HPAGE_PMD_MASK)) { 2151 khugepaged_enter(vma, vma->vm_flags); 2152 } 2153 return 0; 2154 } 2155 2156 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2157 umode_t mode, dev_t dev, unsigned long flags) 2158 { 2159 struct inode *inode; 2160 struct shmem_inode_info *info; 2161 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2162 2163 if (shmem_reserve_inode(sb)) 2164 return NULL; 2165 2166 inode = new_inode(sb); 2167 if (inode) { 2168 inode->i_ino = get_next_ino(); 2169 inode_init_owner(inode, dir, mode); 2170 inode->i_blocks = 0; 2171 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2172 inode->i_generation = get_seconds(); 2173 info = SHMEM_I(inode); 2174 memset(info, 0, (char *)inode - (char *)info); 2175 spin_lock_init(&info->lock); 2176 info->seals = F_SEAL_SEAL; 2177 info->flags = flags & VM_NORESERVE; 2178 INIT_LIST_HEAD(&info->shrinklist); 2179 INIT_LIST_HEAD(&info->swaplist); 2180 simple_xattrs_init(&info->xattrs); 2181 cache_no_acl(inode); 2182 2183 switch (mode & S_IFMT) { 2184 default: 2185 inode->i_op = &shmem_special_inode_operations; 2186 init_special_inode(inode, mode, dev); 2187 break; 2188 case S_IFREG: 2189 inode->i_mapping->a_ops = &shmem_aops; 2190 inode->i_op = &shmem_inode_operations; 2191 inode->i_fop = &shmem_file_operations; 2192 mpol_shared_policy_init(&info->policy, 2193 shmem_get_sbmpol(sbinfo)); 2194 break; 2195 case S_IFDIR: 2196 inc_nlink(inode); 2197 /* Some things misbehave if size == 0 on a directory */ 2198 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2199 inode->i_op = &shmem_dir_inode_operations; 2200 inode->i_fop = &simple_dir_operations; 2201 break; 2202 case S_IFLNK: 2203 /* 2204 * Must not load anything in the rbtree, 2205 * mpol_free_shared_policy will not be called. 2206 */ 2207 mpol_shared_policy_init(&info->policy, NULL); 2208 break; 2209 } 2210 } else 2211 shmem_free_inode(sb); 2212 return inode; 2213 } 2214 2215 bool shmem_mapping(struct address_space *mapping) 2216 { 2217 return mapping->a_ops == &shmem_aops; 2218 } 2219 2220 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2221 pmd_t *dst_pmd, 2222 struct vm_area_struct *dst_vma, 2223 unsigned long dst_addr, 2224 unsigned long src_addr, 2225 bool zeropage, 2226 struct page **pagep) 2227 { 2228 struct inode *inode = file_inode(dst_vma->vm_file); 2229 struct shmem_inode_info *info = SHMEM_I(inode); 2230 struct address_space *mapping = inode->i_mapping; 2231 gfp_t gfp = mapping_gfp_mask(mapping); 2232 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2233 struct mem_cgroup *memcg; 2234 spinlock_t *ptl; 2235 void *page_kaddr; 2236 struct page *page; 2237 pte_t _dst_pte, *dst_pte; 2238 int ret; 2239 2240 ret = -ENOMEM; 2241 if (!shmem_inode_acct_block(inode, 1)) 2242 goto out; 2243 2244 if (!*pagep) { 2245 page = shmem_alloc_page(gfp, info, pgoff); 2246 if (!page) 2247 goto out_unacct_blocks; 2248 2249 if (!zeropage) { /* mcopy_atomic */ 2250 page_kaddr = kmap_atomic(page); 2251 ret = copy_from_user(page_kaddr, 2252 (const void __user *)src_addr, 2253 PAGE_SIZE); 2254 kunmap_atomic(page_kaddr); 2255 2256 /* fallback to copy_from_user outside mmap_sem */ 2257 if (unlikely(ret)) { 2258 *pagep = page; 2259 shmem_inode_unacct_blocks(inode, 1); 2260 /* don't free the page */ 2261 return -EFAULT; 2262 } 2263 } else { /* mfill_zeropage_atomic */ 2264 clear_highpage(page); 2265 } 2266 } else { 2267 page = *pagep; 2268 *pagep = NULL; 2269 } 2270 2271 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2272 __SetPageLocked(page); 2273 __SetPageSwapBacked(page); 2274 __SetPageUptodate(page); 2275 2276 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false); 2277 if (ret) 2278 goto out_release; 2279 2280 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 2281 if (!ret) { 2282 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); 2283 radix_tree_preload_end(); 2284 } 2285 if (ret) 2286 goto out_release_uncharge; 2287 2288 mem_cgroup_commit_charge(page, memcg, false, false); 2289 2290 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2291 if (dst_vma->vm_flags & VM_WRITE) 2292 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2293 2294 ret = -EEXIST; 2295 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2296 if (!pte_none(*dst_pte)) 2297 goto out_release_uncharge_unlock; 2298 2299 lru_cache_add_anon(page); 2300 2301 spin_lock(&info->lock); 2302 info->alloced++; 2303 inode->i_blocks += BLOCKS_PER_PAGE; 2304 shmem_recalc_inode(inode); 2305 spin_unlock(&info->lock); 2306 2307 inc_mm_counter(dst_mm, mm_counter_file(page)); 2308 page_add_file_rmap(page, false); 2309 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2310 2311 /* No need to invalidate - it was non-present before */ 2312 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2313 unlock_page(page); 2314 pte_unmap_unlock(dst_pte, ptl); 2315 ret = 0; 2316 out: 2317 return ret; 2318 out_release_uncharge_unlock: 2319 pte_unmap_unlock(dst_pte, ptl); 2320 out_release_uncharge: 2321 mem_cgroup_cancel_charge(page, memcg, false); 2322 out_release: 2323 unlock_page(page); 2324 put_page(page); 2325 out_unacct_blocks: 2326 shmem_inode_unacct_blocks(inode, 1); 2327 goto out; 2328 } 2329 2330 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2331 pmd_t *dst_pmd, 2332 struct vm_area_struct *dst_vma, 2333 unsigned long dst_addr, 2334 unsigned long src_addr, 2335 struct page **pagep) 2336 { 2337 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2338 dst_addr, src_addr, false, pagep); 2339 } 2340 2341 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2342 pmd_t *dst_pmd, 2343 struct vm_area_struct *dst_vma, 2344 unsigned long dst_addr) 2345 { 2346 struct page *page = NULL; 2347 2348 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2349 dst_addr, 0, true, &page); 2350 } 2351 2352 #ifdef CONFIG_TMPFS 2353 static const struct inode_operations shmem_symlink_inode_operations; 2354 static const struct inode_operations shmem_short_symlink_operations; 2355 2356 #ifdef CONFIG_TMPFS_XATTR 2357 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2358 #else 2359 #define shmem_initxattrs NULL 2360 #endif 2361 2362 static int 2363 shmem_write_begin(struct file *file, struct address_space *mapping, 2364 loff_t pos, unsigned len, unsigned flags, 2365 struct page **pagep, void **fsdata) 2366 { 2367 struct inode *inode = mapping->host; 2368 struct shmem_inode_info *info = SHMEM_I(inode); 2369 pgoff_t index = pos >> PAGE_SHIFT; 2370 2371 /* i_mutex is held by caller */ 2372 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2373 if (info->seals & F_SEAL_WRITE) 2374 return -EPERM; 2375 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2376 return -EPERM; 2377 } 2378 2379 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2380 } 2381 2382 static int 2383 shmem_write_end(struct file *file, struct address_space *mapping, 2384 loff_t pos, unsigned len, unsigned copied, 2385 struct page *page, void *fsdata) 2386 { 2387 struct inode *inode = mapping->host; 2388 2389 if (pos + copied > inode->i_size) 2390 i_size_write(inode, pos + copied); 2391 2392 if (!PageUptodate(page)) { 2393 struct page *head = compound_head(page); 2394 if (PageTransCompound(page)) { 2395 int i; 2396 2397 for (i = 0; i < HPAGE_PMD_NR; i++) { 2398 if (head + i == page) 2399 continue; 2400 clear_highpage(head + i); 2401 flush_dcache_page(head + i); 2402 } 2403 } 2404 if (copied < PAGE_SIZE) { 2405 unsigned from = pos & (PAGE_SIZE - 1); 2406 zero_user_segments(page, 0, from, 2407 from + copied, PAGE_SIZE); 2408 } 2409 SetPageUptodate(head); 2410 } 2411 set_page_dirty(page); 2412 unlock_page(page); 2413 put_page(page); 2414 2415 return copied; 2416 } 2417 2418 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2419 { 2420 struct file *file = iocb->ki_filp; 2421 struct inode *inode = file_inode(file); 2422 struct address_space *mapping = inode->i_mapping; 2423 pgoff_t index; 2424 unsigned long offset; 2425 enum sgp_type sgp = SGP_READ; 2426 int error = 0; 2427 ssize_t retval = 0; 2428 loff_t *ppos = &iocb->ki_pos; 2429 2430 /* 2431 * Might this read be for a stacking filesystem? Then when reading 2432 * holes of a sparse file, we actually need to allocate those pages, 2433 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2434 */ 2435 if (!iter_is_iovec(to)) 2436 sgp = SGP_CACHE; 2437 2438 index = *ppos >> PAGE_SHIFT; 2439 offset = *ppos & ~PAGE_MASK; 2440 2441 for (;;) { 2442 struct page *page = NULL; 2443 pgoff_t end_index; 2444 unsigned long nr, ret; 2445 loff_t i_size = i_size_read(inode); 2446 2447 end_index = i_size >> PAGE_SHIFT; 2448 if (index > end_index) 2449 break; 2450 if (index == end_index) { 2451 nr = i_size & ~PAGE_MASK; 2452 if (nr <= offset) 2453 break; 2454 } 2455 2456 error = shmem_getpage(inode, index, &page, sgp); 2457 if (error) { 2458 if (error == -EINVAL) 2459 error = 0; 2460 break; 2461 } 2462 if (page) { 2463 if (sgp == SGP_CACHE) 2464 set_page_dirty(page); 2465 unlock_page(page); 2466 } 2467 2468 /* 2469 * We must evaluate after, since reads (unlike writes) 2470 * are called without i_mutex protection against truncate 2471 */ 2472 nr = PAGE_SIZE; 2473 i_size = i_size_read(inode); 2474 end_index = i_size >> PAGE_SHIFT; 2475 if (index == end_index) { 2476 nr = i_size & ~PAGE_MASK; 2477 if (nr <= offset) { 2478 if (page) 2479 put_page(page); 2480 break; 2481 } 2482 } 2483 nr -= offset; 2484 2485 if (page) { 2486 /* 2487 * If users can be writing to this page using arbitrary 2488 * virtual addresses, take care about potential aliasing 2489 * before reading the page on the kernel side. 2490 */ 2491 if (mapping_writably_mapped(mapping)) 2492 flush_dcache_page(page); 2493 /* 2494 * Mark the page accessed if we read the beginning. 2495 */ 2496 if (!offset) 2497 mark_page_accessed(page); 2498 } else { 2499 page = ZERO_PAGE(0); 2500 get_page(page); 2501 } 2502 2503 /* 2504 * Ok, we have the page, and it's up-to-date, so 2505 * now we can copy it to user space... 2506 */ 2507 ret = copy_page_to_iter(page, offset, nr, to); 2508 retval += ret; 2509 offset += ret; 2510 index += offset >> PAGE_SHIFT; 2511 offset &= ~PAGE_MASK; 2512 2513 put_page(page); 2514 if (!iov_iter_count(to)) 2515 break; 2516 if (ret < nr) { 2517 error = -EFAULT; 2518 break; 2519 } 2520 cond_resched(); 2521 } 2522 2523 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2524 file_accessed(file); 2525 return retval ? retval : error; 2526 } 2527 2528 /* 2529 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2530 */ 2531 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2532 pgoff_t index, pgoff_t end, int whence) 2533 { 2534 struct page *page; 2535 struct pagevec pvec; 2536 pgoff_t indices[PAGEVEC_SIZE]; 2537 bool done = false; 2538 int i; 2539 2540 pagevec_init(&pvec); 2541 pvec.nr = 1; /* start small: we may be there already */ 2542 while (!done) { 2543 pvec.nr = find_get_entries(mapping, index, 2544 pvec.nr, pvec.pages, indices); 2545 if (!pvec.nr) { 2546 if (whence == SEEK_DATA) 2547 index = end; 2548 break; 2549 } 2550 for (i = 0; i < pvec.nr; i++, index++) { 2551 if (index < indices[i]) { 2552 if (whence == SEEK_HOLE) { 2553 done = true; 2554 break; 2555 } 2556 index = indices[i]; 2557 } 2558 page = pvec.pages[i]; 2559 if (page && !radix_tree_exceptional_entry(page)) { 2560 if (!PageUptodate(page)) 2561 page = NULL; 2562 } 2563 if (index >= end || 2564 (page && whence == SEEK_DATA) || 2565 (!page && whence == SEEK_HOLE)) { 2566 done = true; 2567 break; 2568 } 2569 } 2570 pagevec_remove_exceptionals(&pvec); 2571 pagevec_release(&pvec); 2572 pvec.nr = PAGEVEC_SIZE; 2573 cond_resched(); 2574 } 2575 return index; 2576 } 2577 2578 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2579 { 2580 struct address_space *mapping = file->f_mapping; 2581 struct inode *inode = mapping->host; 2582 pgoff_t start, end; 2583 loff_t new_offset; 2584 2585 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2586 return generic_file_llseek_size(file, offset, whence, 2587 MAX_LFS_FILESIZE, i_size_read(inode)); 2588 inode_lock(inode); 2589 /* We're holding i_mutex so we can access i_size directly */ 2590 2591 if (offset < 0) 2592 offset = -EINVAL; 2593 else if (offset >= inode->i_size) 2594 offset = -ENXIO; 2595 else { 2596 start = offset >> PAGE_SHIFT; 2597 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2598 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2599 new_offset <<= PAGE_SHIFT; 2600 if (new_offset > offset) { 2601 if (new_offset < inode->i_size) 2602 offset = new_offset; 2603 else if (whence == SEEK_DATA) 2604 offset = -ENXIO; 2605 else 2606 offset = inode->i_size; 2607 } 2608 } 2609 2610 if (offset >= 0) 2611 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2612 inode_unlock(inode); 2613 return offset; 2614 } 2615 2616 /* 2617 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2618 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2619 */ 2620 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2621 #define LAST_SCAN 4 /* about 150ms max */ 2622 2623 static void shmem_tag_pins(struct address_space *mapping) 2624 { 2625 struct radix_tree_iter iter; 2626 void **slot; 2627 pgoff_t start; 2628 struct page *page; 2629 2630 lru_add_drain(); 2631 start = 0; 2632 rcu_read_lock(); 2633 2634 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2635 page = radix_tree_deref_slot(slot); 2636 if (!page || radix_tree_exception(page)) { 2637 if (radix_tree_deref_retry(page)) { 2638 slot = radix_tree_iter_retry(&iter); 2639 continue; 2640 } 2641 } else if (page_count(page) - page_mapcount(page) > 1) { 2642 spin_lock_irq(&mapping->tree_lock); 2643 radix_tree_tag_set(&mapping->page_tree, iter.index, 2644 SHMEM_TAG_PINNED); 2645 spin_unlock_irq(&mapping->tree_lock); 2646 } 2647 2648 if (need_resched()) { 2649 slot = radix_tree_iter_resume(slot, &iter); 2650 cond_resched_rcu(); 2651 } 2652 } 2653 rcu_read_unlock(); 2654 } 2655 2656 /* 2657 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2658 * via get_user_pages(), drivers might have some pending I/O without any active 2659 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2660 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2661 * them to be dropped. 2662 * The caller must guarantee that no new user will acquire writable references 2663 * to those pages to avoid races. 2664 */ 2665 static int shmem_wait_for_pins(struct address_space *mapping) 2666 { 2667 struct radix_tree_iter iter; 2668 void **slot; 2669 pgoff_t start; 2670 struct page *page; 2671 int error, scan; 2672 2673 shmem_tag_pins(mapping); 2674 2675 error = 0; 2676 for (scan = 0; scan <= LAST_SCAN; scan++) { 2677 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 2678 break; 2679 2680 if (!scan) 2681 lru_add_drain_all(); 2682 else if (schedule_timeout_killable((HZ << scan) / 200)) 2683 scan = LAST_SCAN; 2684 2685 start = 0; 2686 rcu_read_lock(); 2687 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2688 start, SHMEM_TAG_PINNED) { 2689 2690 page = radix_tree_deref_slot(slot); 2691 if (radix_tree_exception(page)) { 2692 if (radix_tree_deref_retry(page)) { 2693 slot = radix_tree_iter_retry(&iter); 2694 continue; 2695 } 2696 2697 page = NULL; 2698 } 2699 2700 if (page && 2701 page_count(page) - page_mapcount(page) != 1) { 2702 if (scan < LAST_SCAN) 2703 goto continue_resched; 2704 2705 /* 2706 * On the last scan, we clean up all those tags 2707 * we inserted; but make a note that we still 2708 * found pages pinned. 2709 */ 2710 error = -EBUSY; 2711 } 2712 2713 spin_lock_irq(&mapping->tree_lock); 2714 radix_tree_tag_clear(&mapping->page_tree, 2715 iter.index, SHMEM_TAG_PINNED); 2716 spin_unlock_irq(&mapping->tree_lock); 2717 continue_resched: 2718 if (need_resched()) { 2719 slot = radix_tree_iter_resume(slot, &iter); 2720 cond_resched_rcu(); 2721 } 2722 } 2723 rcu_read_unlock(); 2724 } 2725 2726 return error; 2727 } 2728 2729 static unsigned int *memfd_file_seals_ptr(struct file *file) 2730 { 2731 if (file->f_op == &shmem_file_operations) 2732 return &SHMEM_I(file_inode(file))->seals; 2733 2734 #ifdef CONFIG_HUGETLBFS 2735 if (file->f_op == &hugetlbfs_file_operations) 2736 return &HUGETLBFS_I(file_inode(file))->seals; 2737 #endif 2738 2739 return NULL; 2740 } 2741 2742 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2743 F_SEAL_SHRINK | \ 2744 F_SEAL_GROW | \ 2745 F_SEAL_WRITE) 2746 2747 static int memfd_add_seals(struct file *file, unsigned int seals) 2748 { 2749 struct inode *inode = file_inode(file); 2750 unsigned int *file_seals; 2751 int error; 2752 2753 /* 2754 * SEALING 2755 * Sealing allows multiple parties to share a shmem-file but restrict 2756 * access to a specific subset of file operations. Seals can only be 2757 * added, but never removed. This way, mutually untrusted parties can 2758 * share common memory regions with a well-defined policy. A malicious 2759 * peer can thus never perform unwanted operations on a shared object. 2760 * 2761 * Seals are only supported on special shmem-files and always affect 2762 * the whole underlying inode. Once a seal is set, it may prevent some 2763 * kinds of access to the file. Currently, the following seals are 2764 * defined: 2765 * SEAL_SEAL: Prevent further seals from being set on this file 2766 * SEAL_SHRINK: Prevent the file from shrinking 2767 * SEAL_GROW: Prevent the file from growing 2768 * SEAL_WRITE: Prevent write access to the file 2769 * 2770 * As we don't require any trust relationship between two parties, we 2771 * must prevent seals from being removed. Therefore, sealing a file 2772 * only adds a given set of seals to the file, it never touches 2773 * existing seals. Furthermore, the "setting seals"-operation can be 2774 * sealed itself, which basically prevents any further seal from being 2775 * added. 2776 * 2777 * Semantics of sealing are only defined on volatile files. Only 2778 * anonymous shmem files support sealing. More importantly, seals are 2779 * never written to disk. Therefore, there's no plan to support it on 2780 * other file types. 2781 */ 2782 2783 if (!(file->f_mode & FMODE_WRITE)) 2784 return -EPERM; 2785 if (seals & ~(unsigned int)F_ALL_SEALS) 2786 return -EINVAL; 2787 2788 inode_lock(inode); 2789 2790 file_seals = memfd_file_seals_ptr(file); 2791 if (!file_seals) { 2792 error = -EINVAL; 2793 goto unlock; 2794 } 2795 2796 if (*file_seals & F_SEAL_SEAL) { 2797 error = -EPERM; 2798 goto unlock; 2799 } 2800 2801 if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) { 2802 error = mapping_deny_writable(file->f_mapping); 2803 if (error) 2804 goto unlock; 2805 2806 error = shmem_wait_for_pins(file->f_mapping); 2807 if (error) { 2808 mapping_allow_writable(file->f_mapping); 2809 goto unlock; 2810 } 2811 } 2812 2813 *file_seals |= seals; 2814 error = 0; 2815 2816 unlock: 2817 inode_unlock(inode); 2818 return error; 2819 } 2820 2821 static int memfd_get_seals(struct file *file) 2822 { 2823 unsigned int *seals = memfd_file_seals_ptr(file); 2824 2825 return seals ? *seals : -EINVAL; 2826 } 2827 2828 long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2829 { 2830 long error; 2831 2832 switch (cmd) { 2833 case F_ADD_SEALS: 2834 /* disallow upper 32bit */ 2835 if (arg > UINT_MAX) 2836 return -EINVAL; 2837 2838 error = memfd_add_seals(file, arg); 2839 break; 2840 case F_GET_SEALS: 2841 error = memfd_get_seals(file); 2842 break; 2843 default: 2844 error = -EINVAL; 2845 break; 2846 } 2847 2848 return error; 2849 } 2850 2851 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2852 loff_t len) 2853 { 2854 struct inode *inode = file_inode(file); 2855 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2856 struct shmem_inode_info *info = SHMEM_I(inode); 2857 struct shmem_falloc shmem_falloc; 2858 pgoff_t start, index, end; 2859 int error; 2860 2861 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2862 return -EOPNOTSUPP; 2863 2864 inode_lock(inode); 2865 2866 if (mode & FALLOC_FL_PUNCH_HOLE) { 2867 struct address_space *mapping = file->f_mapping; 2868 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2869 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2870 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2871 2872 /* protected by i_mutex */ 2873 if (info->seals & F_SEAL_WRITE) { 2874 error = -EPERM; 2875 goto out; 2876 } 2877 2878 shmem_falloc.waitq = &shmem_falloc_waitq; 2879 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2880 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2881 spin_lock(&inode->i_lock); 2882 inode->i_private = &shmem_falloc; 2883 spin_unlock(&inode->i_lock); 2884 2885 if ((u64)unmap_end > (u64)unmap_start) 2886 unmap_mapping_range(mapping, unmap_start, 2887 1 + unmap_end - unmap_start, 0); 2888 shmem_truncate_range(inode, offset, offset + len - 1); 2889 /* No need to unmap again: hole-punching leaves COWed pages */ 2890 2891 spin_lock(&inode->i_lock); 2892 inode->i_private = NULL; 2893 wake_up_all(&shmem_falloc_waitq); 2894 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2895 spin_unlock(&inode->i_lock); 2896 error = 0; 2897 goto out; 2898 } 2899 2900 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2901 error = inode_newsize_ok(inode, offset + len); 2902 if (error) 2903 goto out; 2904 2905 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2906 error = -EPERM; 2907 goto out; 2908 } 2909 2910 start = offset >> PAGE_SHIFT; 2911 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2912 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2913 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2914 error = -ENOSPC; 2915 goto out; 2916 } 2917 2918 shmem_falloc.waitq = NULL; 2919 shmem_falloc.start = start; 2920 shmem_falloc.next = start; 2921 shmem_falloc.nr_falloced = 0; 2922 shmem_falloc.nr_unswapped = 0; 2923 spin_lock(&inode->i_lock); 2924 inode->i_private = &shmem_falloc; 2925 spin_unlock(&inode->i_lock); 2926 2927 for (index = start; index < end; index++) { 2928 struct page *page; 2929 2930 /* 2931 * Good, the fallocate(2) manpage permits EINTR: we may have 2932 * been interrupted because we are using up too much memory. 2933 */ 2934 if (signal_pending(current)) 2935 error = -EINTR; 2936 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2937 error = -ENOMEM; 2938 else 2939 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2940 if (error) { 2941 /* Remove the !PageUptodate pages we added */ 2942 if (index > start) { 2943 shmem_undo_range(inode, 2944 (loff_t)start << PAGE_SHIFT, 2945 ((loff_t)index << PAGE_SHIFT) - 1, true); 2946 } 2947 goto undone; 2948 } 2949 2950 /* 2951 * Inform shmem_writepage() how far we have reached. 2952 * No need for lock or barrier: we have the page lock. 2953 */ 2954 shmem_falloc.next++; 2955 if (!PageUptodate(page)) 2956 shmem_falloc.nr_falloced++; 2957 2958 /* 2959 * If !PageUptodate, leave it that way so that freeable pages 2960 * can be recognized if we need to rollback on error later. 2961 * But set_page_dirty so that memory pressure will swap rather 2962 * than free the pages we are allocating (and SGP_CACHE pages 2963 * might still be clean: we now need to mark those dirty too). 2964 */ 2965 set_page_dirty(page); 2966 unlock_page(page); 2967 put_page(page); 2968 cond_resched(); 2969 } 2970 2971 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2972 i_size_write(inode, offset + len); 2973 inode->i_ctime = current_time(inode); 2974 undone: 2975 spin_lock(&inode->i_lock); 2976 inode->i_private = NULL; 2977 spin_unlock(&inode->i_lock); 2978 out: 2979 inode_unlock(inode); 2980 return error; 2981 } 2982 2983 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2984 { 2985 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2986 2987 buf->f_type = TMPFS_MAGIC; 2988 buf->f_bsize = PAGE_SIZE; 2989 buf->f_namelen = NAME_MAX; 2990 if (sbinfo->max_blocks) { 2991 buf->f_blocks = sbinfo->max_blocks; 2992 buf->f_bavail = 2993 buf->f_bfree = sbinfo->max_blocks - 2994 percpu_counter_sum(&sbinfo->used_blocks); 2995 } 2996 if (sbinfo->max_inodes) { 2997 buf->f_files = sbinfo->max_inodes; 2998 buf->f_ffree = sbinfo->free_inodes; 2999 } 3000 /* else leave those fields 0 like simple_statfs */ 3001 return 0; 3002 } 3003 3004 /* 3005 * File creation. Allocate an inode, and we're done.. 3006 */ 3007 static int 3008 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3009 { 3010 struct inode *inode; 3011 int error = -ENOSPC; 3012 3013 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 3014 if (inode) { 3015 error = simple_acl_create(dir, inode); 3016 if (error) 3017 goto out_iput; 3018 error = security_inode_init_security(inode, dir, 3019 &dentry->d_name, 3020 shmem_initxattrs, NULL); 3021 if (error && error != -EOPNOTSUPP) 3022 goto out_iput; 3023 3024 error = 0; 3025 dir->i_size += BOGO_DIRENT_SIZE; 3026 dir->i_ctime = dir->i_mtime = current_time(dir); 3027 d_instantiate(dentry, inode); 3028 dget(dentry); /* Extra count - pin the dentry in core */ 3029 } 3030 return error; 3031 out_iput: 3032 iput(inode); 3033 return error; 3034 } 3035 3036 static int 3037 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 3038 { 3039 struct inode *inode; 3040 int error = -ENOSPC; 3041 3042 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 3043 if (inode) { 3044 error = security_inode_init_security(inode, dir, 3045 NULL, 3046 shmem_initxattrs, NULL); 3047 if (error && error != -EOPNOTSUPP) 3048 goto out_iput; 3049 error = simple_acl_create(dir, inode); 3050 if (error) 3051 goto out_iput; 3052 d_tmpfile(dentry, inode); 3053 } 3054 return error; 3055 out_iput: 3056 iput(inode); 3057 return error; 3058 } 3059 3060 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3061 { 3062 int error; 3063 3064 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 3065 return error; 3066 inc_nlink(dir); 3067 return 0; 3068 } 3069 3070 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 3071 bool excl) 3072 { 3073 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 3074 } 3075 3076 /* 3077 * Link a file.. 3078 */ 3079 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3080 { 3081 struct inode *inode = d_inode(old_dentry); 3082 int ret; 3083 3084 /* 3085 * No ordinary (disk based) filesystem counts links as inodes; 3086 * but each new link needs a new dentry, pinning lowmem, and 3087 * tmpfs dentries cannot be pruned until they are unlinked. 3088 */ 3089 ret = shmem_reserve_inode(inode->i_sb); 3090 if (ret) 3091 goto out; 3092 3093 dir->i_size += BOGO_DIRENT_SIZE; 3094 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3095 inc_nlink(inode); 3096 ihold(inode); /* New dentry reference */ 3097 dget(dentry); /* Extra pinning count for the created dentry */ 3098 d_instantiate(dentry, inode); 3099 out: 3100 return ret; 3101 } 3102 3103 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3104 { 3105 struct inode *inode = d_inode(dentry); 3106 3107 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3108 shmem_free_inode(inode->i_sb); 3109 3110 dir->i_size -= BOGO_DIRENT_SIZE; 3111 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3112 drop_nlink(inode); 3113 dput(dentry); /* Undo the count from "create" - this does all the work */ 3114 return 0; 3115 } 3116 3117 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3118 { 3119 if (!simple_empty(dentry)) 3120 return -ENOTEMPTY; 3121 3122 drop_nlink(d_inode(dentry)); 3123 drop_nlink(dir); 3124 return shmem_unlink(dir, dentry); 3125 } 3126 3127 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3128 { 3129 bool old_is_dir = d_is_dir(old_dentry); 3130 bool new_is_dir = d_is_dir(new_dentry); 3131 3132 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3133 if (old_is_dir) { 3134 drop_nlink(old_dir); 3135 inc_nlink(new_dir); 3136 } else { 3137 drop_nlink(new_dir); 3138 inc_nlink(old_dir); 3139 } 3140 } 3141 old_dir->i_ctime = old_dir->i_mtime = 3142 new_dir->i_ctime = new_dir->i_mtime = 3143 d_inode(old_dentry)->i_ctime = 3144 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3145 3146 return 0; 3147 } 3148 3149 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3150 { 3151 struct dentry *whiteout; 3152 int error; 3153 3154 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3155 if (!whiteout) 3156 return -ENOMEM; 3157 3158 error = shmem_mknod(old_dir, whiteout, 3159 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3160 dput(whiteout); 3161 if (error) 3162 return error; 3163 3164 /* 3165 * Cheat and hash the whiteout while the old dentry is still in 3166 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3167 * 3168 * d_lookup() will consistently find one of them at this point, 3169 * not sure which one, but that isn't even important. 3170 */ 3171 d_rehash(whiteout); 3172 return 0; 3173 } 3174 3175 /* 3176 * The VFS layer already does all the dentry stuff for rename, 3177 * we just have to decrement the usage count for the target if 3178 * it exists so that the VFS layer correctly free's it when it 3179 * gets overwritten. 3180 */ 3181 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3182 { 3183 struct inode *inode = d_inode(old_dentry); 3184 int they_are_dirs = S_ISDIR(inode->i_mode); 3185 3186 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3187 return -EINVAL; 3188 3189 if (flags & RENAME_EXCHANGE) 3190 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3191 3192 if (!simple_empty(new_dentry)) 3193 return -ENOTEMPTY; 3194 3195 if (flags & RENAME_WHITEOUT) { 3196 int error; 3197 3198 error = shmem_whiteout(old_dir, old_dentry); 3199 if (error) 3200 return error; 3201 } 3202 3203 if (d_really_is_positive(new_dentry)) { 3204 (void) shmem_unlink(new_dir, new_dentry); 3205 if (they_are_dirs) { 3206 drop_nlink(d_inode(new_dentry)); 3207 drop_nlink(old_dir); 3208 } 3209 } else if (they_are_dirs) { 3210 drop_nlink(old_dir); 3211 inc_nlink(new_dir); 3212 } 3213 3214 old_dir->i_size -= BOGO_DIRENT_SIZE; 3215 new_dir->i_size += BOGO_DIRENT_SIZE; 3216 old_dir->i_ctime = old_dir->i_mtime = 3217 new_dir->i_ctime = new_dir->i_mtime = 3218 inode->i_ctime = current_time(old_dir); 3219 return 0; 3220 } 3221 3222 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3223 { 3224 int error; 3225 int len; 3226 struct inode *inode; 3227 struct page *page; 3228 3229 len = strlen(symname) + 1; 3230 if (len > PAGE_SIZE) 3231 return -ENAMETOOLONG; 3232 3233 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3234 if (!inode) 3235 return -ENOSPC; 3236 3237 error = security_inode_init_security(inode, dir, &dentry->d_name, 3238 shmem_initxattrs, NULL); 3239 if (error) { 3240 if (error != -EOPNOTSUPP) { 3241 iput(inode); 3242 return error; 3243 } 3244 error = 0; 3245 } 3246 3247 inode->i_size = len-1; 3248 if (len <= SHORT_SYMLINK_LEN) { 3249 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3250 if (!inode->i_link) { 3251 iput(inode); 3252 return -ENOMEM; 3253 } 3254 inode->i_op = &shmem_short_symlink_operations; 3255 } else { 3256 inode_nohighmem(inode); 3257 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3258 if (error) { 3259 iput(inode); 3260 return error; 3261 } 3262 inode->i_mapping->a_ops = &shmem_aops; 3263 inode->i_op = &shmem_symlink_inode_operations; 3264 memcpy(page_address(page), symname, len); 3265 SetPageUptodate(page); 3266 set_page_dirty(page); 3267 unlock_page(page); 3268 put_page(page); 3269 } 3270 dir->i_size += BOGO_DIRENT_SIZE; 3271 dir->i_ctime = dir->i_mtime = current_time(dir); 3272 d_instantiate(dentry, inode); 3273 dget(dentry); 3274 return 0; 3275 } 3276 3277 static void shmem_put_link(void *arg) 3278 { 3279 mark_page_accessed(arg); 3280 put_page(arg); 3281 } 3282 3283 static const char *shmem_get_link(struct dentry *dentry, 3284 struct inode *inode, 3285 struct delayed_call *done) 3286 { 3287 struct page *page = NULL; 3288 int error; 3289 if (!dentry) { 3290 page = find_get_page(inode->i_mapping, 0); 3291 if (!page) 3292 return ERR_PTR(-ECHILD); 3293 if (!PageUptodate(page)) { 3294 put_page(page); 3295 return ERR_PTR(-ECHILD); 3296 } 3297 } else { 3298 error = shmem_getpage(inode, 0, &page, SGP_READ); 3299 if (error) 3300 return ERR_PTR(error); 3301 unlock_page(page); 3302 } 3303 set_delayed_call(done, shmem_put_link, page); 3304 return page_address(page); 3305 } 3306 3307 #ifdef CONFIG_TMPFS_XATTR 3308 /* 3309 * Superblocks without xattr inode operations may get some security.* xattr 3310 * support from the LSM "for free". As soon as we have any other xattrs 3311 * like ACLs, we also need to implement the security.* handlers at 3312 * filesystem level, though. 3313 */ 3314 3315 /* 3316 * Callback for security_inode_init_security() for acquiring xattrs. 3317 */ 3318 static int shmem_initxattrs(struct inode *inode, 3319 const struct xattr *xattr_array, 3320 void *fs_info) 3321 { 3322 struct shmem_inode_info *info = SHMEM_I(inode); 3323 const struct xattr *xattr; 3324 struct simple_xattr *new_xattr; 3325 size_t len; 3326 3327 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3328 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3329 if (!new_xattr) 3330 return -ENOMEM; 3331 3332 len = strlen(xattr->name) + 1; 3333 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3334 GFP_KERNEL); 3335 if (!new_xattr->name) { 3336 kfree(new_xattr); 3337 return -ENOMEM; 3338 } 3339 3340 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3341 XATTR_SECURITY_PREFIX_LEN); 3342 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3343 xattr->name, len); 3344 3345 simple_xattr_list_add(&info->xattrs, new_xattr); 3346 } 3347 3348 return 0; 3349 } 3350 3351 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3352 struct dentry *unused, struct inode *inode, 3353 const char *name, void *buffer, size_t size) 3354 { 3355 struct shmem_inode_info *info = SHMEM_I(inode); 3356 3357 name = xattr_full_name(handler, name); 3358 return simple_xattr_get(&info->xattrs, name, buffer, size); 3359 } 3360 3361 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3362 struct dentry *unused, struct inode *inode, 3363 const char *name, const void *value, 3364 size_t size, int flags) 3365 { 3366 struct shmem_inode_info *info = SHMEM_I(inode); 3367 3368 name = xattr_full_name(handler, name); 3369 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3370 } 3371 3372 static const struct xattr_handler shmem_security_xattr_handler = { 3373 .prefix = XATTR_SECURITY_PREFIX, 3374 .get = shmem_xattr_handler_get, 3375 .set = shmem_xattr_handler_set, 3376 }; 3377 3378 static const struct xattr_handler shmem_trusted_xattr_handler = { 3379 .prefix = XATTR_TRUSTED_PREFIX, 3380 .get = shmem_xattr_handler_get, 3381 .set = shmem_xattr_handler_set, 3382 }; 3383 3384 static const struct xattr_handler *shmem_xattr_handlers[] = { 3385 #ifdef CONFIG_TMPFS_POSIX_ACL 3386 &posix_acl_access_xattr_handler, 3387 &posix_acl_default_xattr_handler, 3388 #endif 3389 &shmem_security_xattr_handler, 3390 &shmem_trusted_xattr_handler, 3391 NULL 3392 }; 3393 3394 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3395 { 3396 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3397 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3398 } 3399 #endif /* CONFIG_TMPFS_XATTR */ 3400 3401 static const struct inode_operations shmem_short_symlink_operations = { 3402 .get_link = simple_get_link, 3403 #ifdef CONFIG_TMPFS_XATTR 3404 .listxattr = shmem_listxattr, 3405 #endif 3406 }; 3407 3408 static const struct inode_operations shmem_symlink_inode_operations = { 3409 .get_link = shmem_get_link, 3410 #ifdef CONFIG_TMPFS_XATTR 3411 .listxattr = shmem_listxattr, 3412 #endif 3413 }; 3414 3415 static struct dentry *shmem_get_parent(struct dentry *child) 3416 { 3417 return ERR_PTR(-ESTALE); 3418 } 3419 3420 static int shmem_match(struct inode *ino, void *vfh) 3421 { 3422 __u32 *fh = vfh; 3423 __u64 inum = fh[2]; 3424 inum = (inum << 32) | fh[1]; 3425 return ino->i_ino == inum && fh[0] == ino->i_generation; 3426 } 3427 3428 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3429 struct fid *fid, int fh_len, int fh_type) 3430 { 3431 struct inode *inode; 3432 struct dentry *dentry = NULL; 3433 u64 inum; 3434 3435 if (fh_len < 3) 3436 return NULL; 3437 3438 inum = fid->raw[2]; 3439 inum = (inum << 32) | fid->raw[1]; 3440 3441 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3442 shmem_match, fid->raw); 3443 if (inode) { 3444 dentry = d_find_alias(inode); 3445 iput(inode); 3446 } 3447 3448 return dentry; 3449 } 3450 3451 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3452 struct inode *parent) 3453 { 3454 if (*len < 3) { 3455 *len = 3; 3456 return FILEID_INVALID; 3457 } 3458 3459 if (inode_unhashed(inode)) { 3460 /* Unfortunately insert_inode_hash is not idempotent, 3461 * so as we hash inodes here rather than at creation 3462 * time, we need a lock to ensure we only try 3463 * to do it once 3464 */ 3465 static DEFINE_SPINLOCK(lock); 3466 spin_lock(&lock); 3467 if (inode_unhashed(inode)) 3468 __insert_inode_hash(inode, 3469 inode->i_ino + inode->i_generation); 3470 spin_unlock(&lock); 3471 } 3472 3473 fh[0] = inode->i_generation; 3474 fh[1] = inode->i_ino; 3475 fh[2] = ((__u64)inode->i_ino) >> 32; 3476 3477 *len = 3; 3478 return 1; 3479 } 3480 3481 static const struct export_operations shmem_export_ops = { 3482 .get_parent = shmem_get_parent, 3483 .encode_fh = shmem_encode_fh, 3484 .fh_to_dentry = shmem_fh_to_dentry, 3485 }; 3486 3487 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3488 bool remount) 3489 { 3490 char *this_char, *value, *rest; 3491 struct mempolicy *mpol = NULL; 3492 uid_t uid; 3493 gid_t gid; 3494 3495 while (options != NULL) { 3496 this_char = options; 3497 for (;;) { 3498 /* 3499 * NUL-terminate this option: unfortunately, 3500 * mount options form a comma-separated list, 3501 * but mpol's nodelist may also contain commas. 3502 */ 3503 options = strchr(options, ','); 3504 if (options == NULL) 3505 break; 3506 options++; 3507 if (!isdigit(*options)) { 3508 options[-1] = '\0'; 3509 break; 3510 } 3511 } 3512 if (!*this_char) 3513 continue; 3514 if ((value = strchr(this_char,'=')) != NULL) { 3515 *value++ = 0; 3516 } else { 3517 pr_err("tmpfs: No value for mount option '%s'\n", 3518 this_char); 3519 goto error; 3520 } 3521 3522 if (!strcmp(this_char,"size")) { 3523 unsigned long long size; 3524 size = memparse(value,&rest); 3525 if (*rest == '%') { 3526 size <<= PAGE_SHIFT; 3527 size *= totalram_pages; 3528 do_div(size, 100); 3529 rest++; 3530 } 3531 if (*rest) 3532 goto bad_val; 3533 sbinfo->max_blocks = 3534 DIV_ROUND_UP(size, PAGE_SIZE); 3535 } else if (!strcmp(this_char,"nr_blocks")) { 3536 sbinfo->max_blocks = memparse(value, &rest); 3537 if (*rest) 3538 goto bad_val; 3539 } else if (!strcmp(this_char,"nr_inodes")) { 3540 sbinfo->max_inodes = memparse(value, &rest); 3541 if (*rest) 3542 goto bad_val; 3543 } else if (!strcmp(this_char,"mode")) { 3544 if (remount) 3545 continue; 3546 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3547 if (*rest) 3548 goto bad_val; 3549 } else if (!strcmp(this_char,"uid")) { 3550 if (remount) 3551 continue; 3552 uid = simple_strtoul(value, &rest, 0); 3553 if (*rest) 3554 goto bad_val; 3555 sbinfo->uid = make_kuid(current_user_ns(), uid); 3556 if (!uid_valid(sbinfo->uid)) 3557 goto bad_val; 3558 } else if (!strcmp(this_char,"gid")) { 3559 if (remount) 3560 continue; 3561 gid = simple_strtoul(value, &rest, 0); 3562 if (*rest) 3563 goto bad_val; 3564 sbinfo->gid = make_kgid(current_user_ns(), gid); 3565 if (!gid_valid(sbinfo->gid)) 3566 goto bad_val; 3567 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3568 } else if (!strcmp(this_char, "huge")) { 3569 int huge; 3570 huge = shmem_parse_huge(value); 3571 if (huge < 0) 3572 goto bad_val; 3573 if (!has_transparent_hugepage() && 3574 huge != SHMEM_HUGE_NEVER) 3575 goto bad_val; 3576 sbinfo->huge = huge; 3577 #endif 3578 #ifdef CONFIG_NUMA 3579 } else if (!strcmp(this_char,"mpol")) { 3580 mpol_put(mpol); 3581 mpol = NULL; 3582 if (mpol_parse_str(value, &mpol)) 3583 goto bad_val; 3584 #endif 3585 } else { 3586 pr_err("tmpfs: Bad mount option %s\n", this_char); 3587 goto error; 3588 } 3589 } 3590 sbinfo->mpol = mpol; 3591 return 0; 3592 3593 bad_val: 3594 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3595 value, this_char); 3596 error: 3597 mpol_put(mpol); 3598 return 1; 3599 3600 } 3601 3602 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3603 { 3604 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3605 struct shmem_sb_info config = *sbinfo; 3606 unsigned long inodes; 3607 int error = -EINVAL; 3608 3609 config.mpol = NULL; 3610 if (shmem_parse_options(data, &config, true)) 3611 return error; 3612 3613 spin_lock(&sbinfo->stat_lock); 3614 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3615 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3616 goto out; 3617 if (config.max_inodes < inodes) 3618 goto out; 3619 /* 3620 * Those tests disallow limited->unlimited while any are in use; 3621 * but we must separately disallow unlimited->limited, because 3622 * in that case we have no record of how much is already in use. 3623 */ 3624 if (config.max_blocks && !sbinfo->max_blocks) 3625 goto out; 3626 if (config.max_inodes && !sbinfo->max_inodes) 3627 goto out; 3628 3629 error = 0; 3630 sbinfo->huge = config.huge; 3631 sbinfo->max_blocks = config.max_blocks; 3632 sbinfo->max_inodes = config.max_inodes; 3633 sbinfo->free_inodes = config.max_inodes - inodes; 3634 3635 /* 3636 * Preserve previous mempolicy unless mpol remount option was specified. 3637 */ 3638 if (config.mpol) { 3639 mpol_put(sbinfo->mpol); 3640 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3641 } 3642 out: 3643 spin_unlock(&sbinfo->stat_lock); 3644 return error; 3645 } 3646 3647 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3648 { 3649 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3650 3651 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3652 seq_printf(seq, ",size=%luk", 3653 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3654 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3655 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3656 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3657 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3658 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3659 seq_printf(seq, ",uid=%u", 3660 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3661 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3662 seq_printf(seq, ",gid=%u", 3663 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3664 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3665 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3666 if (sbinfo->huge) 3667 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3668 #endif 3669 shmem_show_mpol(seq, sbinfo->mpol); 3670 return 0; 3671 } 3672 3673 #define MFD_NAME_PREFIX "memfd:" 3674 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3675 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3676 3677 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB) 3678 3679 SYSCALL_DEFINE2(memfd_create, 3680 const char __user *, uname, 3681 unsigned int, flags) 3682 { 3683 unsigned int *file_seals; 3684 struct file *file; 3685 int fd, error; 3686 char *name; 3687 long len; 3688 3689 if (!(flags & MFD_HUGETLB)) { 3690 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3691 return -EINVAL; 3692 } else { 3693 /* Allow huge page size encoding in flags. */ 3694 if (flags & ~(unsigned int)(MFD_ALL_FLAGS | 3695 (MFD_HUGE_MASK << MFD_HUGE_SHIFT))) 3696 return -EINVAL; 3697 } 3698 3699 /* length includes terminating zero */ 3700 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3701 if (len <= 0) 3702 return -EFAULT; 3703 if (len > MFD_NAME_MAX_LEN + 1) 3704 return -EINVAL; 3705 3706 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL); 3707 if (!name) 3708 return -ENOMEM; 3709 3710 strcpy(name, MFD_NAME_PREFIX); 3711 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3712 error = -EFAULT; 3713 goto err_name; 3714 } 3715 3716 /* terminating-zero may have changed after strnlen_user() returned */ 3717 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3718 error = -EFAULT; 3719 goto err_name; 3720 } 3721 3722 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3723 if (fd < 0) { 3724 error = fd; 3725 goto err_name; 3726 } 3727 3728 if (flags & MFD_HUGETLB) { 3729 struct user_struct *user = NULL; 3730 3731 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user, 3732 HUGETLB_ANONHUGE_INODE, 3733 (flags >> MFD_HUGE_SHIFT) & 3734 MFD_HUGE_MASK); 3735 } else 3736 file = shmem_file_setup(name, 0, VM_NORESERVE); 3737 if (IS_ERR(file)) { 3738 error = PTR_ERR(file); 3739 goto err_fd; 3740 } 3741 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3742 file->f_flags |= O_RDWR | O_LARGEFILE; 3743 3744 if (flags & MFD_ALLOW_SEALING) { 3745 file_seals = memfd_file_seals_ptr(file); 3746 *file_seals &= ~F_SEAL_SEAL; 3747 } 3748 3749 fd_install(fd, file); 3750 kfree(name); 3751 return fd; 3752 3753 err_fd: 3754 put_unused_fd(fd); 3755 err_name: 3756 kfree(name); 3757 return error; 3758 } 3759 3760 #endif /* CONFIG_TMPFS */ 3761 3762 static void shmem_put_super(struct super_block *sb) 3763 { 3764 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3765 3766 percpu_counter_destroy(&sbinfo->used_blocks); 3767 mpol_put(sbinfo->mpol); 3768 kfree(sbinfo); 3769 sb->s_fs_info = NULL; 3770 } 3771 3772 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3773 { 3774 struct inode *inode; 3775 struct shmem_sb_info *sbinfo; 3776 int err = -ENOMEM; 3777 3778 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3779 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3780 L1_CACHE_BYTES), GFP_KERNEL); 3781 if (!sbinfo) 3782 return -ENOMEM; 3783 3784 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3785 sbinfo->uid = current_fsuid(); 3786 sbinfo->gid = current_fsgid(); 3787 sb->s_fs_info = sbinfo; 3788 3789 #ifdef CONFIG_TMPFS 3790 /* 3791 * Per default we only allow half of the physical ram per 3792 * tmpfs instance, limiting inodes to one per page of lowmem; 3793 * but the internal instance is left unlimited. 3794 */ 3795 if (!(sb->s_flags & SB_KERNMOUNT)) { 3796 sbinfo->max_blocks = shmem_default_max_blocks(); 3797 sbinfo->max_inodes = shmem_default_max_inodes(); 3798 if (shmem_parse_options(data, sbinfo, false)) { 3799 err = -EINVAL; 3800 goto failed; 3801 } 3802 } else { 3803 sb->s_flags |= SB_NOUSER; 3804 } 3805 sb->s_export_op = &shmem_export_ops; 3806 sb->s_flags |= SB_NOSEC; 3807 #else 3808 sb->s_flags |= SB_NOUSER; 3809 #endif 3810 3811 spin_lock_init(&sbinfo->stat_lock); 3812 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3813 goto failed; 3814 sbinfo->free_inodes = sbinfo->max_inodes; 3815 spin_lock_init(&sbinfo->shrinklist_lock); 3816 INIT_LIST_HEAD(&sbinfo->shrinklist); 3817 3818 sb->s_maxbytes = MAX_LFS_FILESIZE; 3819 sb->s_blocksize = PAGE_SIZE; 3820 sb->s_blocksize_bits = PAGE_SHIFT; 3821 sb->s_magic = TMPFS_MAGIC; 3822 sb->s_op = &shmem_ops; 3823 sb->s_time_gran = 1; 3824 #ifdef CONFIG_TMPFS_XATTR 3825 sb->s_xattr = shmem_xattr_handlers; 3826 #endif 3827 #ifdef CONFIG_TMPFS_POSIX_ACL 3828 sb->s_flags |= SB_POSIXACL; 3829 #endif 3830 uuid_gen(&sb->s_uuid); 3831 3832 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3833 if (!inode) 3834 goto failed; 3835 inode->i_uid = sbinfo->uid; 3836 inode->i_gid = sbinfo->gid; 3837 sb->s_root = d_make_root(inode); 3838 if (!sb->s_root) 3839 goto failed; 3840 return 0; 3841 3842 failed: 3843 shmem_put_super(sb); 3844 return err; 3845 } 3846 3847 static struct kmem_cache *shmem_inode_cachep; 3848 3849 static struct inode *shmem_alloc_inode(struct super_block *sb) 3850 { 3851 struct shmem_inode_info *info; 3852 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3853 if (!info) 3854 return NULL; 3855 return &info->vfs_inode; 3856 } 3857 3858 static void shmem_destroy_callback(struct rcu_head *head) 3859 { 3860 struct inode *inode = container_of(head, struct inode, i_rcu); 3861 if (S_ISLNK(inode->i_mode)) 3862 kfree(inode->i_link); 3863 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3864 } 3865 3866 static void shmem_destroy_inode(struct inode *inode) 3867 { 3868 if (S_ISREG(inode->i_mode)) 3869 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3870 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3871 } 3872 3873 static void shmem_init_inode(void *foo) 3874 { 3875 struct shmem_inode_info *info = foo; 3876 inode_init_once(&info->vfs_inode); 3877 } 3878 3879 static void shmem_init_inodecache(void) 3880 { 3881 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3882 sizeof(struct shmem_inode_info), 3883 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3884 } 3885 3886 static void shmem_destroy_inodecache(void) 3887 { 3888 kmem_cache_destroy(shmem_inode_cachep); 3889 } 3890 3891 static const struct address_space_operations shmem_aops = { 3892 .writepage = shmem_writepage, 3893 .set_page_dirty = __set_page_dirty_no_writeback, 3894 #ifdef CONFIG_TMPFS 3895 .write_begin = shmem_write_begin, 3896 .write_end = shmem_write_end, 3897 #endif 3898 #ifdef CONFIG_MIGRATION 3899 .migratepage = migrate_page, 3900 #endif 3901 .error_remove_page = generic_error_remove_page, 3902 }; 3903 3904 static const struct file_operations shmem_file_operations = { 3905 .mmap = shmem_mmap, 3906 .get_unmapped_area = shmem_get_unmapped_area, 3907 #ifdef CONFIG_TMPFS 3908 .llseek = shmem_file_llseek, 3909 .read_iter = shmem_file_read_iter, 3910 .write_iter = generic_file_write_iter, 3911 .fsync = noop_fsync, 3912 .splice_read = generic_file_splice_read, 3913 .splice_write = iter_file_splice_write, 3914 .fallocate = shmem_fallocate, 3915 #endif 3916 }; 3917 3918 static const struct inode_operations shmem_inode_operations = { 3919 .getattr = shmem_getattr, 3920 .setattr = shmem_setattr, 3921 #ifdef CONFIG_TMPFS_XATTR 3922 .listxattr = shmem_listxattr, 3923 .set_acl = simple_set_acl, 3924 #endif 3925 }; 3926 3927 static const struct inode_operations shmem_dir_inode_operations = { 3928 #ifdef CONFIG_TMPFS 3929 .create = shmem_create, 3930 .lookup = simple_lookup, 3931 .link = shmem_link, 3932 .unlink = shmem_unlink, 3933 .symlink = shmem_symlink, 3934 .mkdir = shmem_mkdir, 3935 .rmdir = shmem_rmdir, 3936 .mknod = shmem_mknod, 3937 .rename = shmem_rename2, 3938 .tmpfile = shmem_tmpfile, 3939 #endif 3940 #ifdef CONFIG_TMPFS_XATTR 3941 .listxattr = shmem_listxattr, 3942 #endif 3943 #ifdef CONFIG_TMPFS_POSIX_ACL 3944 .setattr = shmem_setattr, 3945 .set_acl = simple_set_acl, 3946 #endif 3947 }; 3948 3949 static const struct inode_operations shmem_special_inode_operations = { 3950 #ifdef CONFIG_TMPFS_XATTR 3951 .listxattr = shmem_listxattr, 3952 #endif 3953 #ifdef CONFIG_TMPFS_POSIX_ACL 3954 .setattr = shmem_setattr, 3955 .set_acl = simple_set_acl, 3956 #endif 3957 }; 3958 3959 static const struct super_operations shmem_ops = { 3960 .alloc_inode = shmem_alloc_inode, 3961 .destroy_inode = shmem_destroy_inode, 3962 #ifdef CONFIG_TMPFS 3963 .statfs = shmem_statfs, 3964 .remount_fs = shmem_remount_fs, 3965 .show_options = shmem_show_options, 3966 #endif 3967 .evict_inode = shmem_evict_inode, 3968 .drop_inode = generic_delete_inode, 3969 .put_super = shmem_put_super, 3970 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3971 .nr_cached_objects = shmem_unused_huge_count, 3972 .free_cached_objects = shmem_unused_huge_scan, 3973 #endif 3974 }; 3975 3976 static const struct vm_operations_struct shmem_vm_ops = { 3977 .fault = shmem_fault, 3978 .map_pages = filemap_map_pages, 3979 #ifdef CONFIG_NUMA 3980 .set_policy = shmem_set_policy, 3981 .get_policy = shmem_get_policy, 3982 #endif 3983 }; 3984 3985 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3986 int flags, const char *dev_name, void *data) 3987 { 3988 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3989 } 3990 3991 static struct file_system_type shmem_fs_type = { 3992 .owner = THIS_MODULE, 3993 .name = "tmpfs", 3994 .mount = shmem_mount, 3995 .kill_sb = kill_litter_super, 3996 .fs_flags = FS_USERNS_MOUNT, 3997 }; 3998 3999 int __init shmem_init(void) 4000 { 4001 int error; 4002 4003 /* If rootfs called this, don't re-init */ 4004 if (shmem_inode_cachep) 4005 return 0; 4006 4007 shmem_init_inodecache(); 4008 4009 error = register_filesystem(&shmem_fs_type); 4010 if (error) { 4011 pr_err("Could not register tmpfs\n"); 4012 goto out2; 4013 } 4014 4015 shm_mnt = kern_mount(&shmem_fs_type); 4016 if (IS_ERR(shm_mnt)) { 4017 error = PTR_ERR(shm_mnt); 4018 pr_err("Could not kern_mount tmpfs\n"); 4019 goto out1; 4020 } 4021 4022 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 4023 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4024 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4025 else 4026 shmem_huge = 0; /* just in case it was patched */ 4027 #endif 4028 return 0; 4029 4030 out1: 4031 unregister_filesystem(&shmem_fs_type); 4032 out2: 4033 shmem_destroy_inodecache(); 4034 shm_mnt = ERR_PTR(error); 4035 return error; 4036 } 4037 4038 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 4039 static ssize_t shmem_enabled_show(struct kobject *kobj, 4040 struct kobj_attribute *attr, char *buf) 4041 { 4042 int values[] = { 4043 SHMEM_HUGE_ALWAYS, 4044 SHMEM_HUGE_WITHIN_SIZE, 4045 SHMEM_HUGE_ADVISE, 4046 SHMEM_HUGE_NEVER, 4047 SHMEM_HUGE_DENY, 4048 SHMEM_HUGE_FORCE, 4049 }; 4050 int i, count; 4051 4052 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 4053 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 4054 4055 count += sprintf(buf + count, fmt, 4056 shmem_format_huge(values[i])); 4057 } 4058 buf[count - 1] = '\n'; 4059 return count; 4060 } 4061 4062 static ssize_t shmem_enabled_store(struct kobject *kobj, 4063 struct kobj_attribute *attr, const char *buf, size_t count) 4064 { 4065 char tmp[16]; 4066 int huge; 4067 4068 if (count + 1 > sizeof(tmp)) 4069 return -EINVAL; 4070 memcpy(tmp, buf, count); 4071 tmp[count] = '\0'; 4072 if (count && tmp[count - 1] == '\n') 4073 tmp[count - 1] = '\0'; 4074 4075 huge = shmem_parse_huge(tmp); 4076 if (huge == -EINVAL) 4077 return -EINVAL; 4078 if (!has_transparent_hugepage() && 4079 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4080 return -EINVAL; 4081 4082 shmem_huge = huge; 4083 if (shmem_huge > SHMEM_HUGE_DENY) 4084 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4085 return count; 4086 } 4087 4088 struct kobj_attribute shmem_enabled_attr = 4089 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4090 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 4091 4092 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 4093 bool shmem_huge_enabled(struct vm_area_struct *vma) 4094 { 4095 struct inode *inode = file_inode(vma->vm_file); 4096 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4097 loff_t i_size; 4098 pgoff_t off; 4099 4100 if (shmem_huge == SHMEM_HUGE_FORCE) 4101 return true; 4102 if (shmem_huge == SHMEM_HUGE_DENY) 4103 return false; 4104 switch (sbinfo->huge) { 4105 case SHMEM_HUGE_NEVER: 4106 return false; 4107 case SHMEM_HUGE_ALWAYS: 4108 return true; 4109 case SHMEM_HUGE_WITHIN_SIZE: 4110 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4111 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4112 if (i_size >= HPAGE_PMD_SIZE && 4113 i_size >> PAGE_SHIFT >= off) 4114 return true; 4115 /* fall through */ 4116 case SHMEM_HUGE_ADVISE: 4117 /* TODO: implement fadvise() hints */ 4118 return (vma->vm_flags & VM_HUGEPAGE); 4119 default: 4120 VM_BUG_ON(1); 4121 return false; 4122 } 4123 } 4124 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4125 4126 #else /* !CONFIG_SHMEM */ 4127 4128 /* 4129 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4130 * 4131 * This is intended for small system where the benefits of the full 4132 * shmem code (swap-backed and resource-limited) are outweighed by 4133 * their complexity. On systems without swap this code should be 4134 * effectively equivalent, but much lighter weight. 4135 */ 4136 4137 static struct file_system_type shmem_fs_type = { 4138 .name = "tmpfs", 4139 .mount = ramfs_mount, 4140 .kill_sb = kill_litter_super, 4141 .fs_flags = FS_USERNS_MOUNT, 4142 }; 4143 4144 int __init shmem_init(void) 4145 { 4146 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4147 4148 shm_mnt = kern_mount(&shmem_fs_type); 4149 BUG_ON(IS_ERR(shm_mnt)); 4150 4151 return 0; 4152 } 4153 4154 int shmem_unuse(swp_entry_t swap, struct page *page) 4155 { 4156 return 0; 4157 } 4158 4159 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4160 { 4161 return 0; 4162 } 4163 4164 void shmem_unlock_mapping(struct address_space *mapping) 4165 { 4166 } 4167 4168 #ifdef CONFIG_MMU 4169 unsigned long shmem_get_unmapped_area(struct file *file, 4170 unsigned long addr, unsigned long len, 4171 unsigned long pgoff, unsigned long flags) 4172 { 4173 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4174 } 4175 #endif 4176 4177 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4178 { 4179 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4180 } 4181 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4182 4183 #define shmem_vm_ops generic_file_vm_ops 4184 #define shmem_file_operations ramfs_file_operations 4185 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4186 #define shmem_acct_size(flags, size) 0 4187 #define shmem_unacct_size(flags, size) do {} while (0) 4188 4189 #endif /* CONFIG_SHMEM */ 4190 4191 /* common code */ 4192 4193 static const struct dentry_operations anon_ops = { 4194 .d_dname = simple_dname 4195 }; 4196 4197 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4198 unsigned long flags, unsigned int i_flags) 4199 { 4200 struct file *res; 4201 struct inode *inode; 4202 struct path path; 4203 struct super_block *sb; 4204 struct qstr this; 4205 4206 if (IS_ERR(mnt)) 4207 return ERR_CAST(mnt); 4208 4209 if (size < 0 || size > MAX_LFS_FILESIZE) 4210 return ERR_PTR(-EINVAL); 4211 4212 if (shmem_acct_size(flags, size)) 4213 return ERR_PTR(-ENOMEM); 4214 4215 res = ERR_PTR(-ENOMEM); 4216 this.name = name; 4217 this.len = strlen(name); 4218 this.hash = 0; /* will go */ 4219 sb = mnt->mnt_sb; 4220 path.mnt = mntget(mnt); 4221 path.dentry = d_alloc_pseudo(sb, &this); 4222 if (!path.dentry) 4223 goto put_memory; 4224 d_set_d_op(path.dentry, &anon_ops); 4225 4226 res = ERR_PTR(-ENOSPC); 4227 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4228 if (!inode) 4229 goto put_memory; 4230 4231 inode->i_flags |= i_flags; 4232 d_instantiate(path.dentry, inode); 4233 inode->i_size = size; 4234 clear_nlink(inode); /* It is unlinked */ 4235 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4236 if (IS_ERR(res)) 4237 goto put_path; 4238 4239 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4240 &shmem_file_operations); 4241 if (IS_ERR(res)) 4242 goto put_path; 4243 4244 return res; 4245 4246 put_memory: 4247 shmem_unacct_size(flags, size); 4248 put_path: 4249 path_put(&path); 4250 return res; 4251 } 4252 4253 /** 4254 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4255 * kernel internal. There will be NO LSM permission checks against the 4256 * underlying inode. So users of this interface must do LSM checks at a 4257 * higher layer. The users are the big_key and shm implementations. LSM 4258 * checks are provided at the key or shm level rather than the inode. 4259 * @name: name for dentry (to be seen in /proc/<pid>/maps 4260 * @size: size to be set for the file 4261 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4262 */ 4263 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4264 { 4265 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4266 } 4267 4268 /** 4269 * shmem_file_setup - get an unlinked file living in tmpfs 4270 * @name: name for dentry (to be seen in /proc/<pid>/maps 4271 * @size: size to be set for the file 4272 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4273 */ 4274 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4275 { 4276 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4277 } 4278 EXPORT_SYMBOL_GPL(shmem_file_setup); 4279 4280 /** 4281 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4282 * @mnt: the tmpfs mount where the file will be created 4283 * @name: name for dentry (to be seen in /proc/<pid>/maps 4284 * @size: size to be set for the file 4285 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4286 */ 4287 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4288 loff_t size, unsigned long flags) 4289 { 4290 return __shmem_file_setup(mnt, name, size, flags, 0); 4291 } 4292 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4293 4294 /** 4295 * shmem_zero_setup - setup a shared anonymous mapping 4296 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4297 */ 4298 int shmem_zero_setup(struct vm_area_struct *vma) 4299 { 4300 struct file *file; 4301 loff_t size = vma->vm_end - vma->vm_start; 4302 4303 /* 4304 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4305 * between XFS directory reading and selinux: since this file is only 4306 * accessible to the user through its mapping, use S_PRIVATE flag to 4307 * bypass file security, in the same way as shmem_kernel_file_setup(). 4308 */ 4309 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4310 if (IS_ERR(file)) 4311 return PTR_ERR(file); 4312 4313 if (vma->vm_file) 4314 fput(vma->vm_file); 4315 vma->vm_file = file; 4316 vma->vm_ops = &shmem_vm_ops; 4317 4318 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4319 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4320 (vma->vm_end & HPAGE_PMD_MASK)) { 4321 khugepaged_enter(vma, vma->vm_flags); 4322 } 4323 4324 return 0; 4325 } 4326 4327 /** 4328 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4329 * @mapping: the page's address_space 4330 * @index: the page index 4331 * @gfp: the page allocator flags to use if allocating 4332 * 4333 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4334 * with any new page allocations done using the specified allocation flags. 4335 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4336 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4337 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4338 * 4339 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4340 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4341 */ 4342 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4343 pgoff_t index, gfp_t gfp) 4344 { 4345 #ifdef CONFIG_SHMEM 4346 struct inode *inode = mapping->host; 4347 struct page *page; 4348 int error; 4349 4350 BUG_ON(mapping->a_ops != &shmem_aops); 4351 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4352 gfp, NULL, NULL, NULL); 4353 if (error) 4354 page = ERR_PTR(error); 4355 else 4356 unlock_page(page); 4357 return page; 4358 #else 4359 /* 4360 * The tiny !SHMEM case uses ramfs without swap 4361 */ 4362 return read_cache_page_gfp(mapping, index, gfp); 4363 #endif 4364 } 4365 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4366