1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/sched/signal.h> 33 #include <linux/export.h> 34 #include <linux/swap.h> 35 #include <linux/uio.h> 36 #include <linux/khugepaged.h> 37 38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 39 40 static struct vfsmount *shm_mnt; 41 42 #ifdef CONFIG_SHMEM 43 /* 44 * This virtual memory filesystem is heavily based on the ramfs. It 45 * extends ramfs by the ability to use swap and honor resource limits 46 * which makes it a completely usable filesystem. 47 */ 48 49 #include <linux/xattr.h> 50 #include <linux/exportfs.h> 51 #include <linux/posix_acl.h> 52 #include <linux/posix_acl_xattr.h> 53 #include <linux/mman.h> 54 #include <linux/string.h> 55 #include <linux/slab.h> 56 #include <linux/backing-dev.h> 57 #include <linux/shmem_fs.h> 58 #include <linux/writeback.h> 59 #include <linux/blkdev.h> 60 #include <linux/pagevec.h> 61 #include <linux/percpu_counter.h> 62 #include <linux/falloc.h> 63 #include <linux/splice.h> 64 #include <linux/security.h> 65 #include <linux/swapops.h> 66 #include <linux/mempolicy.h> 67 #include <linux/namei.h> 68 #include <linux/ctype.h> 69 #include <linux/migrate.h> 70 #include <linux/highmem.h> 71 #include <linux/seq_file.h> 72 #include <linux/magic.h> 73 #include <linux/syscalls.h> 74 #include <linux/fcntl.h> 75 #include <uapi/linux/memfd.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/rmap.h> 78 79 #include <linux/uaccess.h> 80 #include <asm/pgtable.h> 81 82 #include "internal.h" 83 84 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 85 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 86 87 /* Pretend that each entry is of this size in directory's i_size */ 88 #define BOGO_DIRENT_SIZE 20 89 90 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 91 #define SHORT_SYMLINK_LEN 128 92 93 /* 94 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 95 * inode->i_private (with i_mutex making sure that it has only one user at 96 * a time): we would prefer not to enlarge the shmem inode just for that. 97 */ 98 struct shmem_falloc { 99 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 100 pgoff_t start; /* start of range currently being fallocated */ 101 pgoff_t next; /* the next page offset to be fallocated */ 102 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 103 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 104 }; 105 106 #ifdef CONFIG_TMPFS 107 static unsigned long shmem_default_max_blocks(void) 108 { 109 return totalram_pages / 2; 110 } 111 112 static unsigned long shmem_default_max_inodes(void) 113 { 114 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 115 } 116 #endif 117 118 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 119 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 120 struct shmem_inode_info *info, pgoff_t index); 121 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 122 struct page **pagep, enum sgp_type sgp, 123 gfp_t gfp, struct vm_area_struct *vma, 124 struct vm_fault *vmf, int *fault_type); 125 126 int shmem_getpage(struct inode *inode, pgoff_t index, 127 struct page **pagep, enum sgp_type sgp) 128 { 129 return shmem_getpage_gfp(inode, index, pagep, sgp, 130 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 131 } 132 133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 134 { 135 return sb->s_fs_info; 136 } 137 138 /* 139 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 140 * for shared memory and for shared anonymous (/dev/zero) mappings 141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 142 * consistent with the pre-accounting of private mappings ... 143 */ 144 static inline int shmem_acct_size(unsigned long flags, loff_t size) 145 { 146 return (flags & VM_NORESERVE) ? 147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 148 } 149 150 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 151 { 152 if (!(flags & VM_NORESERVE)) 153 vm_unacct_memory(VM_ACCT(size)); 154 } 155 156 static inline int shmem_reacct_size(unsigned long flags, 157 loff_t oldsize, loff_t newsize) 158 { 159 if (!(flags & VM_NORESERVE)) { 160 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 161 return security_vm_enough_memory_mm(current->mm, 162 VM_ACCT(newsize) - VM_ACCT(oldsize)); 163 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 164 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 165 } 166 return 0; 167 } 168 169 /* 170 * ... whereas tmpfs objects are accounted incrementally as 171 * pages are allocated, in order to allow large sparse files. 172 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 173 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 174 */ 175 static inline int shmem_acct_block(unsigned long flags, long pages) 176 { 177 if (!(flags & VM_NORESERVE)) 178 return 0; 179 180 return security_vm_enough_memory_mm(current->mm, 181 pages * VM_ACCT(PAGE_SIZE)); 182 } 183 184 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 185 { 186 if (flags & VM_NORESERVE) 187 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 188 } 189 190 static const struct super_operations shmem_ops; 191 static const struct address_space_operations shmem_aops; 192 static const struct file_operations shmem_file_operations; 193 static const struct inode_operations shmem_inode_operations; 194 static const struct inode_operations shmem_dir_inode_operations; 195 static const struct inode_operations shmem_special_inode_operations; 196 static const struct vm_operations_struct shmem_vm_ops; 197 static struct file_system_type shmem_fs_type; 198 199 bool vma_is_shmem(struct vm_area_struct *vma) 200 { 201 return vma->vm_ops == &shmem_vm_ops; 202 } 203 204 static LIST_HEAD(shmem_swaplist); 205 static DEFINE_MUTEX(shmem_swaplist_mutex); 206 207 static int shmem_reserve_inode(struct super_block *sb) 208 { 209 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 210 if (sbinfo->max_inodes) { 211 spin_lock(&sbinfo->stat_lock); 212 if (!sbinfo->free_inodes) { 213 spin_unlock(&sbinfo->stat_lock); 214 return -ENOSPC; 215 } 216 sbinfo->free_inodes--; 217 spin_unlock(&sbinfo->stat_lock); 218 } 219 return 0; 220 } 221 222 static void shmem_free_inode(struct super_block *sb) 223 { 224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 225 if (sbinfo->max_inodes) { 226 spin_lock(&sbinfo->stat_lock); 227 sbinfo->free_inodes++; 228 spin_unlock(&sbinfo->stat_lock); 229 } 230 } 231 232 /** 233 * shmem_recalc_inode - recalculate the block usage of an inode 234 * @inode: inode to recalc 235 * 236 * We have to calculate the free blocks since the mm can drop 237 * undirtied hole pages behind our back. 238 * 239 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 240 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 241 * 242 * It has to be called with the spinlock held. 243 */ 244 static void shmem_recalc_inode(struct inode *inode) 245 { 246 struct shmem_inode_info *info = SHMEM_I(inode); 247 long freed; 248 249 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 250 if (freed > 0) { 251 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 252 if (sbinfo->max_blocks) 253 percpu_counter_add(&sbinfo->used_blocks, -freed); 254 info->alloced -= freed; 255 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 256 shmem_unacct_blocks(info->flags, freed); 257 } 258 } 259 260 bool shmem_charge(struct inode *inode, long pages) 261 { 262 struct shmem_inode_info *info = SHMEM_I(inode); 263 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 264 unsigned long flags; 265 266 if (shmem_acct_block(info->flags, pages)) 267 return false; 268 spin_lock_irqsave(&info->lock, flags); 269 info->alloced += pages; 270 inode->i_blocks += pages * BLOCKS_PER_PAGE; 271 shmem_recalc_inode(inode); 272 spin_unlock_irqrestore(&info->lock, flags); 273 inode->i_mapping->nrpages += pages; 274 275 if (!sbinfo->max_blocks) 276 return true; 277 if (percpu_counter_compare(&sbinfo->used_blocks, 278 sbinfo->max_blocks - pages) > 0) { 279 inode->i_mapping->nrpages -= pages; 280 spin_lock_irqsave(&info->lock, flags); 281 info->alloced -= pages; 282 shmem_recalc_inode(inode); 283 spin_unlock_irqrestore(&info->lock, flags); 284 shmem_unacct_blocks(info->flags, pages); 285 return false; 286 } 287 percpu_counter_add(&sbinfo->used_blocks, pages); 288 return true; 289 } 290 291 void shmem_uncharge(struct inode *inode, long pages) 292 { 293 struct shmem_inode_info *info = SHMEM_I(inode); 294 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 295 unsigned long flags; 296 297 spin_lock_irqsave(&info->lock, flags); 298 info->alloced -= pages; 299 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 300 shmem_recalc_inode(inode); 301 spin_unlock_irqrestore(&info->lock, flags); 302 303 if (sbinfo->max_blocks) 304 percpu_counter_sub(&sbinfo->used_blocks, pages); 305 shmem_unacct_blocks(info->flags, pages); 306 } 307 308 /* 309 * Replace item expected in radix tree by a new item, while holding tree lock. 310 */ 311 static int shmem_radix_tree_replace(struct address_space *mapping, 312 pgoff_t index, void *expected, void *replacement) 313 { 314 struct radix_tree_node *node; 315 void **pslot; 316 void *item; 317 318 VM_BUG_ON(!expected); 319 VM_BUG_ON(!replacement); 320 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot); 321 if (!item) 322 return -ENOENT; 323 if (item != expected) 324 return -ENOENT; 325 __radix_tree_replace(&mapping->page_tree, node, pslot, 326 replacement, NULL, NULL); 327 return 0; 328 } 329 330 /* 331 * Sometimes, before we decide whether to proceed or to fail, we must check 332 * that an entry was not already brought back from swap by a racing thread. 333 * 334 * Checking page is not enough: by the time a SwapCache page is locked, it 335 * might be reused, and again be SwapCache, using the same swap as before. 336 */ 337 static bool shmem_confirm_swap(struct address_space *mapping, 338 pgoff_t index, swp_entry_t swap) 339 { 340 void *item; 341 342 rcu_read_lock(); 343 item = radix_tree_lookup(&mapping->page_tree, index); 344 rcu_read_unlock(); 345 return item == swp_to_radix_entry(swap); 346 } 347 348 /* 349 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 350 * 351 * SHMEM_HUGE_NEVER: 352 * disables huge pages for the mount; 353 * SHMEM_HUGE_ALWAYS: 354 * enables huge pages for the mount; 355 * SHMEM_HUGE_WITHIN_SIZE: 356 * only allocate huge pages if the page will be fully within i_size, 357 * also respect fadvise()/madvise() hints; 358 * SHMEM_HUGE_ADVISE: 359 * only allocate huge pages if requested with fadvise()/madvise(); 360 */ 361 362 #define SHMEM_HUGE_NEVER 0 363 #define SHMEM_HUGE_ALWAYS 1 364 #define SHMEM_HUGE_WITHIN_SIZE 2 365 #define SHMEM_HUGE_ADVISE 3 366 367 /* 368 * Special values. 369 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 370 * 371 * SHMEM_HUGE_DENY: 372 * disables huge on shm_mnt and all mounts, for emergency use; 373 * SHMEM_HUGE_FORCE: 374 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 375 * 376 */ 377 #define SHMEM_HUGE_DENY (-1) 378 #define SHMEM_HUGE_FORCE (-2) 379 380 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 381 /* ifdef here to avoid bloating shmem.o when not necessary */ 382 383 int shmem_huge __read_mostly; 384 385 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 386 static int shmem_parse_huge(const char *str) 387 { 388 if (!strcmp(str, "never")) 389 return SHMEM_HUGE_NEVER; 390 if (!strcmp(str, "always")) 391 return SHMEM_HUGE_ALWAYS; 392 if (!strcmp(str, "within_size")) 393 return SHMEM_HUGE_WITHIN_SIZE; 394 if (!strcmp(str, "advise")) 395 return SHMEM_HUGE_ADVISE; 396 if (!strcmp(str, "deny")) 397 return SHMEM_HUGE_DENY; 398 if (!strcmp(str, "force")) 399 return SHMEM_HUGE_FORCE; 400 return -EINVAL; 401 } 402 403 static const char *shmem_format_huge(int huge) 404 { 405 switch (huge) { 406 case SHMEM_HUGE_NEVER: 407 return "never"; 408 case SHMEM_HUGE_ALWAYS: 409 return "always"; 410 case SHMEM_HUGE_WITHIN_SIZE: 411 return "within_size"; 412 case SHMEM_HUGE_ADVISE: 413 return "advise"; 414 case SHMEM_HUGE_DENY: 415 return "deny"; 416 case SHMEM_HUGE_FORCE: 417 return "force"; 418 default: 419 VM_BUG_ON(1); 420 return "bad_val"; 421 } 422 } 423 #endif 424 425 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 426 struct shrink_control *sc, unsigned long nr_to_split) 427 { 428 LIST_HEAD(list), *pos, *next; 429 LIST_HEAD(to_remove); 430 struct inode *inode; 431 struct shmem_inode_info *info; 432 struct page *page; 433 unsigned long batch = sc ? sc->nr_to_scan : 128; 434 int removed = 0, split = 0; 435 436 if (list_empty(&sbinfo->shrinklist)) 437 return SHRINK_STOP; 438 439 spin_lock(&sbinfo->shrinklist_lock); 440 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 441 info = list_entry(pos, struct shmem_inode_info, shrinklist); 442 443 /* pin the inode */ 444 inode = igrab(&info->vfs_inode); 445 446 /* inode is about to be evicted */ 447 if (!inode) { 448 list_del_init(&info->shrinklist); 449 removed++; 450 goto next; 451 } 452 453 /* Check if there's anything to gain */ 454 if (round_up(inode->i_size, PAGE_SIZE) == 455 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 456 list_move(&info->shrinklist, &to_remove); 457 removed++; 458 goto next; 459 } 460 461 list_move(&info->shrinklist, &list); 462 next: 463 if (!--batch) 464 break; 465 } 466 spin_unlock(&sbinfo->shrinklist_lock); 467 468 list_for_each_safe(pos, next, &to_remove) { 469 info = list_entry(pos, struct shmem_inode_info, shrinklist); 470 inode = &info->vfs_inode; 471 list_del_init(&info->shrinklist); 472 iput(inode); 473 } 474 475 list_for_each_safe(pos, next, &list) { 476 int ret; 477 478 info = list_entry(pos, struct shmem_inode_info, shrinklist); 479 inode = &info->vfs_inode; 480 481 if (nr_to_split && split >= nr_to_split) { 482 iput(inode); 483 continue; 484 } 485 486 page = find_lock_page(inode->i_mapping, 487 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 488 if (!page) 489 goto drop; 490 491 if (!PageTransHuge(page)) { 492 unlock_page(page); 493 put_page(page); 494 goto drop; 495 } 496 497 ret = split_huge_page(page); 498 unlock_page(page); 499 put_page(page); 500 501 if (ret) { 502 /* split failed: leave it on the list */ 503 iput(inode); 504 continue; 505 } 506 507 split++; 508 drop: 509 list_del_init(&info->shrinklist); 510 removed++; 511 iput(inode); 512 } 513 514 spin_lock(&sbinfo->shrinklist_lock); 515 list_splice_tail(&list, &sbinfo->shrinklist); 516 sbinfo->shrinklist_len -= removed; 517 spin_unlock(&sbinfo->shrinklist_lock); 518 519 return split; 520 } 521 522 static long shmem_unused_huge_scan(struct super_block *sb, 523 struct shrink_control *sc) 524 { 525 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 526 527 if (!READ_ONCE(sbinfo->shrinklist_len)) 528 return SHRINK_STOP; 529 530 return shmem_unused_huge_shrink(sbinfo, sc, 0); 531 } 532 533 static long shmem_unused_huge_count(struct super_block *sb, 534 struct shrink_control *sc) 535 { 536 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 537 return READ_ONCE(sbinfo->shrinklist_len); 538 } 539 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 540 541 #define shmem_huge SHMEM_HUGE_DENY 542 543 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 544 struct shrink_control *sc, unsigned long nr_to_split) 545 { 546 return 0; 547 } 548 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 549 550 /* 551 * Like add_to_page_cache_locked, but error if expected item has gone. 552 */ 553 static int shmem_add_to_page_cache(struct page *page, 554 struct address_space *mapping, 555 pgoff_t index, void *expected) 556 { 557 int error, nr = hpage_nr_pages(page); 558 559 VM_BUG_ON_PAGE(PageTail(page), page); 560 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 561 VM_BUG_ON_PAGE(!PageLocked(page), page); 562 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 563 VM_BUG_ON(expected && PageTransHuge(page)); 564 565 page_ref_add(page, nr); 566 page->mapping = mapping; 567 page->index = index; 568 569 spin_lock_irq(&mapping->tree_lock); 570 if (PageTransHuge(page)) { 571 void __rcu **results; 572 pgoff_t idx; 573 int i; 574 575 error = 0; 576 if (radix_tree_gang_lookup_slot(&mapping->page_tree, 577 &results, &idx, index, 1) && 578 idx < index + HPAGE_PMD_NR) { 579 error = -EEXIST; 580 } 581 582 if (!error) { 583 for (i = 0; i < HPAGE_PMD_NR; i++) { 584 error = radix_tree_insert(&mapping->page_tree, 585 index + i, page + i); 586 VM_BUG_ON(error); 587 } 588 count_vm_event(THP_FILE_ALLOC); 589 } 590 } else if (!expected) { 591 error = radix_tree_insert(&mapping->page_tree, index, page); 592 } else { 593 error = shmem_radix_tree_replace(mapping, index, expected, 594 page); 595 } 596 597 if (!error) { 598 mapping->nrpages += nr; 599 if (PageTransHuge(page)) 600 __inc_node_page_state(page, NR_SHMEM_THPS); 601 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 602 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 603 spin_unlock_irq(&mapping->tree_lock); 604 } else { 605 page->mapping = NULL; 606 spin_unlock_irq(&mapping->tree_lock); 607 page_ref_sub(page, nr); 608 } 609 return error; 610 } 611 612 /* 613 * Like delete_from_page_cache, but substitutes swap for page. 614 */ 615 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 616 { 617 struct address_space *mapping = page->mapping; 618 int error; 619 620 VM_BUG_ON_PAGE(PageCompound(page), page); 621 622 spin_lock_irq(&mapping->tree_lock); 623 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 624 page->mapping = NULL; 625 mapping->nrpages--; 626 __dec_node_page_state(page, NR_FILE_PAGES); 627 __dec_node_page_state(page, NR_SHMEM); 628 spin_unlock_irq(&mapping->tree_lock); 629 put_page(page); 630 BUG_ON(error); 631 } 632 633 /* 634 * Remove swap entry from radix tree, free the swap and its page cache. 635 */ 636 static int shmem_free_swap(struct address_space *mapping, 637 pgoff_t index, void *radswap) 638 { 639 void *old; 640 641 spin_lock_irq(&mapping->tree_lock); 642 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 643 spin_unlock_irq(&mapping->tree_lock); 644 if (old != radswap) 645 return -ENOENT; 646 free_swap_and_cache(radix_to_swp_entry(radswap)); 647 return 0; 648 } 649 650 /* 651 * Determine (in bytes) how many of the shmem object's pages mapped by the 652 * given offsets are swapped out. 653 * 654 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 655 * as long as the inode doesn't go away and racy results are not a problem. 656 */ 657 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 658 pgoff_t start, pgoff_t end) 659 { 660 struct radix_tree_iter iter; 661 void **slot; 662 struct page *page; 663 unsigned long swapped = 0; 664 665 rcu_read_lock(); 666 667 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 668 if (iter.index >= end) 669 break; 670 671 page = radix_tree_deref_slot(slot); 672 673 if (radix_tree_deref_retry(page)) { 674 slot = radix_tree_iter_retry(&iter); 675 continue; 676 } 677 678 if (radix_tree_exceptional_entry(page)) 679 swapped++; 680 681 if (need_resched()) { 682 slot = radix_tree_iter_resume(slot, &iter); 683 cond_resched_rcu(); 684 } 685 } 686 687 rcu_read_unlock(); 688 689 return swapped << PAGE_SHIFT; 690 } 691 692 /* 693 * Determine (in bytes) how many of the shmem object's pages mapped by the 694 * given vma is swapped out. 695 * 696 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 697 * as long as the inode doesn't go away and racy results are not a problem. 698 */ 699 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 700 { 701 struct inode *inode = file_inode(vma->vm_file); 702 struct shmem_inode_info *info = SHMEM_I(inode); 703 struct address_space *mapping = inode->i_mapping; 704 unsigned long swapped; 705 706 /* Be careful as we don't hold info->lock */ 707 swapped = READ_ONCE(info->swapped); 708 709 /* 710 * The easier cases are when the shmem object has nothing in swap, or 711 * the vma maps it whole. Then we can simply use the stats that we 712 * already track. 713 */ 714 if (!swapped) 715 return 0; 716 717 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 718 return swapped << PAGE_SHIFT; 719 720 /* Here comes the more involved part */ 721 return shmem_partial_swap_usage(mapping, 722 linear_page_index(vma, vma->vm_start), 723 linear_page_index(vma, vma->vm_end)); 724 } 725 726 /* 727 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 728 */ 729 void shmem_unlock_mapping(struct address_space *mapping) 730 { 731 struct pagevec pvec; 732 pgoff_t indices[PAGEVEC_SIZE]; 733 pgoff_t index = 0; 734 735 pagevec_init(&pvec, 0); 736 /* 737 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 738 */ 739 while (!mapping_unevictable(mapping)) { 740 /* 741 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 742 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 743 */ 744 pvec.nr = find_get_entries(mapping, index, 745 PAGEVEC_SIZE, pvec.pages, indices); 746 if (!pvec.nr) 747 break; 748 index = indices[pvec.nr - 1] + 1; 749 pagevec_remove_exceptionals(&pvec); 750 check_move_unevictable_pages(pvec.pages, pvec.nr); 751 pagevec_release(&pvec); 752 cond_resched(); 753 } 754 } 755 756 /* 757 * Remove range of pages and swap entries from radix tree, and free them. 758 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 759 */ 760 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 761 bool unfalloc) 762 { 763 struct address_space *mapping = inode->i_mapping; 764 struct shmem_inode_info *info = SHMEM_I(inode); 765 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 766 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 767 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 768 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 769 struct pagevec pvec; 770 pgoff_t indices[PAGEVEC_SIZE]; 771 long nr_swaps_freed = 0; 772 pgoff_t index; 773 int i; 774 775 if (lend == -1) 776 end = -1; /* unsigned, so actually very big */ 777 778 pagevec_init(&pvec, 0); 779 index = start; 780 while (index < end) { 781 pvec.nr = find_get_entries(mapping, index, 782 min(end - index, (pgoff_t)PAGEVEC_SIZE), 783 pvec.pages, indices); 784 if (!pvec.nr) 785 break; 786 for (i = 0; i < pagevec_count(&pvec); i++) { 787 struct page *page = pvec.pages[i]; 788 789 index = indices[i]; 790 if (index >= end) 791 break; 792 793 if (radix_tree_exceptional_entry(page)) { 794 if (unfalloc) 795 continue; 796 nr_swaps_freed += !shmem_free_swap(mapping, 797 index, page); 798 continue; 799 } 800 801 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 802 803 if (!trylock_page(page)) 804 continue; 805 806 if (PageTransTail(page)) { 807 /* Middle of THP: zero out the page */ 808 clear_highpage(page); 809 unlock_page(page); 810 continue; 811 } else if (PageTransHuge(page)) { 812 if (index == round_down(end, HPAGE_PMD_NR)) { 813 /* 814 * Range ends in the middle of THP: 815 * zero out the page 816 */ 817 clear_highpage(page); 818 unlock_page(page); 819 continue; 820 } 821 index += HPAGE_PMD_NR - 1; 822 i += HPAGE_PMD_NR - 1; 823 } 824 825 if (!unfalloc || !PageUptodate(page)) { 826 VM_BUG_ON_PAGE(PageTail(page), page); 827 if (page_mapping(page) == mapping) { 828 VM_BUG_ON_PAGE(PageWriteback(page), page); 829 truncate_inode_page(mapping, page); 830 } 831 } 832 unlock_page(page); 833 } 834 pagevec_remove_exceptionals(&pvec); 835 pagevec_release(&pvec); 836 cond_resched(); 837 index++; 838 } 839 840 if (partial_start) { 841 struct page *page = NULL; 842 shmem_getpage(inode, start - 1, &page, SGP_READ); 843 if (page) { 844 unsigned int top = PAGE_SIZE; 845 if (start > end) { 846 top = partial_end; 847 partial_end = 0; 848 } 849 zero_user_segment(page, partial_start, top); 850 set_page_dirty(page); 851 unlock_page(page); 852 put_page(page); 853 } 854 } 855 if (partial_end) { 856 struct page *page = NULL; 857 shmem_getpage(inode, end, &page, SGP_READ); 858 if (page) { 859 zero_user_segment(page, 0, partial_end); 860 set_page_dirty(page); 861 unlock_page(page); 862 put_page(page); 863 } 864 } 865 if (start >= end) 866 return; 867 868 index = start; 869 while (index < end) { 870 cond_resched(); 871 872 pvec.nr = find_get_entries(mapping, index, 873 min(end - index, (pgoff_t)PAGEVEC_SIZE), 874 pvec.pages, indices); 875 if (!pvec.nr) { 876 /* If all gone or hole-punch or unfalloc, we're done */ 877 if (index == start || end != -1) 878 break; 879 /* But if truncating, restart to make sure all gone */ 880 index = start; 881 continue; 882 } 883 for (i = 0; i < pagevec_count(&pvec); i++) { 884 struct page *page = pvec.pages[i]; 885 886 index = indices[i]; 887 if (index >= end) 888 break; 889 890 if (radix_tree_exceptional_entry(page)) { 891 if (unfalloc) 892 continue; 893 if (shmem_free_swap(mapping, index, page)) { 894 /* Swap was replaced by page: retry */ 895 index--; 896 break; 897 } 898 nr_swaps_freed++; 899 continue; 900 } 901 902 lock_page(page); 903 904 if (PageTransTail(page)) { 905 /* Middle of THP: zero out the page */ 906 clear_highpage(page); 907 unlock_page(page); 908 /* 909 * Partial thp truncate due 'start' in middle 910 * of THP: don't need to look on these pages 911 * again on !pvec.nr restart. 912 */ 913 if (index != round_down(end, HPAGE_PMD_NR)) 914 start++; 915 continue; 916 } else if (PageTransHuge(page)) { 917 if (index == round_down(end, HPAGE_PMD_NR)) { 918 /* 919 * Range ends in the middle of THP: 920 * zero out the page 921 */ 922 clear_highpage(page); 923 unlock_page(page); 924 continue; 925 } 926 index += HPAGE_PMD_NR - 1; 927 i += HPAGE_PMD_NR - 1; 928 } 929 930 if (!unfalloc || !PageUptodate(page)) { 931 VM_BUG_ON_PAGE(PageTail(page), page); 932 if (page_mapping(page) == mapping) { 933 VM_BUG_ON_PAGE(PageWriteback(page), page); 934 truncate_inode_page(mapping, page); 935 } else { 936 /* Page was replaced by swap: retry */ 937 unlock_page(page); 938 index--; 939 break; 940 } 941 } 942 unlock_page(page); 943 } 944 pagevec_remove_exceptionals(&pvec); 945 pagevec_release(&pvec); 946 index++; 947 } 948 949 spin_lock_irq(&info->lock); 950 info->swapped -= nr_swaps_freed; 951 shmem_recalc_inode(inode); 952 spin_unlock_irq(&info->lock); 953 } 954 955 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 956 { 957 shmem_undo_range(inode, lstart, lend, false); 958 inode->i_ctime = inode->i_mtime = current_time(inode); 959 } 960 EXPORT_SYMBOL_GPL(shmem_truncate_range); 961 962 static int shmem_getattr(const struct path *path, struct kstat *stat, 963 u32 request_mask, unsigned int query_flags) 964 { 965 struct inode *inode = path->dentry->d_inode; 966 struct shmem_inode_info *info = SHMEM_I(inode); 967 968 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 969 spin_lock_irq(&info->lock); 970 shmem_recalc_inode(inode); 971 spin_unlock_irq(&info->lock); 972 } 973 generic_fillattr(inode, stat); 974 return 0; 975 } 976 977 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 978 { 979 struct inode *inode = d_inode(dentry); 980 struct shmem_inode_info *info = SHMEM_I(inode); 981 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 982 int error; 983 984 error = setattr_prepare(dentry, attr); 985 if (error) 986 return error; 987 988 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 989 loff_t oldsize = inode->i_size; 990 loff_t newsize = attr->ia_size; 991 992 /* protected by i_mutex */ 993 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 994 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 995 return -EPERM; 996 997 if (newsize != oldsize) { 998 error = shmem_reacct_size(SHMEM_I(inode)->flags, 999 oldsize, newsize); 1000 if (error) 1001 return error; 1002 i_size_write(inode, newsize); 1003 inode->i_ctime = inode->i_mtime = current_time(inode); 1004 } 1005 if (newsize <= oldsize) { 1006 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1007 if (oldsize > holebegin) 1008 unmap_mapping_range(inode->i_mapping, 1009 holebegin, 0, 1); 1010 if (info->alloced) 1011 shmem_truncate_range(inode, 1012 newsize, (loff_t)-1); 1013 /* unmap again to remove racily COWed private pages */ 1014 if (oldsize > holebegin) 1015 unmap_mapping_range(inode->i_mapping, 1016 holebegin, 0, 1); 1017 1018 /* 1019 * Part of the huge page can be beyond i_size: subject 1020 * to shrink under memory pressure. 1021 */ 1022 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1023 spin_lock(&sbinfo->shrinklist_lock); 1024 if (list_empty(&info->shrinklist)) { 1025 list_add_tail(&info->shrinklist, 1026 &sbinfo->shrinklist); 1027 sbinfo->shrinklist_len++; 1028 } 1029 spin_unlock(&sbinfo->shrinklist_lock); 1030 } 1031 } 1032 } 1033 1034 setattr_copy(inode, attr); 1035 if (attr->ia_valid & ATTR_MODE) 1036 error = posix_acl_chmod(inode, inode->i_mode); 1037 return error; 1038 } 1039 1040 static void shmem_evict_inode(struct inode *inode) 1041 { 1042 struct shmem_inode_info *info = SHMEM_I(inode); 1043 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1044 1045 if (inode->i_mapping->a_ops == &shmem_aops) { 1046 shmem_unacct_size(info->flags, inode->i_size); 1047 inode->i_size = 0; 1048 shmem_truncate_range(inode, 0, (loff_t)-1); 1049 if (!list_empty(&info->shrinklist)) { 1050 spin_lock(&sbinfo->shrinklist_lock); 1051 if (!list_empty(&info->shrinklist)) { 1052 list_del_init(&info->shrinklist); 1053 sbinfo->shrinklist_len--; 1054 } 1055 spin_unlock(&sbinfo->shrinklist_lock); 1056 } 1057 if (!list_empty(&info->swaplist)) { 1058 mutex_lock(&shmem_swaplist_mutex); 1059 list_del_init(&info->swaplist); 1060 mutex_unlock(&shmem_swaplist_mutex); 1061 } 1062 } 1063 1064 simple_xattrs_free(&info->xattrs); 1065 WARN_ON(inode->i_blocks); 1066 shmem_free_inode(inode->i_sb); 1067 clear_inode(inode); 1068 } 1069 1070 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) 1071 { 1072 struct radix_tree_iter iter; 1073 void **slot; 1074 unsigned long found = -1; 1075 unsigned int checked = 0; 1076 1077 rcu_read_lock(); 1078 radix_tree_for_each_slot(slot, root, &iter, 0) { 1079 if (*slot == item) { 1080 found = iter.index; 1081 break; 1082 } 1083 checked++; 1084 if ((checked % 4096) != 0) 1085 continue; 1086 slot = radix_tree_iter_resume(slot, &iter); 1087 cond_resched_rcu(); 1088 } 1089 1090 rcu_read_unlock(); 1091 return found; 1092 } 1093 1094 /* 1095 * If swap found in inode, free it and move page from swapcache to filecache. 1096 */ 1097 static int shmem_unuse_inode(struct shmem_inode_info *info, 1098 swp_entry_t swap, struct page **pagep) 1099 { 1100 struct address_space *mapping = info->vfs_inode.i_mapping; 1101 void *radswap; 1102 pgoff_t index; 1103 gfp_t gfp; 1104 int error = 0; 1105 1106 radswap = swp_to_radix_entry(swap); 1107 index = find_swap_entry(&mapping->page_tree, radswap); 1108 if (index == -1) 1109 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1110 1111 /* 1112 * Move _head_ to start search for next from here. 1113 * But be careful: shmem_evict_inode checks list_empty without taking 1114 * mutex, and there's an instant in list_move_tail when info->swaplist 1115 * would appear empty, if it were the only one on shmem_swaplist. 1116 */ 1117 if (shmem_swaplist.next != &info->swaplist) 1118 list_move_tail(&shmem_swaplist, &info->swaplist); 1119 1120 gfp = mapping_gfp_mask(mapping); 1121 if (shmem_should_replace_page(*pagep, gfp)) { 1122 mutex_unlock(&shmem_swaplist_mutex); 1123 error = shmem_replace_page(pagep, gfp, info, index); 1124 mutex_lock(&shmem_swaplist_mutex); 1125 /* 1126 * We needed to drop mutex to make that restrictive page 1127 * allocation, but the inode might have been freed while we 1128 * dropped it: although a racing shmem_evict_inode() cannot 1129 * complete without emptying the radix_tree, our page lock 1130 * on this swapcache page is not enough to prevent that - 1131 * free_swap_and_cache() of our swap entry will only 1132 * trylock_page(), removing swap from radix_tree whatever. 1133 * 1134 * We must not proceed to shmem_add_to_page_cache() if the 1135 * inode has been freed, but of course we cannot rely on 1136 * inode or mapping or info to check that. However, we can 1137 * safely check if our swap entry is still in use (and here 1138 * it can't have got reused for another page): if it's still 1139 * in use, then the inode cannot have been freed yet, and we 1140 * can safely proceed (if it's no longer in use, that tells 1141 * nothing about the inode, but we don't need to unuse swap). 1142 */ 1143 if (!page_swapcount(*pagep)) 1144 error = -ENOENT; 1145 } 1146 1147 /* 1148 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1149 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1150 * beneath us (pagelock doesn't help until the page is in pagecache). 1151 */ 1152 if (!error) 1153 error = shmem_add_to_page_cache(*pagep, mapping, index, 1154 radswap); 1155 if (error != -ENOMEM) { 1156 /* 1157 * Truncation and eviction use free_swap_and_cache(), which 1158 * only does trylock page: if we raced, best clean up here. 1159 */ 1160 delete_from_swap_cache(*pagep); 1161 set_page_dirty(*pagep); 1162 if (!error) { 1163 spin_lock_irq(&info->lock); 1164 info->swapped--; 1165 spin_unlock_irq(&info->lock); 1166 swap_free(swap); 1167 } 1168 } 1169 return error; 1170 } 1171 1172 /* 1173 * Search through swapped inodes to find and replace swap by page. 1174 */ 1175 int shmem_unuse(swp_entry_t swap, struct page *page) 1176 { 1177 struct list_head *this, *next; 1178 struct shmem_inode_info *info; 1179 struct mem_cgroup *memcg; 1180 int error = 0; 1181 1182 /* 1183 * There's a faint possibility that swap page was replaced before 1184 * caller locked it: caller will come back later with the right page. 1185 */ 1186 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1187 goto out; 1188 1189 /* 1190 * Charge page using GFP_KERNEL while we can wait, before taking 1191 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1192 * Charged back to the user (not to caller) when swap account is used. 1193 */ 1194 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1195 false); 1196 if (error) 1197 goto out; 1198 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1199 error = -EAGAIN; 1200 1201 mutex_lock(&shmem_swaplist_mutex); 1202 list_for_each_safe(this, next, &shmem_swaplist) { 1203 info = list_entry(this, struct shmem_inode_info, swaplist); 1204 if (info->swapped) 1205 error = shmem_unuse_inode(info, swap, &page); 1206 else 1207 list_del_init(&info->swaplist); 1208 cond_resched(); 1209 if (error != -EAGAIN) 1210 break; 1211 /* found nothing in this: move on to search the next */ 1212 } 1213 mutex_unlock(&shmem_swaplist_mutex); 1214 1215 if (error) { 1216 if (error != -ENOMEM) 1217 error = 0; 1218 mem_cgroup_cancel_charge(page, memcg, false); 1219 } else 1220 mem_cgroup_commit_charge(page, memcg, true, false); 1221 out: 1222 unlock_page(page); 1223 put_page(page); 1224 return error; 1225 } 1226 1227 /* 1228 * Move the page from the page cache to the swap cache. 1229 */ 1230 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1231 { 1232 struct shmem_inode_info *info; 1233 struct address_space *mapping; 1234 struct inode *inode; 1235 swp_entry_t swap; 1236 pgoff_t index; 1237 1238 VM_BUG_ON_PAGE(PageCompound(page), page); 1239 BUG_ON(!PageLocked(page)); 1240 mapping = page->mapping; 1241 index = page->index; 1242 inode = mapping->host; 1243 info = SHMEM_I(inode); 1244 if (info->flags & VM_LOCKED) 1245 goto redirty; 1246 if (!total_swap_pages) 1247 goto redirty; 1248 1249 /* 1250 * Our capabilities prevent regular writeback or sync from ever calling 1251 * shmem_writepage; but a stacking filesystem might use ->writepage of 1252 * its underlying filesystem, in which case tmpfs should write out to 1253 * swap only in response to memory pressure, and not for the writeback 1254 * threads or sync. 1255 */ 1256 if (!wbc->for_reclaim) { 1257 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1258 goto redirty; 1259 } 1260 1261 /* 1262 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1263 * value into swapfile.c, the only way we can correctly account for a 1264 * fallocated page arriving here is now to initialize it and write it. 1265 * 1266 * That's okay for a page already fallocated earlier, but if we have 1267 * not yet completed the fallocation, then (a) we want to keep track 1268 * of this page in case we have to undo it, and (b) it may not be a 1269 * good idea to continue anyway, once we're pushing into swap. So 1270 * reactivate the page, and let shmem_fallocate() quit when too many. 1271 */ 1272 if (!PageUptodate(page)) { 1273 if (inode->i_private) { 1274 struct shmem_falloc *shmem_falloc; 1275 spin_lock(&inode->i_lock); 1276 shmem_falloc = inode->i_private; 1277 if (shmem_falloc && 1278 !shmem_falloc->waitq && 1279 index >= shmem_falloc->start && 1280 index < shmem_falloc->next) 1281 shmem_falloc->nr_unswapped++; 1282 else 1283 shmem_falloc = NULL; 1284 spin_unlock(&inode->i_lock); 1285 if (shmem_falloc) 1286 goto redirty; 1287 } 1288 clear_highpage(page); 1289 flush_dcache_page(page); 1290 SetPageUptodate(page); 1291 } 1292 1293 swap = get_swap_page(); 1294 if (!swap.val) 1295 goto redirty; 1296 1297 if (mem_cgroup_try_charge_swap(page, swap)) 1298 goto free_swap; 1299 1300 /* 1301 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1302 * if it's not already there. Do it now before the page is 1303 * moved to swap cache, when its pagelock no longer protects 1304 * the inode from eviction. But don't unlock the mutex until 1305 * we've incremented swapped, because shmem_unuse_inode() will 1306 * prune a !swapped inode from the swaplist under this mutex. 1307 */ 1308 mutex_lock(&shmem_swaplist_mutex); 1309 if (list_empty(&info->swaplist)) 1310 list_add_tail(&info->swaplist, &shmem_swaplist); 1311 1312 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1313 spin_lock_irq(&info->lock); 1314 shmem_recalc_inode(inode); 1315 info->swapped++; 1316 spin_unlock_irq(&info->lock); 1317 1318 swap_shmem_alloc(swap); 1319 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1320 1321 mutex_unlock(&shmem_swaplist_mutex); 1322 BUG_ON(page_mapped(page)); 1323 swap_writepage(page, wbc); 1324 return 0; 1325 } 1326 1327 mutex_unlock(&shmem_swaplist_mutex); 1328 free_swap: 1329 swapcache_free(swap); 1330 redirty: 1331 set_page_dirty(page); 1332 if (wbc->for_reclaim) 1333 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1334 unlock_page(page); 1335 return 0; 1336 } 1337 1338 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1339 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1340 { 1341 char buffer[64]; 1342 1343 if (!mpol || mpol->mode == MPOL_DEFAULT) 1344 return; /* show nothing */ 1345 1346 mpol_to_str(buffer, sizeof(buffer), mpol); 1347 1348 seq_printf(seq, ",mpol=%s", buffer); 1349 } 1350 1351 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1352 { 1353 struct mempolicy *mpol = NULL; 1354 if (sbinfo->mpol) { 1355 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1356 mpol = sbinfo->mpol; 1357 mpol_get(mpol); 1358 spin_unlock(&sbinfo->stat_lock); 1359 } 1360 return mpol; 1361 } 1362 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1363 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1364 { 1365 } 1366 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1367 { 1368 return NULL; 1369 } 1370 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1371 #ifndef CONFIG_NUMA 1372 #define vm_policy vm_private_data 1373 #endif 1374 1375 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1376 struct shmem_inode_info *info, pgoff_t index) 1377 { 1378 /* Create a pseudo vma that just contains the policy */ 1379 vma->vm_start = 0; 1380 /* Bias interleave by inode number to distribute better across nodes */ 1381 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1382 vma->vm_ops = NULL; 1383 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1384 } 1385 1386 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1387 { 1388 /* Drop reference taken by mpol_shared_policy_lookup() */ 1389 mpol_cond_put(vma->vm_policy); 1390 } 1391 1392 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1393 struct shmem_inode_info *info, pgoff_t index) 1394 { 1395 struct vm_area_struct pvma; 1396 struct page *page; 1397 1398 shmem_pseudo_vma_init(&pvma, info, index); 1399 page = swapin_readahead(swap, gfp, &pvma, 0); 1400 shmem_pseudo_vma_destroy(&pvma); 1401 1402 return page; 1403 } 1404 1405 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1406 struct shmem_inode_info *info, pgoff_t index) 1407 { 1408 struct vm_area_struct pvma; 1409 struct inode *inode = &info->vfs_inode; 1410 struct address_space *mapping = inode->i_mapping; 1411 pgoff_t idx, hindex; 1412 void __rcu **results; 1413 struct page *page; 1414 1415 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1416 return NULL; 1417 1418 hindex = round_down(index, HPAGE_PMD_NR); 1419 rcu_read_lock(); 1420 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, 1421 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1422 rcu_read_unlock(); 1423 return NULL; 1424 } 1425 rcu_read_unlock(); 1426 1427 shmem_pseudo_vma_init(&pvma, info, hindex); 1428 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1429 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1430 shmem_pseudo_vma_destroy(&pvma); 1431 if (page) 1432 prep_transhuge_page(page); 1433 return page; 1434 } 1435 1436 static struct page *shmem_alloc_page(gfp_t gfp, 1437 struct shmem_inode_info *info, pgoff_t index) 1438 { 1439 struct vm_area_struct pvma; 1440 struct page *page; 1441 1442 shmem_pseudo_vma_init(&pvma, info, index); 1443 page = alloc_page_vma(gfp, &pvma, 0); 1444 shmem_pseudo_vma_destroy(&pvma); 1445 1446 return page; 1447 } 1448 1449 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1450 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo, 1451 pgoff_t index, bool huge) 1452 { 1453 struct page *page; 1454 int nr; 1455 int err = -ENOSPC; 1456 1457 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1458 huge = false; 1459 nr = huge ? HPAGE_PMD_NR : 1; 1460 1461 if (shmem_acct_block(info->flags, nr)) 1462 goto failed; 1463 if (sbinfo->max_blocks) { 1464 if (percpu_counter_compare(&sbinfo->used_blocks, 1465 sbinfo->max_blocks - nr) > 0) 1466 goto unacct; 1467 percpu_counter_add(&sbinfo->used_blocks, nr); 1468 } 1469 1470 if (huge) 1471 page = shmem_alloc_hugepage(gfp, info, index); 1472 else 1473 page = shmem_alloc_page(gfp, info, index); 1474 if (page) { 1475 __SetPageLocked(page); 1476 __SetPageSwapBacked(page); 1477 return page; 1478 } 1479 1480 err = -ENOMEM; 1481 if (sbinfo->max_blocks) 1482 percpu_counter_add(&sbinfo->used_blocks, -nr); 1483 unacct: 1484 shmem_unacct_blocks(info->flags, nr); 1485 failed: 1486 return ERR_PTR(err); 1487 } 1488 1489 /* 1490 * When a page is moved from swapcache to shmem filecache (either by the 1491 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1492 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1493 * ignorance of the mapping it belongs to. If that mapping has special 1494 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1495 * we may need to copy to a suitable page before moving to filecache. 1496 * 1497 * In a future release, this may well be extended to respect cpuset and 1498 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1499 * but for now it is a simple matter of zone. 1500 */ 1501 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1502 { 1503 return page_zonenum(page) > gfp_zone(gfp); 1504 } 1505 1506 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1507 struct shmem_inode_info *info, pgoff_t index) 1508 { 1509 struct page *oldpage, *newpage; 1510 struct address_space *swap_mapping; 1511 pgoff_t swap_index; 1512 int error; 1513 1514 oldpage = *pagep; 1515 swap_index = page_private(oldpage); 1516 swap_mapping = page_mapping(oldpage); 1517 1518 /* 1519 * We have arrived here because our zones are constrained, so don't 1520 * limit chance of success by further cpuset and node constraints. 1521 */ 1522 gfp &= ~GFP_CONSTRAINT_MASK; 1523 newpage = shmem_alloc_page(gfp, info, index); 1524 if (!newpage) 1525 return -ENOMEM; 1526 1527 get_page(newpage); 1528 copy_highpage(newpage, oldpage); 1529 flush_dcache_page(newpage); 1530 1531 __SetPageLocked(newpage); 1532 __SetPageSwapBacked(newpage); 1533 SetPageUptodate(newpage); 1534 set_page_private(newpage, swap_index); 1535 SetPageSwapCache(newpage); 1536 1537 /* 1538 * Our caller will very soon move newpage out of swapcache, but it's 1539 * a nice clean interface for us to replace oldpage by newpage there. 1540 */ 1541 spin_lock_irq(&swap_mapping->tree_lock); 1542 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1543 newpage); 1544 if (!error) { 1545 __inc_node_page_state(newpage, NR_FILE_PAGES); 1546 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1547 } 1548 spin_unlock_irq(&swap_mapping->tree_lock); 1549 1550 if (unlikely(error)) { 1551 /* 1552 * Is this possible? I think not, now that our callers check 1553 * both PageSwapCache and page_private after getting page lock; 1554 * but be defensive. Reverse old to newpage for clear and free. 1555 */ 1556 oldpage = newpage; 1557 } else { 1558 mem_cgroup_migrate(oldpage, newpage); 1559 lru_cache_add_anon(newpage); 1560 *pagep = newpage; 1561 } 1562 1563 ClearPageSwapCache(oldpage); 1564 set_page_private(oldpage, 0); 1565 1566 unlock_page(oldpage); 1567 put_page(oldpage); 1568 put_page(oldpage); 1569 return error; 1570 } 1571 1572 /* 1573 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1574 * 1575 * If we allocate a new one we do not mark it dirty. That's up to the 1576 * vm. If we swap it in we mark it dirty since we also free the swap 1577 * entry since a page cannot live in both the swap and page cache. 1578 * 1579 * fault_mm and fault_type are only supplied by shmem_fault: 1580 * otherwise they are NULL. 1581 */ 1582 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1583 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1584 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type) 1585 { 1586 struct address_space *mapping = inode->i_mapping; 1587 struct shmem_inode_info *info = SHMEM_I(inode); 1588 struct shmem_sb_info *sbinfo; 1589 struct mm_struct *charge_mm; 1590 struct mem_cgroup *memcg; 1591 struct page *page; 1592 swp_entry_t swap; 1593 enum sgp_type sgp_huge = sgp; 1594 pgoff_t hindex = index; 1595 int error; 1596 int once = 0; 1597 int alloced = 0; 1598 1599 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1600 return -EFBIG; 1601 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1602 sgp = SGP_CACHE; 1603 repeat: 1604 swap.val = 0; 1605 page = find_lock_entry(mapping, index); 1606 if (radix_tree_exceptional_entry(page)) { 1607 swap = radix_to_swp_entry(page); 1608 page = NULL; 1609 } 1610 1611 if (sgp <= SGP_CACHE && 1612 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1613 error = -EINVAL; 1614 goto unlock; 1615 } 1616 1617 if (page && sgp == SGP_WRITE) 1618 mark_page_accessed(page); 1619 1620 /* fallocated page? */ 1621 if (page && !PageUptodate(page)) { 1622 if (sgp != SGP_READ) 1623 goto clear; 1624 unlock_page(page); 1625 put_page(page); 1626 page = NULL; 1627 } 1628 if (page || (sgp == SGP_READ && !swap.val)) { 1629 *pagep = page; 1630 return 0; 1631 } 1632 1633 /* 1634 * Fast cache lookup did not find it: 1635 * bring it back from swap or allocate. 1636 */ 1637 sbinfo = SHMEM_SB(inode->i_sb); 1638 charge_mm = vma ? vma->vm_mm : current->mm; 1639 1640 if (swap.val) { 1641 /* Look it up and read it in.. */ 1642 page = lookup_swap_cache(swap); 1643 if (!page) { 1644 /* Or update major stats only when swapin succeeds?? */ 1645 if (fault_type) { 1646 *fault_type |= VM_FAULT_MAJOR; 1647 count_vm_event(PGMAJFAULT); 1648 mem_cgroup_count_vm_event(charge_mm, 1649 PGMAJFAULT); 1650 } 1651 /* Here we actually start the io */ 1652 page = shmem_swapin(swap, gfp, info, index); 1653 if (!page) { 1654 error = -ENOMEM; 1655 goto failed; 1656 } 1657 } 1658 1659 /* We have to do this with page locked to prevent races */ 1660 lock_page(page); 1661 if (!PageSwapCache(page) || page_private(page) != swap.val || 1662 !shmem_confirm_swap(mapping, index, swap)) { 1663 error = -EEXIST; /* try again */ 1664 goto unlock; 1665 } 1666 if (!PageUptodate(page)) { 1667 error = -EIO; 1668 goto failed; 1669 } 1670 wait_on_page_writeback(page); 1671 1672 if (shmem_should_replace_page(page, gfp)) { 1673 error = shmem_replace_page(&page, gfp, info, index); 1674 if (error) 1675 goto failed; 1676 } 1677 1678 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1679 false); 1680 if (!error) { 1681 error = shmem_add_to_page_cache(page, mapping, index, 1682 swp_to_radix_entry(swap)); 1683 /* 1684 * We already confirmed swap under page lock, and make 1685 * no memory allocation here, so usually no possibility 1686 * of error; but free_swap_and_cache() only trylocks a 1687 * page, so it is just possible that the entry has been 1688 * truncated or holepunched since swap was confirmed. 1689 * shmem_undo_range() will have done some of the 1690 * unaccounting, now delete_from_swap_cache() will do 1691 * the rest. 1692 * Reset swap.val? No, leave it so "failed" goes back to 1693 * "repeat": reading a hole and writing should succeed. 1694 */ 1695 if (error) { 1696 mem_cgroup_cancel_charge(page, memcg, false); 1697 delete_from_swap_cache(page); 1698 } 1699 } 1700 if (error) 1701 goto failed; 1702 1703 mem_cgroup_commit_charge(page, memcg, true, false); 1704 1705 spin_lock_irq(&info->lock); 1706 info->swapped--; 1707 shmem_recalc_inode(inode); 1708 spin_unlock_irq(&info->lock); 1709 1710 if (sgp == SGP_WRITE) 1711 mark_page_accessed(page); 1712 1713 delete_from_swap_cache(page); 1714 set_page_dirty(page); 1715 swap_free(swap); 1716 1717 } else { 1718 if (vma && userfaultfd_missing(vma)) { 1719 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1720 return 0; 1721 } 1722 1723 /* shmem_symlink() */ 1724 if (mapping->a_ops != &shmem_aops) 1725 goto alloc_nohuge; 1726 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1727 goto alloc_nohuge; 1728 if (shmem_huge == SHMEM_HUGE_FORCE) 1729 goto alloc_huge; 1730 switch (sbinfo->huge) { 1731 loff_t i_size; 1732 pgoff_t off; 1733 case SHMEM_HUGE_NEVER: 1734 goto alloc_nohuge; 1735 case SHMEM_HUGE_WITHIN_SIZE: 1736 off = round_up(index, HPAGE_PMD_NR); 1737 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1738 if (i_size >= HPAGE_PMD_SIZE && 1739 i_size >> PAGE_SHIFT >= off) 1740 goto alloc_huge; 1741 /* fallthrough */ 1742 case SHMEM_HUGE_ADVISE: 1743 if (sgp_huge == SGP_HUGE) 1744 goto alloc_huge; 1745 /* TODO: implement fadvise() hints */ 1746 goto alloc_nohuge; 1747 } 1748 1749 alloc_huge: 1750 page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1751 index, true); 1752 if (IS_ERR(page)) { 1753 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1754 index, false); 1755 } 1756 if (IS_ERR(page)) { 1757 int retry = 5; 1758 error = PTR_ERR(page); 1759 page = NULL; 1760 if (error != -ENOSPC) 1761 goto failed; 1762 /* 1763 * Try to reclaim some spece by splitting a huge page 1764 * beyond i_size on the filesystem. 1765 */ 1766 while (retry--) { 1767 int ret; 1768 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1769 if (ret == SHRINK_STOP) 1770 break; 1771 if (ret) 1772 goto alloc_nohuge; 1773 } 1774 goto failed; 1775 } 1776 1777 if (PageTransHuge(page)) 1778 hindex = round_down(index, HPAGE_PMD_NR); 1779 else 1780 hindex = index; 1781 1782 if (sgp == SGP_WRITE) 1783 __SetPageReferenced(page); 1784 1785 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1786 PageTransHuge(page)); 1787 if (error) 1788 goto unacct; 1789 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1790 compound_order(page)); 1791 if (!error) { 1792 error = shmem_add_to_page_cache(page, mapping, hindex, 1793 NULL); 1794 radix_tree_preload_end(); 1795 } 1796 if (error) { 1797 mem_cgroup_cancel_charge(page, memcg, 1798 PageTransHuge(page)); 1799 goto unacct; 1800 } 1801 mem_cgroup_commit_charge(page, memcg, false, 1802 PageTransHuge(page)); 1803 lru_cache_add_anon(page); 1804 1805 spin_lock_irq(&info->lock); 1806 info->alloced += 1 << compound_order(page); 1807 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1808 shmem_recalc_inode(inode); 1809 spin_unlock_irq(&info->lock); 1810 alloced = true; 1811 1812 if (PageTransHuge(page) && 1813 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1814 hindex + HPAGE_PMD_NR - 1) { 1815 /* 1816 * Part of the huge page is beyond i_size: subject 1817 * to shrink under memory pressure. 1818 */ 1819 spin_lock(&sbinfo->shrinklist_lock); 1820 if (list_empty(&info->shrinklist)) { 1821 list_add_tail(&info->shrinklist, 1822 &sbinfo->shrinklist); 1823 sbinfo->shrinklist_len++; 1824 } 1825 spin_unlock(&sbinfo->shrinklist_lock); 1826 } 1827 1828 /* 1829 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1830 */ 1831 if (sgp == SGP_FALLOC) 1832 sgp = SGP_WRITE; 1833 clear: 1834 /* 1835 * Let SGP_WRITE caller clear ends if write does not fill page; 1836 * but SGP_FALLOC on a page fallocated earlier must initialize 1837 * it now, lest undo on failure cancel our earlier guarantee. 1838 */ 1839 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1840 struct page *head = compound_head(page); 1841 int i; 1842 1843 for (i = 0; i < (1 << compound_order(head)); i++) { 1844 clear_highpage(head + i); 1845 flush_dcache_page(head + i); 1846 } 1847 SetPageUptodate(head); 1848 } 1849 } 1850 1851 /* Perhaps the file has been truncated since we checked */ 1852 if (sgp <= SGP_CACHE && 1853 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1854 if (alloced) { 1855 ClearPageDirty(page); 1856 delete_from_page_cache(page); 1857 spin_lock_irq(&info->lock); 1858 shmem_recalc_inode(inode); 1859 spin_unlock_irq(&info->lock); 1860 } 1861 error = -EINVAL; 1862 goto unlock; 1863 } 1864 *pagep = page + index - hindex; 1865 return 0; 1866 1867 /* 1868 * Error recovery. 1869 */ 1870 unacct: 1871 if (sbinfo->max_blocks) 1872 percpu_counter_sub(&sbinfo->used_blocks, 1873 1 << compound_order(page)); 1874 shmem_unacct_blocks(info->flags, 1 << compound_order(page)); 1875 1876 if (PageTransHuge(page)) { 1877 unlock_page(page); 1878 put_page(page); 1879 goto alloc_nohuge; 1880 } 1881 failed: 1882 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1883 error = -EEXIST; 1884 unlock: 1885 if (page) { 1886 unlock_page(page); 1887 put_page(page); 1888 } 1889 if (error == -ENOSPC && !once++) { 1890 spin_lock_irq(&info->lock); 1891 shmem_recalc_inode(inode); 1892 spin_unlock_irq(&info->lock); 1893 goto repeat; 1894 } 1895 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1896 goto repeat; 1897 return error; 1898 } 1899 1900 /* 1901 * This is like autoremove_wake_function, but it removes the wait queue 1902 * entry unconditionally - even if something else had already woken the 1903 * target. 1904 */ 1905 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) 1906 { 1907 int ret = default_wake_function(wait, mode, sync, key); 1908 list_del_init(&wait->task_list); 1909 return ret; 1910 } 1911 1912 static int shmem_fault(struct vm_fault *vmf) 1913 { 1914 struct vm_area_struct *vma = vmf->vma; 1915 struct inode *inode = file_inode(vma->vm_file); 1916 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1917 enum sgp_type sgp; 1918 int error; 1919 int ret = VM_FAULT_LOCKED; 1920 1921 /* 1922 * Trinity finds that probing a hole which tmpfs is punching can 1923 * prevent the hole-punch from ever completing: which in turn 1924 * locks writers out with its hold on i_mutex. So refrain from 1925 * faulting pages into the hole while it's being punched. Although 1926 * shmem_undo_range() does remove the additions, it may be unable to 1927 * keep up, as each new page needs its own unmap_mapping_range() call, 1928 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1929 * 1930 * It does not matter if we sometimes reach this check just before the 1931 * hole-punch begins, so that one fault then races with the punch: 1932 * we just need to make racing faults a rare case. 1933 * 1934 * The implementation below would be much simpler if we just used a 1935 * standard mutex or completion: but we cannot take i_mutex in fault, 1936 * and bloating every shmem inode for this unlikely case would be sad. 1937 */ 1938 if (unlikely(inode->i_private)) { 1939 struct shmem_falloc *shmem_falloc; 1940 1941 spin_lock(&inode->i_lock); 1942 shmem_falloc = inode->i_private; 1943 if (shmem_falloc && 1944 shmem_falloc->waitq && 1945 vmf->pgoff >= shmem_falloc->start && 1946 vmf->pgoff < shmem_falloc->next) { 1947 wait_queue_head_t *shmem_falloc_waitq; 1948 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1949 1950 ret = VM_FAULT_NOPAGE; 1951 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1952 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1953 /* It's polite to up mmap_sem if we can */ 1954 up_read(&vma->vm_mm->mmap_sem); 1955 ret = VM_FAULT_RETRY; 1956 } 1957 1958 shmem_falloc_waitq = shmem_falloc->waitq; 1959 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1960 TASK_UNINTERRUPTIBLE); 1961 spin_unlock(&inode->i_lock); 1962 schedule(); 1963 1964 /* 1965 * shmem_falloc_waitq points into the shmem_fallocate() 1966 * stack of the hole-punching task: shmem_falloc_waitq 1967 * is usually invalid by the time we reach here, but 1968 * finish_wait() does not dereference it in that case; 1969 * though i_lock needed lest racing with wake_up_all(). 1970 */ 1971 spin_lock(&inode->i_lock); 1972 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1973 spin_unlock(&inode->i_lock); 1974 return ret; 1975 } 1976 spin_unlock(&inode->i_lock); 1977 } 1978 1979 sgp = SGP_CACHE; 1980 if (vma->vm_flags & VM_HUGEPAGE) 1981 sgp = SGP_HUGE; 1982 else if (vma->vm_flags & VM_NOHUGEPAGE) 1983 sgp = SGP_NOHUGE; 1984 1985 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 1986 gfp, vma, vmf, &ret); 1987 if (error) 1988 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1989 return ret; 1990 } 1991 1992 unsigned long shmem_get_unmapped_area(struct file *file, 1993 unsigned long uaddr, unsigned long len, 1994 unsigned long pgoff, unsigned long flags) 1995 { 1996 unsigned long (*get_area)(struct file *, 1997 unsigned long, unsigned long, unsigned long, unsigned long); 1998 unsigned long addr; 1999 unsigned long offset; 2000 unsigned long inflated_len; 2001 unsigned long inflated_addr; 2002 unsigned long inflated_offset; 2003 2004 if (len > TASK_SIZE) 2005 return -ENOMEM; 2006 2007 get_area = current->mm->get_unmapped_area; 2008 addr = get_area(file, uaddr, len, pgoff, flags); 2009 2010 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2011 return addr; 2012 if (IS_ERR_VALUE(addr)) 2013 return addr; 2014 if (addr & ~PAGE_MASK) 2015 return addr; 2016 if (addr > TASK_SIZE - len) 2017 return addr; 2018 2019 if (shmem_huge == SHMEM_HUGE_DENY) 2020 return addr; 2021 if (len < HPAGE_PMD_SIZE) 2022 return addr; 2023 if (flags & MAP_FIXED) 2024 return addr; 2025 /* 2026 * Our priority is to support MAP_SHARED mapped hugely; 2027 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2028 * But if caller specified an address hint, respect that as before. 2029 */ 2030 if (uaddr) 2031 return addr; 2032 2033 if (shmem_huge != SHMEM_HUGE_FORCE) { 2034 struct super_block *sb; 2035 2036 if (file) { 2037 VM_BUG_ON(file->f_op != &shmem_file_operations); 2038 sb = file_inode(file)->i_sb; 2039 } else { 2040 /* 2041 * Called directly from mm/mmap.c, or drivers/char/mem.c 2042 * for "/dev/zero", to create a shared anonymous object. 2043 */ 2044 if (IS_ERR(shm_mnt)) 2045 return addr; 2046 sb = shm_mnt->mnt_sb; 2047 } 2048 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2049 return addr; 2050 } 2051 2052 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2053 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2054 return addr; 2055 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2056 return addr; 2057 2058 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2059 if (inflated_len > TASK_SIZE) 2060 return addr; 2061 if (inflated_len < len) 2062 return addr; 2063 2064 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2065 if (IS_ERR_VALUE(inflated_addr)) 2066 return addr; 2067 if (inflated_addr & ~PAGE_MASK) 2068 return addr; 2069 2070 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2071 inflated_addr += offset - inflated_offset; 2072 if (inflated_offset > offset) 2073 inflated_addr += HPAGE_PMD_SIZE; 2074 2075 if (inflated_addr > TASK_SIZE - len) 2076 return addr; 2077 return inflated_addr; 2078 } 2079 2080 #ifdef CONFIG_NUMA 2081 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2082 { 2083 struct inode *inode = file_inode(vma->vm_file); 2084 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2085 } 2086 2087 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2088 unsigned long addr) 2089 { 2090 struct inode *inode = file_inode(vma->vm_file); 2091 pgoff_t index; 2092 2093 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2094 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2095 } 2096 #endif 2097 2098 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2099 { 2100 struct inode *inode = file_inode(file); 2101 struct shmem_inode_info *info = SHMEM_I(inode); 2102 int retval = -ENOMEM; 2103 2104 spin_lock_irq(&info->lock); 2105 if (lock && !(info->flags & VM_LOCKED)) { 2106 if (!user_shm_lock(inode->i_size, user)) 2107 goto out_nomem; 2108 info->flags |= VM_LOCKED; 2109 mapping_set_unevictable(file->f_mapping); 2110 } 2111 if (!lock && (info->flags & VM_LOCKED) && user) { 2112 user_shm_unlock(inode->i_size, user); 2113 info->flags &= ~VM_LOCKED; 2114 mapping_clear_unevictable(file->f_mapping); 2115 } 2116 retval = 0; 2117 2118 out_nomem: 2119 spin_unlock_irq(&info->lock); 2120 return retval; 2121 } 2122 2123 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2124 { 2125 file_accessed(file); 2126 vma->vm_ops = &shmem_vm_ops; 2127 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2128 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2129 (vma->vm_end & HPAGE_PMD_MASK)) { 2130 khugepaged_enter(vma, vma->vm_flags); 2131 } 2132 return 0; 2133 } 2134 2135 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2136 umode_t mode, dev_t dev, unsigned long flags) 2137 { 2138 struct inode *inode; 2139 struct shmem_inode_info *info; 2140 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2141 2142 if (shmem_reserve_inode(sb)) 2143 return NULL; 2144 2145 inode = new_inode(sb); 2146 if (inode) { 2147 inode->i_ino = get_next_ino(); 2148 inode_init_owner(inode, dir, mode); 2149 inode->i_blocks = 0; 2150 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2151 inode->i_generation = get_seconds(); 2152 info = SHMEM_I(inode); 2153 memset(info, 0, (char *)inode - (char *)info); 2154 spin_lock_init(&info->lock); 2155 info->seals = F_SEAL_SEAL; 2156 info->flags = flags & VM_NORESERVE; 2157 INIT_LIST_HEAD(&info->shrinklist); 2158 INIT_LIST_HEAD(&info->swaplist); 2159 simple_xattrs_init(&info->xattrs); 2160 cache_no_acl(inode); 2161 2162 switch (mode & S_IFMT) { 2163 default: 2164 inode->i_op = &shmem_special_inode_operations; 2165 init_special_inode(inode, mode, dev); 2166 break; 2167 case S_IFREG: 2168 inode->i_mapping->a_ops = &shmem_aops; 2169 inode->i_op = &shmem_inode_operations; 2170 inode->i_fop = &shmem_file_operations; 2171 mpol_shared_policy_init(&info->policy, 2172 shmem_get_sbmpol(sbinfo)); 2173 break; 2174 case S_IFDIR: 2175 inc_nlink(inode); 2176 /* Some things misbehave if size == 0 on a directory */ 2177 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2178 inode->i_op = &shmem_dir_inode_operations; 2179 inode->i_fop = &simple_dir_operations; 2180 break; 2181 case S_IFLNK: 2182 /* 2183 * Must not load anything in the rbtree, 2184 * mpol_free_shared_policy will not be called. 2185 */ 2186 mpol_shared_policy_init(&info->policy, NULL); 2187 break; 2188 } 2189 } else 2190 shmem_free_inode(sb); 2191 return inode; 2192 } 2193 2194 bool shmem_mapping(struct address_space *mapping) 2195 { 2196 return mapping->a_ops == &shmem_aops; 2197 } 2198 2199 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2200 pmd_t *dst_pmd, 2201 struct vm_area_struct *dst_vma, 2202 unsigned long dst_addr, 2203 unsigned long src_addr, 2204 struct page **pagep) 2205 { 2206 struct inode *inode = file_inode(dst_vma->vm_file); 2207 struct shmem_inode_info *info = SHMEM_I(inode); 2208 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2209 struct address_space *mapping = inode->i_mapping; 2210 gfp_t gfp = mapping_gfp_mask(mapping); 2211 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2212 struct mem_cgroup *memcg; 2213 spinlock_t *ptl; 2214 void *page_kaddr; 2215 struct page *page; 2216 pte_t _dst_pte, *dst_pte; 2217 int ret; 2218 2219 ret = -ENOMEM; 2220 if (shmem_acct_block(info->flags, 1)) 2221 goto out; 2222 if (sbinfo->max_blocks) { 2223 if (percpu_counter_compare(&sbinfo->used_blocks, 2224 sbinfo->max_blocks) >= 0) 2225 goto out_unacct_blocks; 2226 percpu_counter_inc(&sbinfo->used_blocks); 2227 } 2228 2229 if (!*pagep) { 2230 page = shmem_alloc_page(gfp, info, pgoff); 2231 if (!page) 2232 goto out_dec_used_blocks; 2233 2234 page_kaddr = kmap_atomic(page); 2235 ret = copy_from_user(page_kaddr, (const void __user *)src_addr, 2236 PAGE_SIZE); 2237 kunmap_atomic(page_kaddr); 2238 2239 /* fallback to copy_from_user outside mmap_sem */ 2240 if (unlikely(ret)) { 2241 *pagep = page; 2242 if (sbinfo->max_blocks) 2243 percpu_counter_add(&sbinfo->used_blocks, -1); 2244 shmem_unacct_blocks(info->flags, 1); 2245 /* don't free the page */ 2246 return -EFAULT; 2247 } 2248 } else { 2249 page = *pagep; 2250 *pagep = NULL; 2251 } 2252 2253 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2254 __SetPageLocked(page); 2255 __SetPageSwapBacked(page); 2256 __SetPageUptodate(page); 2257 2258 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false); 2259 if (ret) 2260 goto out_release; 2261 2262 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 2263 if (!ret) { 2264 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); 2265 radix_tree_preload_end(); 2266 } 2267 if (ret) 2268 goto out_release_uncharge; 2269 2270 mem_cgroup_commit_charge(page, memcg, false, false); 2271 2272 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2273 if (dst_vma->vm_flags & VM_WRITE) 2274 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2275 2276 ret = -EEXIST; 2277 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2278 if (!pte_none(*dst_pte)) 2279 goto out_release_uncharge_unlock; 2280 2281 lru_cache_add_anon(page); 2282 2283 spin_lock(&info->lock); 2284 info->alloced++; 2285 inode->i_blocks += BLOCKS_PER_PAGE; 2286 shmem_recalc_inode(inode); 2287 spin_unlock(&info->lock); 2288 2289 inc_mm_counter(dst_mm, mm_counter_file(page)); 2290 page_add_file_rmap(page, false); 2291 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2292 2293 /* No need to invalidate - it was non-present before */ 2294 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2295 unlock_page(page); 2296 pte_unmap_unlock(dst_pte, ptl); 2297 ret = 0; 2298 out: 2299 return ret; 2300 out_release_uncharge_unlock: 2301 pte_unmap_unlock(dst_pte, ptl); 2302 out_release_uncharge: 2303 mem_cgroup_cancel_charge(page, memcg, false); 2304 out_release: 2305 unlock_page(page); 2306 put_page(page); 2307 out_dec_used_blocks: 2308 if (sbinfo->max_blocks) 2309 percpu_counter_add(&sbinfo->used_blocks, -1); 2310 out_unacct_blocks: 2311 shmem_unacct_blocks(info->flags, 1); 2312 goto out; 2313 } 2314 2315 #ifdef CONFIG_TMPFS 2316 static const struct inode_operations shmem_symlink_inode_operations; 2317 static const struct inode_operations shmem_short_symlink_operations; 2318 2319 #ifdef CONFIG_TMPFS_XATTR 2320 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2321 #else 2322 #define shmem_initxattrs NULL 2323 #endif 2324 2325 static int 2326 shmem_write_begin(struct file *file, struct address_space *mapping, 2327 loff_t pos, unsigned len, unsigned flags, 2328 struct page **pagep, void **fsdata) 2329 { 2330 struct inode *inode = mapping->host; 2331 struct shmem_inode_info *info = SHMEM_I(inode); 2332 pgoff_t index = pos >> PAGE_SHIFT; 2333 2334 /* i_mutex is held by caller */ 2335 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2336 if (info->seals & F_SEAL_WRITE) 2337 return -EPERM; 2338 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2339 return -EPERM; 2340 } 2341 2342 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2343 } 2344 2345 static int 2346 shmem_write_end(struct file *file, struct address_space *mapping, 2347 loff_t pos, unsigned len, unsigned copied, 2348 struct page *page, void *fsdata) 2349 { 2350 struct inode *inode = mapping->host; 2351 2352 if (pos + copied > inode->i_size) 2353 i_size_write(inode, pos + copied); 2354 2355 if (!PageUptodate(page)) { 2356 struct page *head = compound_head(page); 2357 if (PageTransCompound(page)) { 2358 int i; 2359 2360 for (i = 0; i < HPAGE_PMD_NR; i++) { 2361 if (head + i == page) 2362 continue; 2363 clear_highpage(head + i); 2364 flush_dcache_page(head + i); 2365 } 2366 } 2367 if (copied < PAGE_SIZE) { 2368 unsigned from = pos & (PAGE_SIZE - 1); 2369 zero_user_segments(page, 0, from, 2370 from + copied, PAGE_SIZE); 2371 } 2372 SetPageUptodate(head); 2373 } 2374 set_page_dirty(page); 2375 unlock_page(page); 2376 put_page(page); 2377 2378 return copied; 2379 } 2380 2381 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2382 { 2383 struct file *file = iocb->ki_filp; 2384 struct inode *inode = file_inode(file); 2385 struct address_space *mapping = inode->i_mapping; 2386 pgoff_t index; 2387 unsigned long offset; 2388 enum sgp_type sgp = SGP_READ; 2389 int error = 0; 2390 ssize_t retval = 0; 2391 loff_t *ppos = &iocb->ki_pos; 2392 2393 /* 2394 * Might this read be for a stacking filesystem? Then when reading 2395 * holes of a sparse file, we actually need to allocate those pages, 2396 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2397 */ 2398 if (!iter_is_iovec(to)) 2399 sgp = SGP_CACHE; 2400 2401 index = *ppos >> PAGE_SHIFT; 2402 offset = *ppos & ~PAGE_MASK; 2403 2404 for (;;) { 2405 struct page *page = NULL; 2406 pgoff_t end_index; 2407 unsigned long nr, ret; 2408 loff_t i_size = i_size_read(inode); 2409 2410 end_index = i_size >> PAGE_SHIFT; 2411 if (index > end_index) 2412 break; 2413 if (index == end_index) { 2414 nr = i_size & ~PAGE_MASK; 2415 if (nr <= offset) 2416 break; 2417 } 2418 2419 error = shmem_getpage(inode, index, &page, sgp); 2420 if (error) { 2421 if (error == -EINVAL) 2422 error = 0; 2423 break; 2424 } 2425 if (page) { 2426 if (sgp == SGP_CACHE) 2427 set_page_dirty(page); 2428 unlock_page(page); 2429 } 2430 2431 /* 2432 * We must evaluate after, since reads (unlike writes) 2433 * are called without i_mutex protection against truncate 2434 */ 2435 nr = PAGE_SIZE; 2436 i_size = i_size_read(inode); 2437 end_index = i_size >> PAGE_SHIFT; 2438 if (index == end_index) { 2439 nr = i_size & ~PAGE_MASK; 2440 if (nr <= offset) { 2441 if (page) 2442 put_page(page); 2443 break; 2444 } 2445 } 2446 nr -= offset; 2447 2448 if (page) { 2449 /* 2450 * If users can be writing to this page using arbitrary 2451 * virtual addresses, take care about potential aliasing 2452 * before reading the page on the kernel side. 2453 */ 2454 if (mapping_writably_mapped(mapping)) 2455 flush_dcache_page(page); 2456 /* 2457 * Mark the page accessed if we read the beginning. 2458 */ 2459 if (!offset) 2460 mark_page_accessed(page); 2461 } else { 2462 page = ZERO_PAGE(0); 2463 get_page(page); 2464 } 2465 2466 /* 2467 * Ok, we have the page, and it's up-to-date, so 2468 * now we can copy it to user space... 2469 */ 2470 ret = copy_page_to_iter(page, offset, nr, to); 2471 retval += ret; 2472 offset += ret; 2473 index += offset >> PAGE_SHIFT; 2474 offset &= ~PAGE_MASK; 2475 2476 put_page(page); 2477 if (!iov_iter_count(to)) 2478 break; 2479 if (ret < nr) { 2480 error = -EFAULT; 2481 break; 2482 } 2483 cond_resched(); 2484 } 2485 2486 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2487 file_accessed(file); 2488 return retval ? retval : error; 2489 } 2490 2491 /* 2492 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2493 */ 2494 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2495 pgoff_t index, pgoff_t end, int whence) 2496 { 2497 struct page *page; 2498 struct pagevec pvec; 2499 pgoff_t indices[PAGEVEC_SIZE]; 2500 bool done = false; 2501 int i; 2502 2503 pagevec_init(&pvec, 0); 2504 pvec.nr = 1; /* start small: we may be there already */ 2505 while (!done) { 2506 pvec.nr = find_get_entries(mapping, index, 2507 pvec.nr, pvec.pages, indices); 2508 if (!pvec.nr) { 2509 if (whence == SEEK_DATA) 2510 index = end; 2511 break; 2512 } 2513 for (i = 0; i < pvec.nr; i++, index++) { 2514 if (index < indices[i]) { 2515 if (whence == SEEK_HOLE) { 2516 done = true; 2517 break; 2518 } 2519 index = indices[i]; 2520 } 2521 page = pvec.pages[i]; 2522 if (page && !radix_tree_exceptional_entry(page)) { 2523 if (!PageUptodate(page)) 2524 page = NULL; 2525 } 2526 if (index >= end || 2527 (page && whence == SEEK_DATA) || 2528 (!page && whence == SEEK_HOLE)) { 2529 done = true; 2530 break; 2531 } 2532 } 2533 pagevec_remove_exceptionals(&pvec); 2534 pagevec_release(&pvec); 2535 pvec.nr = PAGEVEC_SIZE; 2536 cond_resched(); 2537 } 2538 return index; 2539 } 2540 2541 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2542 { 2543 struct address_space *mapping = file->f_mapping; 2544 struct inode *inode = mapping->host; 2545 pgoff_t start, end; 2546 loff_t new_offset; 2547 2548 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2549 return generic_file_llseek_size(file, offset, whence, 2550 MAX_LFS_FILESIZE, i_size_read(inode)); 2551 inode_lock(inode); 2552 /* We're holding i_mutex so we can access i_size directly */ 2553 2554 if (offset < 0) 2555 offset = -EINVAL; 2556 else if (offset >= inode->i_size) 2557 offset = -ENXIO; 2558 else { 2559 start = offset >> PAGE_SHIFT; 2560 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2561 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2562 new_offset <<= PAGE_SHIFT; 2563 if (new_offset > offset) { 2564 if (new_offset < inode->i_size) 2565 offset = new_offset; 2566 else if (whence == SEEK_DATA) 2567 offset = -ENXIO; 2568 else 2569 offset = inode->i_size; 2570 } 2571 } 2572 2573 if (offset >= 0) 2574 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2575 inode_unlock(inode); 2576 return offset; 2577 } 2578 2579 /* 2580 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2581 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2582 */ 2583 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2584 #define LAST_SCAN 4 /* about 150ms max */ 2585 2586 static void shmem_tag_pins(struct address_space *mapping) 2587 { 2588 struct radix_tree_iter iter; 2589 void **slot; 2590 pgoff_t start; 2591 struct page *page; 2592 2593 lru_add_drain(); 2594 start = 0; 2595 rcu_read_lock(); 2596 2597 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2598 page = radix_tree_deref_slot(slot); 2599 if (!page || radix_tree_exception(page)) { 2600 if (radix_tree_deref_retry(page)) { 2601 slot = radix_tree_iter_retry(&iter); 2602 continue; 2603 } 2604 } else if (page_count(page) - page_mapcount(page) > 1) { 2605 spin_lock_irq(&mapping->tree_lock); 2606 radix_tree_tag_set(&mapping->page_tree, iter.index, 2607 SHMEM_TAG_PINNED); 2608 spin_unlock_irq(&mapping->tree_lock); 2609 } 2610 2611 if (need_resched()) { 2612 slot = radix_tree_iter_resume(slot, &iter); 2613 cond_resched_rcu(); 2614 } 2615 } 2616 rcu_read_unlock(); 2617 } 2618 2619 /* 2620 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2621 * via get_user_pages(), drivers might have some pending I/O without any active 2622 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2623 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2624 * them to be dropped. 2625 * The caller must guarantee that no new user will acquire writable references 2626 * to those pages to avoid races. 2627 */ 2628 static int shmem_wait_for_pins(struct address_space *mapping) 2629 { 2630 struct radix_tree_iter iter; 2631 void **slot; 2632 pgoff_t start; 2633 struct page *page; 2634 int error, scan; 2635 2636 shmem_tag_pins(mapping); 2637 2638 error = 0; 2639 for (scan = 0; scan <= LAST_SCAN; scan++) { 2640 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 2641 break; 2642 2643 if (!scan) 2644 lru_add_drain_all(); 2645 else if (schedule_timeout_killable((HZ << scan) / 200)) 2646 scan = LAST_SCAN; 2647 2648 start = 0; 2649 rcu_read_lock(); 2650 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2651 start, SHMEM_TAG_PINNED) { 2652 2653 page = radix_tree_deref_slot(slot); 2654 if (radix_tree_exception(page)) { 2655 if (radix_tree_deref_retry(page)) { 2656 slot = radix_tree_iter_retry(&iter); 2657 continue; 2658 } 2659 2660 page = NULL; 2661 } 2662 2663 if (page && 2664 page_count(page) - page_mapcount(page) != 1) { 2665 if (scan < LAST_SCAN) 2666 goto continue_resched; 2667 2668 /* 2669 * On the last scan, we clean up all those tags 2670 * we inserted; but make a note that we still 2671 * found pages pinned. 2672 */ 2673 error = -EBUSY; 2674 } 2675 2676 spin_lock_irq(&mapping->tree_lock); 2677 radix_tree_tag_clear(&mapping->page_tree, 2678 iter.index, SHMEM_TAG_PINNED); 2679 spin_unlock_irq(&mapping->tree_lock); 2680 continue_resched: 2681 if (need_resched()) { 2682 slot = radix_tree_iter_resume(slot, &iter); 2683 cond_resched_rcu(); 2684 } 2685 } 2686 rcu_read_unlock(); 2687 } 2688 2689 return error; 2690 } 2691 2692 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2693 F_SEAL_SHRINK | \ 2694 F_SEAL_GROW | \ 2695 F_SEAL_WRITE) 2696 2697 int shmem_add_seals(struct file *file, unsigned int seals) 2698 { 2699 struct inode *inode = file_inode(file); 2700 struct shmem_inode_info *info = SHMEM_I(inode); 2701 int error; 2702 2703 /* 2704 * SEALING 2705 * Sealing allows multiple parties to share a shmem-file but restrict 2706 * access to a specific subset of file operations. Seals can only be 2707 * added, but never removed. This way, mutually untrusted parties can 2708 * share common memory regions with a well-defined policy. A malicious 2709 * peer can thus never perform unwanted operations on a shared object. 2710 * 2711 * Seals are only supported on special shmem-files and always affect 2712 * the whole underlying inode. Once a seal is set, it may prevent some 2713 * kinds of access to the file. Currently, the following seals are 2714 * defined: 2715 * SEAL_SEAL: Prevent further seals from being set on this file 2716 * SEAL_SHRINK: Prevent the file from shrinking 2717 * SEAL_GROW: Prevent the file from growing 2718 * SEAL_WRITE: Prevent write access to the file 2719 * 2720 * As we don't require any trust relationship between two parties, we 2721 * must prevent seals from being removed. Therefore, sealing a file 2722 * only adds a given set of seals to the file, it never touches 2723 * existing seals. Furthermore, the "setting seals"-operation can be 2724 * sealed itself, which basically prevents any further seal from being 2725 * added. 2726 * 2727 * Semantics of sealing are only defined on volatile files. Only 2728 * anonymous shmem files support sealing. More importantly, seals are 2729 * never written to disk. Therefore, there's no plan to support it on 2730 * other file types. 2731 */ 2732 2733 if (file->f_op != &shmem_file_operations) 2734 return -EINVAL; 2735 if (!(file->f_mode & FMODE_WRITE)) 2736 return -EPERM; 2737 if (seals & ~(unsigned int)F_ALL_SEALS) 2738 return -EINVAL; 2739 2740 inode_lock(inode); 2741 2742 if (info->seals & F_SEAL_SEAL) { 2743 error = -EPERM; 2744 goto unlock; 2745 } 2746 2747 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2748 error = mapping_deny_writable(file->f_mapping); 2749 if (error) 2750 goto unlock; 2751 2752 error = shmem_wait_for_pins(file->f_mapping); 2753 if (error) { 2754 mapping_allow_writable(file->f_mapping); 2755 goto unlock; 2756 } 2757 } 2758 2759 info->seals |= seals; 2760 error = 0; 2761 2762 unlock: 2763 inode_unlock(inode); 2764 return error; 2765 } 2766 EXPORT_SYMBOL_GPL(shmem_add_seals); 2767 2768 int shmem_get_seals(struct file *file) 2769 { 2770 if (file->f_op != &shmem_file_operations) 2771 return -EINVAL; 2772 2773 return SHMEM_I(file_inode(file))->seals; 2774 } 2775 EXPORT_SYMBOL_GPL(shmem_get_seals); 2776 2777 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2778 { 2779 long error; 2780 2781 switch (cmd) { 2782 case F_ADD_SEALS: 2783 /* disallow upper 32bit */ 2784 if (arg > UINT_MAX) 2785 return -EINVAL; 2786 2787 error = shmem_add_seals(file, arg); 2788 break; 2789 case F_GET_SEALS: 2790 error = shmem_get_seals(file); 2791 break; 2792 default: 2793 error = -EINVAL; 2794 break; 2795 } 2796 2797 return error; 2798 } 2799 2800 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2801 loff_t len) 2802 { 2803 struct inode *inode = file_inode(file); 2804 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2805 struct shmem_inode_info *info = SHMEM_I(inode); 2806 struct shmem_falloc shmem_falloc; 2807 pgoff_t start, index, end; 2808 int error; 2809 2810 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2811 return -EOPNOTSUPP; 2812 2813 inode_lock(inode); 2814 2815 if (mode & FALLOC_FL_PUNCH_HOLE) { 2816 struct address_space *mapping = file->f_mapping; 2817 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2818 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2819 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2820 2821 /* protected by i_mutex */ 2822 if (info->seals & F_SEAL_WRITE) { 2823 error = -EPERM; 2824 goto out; 2825 } 2826 2827 shmem_falloc.waitq = &shmem_falloc_waitq; 2828 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2829 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2830 spin_lock(&inode->i_lock); 2831 inode->i_private = &shmem_falloc; 2832 spin_unlock(&inode->i_lock); 2833 2834 if ((u64)unmap_end > (u64)unmap_start) 2835 unmap_mapping_range(mapping, unmap_start, 2836 1 + unmap_end - unmap_start, 0); 2837 shmem_truncate_range(inode, offset, offset + len - 1); 2838 /* No need to unmap again: hole-punching leaves COWed pages */ 2839 2840 spin_lock(&inode->i_lock); 2841 inode->i_private = NULL; 2842 wake_up_all(&shmem_falloc_waitq); 2843 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list)); 2844 spin_unlock(&inode->i_lock); 2845 error = 0; 2846 goto out; 2847 } 2848 2849 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2850 error = inode_newsize_ok(inode, offset + len); 2851 if (error) 2852 goto out; 2853 2854 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2855 error = -EPERM; 2856 goto out; 2857 } 2858 2859 start = offset >> PAGE_SHIFT; 2860 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2861 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2862 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2863 error = -ENOSPC; 2864 goto out; 2865 } 2866 2867 shmem_falloc.waitq = NULL; 2868 shmem_falloc.start = start; 2869 shmem_falloc.next = start; 2870 shmem_falloc.nr_falloced = 0; 2871 shmem_falloc.nr_unswapped = 0; 2872 spin_lock(&inode->i_lock); 2873 inode->i_private = &shmem_falloc; 2874 spin_unlock(&inode->i_lock); 2875 2876 for (index = start; index < end; index++) { 2877 struct page *page; 2878 2879 /* 2880 * Good, the fallocate(2) manpage permits EINTR: we may have 2881 * been interrupted because we are using up too much memory. 2882 */ 2883 if (signal_pending(current)) 2884 error = -EINTR; 2885 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2886 error = -ENOMEM; 2887 else 2888 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2889 if (error) { 2890 /* Remove the !PageUptodate pages we added */ 2891 if (index > start) { 2892 shmem_undo_range(inode, 2893 (loff_t)start << PAGE_SHIFT, 2894 ((loff_t)index << PAGE_SHIFT) - 1, true); 2895 } 2896 goto undone; 2897 } 2898 2899 /* 2900 * Inform shmem_writepage() how far we have reached. 2901 * No need for lock or barrier: we have the page lock. 2902 */ 2903 shmem_falloc.next++; 2904 if (!PageUptodate(page)) 2905 shmem_falloc.nr_falloced++; 2906 2907 /* 2908 * If !PageUptodate, leave it that way so that freeable pages 2909 * can be recognized if we need to rollback on error later. 2910 * But set_page_dirty so that memory pressure will swap rather 2911 * than free the pages we are allocating (and SGP_CACHE pages 2912 * might still be clean: we now need to mark those dirty too). 2913 */ 2914 set_page_dirty(page); 2915 unlock_page(page); 2916 put_page(page); 2917 cond_resched(); 2918 } 2919 2920 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2921 i_size_write(inode, offset + len); 2922 inode->i_ctime = current_time(inode); 2923 undone: 2924 spin_lock(&inode->i_lock); 2925 inode->i_private = NULL; 2926 spin_unlock(&inode->i_lock); 2927 out: 2928 inode_unlock(inode); 2929 return error; 2930 } 2931 2932 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2933 { 2934 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2935 2936 buf->f_type = TMPFS_MAGIC; 2937 buf->f_bsize = PAGE_SIZE; 2938 buf->f_namelen = NAME_MAX; 2939 if (sbinfo->max_blocks) { 2940 buf->f_blocks = sbinfo->max_blocks; 2941 buf->f_bavail = 2942 buf->f_bfree = sbinfo->max_blocks - 2943 percpu_counter_sum(&sbinfo->used_blocks); 2944 } 2945 if (sbinfo->max_inodes) { 2946 buf->f_files = sbinfo->max_inodes; 2947 buf->f_ffree = sbinfo->free_inodes; 2948 } 2949 /* else leave those fields 0 like simple_statfs */ 2950 return 0; 2951 } 2952 2953 /* 2954 * File creation. Allocate an inode, and we're done.. 2955 */ 2956 static int 2957 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2958 { 2959 struct inode *inode; 2960 int error = -ENOSPC; 2961 2962 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2963 if (inode) { 2964 error = simple_acl_create(dir, inode); 2965 if (error) 2966 goto out_iput; 2967 error = security_inode_init_security(inode, dir, 2968 &dentry->d_name, 2969 shmem_initxattrs, NULL); 2970 if (error && error != -EOPNOTSUPP) 2971 goto out_iput; 2972 2973 error = 0; 2974 dir->i_size += BOGO_DIRENT_SIZE; 2975 dir->i_ctime = dir->i_mtime = current_time(dir); 2976 d_instantiate(dentry, inode); 2977 dget(dentry); /* Extra count - pin the dentry in core */ 2978 } 2979 return error; 2980 out_iput: 2981 iput(inode); 2982 return error; 2983 } 2984 2985 static int 2986 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2987 { 2988 struct inode *inode; 2989 int error = -ENOSPC; 2990 2991 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2992 if (inode) { 2993 error = security_inode_init_security(inode, dir, 2994 NULL, 2995 shmem_initxattrs, NULL); 2996 if (error && error != -EOPNOTSUPP) 2997 goto out_iput; 2998 error = simple_acl_create(dir, inode); 2999 if (error) 3000 goto out_iput; 3001 d_tmpfile(dentry, inode); 3002 } 3003 return error; 3004 out_iput: 3005 iput(inode); 3006 return error; 3007 } 3008 3009 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3010 { 3011 int error; 3012 3013 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 3014 return error; 3015 inc_nlink(dir); 3016 return 0; 3017 } 3018 3019 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 3020 bool excl) 3021 { 3022 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 3023 } 3024 3025 /* 3026 * Link a file.. 3027 */ 3028 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3029 { 3030 struct inode *inode = d_inode(old_dentry); 3031 int ret; 3032 3033 /* 3034 * No ordinary (disk based) filesystem counts links as inodes; 3035 * but each new link needs a new dentry, pinning lowmem, and 3036 * tmpfs dentries cannot be pruned until they are unlinked. 3037 */ 3038 ret = shmem_reserve_inode(inode->i_sb); 3039 if (ret) 3040 goto out; 3041 3042 dir->i_size += BOGO_DIRENT_SIZE; 3043 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3044 inc_nlink(inode); 3045 ihold(inode); /* New dentry reference */ 3046 dget(dentry); /* Extra pinning count for the created dentry */ 3047 d_instantiate(dentry, inode); 3048 out: 3049 return ret; 3050 } 3051 3052 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3053 { 3054 struct inode *inode = d_inode(dentry); 3055 3056 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3057 shmem_free_inode(inode->i_sb); 3058 3059 dir->i_size -= BOGO_DIRENT_SIZE; 3060 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3061 drop_nlink(inode); 3062 dput(dentry); /* Undo the count from "create" - this does all the work */ 3063 return 0; 3064 } 3065 3066 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3067 { 3068 if (!simple_empty(dentry)) 3069 return -ENOTEMPTY; 3070 3071 drop_nlink(d_inode(dentry)); 3072 drop_nlink(dir); 3073 return shmem_unlink(dir, dentry); 3074 } 3075 3076 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3077 { 3078 bool old_is_dir = d_is_dir(old_dentry); 3079 bool new_is_dir = d_is_dir(new_dentry); 3080 3081 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3082 if (old_is_dir) { 3083 drop_nlink(old_dir); 3084 inc_nlink(new_dir); 3085 } else { 3086 drop_nlink(new_dir); 3087 inc_nlink(old_dir); 3088 } 3089 } 3090 old_dir->i_ctime = old_dir->i_mtime = 3091 new_dir->i_ctime = new_dir->i_mtime = 3092 d_inode(old_dentry)->i_ctime = 3093 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3094 3095 return 0; 3096 } 3097 3098 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3099 { 3100 struct dentry *whiteout; 3101 int error; 3102 3103 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3104 if (!whiteout) 3105 return -ENOMEM; 3106 3107 error = shmem_mknod(old_dir, whiteout, 3108 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3109 dput(whiteout); 3110 if (error) 3111 return error; 3112 3113 /* 3114 * Cheat and hash the whiteout while the old dentry is still in 3115 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3116 * 3117 * d_lookup() will consistently find one of them at this point, 3118 * not sure which one, but that isn't even important. 3119 */ 3120 d_rehash(whiteout); 3121 return 0; 3122 } 3123 3124 /* 3125 * The VFS layer already does all the dentry stuff for rename, 3126 * we just have to decrement the usage count for the target if 3127 * it exists so that the VFS layer correctly free's it when it 3128 * gets overwritten. 3129 */ 3130 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3131 { 3132 struct inode *inode = d_inode(old_dentry); 3133 int they_are_dirs = S_ISDIR(inode->i_mode); 3134 3135 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3136 return -EINVAL; 3137 3138 if (flags & RENAME_EXCHANGE) 3139 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3140 3141 if (!simple_empty(new_dentry)) 3142 return -ENOTEMPTY; 3143 3144 if (flags & RENAME_WHITEOUT) { 3145 int error; 3146 3147 error = shmem_whiteout(old_dir, old_dentry); 3148 if (error) 3149 return error; 3150 } 3151 3152 if (d_really_is_positive(new_dentry)) { 3153 (void) shmem_unlink(new_dir, new_dentry); 3154 if (they_are_dirs) { 3155 drop_nlink(d_inode(new_dentry)); 3156 drop_nlink(old_dir); 3157 } 3158 } else if (they_are_dirs) { 3159 drop_nlink(old_dir); 3160 inc_nlink(new_dir); 3161 } 3162 3163 old_dir->i_size -= BOGO_DIRENT_SIZE; 3164 new_dir->i_size += BOGO_DIRENT_SIZE; 3165 old_dir->i_ctime = old_dir->i_mtime = 3166 new_dir->i_ctime = new_dir->i_mtime = 3167 inode->i_ctime = current_time(old_dir); 3168 return 0; 3169 } 3170 3171 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3172 { 3173 int error; 3174 int len; 3175 struct inode *inode; 3176 struct page *page; 3177 struct shmem_inode_info *info; 3178 3179 len = strlen(symname) + 1; 3180 if (len > PAGE_SIZE) 3181 return -ENAMETOOLONG; 3182 3183 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3184 if (!inode) 3185 return -ENOSPC; 3186 3187 error = security_inode_init_security(inode, dir, &dentry->d_name, 3188 shmem_initxattrs, NULL); 3189 if (error) { 3190 if (error != -EOPNOTSUPP) { 3191 iput(inode); 3192 return error; 3193 } 3194 error = 0; 3195 } 3196 3197 info = SHMEM_I(inode); 3198 inode->i_size = len-1; 3199 if (len <= SHORT_SYMLINK_LEN) { 3200 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3201 if (!inode->i_link) { 3202 iput(inode); 3203 return -ENOMEM; 3204 } 3205 inode->i_op = &shmem_short_symlink_operations; 3206 } else { 3207 inode_nohighmem(inode); 3208 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3209 if (error) { 3210 iput(inode); 3211 return error; 3212 } 3213 inode->i_mapping->a_ops = &shmem_aops; 3214 inode->i_op = &shmem_symlink_inode_operations; 3215 memcpy(page_address(page), symname, len); 3216 SetPageUptodate(page); 3217 set_page_dirty(page); 3218 unlock_page(page); 3219 put_page(page); 3220 } 3221 dir->i_size += BOGO_DIRENT_SIZE; 3222 dir->i_ctime = dir->i_mtime = current_time(dir); 3223 d_instantiate(dentry, inode); 3224 dget(dentry); 3225 return 0; 3226 } 3227 3228 static void shmem_put_link(void *arg) 3229 { 3230 mark_page_accessed(arg); 3231 put_page(arg); 3232 } 3233 3234 static const char *shmem_get_link(struct dentry *dentry, 3235 struct inode *inode, 3236 struct delayed_call *done) 3237 { 3238 struct page *page = NULL; 3239 int error; 3240 if (!dentry) { 3241 page = find_get_page(inode->i_mapping, 0); 3242 if (!page) 3243 return ERR_PTR(-ECHILD); 3244 if (!PageUptodate(page)) { 3245 put_page(page); 3246 return ERR_PTR(-ECHILD); 3247 } 3248 } else { 3249 error = shmem_getpage(inode, 0, &page, SGP_READ); 3250 if (error) 3251 return ERR_PTR(error); 3252 unlock_page(page); 3253 } 3254 set_delayed_call(done, shmem_put_link, page); 3255 return page_address(page); 3256 } 3257 3258 #ifdef CONFIG_TMPFS_XATTR 3259 /* 3260 * Superblocks without xattr inode operations may get some security.* xattr 3261 * support from the LSM "for free". As soon as we have any other xattrs 3262 * like ACLs, we also need to implement the security.* handlers at 3263 * filesystem level, though. 3264 */ 3265 3266 /* 3267 * Callback for security_inode_init_security() for acquiring xattrs. 3268 */ 3269 static int shmem_initxattrs(struct inode *inode, 3270 const struct xattr *xattr_array, 3271 void *fs_info) 3272 { 3273 struct shmem_inode_info *info = SHMEM_I(inode); 3274 const struct xattr *xattr; 3275 struct simple_xattr *new_xattr; 3276 size_t len; 3277 3278 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3279 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3280 if (!new_xattr) 3281 return -ENOMEM; 3282 3283 len = strlen(xattr->name) + 1; 3284 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3285 GFP_KERNEL); 3286 if (!new_xattr->name) { 3287 kfree(new_xattr); 3288 return -ENOMEM; 3289 } 3290 3291 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3292 XATTR_SECURITY_PREFIX_LEN); 3293 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3294 xattr->name, len); 3295 3296 simple_xattr_list_add(&info->xattrs, new_xattr); 3297 } 3298 3299 return 0; 3300 } 3301 3302 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3303 struct dentry *unused, struct inode *inode, 3304 const char *name, void *buffer, size_t size) 3305 { 3306 struct shmem_inode_info *info = SHMEM_I(inode); 3307 3308 name = xattr_full_name(handler, name); 3309 return simple_xattr_get(&info->xattrs, name, buffer, size); 3310 } 3311 3312 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3313 struct dentry *unused, struct inode *inode, 3314 const char *name, const void *value, 3315 size_t size, int flags) 3316 { 3317 struct shmem_inode_info *info = SHMEM_I(inode); 3318 3319 name = xattr_full_name(handler, name); 3320 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3321 } 3322 3323 static const struct xattr_handler shmem_security_xattr_handler = { 3324 .prefix = XATTR_SECURITY_PREFIX, 3325 .get = shmem_xattr_handler_get, 3326 .set = shmem_xattr_handler_set, 3327 }; 3328 3329 static const struct xattr_handler shmem_trusted_xattr_handler = { 3330 .prefix = XATTR_TRUSTED_PREFIX, 3331 .get = shmem_xattr_handler_get, 3332 .set = shmem_xattr_handler_set, 3333 }; 3334 3335 static const struct xattr_handler *shmem_xattr_handlers[] = { 3336 #ifdef CONFIG_TMPFS_POSIX_ACL 3337 &posix_acl_access_xattr_handler, 3338 &posix_acl_default_xattr_handler, 3339 #endif 3340 &shmem_security_xattr_handler, 3341 &shmem_trusted_xattr_handler, 3342 NULL 3343 }; 3344 3345 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3346 { 3347 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3348 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3349 } 3350 #endif /* CONFIG_TMPFS_XATTR */ 3351 3352 static const struct inode_operations shmem_short_symlink_operations = { 3353 .get_link = simple_get_link, 3354 #ifdef CONFIG_TMPFS_XATTR 3355 .listxattr = shmem_listxattr, 3356 #endif 3357 }; 3358 3359 static const struct inode_operations shmem_symlink_inode_operations = { 3360 .get_link = shmem_get_link, 3361 #ifdef CONFIG_TMPFS_XATTR 3362 .listxattr = shmem_listxattr, 3363 #endif 3364 }; 3365 3366 static struct dentry *shmem_get_parent(struct dentry *child) 3367 { 3368 return ERR_PTR(-ESTALE); 3369 } 3370 3371 static int shmem_match(struct inode *ino, void *vfh) 3372 { 3373 __u32 *fh = vfh; 3374 __u64 inum = fh[2]; 3375 inum = (inum << 32) | fh[1]; 3376 return ino->i_ino == inum && fh[0] == ino->i_generation; 3377 } 3378 3379 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3380 struct fid *fid, int fh_len, int fh_type) 3381 { 3382 struct inode *inode; 3383 struct dentry *dentry = NULL; 3384 u64 inum; 3385 3386 if (fh_len < 3) 3387 return NULL; 3388 3389 inum = fid->raw[2]; 3390 inum = (inum << 32) | fid->raw[1]; 3391 3392 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3393 shmem_match, fid->raw); 3394 if (inode) { 3395 dentry = d_find_alias(inode); 3396 iput(inode); 3397 } 3398 3399 return dentry; 3400 } 3401 3402 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3403 struct inode *parent) 3404 { 3405 if (*len < 3) { 3406 *len = 3; 3407 return FILEID_INVALID; 3408 } 3409 3410 if (inode_unhashed(inode)) { 3411 /* Unfortunately insert_inode_hash is not idempotent, 3412 * so as we hash inodes here rather than at creation 3413 * time, we need a lock to ensure we only try 3414 * to do it once 3415 */ 3416 static DEFINE_SPINLOCK(lock); 3417 spin_lock(&lock); 3418 if (inode_unhashed(inode)) 3419 __insert_inode_hash(inode, 3420 inode->i_ino + inode->i_generation); 3421 spin_unlock(&lock); 3422 } 3423 3424 fh[0] = inode->i_generation; 3425 fh[1] = inode->i_ino; 3426 fh[2] = ((__u64)inode->i_ino) >> 32; 3427 3428 *len = 3; 3429 return 1; 3430 } 3431 3432 static const struct export_operations shmem_export_ops = { 3433 .get_parent = shmem_get_parent, 3434 .encode_fh = shmem_encode_fh, 3435 .fh_to_dentry = shmem_fh_to_dentry, 3436 }; 3437 3438 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3439 bool remount) 3440 { 3441 char *this_char, *value, *rest; 3442 struct mempolicy *mpol = NULL; 3443 uid_t uid; 3444 gid_t gid; 3445 3446 while (options != NULL) { 3447 this_char = options; 3448 for (;;) { 3449 /* 3450 * NUL-terminate this option: unfortunately, 3451 * mount options form a comma-separated list, 3452 * but mpol's nodelist may also contain commas. 3453 */ 3454 options = strchr(options, ','); 3455 if (options == NULL) 3456 break; 3457 options++; 3458 if (!isdigit(*options)) { 3459 options[-1] = '\0'; 3460 break; 3461 } 3462 } 3463 if (!*this_char) 3464 continue; 3465 if ((value = strchr(this_char,'=')) != NULL) { 3466 *value++ = 0; 3467 } else { 3468 pr_err("tmpfs: No value for mount option '%s'\n", 3469 this_char); 3470 goto error; 3471 } 3472 3473 if (!strcmp(this_char,"size")) { 3474 unsigned long long size; 3475 size = memparse(value,&rest); 3476 if (*rest == '%') { 3477 size <<= PAGE_SHIFT; 3478 size *= totalram_pages; 3479 do_div(size, 100); 3480 rest++; 3481 } 3482 if (*rest) 3483 goto bad_val; 3484 sbinfo->max_blocks = 3485 DIV_ROUND_UP(size, PAGE_SIZE); 3486 } else if (!strcmp(this_char,"nr_blocks")) { 3487 sbinfo->max_blocks = memparse(value, &rest); 3488 if (*rest) 3489 goto bad_val; 3490 } else if (!strcmp(this_char,"nr_inodes")) { 3491 sbinfo->max_inodes = memparse(value, &rest); 3492 if (*rest) 3493 goto bad_val; 3494 } else if (!strcmp(this_char,"mode")) { 3495 if (remount) 3496 continue; 3497 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3498 if (*rest) 3499 goto bad_val; 3500 } else if (!strcmp(this_char,"uid")) { 3501 if (remount) 3502 continue; 3503 uid = simple_strtoul(value, &rest, 0); 3504 if (*rest) 3505 goto bad_val; 3506 sbinfo->uid = make_kuid(current_user_ns(), uid); 3507 if (!uid_valid(sbinfo->uid)) 3508 goto bad_val; 3509 } else if (!strcmp(this_char,"gid")) { 3510 if (remount) 3511 continue; 3512 gid = simple_strtoul(value, &rest, 0); 3513 if (*rest) 3514 goto bad_val; 3515 sbinfo->gid = make_kgid(current_user_ns(), gid); 3516 if (!gid_valid(sbinfo->gid)) 3517 goto bad_val; 3518 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3519 } else if (!strcmp(this_char, "huge")) { 3520 int huge; 3521 huge = shmem_parse_huge(value); 3522 if (huge < 0) 3523 goto bad_val; 3524 if (!has_transparent_hugepage() && 3525 huge != SHMEM_HUGE_NEVER) 3526 goto bad_val; 3527 sbinfo->huge = huge; 3528 #endif 3529 #ifdef CONFIG_NUMA 3530 } else if (!strcmp(this_char,"mpol")) { 3531 mpol_put(mpol); 3532 mpol = NULL; 3533 if (mpol_parse_str(value, &mpol)) 3534 goto bad_val; 3535 #endif 3536 } else { 3537 pr_err("tmpfs: Bad mount option %s\n", this_char); 3538 goto error; 3539 } 3540 } 3541 sbinfo->mpol = mpol; 3542 return 0; 3543 3544 bad_val: 3545 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3546 value, this_char); 3547 error: 3548 mpol_put(mpol); 3549 return 1; 3550 3551 } 3552 3553 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3554 { 3555 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3556 struct shmem_sb_info config = *sbinfo; 3557 unsigned long inodes; 3558 int error = -EINVAL; 3559 3560 config.mpol = NULL; 3561 if (shmem_parse_options(data, &config, true)) 3562 return error; 3563 3564 spin_lock(&sbinfo->stat_lock); 3565 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3566 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3567 goto out; 3568 if (config.max_inodes < inodes) 3569 goto out; 3570 /* 3571 * Those tests disallow limited->unlimited while any are in use; 3572 * but we must separately disallow unlimited->limited, because 3573 * in that case we have no record of how much is already in use. 3574 */ 3575 if (config.max_blocks && !sbinfo->max_blocks) 3576 goto out; 3577 if (config.max_inodes && !sbinfo->max_inodes) 3578 goto out; 3579 3580 error = 0; 3581 sbinfo->huge = config.huge; 3582 sbinfo->max_blocks = config.max_blocks; 3583 sbinfo->max_inodes = config.max_inodes; 3584 sbinfo->free_inodes = config.max_inodes - inodes; 3585 3586 /* 3587 * Preserve previous mempolicy unless mpol remount option was specified. 3588 */ 3589 if (config.mpol) { 3590 mpol_put(sbinfo->mpol); 3591 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3592 } 3593 out: 3594 spin_unlock(&sbinfo->stat_lock); 3595 return error; 3596 } 3597 3598 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3599 { 3600 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3601 3602 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3603 seq_printf(seq, ",size=%luk", 3604 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3605 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3606 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3607 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3608 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3609 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3610 seq_printf(seq, ",uid=%u", 3611 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3612 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3613 seq_printf(seq, ",gid=%u", 3614 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3615 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3616 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3617 if (sbinfo->huge) 3618 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3619 #endif 3620 shmem_show_mpol(seq, sbinfo->mpol); 3621 return 0; 3622 } 3623 3624 #define MFD_NAME_PREFIX "memfd:" 3625 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3626 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3627 3628 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 3629 3630 SYSCALL_DEFINE2(memfd_create, 3631 const char __user *, uname, 3632 unsigned int, flags) 3633 { 3634 struct shmem_inode_info *info; 3635 struct file *file; 3636 int fd, error; 3637 char *name; 3638 long len; 3639 3640 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3641 return -EINVAL; 3642 3643 /* length includes terminating zero */ 3644 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3645 if (len <= 0) 3646 return -EFAULT; 3647 if (len > MFD_NAME_MAX_LEN + 1) 3648 return -EINVAL; 3649 3650 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 3651 if (!name) 3652 return -ENOMEM; 3653 3654 strcpy(name, MFD_NAME_PREFIX); 3655 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3656 error = -EFAULT; 3657 goto err_name; 3658 } 3659 3660 /* terminating-zero may have changed after strnlen_user() returned */ 3661 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3662 error = -EFAULT; 3663 goto err_name; 3664 } 3665 3666 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3667 if (fd < 0) { 3668 error = fd; 3669 goto err_name; 3670 } 3671 3672 file = shmem_file_setup(name, 0, VM_NORESERVE); 3673 if (IS_ERR(file)) { 3674 error = PTR_ERR(file); 3675 goto err_fd; 3676 } 3677 info = SHMEM_I(file_inode(file)); 3678 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3679 file->f_flags |= O_RDWR | O_LARGEFILE; 3680 if (flags & MFD_ALLOW_SEALING) 3681 info->seals &= ~F_SEAL_SEAL; 3682 3683 fd_install(fd, file); 3684 kfree(name); 3685 return fd; 3686 3687 err_fd: 3688 put_unused_fd(fd); 3689 err_name: 3690 kfree(name); 3691 return error; 3692 } 3693 3694 #endif /* CONFIG_TMPFS */ 3695 3696 static void shmem_put_super(struct super_block *sb) 3697 { 3698 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3699 3700 percpu_counter_destroy(&sbinfo->used_blocks); 3701 mpol_put(sbinfo->mpol); 3702 kfree(sbinfo); 3703 sb->s_fs_info = NULL; 3704 } 3705 3706 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3707 { 3708 struct inode *inode; 3709 struct shmem_sb_info *sbinfo; 3710 int err = -ENOMEM; 3711 3712 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3713 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3714 L1_CACHE_BYTES), GFP_KERNEL); 3715 if (!sbinfo) 3716 return -ENOMEM; 3717 3718 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3719 sbinfo->uid = current_fsuid(); 3720 sbinfo->gid = current_fsgid(); 3721 sb->s_fs_info = sbinfo; 3722 3723 #ifdef CONFIG_TMPFS 3724 /* 3725 * Per default we only allow half of the physical ram per 3726 * tmpfs instance, limiting inodes to one per page of lowmem; 3727 * but the internal instance is left unlimited. 3728 */ 3729 if (!(sb->s_flags & MS_KERNMOUNT)) { 3730 sbinfo->max_blocks = shmem_default_max_blocks(); 3731 sbinfo->max_inodes = shmem_default_max_inodes(); 3732 if (shmem_parse_options(data, sbinfo, false)) { 3733 err = -EINVAL; 3734 goto failed; 3735 } 3736 } else { 3737 sb->s_flags |= MS_NOUSER; 3738 } 3739 sb->s_export_op = &shmem_export_ops; 3740 sb->s_flags |= MS_NOSEC; 3741 #else 3742 sb->s_flags |= MS_NOUSER; 3743 #endif 3744 3745 spin_lock_init(&sbinfo->stat_lock); 3746 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3747 goto failed; 3748 sbinfo->free_inodes = sbinfo->max_inodes; 3749 spin_lock_init(&sbinfo->shrinklist_lock); 3750 INIT_LIST_HEAD(&sbinfo->shrinklist); 3751 3752 sb->s_maxbytes = MAX_LFS_FILESIZE; 3753 sb->s_blocksize = PAGE_SIZE; 3754 sb->s_blocksize_bits = PAGE_SHIFT; 3755 sb->s_magic = TMPFS_MAGIC; 3756 sb->s_op = &shmem_ops; 3757 sb->s_time_gran = 1; 3758 #ifdef CONFIG_TMPFS_XATTR 3759 sb->s_xattr = shmem_xattr_handlers; 3760 #endif 3761 #ifdef CONFIG_TMPFS_POSIX_ACL 3762 sb->s_flags |= MS_POSIXACL; 3763 #endif 3764 3765 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3766 if (!inode) 3767 goto failed; 3768 inode->i_uid = sbinfo->uid; 3769 inode->i_gid = sbinfo->gid; 3770 sb->s_root = d_make_root(inode); 3771 if (!sb->s_root) 3772 goto failed; 3773 return 0; 3774 3775 failed: 3776 shmem_put_super(sb); 3777 return err; 3778 } 3779 3780 static struct kmem_cache *shmem_inode_cachep; 3781 3782 static struct inode *shmem_alloc_inode(struct super_block *sb) 3783 { 3784 struct shmem_inode_info *info; 3785 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3786 if (!info) 3787 return NULL; 3788 return &info->vfs_inode; 3789 } 3790 3791 static void shmem_destroy_callback(struct rcu_head *head) 3792 { 3793 struct inode *inode = container_of(head, struct inode, i_rcu); 3794 if (S_ISLNK(inode->i_mode)) 3795 kfree(inode->i_link); 3796 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3797 } 3798 3799 static void shmem_destroy_inode(struct inode *inode) 3800 { 3801 if (S_ISREG(inode->i_mode)) 3802 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3803 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3804 } 3805 3806 static void shmem_init_inode(void *foo) 3807 { 3808 struct shmem_inode_info *info = foo; 3809 inode_init_once(&info->vfs_inode); 3810 } 3811 3812 static int shmem_init_inodecache(void) 3813 { 3814 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3815 sizeof(struct shmem_inode_info), 3816 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3817 return 0; 3818 } 3819 3820 static void shmem_destroy_inodecache(void) 3821 { 3822 kmem_cache_destroy(shmem_inode_cachep); 3823 } 3824 3825 static const struct address_space_operations shmem_aops = { 3826 .writepage = shmem_writepage, 3827 .set_page_dirty = __set_page_dirty_no_writeback, 3828 #ifdef CONFIG_TMPFS 3829 .write_begin = shmem_write_begin, 3830 .write_end = shmem_write_end, 3831 #endif 3832 #ifdef CONFIG_MIGRATION 3833 .migratepage = migrate_page, 3834 #endif 3835 .error_remove_page = generic_error_remove_page, 3836 }; 3837 3838 static const struct file_operations shmem_file_operations = { 3839 .mmap = shmem_mmap, 3840 .get_unmapped_area = shmem_get_unmapped_area, 3841 #ifdef CONFIG_TMPFS 3842 .llseek = shmem_file_llseek, 3843 .read_iter = shmem_file_read_iter, 3844 .write_iter = generic_file_write_iter, 3845 .fsync = noop_fsync, 3846 .splice_read = generic_file_splice_read, 3847 .splice_write = iter_file_splice_write, 3848 .fallocate = shmem_fallocate, 3849 #endif 3850 }; 3851 3852 static const struct inode_operations shmem_inode_operations = { 3853 .getattr = shmem_getattr, 3854 .setattr = shmem_setattr, 3855 #ifdef CONFIG_TMPFS_XATTR 3856 .listxattr = shmem_listxattr, 3857 .set_acl = simple_set_acl, 3858 #endif 3859 }; 3860 3861 static const struct inode_operations shmem_dir_inode_operations = { 3862 #ifdef CONFIG_TMPFS 3863 .create = shmem_create, 3864 .lookup = simple_lookup, 3865 .link = shmem_link, 3866 .unlink = shmem_unlink, 3867 .symlink = shmem_symlink, 3868 .mkdir = shmem_mkdir, 3869 .rmdir = shmem_rmdir, 3870 .mknod = shmem_mknod, 3871 .rename = shmem_rename2, 3872 .tmpfile = shmem_tmpfile, 3873 #endif 3874 #ifdef CONFIG_TMPFS_XATTR 3875 .listxattr = shmem_listxattr, 3876 #endif 3877 #ifdef CONFIG_TMPFS_POSIX_ACL 3878 .setattr = shmem_setattr, 3879 .set_acl = simple_set_acl, 3880 #endif 3881 }; 3882 3883 static const struct inode_operations shmem_special_inode_operations = { 3884 #ifdef CONFIG_TMPFS_XATTR 3885 .listxattr = shmem_listxattr, 3886 #endif 3887 #ifdef CONFIG_TMPFS_POSIX_ACL 3888 .setattr = shmem_setattr, 3889 .set_acl = simple_set_acl, 3890 #endif 3891 }; 3892 3893 static const struct super_operations shmem_ops = { 3894 .alloc_inode = shmem_alloc_inode, 3895 .destroy_inode = shmem_destroy_inode, 3896 #ifdef CONFIG_TMPFS 3897 .statfs = shmem_statfs, 3898 .remount_fs = shmem_remount_fs, 3899 .show_options = shmem_show_options, 3900 #endif 3901 .evict_inode = shmem_evict_inode, 3902 .drop_inode = generic_delete_inode, 3903 .put_super = shmem_put_super, 3904 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3905 .nr_cached_objects = shmem_unused_huge_count, 3906 .free_cached_objects = shmem_unused_huge_scan, 3907 #endif 3908 }; 3909 3910 static const struct vm_operations_struct shmem_vm_ops = { 3911 .fault = shmem_fault, 3912 .map_pages = filemap_map_pages, 3913 #ifdef CONFIG_NUMA 3914 .set_policy = shmem_set_policy, 3915 .get_policy = shmem_get_policy, 3916 #endif 3917 }; 3918 3919 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3920 int flags, const char *dev_name, void *data) 3921 { 3922 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3923 } 3924 3925 static struct file_system_type shmem_fs_type = { 3926 .owner = THIS_MODULE, 3927 .name = "tmpfs", 3928 .mount = shmem_mount, 3929 .kill_sb = kill_litter_super, 3930 .fs_flags = FS_USERNS_MOUNT, 3931 }; 3932 3933 int __init shmem_init(void) 3934 { 3935 int error; 3936 3937 /* If rootfs called this, don't re-init */ 3938 if (shmem_inode_cachep) 3939 return 0; 3940 3941 error = shmem_init_inodecache(); 3942 if (error) 3943 goto out3; 3944 3945 error = register_filesystem(&shmem_fs_type); 3946 if (error) { 3947 pr_err("Could not register tmpfs\n"); 3948 goto out2; 3949 } 3950 3951 shm_mnt = kern_mount(&shmem_fs_type); 3952 if (IS_ERR(shm_mnt)) { 3953 error = PTR_ERR(shm_mnt); 3954 pr_err("Could not kern_mount tmpfs\n"); 3955 goto out1; 3956 } 3957 3958 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3959 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY) 3960 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3961 else 3962 shmem_huge = 0; /* just in case it was patched */ 3963 #endif 3964 return 0; 3965 3966 out1: 3967 unregister_filesystem(&shmem_fs_type); 3968 out2: 3969 shmem_destroy_inodecache(); 3970 out3: 3971 shm_mnt = ERR_PTR(error); 3972 return error; 3973 } 3974 3975 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3976 static ssize_t shmem_enabled_show(struct kobject *kobj, 3977 struct kobj_attribute *attr, char *buf) 3978 { 3979 int values[] = { 3980 SHMEM_HUGE_ALWAYS, 3981 SHMEM_HUGE_WITHIN_SIZE, 3982 SHMEM_HUGE_ADVISE, 3983 SHMEM_HUGE_NEVER, 3984 SHMEM_HUGE_DENY, 3985 SHMEM_HUGE_FORCE, 3986 }; 3987 int i, count; 3988 3989 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3990 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3991 3992 count += sprintf(buf + count, fmt, 3993 shmem_format_huge(values[i])); 3994 } 3995 buf[count - 1] = '\n'; 3996 return count; 3997 } 3998 3999 static ssize_t shmem_enabled_store(struct kobject *kobj, 4000 struct kobj_attribute *attr, const char *buf, size_t count) 4001 { 4002 char tmp[16]; 4003 int huge; 4004 4005 if (count + 1 > sizeof(tmp)) 4006 return -EINVAL; 4007 memcpy(tmp, buf, count); 4008 tmp[count] = '\0'; 4009 if (count && tmp[count - 1] == '\n') 4010 tmp[count - 1] = '\0'; 4011 4012 huge = shmem_parse_huge(tmp); 4013 if (huge == -EINVAL) 4014 return -EINVAL; 4015 if (!has_transparent_hugepage() && 4016 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4017 return -EINVAL; 4018 4019 shmem_huge = huge; 4020 if (shmem_huge < SHMEM_HUGE_DENY) 4021 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4022 return count; 4023 } 4024 4025 struct kobj_attribute shmem_enabled_attr = 4026 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4027 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 4028 4029 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 4030 bool shmem_huge_enabled(struct vm_area_struct *vma) 4031 { 4032 struct inode *inode = file_inode(vma->vm_file); 4033 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4034 loff_t i_size; 4035 pgoff_t off; 4036 4037 if (shmem_huge == SHMEM_HUGE_FORCE) 4038 return true; 4039 if (shmem_huge == SHMEM_HUGE_DENY) 4040 return false; 4041 switch (sbinfo->huge) { 4042 case SHMEM_HUGE_NEVER: 4043 return false; 4044 case SHMEM_HUGE_ALWAYS: 4045 return true; 4046 case SHMEM_HUGE_WITHIN_SIZE: 4047 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4048 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4049 if (i_size >= HPAGE_PMD_SIZE && 4050 i_size >> PAGE_SHIFT >= off) 4051 return true; 4052 case SHMEM_HUGE_ADVISE: 4053 /* TODO: implement fadvise() hints */ 4054 return (vma->vm_flags & VM_HUGEPAGE); 4055 default: 4056 VM_BUG_ON(1); 4057 return false; 4058 } 4059 } 4060 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4061 4062 #else /* !CONFIG_SHMEM */ 4063 4064 /* 4065 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4066 * 4067 * This is intended for small system where the benefits of the full 4068 * shmem code (swap-backed and resource-limited) are outweighed by 4069 * their complexity. On systems without swap this code should be 4070 * effectively equivalent, but much lighter weight. 4071 */ 4072 4073 static struct file_system_type shmem_fs_type = { 4074 .name = "tmpfs", 4075 .mount = ramfs_mount, 4076 .kill_sb = kill_litter_super, 4077 .fs_flags = FS_USERNS_MOUNT, 4078 }; 4079 4080 int __init shmem_init(void) 4081 { 4082 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4083 4084 shm_mnt = kern_mount(&shmem_fs_type); 4085 BUG_ON(IS_ERR(shm_mnt)); 4086 4087 return 0; 4088 } 4089 4090 int shmem_unuse(swp_entry_t swap, struct page *page) 4091 { 4092 return 0; 4093 } 4094 4095 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4096 { 4097 return 0; 4098 } 4099 4100 void shmem_unlock_mapping(struct address_space *mapping) 4101 { 4102 } 4103 4104 #ifdef CONFIG_MMU 4105 unsigned long shmem_get_unmapped_area(struct file *file, 4106 unsigned long addr, unsigned long len, 4107 unsigned long pgoff, unsigned long flags) 4108 { 4109 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4110 } 4111 #endif 4112 4113 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4114 { 4115 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4116 } 4117 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4118 4119 #define shmem_vm_ops generic_file_vm_ops 4120 #define shmem_file_operations ramfs_file_operations 4121 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4122 #define shmem_acct_size(flags, size) 0 4123 #define shmem_unacct_size(flags, size) do {} while (0) 4124 4125 #endif /* CONFIG_SHMEM */ 4126 4127 /* common code */ 4128 4129 static const struct dentry_operations anon_ops = { 4130 .d_dname = simple_dname 4131 }; 4132 4133 static struct file *__shmem_file_setup(const char *name, loff_t size, 4134 unsigned long flags, unsigned int i_flags) 4135 { 4136 struct file *res; 4137 struct inode *inode; 4138 struct path path; 4139 struct super_block *sb; 4140 struct qstr this; 4141 4142 if (IS_ERR(shm_mnt)) 4143 return ERR_CAST(shm_mnt); 4144 4145 if (size < 0 || size > MAX_LFS_FILESIZE) 4146 return ERR_PTR(-EINVAL); 4147 4148 if (shmem_acct_size(flags, size)) 4149 return ERR_PTR(-ENOMEM); 4150 4151 res = ERR_PTR(-ENOMEM); 4152 this.name = name; 4153 this.len = strlen(name); 4154 this.hash = 0; /* will go */ 4155 sb = shm_mnt->mnt_sb; 4156 path.mnt = mntget(shm_mnt); 4157 path.dentry = d_alloc_pseudo(sb, &this); 4158 if (!path.dentry) 4159 goto put_memory; 4160 d_set_d_op(path.dentry, &anon_ops); 4161 4162 res = ERR_PTR(-ENOSPC); 4163 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4164 if (!inode) 4165 goto put_memory; 4166 4167 inode->i_flags |= i_flags; 4168 d_instantiate(path.dentry, inode); 4169 inode->i_size = size; 4170 clear_nlink(inode); /* It is unlinked */ 4171 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4172 if (IS_ERR(res)) 4173 goto put_path; 4174 4175 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4176 &shmem_file_operations); 4177 if (IS_ERR(res)) 4178 goto put_path; 4179 4180 return res; 4181 4182 put_memory: 4183 shmem_unacct_size(flags, size); 4184 put_path: 4185 path_put(&path); 4186 return res; 4187 } 4188 4189 /** 4190 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4191 * kernel internal. There will be NO LSM permission checks against the 4192 * underlying inode. So users of this interface must do LSM checks at a 4193 * higher layer. The users are the big_key and shm implementations. LSM 4194 * checks are provided at the key or shm level rather than the inode. 4195 * @name: name for dentry (to be seen in /proc/<pid>/maps 4196 * @size: size to be set for the file 4197 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4198 */ 4199 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4200 { 4201 return __shmem_file_setup(name, size, flags, S_PRIVATE); 4202 } 4203 4204 /** 4205 * shmem_file_setup - get an unlinked file living in tmpfs 4206 * @name: name for dentry (to be seen in /proc/<pid>/maps 4207 * @size: size to be set for the file 4208 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4209 */ 4210 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4211 { 4212 return __shmem_file_setup(name, size, flags, 0); 4213 } 4214 EXPORT_SYMBOL_GPL(shmem_file_setup); 4215 4216 /** 4217 * shmem_zero_setup - setup a shared anonymous mapping 4218 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4219 */ 4220 int shmem_zero_setup(struct vm_area_struct *vma) 4221 { 4222 struct file *file; 4223 loff_t size = vma->vm_end - vma->vm_start; 4224 4225 /* 4226 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4227 * between XFS directory reading and selinux: since this file is only 4228 * accessible to the user through its mapping, use S_PRIVATE flag to 4229 * bypass file security, in the same way as shmem_kernel_file_setup(). 4230 */ 4231 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 4232 if (IS_ERR(file)) 4233 return PTR_ERR(file); 4234 4235 if (vma->vm_file) 4236 fput(vma->vm_file); 4237 vma->vm_file = file; 4238 vma->vm_ops = &shmem_vm_ops; 4239 4240 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4241 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4242 (vma->vm_end & HPAGE_PMD_MASK)) { 4243 khugepaged_enter(vma, vma->vm_flags); 4244 } 4245 4246 return 0; 4247 } 4248 4249 /** 4250 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4251 * @mapping: the page's address_space 4252 * @index: the page index 4253 * @gfp: the page allocator flags to use if allocating 4254 * 4255 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4256 * with any new page allocations done using the specified allocation flags. 4257 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4258 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4259 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4260 * 4261 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4262 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4263 */ 4264 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4265 pgoff_t index, gfp_t gfp) 4266 { 4267 #ifdef CONFIG_SHMEM 4268 struct inode *inode = mapping->host; 4269 struct page *page; 4270 int error; 4271 4272 BUG_ON(mapping->a_ops != &shmem_aops); 4273 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4274 gfp, NULL, NULL, NULL); 4275 if (error) 4276 page = ERR_PTR(error); 4277 else 4278 unlock_page(page); 4279 return page; 4280 #else 4281 /* 4282 * The tiny !SHMEM case uses ramfs without swap 4283 */ 4284 return read_cache_page_gfp(mapping, index, gfp); 4285 #endif 4286 } 4287 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4288