xref: /openbmc/linux/mm/shmem.c (revision 9ee0034b8f49aaaa7e7c2da8db1038915db99c19)
1  /*
2   * Resizable virtual memory filesystem for Linux.
3   *
4   * Copyright (C) 2000 Linus Torvalds.
5   *		 2000 Transmeta Corp.
6   *		 2000-2001 Christoph Rohland
7   *		 2000-2001 SAP AG
8   *		 2002 Red Hat Inc.
9   * Copyright (C) 2002-2011 Hugh Dickins.
10   * Copyright (C) 2011 Google Inc.
11   * Copyright (C) 2002-2005 VERITAS Software Corporation.
12   * Copyright (C) 2004 Andi Kleen, SuSE Labs
13   *
14   * Extended attribute support for tmpfs:
15   * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16   * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17   *
18   * tiny-shmem:
19   * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20   *
21   * This file is released under the GPL.
22   */
23  
24  #include <linux/fs.h>
25  #include <linux/init.h>
26  #include <linux/vfs.h>
27  #include <linux/mount.h>
28  #include <linux/ramfs.h>
29  #include <linux/pagemap.h>
30  #include <linux/file.h>
31  #include <linux/mm.h>
32  #include <linux/export.h>
33  #include <linux/swap.h>
34  #include <linux/uio.h>
35  #include <linux/khugepaged.h>
36  
37  static struct vfsmount *shm_mnt;
38  
39  #ifdef CONFIG_SHMEM
40  /*
41   * This virtual memory filesystem is heavily based on the ramfs. It
42   * extends ramfs by the ability to use swap and honor resource limits
43   * which makes it a completely usable filesystem.
44   */
45  
46  #include <linux/xattr.h>
47  #include <linux/exportfs.h>
48  #include <linux/posix_acl.h>
49  #include <linux/posix_acl_xattr.h>
50  #include <linux/mman.h>
51  #include <linux/string.h>
52  #include <linux/slab.h>
53  #include <linux/backing-dev.h>
54  #include <linux/shmem_fs.h>
55  #include <linux/writeback.h>
56  #include <linux/blkdev.h>
57  #include <linux/pagevec.h>
58  #include <linux/percpu_counter.h>
59  #include <linux/falloc.h>
60  #include <linux/splice.h>
61  #include <linux/security.h>
62  #include <linux/swapops.h>
63  #include <linux/mempolicy.h>
64  #include <linux/namei.h>
65  #include <linux/ctype.h>
66  #include <linux/migrate.h>
67  #include <linux/highmem.h>
68  #include <linux/seq_file.h>
69  #include <linux/magic.h>
70  #include <linux/syscalls.h>
71  #include <linux/fcntl.h>
72  #include <uapi/linux/memfd.h>
73  
74  #include <asm/uaccess.h>
75  #include <asm/pgtable.h>
76  
77  #include "internal.h"
78  
79  #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80  #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81  
82  /* Pretend that each entry is of this size in directory's i_size */
83  #define BOGO_DIRENT_SIZE 20
84  
85  /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86  #define SHORT_SYMLINK_LEN 128
87  
88  /*
89   * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90   * inode->i_private (with i_mutex making sure that it has only one user at
91   * a time): we would prefer not to enlarge the shmem inode just for that.
92   */
93  struct shmem_falloc {
94  	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95  	pgoff_t start;		/* start of range currently being fallocated */
96  	pgoff_t next;		/* the next page offset to be fallocated */
97  	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
98  	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
99  };
100  
101  #ifdef CONFIG_TMPFS
102  static unsigned long shmem_default_max_blocks(void)
103  {
104  	return totalram_pages / 2;
105  }
106  
107  static unsigned long shmem_default_max_inodes(void)
108  {
109  	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110  }
111  #endif
112  
113  static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114  static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115  				struct shmem_inode_info *info, pgoff_t index);
116  static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117  		struct page **pagep, enum sgp_type sgp,
118  		gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119  
120  int shmem_getpage(struct inode *inode, pgoff_t index,
121  		struct page **pagep, enum sgp_type sgp)
122  {
123  	return shmem_getpage_gfp(inode, index, pagep, sgp,
124  		mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125  }
126  
127  static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128  {
129  	return sb->s_fs_info;
130  }
131  
132  /*
133   * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134   * for shared memory and for shared anonymous (/dev/zero) mappings
135   * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136   * consistent with the pre-accounting of private mappings ...
137   */
138  static inline int shmem_acct_size(unsigned long flags, loff_t size)
139  {
140  	return (flags & VM_NORESERVE) ?
141  		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142  }
143  
144  static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145  {
146  	if (!(flags & VM_NORESERVE))
147  		vm_unacct_memory(VM_ACCT(size));
148  }
149  
150  static inline int shmem_reacct_size(unsigned long flags,
151  		loff_t oldsize, loff_t newsize)
152  {
153  	if (!(flags & VM_NORESERVE)) {
154  		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155  			return security_vm_enough_memory_mm(current->mm,
156  					VM_ACCT(newsize) - VM_ACCT(oldsize));
157  		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158  			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159  	}
160  	return 0;
161  }
162  
163  /*
164   * ... whereas tmpfs objects are accounted incrementally as
165   * pages are allocated, in order to allow large sparse files.
166   * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167   * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168   */
169  static inline int shmem_acct_block(unsigned long flags, long pages)
170  {
171  	if (!(flags & VM_NORESERVE))
172  		return 0;
173  
174  	return security_vm_enough_memory_mm(current->mm,
175  			pages * VM_ACCT(PAGE_SIZE));
176  }
177  
178  static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179  {
180  	if (flags & VM_NORESERVE)
181  		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182  }
183  
184  static const struct super_operations shmem_ops;
185  static const struct address_space_operations shmem_aops;
186  static const struct file_operations shmem_file_operations;
187  static const struct inode_operations shmem_inode_operations;
188  static const struct inode_operations shmem_dir_inode_operations;
189  static const struct inode_operations shmem_special_inode_operations;
190  static const struct vm_operations_struct shmem_vm_ops;
191  static struct file_system_type shmem_fs_type;
192  
193  static LIST_HEAD(shmem_swaplist);
194  static DEFINE_MUTEX(shmem_swaplist_mutex);
195  
196  static int shmem_reserve_inode(struct super_block *sb)
197  {
198  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199  	if (sbinfo->max_inodes) {
200  		spin_lock(&sbinfo->stat_lock);
201  		if (!sbinfo->free_inodes) {
202  			spin_unlock(&sbinfo->stat_lock);
203  			return -ENOSPC;
204  		}
205  		sbinfo->free_inodes--;
206  		spin_unlock(&sbinfo->stat_lock);
207  	}
208  	return 0;
209  }
210  
211  static void shmem_free_inode(struct super_block *sb)
212  {
213  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214  	if (sbinfo->max_inodes) {
215  		spin_lock(&sbinfo->stat_lock);
216  		sbinfo->free_inodes++;
217  		spin_unlock(&sbinfo->stat_lock);
218  	}
219  }
220  
221  /**
222   * shmem_recalc_inode - recalculate the block usage of an inode
223   * @inode: inode to recalc
224   *
225   * We have to calculate the free blocks since the mm can drop
226   * undirtied hole pages behind our back.
227   *
228   * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
229   * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230   *
231   * It has to be called with the spinlock held.
232   */
233  static void shmem_recalc_inode(struct inode *inode)
234  {
235  	struct shmem_inode_info *info = SHMEM_I(inode);
236  	long freed;
237  
238  	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239  	if (freed > 0) {
240  		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241  		if (sbinfo->max_blocks)
242  			percpu_counter_add(&sbinfo->used_blocks, -freed);
243  		info->alloced -= freed;
244  		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245  		shmem_unacct_blocks(info->flags, freed);
246  	}
247  }
248  
249  bool shmem_charge(struct inode *inode, long pages)
250  {
251  	struct shmem_inode_info *info = SHMEM_I(inode);
252  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253  	unsigned long flags;
254  
255  	if (shmem_acct_block(info->flags, pages))
256  		return false;
257  	spin_lock_irqsave(&info->lock, flags);
258  	info->alloced += pages;
259  	inode->i_blocks += pages * BLOCKS_PER_PAGE;
260  	shmem_recalc_inode(inode);
261  	spin_unlock_irqrestore(&info->lock, flags);
262  	inode->i_mapping->nrpages += pages;
263  
264  	if (!sbinfo->max_blocks)
265  		return true;
266  	if (percpu_counter_compare(&sbinfo->used_blocks,
267  				sbinfo->max_blocks - pages) > 0) {
268  		inode->i_mapping->nrpages -= pages;
269  		spin_lock_irqsave(&info->lock, flags);
270  		info->alloced -= pages;
271  		shmem_recalc_inode(inode);
272  		spin_unlock_irqrestore(&info->lock, flags);
273  
274  		return false;
275  	}
276  	percpu_counter_add(&sbinfo->used_blocks, pages);
277  	return true;
278  }
279  
280  void shmem_uncharge(struct inode *inode, long pages)
281  {
282  	struct shmem_inode_info *info = SHMEM_I(inode);
283  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284  	unsigned long flags;
285  
286  	spin_lock_irqsave(&info->lock, flags);
287  	info->alloced -= pages;
288  	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289  	shmem_recalc_inode(inode);
290  	spin_unlock_irqrestore(&info->lock, flags);
291  
292  	if (sbinfo->max_blocks)
293  		percpu_counter_sub(&sbinfo->used_blocks, pages);
294  }
295  
296  /*
297   * Replace item expected in radix tree by a new item, while holding tree lock.
298   */
299  static int shmem_radix_tree_replace(struct address_space *mapping,
300  			pgoff_t index, void *expected, void *replacement)
301  {
302  	void **pslot;
303  	void *item;
304  
305  	VM_BUG_ON(!expected);
306  	VM_BUG_ON(!replacement);
307  	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
308  	if (!pslot)
309  		return -ENOENT;
310  	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
311  	if (item != expected)
312  		return -ENOENT;
313  	radix_tree_replace_slot(pslot, replacement);
314  	return 0;
315  }
316  
317  /*
318   * Sometimes, before we decide whether to proceed or to fail, we must check
319   * that an entry was not already brought back from swap by a racing thread.
320   *
321   * Checking page is not enough: by the time a SwapCache page is locked, it
322   * might be reused, and again be SwapCache, using the same swap as before.
323   */
324  static bool shmem_confirm_swap(struct address_space *mapping,
325  			       pgoff_t index, swp_entry_t swap)
326  {
327  	void *item;
328  
329  	rcu_read_lock();
330  	item = radix_tree_lookup(&mapping->page_tree, index);
331  	rcu_read_unlock();
332  	return item == swp_to_radix_entry(swap);
333  }
334  
335  /*
336   * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
337   *
338   * SHMEM_HUGE_NEVER:
339   *	disables huge pages for the mount;
340   * SHMEM_HUGE_ALWAYS:
341   *	enables huge pages for the mount;
342   * SHMEM_HUGE_WITHIN_SIZE:
343   *	only allocate huge pages if the page will be fully within i_size,
344   *	also respect fadvise()/madvise() hints;
345   * SHMEM_HUGE_ADVISE:
346   *	only allocate huge pages if requested with fadvise()/madvise();
347   */
348  
349  #define SHMEM_HUGE_NEVER	0
350  #define SHMEM_HUGE_ALWAYS	1
351  #define SHMEM_HUGE_WITHIN_SIZE	2
352  #define SHMEM_HUGE_ADVISE	3
353  
354  /*
355   * Special values.
356   * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
357   *
358   * SHMEM_HUGE_DENY:
359   *	disables huge on shm_mnt and all mounts, for emergency use;
360   * SHMEM_HUGE_FORCE:
361   *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
362   *
363   */
364  #define SHMEM_HUGE_DENY		(-1)
365  #define SHMEM_HUGE_FORCE	(-2)
366  
367  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
368  /* ifdef here to avoid bloating shmem.o when not necessary */
369  
370  int shmem_huge __read_mostly;
371  
372  static int shmem_parse_huge(const char *str)
373  {
374  	if (!strcmp(str, "never"))
375  		return SHMEM_HUGE_NEVER;
376  	if (!strcmp(str, "always"))
377  		return SHMEM_HUGE_ALWAYS;
378  	if (!strcmp(str, "within_size"))
379  		return SHMEM_HUGE_WITHIN_SIZE;
380  	if (!strcmp(str, "advise"))
381  		return SHMEM_HUGE_ADVISE;
382  	if (!strcmp(str, "deny"))
383  		return SHMEM_HUGE_DENY;
384  	if (!strcmp(str, "force"))
385  		return SHMEM_HUGE_FORCE;
386  	return -EINVAL;
387  }
388  
389  static const char *shmem_format_huge(int huge)
390  {
391  	switch (huge) {
392  	case SHMEM_HUGE_NEVER:
393  		return "never";
394  	case SHMEM_HUGE_ALWAYS:
395  		return "always";
396  	case SHMEM_HUGE_WITHIN_SIZE:
397  		return "within_size";
398  	case SHMEM_HUGE_ADVISE:
399  		return "advise";
400  	case SHMEM_HUGE_DENY:
401  		return "deny";
402  	case SHMEM_HUGE_FORCE:
403  		return "force";
404  	default:
405  		VM_BUG_ON(1);
406  		return "bad_val";
407  	}
408  }
409  
410  static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
411  		struct shrink_control *sc, unsigned long nr_to_split)
412  {
413  	LIST_HEAD(list), *pos, *next;
414  	struct inode *inode;
415  	struct shmem_inode_info *info;
416  	struct page *page;
417  	unsigned long batch = sc ? sc->nr_to_scan : 128;
418  	int removed = 0, split = 0;
419  
420  	if (list_empty(&sbinfo->shrinklist))
421  		return SHRINK_STOP;
422  
423  	spin_lock(&sbinfo->shrinklist_lock);
424  	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
425  		info = list_entry(pos, struct shmem_inode_info, shrinklist);
426  
427  		/* pin the inode */
428  		inode = igrab(&info->vfs_inode);
429  
430  		/* inode is about to be evicted */
431  		if (!inode) {
432  			list_del_init(&info->shrinklist);
433  			removed++;
434  			goto next;
435  		}
436  
437  		/* Check if there's anything to gain */
438  		if (round_up(inode->i_size, PAGE_SIZE) ==
439  				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
440  			list_del_init(&info->shrinklist);
441  			removed++;
442  			iput(inode);
443  			goto next;
444  		}
445  
446  		list_move(&info->shrinklist, &list);
447  next:
448  		if (!--batch)
449  			break;
450  	}
451  	spin_unlock(&sbinfo->shrinklist_lock);
452  
453  	list_for_each_safe(pos, next, &list) {
454  		int ret;
455  
456  		info = list_entry(pos, struct shmem_inode_info, shrinklist);
457  		inode = &info->vfs_inode;
458  
459  		if (nr_to_split && split >= nr_to_split) {
460  			iput(inode);
461  			continue;
462  		}
463  
464  		page = find_lock_page(inode->i_mapping,
465  				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
466  		if (!page)
467  			goto drop;
468  
469  		if (!PageTransHuge(page)) {
470  			unlock_page(page);
471  			put_page(page);
472  			goto drop;
473  		}
474  
475  		ret = split_huge_page(page);
476  		unlock_page(page);
477  		put_page(page);
478  
479  		if (ret) {
480  			/* split failed: leave it on the list */
481  			iput(inode);
482  			continue;
483  		}
484  
485  		split++;
486  drop:
487  		list_del_init(&info->shrinklist);
488  		removed++;
489  		iput(inode);
490  	}
491  
492  	spin_lock(&sbinfo->shrinklist_lock);
493  	list_splice_tail(&list, &sbinfo->shrinklist);
494  	sbinfo->shrinklist_len -= removed;
495  	spin_unlock(&sbinfo->shrinklist_lock);
496  
497  	return split;
498  }
499  
500  static long shmem_unused_huge_scan(struct super_block *sb,
501  		struct shrink_control *sc)
502  {
503  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
504  
505  	if (!READ_ONCE(sbinfo->shrinklist_len))
506  		return SHRINK_STOP;
507  
508  	return shmem_unused_huge_shrink(sbinfo, sc, 0);
509  }
510  
511  static long shmem_unused_huge_count(struct super_block *sb,
512  		struct shrink_control *sc)
513  {
514  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
515  	return READ_ONCE(sbinfo->shrinklist_len);
516  }
517  #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
518  
519  #define shmem_huge SHMEM_HUGE_DENY
520  
521  static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522  		struct shrink_control *sc, unsigned long nr_to_split)
523  {
524  	return 0;
525  }
526  #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
527  
528  /*
529   * Like add_to_page_cache_locked, but error if expected item has gone.
530   */
531  static int shmem_add_to_page_cache(struct page *page,
532  				   struct address_space *mapping,
533  				   pgoff_t index, void *expected)
534  {
535  	int error, nr = hpage_nr_pages(page);
536  
537  	VM_BUG_ON_PAGE(PageTail(page), page);
538  	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
539  	VM_BUG_ON_PAGE(!PageLocked(page), page);
540  	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
541  	VM_BUG_ON(expected && PageTransHuge(page));
542  
543  	page_ref_add(page, nr);
544  	page->mapping = mapping;
545  	page->index = index;
546  
547  	spin_lock_irq(&mapping->tree_lock);
548  	if (PageTransHuge(page)) {
549  		void __rcu **results;
550  		pgoff_t idx;
551  		int i;
552  
553  		error = 0;
554  		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
555  					&results, &idx, index, 1) &&
556  				idx < index + HPAGE_PMD_NR) {
557  			error = -EEXIST;
558  		}
559  
560  		if (!error) {
561  			for (i = 0; i < HPAGE_PMD_NR; i++) {
562  				error = radix_tree_insert(&mapping->page_tree,
563  						index + i, page + i);
564  				VM_BUG_ON(error);
565  			}
566  			count_vm_event(THP_FILE_ALLOC);
567  		}
568  	} else if (!expected) {
569  		error = radix_tree_insert(&mapping->page_tree, index, page);
570  	} else {
571  		error = shmem_radix_tree_replace(mapping, index, expected,
572  								 page);
573  	}
574  
575  	if (!error) {
576  		mapping->nrpages += nr;
577  		if (PageTransHuge(page))
578  			__inc_node_page_state(page, NR_SHMEM_THPS);
579  		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
580  		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
581  		spin_unlock_irq(&mapping->tree_lock);
582  	} else {
583  		page->mapping = NULL;
584  		spin_unlock_irq(&mapping->tree_lock);
585  		page_ref_sub(page, nr);
586  	}
587  	return error;
588  }
589  
590  /*
591   * Like delete_from_page_cache, but substitutes swap for page.
592   */
593  static void shmem_delete_from_page_cache(struct page *page, void *radswap)
594  {
595  	struct address_space *mapping = page->mapping;
596  	int error;
597  
598  	VM_BUG_ON_PAGE(PageCompound(page), page);
599  
600  	spin_lock_irq(&mapping->tree_lock);
601  	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
602  	page->mapping = NULL;
603  	mapping->nrpages--;
604  	__dec_node_page_state(page, NR_FILE_PAGES);
605  	__dec_node_page_state(page, NR_SHMEM);
606  	spin_unlock_irq(&mapping->tree_lock);
607  	put_page(page);
608  	BUG_ON(error);
609  }
610  
611  /*
612   * Remove swap entry from radix tree, free the swap and its page cache.
613   */
614  static int shmem_free_swap(struct address_space *mapping,
615  			   pgoff_t index, void *radswap)
616  {
617  	void *old;
618  
619  	spin_lock_irq(&mapping->tree_lock);
620  	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
621  	spin_unlock_irq(&mapping->tree_lock);
622  	if (old != radswap)
623  		return -ENOENT;
624  	free_swap_and_cache(radix_to_swp_entry(radswap));
625  	return 0;
626  }
627  
628  /*
629   * Determine (in bytes) how many of the shmem object's pages mapped by the
630   * given offsets are swapped out.
631   *
632   * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
633   * as long as the inode doesn't go away and racy results are not a problem.
634   */
635  unsigned long shmem_partial_swap_usage(struct address_space *mapping,
636  						pgoff_t start, pgoff_t end)
637  {
638  	struct radix_tree_iter iter;
639  	void **slot;
640  	struct page *page;
641  	unsigned long swapped = 0;
642  
643  	rcu_read_lock();
644  
645  	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
646  		if (iter.index >= end)
647  			break;
648  
649  		page = radix_tree_deref_slot(slot);
650  
651  		if (radix_tree_deref_retry(page)) {
652  			slot = radix_tree_iter_retry(&iter);
653  			continue;
654  		}
655  
656  		if (radix_tree_exceptional_entry(page))
657  			swapped++;
658  
659  		if (need_resched()) {
660  			cond_resched_rcu();
661  			slot = radix_tree_iter_next(&iter);
662  		}
663  	}
664  
665  	rcu_read_unlock();
666  
667  	return swapped << PAGE_SHIFT;
668  }
669  
670  /*
671   * Determine (in bytes) how many of the shmem object's pages mapped by the
672   * given vma is swapped out.
673   *
674   * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
675   * as long as the inode doesn't go away and racy results are not a problem.
676   */
677  unsigned long shmem_swap_usage(struct vm_area_struct *vma)
678  {
679  	struct inode *inode = file_inode(vma->vm_file);
680  	struct shmem_inode_info *info = SHMEM_I(inode);
681  	struct address_space *mapping = inode->i_mapping;
682  	unsigned long swapped;
683  
684  	/* Be careful as we don't hold info->lock */
685  	swapped = READ_ONCE(info->swapped);
686  
687  	/*
688  	 * The easier cases are when the shmem object has nothing in swap, or
689  	 * the vma maps it whole. Then we can simply use the stats that we
690  	 * already track.
691  	 */
692  	if (!swapped)
693  		return 0;
694  
695  	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
696  		return swapped << PAGE_SHIFT;
697  
698  	/* Here comes the more involved part */
699  	return shmem_partial_swap_usage(mapping,
700  			linear_page_index(vma, vma->vm_start),
701  			linear_page_index(vma, vma->vm_end));
702  }
703  
704  /*
705   * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
706   */
707  void shmem_unlock_mapping(struct address_space *mapping)
708  {
709  	struct pagevec pvec;
710  	pgoff_t indices[PAGEVEC_SIZE];
711  	pgoff_t index = 0;
712  
713  	pagevec_init(&pvec, 0);
714  	/*
715  	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
716  	 */
717  	while (!mapping_unevictable(mapping)) {
718  		/*
719  		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
720  		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
721  		 */
722  		pvec.nr = find_get_entries(mapping, index,
723  					   PAGEVEC_SIZE, pvec.pages, indices);
724  		if (!pvec.nr)
725  			break;
726  		index = indices[pvec.nr - 1] + 1;
727  		pagevec_remove_exceptionals(&pvec);
728  		check_move_unevictable_pages(pvec.pages, pvec.nr);
729  		pagevec_release(&pvec);
730  		cond_resched();
731  	}
732  }
733  
734  /*
735   * Remove range of pages and swap entries from radix tree, and free them.
736   * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
737   */
738  static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
739  								 bool unfalloc)
740  {
741  	struct address_space *mapping = inode->i_mapping;
742  	struct shmem_inode_info *info = SHMEM_I(inode);
743  	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
744  	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
745  	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
746  	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
747  	struct pagevec pvec;
748  	pgoff_t indices[PAGEVEC_SIZE];
749  	long nr_swaps_freed = 0;
750  	pgoff_t index;
751  	int i;
752  
753  	if (lend == -1)
754  		end = -1;	/* unsigned, so actually very big */
755  
756  	pagevec_init(&pvec, 0);
757  	index = start;
758  	while (index < end) {
759  		pvec.nr = find_get_entries(mapping, index,
760  			min(end - index, (pgoff_t)PAGEVEC_SIZE),
761  			pvec.pages, indices);
762  		if (!pvec.nr)
763  			break;
764  		for (i = 0; i < pagevec_count(&pvec); i++) {
765  			struct page *page = pvec.pages[i];
766  
767  			index = indices[i];
768  			if (index >= end)
769  				break;
770  
771  			if (radix_tree_exceptional_entry(page)) {
772  				if (unfalloc)
773  					continue;
774  				nr_swaps_freed += !shmem_free_swap(mapping,
775  								index, page);
776  				continue;
777  			}
778  
779  			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
780  
781  			if (!trylock_page(page))
782  				continue;
783  
784  			if (PageTransTail(page)) {
785  				/* Middle of THP: zero out the page */
786  				clear_highpage(page);
787  				unlock_page(page);
788  				continue;
789  			} else if (PageTransHuge(page)) {
790  				if (index == round_down(end, HPAGE_PMD_NR)) {
791  					/*
792  					 * Range ends in the middle of THP:
793  					 * zero out the page
794  					 */
795  					clear_highpage(page);
796  					unlock_page(page);
797  					continue;
798  				}
799  				index += HPAGE_PMD_NR - 1;
800  				i += HPAGE_PMD_NR - 1;
801  			}
802  
803  			if (!unfalloc || !PageUptodate(page)) {
804  				VM_BUG_ON_PAGE(PageTail(page), page);
805  				if (page_mapping(page) == mapping) {
806  					VM_BUG_ON_PAGE(PageWriteback(page), page);
807  					truncate_inode_page(mapping, page);
808  				}
809  			}
810  			unlock_page(page);
811  		}
812  		pagevec_remove_exceptionals(&pvec);
813  		pagevec_release(&pvec);
814  		cond_resched();
815  		index++;
816  	}
817  
818  	if (partial_start) {
819  		struct page *page = NULL;
820  		shmem_getpage(inode, start - 1, &page, SGP_READ);
821  		if (page) {
822  			unsigned int top = PAGE_SIZE;
823  			if (start > end) {
824  				top = partial_end;
825  				partial_end = 0;
826  			}
827  			zero_user_segment(page, partial_start, top);
828  			set_page_dirty(page);
829  			unlock_page(page);
830  			put_page(page);
831  		}
832  	}
833  	if (partial_end) {
834  		struct page *page = NULL;
835  		shmem_getpage(inode, end, &page, SGP_READ);
836  		if (page) {
837  			zero_user_segment(page, 0, partial_end);
838  			set_page_dirty(page);
839  			unlock_page(page);
840  			put_page(page);
841  		}
842  	}
843  	if (start >= end)
844  		return;
845  
846  	index = start;
847  	while (index < end) {
848  		cond_resched();
849  
850  		pvec.nr = find_get_entries(mapping, index,
851  				min(end - index, (pgoff_t)PAGEVEC_SIZE),
852  				pvec.pages, indices);
853  		if (!pvec.nr) {
854  			/* If all gone or hole-punch or unfalloc, we're done */
855  			if (index == start || end != -1)
856  				break;
857  			/* But if truncating, restart to make sure all gone */
858  			index = start;
859  			continue;
860  		}
861  		for (i = 0; i < pagevec_count(&pvec); i++) {
862  			struct page *page = pvec.pages[i];
863  
864  			index = indices[i];
865  			if (index >= end)
866  				break;
867  
868  			if (radix_tree_exceptional_entry(page)) {
869  				if (unfalloc)
870  					continue;
871  				if (shmem_free_swap(mapping, index, page)) {
872  					/* Swap was replaced by page: retry */
873  					index--;
874  					break;
875  				}
876  				nr_swaps_freed++;
877  				continue;
878  			}
879  
880  			lock_page(page);
881  
882  			if (PageTransTail(page)) {
883  				/* Middle of THP: zero out the page */
884  				clear_highpage(page);
885  				unlock_page(page);
886  				/*
887  				 * Partial thp truncate due 'start' in middle
888  				 * of THP: don't need to look on these pages
889  				 * again on !pvec.nr restart.
890  				 */
891  				if (index != round_down(end, HPAGE_PMD_NR))
892  					start++;
893  				continue;
894  			} else if (PageTransHuge(page)) {
895  				if (index == round_down(end, HPAGE_PMD_NR)) {
896  					/*
897  					 * Range ends in the middle of THP:
898  					 * zero out the page
899  					 */
900  					clear_highpage(page);
901  					unlock_page(page);
902  					continue;
903  				}
904  				index += HPAGE_PMD_NR - 1;
905  				i += HPAGE_PMD_NR - 1;
906  			}
907  
908  			if (!unfalloc || !PageUptodate(page)) {
909  				VM_BUG_ON_PAGE(PageTail(page), page);
910  				if (page_mapping(page) == mapping) {
911  					VM_BUG_ON_PAGE(PageWriteback(page), page);
912  					truncate_inode_page(mapping, page);
913  				} else {
914  					/* Page was replaced by swap: retry */
915  					unlock_page(page);
916  					index--;
917  					break;
918  				}
919  			}
920  			unlock_page(page);
921  		}
922  		pagevec_remove_exceptionals(&pvec);
923  		pagevec_release(&pvec);
924  		index++;
925  	}
926  
927  	spin_lock_irq(&info->lock);
928  	info->swapped -= nr_swaps_freed;
929  	shmem_recalc_inode(inode);
930  	spin_unlock_irq(&info->lock);
931  }
932  
933  void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
934  {
935  	shmem_undo_range(inode, lstart, lend, false);
936  	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
937  }
938  EXPORT_SYMBOL_GPL(shmem_truncate_range);
939  
940  static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
941  			 struct kstat *stat)
942  {
943  	struct inode *inode = dentry->d_inode;
944  	struct shmem_inode_info *info = SHMEM_I(inode);
945  
946  	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
947  		spin_lock_irq(&info->lock);
948  		shmem_recalc_inode(inode);
949  		spin_unlock_irq(&info->lock);
950  	}
951  	generic_fillattr(inode, stat);
952  	return 0;
953  }
954  
955  static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
956  {
957  	struct inode *inode = d_inode(dentry);
958  	struct shmem_inode_info *info = SHMEM_I(inode);
959  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
960  	int error;
961  
962  	error = inode_change_ok(inode, attr);
963  	if (error)
964  		return error;
965  
966  	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
967  		loff_t oldsize = inode->i_size;
968  		loff_t newsize = attr->ia_size;
969  
970  		/* protected by i_mutex */
971  		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
972  		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
973  			return -EPERM;
974  
975  		if (newsize != oldsize) {
976  			error = shmem_reacct_size(SHMEM_I(inode)->flags,
977  					oldsize, newsize);
978  			if (error)
979  				return error;
980  			i_size_write(inode, newsize);
981  			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
982  		}
983  		if (newsize <= oldsize) {
984  			loff_t holebegin = round_up(newsize, PAGE_SIZE);
985  			if (oldsize > holebegin)
986  				unmap_mapping_range(inode->i_mapping,
987  							holebegin, 0, 1);
988  			if (info->alloced)
989  				shmem_truncate_range(inode,
990  							newsize, (loff_t)-1);
991  			/* unmap again to remove racily COWed private pages */
992  			if (oldsize > holebegin)
993  				unmap_mapping_range(inode->i_mapping,
994  							holebegin, 0, 1);
995  
996  			/*
997  			 * Part of the huge page can be beyond i_size: subject
998  			 * to shrink under memory pressure.
999  			 */
1000  			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1001  				spin_lock(&sbinfo->shrinklist_lock);
1002  				if (list_empty(&info->shrinklist)) {
1003  					list_add_tail(&info->shrinklist,
1004  							&sbinfo->shrinklist);
1005  					sbinfo->shrinklist_len++;
1006  				}
1007  				spin_unlock(&sbinfo->shrinklist_lock);
1008  			}
1009  		}
1010  	}
1011  
1012  	setattr_copy(inode, attr);
1013  	if (attr->ia_valid & ATTR_MODE)
1014  		error = posix_acl_chmod(inode, inode->i_mode);
1015  	return error;
1016  }
1017  
1018  static void shmem_evict_inode(struct inode *inode)
1019  {
1020  	struct shmem_inode_info *info = SHMEM_I(inode);
1021  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022  
1023  	if (inode->i_mapping->a_ops == &shmem_aops) {
1024  		shmem_unacct_size(info->flags, inode->i_size);
1025  		inode->i_size = 0;
1026  		shmem_truncate_range(inode, 0, (loff_t)-1);
1027  		if (!list_empty(&info->shrinklist)) {
1028  			spin_lock(&sbinfo->shrinklist_lock);
1029  			if (!list_empty(&info->shrinklist)) {
1030  				list_del_init(&info->shrinklist);
1031  				sbinfo->shrinklist_len--;
1032  			}
1033  			spin_unlock(&sbinfo->shrinklist_lock);
1034  		}
1035  		if (!list_empty(&info->swaplist)) {
1036  			mutex_lock(&shmem_swaplist_mutex);
1037  			list_del_init(&info->swaplist);
1038  			mutex_unlock(&shmem_swaplist_mutex);
1039  		}
1040  	}
1041  
1042  	simple_xattrs_free(&info->xattrs);
1043  	WARN_ON(inode->i_blocks);
1044  	shmem_free_inode(inode->i_sb);
1045  	clear_inode(inode);
1046  }
1047  
1048  /*
1049   * If swap found in inode, free it and move page from swapcache to filecache.
1050   */
1051  static int shmem_unuse_inode(struct shmem_inode_info *info,
1052  			     swp_entry_t swap, struct page **pagep)
1053  {
1054  	struct address_space *mapping = info->vfs_inode.i_mapping;
1055  	void *radswap;
1056  	pgoff_t index;
1057  	gfp_t gfp;
1058  	int error = 0;
1059  
1060  	radswap = swp_to_radix_entry(swap);
1061  	index = radix_tree_locate_item(&mapping->page_tree, radswap);
1062  	if (index == -1)
1063  		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1064  
1065  	/*
1066  	 * Move _head_ to start search for next from here.
1067  	 * But be careful: shmem_evict_inode checks list_empty without taking
1068  	 * mutex, and there's an instant in list_move_tail when info->swaplist
1069  	 * would appear empty, if it were the only one on shmem_swaplist.
1070  	 */
1071  	if (shmem_swaplist.next != &info->swaplist)
1072  		list_move_tail(&shmem_swaplist, &info->swaplist);
1073  
1074  	gfp = mapping_gfp_mask(mapping);
1075  	if (shmem_should_replace_page(*pagep, gfp)) {
1076  		mutex_unlock(&shmem_swaplist_mutex);
1077  		error = shmem_replace_page(pagep, gfp, info, index);
1078  		mutex_lock(&shmem_swaplist_mutex);
1079  		/*
1080  		 * We needed to drop mutex to make that restrictive page
1081  		 * allocation, but the inode might have been freed while we
1082  		 * dropped it: although a racing shmem_evict_inode() cannot
1083  		 * complete without emptying the radix_tree, our page lock
1084  		 * on this swapcache page is not enough to prevent that -
1085  		 * free_swap_and_cache() of our swap entry will only
1086  		 * trylock_page(), removing swap from radix_tree whatever.
1087  		 *
1088  		 * We must not proceed to shmem_add_to_page_cache() if the
1089  		 * inode has been freed, but of course we cannot rely on
1090  		 * inode or mapping or info to check that.  However, we can
1091  		 * safely check if our swap entry is still in use (and here
1092  		 * it can't have got reused for another page): if it's still
1093  		 * in use, then the inode cannot have been freed yet, and we
1094  		 * can safely proceed (if it's no longer in use, that tells
1095  		 * nothing about the inode, but we don't need to unuse swap).
1096  		 */
1097  		if (!page_swapcount(*pagep))
1098  			error = -ENOENT;
1099  	}
1100  
1101  	/*
1102  	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1103  	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1104  	 * beneath us (pagelock doesn't help until the page is in pagecache).
1105  	 */
1106  	if (!error)
1107  		error = shmem_add_to_page_cache(*pagep, mapping, index,
1108  						radswap);
1109  	if (error != -ENOMEM) {
1110  		/*
1111  		 * Truncation and eviction use free_swap_and_cache(), which
1112  		 * only does trylock page: if we raced, best clean up here.
1113  		 */
1114  		delete_from_swap_cache(*pagep);
1115  		set_page_dirty(*pagep);
1116  		if (!error) {
1117  			spin_lock_irq(&info->lock);
1118  			info->swapped--;
1119  			spin_unlock_irq(&info->lock);
1120  			swap_free(swap);
1121  		}
1122  	}
1123  	return error;
1124  }
1125  
1126  /*
1127   * Search through swapped inodes to find and replace swap by page.
1128   */
1129  int shmem_unuse(swp_entry_t swap, struct page *page)
1130  {
1131  	struct list_head *this, *next;
1132  	struct shmem_inode_info *info;
1133  	struct mem_cgroup *memcg;
1134  	int error = 0;
1135  
1136  	/*
1137  	 * There's a faint possibility that swap page was replaced before
1138  	 * caller locked it: caller will come back later with the right page.
1139  	 */
1140  	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1141  		goto out;
1142  
1143  	/*
1144  	 * Charge page using GFP_KERNEL while we can wait, before taking
1145  	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1146  	 * Charged back to the user (not to caller) when swap account is used.
1147  	 */
1148  	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1149  			false);
1150  	if (error)
1151  		goto out;
1152  	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1153  	error = -EAGAIN;
1154  
1155  	mutex_lock(&shmem_swaplist_mutex);
1156  	list_for_each_safe(this, next, &shmem_swaplist) {
1157  		info = list_entry(this, struct shmem_inode_info, swaplist);
1158  		if (info->swapped)
1159  			error = shmem_unuse_inode(info, swap, &page);
1160  		else
1161  			list_del_init(&info->swaplist);
1162  		cond_resched();
1163  		if (error != -EAGAIN)
1164  			break;
1165  		/* found nothing in this: move on to search the next */
1166  	}
1167  	mutex_unlock(&shmem_swaplist_mutex);
1168  
1169  	if (error) {
1170  		if (error != -ENOMEM)
1171  			error = 0;
1172  		mem_cgroup_cancel_charge(page, memcg, false);
1173  	} else
1174  		mem_cgroup_commit_charge(page, memcg, true, false);
1175  out:
1176  	unlock_page(page);
1177  	put_page(page);
1178  	return error;
1179  }
1180  
1181  /*
1182   * Move the page from the page cache to the swap cache.
1183   */
1184  static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1185  {
1186  	struct shmem_inode_info *info;
1187  	struct address_space *mapping;
1188  	struct inode *inode;
1189  	swp_entry_t swap;
1190  	pgoff_t index;
1191  
1192  	VM_BUG_ON_PAGE(PageCompound(page), page);
1193  	BUG_ON(!PageLocked(page));
1194  	mapping = page->mapping;
1195  	index = page->index;
1196  	inode = mapping->host;
1197  	info = SHMEM_I(inode);
1198  	if (info->flags & VM_LOCKED)
1199  		goto redirty;
1200  	if (!total_swap_pages)
1201  		goto redirty;
1202  
1203  	/*
1204  	 * Our capabilities prevent regular writeback or sync from ever calling
1205  	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1206  	 * its underlying filesystem, in which case tmpfs should write out to
1207  	 * swap only in response to memory pressure, and not for the writeback
1208  	 * threads or sync.
1209  	 */
1210  	if (!wbc->for_reclaim) {
1211  		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1212  		goto redirty;
1213  	}
1214  
1215  	/*
1216  	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1217  	 * value into swapfile.c, the only way we can correctly account for a
1218  	 * fallocated page arriving here is now to initialize it and write it.
1219  	 *
1220  	 * That's okay for a page already fallocated earlier, but if we have
1221  	 * not yet completed the fallocation, then (a) we want to keep track
1222  	 * of this page in case we have to undo it, and (b) it may not be a
1223  	 * good idea to continue anyway, once we're pushing into swap.  So
1224  	 * reactivate the page, and let shmem_fallocate() quit when too many.
1225  	 */
1226  	if (!PageUptodate(page)) {
1227  		if (inode->i_private) {
1228  			struct shmem_falloc *shmem_falloc;
1229  			spin_lock(&inode->i_lock);
1230  			shmem_falloc = inode->i_private;
1231  			if (shmem_falloc &&
1232  			    !shmem_falloc->waitq &&
1233  			    index >= shmem_falloc->start &&
1234  			    index < shmem_falloc->next)
1235  				shmem_falloc->nr_unswapped++;
1236  			else
1237  				shmem_falloc = NULL;
1238  			spin_unlock(&inode->i_lock);
1239  			if (shmem_falloc)
1240  				goto redirty;
1241  		}
1242  		clear_highpage(page);
1243  		flush_dcache_page(page);
1244  		SetPageUptodate(page);
1245  	}
1246  
1247  	swap = get_swap_page();
1248  	if (!swap.val)
1249  		goto redirty;
1250  
1251  	if (mem_cgroup_try_charge_swap(page, swap))
1252  		goto free_swap;
1253  
1254  	/*
1255  	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1256  	 * if it's not already there.  Do it now before the page is
1257  	 * moved to swap cache, when its pagelock no longer protects
1258  	 * the inode from eviction.  But don't unlock the mutex until
1259  	 * we've incremented swapped, because shmem_unuse_inode() will
1260  	 * prune a !swapped inode from the swaplist under this mutex.
1261  	 */
1262  	mutex_lock(&shmem_swaplist_mutex);
1263  	if (list_empty(&info->swaplist))
1264  		list_add_tail(&info->swaplist, &shmem_swaplist);
1265  
1266  	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1267  		spin_lock_irq(&info->lock);
1268  		shmem_recalc_inode(inode);
1269  		info->swapped++;
1270  		spin_unlock_irq(&info->lock);
1271  
1272  		swap_shmem_alloc(swap);
1273  		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1274  
1275  		mutex_unlock(&shmem_swaplist_mutex);
1276  		BUG_ON(page_mapped(page));
1277  		swap_writepage(page, wbc);
1278  		return 0;
1279  	}
1280  
1281  	mutex_unlock(&shmem_swaplist_mutex);
1282  free_swap:
1283  	swapcache_free(swap);
1284  redirty:
1285  	set_page_dirty(page);
1286  	if (wbc->for_reclaim)
1287  		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1288  	unlock_page(page);
1289  	return 0;
1290  }
1291  
1292  #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1293  static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1294  {
1295  	char buffer[64];
1296  
1297  	if (!mpol || mpol->mode == MPOL_DEFAULT)
1298  		return;		/* show nothing */
1299  
1300  	mpol_to_str(buffer, sizeof(buffer), mpol);
1301  
1302  	seq_printf(seq, ",mpol=%s", buffer);
1303  }
1304  
1305  static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1306  {
1307  	struct mempolicy *mpol = NULL;
1308  	if (sbinfo->mpol) {
1309  		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1310  		mpol = sbinfo->mpol;
1311  		mpol_get(mpol);
1312  		spin_unlock(&sbinfo->stat_lock);
1313  	}
1314  	return mpol;
1315  }
1316  #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1317  static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1318  {
1319  }
1320  static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1321  {
1322  	return NULL;
1323  }
1324  #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1325  #ifndef CONFIG_NUMA
1326  #define vm_policy vm_private_data
1327  #endif
1328  
1329  static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1330  		struct shmem_inode_info *info, pgoff_t index)
1331  {
1332  	/* Create a pseudo vma that just contains the policy */
1333  	vma->vm_start = 0;
1334  	/* Bias interleave by inode number to distribute better across nodes */
1335  	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1336  	vma->vm_ops = NULL;
1337  	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1338  }
1339  
1340  static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1341  {
1342  	/* Drop reference taken by mpol_shared_policy_lookup() */
1343  	mpol_cond_put(vma->vm_policy);
1344  }
1345  
1346  static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1347  			struct shmem_inode_info *info, pgoff_t index)
1348  {
1349  	struct vm_area_struct pvma;
1350  	struct page *page;
1351  
1352  	shmem_pseudo_vma_init(&pvma, info, index);
1353  	page = swapin_readahead(swap, gfp, &pvma, 0);
1354  	shmem_pseudo_vma_destroy(&pvma);
1355  
1356  	return page;
1357  }
1358  
1359  static struct page *shmem_alloc_hugepage(gfp_t gfp,
1360  		struct shmem_inode_info *info, pgoff_t index)
1361  {
1362  	struct vm_area_struct pvma;
1363  	struct inode *inode = &info->vfs_inode;
1364  	struct address_space *mapping = inode->i_mapping;
1365  	pgoff_t idx, hindex;
1366  	void __rcu **results;
1367  	struct page *page;
1368  
1369  	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1370  		return NULL;
1371  
1372  	hindex = round_down(index, HPAGE_PMD_NR);
1373  	rcu_read_lock();
1374  	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1375  				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1376  		rcu_read_unlock();
1377  		return NULL;
1378  	}
1379  	rcu_read_unlock();
1380  
1381  	shmem_pseudo_vma_init(&pvma, info, hindex);
1382  	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1383  			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1384  	shmem_pseudo_vma_destroy(&pvma);
1385  	if (page)
1386  		prep_transhuge_page(page);
1387  	return page;
1388  }
1389  
1390  static struct page *shmem_alloc_page(gfp_t gfp,
1391  			struct shmem_inode_info *info, pgoff_t index)
1392  {
1393  	struct vm_area_struct pvma;
1394  	struct page *page;
1395  
1396  	shmem_pseudo_vma_init(&pvma, info, index);
1397  	page = alloc_page_vma(gfp, &pvma, 0);
1398  	shmem_pseudo_vma_destroy(&pvma);
1399  
1400  	return page;
1401  }
1402  
1403  static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1404  		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1405  		pgoff_t index, bool huge)
1406  {
1407  	struct page *page;
1408  	int nr;
1409  	int err = -ENOSPC;
1410  
1411  	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1412  		huge = false;
1413  	nr = huge ? HPAGE_PMD_NR : 1;
1414  
1415  	if (shmem_acct_block(info->flags, nr))
1416  		goto failed;
1417  	if (sbinfo->max_blocks) {
1418  		if (percpu_counter_compare(&sbinfo->used_blocks,
1419  					sbinfo->max_blocks - nr) > 0)
1420  			goto unacct;
1421  		percpu_counter_add(&sbinfo->used_blocks, nr);
1422  	}
1423  
1424  	if (huge)
1425  		page = shmem_alloc_hugepage(gfp, info, index);
1426  	else
1427  		page = shmem_alloc_page(gfp, info, index);
1428  	if (page) {
1429  		__SetPageLocked(page);
1430  		__SetPageSwapBacked(page);
1431  		return page;
1432  	}
1433  
1434  	err = -ENOMEM;
1435  	if (sbinfo->max_blocks)
1436  		percpu_counter_add(&sbinfo->used_blocks, -nr);
1437  unacct:
1438  	shmem_unacct_blocks(info->flags, nr);
1439  failed:
1440  	return ERR_PTR(err);
1441  }
1442  
1443  /*
1444   * When a page is moved from swapcache to shmem filecache (either by the
1445   * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1446   * shmem_unuse_inode()), it may have been read in earlier from swap, in
1447   * ignorance of the mapping it belongs to.  If that mapping has special
1448   * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1449   * we may need to copy to a suitable page before moving to filecache.
1450   *
1451   * In a future release, this may well be extended to respect cpuset and
1452   * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1453   * but for now it is a simple matter of zone.
1454   */
1455  static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1456  {
1457  	return page_zonenum(page) > gfp_zone(gfp);
1458  }
1459  
1460  static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1461  				struct shmem_inode_info *info, pgoff_t index)
1462  {
1463  	struct page *oldpage, *newpage;
1464  	struct address_space *swap_mapping;
1465  	pgoff_t swap_index;
1466  	int error;
1467  
1468  	oldpage = *pagep;
1469  	swap_index = page_private(oldpage);
1470  	swap_mapping = page_mapping(oldpage);
1471  
1472  	/*
1473  	 * We have arrived here because our zones are constrained, so don't
1474  	 * limit chance of success by further cpuset and node constraints.
1475  	 */
1476  	gfp &= ~GFP_CONSTRAINT_MASK;
1477  	newpage = shmem_alloc_page(gfp, info, index);
1478  	if (!newpage)
1479  		return -ENOMEM;
1480  
1481  	get_page(newpage);
1482  	copy_highpage(newpage, oldpage);
1483  	flush_dcache_page(newpage);
1484  
1485  	SetPageUptodate(newpage);
1486  	set_page_private(newpage, swap_index);
1487  	SetPageSwapCache(newpage);
1488  
1489  	/*
1490  	 * Our caller will very soon move newpage out of swapcache, but it's
1491  	 * a nice clean interface for us to replace oldpage by newpage there.
1492  	 */
1493  	spin_lock_irq(&swap_mapping->tree_lock);
1494  	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1495  								   newpage);
1496  	if (!error) {
1497  		__inc_node_page_state(newpage, NR_FILE_PAGES);
1498  		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1499  	}
1500  	spin_unlock_irq(&swap_mapping->tree_lock);
1501  
1502  	if (unlikely(error)) {
1503  		/*
1504  		 * Is this possible?  I think not, now that our callers check
1505  		 * both PageSwapCache and page_private after getting page lock;
1506  		 * but be defensive.  Reverse old to newpage for clear and free.
1507  		 */
1508  		oldpage = newpage;
1509  	} else {
1510  		mem_cgroup_migrate(oldpage, newpage);
1511  		lru_cache_add_anon(newpage);
1512  		*pagep = newpage;
1513  	}
1514  
1515  	ClearPageSwapCache(oldpage);
1516  	set_page_private(oldpage, 0);
1517  
1518  	unlock_page(oldpage);
1519  	put_page(oldpage);
1520  	put_page(oldpage);
1521  	return error;
1522  }
1523  
1524  /*
1525   * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1526   *
1527   * If we allocate a new one we do not mark it dirty. That's up to the
1528   * vm. If we swap it in we mark it dirty since we also free the swap
1529   * entry since a page cannot live in both the swap and page cache.
1530   *
1531   * fault_mm and fault_type are only supplied by shmem_fault:
1532   * otherwise they are NULL.
1533   */
1534  static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1535  	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1536  	struct mm_struct *fault_mm, int *fault_type)
1537  {
1538  	struct address_space *mapping = inode->i_mapping;
1539  	struct shmem_inode_info *info;
1540  	struct shmem_sb_info *sbinfo;
1541  	struct mm_struct *charge_mm;
1542  	struct mem_cgroup *memcg;
1543  	struct page *page;
1544  	swp_entry_t swap;
1545  	enum sgp_type sgp_huge = sgp;
1546  	pgoff_t hindex = index;
1547  	int error;
1548  	int once = 0;
1549  	int alloced = 0;
1550  
1551  	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1552  		return -EFBIG;
1553  	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1554  		sgp = SGP_CACHE;
1555  repeat:
1556  	swap.val = 0;
1557  	page = find_lock_entry(mapping, index);
1558  	if (radix_tree_exceptional_entry(page)) {
1559  		swap = radix_to_swp_entry(page);
1560  		page = NULL;
1561  	}
1562  
1563  	if (sgp <= SGP_CACHE &&
1564  	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1565  		error = -EINVAL;
1566  		goto unlock;
1567  	}
1568  
1569  	if (page && sgp == SGP_WRITE)
1570  		mark_page_accessed(page);
1571  
1572  	/* fallocated page? */
1573  	if (page && !PageUptodate(page)) {
1574  		if (sgp != SGP_READ)
1575  			goto clear;
1576  		unlock_page(page);
1577  		put_page(page);
1578  		page = NULL;
1579  	}
1580  	if (page || (sgp == SGP_READ && !swap.val)) {
1581  		*pagep = page;
1582  		return 0;
1583  	}
1584  
1585  	/*
1586  	 * Fast cache lookup did not find it:
1587  	 * bring it back from swap or allocate.
1588  	 */
1589  	info = SHMEM_I(inode);
1590  	sbinfo = SHMEM_SB(inode->i_sb);
1591  	charge_mm = fault_mm ? : current->mm;
1592  
1593  	if (swap.val) {
1594  		/* Look it up and read it in.. */
1595  		page = lookup_swap_cache(swap);
1596  		if (!page) {
1597  			/* Or update major stats only when swapin succeeds?? */
1598  			if (fault_type) {
1599  				*fault_type |= VM_FAULT_MAJOR;
1600  				count_vm_event(PGMAJFAULT);
1601  				mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1602  			}
1603  			/* Here we actually start the io */
1604  			page = shmem_swapin(swap, gfp, info, index);
1605  			if (!page) {
1606  				error = -ENOMEM;
1607  				goto failed;
1608  			}
1609  		}
1610  
1611  		/* We have to do this with page locked to prevent races */
1612  		lock_page(page);
1613  		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1614  		    !shmem_confirm_swap(mapping, index, swap)) {
1615  			error = -EEXIST;	/* try again */
1616  			goto unlock;
1617  		}
1618  		if (!PageUptodate(page)) {
1619  			error = -EIO;
1620  			goto failed;
1621  		}
1622  		wait_on_page_writeback(page);
1623  
1624  		if (shmem_should_replace_page(page, gfp)) {
1625  			error = shmem_replace_page(&page, gfp, info, index);
1626  			if (error)
1627  				goto failed;
1628  		}
1629  
1630  		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1631  				false);
1632  		if (!error) {
1633  			error = shmem_add_to_page_cache(page, mapping, index,
1634  						swp_to_radix_entry(swap));
1635  			/*
1636  			 * We already confirmed swap under page lock, and make
1637  			 * no memory allocation here, so usually no possibility
1638  			 * of error; but free_swap_and_cache() only trylocks a
1639  			 * page, so it is just possible that the entry has been
1640  			 * truncated or holepunched since swap was confirmed.
1641  			 * shmem_undo_range() will have done some of the
1642  			 * unaccounting, now delete_from_swap_cache() will do
1643  			 * the rest.
1644  			 * Reset swap.val? No, leave it so "failed" goes back to
1645  			 * "repeat": reading a hole and writing should succeed.
1646  			 */
1647  			if (error) {
1648  				mem_cgroup_cancel_charge(page, memcg, false);
1649  				delete_from_swap_cache(page);
1650  			}
1651  		}
1652  		if (error)
1653  			goto failed;
1654  
1655  		mem_cgroup_commit_charge(page, memcg, true, false);
1656  
1657  		spin_lock_irq(&info->lock);
1658  		info->swapped--;
1659  		shmem_recalc_inode(inode);
1660  		spin_unlock_irq(&info->lock);
1661  
1662  		if (sgp == SGP_WRITE)
1663  			mark_page_accessed(page);
1664  
1665  		delete_from_swap_cache(page);
1666  		set_page_dirty(page);
1667  		swap_free(swap);
1668  
1669  	} else {
1670  		/* shmem_symlink() */
1671  		if (mapping->a_ops != &shmem_aops)
1672  			goto alloc_nohuge;
1673  		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1674  			goto alloc_nohuge;
1675  		if (shmem_huge == SHMEM_HUGE_FORCE)
1676  			goto alloc_huge;
1677  		switch (sbinfo->huge) {
1678  			loff_t i_size;
1679  			pgoff_t off;
1680  		case SHMEM_HUGE_NEVER:
1681  			goto alloc_nohuge;
1682  		case SHMEM_HUGE_WITHIN_SIZE:
1683  			off = round_up(index, HPAGE_PMD_NR);
1684  			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1685  			if (i_size >= HPAGE_PMD_SIZE &&
1686  					i_size >> PAGE_SHIFT >= off)
1687  				goto alloc_huge;
1688  			/* fallthrough */
1689  		case SHMEM_HUGE_ADVISE:
1690  			if (sgp_huge == SGP_HUGE)
1691  				goto alloc_huge;
1692  			/* TODO: implement fadvise() hints */
1693  			goto alloc_nohuge;
1694  		}
1695  
1696  alloc_huge:
1697  		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1698  				index, true);
1699  		if (IS_ERR(page)) {
1700  alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1701  					index, false);
1702  		}
1703  		if (IS_ERR(page)) {
1704  			int retry = 5;
1705  			error = PTR_ERR(page);
1706  			page = NULL;
1707  			if (error != -ENOSPC)
1708  				goto failed;
1709  			/*
1710  			 * Try to reclaim some spece by splitting a huge page
1711  			 * beyond i_size on the filesystem.
1712  			 */
1713  			while (retry--) {
1714  				int ret;
1715  				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1716  				if (ret == SHRINK_STOP)
1717  					break;
1718  				if (ret)
1719  					goto alloc_nohuge;
1720  			}
1721  			goto failed;
1722  		}
1723  
1724  		if (PageTransHuge(page))
1725  			hindex = round_down(index, HPAGE_PMD_NR);
1726  		else
1727  			hindex = index;
1728  
1729  		if (sgp == SGP_WRITE)
1730  			__SetPageReferenced(page);
1731  
1732  		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1733  				PageTransHuge(page));
1734  		if (error)
1735  			goto unacct;
1736  		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1737  				compound_order(page));
1738  		if (!error) {
1739  			error = shmem_add_to_page_cache(page, mapping, hindex,
1740  							NULL);
1741  			radix_tree_preload_end();
1742  		}
1743  		if (error) {
1744  			mem_cgroup_cancel_charge(page, memcg,
1745  					PageTransHuge(page));
1746  			goto unacct;
1747  		}
1748  		mem_cgroup_commit_charge(page, memcg, false,
1749  				PageTransHuge(page));
1750  		lru_cache_add_anon(page);
1751  
1752  		spin_lock_irq(&info->lock);
1753  		info->alloced += 1 << compound_order(page);
1754  		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1755  		shmem_recalc_inode(inode);
1756  		spin_unlock_irq(&info->lock);
1757  		alloced = true;
1758  
1759  		if (PageTransHuge(page) &&
1760  				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1761  				hindex + HPAGE_PMD_NR - 1) {
1762  			/*
1763  			 * Part of the huge page is beyond i_size: subject
1764  			 * to shrink under memory pressure.
1765  			 */
1766  			spin_lock(&sbinfo->shrinklist_lock);
1767  			if (list_empty(&info->shrinklist)) {
1768  				list_add_tail(&info->shrinklist,
1769  						&sbinfo->shrinklist);
1770  				sbinfo->shrinklist_len++;
1771  			}
1772  			spin_unlock(&sbinfo->shrinklist_lock);
1773  		}
1774  
1775  		/*
1776  		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1777  		 */
1778  		if (sgp == SGP_FALLOC)
1779  			sgp = SGP_WRITE;
1780  clear:
1781  		/*
1782  		 * Let SGP_WRITE caller clear ends if write does not fill page;
1783  		 * but SGP_FALLOC on a page fallocated earlier must initialize
1784  		 * it now, lest undo on failure cancel our earlier guarantee.
1785  		 */
1786  		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1787  			struct page *head = compound_head(page);
1788  			int i;
1789  
1790  			for (i = 0; i < (1 << compound_order(head)); i++) {
1791  				clear_highpage(head + i);
1792  				flush_dcache_page(head + i);
1793  			}
1794  			SetPageUptodate(head);
1795  		}
1796  	}
1797  
1798  	/* Perhaps the file has been truncated since we checked */
1799  	if (sgp <= SGP_CACHE &&
1800  	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1801  		if (alloced) {
1802  			ClearPageDirty(page);
1803  			delete_from_page_cache(page);
1804  			spin_lock_irq(&info->lock);
1805  			shmem_recalc_inode(inode);
1806  			spin_unlock_irq(&info->lock);
1807  		}
1808  		error = -EINVAL;
1809  		goto unlock;
1810  	}
1811  	*pagep = page + index - hindex;
1812  	return 0;
1813  
1814  	/*
1815  	 * Error recovery.
1816  	 */
1817  unacct:
1818  	if (sbinfo->max_blocks)
1819  		percpu_counter_sub(&sbinfo->used_blocks,
1820  				1 << compound_order(page));
1821  	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1822  
1823  	if (PageTransHuge(page)) {
1824  		unlock_page(page);
1825  		put_page(page);
1826  		goto alloc_nohuge;
1827  	}
1828  failed:
1829  	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1830  		error = -EEXIST;
1831  unlock:
1832  	if (page) {
1833  		unlock_page(page);
1834  		put_page(page);
1835  	}
1836  	if (error == -ENOSPC && !once++) {
1837  		info = SHMEM_I(inode);
1838  		spin_lock_irq(&info->lock);
1839  		shmem_recalc_inode(inode);
1840  		spin_unlock_irq(&info->lock);
1841  		goto repeat;
1842  	}
1843  	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1844  		goto repeat;
1845  	return error;
1846  }
1847  
1848  static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1849  {
1850  	struct inode *inode = file_inode(vma->vm_file);
1851  	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1852  	enum sgp_type sgp;
1853  	int error;
1854  	int ret = VM_FAULT_LOCKED;
1855  
1856  	/*
1857  	 * Trinity finds that probing a hole which tmpfs is punching can
1858  	 * prevent the hole-punch from ever completing: which in turn
1859  	 * locks writers out with its hold on i_mutex.  So refrain from
1860  	 * faulting pages into the hole while it's being punched.  Although
1861  	 * shmem_undo_range() does remove the additions, it may be unable to
1862  	 * keep up, as each new page needs its own unmap_mapping_range() call,
1863  	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1864  	 *
1865  	 * It does not matter if we sometimes reach this check just before the
1866  	 * hole-punch begins, so that one fault then races with the punch:
1867  	 * we just need to make racing faults a rare case.
1868  	 *
1869  	 * The implementation below would be much simpler if we just used a
1870  	 * standard mutex or completion: but we cannot take i_mutex in fault,
1871  	 * and bloating every shmem inode for this unlikely case would be sad.
1872  	 */
1873  	if (unlikely(inode->i_private)) {
1874  		struct shmem_falloc *shmem_falloc;
1875  
1876  		spin_lock(&inode->i_lock);
1877  		shmem_falloc = inode->i_private;
1878  		if (shmem_falloc &&
1879  		    shmem_falloc->waitq &&
1880  		    vmf->pgoff >= shmem_falloc->start &&
1881  		    vmf->pgoff < shmem_falloc->next) {
1882  			wait_queue_head_t *shmem_falloc_waitq;
1883  			DEFINE_WAIT(shmem_fault_wait);
1884  
1885  			ret = VM_FAULT_NOPAGE;
1886  			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1887  			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1888  				/* It's polite to up mmap_sem if we can */
1889  				up_read(&vma->vm_mm->mmap_sem);
1890  				ret = VM_FAULT_RETRY;
1891  			}
1892  
1893  			shmem_falloc_waitq = shmem_falloc->waitq;
1894  			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1895  					TASK_UNINTERRUPTIBLE);
1896  			spin_unlock(&inode->i_lock);
1897  			schedule();
1898  
1899  			/*
1900  			 * shmem_falloc_waitq points into the shmem_fallocate()
1901  			 * stack of the hole-punching task: shmem_falloc_waitq
1902  			 * is usually invalid by the time we reach here, but
1903  			 * finish_wait() does not dereference it in that case;
1904  			 * though i_lock needed lest racing with wake_up_all().
1905  			 */
1906  			spin_lock(&inode->i_lock);
1907  			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1908  			spin_unlock(&inode->i_lock);
1909  			return ret;
1910  		}
1911  		spin_unlock(&inode->i_lock);
1912  	}
1913  
1914  	sgp = SGP_CACHE;
1915  	if (vma->vm_flags & VM_HUGEPAGE)
1916  		sgp = SGP_HUGE;
1917  	else if (vma->vm_flags & VM_NOHUGEPAGE)
1918  		sgp = SGP_NOHUGE;
1919  
1920  	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1921  				  gfp, vma->vm_mm, &ret);
1922  	if (error)
1923  		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1924  	return ret;
1925  }
1926  
1927  unsigned long shmem_get_unmapped_area(struct file *file,
1928  				      unsigned long uaddr, unsigned long len,
1929  				      unsigned long pgoff, unsigned long flags)
1930  {
1931  	unsigned long (*get_area)(struct file *,
1932  		unsigned long, unsigned long, unsigned long, unsigned long);
1933  	unsigned long addr;
1934  	unsigned long offset;
1935  	unsigned long inflated_len;
1936  	unsigned long inflated_addr;
1937  	unsigned long inflated_offset;
1938  
1939  	if (len > TASK_SIZE)
1940  		return -ENOMEM;
1941  
1942  	get_area = current->mm->get_unmapped_area;
1943  	addr = get_area(file, uaddr, len, pgoff, flags);
1944  
1945  	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1946  		return addr;
1947  	if (IS_ERR_VALUE(addr))
1948  		return addr;
1949  	if (addr & ~PAGE_MASK)
1950  		return addr;
1951  	if (addr > TASK_SIZE - len)
1952  		return addr;
1953  
1954  	if (shmem_huge == SHMEM_HUGE_DENY)
1955  		return addr;
1956  	if (len < HPAGE_PMD_SIZE)
1957  		return addr;
1958  	if (flags & MAP_FIXED)
1959  		return addr;
1960  	/*
1961  	 * Our priority is to support MAP_SHARED mapped hugely;
1962  	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1963  	 * But if caller specified an address hint, respect that as before.
1964  	 */
1965  	if (uaddr)
1966  		return addr;
1967  
1968  	if (shmem_huge != SHMEM_HUGE_FORCE) {
1969  		struct super_block *sb;
1970  
1971  		if (file) {
1972  			VM_BUG_ON(file->f_op != &shmem_file_operations);
1973  			sb = file_inode(file)->i_sb;
1974  		} else {
1975  			/*
1976  			 * Called directly from mm/mmap.c, or drivers/char/mem.c
1977  			 * for "/dev/zero", to create a shared anonymous object.
1978  			 */
1979  			if (IS_ERR(shm_mnt))
1980  				return addr;
1981  			sb = shm_mnt->mnt_sb;
1982  		}
1983  		if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
1984  			return addr;
1985  	}
1986  
1987  	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1988  	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1989  		return addr;
1990  	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1991  		return addr;
1992  
1993  	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1994  	if (inflated_len > TASK_SIZE)
1995  		return addr;
1996  	if (inflated_len < len)
1997  		return addr;
1998  
1999  	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2000  	if (IS_ERR_VALUE(inflated_addr))
2001  		return addr;
2002  	if (inflated_addr & ~PAGE_MASK)
2003  		return addr;
2004  
2005  	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2006  	inflated_addr += offset - inflated_offset;
2007  	if (inflated_offset > offset)
2008  		inflated_addr += HPAGE_PMD_SIZE;
2009  
2010  	if (inflated_addr > TASK_SIZE - len)
2011  		return addr;
2012  	return inflated_addr;
2013  }
2014  
2015  #ifdef CONFIG_NUMA
2016  static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2017  {
2018  	struct inode *inode = file_inode(vma->vm_file);
2019  	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2020  }
2021  
2022  static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2023  					  unsigned long addr)
2024  {
2025  	struct inode *inode = file_inode(vma->vm_file);
2026  	pgoff_t index;
2027  
2028  	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2029  	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2030  }
2031  #endif
2032  
2033  int shmem_lock(struct file *file, int lock, struct user_struct *user)
2034  {
2035  	struct inode *inode = file_inode(file);
2036  	struct shmem_inode_info *info = SHMEM_I(inode);
2037  	int retval = -ENOMEM;
2038  
2039  	spin_lock_irq(&info->lock);
2040  	if (lock && !(info->flags & VM_LOCKED)) {
2041  		if (!user_shm_lock(inode->i_size, user))
2042  			goto out_nomem;
2043  		info->flags |= VM_LOCKED;
2044  		mapping_set_unevictable(file->f_mapping);
2045  	}
2046  	if (!lock && (info->flags & VM_LOCKED) && user) {
2047  		user_shm_unlock(inode->i_size, user);
2048  		info->flags &= ~VM_LOCKED;
2049  		mapping_clear_unevictable(file->f_mapping);
2050  	}
2051  	retval = 0;
2052  
2053  out_nomem:
2054  	spin_unlock_irq(&info->lock);
2055  	return retval;
2056  }
2057  
2058  static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2059  {
2060  	file_accessed(file);
2061  	vma->vm_ops = &shmem_vm_ops;
2062  	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2063  			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2064  			(vma->vm_end & HPAGE_PMD_MASK)) {
2065  		khugepaged_enter(vma, vma->vm_flags);
2066  	}
2067  	return 0;
2068  }
2069  
2070  static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2071  				     umode_t mode, dev_t dev, unsigned long flags)
2072  {
2073  	struct inode *inode;
2074  	struct shmem_inode_info *info;
2075  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2076  
2077  	if (shmem_reserve_inode(sb))
2078  		return NULL;
2079  
2080  	inode = new_inode(sb);
2081  	if (inode) {
2082  		inode->i_ino = get_next_ino();
2083  		inode_init_owner(inode, dir, mode);
2084  		inode->i_blocks = 0;
2085  		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2086  		inode->i_generation = get_seconds();
2087  		info = SHMEM_I(inode);
2088  		memset(info, 0, (char *)inode - (char *)info);
2089  		spin_lock_init(&info->lock);
2090  		info->seals = F_SEAL_SEAL;
2091  		info->flags = flags & VM_NORESERVE;
2092  		INIT_LIST_HEAD(&info->shrinklist);
2093  		INIT_LIST_HEAD(&info->swaplist);
2094  		simple_xattrs_init(&info->xattrs);
2095  		cache_no_acl(inode);
2096  
2097  		switch (mode & S_IFMT) {
2098  		default:
2099  			inode->i_op = &shmem_special_inode_operations;
2100  			init_special_inode(inode, mode, dev);
2101  			break;
2102  		case S_IFREG:
2103  			inode->i_mapping->a_ops = &shmem_aops;
2104  			inode->i_op = &shmem_inode_operations;
2105  			inode->i_fop = &shmem_file_operations;
2106  			mpol_shared_policy_init(&info->policy,
2107  						 shmem_get_sbmpol(sbinfo));
2108  			break;
2109  		case S_IFDIR:
2110  			inc_nlink(inode);
2111  			/* Some things misbehave if size == 0 on a directory */
2112  			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2113  			inode->i_op = &shmem_dir_inode_operations;
2114  			inode->i_fop = &simple_dir_operations;
2115  			break;
2116  		case S_IFLNK:
2117  			/*
2118  			 * Must not load anything in the rbtree,
2119  			 * mpol_free_shared_policy will not be called.
2120  			 */
2121  			mpol_shared_policy_init(&info->policy, NULL);
2122  			break;
2123  		}
2124  	} else
2125  		shmem_free_inode(sb);
2126  	return inode;
2127  }
2128  
2129  bool shmem_mapping(struct address_space *mapping)
2130  {
2131  	if (!mapping->host)
2132  		return false;
2133  
2134  	return mapping->host->i_sb->s_op == &shmem_ops;
2135  }
2136  
2137  #ifdef CONFIG_TMPFS
2138  static const struct inode_operations shmem_symlink_inode_operations;
2139  static const struct inode_operations shmem_short_symlink_operations;
2140  
2141  #ifdef CONFIG_TMPFS_XATTR
2142  static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2143  #else
2144  #define shmem_initxattrs NULL
2145  #endif
2146  
2147  static int
2148  shmem_write_begin(struct file *file, struct address_space *mapping,
2149  			loff_t pos, unsigned len, unsigned flags,
2150  			struct page **pagep, void **fsdata)
2151  {
2152  	struct inode *inode = mapping->host;
2153  	struct shmem_inode_info *info = SHMEM_I(inode);
2154  	pgoff_t index = pos >> PAGE_SHIFT;
2155  
2156  	/* i_mutex is held by caller */
2157  	if (unlikely(info->seals)) {
2158  		if (info->seals & F_SEAL_WRITE)
2159  			return -EPERM;
2160  		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2161  			return -EPERM;
2162  	}
2163  
2164  	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2165  }
2166  
2167  static int
2168  shmem_write_end(struct file *file, struct address_space *mapping,
2169  			loff_t pos, unsigned len, unsigned copied,
2170  			struct page *page, void *fsdata)
2171  {
2172  	struct inode *inode = mapping->host;
2173  
2174  	if (pos + copied > inode->i_size)
2175  		i_size_write(inode, pos + copied);
2176  
2177  	if (!PageUptodate(page)) {
2178  		struct page *head = compound_head(page);
2179  		if (PageTransCompound(page)) {
2180  			int i;
2181  
2182  			for (i = 0; i < HPAGE_PMD_NR; i++) {
2183  				if (head + i == page)
2184  					continue;
2185  				clear_highpage(head + i);
2186  				flush_dcache_page(head + i);
2187  			}
2188  		}
2189  		if (copied < PAGE_SIZE) {
2190  			unsigned from = pos & (PAGE_SIZE - 1);
2191  			zero_user_segments(page, 0, from,
2192  					from + copied, PAGE_SIZE);
2193  		}
2194  		SetPageUptodate(head);
2195  	}
2196  	set_page_dirty(page);
2197  	unlock_page(page);
2198  	put_page(page);
2199  
2200  	return copied;
2201  }
2202  
2203  static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2204  {
2205  	struct file *file = iocb->ki_filp;
2206  	struct inode *inode = file_inode(file);
2207  	struct address_space *mapping = inode->i_mapping;
2208  	pgoff_t index;
2209  	unsigned long offset;
2210  	enum sgp_type sgp = SGP_READ;
2211  	int error = 0;
2212  	ssize_t retval = 0;
2213  	loff_t *ppos = &iocb->ki_pos;
2214  
2215  	/*
2216  	 * Might this read be for a stacking filesystem?  Then when reading
2217  	 * holes of a sparse file, we actually need to allocate those pages,
2218  	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2219  	 */
2220  	if (!iter_is_iovec(to))
2221  		sgp = SGP_CACHE;
2222  
2223  	index = *ppos >> PAGE_SHIFT;
2224  	offset = *ppos & ~PAGE_MASK;
2225  
2226  	for (;;) {
2227  		struct page *page = NULL;
2228  		pgoff_t end_index;
2229  		unsigned long nr, ret;
2230  		loff_t i_size = i_size_read(inode);
2231  
2232  		end_index = i_size >> PAGE_SHIFT;
2233  		if (index > end_index)
2234  			break;
2235  		if (index == end_index) {
2236  			nr = i_size & ~PAGE_MASK;
2237  			if (nr <= offset)
2238  				break;
2239  		}
2240  
2241  		error = shmem_getpage(inode, index, &page, sgp);
2242  		if (error) {
2243  			if (error == -EINVAL)
2244  				error = 0;
2245  			break;
2246  		}
2247  		if (page) {
2248  			if (sgp == SGP_CACHE)
2249  				set_page_dirty(page);
2250  			unlock_page(page);
2251  		}
2252  
2253  		/*
2254  		 * We must evaluate after, since reads (unlike writes)
2255  		 * are called without i_mutex protection against truncate
2256  		 */
2257  		nr = PAGE_SIZE;
2258  		i_size = i_size_read(inode);
2259  		end_index = i_size >> PAGE_SHIFT;
2260  		if (index == end_index) {
2261  			nr = i_size & ~PAGE_MASK;
2262  			if (nr <= offset) {
2263  				if (page)
2264  					put_page(page);
2265  				break;
2266  			}
2267  		}
2268  		nr -= offset;
2269  
2270  		if (page) {
2271  			/*
2272  			 * If users can be writing to this page using arbitrary
2273  			 * virtual addresses, take care about potential aliasing
2274  			 * before reading the page on the kernel side.
2275  			 */
2276  			if (mapping_writably_mapped(mapping))
2277  				flush_dcache_page(page);
2278  			/*
2279  			 * Mark the page accessed if we read the beginning.
2280  			 */
2281  			if (!offset)
2282  				mark_page_accessed(page);
2283  		} else {
2284  			page = ZERO_PAGE(0);
2285  			get_page(page);
2286  		}
2287  
2288  		/*
2289  		 * Ok, we have the page, and it's up-to-date, so
2290  		 * now we can copy it to user space...
2291  		 */
2292  		ret = copy_page_to_iter(page, offset, nr, to);
2293  		retval += ret;
2294  		offset += ret;
2295  		index += offset >> PAGE_SHIFT;
2296  		offset &= ~PAGE_MASK;
2297  
2298  		put_page(page);
2299  		if (!iov_iter_count(to))
2300  			break;
2301  		if (ret < nr) {
2302  			error = -EFAULT;
2303  			break;
2304  		}
2305  		cond_resched();
2306  	}
2307  
2308  	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2309  	file_accessed(file);
2310  	return retval ? retval : error;
2311  }
2312  
2313  static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2314  				struct pipe_inode_info *pipe, size_t len,
2315  				unsigned int flags)
2316  {
2317  	struct address_space *mapping = in->f_mapping;
2318  	struct inode *inode = mapping->host;
2319  	unsigned int loff, nr_pages, req_pages;
2320  	struct page *pages[PIPE_DEF_BUFFERS];
2321  	struct partial_page partial[PIPE_DEF_BUFFERS];
2322  	struct page *page;
2323  	pgoff_t index, end_index;
2324  	loff_t isize, left;
2325  	int error, page_nr;
2326  	struct splice_pipe_desc spd = {
2327  		.pages = pages,
2328  		.partial = partial,
2329  		.nr_pages_max = PIPE_DEF_BUFFERS,
2330  		.flags = flags,
2331  		.ops = &page_cache_pipe_buf_ops,
2332  		.spd_release = spd_release_page,
2333  	};
2334  
2335  	isize = i_size_read(inode);
2336  	if (unlikely(*ppos >= isize))
2337  		return 0;
2338  
2339  	left = isize - *ppos;
2340  	if (unlikely(left < len))
2341  		len = left;
2342  
2343  	if (splice_grow_spd(pipe, &spd))
2344  		return -ENOMEM;
2345  
2346  	index = *ppos >> PAGE_SHIFT;
2347  	loff = *ppos & ~PAGE_MASK;
2348  	req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
2349  	nr_pages = min(req_pages, spd.nr_pages_max);
2350  
2351  	spd.nr_pages = find_get_pages_contig(mapping, index,
2352  						nr_pages, spd.pages);
2353  	index += spd.nr_pages;
2354  	error = 0;
2355  
2356  	while (spd.nr_pages < nr_pages) {
2357  		error = shmem_getpage(inode, index, &page, SGP_CACHE);
2358  		if (error)
2359  			break;
2360  		unlock_page(page);
2361  		spd.pages[spd.nr_pages++] = page;
2362  		index++;
2363  	}
2364  
2365  	index = *ppos >> PAGE_SHIFT;
2366  	nr_pages = spd.nr_pages;
2367  	spd.nr_pages = 0;
2368  
2369  	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
2370  		unsigned int this_len;
2371  
2372  		if (!len)
2373  			break;
2374  
2375  		this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
2376  		page = spd.pages[page_nr];
2377  
2378  		if (!PageUptodate(page) || page->mapping != mapping) {
2379  			error = shmem_getpage(inode, index, &page, SGP_CACHE);
2380  			if (error)
2381  				break;
2382  			unlock_page(page);
2383  			put_page(spd.pages[page_nr]);
2384  			spd.pages[page_nr] = page;
2385  		}
2386  
2387  		isize = i_size_read(inode);
2388  		end_index = (isize - 1) >> PAGE_SHIFT;
2389  		if (unlikely(!isize || index > end_index))
2390  			break;
2391  
2392  		if (end_index == index) {
2393  			unsigned int plen;
2394  
2395  			plen = ((isize - 1) & ~PAGE_MASK) + 1;
2396  			if (plen <= loff)
2397  				break;
2398  
2399  			this_len = min(this_len, plen - loff);
2400  			len = this_len;
2401  		}
2402  
2403  		spd.partial[page_nr].offset = loff;
2404  		spd.partial[page_nr].len = this_len;
2405  		len -= this_len;
2406  		loff = 0;
2407  		spd.nr_pages++;
2408  		index++;
2409  	}
2410  
2411  	while (page_nr < nr_pages)
2412  		put_page(spd.pages[page_nr++]);
2413  
2414  	if (spd.nr_pages)
2415  		error = splice_to_pipe(pipe, &spd);
2416  
2417  	splice_shrink_spd(&spd);
2418  
2419  	if (error > 0) {
2420  		*ppos += error;
2421  		file_accessed(in);
2422  	}
2423  	return error;
2424  }
2425  
2426  /*
2427   * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2428   */
2429  static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2430  				    pgoff_t index, pgoff_t end, int whence)
2431  {
2432  	struct page *page;
2433  	struct pagevec pvec;
2434  	pgoff_t indices[PAGEVEC_SIZE];
2435  	bool done = false;
2436  	int i;
2437  
2438  	pagevec_init(&pvec, 0);
2439  	pvec.nr = 1;		/* start small: we may be there already */
2440  	while (!done) {
2441  		pvec.nr = find_get_entries(mapping, index,
2442  					pvec.nr, pvec.pages, indices);
2443  		if (!pvec.nr) {
2444  			if (whence == SEEK_DATA)
2445  				index = end;
2446  			break;
2447  		}
2448  		for (i = 0; i < pvec.nr; i++, index++) {
2449  			if (index < indices[i]) {
2450  				if (whence == SEEK_HOLE) {
2451  					done = true;
2452  					break;
2453  				}
2454  				index = indices[i];
2455  			}
2456  			page = pvec.pages[i];
2457  			if (page && !radix_tree_exceptional_entry(page)) {
2458  				if (!PageUptodate(page))
2459  					page = NULL;
2460  			}
2461  			if (index >= end ||
2462  			    (page && whence == SEEK_DATA) ||
2463  			    (!page && whence == SEEK_HOLE)) {
2464  				done = true;
2465  				break;
2466  			}
2467  		}
2468  		pagevec_remove_exceptionals(&pvec);
2469  		pagevec_release(&pvec);
2470  		pvec.nr = PAGEVEC_SIZE;
2471  		cond_resched();
2472  	}
2473  	return index;
2474  }
2475  
2476  static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2477  {
2478  	struct address_space *mapping = file->f_mapping;
2479  	struct inode *inode = mapping->host;
2480  	pgoff_t start, end;
2481  	loff_t new_offset;
2482  
2483  	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2484  		return generic_file_llseek_size(file, offset, whence,
2485  					MAX_LFS_FILESIZE, i_size_read(inode));
2486  	inode_lock(inode);
2487  	/* We're holding i_mutex so we can access i_size directly */
2488  
2489  	if (offset < 0)
2490  		offset = -EINVAL;
2491  	else if (offset >= inode->i_size)
2492  		offset = -ENXIO;
2493  	else {
2494  		start = offset >> PAGE_SHIFT;
2495  		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2496  		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2497  		new_offset <<= PAGE_SHIFT;
2498  		if (new_offset > offset) {
2499  			if (new_offset < inode->i_size)
2500  				offset = new_offset;
2501  			else if (whence == SEEK_DATA)
2502  				offset = -ENXIO;
2503  			else
2504  				offset = inode->i_size;
2505  		}
2506  	}
2507  
2508  	if (offset >= 0)
2509  		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2510  	inode_unlock(inode);
2511  	return offset;
2512  }
2513  
2514  /*
2515   * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2516   * so reuse a tag which we firmly believe is never set or cleared on shmem.
2517   */
2518  #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2519  #define LAST_SCAN               4       /* about 150ms max */
2520  
2521  static void shmem_tag_pins(struct address_space *mapping)
2522  {
2523  	struct radix_tree_iter iter;
2524  	void **slot;
2525  	pgoff_t start;
2526  	struct page *page;
2527  
2528  	lru_add_drain();
2529  	start = 0;
2530  	rcu_read_lock();
2531  
2532  	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2533  		page = radix_tree_deref_slot(slot);
2534  		if (!page || radix_tree_exception(page)) {
2535  			if (radix_tree_deref_retry(page)) {
2536  				slot = radix_tree_iter_retry(&iter);
2537  				continue;
2538  			}
2539  		} else if (page_count(page) - page_mapcount(page) > 1) {
2540  			spin_lock_irq(&mapping->tree_lock);
2541  			radix_tree_tag_set(&mapping->page_tree, iter.index,
2542  					   SHMEM_TAG_PINNED);
2543  			spin_unlock_irq(&mapping->tree_lock);
2544  		}
2545  
2546  		if (need_resched()) {
2547  			cond_resched_rcu();
2548  			slot = radix_tree_iter_next(&iter);
2549  		}
2550  	}
2551  	rcu_read_unlock();
2552  }
2553  
2554  /*
2555   * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2556   * via get_user_pages(), drivers might have some pending I/O without any active
2557   * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2558   * and see whether it has an elevated ref-count. If so, we tag them and wait for
2559   * them to be dropped.
2560   * The caller must guarantee that no new user will acquire writable references
2561   * to those pages to avoid races.
2562   */
2563  static int shmem_wait_for_pins(struct address_space *mapping)
2564  {
2565  	struct radix_tree_iter iter;
2566  	void **slot;
2567  	pgoff_t start;
2568  	struct page *page;
2569  	int error, scan;
2570  
2571  	shmem_tag_pins(mapping);
2572  
2573  	error = 0;
2574  	for (scan = 0; scan <= LAST_SCAN; scan++) {
2575  		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2576  			break;
2577  
2578  		if (!scan)
2579  			lru_add_drain_all();
2580  		else if (schedule_timeout_killable((HZ << scan) / 200))
2581  			scan = LAST_SCAN;
2582  
2583  		start = 0;
2584  		rcu_read_lock();
2585  		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2586  					   start, SHMEM_TAG_PINNED) {
2587  
2588  			page = radix_tree_deref_slot(slot);
2589  			if (radix_tree_exception(page)) {
2590  				if (radix_tree_deref_retry(page)) {
2591  					slot = radix_tree_iter_retry(&iter);
2592  					continue;
2593  				}
2594  
2595  				page = NULL;
2596  			}
2597  
2598  			if (page &&
2599  			    page_count(page) - page_mapcount(page) != 1) {
2600  				if (scan < LAST_SCAN)
2601  					goto continue_resched;
2602  
2603  				/*
2604  				 * On the last scan, we clean up all those tags
2605  				 * we inserted; but make a note that we still
2606  				 * found pages pinned.
2607  				 */
2608  				error = -EBUSY;
2609  			}
2610  
2611  			spin_lock_irq(&mapping->tree_lock);
2612  			radix_tree_tag_clear(&mapping->page_tree,
2613  					     iter.index, SHMEM_TAG_PINNED);
2614  			spin_unlock_irq(&mapping->tree_lock);
2615  continue_resched:
2616  			if (need_resched()) {
2617  				cond_resched_rcu();
2618  				slot = radix_tree_iter_next(&iter);
2619  			}
2620  		}
2621  		rcu_read_unlock();
2622  	}
2623  
2624  	return error;
2625  }
2626  
2627  #define F_ALL_SEALS (F_SEAL_SEAL | \
2628  		     F_SEAL_SHRINK | \
2629  		     F_SEAL_GROW | \
2630  		     F_SEAL_WRITE)
2631  
2632  int shmem_add_seals(struct file *file, unsigned int seals)
2633  {
2634  	struct inode *inode = file_inode(file);
2635  	struct shmem_inode_info *info = SHMEM_I(inode);
2636  	int error;
2637  
2638  	/*
2639  	 * SEALING
2640  	 * Sealing allows multiple parties to share a shmem-file but restrict
2641  	 * access to a specific subset of file operations. Seals can only be
2642  	 * added, but never removed. This way, mutually untrusted parties can
2643  	 * share common memory regions with a well-defined policy. A malicious
2644  	 * peer can thus never perform unwanted operations on a shared object.
2645  	 *
2646  	 * Seals are only supported on special shmem-files and always affect
2647  	 * the whole underlying inode. Once a seal is set, it may prevent some
2648  	 * kinds of access to the file. Currently, the following seals are
2649  	 * defined:
2650  	 *   SEAL_SEAL: Prevent further seals from being set on this file
2651  	 *   SEAL_SHRINK: Prevent the file from shrinking
2652  	 *   SEAL_GROW: Prevent the file from growing
2653  	 *   SEAL_WRITE: Prevent write access to the file
2654  	 *
2655  	 * As we don't require any trust relationship between two parties, we
2656  	 * must prevent seals from being removed. Therefore, sealing a file
2657  	 * only adds a given set of seals to the file, it never touches
2658  	 * existing seals. Furthermore, the "setting seals"-operation can be
2659  	 * sealed itself, which basically prevents any further seal from being
2660  	 * added.
2661  	 *
2662  	 * Semantics of sealing are only defined on volatile files. Only
2663  	 * anonymous shmem files support sealing. More importantly, seals are
2664  	 * never written to disk. Therefore, there's no plan to support it on
2665  	 * other file types.
2666  	 */
2667  
2668  	if (file->f_op != &shmem_file_operations)
2669  		return -EINVAL;
2670  	if (!(file->f_mode & FMODE_WRITE))
2671  		return -EPERM;
2672  	if (seals & ~(unsigned int)F_ALL_SEALS)
2673  		return -EINVAL;
2674  
2675  	inode_lock(inode);
2676  
2677  	if (info->seals & F_SEAL_SEAL) {
2678  		error = -EPERM;
2679  		goto unlock;
2680  	}
2681  
2682  	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2683  		error = mapping_deny_writable(file->f_mapping);
2684  		if (error)
2685  			goto unlock;
2686  
2687  		error = shmem_wait_for_pins(file->f_mapping);
2688  		if (error) {
2689  			mapping_allow_writable(file->f_mapping);
2690  			goto unlock;
2691  		}
2692  	}
2693  
2694  	info->seals |= seals;
2695  	error = 0;
2696  
2697  unlock:
2698  	inode_unlock(inode);
2699  	return error;
2700  }
2701  EXPORT_SYMBOL_GPL(shmem_add_seals);
2702  
2703  int shmem_get_seals(struct file *file)
2704  {
2705  	if (file->f_op != &shmem_file_operations)
2706  		return -EINVAL;
2707  
2708  	return SHMEM_I(file_inode(file))->seals;
2709  }
2710  EXPORT_SYMBOL_GPL(shmem_get_seals);
2711  
2712  long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2713  {
2714  	long error;
2715  
2716  	switch (cmd) {
2717  	case F_ADD_SEALS:
2718  		/* disallow upper 32bit */
2719  		if (arg > UINT_MAX)
2720  			return -EINVAL;
2721  
2722  		error = shmem_add_seals(file, arg);
2723  		break;
2724  	case F_GET_SEALS:
2725  		error = shmem_get_seals(file);
2726  		break;
2727  	default:
2728  		error = -EINVAL;
2729  		break;
2730  	}
2731  
2732  	return error;
2733  }
2734  
2735  static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2736  							 loff_t len)
2737  {
2738  	struct inode *inode = file_inode(file);
2739  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2740  	struct shmem_inode_info *info = SHMEM_I(inode);
2741  	struct shmem_falloc shmem_falloc;
2742  	pgoff_t start, index, end;
2743  	int error;
2744  
2745  	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2746  		return -EOPNOTSUPP;
2747  
2748  	inode_lock(inode);
2749  
2750  	if (mode & FALLOC_FL_PUNCH_HOLE) {
2751  		struct address_space *mapping = file->f_mapping;
2752  		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2753  		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2754  		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2755  
2756  		/* protected by i_mutex */
2757  		if (info->seals & F_SEAL_WRITE) {
2758  			error = -EPERM;
2759  			goto out;
2760  		}
2761  
2762  		shmem_falloc.waitq = &shmem_falloc_waitq;
2763  		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2764  		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2765  		spin_lock(&inode->i_lock);
2766  		inode->i_private = &shmem_falloc;
2767  		spin_unlock(&inode->i_lock);
2768  
2769  		if ((u64)unmap_end > (u64)unmap_start)
2770  			unmap_mapping_range(mapping, unmap_start,
2771  					    1 + unmap_end - unmap_start, 0);
2772  		shmem_truncate_range(inode, offset, offset + len - 1);
2773  		/* No need to unmap again: hole-punching leaves COWed pages */
2774  
2775  		spin_lock(&inode->i_lock);
2776  		inode->i_private = NULL;
2777  		wake_up_all(&shmem_falloc_waitq);
2778  		spin_unlock(&inode->i_lock);
2779  		error = 0;
2780  		goto out;
2781  	}
2782  
2783  	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2784  	error = inode_newsize_ok(inode, offset + len);
2785  	if (error)
2786  		goto out;
2787  
2788  	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2789  		error = -EPERM;
2790  		goto out;
2791  	}
2792  
2793  	start = offset >> PAGE_SHIFT;
2794  	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2795  	/* Try to avoid a swapstorm if len is impossible to satisfy */
2796  	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2797  		error = -ENOSPC;
2798  		goto out;
2799  	}
2800  
2801  	shmem_falloc.waitq = NULL;
2802  	shmem_falloc.start = start;
2803  	shmem_falloc.next  = start;
2804  	shmem_falloc.nr_falloced = 0;
2805  	shmem_falloc.nr_unswapped = 0;
2806  	spin_lock(&inode->i_lock);
2807  	inode->i_private = &shmem_falloc;
2808  	spin_unlock(&inode->i_lock);
2809  
2810  	for (index = start; index < end; index++) {
2811  		struct page *page;
2812  
2813  		/*
2814  		 * Good, the fallocate(2) manpage permits EINTR: we may have
2815  		 * been interrupted because we are using up too much memory.
2816  		 */
2817  		if (signal_pending(current))
2818  			error = -EINTR;
2819  		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2820  			error = -ENOMEM;
2821  		else
2822  			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2823  		if (error) {
2824  			/* Remove the !PageUptodate pages we added */
2825  			if (index > start) {
2826  				shmem_undo_range(inode,
2827  				    (loff_t)start << PAGE_SHIFT,
2828  				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2829  			}
2830  			goto undone;
2831  		}
2832  
2833  		/*
2834  		 * Inform shmem_writepage() how far we have reached.
2835  		 * No need for lock or barrier: we have the page lock.
2836  		 */
2837  		shmem_falloc.next++;
2838  		if (!PageUptodate(page))
2839  			shmem_falloc.nr_falloced++;
2840  
2841  		/*
2842  		 * If !PageUptodate, leave it that way so that freeable pages
2843  		 * can be recognized if we need to rollback on error later.
2844  		 * But set_page_dirty so that memory pressure will swap rather
2845  		 * than free the pages we are allocating (and SGP_CACHE pages
2846  		 * might still be clean: we now need to mark those dirty too).
2847  		 */
2848  		set_page_dirty(page);
2849  		unlock_page(page);
2850  		put_page(page);
2851  		cond_resched();
2852  	}
2853  
2854  	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2855  		i_size_write(inode, offset + len);
2856  	inode->i_ctime = CURRENT_TIME;
2857  undone:
2858  	spin_lock(&inode->i_lock);
2859  	inode->i_private = NULL;
2860  	spin_unlock(&inode->i_lock);
2861  out:
2862  	inode_unlock(inode);
2863  	return error;
2864  }
2865  
2866  static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2867  {
2868  	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2869  
2870  	buf->f_type = TMPFS_MAGIC;
2871  	buf->f_bsize = PAGE_SIZE;
2872  	buf->f_namelen = NAME_MAX;
2873  	if (sbinfo->max_blocks) {
2874  		buf->f_blocks = sbinfo->max_blocks;
2875  		buf->f_bavail =
2876  		buf->f_bfree  = sbinfo->max_blocks -
2877  				percpu_counter_sum(&sbinfo->used_blocks);
2878  	}
2879  	if (sbinfo->max_inodes) {
2880  		buf->f_files = sbinfo->max_inodes;
2881  		buf->f_ffree = sbinfo->free_inodes;
2882  	}
2883  	/* else leave those fields 0 like simple_statfs */
2884  	return 0;
2885  }
2886  
2887  /*
2888   * File creation. Allocate an inode, and we're done..
2889   */
2890  static int
2891  shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892  {
2893  	struct inode *inode;
2894  	int error = -ENOSPC;
2895  
2896  	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2897  	if (inode) {
2898  		error = simple_acl_create(dir, inode);
2899  		if (error)
2900  			goto out_iput;
2901  		error = security_inode_init_security(inode, dir,
2902  						     &dentry->d_name,
2903  						     shmem_initxattrs, NULL);
2904  		if (error && error != -EOPNOTSUPP)
2905  			goto out_iput;
2906  
2907  		error = 0;
2908  		dir->i_size += BOGO_DIRENT_SIZE;
2909  		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2910  		d_instantiate(dentry, inode);
2911  		dget(dentry); /* Extra count - pin the dentry in core */
2912  	}
2913  	return error;
2914  out_iput:
2915  	iput(inode);
2916  	return error;
2917  }
2918  
2919  static int
2920  shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2921  {
2922  	struct inode *inode;
2923  	int error = -ENOSPC;
2924  
2925  	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2926  	if (inode) {
2927  		error = security_inode_init_security(inode, dir,
2928  						     NULL,
2929  						     shmem_initxattrs, NULL);
2930  		if (error && error != -EOPNOTSUPP)
2931  			goto out_iput;
2932  		error = simple_acl_create(dir, inode);
2933  		if (error)
2934  			goto out_iput;
2935  		d_tmpfile(dentry, inode);
2936  	}
2937  	return error;
2938  out_iput:
2939  	iput(inode);
2940  	return error;
2941  }
2942  
2943  static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2944  {
2945  	int error;
2946  
2947  	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2948  		return error;
2949  	inc_nlink(dir);
2950  	return 0;
2951  }
2952  
2953  static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2954  		bool excl)
2955  {
2956  	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2957  }
2958  
2959  /*
2960   * Link a file..
2961   */
2962  static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2963  {
2964  	struct inode *inode = d_inode(old_dentry);
2965  	int ret;
2966  
2967  	/*
2968  	 * No ordinary (disk based) filesystem counts links as inodes;
2969  	 * but each new link needs a new dentry, pinning lowmem, and
2970  	 * tmpfs dentries cannot be pruned until they are unlinked.
2971  	 */
2972  	ret = shmem_reserve_inode(inode->i_sb);
2973  	if (ret)
2974  		goto out;
2975  
2976  	dir->i_size += BOGO_DIRENT_SIZE;
2977  	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2978  	inc_nlink(inode);
2979  	ihold(inode);	/* New dentry reference */
2980  	dget(dentry);		/* Extra pinning count for the created dentry */
2981  	d_instantiate(dentry, inode);
2982  out:
2983  	return ret;
2984  }
2985  
2986  static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2987  {
2988  	struct inode *inode = d_inode(dentry);
2989  
2990  	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2991  		shmem_free_inode(inode->i_sb);
2992  
2993  	dir->i_size -= BOGO_DIRENT_SIZE;
2994  	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2995  	drop_nlink(inode);
2996  	dput(dentry);	/* Undo the count from "create" - this does all the work */
2997  	return 0;
2998  }
2999  
3000  static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3001  {
3002  	if (!simple_empty(dentry))
3003  		return -ENOTEMPTY;
3004  
3005  	drop_nlink(d_inode(dentry));
3006  	drop_nlink(dir);
3007  	return shmem_unlink(dir, dentry);
3008  }
3009  
3010  static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3011  {
3012  	bool old_is_dir = d_is_dir(old_dentry);
3013  	bool new_is_dir = d_is_dir(new_dentry);
3014  
3015  	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3016  		if (old_is_dir) {
3017  			drop_nlink(old_dir);
3018  			inc_nlink(new_dir);
3019  		} else {
3020  			drop_nlink(new_dir);
3021  			inc_nlink(old_dir);
3022  		}
3023  	}
3024  	old_dir->i_ctime = old_dir->i_mtime =
3025  	new_dir->i_ctime = new_dir->i_mtime =
3026  	d_inode(old_dentry)->i_ctime =
3027  	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
3028  
3029  	return 0;
3030  }
3031  
3032  static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3033  {
3034  	struct dentry *whiteout;
3035  	int error;
3036  
3037  	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3038  	if (!whiteout)
3039  		return -ENOMEM;
3040  
3041  	error = shmem_mknod(old_dir, whiteout,
3042  			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3043  	dput(whiteout);
3044  	if (error)
3045  		return error;
3046  
3047  	/*
3048  	 * Cheat and hash the whiteout while the old dentry is still in
3049  	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3050  	 *
3051  	 * d_lookup() will consistently find one of them at this point,
3052  	 * not sure which one, but that isn't even important.
3053  	 */
3054  	d_rehash(whiteout);
3055  	return 0;
3056  }
3057  
3058  /*
3059   * The VFS layer already does all the dentry stuff for rename,
3060   * we just have to decrement the usage count for the target if
3061   * it exists so that the VFS layer correctly free's it when it
3062   * gets overwritten.
3063   */
3064  static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3065  {
3066  	struct inode *inode = d_inode(old_dentry);
3067  	int they_are_dirs = S_ISDIR(inode->i_mode);
3068  
3069  	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3070  		return -EINVAL;
3071  
3072  	if (flags & RENAME_EXCHANGE)
3073  		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3074  
3075  	if (!simple_empty(new_dentry))
3076  		return -ENOTEMPTY;
3077  
3078  	if (flags & RENAME_WHITEOUT) {
3079  		int error;
3080  
3081  		error = shmem_whiteout(old_dir, old_dentry);
3082  		if (error)
3083  			return error;
3084  	}
3085  
3086  	if (d_really_is_positive(new_dentry)) {
3087  		(void) shmem_unlink(new_dir, new_dentry);
3088  		if (they_are_dirs) {
3089  			drop_nlink(d_inode(new_dentry));
3090  			drop_nlink(old_dir);
3091  		}
3092  	} else if (they_are_dirs) {
3093  		drop_nlink(old_dir);
3094  		inc_nlink(new_dir);
3095  	}
3096  
3097  	old_dir->i_size -= BOGO_DIRENT_SIZE;
3098  	new_dir->i_size += BOGO_DIRENT_SIZE;
3099  	old_dir->i_ctime = old_dir->i_mtime =
3100  	new_dir->i_ctime = new_dir->i_mtime =
3101  	inode->i_ctime = CURRENT_TIME;
3102  	return 0;
3103  }
3104  
3105  static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3106  {
3107  	int error;
3108  	int len;
3109  	struct inode *inode;
3110  	struct page *page;
3111  	struct shmem_inode_info *info;
3112  
3113  	len = strlen(symname) + 1;
3114  	if (len > PAGE_SIZE)
3115  		return -ENAMETOOLONG;
3116  
3117  	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3118  	if (!inode)
3119  		return -ENOSPC;
3120  
3121  	error = security_inode_init_security(inode, dir, &dentry->d_name,
3122  					     shmem_initxattrs, NULL);
3123  	if (error) {
3124  		if (error != -EOPNOTSUPP) {
3125  			iput(inode);
3126  			return error;
3127  		}
3128  		error = 0;
3129  	}
3130  
3131  	info = SHMEM_I(inode);
3132  	inode->i_size = len-1;
3133  	if (len <= SHORT_SYMLINK_LEN) {
3134  		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3135  		if (!inode->i_link) {
3136  			iput(inode);
3137  			return -ENOMEM;
3138  		}
3139  		inode->i_op = &shmem_short_symlink_operations;
3140  	} else {
3141  		inode_nohighmem(inode);
3142  		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3143  		if (error) {
3144  			iput(inode);
3145  			return error;
3146  		}
3147  		inode->i_mapping->a_ops = &shmem_aops;
3148  		inode->i_op = &shmem_symlink_inode_operations;
3149  		memcpy(page_address(page), symname, len);
3150  		SetPageUptodate(page);
3151  		set_page_dirty(page);
3152  		unlock_page(page);
3153  		put_page(page);
3154  	}
3155  	dir->i_size += BOGO_DIRENT_SIZE;
3156  	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
3157  	d_instantiate(dentry, inode);
3158  	dget(dentry);
3159  	return 0;
3160  }
3161  
3162  static void shmem_put_link(void *arg)
3163  {
3164  	mark_page_accessed(arg);
3165  	put_page(arg);
3166  }
3167  
3168  static const char *shmem_get_link(struct dentry *dentry,
3169  				  struct inode *inode,
3170  				  struct delayed_call *done)
3171  {
3172  	struct page *page = NULL;
3173  	int error;
3174  	if (!dentry) {
3175  		page = find_get_page(inode->i_mapping, 0);
3176  		if (!page)
3177  			return ERR_PTR(-ECHILD);
3178  		if (!PageUptodate(page)) {
3179  			put_page(page);
3180  			return ERR_PTR(-ECHILD);
3181  		}
3182  	} else {
3183  		error = shmem_getpage(inode, 0, &page, SGP_READ);
3184  		if (error)
3185  			return ERR_PTR(error);
3186  		unlock_page(page);
3187  	}
3188  	set_delayed_call(done, shmem_put_link, page);
3189  	return page_address(page);
3190  }
3191  
3192  #ifdef CONFIG_TMPFS_XATTR
3193  /*
3194   * Superblocks without xattr inode operations may get some security.* xattr
3195   * support from the LSM "for free". As soon as we have any other xattrs
3196   * like ACLs, we also need to implement the security.* handlers at
3197   * filesystem level, though.
3198   */
3199  
3200  /*
3201   * Callback for security_inode_init_security() for acquiring xattrs.
3202   */
3203  static int shmem_initxattrs(struct inode *inode,
3204  			    const struct xattr *xattr_array,
3205  			    void *fs_info)
3206  {
3207  	struct shmem_inode_info *info = SHMEM_I(inode);
3208  	const struct xattr *xattr;
3209  	struct simple_xattr *new_xattr;
3210  	size_t len;
3211  
3212  	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3213  		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3214  		if (!new_xattr)
3215  			return -ENOMEM;
3216  
3217  		len = strlen(xattr->name) + 1;
3218  		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3219  					  GFP_KERNEL);
3220  		if (!new_xattr->name) {
3221  			kfree(new_xattr);
3222  			return -ENOMEM;
3223  		}
3224  
3225  		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3226  		       XATTR_SECURITY_PREFIX_LEN);
3227  		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3228  		       xattr->name, len);
3229  
3230  		simple_xattr_list_add(&info->xattrs, new_xattr);
3231  	}
3232  
3233  	return 0;
3234  }
3235  
3236  static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3237  				   struct dentry *unused, struct inode *inode,
3238  				   const char *name, void *buffer, size_t size)
3239  {
3240  	struct shmem_inode_info *info = SHMEM_I(inode);
3241  
3242  	name = xattr_full_name(handler, name);
3243  	return simple_xattr_get(&info->xattrs, name, buffer, size);
3244  }
3245  
3246  static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3247  				   struct dentry *unused, struct inode *inode,
3248  				   const char *name, const void *value,
3249  				   size_t size, int flags)
3250  {
3251  	struct shmem_inode_info *info = SHMEM_I(inode);
3252  
3253  	name = xattr_full_name(handler, name);
3254  	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3255  }
3256  
3257  static const struct xattr_handler shmem_security_xattr_handler = {
3258  	.prefix = XATTR_SECURITY_PREFIX,
3259  	.get = shmem_xattr_handler_get,
3260  	.set = shmem_xattr_handler_set,
3261  };
3262  
3263  static const struct xattr_handler shmem_trusted_xattr_handler = {
3264  	.prefix = XATTR_TRUSTED_PREFIX,
3265  	.get = shmem_xattr_handler_get,
3266  	.set = shmem_xattr_handler_set,
3267  };
3268  
3269  static const struct xattr_handler *shmem_xattr_handlers[] = {
3270  #ifdef CONFIG_TMPFS_POSIX_ACL
3271  	&posix_acl_access_xattr_handler,
3272  	&posix_acl_default_xattr_handler,
3273  #endif
3274  	&shmem_security_xattr_handler,
3275  	&shmem_trusted_xattr_handler,
3276  	NULL
3277  };
3278  
3279  static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3280  {
3281  	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3282  	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3283  }
3284  #endif /* CONFIG_TMPFS_XATTR */
3285  
3286  static const struct inode_operations shmem_short_symlink_operations = {
3287  	.readlink	= generic_readlink,
3288  	.get_link	= simple_get_link,
3289  #ifdef CONFIG_TMPFS_XATTR
3290  	.setxattr	= generic_setxattr,
3291  	.getxattr	= generic_getxattr,
3292  	.listxattr	= shmem_listxattr,
3293  	.removexattr	= generic_removexattr,
3294  #endif
3295  };
3296  
3297  static const struct inode_operations shmem_symlink_inode_operations = {
3298  	.readlink	= generic_readlink,
3299  	.get_link	= shmem_get_link,
3300  #ifdef CONFIG_TMPFS_XATTR
3301  	.setxattr	= generic_setxattr,
3302  	.getxattr	= generic_getxattr,
3303  	.listxattr	= shmem_listxattr,
3304  	.removexattr	= generic_removexattr,
3305  #endif
3306  };
3307  
3308  static struct dentry *shmem_get_parent(struct dentry *child)
3309  {
3310  	return ERR_PTR(-ESTALE);
3311  }
3312  
3313  static int shmem_match(struct inode *ino, void *vfh)
3314  {
3315  	__u32 *fh = vfh;
3316  	__u64 inum = fh[2];
3317  	inum = (inum << 32) | fh[1];
3318  	return ino->i_ino == inum && fh[0] == ino->i_generation;
3319  }
3320  
3321  static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3322  		struct fid *fid, int fh_len, int fh_type)
3323  {
3324  	struct inode *inode;
3325  	struct dentry *dentry = NULL;
3326  	u64 inum;
3327  
3328  	if (fh_len < 3)
3329  		return NULL;
3330  
3331  	inum = fid->raw[2];
3332  	inum = (inum << 32) | fid->raw[1];
3333  
3334  	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3335  			shmem_match, fid->raw);
3336  	if (inode) {
3337  		dentry = d_find_alias(inode);
3338  		iput(inode);
3339  	}
3340  
3341  	return dentry;
3342  }
3343  
3344  static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3345  				struct inode *parent)
3346  {
3347  	if (*len < 3) {
3348  		*len = 3;
3349  		return FILEID_INVALID;
3350  	}
3351  
3352  	if (inode_unhashed(inode)) {
3353  		/* Unfortunately insert_inode_hash is not idempotent,
3354  		 * so as we hash inodes here rather than at creation
3355  		 * time, we need a lock to ensure we only try
3356  		 * to do it once
3357  		 */
3358  		static DEFINE_SPINLOCK(lock);
3359  		spin_lock(&lock);
3360  		if (inode_unhashed(inode))
3361  			__insert_inode_hash(inode,
3362  					    inode->i_ino + inode->i_generation);
3363  		spin_unlock(&lock);
3364  	}
3365  
3366  	fh[0] = inode->i_generation;
3367  	fh[1] = inode->i_ino;
3368  	fh[2] = ((__u64)inode->i_ino) >> 32;
3369  
3370  	*len = 3;
3371  	return 1;
3372  }
3373  
3374  static const struct export_operations shmem_export_ops = {
3375  	.get_parent     = shmem_get_parent,
3376  	.encode_fh      = shmem_encode_fh,
3377  	.fh_to_dentry	= shmem_fh_to_dentry,
3378  };
3379  
3380  static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3381  			       bool remount)
3382  {
3383  	char *this_char, *value, *rest;
3384  	struct mempolicy *mpol = NULL;
3385  	uid_t uid;
3386  	gid_t gid;
3387  
3388  	while (options != NULL) {
3389  		this_char = options;
3390  		for (;;) {
3391  			/*
3392  			 * NUL-terminate this option: unfortunately,
3393  			 * mount options form a comma-separated list,
3394  			 * but mpol's nodelist may also contain commas.
3395  			 */
3396  			options = strchr(options, ',');
3397  			if (options == NULL)
3398  				break;
3399  			options++;
3400  			if (!isdigit(*options)) {
3401  				options[-1] = '\0';
3402  				break;
3403  			}
3404  		}
3405  		if (!*this_char)
3406  			continue;
3407  		if ((value = strchr(this_char,'=')) != NULL) {
3408  			*value++ = 0;
3409  		} else {
3410  			pr_err("tmpfs: No value for mount option '%s'\n",
3411  			       this_char);
3412  			goto error;
3413  		}
3414  
3415  		if (!strcmp(this_char,"size")) {
3416  			unsigned long long size;
3417  			size = memparse(value,&rest);
3418  			if (*rest == '%') {
3419  				size <<= PAGE_SHIFT;
3420  				size *= totalram_pages;
3421  				do_div(size, 100);
3422  				rest++;
3423  			}
3424  			if (*rest)
3425  				goto bad_val;
3426  			sbinfo->max_blocks =
3427  				DIV_ROUND_UP(size, PAGE_SIZE);
3428  		} else if (!strcmp(this_char,"nr_blocks")) {
3429  			sbinfo->max_blocks = memparse(value, &rest);
3430  			if (*rest)
3431  				goto bad_val;
3432  		} else if (!strcmp(this_char,"nr_inodes")) {
3433  			sbinfo->max_inodes = memparse(value, &rest);
3434  			if (*rest)
3435  				goto bad_val;
3436  		} else if (!strcmp(this_char,"mode")) {
3437  			if (remount)
3438  				continue;
3439  			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3440  			if (*rest)
3441  				goto bad_val;
3442  		} else if (!strcmp(this_char,"uid")) {
3443  			if (remount)
3444  				continue;
3445  			uid = simple_strtoul(value, &rest, 0);
3446  			if (*rest)
3447  				goto bad_val;
3448  			sbinfo->uid = make_kuid(current_user_ns(), uid);
3449  			if (!uid_valid(sbinfo->uid))
3450  				goto bad_val;
3451  		} else if (!strcmp(this_char,"gid")) {
3452  			if (remount)
3453  				continue;
3454  			gid = simple_strtoul(value, &rest, 0);
3455  			if (*rest)
3456  				goto bad_val;
3457  			sbinfo->gid = make_kgid(current_user_ns(), gid);
3458  			if (!gid_valid(sbinfo->gid))
3459  				goto bad_val;
3460  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3461  		} else if (!strcmp(this_char, "huge")) {
3462  			int huge;
3463  			huge = shmem_parse_huge(value);
3464  			if (huge < 0)
3465  				goto bad_val;
3466  			if (!has_transparent_hugepage() &&
3467  					huge != SHMEM_HUGE_NEVER)
3468  				goto bad_val;
3469  			sbinfo->huge = huge;
3470  #endif
3471  #ifdef CONFIG_NUMA
3472  		} else if (!strcmp(this_char,"mpol")) {
3473  			mpol_put(mpol);
3474  			mpol = NULL;
3475  			if (mpol_parse_str(value, &mpol))
3476  				goto bad_val;
3477  #endif
3478  		} else {
3479  			pr_err("tmpfs: Bad mount option %s\n", this_char);
3480  			goto error;
3481  		}
3482  	}
3483  	sbinfo->mpol = mpol;
3484  	return 0;
3485  
3486  bad_val:
3487  	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3488  	       value, this_char);
3489  error:
3490  	mpol_put(mpol);
3491  	return 1;
3492  
3493  }
3494  
3495  static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3496  {
3497  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3498  	struct shmem_sb_info config = *sbinfo;
3499  	unsigned long inodes;
3500  	int error = -EINVAL;
3501  
3502  	config.mpol = NULL;
3503  	if (shmem_parse_options(data, &config, true))
3504  		return error;
3505  
3506  	spin_lock(&sbinfo->stat_lock);
3507  	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3508  	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3509  		goto out;
3510  	if (config.max_inodes < inodes)
3511  		goto out;
3512  	/*
3513  	 * Those tests disallow limited->unlimited while any are in use;
3514  	 * but we must separately disallow unlimited->limited, because
3515  	 * in that case we have no record of how much is already in use.
3516  	 */
3517  	if (config.max_blocks && !sbinfo->max_blocks)
3518  		goto out;
3519  	if (config.max_inodes && !sbinfo->max_inodes)
3520  		goto out;
3521  
3522  	error = 0;
3523  	sbinfo->huge = config.huge;
3524  	sbinfo->max_blocks  = config.max_blocks;
3525  	sbinfo->max_inodes  = config.max_inodes;
3526  	sbinfo->free_inodes = config.max_inodes - inodes;
3527  
3528  	/*
3529  	 * Preserve previous mempolicy unless mpol remount option was specified.
3530  	 */
3531  	if (config.mpol) {
3532  		mpol_put(sbinfo->mpol);
3533  		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3534  	}
3535  out:
3536  	spin_unlock(&sbinfo->stat_lock);
3537  	return error;
3538  }
3539  
3540  static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3541  {
3542  	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3543  
3544  	if (sbinfo->max_blocks != shmem_default_max_blocks())
3545  		seq_printf(seq, ",size=%luk",
3546  			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3547  	if (sbinfo->max_inodes != shmem_default_max_inodes())
3548  		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3549  	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3550  		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3551  	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3552  		seq_printf(seq, ",uid=%u",
3553  				from_kuid_munged(&init_user_ns, sbinfo->uid));
3554  	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3555  		seq_printf(seq, ",gid=%u",
3556  				from_kgid_munged(&init_user_ns, sbinfo->gid));
3557  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3558  	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3559  	if (sbinfo->huge)
3560  		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3561  #endif
3562  	shmem_show_mpol(seq, sbinfo->mpol);
3563  	return 0;
3564  }
3565  
3566  #define MFD_NAME_PREFIX "memfd:"
3567  #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3568  #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3569  
3570  #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3571  
3572  SYSCALL_DEFINE2(memfd_create,
3573  		const char __user *, uname,
3574  		unsigned int, flags)
3575  {
3576  	struct shmem_inode_info *info;
3577  	struct file *file;
3578  	int fd, error;
3579  	char *name;
3580  	long len;
3581  
3582  	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3583  		return -EINVAL;
3584  
3585  	/* length includes terminating zero */
3586  	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3587  	if (len <= 0)
3588  		return -EFAULT;
3589  	if (len > MFD_NAME_MAX_LEN + 1)
3590  		return -EINVAL;
3591  
3592  	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3593  	if (!name)
3594  		return -ENOMEM;
3595  
3596  	strcpy(name, MFD_NAME_PREFIX);
3597  	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3598  		error = -EFAULT;
3599  		goto err_name;
3600  	}
3601  
3602  	/* terminating-zero may have changed after strnlen_user() returned */
3603  	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3604  		error = -EFAULT;
3605  		goto err_name;
3606  	}
3607  
3608  	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3609  	if (fd < 0) {
3610  		error = fd;
3611  		goto err_name;
3612  	}
3613  
3614  	file = shmem_file_setup(name, 0, VM_NORESERVE);
3615  	if (IS_ERR(file)) {
3616  		error = PTR_ERR(file);
3617  		goto err_fd;
3618  	}
3619  	info = SHMEM_I(file_inode(file));
3620  	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3621  	file->f_flags |= O_RDWR | O_LARGEFILE;
3622  	if (flags & MFD_ALLOW_SEALING)
3623  		info->seals &= ~F_SEAL_SEAL;
3624  
3625  	fd_install(fd, file);
3626  	kfree(name);
3627  	return fd;
3628  
3629  err_fd:
3630  	put_unused_fd(fd);
3631  err_name:
3632  	kfree(name);
3633  	return error;
3634  }
3635  
3636  #endif /* CONFIG_TMPFS */
3637  
3638  static void shmem_put_super(struct super_block *sb)
3639  {
3640  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3641  
3642  	percpu_counter_destroy(&sbinfo->used_blocks);
3643  	mpol_put(sbinfo->mpol);
3644  	kfree(sbinfo);
3645  	sb->s_fs_info = NULL;
3646  }
3647  
3648  int shmem_fill_super(struct super_block *sb, void *data, int silent)
3649  {
3650  	struct inode *inode;
3651  	struct shmem_sb_info *sbinfo;
3652  	int err = -ENOMEM;
3653  
3654  	/* Round up to L1_CACHE_BYTES to resist false sharing */
3655  	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3656  				L1_CACHE_BYTES), GFP_KERNEL);
3657  	if (!sbinfo)
3658  		return -ENOMEM;
3659  
3660  	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3661  	sbinfo->uid = current_fsuid();
3662  	sbinfo->gid = current_fsgid();
3663  	sb->s_fs_info = sbinfo;
3664  
3665  #ifdef CONFIG_TMPFS
3666  	/*
3667  	 * Per default we only allow half of the physical ram per
3668  	 * tmpfs instance, limiting inodes to one per page of lowmem;
3669  	 * but the internal instance is left unlimited.
3670  	 */
3671  	if (!(sb->s_flags & MS_KERNMOUNT)) {
3672  		sbinfo->max_blocks = shmem_default_max_blocks();
3673  		sbinfo->max_inodes = shmem_default_max_inodes();
3674  		if (shmem_parse_options(data, sbinfo, false)) {
3675  			err = -EINVAL;
3676  			goto failed;
3677  		}
3678  	} else {
3679  		sb->s_flags |= MS_NOUSER;
3680  	}
3681  	sb->s_export_op = &shmem_export_ops;
3682  	sb->s_flags |= MS_NOSEC;
3683  #else
3684  	sb->s_flags |= MS_NOUSER;
3685  #endif
3686  
3687  	spin_lock_init(&sbinfo->stat_lock);
3688  	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3689  		goto failed;
3690  	sbinfo->free_inodes = sbinfo->max_inodes;
3691  	spin_lock_init(&sbinfo->shrinklist_lock);
3692  	INIT_LIST_HEAD(&sbinfo->shrinklist);
3693  
3694  	sb->s_maxbytes = MAX_LFS_FILESIZE;
3695  	sb->s_blocksize = PAGE_SIZE;
3696  	sb->s_blocksize_bits = PAGE_SHIFT;
3697  	sb->s_magic = TMPFS_MAGIC;
3698  	sb->s_op = &shmem_ops;
3699  	sb->s_time_gran = 1;
3700  #ifdef CONFIG_TMPFS_XATTR
3701  	sb->s_xattr = shmem_xattr_handlers;
3702  #endif
3703  #ifdef CONFIG_TMPFS_POSIX_ACL
3704  	sb->s_flags |= MS_POSIXACL;
3705  #endif
3706  
3707  	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3708  	if (!inode)
3709  		goto failed;
3710  	inode->i_uid = sbinfo->uid;
3711  	inode->i_gid = sbinfo->gid;
3712  	sb->s_root = d_make_root(inode);
3713  	if (!sb->s_root)
3714  		goto failed;
3715  	return 0;
3716  
3717  failed:
3718  	shmem_put_super(sb);
3719  	return err;
3720  }
3721  
3722  static struct kmem_cache *shmem_inode_cachep;
3723  
3724  static struct inode *shmem_alloc_inode(struct super_block *sb)
3725  {
3726  	struct shmem_inode_info *info;
3727  	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3728  	if (!info)
3729  		return NULL;
3730  	return &info->vfs_inode;
3731  }
3732  
3733  static void shmem_destroy_callback(struct rcu_head *head)
3734  {
3735  	struct inode *inode = container_of(head, struct inode, i_rcu);
3736  	if (S_ISLNK(inode->i_mode))
3737  		kfree(inode->i_link);
3738  	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3739  }
3740  
3741  static void shmem_destroy_inode(struct inode *inode)
3742  {
3743  	if (S_ISREG(inode->i_mode))
3744  		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3745  	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3746  }
3747  
3748  static void shmem_init_inode(void *foo)
3749  {
3750  	struct shmem_inode_info *info = foo;
3751  	inode_init_once(&info->vfs_inode);
3752  }
3753  
3754  static int shmem_init_inodecache(void)
3755  {
3756  	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3757  				sizeof(struct shmem_inode_info),
3758  				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3759  	return 0;
3760  }
3761  
3762  static void shmem_destroy_inodecache(void)
3763  {
3764  	kmem_cache_destroy(shmem_inode_cachep);
3765  }
3766  
3767  static const struct address_space_operations shmem_aops = {
3768  	.writepage	= shmem_writepage,
3769  	.set_page_dirty	= __set_page_dirty_no_writeback,
3770  #ifdef CONFIG_TMPFS
3771  	.write_begin	= shmem_write_begin,
3772  	.write_end	= shmem_write_end,
3773  #endif
3774  #ifdef CONFIG_MIGRATION
3775  	.migratepage	= migrate_page,
3776  #endif
3777  	.error_remove_page = generic_error_remove_page,
3778  };
3779  
3780  static const struct file_operations shmem_file_operations = {
3781  	.mmap		= shmem_mmap,
3782  	.get_unmapped_area = shmem_get_unmapped_area,
3783  #ifdef CONFIG_TMPFS
3784  	.llseek		= shmem_file_llseek,
3785  	.read_iter	= shmem_file_read_iter,
3786  	.write_iter	= generic_file_write_iter,
3787  	.fsync		= noop_fsync,
3788  	.splice_read	= shmem_file_splice_read,
3789  	.splice_write	= iter_file_splice_write,
3790  	.fallocate	= shmem_fallocate,
3791  #endif
3792  };
3793  
3794  static const struct inode_operations shmem_inode_operations = {
3795  	.getattr	= shmem_getattr,
3796  	.setattr	= shmem_setattr,
3797  #ifdef CONFIG_TMPFS_XATTR
3798  	.setxattr	= generic_setxattr,
3799  	.getxattr	= generic_getxattr,
3800  	.listxattr	= shmem_listxattr,
3801  	.removexattr	= generic_removexattr,
3802  	.set_acl	= simple_set_acl,
3803  #endif
3804  };
3805  
3806  static const struct inode_operations shmem_dir_inode_operations = {
3807  #ifdef CONFIG_TMPFS
3808  	.create		= shmem_create,
3809  	.lookup		= simple_lookup,
3810  	.link		= shmem_link,
3811  	.unlink		= shmem_unlink,
3812  	.symlink	= shmem_symlink,
3813  	.mkdir		= shmem_mkdir,
3814  	.rmdir		= shmem_rmdir,
3815  	.mknod		= shmem_mknod,
3816  	.rename2	= shmem_rename2,
3817  	.tmpfile	= shmem_tmpfile,
3818  #endif
3819  #ifdef CONFIG_TMPFS_XATTR
3820  	.setxattr	= generic_setxattr,
3821  	.getxattr	= generic_getxattr,
3822  	.listxattr	= shmem_listxattr,
3823  	.removexattr	= generic_removexattr,
3824  #endif
3825  #ifdef CONFIG_TMPFS_POSIX_ACL
3826  	.setattr	= shmem_setattr,
3827  	.set_acl	= simple_set_acl,
3828  #endif
3829  };
3830  
3831  static const struct inode_operations shmem_special_inode_operations = {
3832  #ifdef CONFIG_TMPFS_XATTR
3833  	.setxattr	= generic_setxattr,
3834  	.getxattr	= generic_getxattr,
3835  	.listxattr	= shmem_listxattr,
3836  	.removexattr	= generic_removexattr,
3837  #endif
3838  #ifdef CONFIG_TMPFS_POSIX_ACL
3839  	.setattr	= shmem_setattr,
3840  	.set_acl	= simple_set_acl,
3841  #endif
3842  };
3843  
3844  static const struct super_operations shmem_ops = {
3845  	.alloc_inode	= shmem_alloc_inode,
3846  	.destroy_inode	= shmem_destroy_inode,
3847  #ifdef CONFIG_TMPFS
3848  	.statfs		= shmem_statfs,
3849  	.remount_fs	= shmem_remount_fs,
3850  	.show_options	= shmem_show_options,
3851  #endif
3852  	.evict_inode	= shmem_evict_inode,
3853  	.drop_inode	= generic_delete_inode,
3854  	.put_super	= shmem_put_super,
3855  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3856  	.nr_cached_objects	= shmem_unused_huge_count,
3857  	.free_cached_objects	= shmem_unused_huge_scan,
3858  #endif
3859  };
3860  
3861  static const struct vm_operations_struct shmem_vm_ops = {
3862  	.fault		= shmem_fault,
3863  	.map_pages	= filemap_map_pages,
3864  #ifdef CONFIG_NUMA
3865  	.set_policy     = shmem_set_policy,
3866  	.get_policy     = shmem_get_policy,
3867  #endif
3868  };
3869  
3870  static struct dentry *shmem_mount(struct file_system_type *fs_type,
3871  	int flags, const char *dev_name, void *data)
3872  {
3873  	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3874  }
3875  
3876  static struct file_system_type shmem_fs_type = {
3877  	.owner		= THIS_MODULE,
3878  	.name		= "tmpfs",
3879  	.mount		= shmem_mount,
3880  	.kill_sb	= kill_litter_super,
3881  	.fs_flags	= FS_USERNS_MOUNT,
3882  };
3883  
3884  int __init shmem_init(void)
3885  {
3886  	int error;
3887  
3888  	/* If rootfs called this, don't re-init */
3889  	if (shmem_inode_cachep)
3890  		return 0;
3891  
3892  	error = shmem_init_inodecache();
3893  	if (error)
3894  		goto out3;
3895  
3896  	error = register_filesystem(&shmem_fs_type);
3897  	if (error) {
3898  		pr_err("Could not register tmpfs\n");
3899  		goto out2;
3900  	}
3901  
3902  	shm_mnt = kern_mount(&shmem_fs_type);
3903  	if (IS_ERR(shm_mnt)) {
3904  		error = PTR_ERR(shm_mnt);
3905  		pr_err("Could not kern_mount tmpfs\n");
3906  		goto out1;
3907  	}
3908  
3909  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3910  	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3911  		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3912  	else
3913  		shmem_huge = 0; /* just in case it was patched */
3914  #endif
3915  	return 0;
3916  
3917  out1:
3918  	unregister_filesystem(&shmem_fs_type);
3919  out2:
3920  	shmem_destroy_inodecache();
3921  out3:
3922  	shm_mnt = ERR_PTR(error);
3923  	return error;
3924  }
3925  
3926  #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3927  static ssize_t shmem_enabled_show(struct kobject *kobj,
3928  		struct kobj_attribute *attr, char *buf)
3929  {
3930  	int values[] = {
3931  		SHMEM_HUGE_ALWAYS,
3932  		SHMEM_HUGE_WITHIN_SIZE,
3933  		SHMEM_HUGE_ADVISE,
3934  		SHMEM_HUGE_NEVER,
3935  		SHMEM_HUGE_DENY,
3936  		SHMEM_HUGE_FORCE,
3937  	};
3938  	int i, count;
3939  
3940  	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3941  		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3942  
3943  		count += sprintf(buf + count, fmt,
3944  				shmem_format_huge(values[i]));
3945  	}
3946  	buf[count - 1] = '\n';
3947  	return count;
3948  }
3949  
3950  static ssize_t shmem_enabled_store(struct kobject *kobj,
3951  		struct kobj_attribute *attr, const char *buf, size_t count)
3952  {
3953  	char tmp[16];
3954  	int huge;
3955  
3956  	if (count + 1 > sizeof(tmp))
3957  		return -EINVAL;
3958  	memcpy(tmp, buf, count);
3959  	tmp[count] = '\0';
3960  	if (count && tmp[count - 1] == '\n')
3961  		tmp[count - 1] = '\0';
3962  
3963  	huge = shmem_parse_huge(tmp);
3964  	if (huge == -EINVAL)
3965  		return -EINVAL;
3966  	if (!has_transparent_hugepage() &&
3967  			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3968  		return -EINVAL;
3969  
3970  	shmem_huge = huge;
3971  	if (shmem_huge < SHMEM_HUGE_DENY)
3972  		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3973  	return count;
3974  }
3975  
3976  struct kobj_attribute shmem_enabled_attr =
3977  	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3978  #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3979  
3980  #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3981  bool shmem_huge_enabled(struct vm_area_struct *vma)
3982  {
3983  	struct inode *inode = file_inode(vma->vm_file);
3984  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3985  	loff_t i_size;
3986  	pgoff_t off;
3987  
3988  	if (shmem_huge == SHMEM_HUGE_FORCE)
3989  		return true;
3990  	if (shmem_huge == SHMEM_HUGE_DENY)
3991  		return false;
3992  	switch (sbinfo->huge) {
3993  		case SHMEM_HUGE_NEVER:
3994  			return false;
3995  		case SHMEM_HUGE_ALWAYS:
3996  			return true;
3997  		case SHMEM_HUGE_WITHIN_SIZE:
3998  			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3999  			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4000  			if (i_size >= HPAGE_PMD_SIZE &&
4001  					i_size >> PAGE_SHIFT >= off)
4002  				return true;
4003  		case SHMEM_HUGE_ADVISE:
4004  			/* TODO: implement fadvise() hints */
4005  			return (vma->vm_flags & VM_HUGEPAGE);
4006  		default:
4007  			VM_BUG_ON(1);
4008  			return false;
4009  	}
4010  }
4011  #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4012  
4013  #else /* !CONFIG_SHMEM */
4014  
4015  /*
4016   * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4017   *
4018   * This is intended for small system where the benefits of the full
4019   * shmem code (swap-backed and resource-limited) are outweighed by
4020   * their complexity. On systems without swap this code should be
4021   * effectively equivalent, but much lighter weight.
4022   */
4023  
4024  static struct file_system_type shmem_fs_type = {
4025  	.name		= "tmpfs",
4026  	.mount		= ramfs_mount,
4027  	.kill_sb	= kill_litter_super,
4028  	.fs_flags	= FS_USERNS_MOUNT,
4029  };
4030  
4031  int __init shmem_init(void)
4032  {
4033  	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4034  
4035  	shm_mnt = kern_mount(&shmem_fs_type);
4036  	BUG_ON(IS_ERR(shm_mnt));
4037  
4038  	return 0;
4039  }
4040  
4041  int shmem_unuse(swp_entry_t swap, struct page *page)
4042  {
4043  	return 0;
4044  }
4045  
4046  int shmem_lock(struct file *file, int lock, struct user_struct *user)
4047  {
4048  	return 0;
4049  }
4050  
4051  void shmem_unlock_mapping(struct address_space *mapping)
4052  {
4053  }
4054  
4055  #ifdef CONFIG_MMU
4056  unsigned long shmem_get_unmapped_area(struct file *file,
4057  				      unsigned long addr, unsigned long len,
4058  				      unsigned long pgoff, unsigned long flags)
4059  {
4060  	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4061  }
4062  #endif
4063  
4064  void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4065  {
4066  	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4067  }
4068  EXPORT_SYMBOL_GPL(shmem_truncate_range);
4069  
4070  #define shmem_vm_ops				generic_file_vm_ops
4071  #define shmem_file_operations			ramfs_file_operations
4072  #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4073  #define shmem_acct_size(flags, size)		0
4074  #define shmem_unacct_size(flags, size)		do {} while (0)
4075  
4076  #endif /* CONFIG_SHMEM */
4077  
4078  /* common code */
4079  
4080  static struct dentry_operations anon_ops = {
4081  	.d_dname = simple_dname
4082  };
4083  
4084  static struct file *__shmem_file_setup(const char *name, loff_t size,
4085  				       unsigned long flags, unsigned int i_flags)
4086  {
4087  	struct file *res;
4088  	struct inode *inode;
4089  	struct path path;
4090  	struct super_block *sb;
4091  	struct qstr this;
4092  
4093  	if (IS_ERR(shm_mnt))
4094  		return ERR_CAST(shm_mnt);
4095  
4096  	if (size < 0 || size > MAX_LFS_FILESIZE)
4097  		return ERR_PTR(-EINVAL);
4098  
4099  	if (shmem_acct_size(flags, size))
4100  		return ERR_PTR(-ENOMEM);
4101  
4102  	res = ERR_PTR(-ENOMEM);
4103  	this.name = name;
4104  	this.len = strlen(name);
4105  	this.hash = 0; /* will go */
4106  	sb = shm_mnt->mnt_sb;
4107  	path.mnt = mntget(shm_mnt);
4108  	path.dentry = d_alloc_pseudo(sb, &this);
4109  	if (!path.dentry)
4110  		goto put_memory;
4111  	d_set_d_op(path.dentry, &anon_ops);
4112  
4113  	res = ERR_PTR(-ENOSPC);
4114  	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4115  	if (!inode)
4116  		goto put_memory;
4117  
4118  	inode->i_flags |= i_flags;
4119  	d_instantiate(path.dentry, inode);
4120  	inode->i_size = size;
4121  	clear_nlink(inode);	/* It is unlinked */
4122  	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4123  	if (IS_ERR(res))
4124  		goto put_path;
4125  
4126  	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4127  		  &shmem_file_operations);
4128  	if (IS_ERR(res))
4129  		goto put_path;
4130  
4131  	return res;
4132  
4133  put_memory:
4134  	shmem_unacct_size(flags, size);
4135  put_path:
4136  	path_put(&path);
4137  	return res;
4138  }
4139  
4140  /**
4141   * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4142   * 	kernel internal.  There will be NO LSM permission checks against the
4143   * 	underlying inode.  So users of this interface must do LSM checks at a
4144   *	higher layer.  The users are the big_key and shm implementations.  LSM
4145   *	checks are provided at the key or shm level rather than the inode.
4146   * @name: name for dentry (to be seen in /proc/<pid>/maps
4147   * @size: size to be set for the file
4148   * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4149   */
4150  struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4151  {
4152  	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4153  }
4154  
4155  /**
4156   * shmem_file_setup - get an unlinked file living in tmpfs
4157   * @name: name for dentry (to be seen in /proc/<pid>/maps
4158   * @size: size to be set for the file
4159   * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4160   */
4161  struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4162  {
4163  	return __shmem_file_setup(name, size, flags, 0);
4164  }
4165  EXPORT_SYMBOL_GPL(shmem_file_setup);
4166  
4167  /**
4168   * shmem_zero_setup - setup a shared anonymous mapping
4169   * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4170   */
4171  int shmem_zero_setup(struct vm_area_struct *vma)
4172  {
4173  	struct file *file;
4174  	loff_t size = vma->vm_end - vma->vm_start;
4175  
4176  	/*
4177  	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4178  	 * between XFS directory reading and selinux: since this file is only
4179  	 * accessible to the user through its mapping, use S_PRIVATE flag to
4180  	 * bypass file security, in the same way as shmem_kernel_file_setup().
4181  	 */
4182  	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4183  	if (IS_ERR(file))
4184  		return PTR_ERR(file);
4185  
4186  	if (vma->vm_file)
4187  		fput(vma->vm_file);
4188  	vma->vm_file = file;
4189  	vma->vm_ops = &shmem_vm_ops;
4190  
4191  	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4192  			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4193  			(vma->vm_end & HPAGE_PMD_MASK)) {
4194  		khugepaged_enter(vma, vma->vm_flags);
4195  	}
4196  
4197  	return 0;
4198  }
4199  
4200  /**
4201   * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4202   * @mapping:	the page's address_space
4203   * @index:	the page index
4204   * @gfp:	the page allocator flags to use if allocating
4205   *
4206   * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4207   * with any new page allocations done using the specified allocation flags.
4208   * But read_cache_page_gfp() uses the ->readpage() method: which does not
4209   * suit tmpfs, since it may have pages in swapcache, and needs to find those
4210   * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4211   *
4212   * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4213   * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4214   */
4215  struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4216  					 pgoff_t index, gfp_t gfp)
4217  {
4218  #ifdef CONFIG_SHMEM
4219  	struct inode *inode = mapping->host;
4220  	struct page *page;
4221  	int error;
4222  
4223  	BUG_ON(mapping->a_ops != &shmem_aops);
4224  	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4225  				  gfp, NULL, NULL);
4226  	if (error)
4227  		page = ERR_PTR(error);
4228  	else
4229  		unlock_page(page);
4230  	return page;
4231  #else
4232  	/*
4233  	 * The tiny !SHMEM case uses ramfs without swap
4234  	 */
4235  	return read_cache_page_gfp(mapping, index, gfp);
4236  #endif
4237  }
4238  EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4239