1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 #include <linux/syscalls.h> 70 #include <linux/fcntl.h> 71 #include <uapi/linux/memfd.h> 72 73 #include <asm/uaccess.h> 74 #include <asm/pgtable.h> 75 76 #include "internal.h" 77 78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 80 81 /* Pretend that each entry is of this size in directory's i_size */ 82 #define BOGO_DIRENT_SIZE 20 83 84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 85 #define SHORT_SYMLINK_LEN 128 86 87 /* 88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 89 * inode->i_private (with i_mutex making sure that it has only one user at 90 * a time): we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 94 pgoff_t start; /* start of range currently being fallocated */ 95 pgoff_t next; /* the next page offset to be fallocated */ 96 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 98 }; 99 100 /* Flag allocation requirements to shmem_getpage */ 101 enum sgp_type { 102 SGP_READ, /* don't exceed i_size, don't allocate page */ 103 SGP_CACHE, /* don't exceed i_size, may allocate page */ 104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 107 }; 108 109 #ifdef CONFIG_TMPFS 110 static unsigned long shmem_default_max_blocks(void) 111 { 112 return totalram_pages / 2; 113 } 114 115 static unsigned long shmem_default_max_inodes(void) 116 { 117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 118 } 119 #endif 120 121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 122 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 123 struct shmem_inode_info *info, pgoff_t index); 124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 126 127 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp, int *fault_type) 129 { 130 return shmem_getpage_gfp(inode, index, pagep, sgp, 131 mapping_gfp_mask(inode->i_mapping), fault_type); 132 } 133 134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 135 { 136 return sb->s_fs_info; 137 } 138 139 /* 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 141 * for shared memory and for shared anonymous (/dev/zero) mappings 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 143 * consistent with the pre-accounting of private mappings ... 144 */ 145 static inline int shmem_acct_size(unsigned long flags, loff_t size) 146 { 147 return (flags & VM_NORESERVE) ? 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 149 } 150 151 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 152 { 153 if (!(flags & VM_NORESERVE)) 154 vm_unacct_memory(VM_ACCT(size)); 155 } 156 157 static inline int shmem_reacct_size(unsigned long flags, 158 loff_t oldsize, loff_t newsize) 159 { 160 if (!(flags & VM_NORESERVE)) { 161 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 162 return security_vm_enough_memory_mm(current->mm, 163 VM_ACCT(newsize) - VM_ACCT(oldsize)); 164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 166 } 167 return 0; 168 } 169 170 /* 171 * ... whereas tmpfs objects are accounted incrementally as 172 * pages are allocated, in order to allow huge sparse files. 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 175 */ 176 static inline int shmem_acct_block(unsigned long flags) 177 { 178 return (flags & VM_NORESERVE) ? 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 180 } 181 182 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 183 { 184 if (flags & VM_NORESERVE) 185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 186 } 187 188 static const struct super_operations shmem_ops; 189 static const struct address_space_operations shmem_aops; 190 static const struct file_operations shmem_file_operations; 191 static const struct inode_operations shmem_inode_operations; 192 static const struct inode_operations shmem_dir_inode_operations; 193 static const struct inode_operations shmem_special_inode_operations; 194 static const struct vm_operations_struct shmem_vm_ops; 195 196 static LIST_HEAD(shmem_swaplist); 197 static DEFINE_MUTEX(shmem_swaplist_mutex); 198 199 static int shmem_reserve_inode(struct super_block *sb) 200 { 201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 202 if (sbinfo->max_inodes) { 203 spin_lock(&sbinfo->stat_lock); 204 if (!sbinfo->free_inodes) { 205 spin_unlock(&sbinfo->stat_lock); 206 return -ENOSPC; 207 } 208 sbinfo->free_inodes--; 209 spin_unlock(&sbinfo->stat_lock); 210 } 211 return 0; 212 } 213 214 static void shmem_free_inode(struct super_block *sb) 215 { 216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 217 if (sbinfo->max_inodes) { 218 spin_lock(&sbinfo->stat_lock); 219 sbinfo->free_inodes++; 220 spin_unlock(&sbinfo->stat_lock); 221 } 222 } 223 224 /** 225 * shmem_recalc_inode - recalculate the block usage of an inode 226 * @inode: inode to recalc 227 * 228 * We have to calculate the free blocks since the mm can drop 229 * undirtied hole pages behind our back. 230 * 231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 233 * 234 * It has to be called with the spinlock held. 235 */ 236 static void shmem_recalc_inode(struct inode *inode) 237 { 238 struct shmem_inode_info *info = SHMEM_I(inode); 239 long freed; 240 241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 242 if (freed > 0) { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 244 if (sbinfo->max_blocks) 245 percpu_counter_add(&sbinfo->used_blocks, -freed); 246 info->alloced -= freed; 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 248 shmem_unacct_blocks(info->flags, freed); 249 } 250 } 251 252 /* 253 * Replace item expected in radix tree by a new item, while holding tree lock. 254 */ 255 static int shmem_radix_tree_replace(struct address_space *mapping, 256 pgoff_t index, void *expected, void *replacement) 257 { 258 void **pslot; 259 void *item; 260 261 VM_BUG_ON(!expected); 262 VM_BUG_ON(!replacement); 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 264 if (!pslot) 265 return -ENOENT; 266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 267 if (item != expected) 268 return -ENOENT; 269 radix_tree_replace_slot(pslot, replacement); 270 return 0; 271 } 272 273 /* 274 * Sometimes, before we decide whether to proceed or to fail, we must check 275 * that an entry was not already brought back from swap by a racing thread. 276 * 277 * Checking page is not enough: by the time a SwapCache page is locked, it 278 * might be reused, and again be SwapCache, using the same swap as before. 279 */ 280 static bool shmem_confirm_swap(struct address_space *mapping, 281 pgoff_t index, swp_entry_t swap) 282 { 283 void *item; 284 285 rcu_read_lock(); 286 item = radix_tree_lookup(&mapping->page_tree, index); 287 rcu_read_unlock(); 288 return item == swp_to_radix_entry(swap); 289 } 290 291 /* 292 * Like add_to_page_cache_locked, but error if expected item has gone. 293 */ 294 static int shmem_add_to_page_cache(struct page *page, 295 struct address_space *mapping, 296 pgoff_t index, void *expected) 297 { 298 int error; 299 300 VM_BUG_ON_PAGE(!PageLocked(page), page); 301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 302 303 page_cache_get(page); 304 page->mapping = mapping; 305 page->index = index; 306 307 spin_lock_irq(&mapping->tree_lock); 308 if (!expected) 309 error = radix_tree_insert(&mapping->page_tree, index, page); 310 else 311 error = shmem_radix_tree_replace(mapping, index, expected, 312 page); 313 if (!error) { 314 mapping->nrpages++; 315 __inc_zone_page_state(page, NR_FILE_PAGES); 316 __inc_zone_page_state(page, NR_SHMEM); 317 spin_unlock_irq(&mapping->tree_lock); 318 } else { 319 page->mapping = NULL; 320 spin_unlock_irq(&mapping->tree_lock); 321 page_cache_release(page); 322 } 323 return error; 324 } 325 326 /* 327 * Like delete_from_page_cache, but substitutes swap for page. 328 */ 329 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 330 { 331 struct address_space *mapping = page->mapping; 332 int error; 333 334 spin_lock_irq(&mapping->tree_lock); 335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 336 page->mapping = NULL; 337 mapping->nrpages--; 338 __dec_zone_page_state(page, NR_FILE_PAGES); 339 __dec_zone_page_state(page, NR_SHMEM); 340 spin_unlock_irq(&mapping->tree_lock); 341 page_cache_release(page); 342 BUG_ON(error); 343 } 344 345 /* 346 * Remove swap entry from radix tree, free the swap and its page cache. 347 */ 348 static int shmem_free_swap(struct address_space *mapping, 349 pgoff_t index, void *radswap) 350 { 351 void *old; 352 353 spin_lock_irq(&mapping->tree_lock); 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 355 spin_unlock_irq(&mapping->tree_lock); 356 if (old != radswap) 357 return -ENOENT; 358 free_swap_and_cache(radix_to_swp_entry(radswap)); 359 return 0; 360 } 361 362 /* 363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 364 */ 365 void shmem_unlock_mapping(struct address_space *mapping) 366 { 367 struct pagevec pvec; 368 pgoff_t indices[PAGEVEC_SIZE]; 369 pgoff_t index = 0; 370 371 pagevec_init(&pvec, 0); 372 /* 373 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 374 */ 375 while (!mapping_unevictable(mapping)) { 376 /* 377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 379 */ 380 pvec.nr = find_get_entries(mapping, index, 381 PAGEVEC_SIZE, pvec.pages, indices); 382 if (!pvec.nr) 383 break; 384 index = indices[pvec.nr - 1] + 1; 385 pagevec_remove_exceptionals(&pvec); 386 check_move_unevictable_pages(pvec.pages, pvec.nr); 387 pagevec_release(&pvec); 388 cond_resched(); 389 } 390 } 391 392 /* 393 * Remove range of pages and swap entries from radix tree, and free them. 394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 395 */ 396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 397 bool unfalloc) 398 { 399 struct address_space *mapping = inode->i_mapping; 400 struct shmem_inode_info *info = SHMEM_I(inode); 401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 405 struct pagevec pvec; 406 pgoff_t indices[PAGEVEC_SIZE]; 407 long nr_swaps_freed = 0; 408 pgoff_t index; 409 int i; 410 411 if (lend == -1) 412 end = -1; /* unsigned, so actually very big */ 413 414 pagevec_init(&pvec, 0); 415 index = start; 416 while (index < end) { 417 pvec.nr = find_get_entries(mapping, index, 418 min(end - index, (pgoff_t)PAGEVEC_SIZE), 419 pvec.pages, indices); 420 if (!pvec.nr) 421 break; 422 for (i = 0; i < pagevec_count(&pvec); i++) { 423 struct page *page = pvec.pages[i]; 424 425 index = indices[i]; 426 if (index >= end) 427 break; 428 429 if (radix_tree_exceptional_entry(page)) { 430 if (unfalloc) 431 continue; 432 nr_swaps_freed += !shmem_free_swap(mapping, 433 index, page); 434 continue; 435 } 436 437 if (!trylock_page(page)) 438 continue; 439 if (!unfalloc || !PageUptodate(page)) { 440 if (page->mapping == mapping) { 441 VM_BUG_ON_PAGE(PageWriteback(page), page); 442 truncate_inode_page(mapping, page); 443 } 444 } 445 unlock_page(page); 446 } 447 pagevec_remove_exceptionals(&pvec); 448 pagevec_release(&pvec); 449 cond_resched(); 450 index++; 451 } 452 453 if (partial_start) { 454 struct page *page = NULL; 455 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 456 if (page) { 457 unsigned int top = PAGE_CACHE_SIZE; 458 if (start > end) { 459 top = partial_end; 460 partial_end = 0; 461 } 462 zero_user_segment(page, partial_start, top); 463 set_page_dirty(page); 464 unlock_page(page); 465 page_cache_release(page); 466 } 467 } 468 if (partial_end) { 469 struct page *page = NULL; 470 shmem_getpage(inode, end, &page, SGP_READ, NULL); 471 if (page) { 472 zero_user_segment(page, 0, partial_end); 473 set_page_dirty(page); 474 unlock_page(page); 475 page_cache_release(page); 476 } 477 } 478 if (start >= end) 479 return; 480 481 index = start; 482 while (index < end) { 483 cond_resched(); 484 485 pvec.nr = find_get_entries(mapping, index, 486 min(end - index, (pgoff_t)PAGEVEC_SIZE), 487 pvec.pages, indices); 488 if (!pvec.nr) { 489 /* If all gone or hole-punch or unfalloc, we're done */ 490 if (index == start || end != -1) 491 break; 492 /* But if truncating, restart to make sure all gone */ 493 index = start; 494 continue; 495 } 496 for (i = 0; i < pagevec_count(&pvec); i++) { 497 struct page *page = pvec.pages[i]; 498 499 index = indices[i]; 500 if (index >= end) 501 break; 502 503 if (radix_tree_exceptional_entry(page)) { 504 if (unfalloc) 505 continue; 506 if (shmem_free_swap(mapping, index, page)) { 507 /* Swap was replaced by page: retry */ 508 index--; 509 break; 510 } 511 nr_swaps_freed++; 512 continue; 513 } 514 515 lock_page(page); 516 if (!unfalloc || !PageUptodate(page)) { 517 if (page->mapping == mapping) { 518 VM_BUG_ON_PAGE(PageWriteback(page), page); 519 truncate_inode_page(mapping, page); 520 } else { 521 /* Page was replaced by swap: retry */ 522 unlock_page(page); 523 index--; 524 break; 525 } 526 } 527 unlock_page(page); 528 } 529 pagevec_remove_exceptionals(&pvec); 530 pagevec_release(&pvec); 531 index++; 532 } 533 534 spin_lock(&info->lock); 535 info->swapped -= nr_swaps_freed; 536 shmem_recalc_inode(inode); 537 spin_unlock(&info->lock); 538 } 539 540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 541 { 542 shmem_undo_range(inode, lstart, lend, false); 543 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 544 } 545 EXPORT_SYMBOL_GPL(shmem_truncate_range); 546 547 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 548 struct kstat *stat) 549 { 550 struct inode *inode = dentry->d_inode; 551 struct shmem_inode_info *info = SHMEM_I(inode); 552 553 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 554 spin_lock(&info->lock); 555 shmem_recalc_inode(inode); 556 spin_unlock(&info->lock); 557 } 558 generic_fillattr(inode, stat); 559 return 0; 560 } 561 562 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 563 { 564 struct inode *inode = d_inode(dentry); 565 struct shmem_inode_info *info = SHMEM_I(inode); 566 int error; 567 568 error = inode_change_ok(inode, attr); 569 if (error) 570 return error; 571 572 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 573 loff_t oldsize = inode->i_size; 574 loff_t newsize = attr->ia_size; 575 576 /* protected by i_mutex */ 577 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 578 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 579 return -EPERM; 580 581 if (newsize != oldsize) { 582 error = shmem_reacct_size(SHMEM_I(inode)->flags, 583 oldsize, newsize); 584 if (error) 585 return error; 586 i_size_write(inode, newsize); 587 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 588 } 589 if (newsize <= oldsize) { 590 loff_t holebegin = round_up(newsize, PAGE_SIZE); 591 if (oldsize > holebegin) 592 unmap_mapping_range(inode->i_mapping, 593 holebegin, 0, 1); 594 if (info->alloced) 595 shmem_truncate_range(inode, 596 newsize, (loff_t)-1); 597 /* unmap again to remove racily COWed private pages */ 598 if (oldsize > holebegin) 599 unmap_mapping_range(inode->i_mapping, 600 holebegin, 0, 1); 601 } 602 } 603 604 setattr_copy(inode, attr); 605 if (attr->ia_valid & ATTR_MODE) 606 error = posix_acl_chmod(inode, inode->i_mode); 607 return error; 608 } 609 610 static void shmem_evict_inode(struct inode *inode) 611 { 612 struct shmem_inode_info *info = SHMEM_I(inode); 613 614 if (inode->i_mapping->a_ops == &shmem_aops) { 615 shmem_unacct_size(info->flags, inode->i_size); 616 inode->i_size = 0; 617 shmem_truncate_range(inode, 0, (loff_t)-1); 618 if (!list_empty(&info->swaplist)) { 619 mutex_lock(&shmem_swaplist_mutex); 620 list_del_init(&info->swaplist); 621 mutex_unlock(&shmem_swaplist_mutex); 622 } 623 } else 624 kfree(info->symlink); 625 626 simple_xattrs_free(&info->xattrs); 627 WARN_ON(inode->i_blocks); 628 shmem_free_inode(inode->i_sb); 629 clear_inode(inode); 630 } 631 632 /* 633 * If swap found in inode, free it and move page from swapcache to filecache. 634 */ 635 static int shmem_unuse_inode(struct shmem_inode_info *info, 636 swp_entry_t swap, struct page **pagep) 637 { 638 struct address_space *mapping = info->vfs_inode.i_mapping; 639 void *radswap; 640 pgoff_t index; 641 gfp_t gfp; 642 int error = 0; 643 644 radswap = swp_to_radix_entry(swap); 645 index = radix_tree_locate_item(&mapping->page_tree, radswap); 646 if (index == -1) 647 return -EAGAIN; /* tell shmem_unuse we found nothing */ 648 649 /* 650 * Move _head_ to start search for next from here. 651 * But be careful: shmem_evict_inode checks list_empty without taking 652 * mutex, and there's an instant in list_move_tail when info->swaplist 653 * would appear empty, if it were the only one on shmem_swaplist. 654 */ 655 if (shmem_swaplist.next != &info->swaplist) 656 list_move_tail(&shmem_swaplist, &info->swaplist); 657 658 gfp = mapping_gfp_mask(mapping); 659 if (shmem_should_replace_page(*pagep, gfp)) { 660 mutex_unlock(&shmem_swaplist_mutex); 661 error = shmem_replace_page(pagep, gfp, info, index); 662 mutex_lock(&shmem_swaplist_mutex); 663 /* 664 * We needed to drop mutex to make that restrictive page 665 * allocation, but the inode might have been freed while we 666 * dropped it: although a racing shmem_evict_inode() cannot 667 * complete without emptying the radix_tree, our page lock 668 * on this swapcache page is not enough to prevent that - 669 * free_swap_and_cache() of our swap entry will only 670 * trylock_page(), removing swap from radix_tree whatever. 671 * 672 * We must not proceed to shmem_add_to_page_cache() if the 673 * inode has been freed, but of course we cannot rely on 674 * inode or mapping or info to check that. However, we can 675 * safely check if our swap entry is still in use (and here 676 * it can't have got reused for another page): if it's still 677 * in use, then the inode cannot have been freed yet, and we 678 * can safely proceed (if it's no longer in use, that tells 679 * nothing about the inode, but we don't need to unuse swap). 680 */ 681 if (!page_swapcount(*pagep)) 682 error = -ENOENT; 683 } 684 685 /* 686 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 687 * but also to hold up shmem_evict_inode(): so inode cannot be freed 688 * beneath us (pagelock doesn't help until the page is in pagecache). 689 */ 690 if (!error) 691 error = shmem_add_to_page_cache(*pagep, mapping, index, 692 radswap); 693 if (error != -ENOMEM) { 694 /* 695 * Truncation and eviction use free_swap_and_cache(), which 696 * only does trylock page: if we raced, best clean up here. 697 */ 698 delete_from_swap_cache(*pagep); 699 set_page_dirty(*pagep); 700 if (!error) { 701 spin_lock(&info->lock); 702 info->swapped--; 703 spin_unlock(&info->lock); 704 swap_free(swap); 705 } 706 } 707 return error; 708 } 709 710 /* 711 * Search through swapped inodes to find and replace swap by page. 712 */ 713 int shmem_unuse(swp_entry_t swap, struct page *page) 714 { 715 struct list_head *this, *next; 716 struct shmem_inode_info *info; 717 struct mem_cgroup *memcg; 718 int error = 0; 719 720 /* 721 * There's a faint possibility that swap page was replaced before 722 * caller locked it: caller will come back later with the right page. 723 */ 724 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 725 goto out; 726 727 /* 728 * Charge page using GFP_KERNEL while we can wait, before taking 729 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 730 * Charged back to the user (not to caller) when swap account is used. 731 */ 732 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg); 733 if (error) 734 goto out; 735 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 736 error = -EAGAIN; 737 738 mutex_lock(&shmem_swaplist_mutex); 739 list_for_each_safe(this, next, &shmem_swaplist) { 740 info = list_entry(this, struct shmem_inode_info, swaplist); 741 if (info->swapped) 742 error = shmem_unuse_inode(info, swap, &page); 743 else 744 list_del_init(&info->swaplist); 745 cond_resched(); 746 if (error != -EAGAIN) 747 break; 748 /* found nothing in this: move on to search the next */ 749 } 750 mutex_unlock(&shmem_swaplist_mutex); 751 752 if (error) { 753 if (error != -ENOMEM) 754 error = 0; 755 mem_cgroup_cancel_charge(page, memcg); 756 } else 757 mem_cgroup_commit_charge(page, memcg, true); 758 out: 759 unlock_page(page); 760 page_cache_release(page); 761 return error; 762 } 763 764 /* 765 * Move the page from the page cache to the swap cache. 766 */ 767 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 768 { 769 struct shmem_inode_info *info; 770 struct address_space *mapping; 771 struct inode *inode; 772 swp_entry_t swap; 773 pgoff_t index; 774 775 BUG_ON(!PageLocked(page)); 776 mapping = page->mapping; 777 index = page->index; 778 inode = mapping->host; 779 info = SHMEM_I(inode); 780 if (info->flags & VM_LOCKED) 781 goto redirty; 782 if (!total_swap_pages) 783 goto redirty; 784 785 /* 786 * Our capabilities prevent regular writeback or sync from ever calling 787 * shmem_writepage; but a stacking filesystem might use ->writepage of 788 * its underlying filesystem, in which case tmpfs should write out to 789 * swap only in response to memory pressure, and not for the writeback 790 * threads or sync. 791 */ 792 if (!wbc->for_reclaim) { 793 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 794 goto redirty; 795 } 796 797 /* 798 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 799 * value into swapfile.c, the only way we can correctly account for a 800 * fallocated page arriving here is now to initialize it and write it. 801 * 802 * That's okay for a page already fallocated earlier, but if we have 803 * not yet completed the fallocation, then (a) we want to keep track 804 * of this page in case we have to undo it, and (b) it may not be a 805 * good idea to continue anyway, once we're pushing into swap. So 806 * reactivate the page, and let shmem_fallocate() quit when too many. 807 */ 808 if (!PageUptodate(page)) { 809 if (inode->i_private) { 810 struct shmem_falloc *shmem_falloc; 811 spin_lock(&inode->i_lock); 812 shmem_falloc = inode->i_private; 813 if (shmem_falloc && 814 !shmem_falloc->waitq && 815 index >= shmem_falloc->start && 816 index < shmem_falloc->next) 817 shmem_falloc->nr_unswapped++; 818 else 819 shmem_falloc = NULL; 820 spin_unlock(&inode->i_lock); 821 if (shmem_falloc) 822 goto redirty; 823 } 824 clear_highpage(page); 825 flush_dcache_page(page); 826 SetPageUptodate(page); 827 } 828 829 swap = get_swap_page(); 830 if (!swap.val) 831 goto redirty; 832 833 /* 834 * Add inode to shmem_unuse()'s list of swapped-out inodes, 835 * if it's not already there. Do it now before the page is 836 * moved to swap cache, when its pagelock no longer protects 837 * the inode from eviction. But don't unlock the mutex until 838 * we've incremented swapped, because shmem_unuse_inode() will 839 * prune a !swapped inode from the swaplist under this mutex. 840 */ 841 mutex_lock(&shmem_swaplist_mutex); 842 if (list_empty(&info->swaplist)) 843 list_add_tail(&info->swaplist, &shmem_swaplist); 844 845 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 846 spin_lock(&info->lock); 847 shmem_recalc_inode(inode); 848 info->swapped++; 849 spin_unlock(&info->lock); 850 851 swap_shmem_alloc(swap); 852 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 853 854 mutex_unlock(&shmem_swaplist_mutex); 855 BUG_ON(page_mapped(page)); 856 swap_writepage(page, wbc); 857 return 0; 858 } 859 860 mutex_unlock(&shmem_swaplist_mutex); 861 swapcache_free(swap); 862 redirty: 863 set_page_dirty(page); 864 if (wbc->for_reclaim) 865 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 866 unlock_page(page); 867 return 0; 868 } 869 870 #ifdef CONFIG_NUMA 871 #ifdef CONFIG_TMPFS 872 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 873 { 874 char buffer[64]; 875 876 if (!mpol || mpol->mode == MPOL_DEFAULT) 877 return; /* show nothing */ 878 879 mpol_to_str(buffer, sizeof(buffer), mpol); 880 881 seq_printf(seq, ",mpol=%s", buffer); 882 } 883 884 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 885 { 886 struct mempolicy *mpol = NULL; 887 if (sbinfo->mpol) { 888 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 889 mpol = sbinfo->mpol; 890 mpol_get(mpol); 891 spin_unlock(&sbinfo->stat_lock); 892 } 893 return mpol; 894 } 895 #endif /* CONFIG_TMPFS */ 896 897 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 898 struct shmem_inode_info *info, pgoff_t index) 899 { 900 struct vm_area_struct pvma; 901 struct page *page; 902 903 /* Create a pseudo vma that just contains the policy */ 904 pvma.vm_start = 0; 905 /* Bias interleave by inode number to distribute better across nodes */ 906 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 907 pvma.vm_ops = NULL; 908 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 909 910 page = swapin_readahead(swap, gfp, &pvma, 0); 911 912 /* Drop reference taken by mpol_shared_policy_lookup() */ 913 mpol_cond_put(pvma.vm_policy); 914 915 return page; 916 } 917 918 static struct page *shmem_alloc_page(gfp_t gfp, 919 struct shmem_inode_info *info, pgoff_t index) 920 { 921 struct vm_area_struct pvma; 922 struct page *page; 923 924 /* Create a pseudo vma that just contains the policy */ 925 pvma.vm_start = 0; 926 /* Bias interleave by inode number to distribute better across nodes */ 927 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 928 pvma.vm_ops = NULL; 929 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 930 931 page = alloc_page_vma(gfp, &pvma, 0); 932 933 /* Drop reference taken by mpol_shared_policy_lookup() */ 934 mpol_cond_put(pvma.vm_policy); 935 936 return page; 937 } 938 #else /* !CONFIG_NUMA */ 939 #ifdef CONFIG_TMPFS 940 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 941 { 942 } 943 #endif /* CONFIG_TMPFS */ 944 945 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 946 struct shmem_inode_info *info, pgoff_t index) 947 { 948 return swapin_readahead(swap, gfp, NULL, 0); 949 } 950 951 static inline struct page *shmem_alloc_page(gfp_t gfp, 952 struct shmem_inode_info *info, pgoff_t index) 953 { 954 return alloc_page(gfp); 955 } 956 #endif /* CONFIG_NUMA */ 957 958 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 959 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 960 { 961 return NULL; 962 } 963 #endif 964 965 /* 966 * When a page is moved from swapcache to shmem filecache (either by the 967 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 968 * shmem_unuse_inode()), it may have been read in earlier from swap, in 969 * ignorance of the mapping it belongs to. If that mapping has special 970 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 971 * we may need to copy to a suitable page before moving to filecache. 972 * 973 * In a future release, this may well be extended to respect cpuset and 974 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 975 * but for now it is a simple matter of zone. 976 */ 977 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 978 { 979 return page_zonenum(page) > gfp_zone(gfp); 980 } 981 982 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 983 struct shmem_inode_info *info, pgoff_t index) 984 { 985 struct page *oldpage, *newpage; 986 struct address_space *swap_mapping; 987 pgoff_t swap_index; 988 int error; 989 990 oldpage = *pagep; 991 swap_index = page_private(oldpage); 992 swap_mapping = page_mapping(oldpage); 993 994 /* 995 * We have arrived here because our zones are constrained, so don't 996 * limit chance of success by further cpuset and node constraints. 997 */ 998 gfp &= ~GFP_CONSTRAINT_MASK; 999 newpage = shmem_alloc_page(gfp, info, index); 1000 if (!newpage) 1001 return -ENOMEM; 1002 1003 page_cache_get(newpage); 1004 copy_highpage(newpage, oldpage); 1005 flush_dcache_page(newpage); 1006 1007 __set_page_locked(newpage); 1008 SetPageUptodate(newpage); 1009 SetPageSwapBacked(newpage); 1010 set_page_private(newpage, swap_index); 1011 SetPageSwapCache(newpage); 1012 1013 /* 1014 * Our caller will very soon move newpage out of swapcache, but it's 1015 * a nice clean interface for us to replace oldpage by newpage there. 1016 */ 1017 spin_lock_irq(&swap_mapping->tree_lock); 1018 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1019 newpage); 1020 if (!error) { 1021 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1022 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1023 } 1024 spin_unlock_irq(&swap_mapping->tree_lock); 1025 1026 if (unlikely(error)) { 1027 /* 1028 * Is this possible? I think not, now that our callers check 1029 * both PageSwapCache and page_private after getting page lock; 1030 * but be defensive. Reverse old to newpage for clear and free. 1031 */ 1032 oldpage = newpage; 1033 } else { 1034 mem_cgroup_replace_page(oldpage, newpage); 1035 lru_cache_add_anon(newpage); 1036 *pagep = newpage; 1037 } 1038 1039 ClearPageSwapCache(oldpage); 1040 set_page_private(oldpage, 0); 1041 1042 unlock_page(oldpage); 1043 page_cache_release(oldpage); 1044 page_cache_release(oldpage); 1045 return error; 1046 } 1047 1048 /* 1049 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1050 * 1051 * If we allocate a new one we do not mark it dirty. That's up to the 1052 * vm. If we swap it in we mark it dirty since we also free the swap 1053 * entry since a page cannot live in both the swap and page cache 1054 */ 1055 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1056 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1057 { 1058 struct address_space *mapping = inode->i_mapping; 1059 struct shmem_inode_info *info; 1060 struct shmem_sb_info *sbinfo; 1061 struct mem_cgroup *memcg; 1062 struct page *page; 1063 swp_entry_t swap; 1064 int error; 1065 int once = 0; 1066 int alloced = 0; 1067 1068 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1069 return -EFBIG; 1070 repeat: 1071 swap.val = 0; 1072 page = find_lock_entry(mapping, index); 1073 if (radix_tree_exceptional_entry(page)) { 1074 swap = radix_to_swp_entry(page); 1075 page = NULL; 1076 } 1077 1078 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1079 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1080 error = -EINVAL; 1081 goto unlock; 1082 } 1083 1084 if (page && sgp == SGP_WRITE) 1085 mark_page_accessed(page); 1086 1087 /* fallocated page? */ 1088 if (page && !PageUptodate(page)) { 1089 if (sgp != SGP_READ) 1090 goto clear; 1091 unlock_page(page); 1092 page_cache_release(page); 1093 page = NULL; 1094 } 1095 if (page || (sgp == SGP_READ && !swap.val)) { 1096 *pagep = page; 1097 return 0; 1098 } 1099 1100 /* 1101 * Fast cache lookup did not find it: 1102 * bring it back from swap or allocate. 1103 */ 1104 info = SHMEM_I(inode); 1105 sbinfo = SHMEM_SB(inode->i_sb); 1106 1107 if (swap.val) { 1108 /* Look it up and read it in.. */ 1109 page = lookup_swap_cache(swap); 1110 if (!page) { 1111 /* here we actually do the io */ 1112 if (fault_type) 1113 *fault_type |= VM_FAULT_MAJOR; 1114 page = shmem_swapin(swap, gfp, info, index); 1115 if (!page) { 1116 error = -ENOMEM; 1117 goto failed; 1118 } 1119 } 1120 1121 /* We have to do this with page locked to prevent races */ 1122 lock_page(page); 1123 if (!PageSwapCache(page) || page_private(page) != swap.val || 1124 !shmem_confirm_swap(mapping, index, swap)) { 1125 error = -EEXIST; /* try again */ 1126 goto unlock; 1127 } 1128 if (!PageUptodate(page)) { 1129 error = -EIO; 1130 goto failed; 1131 } 1132 wait_on_page_writeback(page); 1133 1134 if (shmem_should_replace_page(page, gfp)) { 1135 error = shmem_replace_page(&page, gfp, info, index); 1136 if (error) 1137 goto failed; 1138 } 1139 1140 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1141 if (!error) { 1142 error = shmem_add_to_page_cache(page, mapping, index, 1143 swp_to_radix_entry(swap)); 1144 /* 1145 * We already confirmed swap under page lock, and make 1146 * no memory allocation here, so usually no possibility 1147 * of error; but free_swap_and_cache() only trylocks a 1148 * page, so it is just possible that the entry has been 1149 * truncated or holepunched since swap was confirmed. 1150 * shmem_undo_range() will have done some of the 1151 * unaccounting, now delete_from_swap_cache() will do 1152 * the rest. 1153 * Reset swap.val? No, leave it so "failed" goes back to 1154 * "repeat": reading a hole and writing should succeed. 1155 */ 1156 if (error) { 1157 mem_cgroup_cancel_charge(page, memcg); 1158 delete_from_swap_cache(page); 1159 } 1160 } 1161 if (error) 1162 goto failed; 1163 1164 mem_cgroup_commit_charge(page, memcg, true); 1165 1166 spin_lock(&info->lock); 1167 info->swapped--; 1168 shmem_recalc_inode(inode); 1169 spin_unlock(&info->lock); 1170 1171 if (sgp == SGP_WRITE) 1172 mark_page_accessed(page); 1173 1174 delete_from_swap_cache(page); 1175 set_page_dirty(page); 1176 swap_free(swap); 1177 1178 } else { 1179 if (shmem_acct_block(info->flags)) { 1180 error = -ENOSPC; 1181 goto failed; 1182 } 1183 if (sbinfo->max_blocks) { 1184 if (percpu_counter_compare(&sbinfo->used_blocks, 1185 sbinfo->max_blocks) >= 0) { 1186 error = -ENOSPC; 1187 goto unacct; 1188 } 1189 percpu_counter_inc(&sbinfo->used_blocks); 1190 } 1191 1192 page = shmem_alloc_page(gfp, info, index); 1193 if (!page) { 1194 error = -ENOMEM; 1195 goto decused; 1196 } 1197 1198 __SetPageSwapBacked(page); 1199 __set_page_locked(page); 1200 if (sgp == SGP_WRITE) 1201 __SetPageReferenced(page); 1202 1203 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1204 if (error) 1205 goto decused; 1206 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1207 if (!error) { 1208 error = shmem_add_to_page_cache(page, mapping, index, 1209 NULL); 1210 radix_tree_preload_end(); 1211 } 1212 if (error) { 1213 mem_cgroup_cancel_charge(page, memcg); 1214 goto decused; 1215 } 1216 mem_cgroup_commit_charge(page, memcg, false); 1217 lru_cache_add_anon(page); 1218 1219 spin_lock(&info->lock); 1220 info->alloced++; 1221 inode->i_blocks += BLOCKS_PER_PAGE; 1222 shmem_recalc_inode(inode); 1223 spin_unlock(&info->lock); 1224 alloced = true; 1225 1226 /* 1227 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1228 */ 1229 if (sgp == SGP_FALLOC) 1230 sgp = SGP_WRITE; 1231 clear: 1232 /* 1233 * Let SGP_WRITE caller clear ends if write does not fill page; 1234 * but SGP_FALLOC on a page fallocated earlier must initialize 1235 * it now, lest undo on failure cancel our earlier guarantee. 1236 */ 1237 if (sgp != SGP_WRITE) { 1238 clear_highpage(page); 1239 flush_dcache_page(page); 1240 SetPageUptodate(page); 1241 } 1242 if (sgp == SGP_DIRTY) 1243 set_page_dirty(page); 1244 } 1245 1246 /* Perhaps the file has been truncated since we checked */ 1247 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1248 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1249 if (alloced) { 1250 ClearPageDirty(page); 1251 delete_from_page_cache(page); 1252 spin_lock(&info->lock); 1253 shmem_recalc_inode(inode); 1254 spin_unlock(&info->lock); 1255 } 1256 error = -EINVAL; 1257 goto unlock; 1258 } 1259 *pagep = page; 1260 return 0; 1261 1262 /* 1263 * Error recovery. 1264 */ 1265 decused: 1266 if (sbinfo->max_blocks) 1267 percpu_counter_add(&sbinfo->used_blocks, -1); 1268 unacct: 1269 shmem_unacct_blocks(info->flags, 1); 1270 failed: 1271 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1272 error = -EEXIST; 1273 unlock: 1274 if (page) { 1275 unlock_page(page); 1276 page_cache_release(page); 1277 } 1278 if (error == -ENOSPC && !once++) { 1279 info = SHMEM_I(inode); 1280 spin_lock(&info->lock); 1281 shmem_recalc_inode(inode); 1282 spin_unlock(&info->lock); 1283 goto repeat; 1284 } 1285 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1286 goto repeat; 1287 return error; 1288 } 1289 1290 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1291 { 1292 struct inode *inode = file_inode(vma->vm_file); 1293 int error; 1294 int ret = VM_FAULT_LOCKED; 1295 1296 /* 1297 * Trinity finds that probing a hole which tmpfs is punching can 1298 * prevent the hole-punch from ever completing: which in turn 1299 * locks writers out with its hold on i_mutex. So refrain from 1300 * faulting pages into the hole while it's being punched. Although 1301 * shmem_undo_range() does remove the additions, it may be unable to 1302 * keep up, as each new page needs its own unmap_mapping_range() call, 1303 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1304 * 1305 * It does not matter if we sometimes reach this check just before the 1306 * hole-punch begins, so that one fault then races with the punch: 1307 * we just need to make racing faults a rare case. 1308 * 1309 * The implementation below would be much simpler if we just used a 1310 * standard mutex or completion: but we cannot take i_mutex in fault, 1311 * and bloating every shmem inode for this unlikely case would be sad. 1312 */ 1313 if (unlikely(inode->i_private)) { 1314 struct shmem_falloc *shmem_falloc; 1315 1316 spin_lock(&inode->i_lock); 1317 shmem_falloc = inode->i_private; 1318 if (shmem_falloc && 1319 shmem_falloc->waitq && 1320 vmf->pgoff >= shmem_falloc->start && 1321 vmf->pgoff < shmem_falloc->next) { 1322 wait_queue_head_t *shmem_falloc_waitq; 1323 DEFINE_WAIT(shmem_fault_wait); 1324 1325 ret = VM_FAULT_NOPAGE; 1326 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1327 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1328 /* It's polite to up mmap_sem if we can */ 1329 up_read(&vma->vm_mm->mmap_sem); 1330 ret = VM_FAULT_RETRY; 1331 } 1332 1333 shmem_falloc_waitq = shmem_falloc->waitq; 1334 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1335 TASK_UNINTERRUPTIBLE); 1336 spin_unlock(&inode->i_lock); 1337 schedule(); 1338 1339 /* 1340 * shmem_falloc_waitq points into the shmem_fallocate() 1341 * stack of the hole-punching task: shmem_falloc_waitq 1342 * is usually invalid by the time we reach here, but 1343 * finish_wait() does not dereference it in that case; 1344 * though i_lock needed lest racing with wake_up_all(). 1345 */ 1346 spin_lock(&inode->i_lock); 1347 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1348 spin_unlock(&inode->i_lock); 1349 return ret; 1350 } 1351 spin_unlock(&inode->i_lock); 1352 } 1353 1354 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1355 if (error) 1356 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1357 1358 if (ret & VM_FAULT_MAJOR) { 1359 count_vm_event(PGMAJFAULT); 1360 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1361 } 1362 return ret; 1363 } 1364 1365 #ifdef CONFIG_NUMA 1366 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1367 { 1368 struct inode *inode = file_inode(vma->vm_file); 1369 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1370 } 1371 1372 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1373 unsigned long addr) 1374 { 1375 struct inode *inode = file_inode(vma->vm_file); 1376 pgoff_t index; 1377 1378 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1379 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1380 } 1381 #endif 1382 1383 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1384 { 1385 struct inode *inode = file_inode(file); 1386 struct shmem_inode_info *info = SHMEM_I(inode); 1387 int retval = -ENOMEM; 1388 1389 spin_lock(&info->lock); 1390 if (lock && !(info->flags & VM_LOCKED)) { 1391 if (!user_shm_lock(inode->i_size, user)) 1392 goto out_nomem; 1393 info->flags |= VM_LOCKED; 1394 mapping_set_unevictable(file->f_mapping); 1395 } 1396 if (!lock && (info->flags & VM_LOCKED) && user) { 1397 user_shm_unlock(inode->i_size, user); 1398 info->flags &= ~VM_LOCKED; 1399 mapping_clear_unevictable(file->f_mapping); 1400 } 1401 retval = 0; 1402 1403 out_nomem: 1404 spin_unlock(&info->lock); 1405 return retval; 1406 } 1407 1408 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1409 { 1410 file_accessed(file); 1411 vma->vm_ops = &shmem_vm_ops; 1412 return 0; 1413 } 1414 1415 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1416 umode_t mode, dev_t dev, unsigned long flags) 1417 { 1418 struct inode *inode; 1419 struct shmem_inode_info *info; 1420 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1421 1422 if (shmem_reserve_inode(sb)) 1423 return NULL; 1424 1425 inode = new_inode(sb); 1426 if (inode) { 1427 inode->i_ino = get_next_ino(); 1428 inode_init_owner(inode, dir, mode); 1429 inode->i_blocks = 0; 1430 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1431 inode->i_generation = get_seconds(); 1432 info = SHMEM_I(inode); 1433 memset(info, 0, (char *)inode - (char *)info); 1434 spin_lock_init(&info->lock); 1435 info->seals = F_SEAL_SEAL; 1436 info->flags = flags & VM_NORESERVE; 1437 INIT_LIST_HEAD(&info->swaplist); 1438 simple_xattrs_init(&info->xattrs); 1439 cache_no_acl(inode); 1440 1441 switch (mode & S_IFMT) { 1442 default: 1443 inode->i_op = &shmem_special_inode_operations; 1444 init_special_inode(inode, mode, dev); 1445 break; 1446 case S_IFREG: 1447 inode->i_mapping->a_ops = &shmem_aops; 1448 inode->i_op = &shmem_inode_operations; 1449 inode->i_fop = &shmem_file_operations; 1450 mpol_shared_policy_init(&info->policy, 1451 shmem_get_sbmpol(sbinfo)); 1452 break; 1453 case S_IFDIR: 1454 inc_nlink(inode); 1455 /* Some things misbehave if size == 0 on a directory */ 1456 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1457 inode->i_op = &shmem_dir_inode_operations; 1458 inode->i_fop = &simple_dir_operations; 1459 break; 1460 case S_IFLNK: 1461 /* 1462 * Must not load anything in the rbtree, 1463 * mpol_free_shared_policy will not be called. 1464 */ 1465 mpol_shared_policy_init(&info->policy, NULL); 1466 break; 1467 } 1468 } else 1469 shmem_free_inode(sb); 1470 return inode; 1471 } 1472 1473 bool shmem_mapping(struct address_space *mapping) 1474 { 1475 if (!mapping->host) 1476 return false; 1477 1478 return mapping->host->i_sb->s_op == &shmem_ops; 1479 } 1480 1481 #ifdef CONFIG_TMPFS 1482 static const struct inode_operations shmem_symlink_inode_operations; 1483 static const struct inode_operations shmem_short_symlink_operations; 1484 1485 #ifdef CONFIG_TMPFS_XATTR 1486 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1487 #else 1488 #define shmem_initxattrs NULL 1489 #endif 1490 1491 static int 1492 shmem_write_begin(struct file *file, struct address_space *mapping, 1493 loff_t pos, unsigned len, unsigned flags, 1494 struct page **pagep, void **fsdata) 1495 { 1496 struct inode *inode = mapping->host; 1497 struct shmem_inode_info *info = SHMEM_I(inode); 1498 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1499 1500 /* i_mutex is held by caller */ 1501 if (unlikely(info->seals)) { 1502 if (info->seals & F_SEAL_WRITE) 1503 return -EPERM; 1504 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1505 return -EPERM; 1506 } 1507 1508 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1509 } 1510 1511 static int 1512 shmem_write_end(struct file *file, struct address_space *mapping, 1513 loff_t pos, unsigned len, unsigned copied, 1514 struct page *page, void *fsdata) 1515 { 1516 struct inode *inode = mapping->host; 1517 1518 if (pos + copied > inode->i_size) 1519 i_size_write(inode, pos + copied); 1520 1521 if (!PageUptodate(page)) { 1522 if (copied < PAGE_CACHE_SIZE) { 1523 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1524 zero_user_segments(page, 0, from, 1525 from + copied, PAGE_CACHE_SIZE); 1526 } 1527 SetPageUptodate(page); 1528 } 1529 set_page_dirty(page); 1530 unlock_page(page); 1531 page_cache_release(page); 1532 1533 return copied; 1534 } 1535 1536 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1537 { 1538 struct file *file = iocb->ki_filp; 1539 struct inode *inode = file_inode(file); 1540 struct address_space *mapping = inode->i_mapping; 1541 pgoff_t index; 1542 unsigned long offset; 1543 enum sgp_type sgp = SGP_READ; 1544 int error = 0; 1545 ssize_t retval = 0; 1546 loff_t *ppos = &iocb->ki_pos; 1547 1548 /* 1549 * Might this read be for a stacking filesystem? Then when reading 1550 * holes of a sparse file, we actually need to allocate those pages, 1551 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1552 */ 1553 if (!iter_is_iovec(to)) 1554 sgp = SGP_DIRTY; 1555 1556 index = *ppos >> PAGE_CACHE_SHIFT; 1557 offset = *ppos & ~PAGE_CACHE_MASK; 1558 1559 for (;;) { 1560 struct page *page = NULL; 1561 pgoff_t end_index; 1562 unsigned long nr, ret; 1563 loff_t i_size = i_size_read(inode); 1564 1565 end_index = i_size >> PAGE_CACHE_SHIFT; 1566 if (index > end_index) 1567 break; 1568 if (index == end_index) { 1569 nr = i_size & ~PAGE_CACHE_MASK; 1570 if (nr <= offset) 1571 break; 1572 } 1573 1574 error = shmem_getpage(inode, index, &page, sgp, NULL); 1575 if (error) { 1576 if (error == -EINVAL) 1577 error = 0; 1578 break; 1579 } 1580 if (page) 1581 unlock_page(page); 1582 1583 /* 1584 * We must evaluate after, since reads (unlike writes) 1585 * are called without i_mutex protection against truncate 1586 */ 1587 nr = PAGE_CACHE_SIZE; 1588 i_size = i_size_read(inode); 1589 end_index = i_size >> PAGE_CACHE_SHIFT; 1590 if (index == end_index) { 1591 nr = i_size & ~PAGE_CACHE_MASK; 1592 if (nr <= offset) { 1593 if (page) 1594 page_cache_release(page); 1595 break; 1596 } 1597 } 1598 nr -= offset; 1599 1600 if (page) { 1601 /* 1602 * If users can be writing to this page using arbitrary 1603 * virtual addresses, take care about potential aliasing 1604 * before reading the page on the kernel side. 1605 */ 1606 if (mapping_writably_mapped(mapping)) 1607 flush_dcache_page(page); 1608 /* 1609 * Mark the page accessed if we read the beginning. 1610 */ 1611 if (!offset) 1612 mark_page_accessed(page); 1613 } else { 1614 page = ZERO_PAGE(0); 1615 page_cache_get(page); 1616 } 1617 1618 /* 1619 * Ok, we have the page, and it's up-to-date, so 1620 * now we can copy it to user space... 1621 */ 1622 ret = copy_page_to_iter(page, offset, nr, to); 1623 retval += ret; 1624 offset += ret; 1625 index += offset >> PAGE_CACHE_SHIFT; 1626 offset &= ~PAGE_CACHE_MASK; 1627 1628 page_cache_release(page); 1629 if (!iov_iter_count(to)) 1630 break; 1631 if (ret < nr) { 1632 error = -EFAULT; 1633 break; 1634 } 1635 cond_resched(); 1636 } 1637 1638 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1639 file_accessed(file); 1640 return retval ? retval : error; 1641 } 1642 1643 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1644 struct pipe_inode_info *pipe, size_t len, 1645 unsigned int flags) 1646 { 1647 struct address_space *mapping = in->f_mapping; 1648 struct inode *inode = mapping->host; 1649 unsigned int loff, nr_pages, req_pages; 1650 struct page *pages[PIPE_DEF_BUFFERS]; 1651 struct partial_page partial[PIPE_DEF_BUFFERS]; 1652 struct page *page; 1653 pgoff_t index, end_index; 1654 loff_t isize, left; 1655 int error, page_nr; 1656 struct splice_pipe_desc spd = { 1657 .pages = pages, 1658 .partial = partial, 1659 .nr_pages_max = PIPE_DEF_BUFFERS, 1660 .flags = flags, 1661 .ops = &page_cache_pipe_buf_ops, 1662 .spd_release = spd_release_page, 1663 }; 1664 1665 isize = i_size_read(inode); 1666 if (unlikely(*ppos >= isize)) 1667 return 0; 1668 1669 left = isize - *ppos; 1670 if (unlikely(left < len)) 1671 len = left; 1672 1673 if (splice_grow_spd(pipe, &spd)) 1674 return -ENOMEM; 1675 1676 index = *ppos >> PAGE_CACHE_SHIFT; 1677 loff = *ppos & ~PAGE_CACHE_MASK; 1678 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1679 nr_pages = min(req_pages, spd.nr_pages_max); 1680 1681 spd.nr_pages = find_get_pages_contig(mapping, index, 1682 nr_pages, spd.pages); 1683 index += spd.nr_pages; 1684 error = 0; 1685 1686 while (spd.nr_pages < nr_pages) { 1687 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1688 if (error) 1689 break; 1690 unlock_page(page); 1691 spd.pages[spd.nr_pages++] = page; 1692 index++; 1693 } 1694 1695 index = *ppos >> PAGE_CACHE_SHIFT; 1696 nr_pages = spd.nr_pages; 1697 spd.nr_pages = 0; 1698 1699 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1700 unsigned int this_len; 1701 1702 if (!len) 1703 break; 1704 1705 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1706 page = spd.pages[page_nr]; 1707 1708 if (!PageUptodate(page) || page->mapping != mapping) { 1709 error = shmem_getpage(inode, index, &page, 1710 SGP_CACHE, NULL); 1711 if (error) 1712 break; 1713 unlock_page(page); 1714 page_cache_release(spd.pages[page_nr]); 1715 spd.pages[page_nr] = page; 1716 } 1717 1718 isize = i_size_read(inode); 1719 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1720 if (unlikely(!isize || index > end_index)) 1721 break; 1722 1723 if (end_index == index) { 1724 unsigned int plen; 1725 1726 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1727 if (plen <= loff) 1728 break; 1729 1730 this_len = min(this_len, plen - loff); 1731 len = this_len; 1732 } 1733 1734 spd.partial[page_nr].offset = loff; 1735 spd.partial[page_nr].len = this_len; 1736 len -= this_len; 1737 loff = 0; 1738 spd.nr_pages++; 1739 index++; 1740 } 1741 1742 while (page_nr < nr_pages) 1743 page_cache_release(spd.pages[page_nr++]); 1744 1745 if (spd.nr_pages) 1746 error = splice_to_pipe(pipe, &spd); 1747 1748 splice_shrink_spd(&spd); 1749 1750 if (error > 0) { 1751 *ppos += error; 1752 file_accessed(in); 1753 } 1754 return error; 1755 } 1756 1757 /* 1758 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1759 */ 1760 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1761 pgoff_t index, pgoff_t end, int whence) 1762 { 1763 struct page *page; 1764 struct pagevec pvec; 1765 pgoff_t indices[PAGEVEC_SIZE]; 1766 bool done = false; 1767 int i; 1768 1769 pagevec_init(&pvec, 0); 1770 pvec.nr = 1; /* start small: we may be there already */ 1771 while (!done) { 1772 pvec.nr = find_get_entries(mapping, index, 1773 pvec.nr, pvec.pages, indices); 1774 if (!pvec.nr) { 1775 if (whence == SEEK_DATA) 1776 index = end; 1777 break; 1778 } 1779 for (i = 0; i < pvec.nr; i++, index++) { 1780 if (index < indices[i]) { 1781 if (whence == SEEK_HOLE) { 1782 done = true; 1783 break; 1784 } 1785 index = indices[i]; 1786 } 1787 page = pvec.pages[i]; 1788 if (page && !radix_tree_exceptional_entry(page)) { 1789 if (!PageUptodate(page)) 1790 page = NULL; 1791 } 1792 if (index >= end || 1793 (page && whence == SEEK_DATA) || 1794 (!page && whence == SEEK_HOLE)) { 1795 done = true; 1796 break; 1797 } 1798 } 1799 pagevec_remove_exceptionals(&pvec); 1800 pagevec_release(&pvec); 1801 pvec.nr = PAGEVEC_SIZE; 1802 cond_resched(); 1803 } 1804 return index; 1805 } 1806 1807 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1808 { 1809 struct address_space *mapping = file->f_mapping; 1810 struct inode *inode = mapping->host; 1811 pgoff_t start, end; 1812 loff_t new_offset; 1813 1814 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1815 return generic_file_llseek_size(file, offset, whence, 1816 MAX_LFS_FILESIZE, i_size_read(inode)); 1817 mutex_lock(&inode->i_mutex); 1818 /* We're holding i_mutex so we can access i_size directly */ 1819 1820 if (offset < 0) 1821 offset = -EINVAL; 1822 else if (offset >= inode->i_size) 1823 offset = -ENXIO; 1824 else { 1825 start = offset >> PAGE_CACHE_SHIFT; 1826 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1827 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1828 new_offset <<= PAGE_CACHE_SHIFT; 1829 if (new_offset > offset) { 1830 if (new_offset < inode->i_size) 1831 offset = new_offset; 1832 else if (whence == SEEK_DATA) 1833 offset = -ENXIO; 1834 else 1835 offset = inode->i_size; 1836 } 1837 } 1838 1839 if (offset >= 0) 1840 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1841 mutex_unlock(&inode->i_mutex); 1842 return offset; 1843 } 1844 1845 /* 1846 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1847 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1848 */ 1849 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1850 #define LAST_SCAN 4 /* about 150ms max */ 1851 1852 static void shmem_tag_pins(struct address_space *mapping) 1853 { 1854 struct radix_tree_iter iter; 1855 void **slot; 1856 pgoff_t start; 1857 struct page *page; 1858 1859 lru_add_drain(); 1860 start = 0; 1861 rcu_read_lock(); 1862 1863 restart: 1864 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1865 page = radix_tree_deref_slot(slot); 1866 if (!page || radix_tree_exception(page)) { 1867 if (radix_tree_deref_retry(page)) 1868 goto restart; 1869 } else if (page_count(page) - page_mapcount(page) > 1) { 1870 spin_lock_irq(&mapping->tree_lock); 1871 radix_tree_tag_set(&mapping->page_tree, iter.index, 1872 SHMEM_TAG_PINNED); 1873 spin_unlock_irq(&mapping->tree_lock); 1874 } 1875 1876 if (need_resched()) { 1877 cond_resched_rcu(); 1878 start = iter.index + 1; 1879 goto restart; 1880 } 1881 } 1882 rcu_read_unlock(); 1883 } 1884 1885 /* 1886 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1887 * via get_user_pages(), drivers might have some pending I/O without any active 1888 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1889 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1890 * them to be dropped. 1891 * The caller must guarantee that no new user will acquire writable references 1892 * to those pages to avoid races. 1893 */ 1894 static int shmem_wait_for_pins(struct address_space *mapping) 1895 { 1896 struct radix_tree_iter iter; 1897 void **slot; 1898 pgoff_t start; 1899 struct page *page; 1900 int error, scan; 1901 1902 shmem_tag_pins(mapping); 1903 1904 error = 0; 1905 for (scan = 0; scan <= LAST_SCAN; scan++) { 1906 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1907 break; 1908 1909 if (!scan) 1910 lru_add_drain_all(); 1911 else if (schedule_timeout_killable((HZ << scan) / 200)) 1912 scan = LAST_SCAN; 1913 1914 start = 0; 1915 rcu_read_lock(); 1916 restart: 1917 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 1918 start, SHMEM_TAG_PINNED) { 1919 1920 page = radix_tree_deref_slot(slot); 1921 if (radix_tree_exception(page)) { 1922 if (radix_tree_deref_retry(page)) 1923 goto restart; 1924 1925 page = NULL; 1926 } 1927 1928 if (page && 1929 page_count(page) - page_mapcount(page) != 1) { 1930 if (scan < LAST_SCAN) 1931 goto continue_resched; 1932 1933 /* 1934 * On the last scan, we clean up all those tags 1935 * we inserted; but make a note that we still 1936 * found pages pinned. 1937 */ 1938 error = -EBUSY; 1939 } 1940 1941 spin_lock_irq(&mapping->tree_lock); 1942 radix_tree_tag_clear(&mapping->page_tree, 1943 iter.index, SHMEM_TAG_PINNED); 1944 spin_unlock_irq(&mapping->tree_lock); 1945 continue_resched: 1946 if (need_resched()) { 1947 cond_resched_rcu(); 1948 start = iter.index + 1; 1949 goto restart; 1950 } 1951 } 1952 rcu_read_unlock(); 1953 } 1954 1955 return error; 1956 } 1957 1958 #define F_ALL_SEALS (F_SEAL_SEAL | \ 1959 F_SEAL_SHRINK | \ 1960 F_SEAL_GROW | \ 1961 F_SEAL_WRITE) 1962 1963 int shmem_add_seals(struct file *file, unsigned int seals) 1964 { 1965 struct inode *inode = file_inode(file); 1966 struct shmem_inode_info *info = SHMEM_I(inode); 1967 int error; 1968 1969 /* 1970 * SEALING 1971 * Sealing allows multiple parties to share a shmem-file but restrict 1972 * access to a specific subset of file operations. Seals can only be 1973 * added, but never removed. This way, mutually untrusted parties can 1974 * share common memory regions with a well-defined policy. A malicious 1975 * peer can thus never perform unwanted operations on a shared object. 1976 * 1977 * Seals are only supported on special shmem-files and always affect 1978 * the whole underlying inode. Once a seal is set, it may prevent some 1979 * kinds of access to the file. Currently, the following seals are 1980 * defined: 1981 * SEAL_SEAL: Prevent further seals from being set on this file 1982 * SEAL_SHRINK: Prevent the file from shrinking 1983 * SEAL_GROW: Prevent the file from growing 1984 * SEAL_WRITE: Prevent write access to the file 1985 * 1986 * As we don't require any trust relationship between two parties, we 1987 * must prevent seals from being removed. Therefore, sealing a file 1988 * only adds a given set of seals to the file, it never touches 1989 * existing seals. Furthermore, the "setting seals"-operation can be 1990 * sealed itself, which basically prevents any further seal from being 1991 * added. 1992 * 1993 * Semantics of sealing are only defined on volatile files. Only 1994 * anonymous shmem files support sealing. More importantly, seals are 1995 * never written to disk. Therefore, there's no plan to support it on 1996 * other file types. 1997 */ 1998 1999 if (file->f_op != &shmem_file_operations) 2000 return -EINVAL; 2001 if (!(file->f_mode & FMODE_WRITE)) 2002 return -EPERM; 2003 if (seals & ~(unsigned int)F_ALL_SEALS) 2004 return -EINVAL; 2005 2006 mutex_lock(&inode->i_mutex); 2007 2008 if (info->seals & F_SEAL_SEAL) { 2009 error = -EPERM; 2010 goto unlock; 2011 } 2012 2013 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2014 error = mapping_deny_writable(file->f_mapping); 2015 if (error) 2016 goto unlock; 2017 2018 error = shmem_wait_for_pins(file->f_mapping); 2019 if (error) { 2020 mapping_allow_writable(file->f_mapping); 2021 goto unlock; 2022 } 2023 } 2024 2025 info->seals |= seals; 2026 error = 0; 2027 2028 unlock: 2029 mutex_unlock(&inode->i_mutex); 2030 return error; 2031 } 2032 EXPORT_SYMBOL_GPL(shmem_add_seals); 2033 2034 int shmem_get_seals(struct file *file) 2035 { 2036 if (file->f_op != &shmem_file_operations) 2037 return -EINVAL; 2038 2039 return SHMEM_I(file_inode(file))->seals; 2040 } 2041 EXPORT_SYMBOL_GPL(shmem_get_seals); 2042 2043 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2044 { 2045 long error; 2046 2047 switch (cmd) { 2048 case F_ADD_SEALS: 2049 /* disallow upper 32bit */ 2050 if (arg > UINT_MAX) 2051 return -EINVAL; 2052 2053 error = shmem_add_seals(file, arg); 2054 break; 2055 case F_GET_SEALS: 2056 error = shmem_get_seals(file); 2057 break; 2058 default: 2059 error = -EINVAL; 2060 break; 2061 } 2062 2063 return error; 2064 } 2065 2066 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2067 loff_t len) 2068 { 2069 struct inode *inode = file_inode(file); 2070 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2071 struct shmem_inode_info *info = SHMEM_I(inode); 2072 struct shmem_falloc shmem_falloc; 2073 pgoff_t start, index, end; 2074 int error; 2075 2076 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2077 return -EOPNOTSUPP; 2078 2079 mutex_lock(&inode->i_mutex); 2080 2081 if (mode & FALLOC_FL_PUNCH_HOLE) { 2082 struct address_space *mapping = file->f_mapping; 2083 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2084 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2085 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2086 2087 /* protected by i_mutex */ 2088 if (info->seals & F_SEAL_WRITE) { 2089 error = -EPERM; 2090 goto out; 2091 } 2092 2093 shmem_falloc.waitq = &shmem_falloc_waitq; 2094 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2095 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2096 spin_lock(&inode->i_lock); 2097 inode->i_private = &shmem_falloc; 2098 spin_unlock(&inode->i_lock); 2099 2100 if ((u64)unmap_end > (u64)unmap_start) 2101 unmap_mapping_range(mapping, unmap_start, 2102 1 + unmap_end - unmap_start, 0); 2103 shmem_truncate_range(inode, offset, offset + len - 1); 2104 /* No need to unmap again: hole-punching leaves COWed pages */ 2105 2106 spin_lock(&inode->i_lock); 2107 inode->i_private = NULL; 2108 wake_up_all(&shmem_falloc_waitq); 2109 spin_unlock(&inode->i_lock); 2110 error = 0; 2111 goto out; 2112 } 2113 2114 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2115 error = inode_newsize_ok(inode, offset + len); 2116 if (error) 2117 goto out; 2118 2119 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2120 error = -EPERM; 2121 goto out; 2122 } 2123 2124 start = offset >> PAGE_CACHE_SHIFT; 2125 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2126 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2127 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2128 error = -ENOSPC; 2129 goto out; 2130 } 2131 2132 shmem_falloc.waitq = NULL; 2133 shmem_falloc.start = start; 2134 shmem_falloc.next = start; 2135 shmem_falloc.nr_falloced = 0; 2136 shmem_falloc.nr_unswapped = 0; 2137 spin_lock(&inode->i_lock); 2138 inode->i_private = &shmem_falloc; 2139 spin_unlock(&inode->i_lock); 2140 2141 for (index = start; index < end; index++) { 2142 struct page *page; 2143 2144 /* 2145 * Good, the fallocate(2) manpage permits EINTR: we may have 2146 * been interrupted because we are using up too much memory. 2147 */ 2148 if (signal_pending(current)) 2149 error = -EINTR; 2150 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2151 error = -ENOMEM; 2152 else 2153 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 2154 NULL); 2155 if (error) { 2156 /* Remove the !PageUptodate pages we added */ 2157 shmem_undo_range(inode, 2158 (loff_t)start << PAGE_CACHE_SHIFT, 2159 (loff_t)index << PAGE_CACHE_SHIFT, true); 2160 goto undone; 2161 } 2162 2163 /* 2164 * Inform shmem_writepage() how far we have reached. 2165 * No need for lock or barrier: we have the page lock. 2166 */ 2167 shmem_falloc.next++; 2168 if (!PageUptodate(page)) 2169 shmem_falloc.nr_falloced++; 2170 2171 /* 2172 * If !PageUptodate, leave it that way so that freeable pages 2173 * can be recognized if we need to rollback on error later. 2174 * But set_page_dirty so that memory pressure will swap rather 2175 * than free the pages we are allocating (and SGP_CACHE pages 2176 * might still be clean: we now need to mark those dirty too). 2177 */ 2178 set_page_dirty(page); 2179 unlock_page(page); 2180 page_cache_release(page); 2181 cond_resched(); 2182 } 2183 2184 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2185 i_size_write(inode, offset + len); 2186 inode->i_ctime = CURRENT_TIME; 2187 undone: 2188 spin_lock(&inode->i_lock); 2189 inode->i_private = NULL; 2190 spin_unlock(&inode->i_lock); 2191 out: 2192 mutex_unlock(&inode->i_mutex); 2193 return error; 2194 } 2195 2196 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2197 { 2198 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2199 2200 buf->f_type = TMPFS_MAGIC; 2201 buf->f_bsize = PAGE_CACHE_SIZE; 2202 buf->f_namelen = NAME_MAX; 2203 if (sbinfo->max_blocks) { 2204 buf->f_blocks = sbinfo->max_blocks; 2205 buf->f_bavail = 2206 buf->f_bfree = sbinfo->max_blocks - 2207 percpu_counter_sum(&sbinfo->used_blocks); 2208 } 2209 if (sbinfo->max_inodes) { 2210 buf->f_files = sbinfo->max_inodes; 2211 buf->f_ffree = sbinfo->free_inodes; 2212 } 2213 /* else leave those fields 0 like simple_statfs */ 2214 return 0; 2215 } 2216 2217 /* 2218 * File creation. Allocate an inode, and we're done.. 2219 */ 2220 static int 2221 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2222 { 2223 struct inode *inode; 2224 int error = -ENOSPC; 2225 2226 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2227 if (inode) { 2228 error = simple_acl_create(dir, inode); 2229 if (error) 2230 goto out_iput; 2231 error = security_inode_init_security(inode, dir, 2232 &dentry->d_name, 2233 shmem_initxattrs, NULL); 2234 if (error && error != -EOPNOTSUPP) 2235 goto out_iput; 2236 2237 error = 0; 2238 dir->i_size += BOGO_DIRENT_SIZE; 2239 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2240 d_instantiate(dentry, inode); 2241 dget(dentry); /* Extra count - pin the dentry in core */ 2242 } 2243 return error; 2244 out_iput: 2245 iput(inode); 2246 return error; 2247 } 2248 2249 static int 2250 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2251 { 2252 struct inode *inode; 2253 int error = -ENOSPC; 2254 2255 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2256 if (inode) { 2257 error = security_inode_init_security(inode, dir, 2258 NULL, 2259 shmem_initxattrs, NULL); 2260 if (error && error != -EOPNOTSUPP) 2261 goto out_iput; 2262 error = simple_acl_create(dir, inode); 2263 if (error) 2264 goto out_iput; 2265 d_tmpfile(dentry, inode); 2266 } 2267 return error; 2268 out_iput: 2269 iput(inode); 2270 return error; 2271 } 2272 2273 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2274 { 2275 int error; 2276 2277 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2278 return error; 2279 inc_nlink(dir); 2280 return 0; 2281 } 2282 2283 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2284 bool excl) 2285 { 2286 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2287 } 2288 2289 /* 2290 * Link a file.. 2291 */ 2292 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2293 { 2294 struct inode *inode = d_inode(old_dentry); 2295 int ret; 2296 2297 /* 2298 * No ordinary (disk based) filesystem counts links as inodes; 2299 * but each new link needs a new dentry, pinning lowmem, and 2300 * tmpfs dentries cannot be pruned until they are unlinked. 2301 */ 2302 ret = shmem_reserve_inode(inode->i_sb); 2303 if (ret) 2304 goto out; 2305 2306 dir->i_size += BOGO_DIRENT_SIZE; 2307 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2308 inc_nlink(inode); 2309 ihold(inode); /* New dentry reference */ 2310 dget(dentry); /* Extra pinning count for the created dentry */ 2311 d_instantiate(dentry, inode); 2312 out: 2313 return ret; 2314 } 2315 2316 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2317 { 2318 struct inode *inode = d_inode(dentry); 2319 2320 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2321 shmem_free_inode(inode->i_sb); 2322 2323 dir->i_size -= BOGO_DIRENT_SIZE; 2324 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2325 drop_nlink(inode); 2326 dput(dentry); /* Undo the count from "create" - this does all the work */ 2327 return 0; 2328 } 2329 2330 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2331 { 2332 if (!simple_empty(dentry)) 2333 return -ENOTEMPTY; 2334 2335 drop_nlink(d_inode(dentry)); 2336 drop_nlink(dir); 2337 return shmem_unlink(dir, dentry); 2338 } 2339 2340 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2341 { 2342 bool old_is_dir = d_is_dir(old_dentry); 2343 bool new_is_dir = d_is_dir(new_dentry); 2344 2345 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2346 if (old_is_dir) { 2347 drop_nlink(old_dir); 2348 inc_nlink(new_dir); 2349 } else { 2350 drop_nlink(new_dir); 2351 inc_nlink(old_dir); 2352 } 2353 } 2354 old_dir->i_ctime = old_dir->i_mtime = 2355 new_dir->i_ctime = new_dir->i_mtime = 2356 d_inode(old_dentry)->i_ctime = 2357 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 2358 2359 return 0; 2360 } 2361 2362 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2363 { 2364 struct dentry *whiteout; 2365 int error; 2366 2367 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2368 if (!whiteout) 2369 return -ENOMEM; 2370 2371 error = shmem_mknod(old_dir, whiteout, 2372 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2373 dput(whiteout); 2374 if (error) 2375 return error; 2376 2377 /* 2378 * Cheat and hash the whiteout while the old dentry is still in 2379 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2380 * 2381 * d_lookup() will consistently find one of them at this point, 2382 * not sure which one, but that isn't even important. 2383 */ 2384 d_rehash(whiteout); 2385 return 0; 2386 } 2387 2388 /* 2389 * The VFS layer already does all the dentry stuff for rename, 2390 * we just have to decrement the usage count for the target if 2391 * it exists so that the VFS layer correctly free's it when it 2392 * gets overwritten. 2393 */ 2394 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2395 { 2396 struct inode *inode = d_inode(old_dentry); 2397 int they_are_dirs = S_ISDIR(inode->i_mode); 2398 2399 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2400 return -EINVAL; 2401 2402 if (flags & RENAME_EXCHANGE) 2403 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2404 2405 if (!simple_empty(new_dentry)) 2406 return -ENOTEMPTY; 2407 2408 if (flags & RENAME_WHITEOUT) { 2409 int error; 2410 2411 error = shmem_whiteout(old_dir, old_dentry); 2412 if (error) 2413 return error; 2414 } 2415 2416 if (d_really_is_positive(new_dentry)) { 2417 (void) shmem_unlink(new_dir, new_dentry); 2418 if (they_are_dirs) { 2419 drop_nlink(d_inode(new_dentry)); 2420 drop_nlink(old_dir); 2421 } 2422 } else if (they_are_dirs) { 2423 drop_nlink(old_dir); 2424 inc_nlink(new_dir); 2425 } 2426 2427 old_dir->i_size -= BOGO_DIRENT_SIZE; 2428 new_dir->i_size += BOGO_DIRENT_SIZE; 2429 old_dir->i_ctime = old_dir->i_mtime = 2430 new_dir->i_ctime = new_dir->i_mtime = 2431 inode->i_ctime = CURRENT_TIME; 2432 return 0; 2433 } 2434 2435 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2436 { 2437 int error; 2438 int len; 2439 struct inode *inode; 2440 struct page *page; 2441 char *kaddr; 2442 struct shmem_inode_info *info; 2443 2444 len = strlen(symname) + 1; 2445 if (len > PAGE_CACHE_SIZE) 2446 return -ENAMETOOLONG; 2447 2448 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2449 if (!inode) 2450 return -ENOSPC; 2451 2452 error = security_inode_init_security(inode, dir, &dentry->d_name, 2453 shmem_initxattrs, NULL); 2454 if (error) { 2455 if (error != -EOPNOTSUPP) { 2456 iput(inode); 2457 return error; 2458 } 2459 error = 0; 2460 } 2461 2462 info = SHMEM_I(inode); 2463 inode->i_size = len-1; 2464 if (len <= SHORT_SYMLINK_LEN) { 2465 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2466 if (!info->symlink) { 2467 iput(inode); 2468 return -ENOMEM; 2469 } 2470 inode->i_op = &shmem_short_symlink_operations; 2471 inode->i_link = info->symlink; 2472 } else { 2473 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2474 if (error) { 2475 iput(inode); 2476 return error; 2477 } 2478 inode->i_mapping->a_ops = &shmem_aops; 2479 inode->i_op = &shmem_symlink_inode_operations; 2480 kaddr = kmap_atomic(page); 2481 memcpy(kaddr, symname, len); 2482 kunmap_atomic(kaddr); 2483 SetPageUptodate(page); 2484 set_page_dirty(page); 2485 unlock_page(page); 2486 page_cache_release(page); 2487 } 2488 dir->i_size += BOGO_DIRENT_SIZE; 2489 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2490 d_instantiate(dentry, inode); 2491 dget(dentry); 2492 return 0; 2493 } 2494 2495 static const char *shmem_follow_link(struct dentry *dentry, void **cookie) 2496 { 2497 struct page *page = NULL; 2498 int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL); 2499 if (error) 2500 return ERR_PTR(error); 2501 unlock_page(page); 2502 *cookie = page; 2503 return kmap(page); 2504 } 2505 2506 static void shmem_put_link(struct inode *unused, void *cookie) 2507 { 2508 struct page *page = cookie; 2509 kunmap(page); 2510 mark_page_accessed(page); 2511 page_cache_release(page); 2512 } 2513 2514 #ifdef CONFIG_TMPFS_XATTR 2515 /* 2516 * Superblocks without xattr inode operations may get some security.* xattr 2517 * support from the LSM "for free". As soon as we have any other xattrs 2518 * like ACLs, we also need to implement the security.* handlers at 2519 * filesystem level, though. 2520 */ 2521 2522 /* 2523 * Callback for security_inode_init_security() for acquiring xattrs. 2524 */ 2525 static int shmem_initxattrs(struct inode *inode, 2526 const struct xattr *xattr_array, 2527 void *fs_info) 2528 { 2529 struct shmem_inode_info *info = SHMEM_I(inode); 2530 const struct xattr *xattr; 2531 struct simple_xattr *new_xattr; 2532 size_t len; 2533 2534 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2535 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2536 if (!new_xattr) 2537 return -ENOMEM; 2538 2539 len = strlen(xattr->name) + 1; 2540 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2541 GFP_KERNEL); 2542 if (!new_xattr->name) { 2543 kfree(new_xattr); 2544 return -ENOMEM; 2545 } 2546 2547 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2548 XATTR_SECURITY_PREFIX_LEN); 2549 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2550 xattr->name, len); 2551 2552 simple_xattr_list_add(&info->xattrs, new_xattr); 2553 } 2554 2555 return 0; 2556 } 2557 2558 static const struct xattr_handler *shmem_xattr_handlers[] = { 2559 #ifdef CONFIG_TMPFS_POSIX_ACL 2560 &posix_acl_access_xattr_handler, 2561 &posix_acl_default_xattr_handler, 2562 #endif 2563 NULL 2564 }; 2565 2566 static int shmem_xattr_validate(const char *name) 2567 { 2568 struct { const char *prefix; size_t len; } arr[] = { 2569 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2570 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2571 }; 2572 int i; 2573 2574 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2575 size_t preflen = arr[i].len; 2576 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2577 if (!name[preflen]) 2578 return -EINVAL; 2579 return 0; 2580 } 2581 } 2582 return -EOPNOTSUPP; 2583 } 2584 2585 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2586 void *buffer, size_t size) 2587 { 2588 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2589 int err; 2590 2591 /* 2592 * If this is a request for a synthetic attribute in the system.* 2593 * namespace use the generic infrastructure to resolve a handler 2594 * for it via sb->s_xattr. 2595 */ 2596 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2597 return generic_getxattr(dentry, name, buffer, size); 2598 2599 err = shmem_xattr_validate(name); 2600 if (err) 2601 return err; 2602 2603 return simple_xattr_get(&info->xattrs, name, buffer, size); 2604 } 2605 2606 static int shmem_setxattr(struct dentry *dentry, const char *name, 2607 const void *value, size_t size, int flags) 2608 { 2609 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2610 int err; 2611 2612 /* 2613 * If this is a request for a synthetic attribute in the system.* 2614 * namespace use the generic infrastructure to resolve a handler 2615 * for it via sb->s_xattr. 2616 */ 2617 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2618 return generic_setxattr(dentry, name, value, size, flags); 2619 2620 err = shmem_xattr_validate(name); 2621 if (err) 2622 return err; 2623 2624 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2625 } 2626 2627 static int shmem_removexattr(struct dentry *dentry, const char *name) 2628 { 2629 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2630 int err; 2631 2632 /* 2633 * If this is a request for a synthetic attribute in the system.* 2634 * namespace use the generic infrastructure to resolve a handler 2635 * for it via sb->s_xattr. 2636 */ 2637 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2638 return generic_removexattr(dentry, name); 2639 2640 err = shmem_xattr_validate(name); 2641 if (err) 2642 return err; 2643 2644 return simple_xattr_remove(&info->xattrs, name); 2645 } 2646 2647 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2648 { 2649 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2650 return simple_xattr_list(&info->xattrs, buffer, size); 2651 } 2652 #endif /* CONFIG_TMPFS_XATTR */ 2653 2654 static const struct inode_operations shmem_short_symlink_operations = { 2655 .readlink = generic_readlink, 2656 .follow_link = simple_follow_link, 2657 #ifdef CONFIG_TMPFS_XATTR 2658 .setxattr = shmem_setxattr, 2659 .getxattr = shmem_getxattr, 2660 .listxattr = shmem_listxattr, 2661 .removexattr = shmem_removexattr, 2662 #endif 2663 }; 2664 2665 static const struct inode_operations shmem_symlink_inode_operations = { 2666 .readlink = generic_readlink, 2667 .follow_link = shmem_follow_link, 2668 .put_link = shmem_put_link, 2669 #ifdef CONFIG_TMPFS_XATTR 2670 .setxattr = shmem_setxattr, 2671 .getxattr = shmem_getxattr, 2672 .listxattr = shmem_listxattr, 2673 .removexattr = shmem_removexattr, 2674 #endif 2675 }; 2676 2677 static struct dentry *shmem_get_parent(struct dentry *child) 2678 { 2679 return ERR_PTR(-ESTALE); 2680 } 2681 2682 static int shmem_match(struct inode *ino, void *vfh) 2683 { 2684 __u32 *fh = vfh; 2685 __u64 inum = fh[2]; 2686 inum = (inum << 32) | fh[1]; 2687 return ino->i_ino == inum && fh[0] == ino->i_generation; 2688 } 2689 2690 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2691 struct fid *fid, int fh_len, int fh_type) 2692 { 2693 struct inode *inode; 2694 struct dentry *dentry = NULL; 2695 u64 inum; 2696 2697 if (fh_len < 3) 2698 return NULL; 2699 2700 inum = fid->raw[2]; 2701 inum = (inum << 32) | fid->raw[1]; 2702 2703 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2704 shmem_match, fid->raw); 2705 if (inode) { 2706 dentry = d_find_alias(inode); 2707 iput(inode); 2708 } 2709 2710 return dentry; 2711 } 2712 2713 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2714 struct inode *parent) 2715 { 2716 if (*len < 3) { 2717 *len = 3; 2718 return FILEID_INVALID; 2719 } 2720 2721 if (inode_unhashed(inode)) { 2722 /* Unfortunately insert_inode_hash is not idempotent, 2723 * so as we hash inodes here rather than at creation 2724 * time, we need a lock to ensure we only try 2725 * to do it once 2726 */ 2727 static DEFINE_SPINLOCK(lock); 2728 spin_lock(&lock); 2729 if (inode_unhashed(inode)) 2730 __insert_inode_hash(inode, 2731 inode->i_ino + inode->i_generation); 2732 spin_unlock(&lock); 2733 } 2734 2735 fh[0] = inode->i_generation; 2736 fh[1] = inode->i_ino; 2737 fh[2] = ((__u64)inode->i_ino) >> 32; 2738 2739 *len = 3; 2740 return 1; 2741 } 2742 2743 static const struct export_operations shmem_export_ops = { 2744 .get_parent = shmem_get_parent, 2745 .encode_fh = shmem_encode_fh, 2746 .fh_to_dentry = shmem_fh_to_dentry, 2747 }; 2748 2749 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2750 bool remount) 2751 { 2752 char *this_char, *value, *rest; 2753 struct mempolicy *mpol = NULL; 2754 uid_t uid; 2755 gid_t gid; 2756 2757 while (options != NULL) { 2758 this_char = options; 2759 for (;;) { 2760 /* 2761 * NUL-terminate this option: unfortunately, 2762 * mount options form a comma-separated list, 2763 * but mpol's nodelist may also contain commas. 2764 */ 2765 options = strchr(options, ','); 2766 if (options == NULL) 2767 break; 2768 options++; 2769 if (!isdigit(*options)) { 2770 options[-1] = '\0'; 2771 break; 2772 } 2773 } 2774 if (!*this_char) 2775 continue; 2776 if ((value = strchr(this_char,'=')) != NULL) { 2777 *value++ = 0; 2778 } else { 2779 printk(KERN_ERR 2780 "tmpfs: No value for mount option '%s'\n", 2781 this_char); 2782 goto error; 2783 } 2784 2785 if (!strcmp(this_char,"size")) { 2786 unsigned long long size; 2787 size = memparse(value,&rest); 2788 if (*rest == '%') { 2789 size <<= PAGE_SHIFT; 2790 size *= totalram_pages; 2791 do_div(size, 100); 2792 rest++; 2793 } 2794 if (*rest) 2795 goto bad_val; 2796 sbinfo->max_blocks = 2797 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2798 } else if (!strcmp(this_char,"nr_blocks")) { 2799 sbinfo->max_blocks = memparse(value, &rest); 2800 if (*rest) 2801 goto bad_val; 2802 } else if (!strcmp(this_char,"nr_inodes")) { 2803 sbinfo->max_inodes = memparse(value, &rest); 2804 if (*rest) 2805 goto bad_val; 2806 } else if (!strcmp(this_char,"mode")) { 2807 if (remount) 2808 continue; 2809 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2810 if (*rest) 2811 goto bad_val; 2812 } else if (!strcmp(this_char,"uid")) { 2813 if (remount) 2814 continue; 2815 uid = simple_strtoul(value, &rest, 0); 2816 if (*rest) 2817 goto bad_val; 2818 sbinfo->uid = make_kuid(current_user_ns(), uid); 2819 if (!uid_valid(sbinfo->uid)) 2820 goto bad_val; 2821 } else if (!strcmp(this_char,"gid")) { 2822 if (remount) 2823 continue; 2824 gid = simple_strtoul(value, &rest, 0); 2825 if (*rest) 2826 goto bad_val; 2827 sbinfo->gid = make_kgid(current_user_ns(), gid); 2828 if (!gid_valid(sbinfo->gid)) 2829 goto bad_val; 2830 } else if (!strcmp(this_char,"mpol")) { 2831 mpol_put(mpol); 2832 mpol = NULL; 2833 if (mpol_parse_str(value, &mpol)) 2834 goto bad_val; 2835 } else { 2836 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2837 this_char); 2838 goto error; 2839 } 2840 } 2841 sbinfo->mpol = mpol; 2842 return 0; 2843 2844 bad_val: 2845 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2846 value, this_char); 2847 error: 2848 mpol_put(mpol); 2849 return 1; 2850 2851 } 2852 2853 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2854 { 2855 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2856 struct shmem_sb_info config = *sbinfo; 2857 unsigned long inodes; 2858 int error = -EINVAL; 2859 2860 config.mpol = NULL; 2861 if (shmem_parse_options(data, &config, true)) 2862 return error; 2863 2864 spin_lock(&sbinfo->stat_lock); 2865 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2866 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2867 goto out; 2868 if (config.max_inodes < inodes) 2869 goto out; 2870 /* 2871 * Those tests disallow limited->unlimited while any are in use; 2872 * but we must separately disallow unlimited->limited, because 2873 * in that case we have no record of how much is already in use. 2874 */ 2875 if (config.max_blocks && !sbinfo->max_blocks) 2876 goto out; 2877 if (config.max_inodes && !sbinfo->max_inodes) 2878 goto out; 2879 2880 error = 0; 2881 sbinfo->max_blocks = config.max_blocks; 2882 sbinfo->max_inodes = config.max_inodes; 2883 sbinfo->free_inodes = config.max_inodes - inodes; 2884 2885 /* 2886 * Preserve previous mempolicy unless mpol remount option was specified. 2887 */ 2888 if (config.mpol) { 2889 mpol_put(sbinfo->mpol); 2890 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2891 } 2892 out: 2893 spin_unlock(&sbinfo->stat_lock); 2894 return error; 2895 } 2896 2897 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2898 { 2899 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2900 2901 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2902 seq_printf(seq, ",size=%luk", 2903 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2904 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2905 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2906 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2907 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2908 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2909 seq_printf(seq, ",uid=%u", 2910 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2911 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2912 seq_printf(seq, ",gid=%u", 2913 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2914 shmem_show_mpol(seq, sbinfo->mpol); 2915 return 0; 2916 } 2917 2918 #define MFD_NAME_PREFIX "memfd:" 2919 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2920 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2921 2922 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2923 2924 SYSCALL_DEFINE2(memfd_create, 2925 const char __user *, uname, 2926 unsigned int, flags) 2927 { 2928 struct shmem_inode_info *info; 2929 struct file *file; 2930 int fd, error; 2931 char *name; 2932 long len; 2933 2934 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2935 return -EINVAL; 2936 2937 /* length includes terminating zero */ 2938 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2939 if (len <= 0) 2940 return -EFAULT; 2941 if (len > MFD_NAME_MAX_LEN + 1) 2942 return -EINVAL; 2943 2944 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2945 if (!name) 2946 return -ENOMEM; 2947 2948 strcpy(name, MFD_NAME_PREFIX); 2949 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2950 error = -EFAULT; 2951 goto err_name; 2952 } 2953 2954 /* terminating-zero may have changed after strnlen_user() returned */ 2955 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 2956 error = -EFAULT; 2957 goto err_name; 2958 } 2959 2960 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 2961 if (fd < 0) { 2962 error = fd; 2963 goto err_name; 2964 } 2965 2966 file = shmem_file_setup(name, 0, VM_NORESERVE); 2967 if (IS_ERR(file)) { 2968 error = PTR_ERR(file); 2969 goto err_fd; 2970 } 2971 info = SHMEM_I(file_inode(file)); 2972 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 2973 file->f_flags |= O_RDWR | O_LARGEFILE; 2974 if (flags & MFD_ALLOW_SEALING) 2975 info->seals &= ~F_SEAL_SEAL; 2976 2977 fd_install(fd, file); 2978 kfree(name); 2979 return fd; 2980 2981 err_fd: 2982 put_unused_fd(fd); 2983 err_name: 2984 kfree(name); 2985 return error; 2986 } 2987 2988 #endif /* CONFIG_TMPFS */ 2989 2990 static void shmem_put_super(struct super_block *sb) 2991 { 2992 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2993 2994 percpu_counter_destroy(&sbinfo->used_blocks); 2995 mpol_put(sbinfo->mpol); 2996 kfree(sbinfo); 2997 sb->s_fs_info = NULL; 2998 } 2999 3000 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3001 { 3002 struct inode *inode; 3003 struct shmem_sb_info *sbinfo; 3004 int err = -ENOMEM; 3005 3006 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3007 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3008 L1_CACHE_BYTES), GFP_KERNEL); 3009 if (!sbinfo) 3010 return -ENOMEM; 3011 3012 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3013 sbinfo->uid = current_fsuid(); 3014 sbinfo->gid = current_fsgid(); 3015 sb->s_fs_info = sbinfo; 3016 3017 #ifdef CONFIG_TMPFS 3018 /* 3019 * Per default we only allow half of the physical ram per 3020 * tmpfs instance, limiting inodes to one per page of lowmem; 3021 * but the internal instance is left unlimited. 3022 */ 3023 if (!(sb->s_flags & MS_KERNMOUNT)) { 3024 sbinfo->max_blocks = shmem_default_max_blocks(); 3025 sbinfo->max_inodes = shmem_default_max_inodes(); 3026 if (shmem_parse_options(data, sbinfo, false)) { 3027 err = -EINVAL; 3028 goto failed; 3029 } 3030 } else { 3031 sb->s_flags |= MS_NOUSER; 3032 } 3033 sb->s_export_op = &shmem_export_ops; 3034 sb->s_flags |= MS_NOSEC; 3035 #else 3036 sb->s_flags |= MS_NOUSER; 3037 #endif 3038 3039 spin_lock_init(&sbinfo->stat_lock); 3040 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3041 goto failed; 3042 sbinfo->free_inodes = sbinfo->max_inodes; 3043 3044 sb->s_maxbytes = MAX_LFS_FILESIZE; 3045 sb->s_blocksize = PAGE_CACHE_SIZE; 3046 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 3047 sb->s_magic = TMPFS_MAGIC; 3048 sb->s_op = &shmem_ops; 3049 sb->s_time_gran = 1; 3050 #ifdef CONFIG_TMPFS_XATTR 3051 sb->s_xattr = shmem_xattr_handlers; 3052 #endif 3053 #ifdef CONFIG_TMPFS_POSIX_ACL 3054 sb->s_flags |= MS_POSIXACL; 3055 #endif 3056 3057 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3058 if (!inode) 3059 goto failed; 3060 inode->i_uid = sbinfo->uid; 3061 inode->i_gid = sbinfo->gid; 3062 sb->s_root = d_make_root(inode); 3063 if (!sb->s_root) 3064 goto failed; 3065 return 0; 3066 3067 failed: 3068 shmem_put_super(sb); 3069 return err; 3070 } 3071 3072 static struct kmem_cache *shmem_inode_cachep; 3073 3074 static struct inode *shmem_alloc_inode(struct super_block *sb) 3075 { 3076 struct shmem_inode_info *info; 3077 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3078 if (!info) 3079 return NULL; 3080 return &info->vfs_inode; 3081 } 3082 3083 static void shmem_destroy_callback(struct rcu_head *head) 3084 { 3085 struct inode *inode = container_of(head, struct inode, i_rcu); 3086 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3087 } 3088 3089 static void shmem_destroy_inode(struct inode *inode) 3090 { 3091 if (S_ISREG(inode->i_mode)) 3092 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3093 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3094 } 3095 3096 static void shmem_init_inode(void *foo) 3097 { 3098 struct shmem_inode_info *info = foo; 3099 inode_init_once(&info->vfs_inode); 3100 } 3101 3102 static int shmem_init_inodecache(void) 3103 { 3104 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3105 sizeof(struct shmem_inode_info), 3106 0, SLAB_PANIC, shmem_init_inode); 3107 return 0; 3108 } 3109 3110 static void shmem_destroy_inodecache(void) 3111 { 3112 kmem_cache_destroy(shmem_inode_cachep); 3113 } 3114 3115 static const struct address_space_operations shmem_aops = { 3116 .writepage = shmem_writepage, 3117 .set_page_dirty = __set_page_dirty_no_writeback, 3118 #ifdef CONFIG_TMPFS 3119 .write_begin = shmem_write_begin, 3120 .write_end = shmem_write_end, 3121 #endif 3122 #ifdef CONFIG_MIGRATION 3123 .migratepage = migrate_page, 3124 #endif 3125 .error_remove_page = generic_error_remove_page, 3126 }; 3127 3128 static const struct file_operations shmem_file_operations = { 3129 .mmap = shmem_mmap, 3130 #ifdef CONFIG_TMPFS 3131 .llseek = shmem_file_llseek, 3132 .read_iter = shmem_file_read_iter, 3133 .write_iter = generic_file_write_iter, 3134 .fsync = noop_fsync, 3135 .splice_read = shmem_file_splice_read, 3136 .splice_write = iter_file_splice_write, 3137 .fallocate = shmem_fallocate, 3138 #endif 3139 }; 3140 3141 static const struct inode_operations shmem_inode_operations = { 3142 .getattr = shmem_getattr, 3143 .setattr = shmem_setattr, 3144 #ifdef CONFIG_TMPFS_XATTR 3145 .setxattr = shmem_setxattr, 3146 .getxattr = shmem_getxattr, 3147 .listxattr = shmem_listxattr, 3148 .removexattr = shmem_removexattr, 3149 .set_acl = simple_set_acl, 3150 #endif 3151 }; 3152 3153 static const struct inode_operations shmem_dir_inode_operations = { 3154 #ifdef CONFIG_TMPFS 3155 .create = shmem_create, 3156 .lookup = simple_lookup, 3157 .link = shmem_link, 3158 .unlink = shmem_unlink, 3159 .symlink = shmem_symlink, 3160 .mkdir = shmem_mkdir, 3161 .rmdir = shmem_rmdir, 3162 .mknod = shmem_mknod, 3163 .rename2 = shmem_rename2, 3164 .tmpfile = shmem_tmpfile, 3165 #endif 3166 #ifdef CONFIG_TMPFS_XATTR 3167 .setxattr = shmem_setxattr, 3168 .getxattr = shmem_getxattr, 3169 .listxattr = shmem_listxattr, 3170 .removexattr = shmem_removexattr, 3171 #endif 3172 #ifdef CONFIG_TMPFS_POSIX_ACL 3173 .setattr = shmem_setattr, 3174 .set_acl = simple_set_acl, 3175 #endif 3176 }; 3177 3178 static const struct inode_operations shmem_special_inode_operations = { 3179 #ifdef CONFIG_TMPFS_XATTR 3180 .setxattr = shmem_setxattr, 3181 .getxattr = shmem_getxattr, 3182 .listxattr = shmem_listxattr, 3183 .removexattr = shmem_removexattr, 3184 #endif 3185 #ifdef CONFIG_TMPFS_POSIX_ACL 3186 .setattr = shmem_setattr, 3187 .set_acl = simple_set_acl, 3188 #endif 3189 }; 3190 3191 static const struct super_operations shmem_ops = { 3192 .alloc_inode = shmem_alloc_inode, 3193 .destroy_inode = shmem_destroy_inode, 3194 #ifdef CONFIG_TMPFS 3195 .statfs = shmem_statfs, 3196 .remount_fs = shmem_remount_fs, 3197 .show_options = shmem_show_options, 3198 #endif 3199 .evict_inode = shmem_evict_inode, 3200 .drop_inode = generic_delete_inode, 3201 .put_super = shmem_put_super, 3202 }; 3203 3204 static const struct vm_operations_struct shmem_vm_ops = { 3205 .fault = shmem_fault, 3206 .map_pages = filemap_map_pages, 3207 #ifdef CONFIG_NUMA 3208 .set_policy = shmem_set_policy, 3209 .get_policy = shmem_get_policy, 3210 #endif 3211 }; 3212 3213 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3214 int flags, const char *dev_name, void *data) 3215 { 3216 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3217 } 3218 3219 static struct file_system_type shmem_fs_type = { 3220 .owner = THIS_MODULE, 3221 .name = "tmpfs", 3222 .mount = shmem_mount, 3223 .kill_sb = kill_litter_super, 3224 .fs_flags = FS_USERNS_MOUNT, 3225 }; 3226 3227 int __init shmem_init(void) 3228 { 3229 int error; 3230 3231 /* If rootfs called this, don't re-init */ 3232 if (shmem_inode_cachep) 3233 return 0; 3234 3235 error = shmem_init_inodecache(); 3236 if (error) 3237 goto out3; 3238 3239 error = register_filesystem(&shmem_fs_type); 3240 if (error) { 3241 printk(KERN_ERR "Could not register tmpfs\n"); 3242 goto out2; 3243 } 3244 3245 shm_mnt = kern_mount(&shmem_fs_type); 3246 if (IS_ERR(shm_mnt)) { 3247 error = PTR_ERR(shm_mnt); 3248 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 3249 goto out1; 3250 } 3251 return 0; 3252 3253 out1: 3254 unregister_filesystem(&shmem_fs_type); 3255 out2: 3256 shmem_destroy_inodecache(); 3257 out3: 3258 shm_mnt = ERR_PTR(error); 3259 return error; 3260 } 3261 3262 #else /* !CONFIG_SHMEM */ 3263 3264 /* 3265 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3266 * 3267 * This is intended for small system where the benefits of the full 3268 * shmem code (swap-backed and resource-limited) are outweighed by 3269 * their complexity. On systems without swap this code should be 3270 * effectively equivalent, but much lighter weight. 3271 */ 3272 3273 static struct file_system_type shmem_fs_type = { 3274 .name = "tmpfs", 3275 .mount = ramfs_mount, 3276 .kill_sb = kill_litter_super, 3277 .fs_flags = FS_USERNS_MOUNT, 3278 }; 3279 3280 int __init shmem_init(void) 3281 { 3282 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3283 3284 shm_mnt = kern_mount(&shmem_fs_type); 3285 BUG_ON(IS_ERR(shm_mnt)); 3286 3287 return 0; 3288 } 3289 3290 int shmem_unuse(swp_entry_t swap, struct page *page) 3291 { 3292 return 0; 3293 } 3294 3295 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3296 { 3297 return 0; 3298 } 3299 3300 void shmem_unlock_mapping(struct address_space *mapping) 3301 { 3302 } 3303 3304 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3305 { 3306 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3307 } 3308 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3309 3310 #define shmem_vm_ops generic_file_vm_ops 3311 #define shmem_file_operations ramfs_file_operations 3312 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3313 #define shmem_acct_size(flags, size) 0 3314 #define shmem_unacct_size(flags, size) do {} while (0) 3315 3316 #endif /* CONFIG_SHMEM */ 3317 3318 /* common code */ 3319 3320 static struct dentry_operations anon_ops = { 3321 .d_dname = simple_dname 3322 }; 3323 3324 static struct file *__shmem_file_setup(const char *name, loff_t size, 3325 unsigned long flags, unsigned int i_flags) 3326 { 3327 struct file *res; 3328 struct inode *inode; 3329 struct path path; 3330 struct super_block *sb; 3331 struct qstr this; 3332 3333 if (IS_ERR(shm_mnt)) 3334 return ERR_CAST(shm_mnt); 3335 3336 if (size < 0 || size > MAX_LFS_FILESIZE) 3337 return ERR_PTR(-EINVAL); 3338 3339 if (shmem_acct_size(flags, size)) 3340 return ERR_PTR(-ENOMEM); 3341 3342 res = ERR_PTR(-ENOMEM); 3343 this.name = name; 3344 this.len = strlen(name); 3345 this.hash = 0; /* will go */ 3346 sb = shm_mnt->mnt_sb; 3347 path.mnt = mntget(shm_mnt); 3348 path.dentry = d_alloc_pseudo(sb, &this); 3349 if (!path.dentry) 3350 goto put_memory; 3351 d_set_d_op(path.dentry, &anon_ops); 3352 3353 res = ERR_PTR(-ENOSPC); 3354 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3355 if (!inode) 3356 goto put_memory; 3357 3358 inode->i_flags |= i_flags; 3359 d_instantiate(path.dentry, inode); 3360 inode->i_size = size; 3361 clear_nlink(inode); /* It is unlinked */ 3362 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3363 if (IS_ERR(res)) 3364 goto put_path; 3365 3366 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3367 &shmem_file_operations); 3368 if (IS_ERR(res)) 3369 goto put_path; 3370 3371 return res; 3372 3373 put_memory: 3374 shmem_unacct_size(flags, size); 3375 put_path: 3376 path_put(&path); 3377 return res; 3378 } 3379 3380 /** 3381 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3382 * kernel internal. There will be NO LSM permission checks against the 3383 * underlying inode. So users of this interface must do LSM checks at a 3384 * higher layer. The users are the big_key and shm implementations. LSM 3385 * checks are provided at the key or shm level rather than the inode. 3386 * @name: name for dentry (to be seen in /proc/<pid>/maps 3387 * @size: size to be set for the file 3388 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3389 */ 3390 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3391 { 3392 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3393 } 3394 3395 /** 3396 * shmem_file_setup - get an unlinked file living in tmpfs 3397 * @name: name for dentry (to be seen in /proc/<pid>/maps 3398 * @size: size to be set for the file 3399 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3400 */ 3401 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3402 { 3403 return __shmem_file_setup(name, size, flags, 0); 3404 } 3405 EXPORT_SYMBOL_GPL(shmem_file_setup); 3406 3407 /** 3408 * shmem_zero_setup - setup a shared anonymous mapping 3409 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3410 */ 3411 int shmem_zero_setup(struct vm_area_struct *vma) 3412 { 3413 struct file *file; 3414 loff_t size = vma->vm_end - vma->vm_start; 3415 3416 /* 3417 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3418 * between XFS directory reading and selinux: since this file is only 3419 * accessible to the user through its mapping, use S_PRIVATE flag to 3420 * bypass file security, in the same way as shmem_kernel_file_setup(). 3421 */ 3422 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 3423 if (IS_ERR(file)) 3424 return PTR_ERR(file); 3425 3426 if (vma->vm_file) 3427 fput(vma->vm_file); 3428 vma->vm_file = file; 3429 vma->vm_ops = &shmem_vm_ops; 3430 return 0; 3431 } 3432 3433 /** 3434 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3435 * @mapping: the page's address_space 3436 * @index: the page index 3437 * @gfp: the page allocator flags to use if allocating 3438 * 3439 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3440 * with any new page allocations done using the specified allocation flags. 3441 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3442 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3443 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3444 * 3445 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3446 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3447 */ 3448 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3449 pgoff_t index, gfp_t gfp) 3450 { 3451 #ifdef CONFIG_SHMEM 3452 struct inode *inode = mapping->host; 3453 struct page *page; 3454 int error; 3455 3456 BUG_ON(mapping->a_ops != &shmem_aops); 3457 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3458 if (error) 3459 page = ERR_PTR(error); 3460 else 3461 unlock_page(page); 3462 return page; 3463 #else 3464 /* 3465 * The tiny !SHMEM case uses ramfs without swap 3466 */ 3467 return read_cache_page_gfp(mapping, index, gfp); 3468 #endif 3469 } 3470 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3471