xref: /openbmc/linux/mm/shmem.c (revision 9ac17575)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86 
87 #include "internal.h"
88 
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94 
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97 
98 /*
99  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100  * inode->i_private (with i_mutex making sure that it has only one user at
101  * a time): we would prefer not to enlarge the shmem inode just for that.
102  */
103 struct shmem_falloc {
104 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 	pgoff_t start;		/* start of range currently being fallocated */
106 	pgoff_t next;		/* the next page offset to be fallocated */
107 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
108 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
109 };
110 
111 struct shmem_options {
112 	unsigned long long blocks;
113 	unsigned long long inodes;
114 	struct mempolicy *mpol;
115 	kuid_t uid;
116 	kgid_t gid;
117 	umode_t mode;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 				struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 			     struct page **pagep, enum sgp_type sgp,
144 			     gfp_t gfp, struct vm_area_struct *vma,
145 			     vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp,
148 		gfp_t gfp, struct vm_area_struct *vma,
149 		struct vm_fault *vmf, vm_fault_t *fault_type);
150 
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 		struct page **pagep, enum sgp_type sgp)
153 {
154 	return shmem_getpage_gfp(inode, index, pagep, sgp,
155 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157 
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160 	return sb->s_fs_info;
161 }
162 
163 /*
164  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165  * for shared memory and for shared anonymous (/dev/zero) mappings
166  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167  * consistent with the pre-accounting of private mappings ...
168  */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171 	return (flags & VM_NORESERVE) ?
172 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174 
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177 	if (!(flags & VM_NORESERVE))
178 		vm_unacct_memory(VM_ACCT(size));
179 }
180 
181 static inline int shmem_reacct_size(unsigned long flags,
182 		loff_t oldsize, loff_t newsize)
183 {
184 	if (!(flags & VM_NORESERVE)) {
185 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 			return security_vm_enough_memory_mm(current->mm,
187 					VM_ACCT(newsize) - VM_ACCT(oldsize));
188 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 	}
191 	return 0;
192 }
193 
194 /*
195  * ... whereas tmpfs objects are accounted incrementally as
196  * pages are allocated, in order to allow large sparse files.
197  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199  */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202 	if (!(flags & VM_NORESERVE))
203 		return 0;
204 
205 	return security_vm_enough_memory_mm(current->mm,
206 			pages * VM_ACCT(PAGE_SIZE));
207 }
208 
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 	if (flags & VM_NORESERVE)
212 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214 
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217 	struct shmem_inode_info *info = SHMEM_I(inode);
218 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 
220 	if (shmem_acct_block(info->flags, pages))
221 		return false;
222 
223 	if (sbinfo->max_blocks) {
224 		if (percpu_counter_compare(&sbinfo->used_blocks,
225 					   sbinfo->max_blocks - pages) > 0)
226 			goto unacct;
227 		percpu_counter_add(&sbinfo->used_blocks, pages);
228 	}
229 
230 	return true;
231 
232 unacct:
233 	shmem_unacct_blocks(info->flags, pages);
234 	return false;
235 }
236 
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239 	struct shmem_inode_info *info = SHMEM_I(inode);
240 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 
242 	if (sbinfo->max_blocks)
243 		percpu_counter_sub(&sbinfo->used_blocks, pages);
244 	shmem_unacct_blocks(info->flags, pages);
245 }
246 
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255 
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258 	return vma->vm_ops == &shmem_vm_ops;
259 }
260 
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263 
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 	if (sbinfo->max_inodes) {
268 		spin_lock(&sbinfo->stat_lock);
269 		if (!sbinfo->free_inodes) {
270 			spin_unlock(&sbinfo->stat_lock);
271 			return -ENOSPC;
272 		}
273 		sbinfo->free_inodes--;
274 		spin_unlock(&sbinfo->stat_lock);
275 	}
276 	return 0;
277 }
278 
279 static void shmem_free_inode(struct super_block *sb)
280 {
281 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 	if (sbinfo->max_inodes) {
283 		spin_lock(&sbinfo->stat_lock);
284 		sbinfo->free_inodes++;
285 		spin_unlock(&sbinfo->stat_lock);
286 	}
287 }
288 
289 /**
290  * shmem_recalc_inode - recalculate the block usage of an inode
291  * @inode: inode to recalc
292  *
293  * We have to calculate the free blocks since the mm can drop
294  * undirtied hole pages behind our back.
295  *
296  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
297  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298  *
299  * It has to be called with the spinlock held.
300  */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303 	struct shmem_inode_info *info = SHMEM_I(inode);
304 	long freed;
305 
306 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 	if (freed > 0) {
308 		info->alloced -= freed;
309 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 		shmem_inode_unacct_blocks(inode, freed);
311 	}
312 }
313 
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316 	struct shmem_inode_info *info = SHMEM_I(inode);
317 	unsigned long flags;
318 
319 	if (!shmem_inode_acct_block(inode, pages))
320 		return false;
321 
322 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 	inode->i_mapping->nrpages += pages;
324 
325 	spin_lock_irqsave(&info->lock, flags);
326 	info->alloced += pages;
327 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 	shmem_recalc_inode(inode);
329 	spin_unlock_irqrestore(&info->lock, flags);
330 
331 	return true;
332 }
333 
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336 	struct shmem_inode_info *info = SHMEM_I(inode);
337 	unsigned long flags;
338 
339 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
340 
341 	spin_lock_irqsave(&info->lock, flags);
342 	info->alloced -= pages;
343 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 	shmem_recalc_inode(inode);
345 	spin_unlock_irqrestore(&info->lock, flags);
346 
347 	shmem_inode_unacct_blocks(inode, pages);
348 }
349 
350 /*
351  * Replace item expected in xarray by a new item, while holding xa_lock.
352  */
353 static int shmem_replace_entry(struct address_space *mapping,
354 			pgoff_t index, void *expected, void *replacement)
355 {
356 	XA_STATE(xas, &mapping->i_pages, index);
357 	void *item;
358 
359 	VM_BUG_ON(!expected);
360 	VM_BUG_ON(!replacement);
361 	item = xas_load(&xas);
362 	if (item != expected)
363 		return -ENOENT;
364 	xas_store(&xas, replacement);
365 	return 0;
366 }
367 
368 /*
369  * Sometimes, before we decide whether to proceed or to fail, we must check
370  * that an entry was not already brought back from swap by a racing thread.
371  *
372  * Checking page is not enough: by the time a SwapCache page is locked, it
373  * might be reused, and again be SwapCache, using the same swap as before.
374  */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 			       pgoff_t index, swp_entry_t swap)
377 {
378 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380 
381 /*
382  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383  *
384  * SHMEM_HUGE_NEVER:
385  *	disables huge pages for the mount;
386  * SHMEM_HUGE_ALWAYS:
387  *	enables huge pages for the mount;
388  * SHMEM_HUGE_WITHIN_SIZE:
389  *	only allocate huge pages if the page will be fully within i_size,
390  *	also respect fadvise()/madvise() hints;
391  * SHMEM_HUGE_ADVISE:
392  *	only allocate huge pages if requested with fadvise()/madvise();
393  */
394 
395 #define SHMEM_HUGE_NEVER	0
396 #define SHMEM_HUGE_ALWAYS	1
397 #define SHMEM_HUGE_WITHIN_SIZE	2
398 #define SHMEM_HUGE_ADVISE	3
399 
400 /*
401  * Special values.
402  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403  *
404  * SHMEM_HUGE_DENY:
405  *	disables huge on shm_mnt and all mounts, for emergency use;
406  * SHMEM_HUGE_FORCE:
407  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408  *
409  */
410 #define SHMEM_HUGE_DENY		(-1)
411 #define SHMEM_HUGE_FORCE	(-2)
412 
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415 
416 static int shmem_huge __read_mostly;
417 
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421 	if (!strcmp(str, "never"))
422 		return SHMEM_HUGE_NEVER;
423 	if (!strcmp(str, "always"))
424 		return SHMEM_HUGE_ALWAYS;
425 	if (!strcmp(str, "within_size"))
426 		return SHMEM_HUGE_WITHIN_SIZE;
427 	if (!strcmp(str, "advise"))
428 		return SHMEM_HUGE_ADVISE;
429 	if (!strcmp(str, "deny"))
430 		return SHMEM_HUGE_DENY;
431 	if (!strcmp(str, "force"))
432 		return SHMEM_HUGE_FORCE;
433 	return -EINVAL;
434 }
435 #endif
436 
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440 	switch (huge) {
441 	case SHMEM_HUGE_NEVER:
442 		return "never";
443 	case SHMEM_HUGE_ALWAYS:
444 		return "always";
445 	case SHMEM_HUGE_WITHIN_SIZE:
446 		return "within_size";
447 	case SHMEM_HUGE_ADVISE:
448 		return "advise";
449 	case SHMEM_HUGE_DENY:
450 		return "deny";
451 	case SHMEM_HUGE_FORCE:
452 		return "force";
453 	default:
454 		VM_BUG_ON(1);
455 		return "bad_val";
456 	}
457 }
458 #endif
459 
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 		struct shrink_control *sc, unsigned long nr_to_split)
462 {
463 	LIST_HEAD(list), *pos, *next;
464 	LIST_HEAD(to_remove);
465 	struct inode *inode;
466 	struct shmem_inode_info *info;
467 	struct page *page;
468 	unsigned long batch = sc ? sc->nr_to_scan : 128;
469 	int removed = 0, split = 0;
470 
471 	if (list_empty(&sbinfo->shrinklist))
472 		return SHRINK_STOP;
473 
474 	spin_lock(&sbinfo->shrinklist_lock);
475 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
477 
478 		/* pin the inode */
479 		inode = igrab(&info->vfs_inode);
480 
481 		/* inode is about to be evicted */
482 		if (!inode) {
483 			list_del_init(&info->shrinklist);
484 			removed++;
485 			goto next;
486 		}
487 
488 		/* Check if there's anything to gain */
489 		if (round_up(inode->i_size, PAGE_SIZE) ==
490 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 			list_move(&info->shrinklist, &to_remove);
492 			removed++;
493 			goto next;
494 		}
495 
496 		list_move(&info->shrinklist, &list);
497 next:
498 		if (!--batch)
499 			break;
500 	}
501 	spin_unlock(&sbinfo->shrinklist_lock);
502 
503 	list_for_each_safe(pos, next, &to_remove) {
504 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 		inode = &info->vfs_inode;
506 		list_del_init(&info->shrinklist);
507 		iput(inode);
508 	}
509 
510 	list_for_each_safe(pos, next, &list) {
511 		int ret;
512 
513 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 		inode = &info->vfs_inode;
515 
516 		if (nr_to_split && split >= nr_to_split)
517 			goto leave;
518 
519 		page = find_get_page(inode->i_mapping,
520 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 		if (!page)
522 			goto drop;
523 
524 		/* No huge page at the end of the file: nothing to split */
525 		if (!PageTransHuge(page)) {
526 			put_page(page);
527 			goto drop;
528 		}
529 
530 		/*
531 		 * Leave the inode on the list if we failed to lock
532 		 * the page at this time.
533 		 *
534 		 * Waiting for the lock may lead to deadlock in the
535 		 * reclaim path.
536 		 */
537 		if (!trylock_page(page)) {
538 			put_page(page);
539 			goto leave;
540 		}
541 
542 		ret = split_huge_page(page);
543 		unlock_page(page);
544 		put_page(page);
545 
546 		/* If split failed leave the inode on the list */
547 		if (ret)
548 			goto leave;
549 
550 		split++;
551 drop:
552 		list_del_init(&info->shrinklist);
553 		removed++;
554 leave:
555 		iput(inode);
556 	}
557 
558 	spin_lock(&sbinfo->shrinklist_lock);
559 	list_splice_tail(&list, &sbinfo->shrinklist);
560 	sbinfo->shrinklist_len -= removed;
561 	spin_unlock(&sbinfo->shrinklist_lock);
562 
563 	return split;
564 }
565 
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 		struct shrink_control *sc)
568 {
569 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570 
571 	if (!READ_ONCE(sbinfo->shrinklist_len))
572 		return SHRINK_STOP;
573 
574 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576 
577 static long shmem_unused_huge_count(struct super_block *sb,
578 		struct shrink_control *sc)
579 {
580 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 	return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
584 
585 #define shmem_huge SHMEM_HUGE_DENY
586 
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 		struct shrink_control *sc, unsigned long nr_to_split)
589 {
590 	return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
593 
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
597 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 	    shmem_huge != SHMEM_HUGE_DENY)
599 		return true;
600 	return false;
601 }
602 
603 /*
604  * Like add_to_page_cache_locked, but error if expected item has gone.
605  */
606 static int shmem_add_to_page_cache(struct page *page,
607 				   struct address_space *mapping,
608 				   pgoff_t index, void *expected, gfp_t gfp,
609 				   struct mm_struct *charge_mm)
610 {
611 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
612 	unsigned long i = 0;
613 	unsigned long nr = compound_nr(page);
614 	int error;
615 
616 	VM_BUG_ON_PAGE(PageTail(page), page);
617 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
618 	VM_BUG_ON_PAGE(!PageLocked(page), page);
619 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
620 	VM_BUG_ON(expected && PageTransHuge(page));
621 
622 	page_ref_add(page, nr);
623 	page->mapping = mapping;
624 	page->index = index;
625 
626 	if (!PageSwapCache(page)) {
627 		error = mem_cgroup_charge(page, charge_mm, gfp);
628 		if (error) {
629 			if (PageTransHuge(page)) {
630 				count_vm_event(THP_FILE_FALLBACK);
631 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
632 			}
633 			goto error;
634 		}
635 	}
636 	cgroup_throttle_swaprate(page, gfp);
637 
638 	do {
639 		void *entry;
640 		xas_lock_irq(&xas);
641 		entry = xas_find_conflict(&xas);
642 		if (entry != expected)
643 			xas_set_err(&xas, -EEXIST);
644 		xas_create_range(&xas);
645 		if (xas_error(&xas))
646 			goto unlock;
647 next:
648 		xas_store(&xas, page);
649 		if (++i < nr) {
650 			xas_next(&xas);
651 			goto next;
652 		}
653 		if (PageTransHuge(page)) {
654 			count_vm_event(THP_FILE_ALLOC);
655 			__inc_node_page_state(page, NR_SHMEM_THPS);
656 		}
657 		mapping->nrpages += nr;
658 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
659 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
660 unlock:
661 		xas_unlock_irq(&xas);
662 	} while (xas_nomem(&xas, gfp));
663 
664 	if (xas_error(&xas)) {
665 		error = xas_error(&xas);
666 		goto error;
667 	}
668 
669 	return 0;
670 error:
671 	page->mapping = NULL;
672 	page_ref_sub(page, nr);
673 	return error;
674 }
675 
676 /*
677  * Like delete_from_page_cache, but substitutes swap for page.
678  */
679 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
680 {
681 	struct address_space *mapping = page->mapping;
682 	int error;
683 
684 	VM_BUG_ON_PAGE(PageCompound(page), page);
685 
686 	xa_lock_irq(&mapping->i_pages);
687 	error = shmem_replace_entry(mapping, page->index, page, radswap);
688 	page->mapping = NULL;
689 	mapping->nrpages--;
690 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
691 	__dec_lruvec_page_state(page, NR_SHMEM);
692 	xa_unlock_irq(&mapping->i_pages);
693 	put_page(page);
694 	BUG_ON(error);
695 }
696 
697 /*
698  * Remove swap entry from page cache, free the swap and its page cache.
699  */
700 static int shmem_free_swap(struct address_space *mapping,
701 			   pgoff_t index, void *radswap)
702 {
703 	void *old;
704 
705 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
706 	if (old != radswap)
707 		return -ENOENT;
708 	free_swap_and_cache(radix_to_swp_entry(radswap));
709 	return 0;
710 }
711 
712 /*
713  * Determine (in bytes) how many of the shmem object's pages mapped by the
714  * given offsets are swapped out.
715  *
716  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
717  * as long as the inode doesn't go away and racy results are not a problem.
718  */
719 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
720 						pgoff_t start, pgoff_t end)
721 {
722 	XA_STATE(xas, &mapping->i_pages, start);
723 	struct page *page;
724 	unsigned long swapped = 0;
725 
726 	rcu_read_lock();
727 	xas_for_each(&xas, page, end - 1) {
728 		if (xas_retry(&xas, page))
729 			continue;
730 		if (xa_is_value(page))
731 			swapped++;
732 
733 		if (need_resched()) {
734 			xas_pause(&xas);
735 			cond_resched_rcu();
736 		}
737 	}
738 
739 	rcu_read_unlock();
740 
741 	return swapped << PAGE_SHIFT;
742 }
743 
744 /*
745  * Determine (in bytes) how many of the shmem object's pages mapped by the
746  * given vma is swapped out.
747  *
748  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
749  * as long as the inode doesn't go away and racy results are not a problem.
750  */
751 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
752 {
753 	struct inode *inode = file_inode(vma->vm_file);
754 	struct shmem_inode_info *info = SHMEM_I(inode);
755 	struct address_space *mapping = inode->i_mapping;
756 	unsigned long swapped;
757 
758 	/* Be careful as we don't hold info->lock */
759 	swapped = READ_ONCE(info->swapped);
760 
761 	/*
762 	 * The easier cases are when the shmem object has nothing in swap, or
763 	 * the vma maps it whole. Then we can simply use the stats that we
764 	 * already track.
765 	 */
766 	if (!swapped)
767 		return 0;
768 
769 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
770 		return swapped << PAGE_SHIFT;
771 
772 	/* Here comes the more involved part */
773 	return shmem_partial_swap_usage(mapping,
774 			linear_page_index(vma, vma->vm_start),
775 			linear_page_index(vma, vma->vm_end));
776 }
777 
778 /*
779  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
780  */
781 void shmem_unlock_mapping(struct address_space *mapping)
782 {
783 	struct pagevec pvec;
784 	pgoff_t indices[PAGEVEC_SIZE];
785 	pgoff_t index = 0;
786 
787 	pagevec_init(&pvec);
788 	/*
789 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
790 	 */
791 	while (!mapping_unevictable(mapping)) {
792 		/*
793 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
794 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
795 		 */
796 		pvec.nr = find_get_entries(mapping, index,
797 					   PAGEVEC_SIZE, pvec.pages, indices);
798 		if (!pvec.nr)
799 			break;
800 		index = indices[pvec.nr - 1] + 1;
801 		pagevec_remove_exceptionals(&pvec);
802 		check_move_unevictable_pages(&pvec);
803 		pagevec_release(&pvec);
804 		cond_resched();
805 	}
806 }
807 
808 /*
809  * Check whether a hole-punch or truncation needs to split a huge page,
810  * returning true if no split was required, or the split has been successful.
811  *
812  * Eviction (or truncation to 0 size) should never need to split a huge page;
813  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
814  * head, and then succeeded to trylock on tail.
815  *
816  * A split can only succeed when there are no additional references on the
817  * huge page: so the split below relies upon find_get_entries() having stopped
818  * when it found a subpage of the huge page, without getting further references.
819  */
820 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
821 {
822 	if (!PageTransCompound(page))
823 		return true;
824 
825 	/* Just proceed to delete a huge page wholly within the range punched */
826 	if (PageHead(page) &&
827 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
828 		return true;
829 
830 	/* Try to split huge page, so we can truly punch the hole or truncate */
831 	return split_huge_page(page) >= 0;
832 }
833 
834 /*
835  * Remove range of pages and swap entries from page cache, and free them.
836  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
837  */
838 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
839 								 bool unfalloc)
840 {
841 	struct address_space *mapping = inode->i_mapping;
842 	struct shmem_inode_info *info = SHMEM_I(inode);
843 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
844 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
845 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
846 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
847 	struct pagevec pvec;
848 	pgoff_t indices[PAGEVEC_SIZE];
849 	long nr_swaps_freed = 0;
850 	pgoff_t index;
851 	int i;
852 
853 	if (lend == -1)
854 		end = -1;	/* unsigned, so actually very big */
855 
856 	pagevec_init(&pvec);
857 	index = start;
858 	while (index < end) {
859 		pvec.nr = find_get_entries(mapping, index,
860 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
861 			pvec.pages, indices);
862 		if (!pvec.nr)
863 			break;
864 		for (i = 0; i < pagevec_count(&pvec); i++) {
865 			struct page *page = pvec.pages[i];
866 
867 			index = indices[i];
868 			if (index >= end)
869 				break;
870 
871 			if (xa_is_value(page)) {
872 				if (unfalloc)
873 					continue;
874 				nr_swaps_freed += !shmem_free_swap(mapping,
875 								index, page);
876 				continue;
877 			}
878 
879 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
880 
881 			if (!trylock_page(page))
882 				continue;
883 
884 			if ((!unfalloc || !PageUptodate(page)) &&
885 			    page_mapping(page) == mapping) {
886 				VM_BUG_ON_PAGE(PageWriteback(page), page);
887 				if (shmem_punch_compound(page, start, end))
888 					truncate_inode_page(mapping, page);
889 			}
890 			unlock_page(page);
891 		}
892 		pagevec_remove_exceptionals(&pvec);
893 		pagevec_release(&pvec);
894 		cond_resched();
895 		index++;
896 	}
897 
898 	if (partial_start) {
899 		struct page *page = NULL;
900 		shmem_getpage(inode, start - 1, &page, SGP_READ);
901 		if (page) {
902 			unsigned int top = PAGE_SIZE;
903 			if (start > end) {
904 				top = partial_end;
905 				partial_end = 0;
906 			}
907 			zero_user_segment(page, partial_start, top);
908 			set_page_dirty(page);
909 			unlock_page(page);
910 			put_page(page);
911 		}
912 	}
913 	if (partial_end) {
914 		struct page *page = NULL;
915 		shmem_getpage(inode, end, &page, SGP_READ);
916 		if (page) {
917 			zero_user_segment(page, 0, partial_end);
918 			set_page_dirty(page);
919 			unlock_page(page);
920 			put_page(page);
921 		}
922 	}
923 	if (start >= end)
924 		return;
925 
926 	index = start;
927 	while (index < end) {
928 		cond_resched();
929 
930 		pvec.nr = find_get_entries(mapping, index,
931 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
932 				pvec.pages, indices);
933 		if (!pvec.nr) {
934 			/* If all gone or hole-punch or unfalloc, we're done */
935 			if (index == start || end != -1)
936 				break;
937 			/* But if truncating, restart to make sure all gone */
938 			index = start;
939 			continue;
940 		}
941 		for (i = 0; i < pagevec_count(&pvec); i++) {
942 			struct page *page = pvec.pages[i];
943 
944 			index = indices[i];
945 			if (index >= end)
946 				break;
947 
948 			if (xa_is_value(page)) {
949 				if (unfalloc)
950 					continue;
951 				if (shmem_free_swap(mapping, index, page)) {
952 					/* Swap was replaced by page: retry */
953 					index--;
954 					break;
955 				}
956 				nr_swaps_freed++;
957 				continue;
958 			}
959 
960 			lock_page(page);
961 
962 			if (!unfalloc || !PageUptodate(page)) {
963 				if (page_mapping(page) != mapping) {
964 					/* Page was replaced by swap: retry */
965 					unlock_page(page);
966 					index--;
967 					break;
968 				}
969 				VM_BUG_ON_PAGE(PageWriteback(page), page);
970 				if (shmem_punch_compound(page, start, end))
971 					truncate_inode_page(mapping, page);
972 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
973 					/* Wipe the page and don't get stuck */
974 					clear_highpage(page);
975 					flush_dcache_page(page);
976 					set_page_dirty(page);
977 					if (index <
978 					    round_up(start, HPAGE_PMD_NR))
979 						start = index + 1;
980 				}
981 			}
982 			unlock_page(page);
983 		}
984 		pagevec_remove_exceptionals(&pvec);
985 		pagevec_release(&pvec);
986 		index++;
987 	}
988 
989 	spin_lock_irq(&info->lock);
990 	info->swapped -= nr_swaps_freed;
991 	shmem_recalc_inode(inode);
992 	spin_unlock_irq(&info->lock);
993 }
994 
995 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
996 {
997 	shmem_undo_range(inode, lstart, lend, false);
998 	inode->i_ctime = inode->i_mtime = current_time(inode);
999 }
1000 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1001 
1002 static int shmem_getattr(const struct path *path, struct kstat *stat,
1003 			 u32 request_mask, unsigned int query_flags)
1004 {
1005 	struct inode *inode = path->dentry->d_inode;
1006 	struct shmem_inode_info *info = SHMEM_I(inode);
1007 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1008 
1009 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1010 		spin_lock_irq(&info->lock);
1011 		shmem_recalc_inode(inode);
1012 		spin_unlock_irq(&info->lock);
1013 	}
1014 	generic_fillattr(inode, stat);
1015 
1016 	if (is_huge_enabled(sb_info))
1017 		stat->blksize = HPAGE_PMD_SIZE;
1018 
1019 	return 0;
1020 }
1021 
1022 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1023 {
1024 	struct inode *inode = d_inode(dentry);
1025 	struct shmem_inode_info *info = SHMEM_I(inode);
1026 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1027 	int error;
1028 
1029 	error = setattr_prepare(dentry, attr);
1030 	if (error)
1031 		return error;
1032 
1033 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1034 		loff_t oldsize = inode->i_size;
1035 		loff_t newsize = attr->ia_size;
1036 
1037 		/* protected by i_mutex */
1038 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1039 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1040 			return -EPERM;
1041 
1042 		if (newsize != oldsize) {
1043 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1044 					oldsize, newsize);
1045 			if (error)
1046 				return error;
1047 			i_size_write(inode, newsize);
1048 			inode->i_ctime = inode->i_mtime = current_time(inode);
1049 		}
1050 		if (newsize <= oldsize) {
1051 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1052 			if (oldsize > holebegin)
1053 				unmap_mapping_range(inode->i_mapping,
1054 							holebegin, 0, 1);
1055 			if (info->alloced)
1056 				shmem_truncate_range(inode,
1057 							newsize, (loff_t)-1);
1058 			/* unmap again to remove racily COWed private pages */
1059 			if (oldsize > holebegin)
1060 				unmap_mapping_range(inode->i_mapping,
1061 							holebegin, 0, 1);
1062 
1063 			/*
1064 			 * Part of the huge page can be beyond i_size: subject
1065 			 * to shrink under memory pressure.
1066 			 */
1067 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1068 				spin_lock(&sbinfo->shrinklist_lock);
1069 				/*
1070 				 * _careful to defend against unlocked access to
1071 				 * ->shrink_list in shmem_unused_huge_shrink()
1072 				 */
1073 				if (list_empty_careful(&info->shrinklist)) {
1074 					list_add_tail(&info->shrinklist,
1075 							&sbinfo->shrinklist);
1076 					sbinfo->shrinklist_len++;
1077 				}
1078 				spin_unlock(&sbinfo->shrinklist_lock);
1079 			}
1080 		}
1081 	}
1082 
1083 	setattr_copy(inode, attr);
1084 	if (attr->ia_valid & ATTR_MODE)
1085 		error = posix_acl_chmod(inode, inode->i_mode);
1086 	return error;
1087 }
1088 
1089 static void shmem_evict_inode(struct inode *inode)
1090 {
1091 	struct shmem_inode_info *info = SHMEM_I(inode);
1092 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1093 
1094 	if (inode->i_mapping->a_ops == &shmem_aops) {
1095 		shmem_unacct_size(info->flags, inode->i_size);
1096 		inode->i_size = 0;
1097 		shmem_truncate_range(inode, 0, (loff_t)-1);
1098 		if (!list_empty(&info->shrinklist)) {
1099 			spin_lock(&sbinfo->shrinklist_lock);
1100 			if (!list_empty(&info->shrinklist)) {
1101 				list_del_init(&info->shrinklist);
1102 				sbinfo->shrinklist_len--;
1103 			}
1104 			spin_unlock(&sbinfo->shrinklist_lock);
1105 		}
1106 		while (!list_empty(&info->swaplist)) {
1107 			/* Wait while shmem_unuse() is scanning this inode... */
1108 			wait_var_event(&info->stop_eviction,
1109 				       !atomic_read(&info->stop_eviction));
1110 			mutex_lock(&shmem_swaplist_mutex);
1111 			/* ...but beware of the race if we peeked too early */
1112 			if (!atomic_read(&info->stop_eviction))
1113 				list_del_init(&info->swaplist);
1114 			mutex_unlock(&shmem_swaplist_mutex);
1115 		}
1116 	}
1117 
1118 	simple_xattrs_free(&info->xattrs);
1119 	WARN_ON(inode->i_blocks);
1120 	shmem_free_inode(inode->i_sb);
1121 	clear_inode(inode);
1122 }
1123 
1124 extern struct swap_info_struct *swap_info[];
1125 
1126 static int shmem_find_swap_entries(struct address_space *mapping,
1127 				   pgoff_t start, unsigned int nr_entries,
1128 				   struct page **entries, pgoff_t *indices,
1129 				   unsigned int type, bool frontswap)
1130 {
1131 	XA_STATE(xas, &mapping->i_pages, start);
1132 	struct page *page;
1133 	swp_entry_t entry;
1134 	unsigned int ret = 0;
1135 
1136 	if (!nr_entries)
1137 		return 0;
1138 
1139 	rcu_read_lock();
1140 	xas_for_each(&xas, page, ULONG_MAX) {
1141 		if (xas_retry(&xas, page))
1142 			continue;
1143 
1144 		if (!xa_is_value(page))
1145 			continue;
1146 
1147 		entry = radix_to_swp_entry(page);
1148 		if (swp_type(entry) != type)
1149 			continue;
1150 		if (frontswap &&
1151 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1152 			continue;
1153 
1154 		indices[ret] = xas.xa_index;
1155 		entries[ret] = page;
1156 
1157 		if (need_resched()) {
1158 			xas_pause(&xas);
1159 			cond_resched_rcu();
1160 		}
1161 		if (++ret == nr_entries)
1162 			break;
1163 	}
1164 	rcu_read_unlock();
1165 
1166 	return ret;
1167 }
1168 
1169 /*
1170  * Move the swapped pages for an inode to page cache. Returns the count
1171  * of pages swapped in, or the error in case of failure.
1172  */
1173 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1174 				    pgoff_t *indices)
1175 {
1176 	int i = 0;
1177 	int ret = 0;
1178 	int error = 0;
1179 	struct address_space *mapping = inode->i_mapping;
1180 
1181 	for (i = 0; i < pvec.nr; i++) {
1182 		struct page *page = pvec.pages[i];
1183 
1184 		if (!xa_is_value(page))
1185 			continue;
1186 		error = shmem_swapin_page(inode, indices[i],
1187 					  &page, SGP_CACHE,
1188 					  mapping_gfp_mask(mapping),
1189 					  NULL, NULL);
1190 		if (error == 0) {
1191 			unlock_page(page);
1192 			put_page(page);
1193 			ret++;
1194 		}
1195 		if (error == -ENOMEM)
1196 			break;
1197 		error = 0;
1198 	}
1199 	return error ? error : ret;
1200 }
1201 
1202 /*
1203  * If swap found in inode, free it and move page from swapcache to filecache.
1204  */
1205 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1206 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1207 {
1208 	struct address_space *mapping = inode->i_mapping;
1209 	pgoff_t start = 0;
1210 	struct pagevec pvec;
1211 	pgoff_t indices[PAGEVEC_SIZE];
1212 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1213 	int ret = 0;
1214 
1215 	pagevec_init(&pvec);
1216 	do {
1217 		unsigned int nr_entries = PAGEVEC_SIZE;
1218 
1219 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1220 			nr_entries = *fs_pages_to_unuse;
1221 
1222 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1223 						  pvec.pages, indices,
1224 						  type, frontswap);
1225 		if (pvec.nr == 0) {
1226 			ret = 0;
1227 			break;
1228 		}
1229 
1230 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1231 		if (ret < 0)
1232 			break;
1233 
1234 		if (frontswap_partial) {
1235 			*fs_pages_to_unuse -= ret;
1236 			if (*fs_pages_to_unuse == 0) {
1237 				ret = FRONTSWAP_PAGES_UNUSED;
1238 				break;
1239 			}
1240 		}
1241 
1242 		start = indices[pvec.nr - 1];
1243 	} while (true);
1244 
1245 	return ret;
1246 }
1247 
1248 /*
1249  * Read all the shared memory data that resides in the swap
1250  * device 'type' back into memory, so the swap device can be
1251  * unused.
1252  */
1253 int shmem_unuse(unsigned int type, bool frontswap,
1254 		unsigned long *fs_pages_to_unuse)
1255 {
1256 	struct shmem_inode_info *info, *next;
1257 	int error = 0;
1258 
1259 	if (list_empty(&shmem_swaplist))
1260 		return 0;
1261 
1262 	mutex_lock(&shmem_swaplist_mutex);
1263 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1264 		if (!info->swapped) {
1265 			list_del_init(&info->swaplist);
1266 			continue;
1267 		}
1268 		/*
1269 		 * Drop the swaplist mutex while searching the inode for swap;
1270 		 * but before doing so, make sure shmem_evict_inode() will not
1271 		 * remove placeholder inode from swaplist, nor let it be freed
1272 		 * (igrab() would protect from unlink, but not from unmount).
1273 		 */
1274 		atomic_inc(&info->stop_eviction);
1275 		mutex_unlock(&shmem_swaplist_mutex);
1276 
1277 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1278 					  fs_pages_to_unuse);
1279 		cond_resched();
1280 
1281 		mutex_lock(&shmem_swaplist_mutex);
1282 		next = list_next_entry(info, swaplist);
1283 		if (!info->swapped)
1284 			list_del_init(&info->swaplist);
1285 		if (atomic_dec_and_test(&info->stop_eviction))
1286 			wake_up_var(&info->stop_eviction);
1287 		if (error)
1288 			break;
1289 	}
1290 	mutex_unlock(&shmem_swaplist_mutex);
1291 
1292 	return error;
1293 }
1294 
1295 /*
1296  * Move the page from the page cache to the swap cache.
1297  */
1298 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1299 {
1300 	struct shmem_inode_info *info;
1301 	struct address_space *mapping;
1302 	struct inode *inode;
1303 	swp_entry_t swap;
1304 	pgoff_t index;
1305 
1306 	VM_BUG_ON_PAGE(PageCompound(page), page);
1307 	BUG_ON(!PageLocked(page));
1308 	mapping = page->mapping;
1309 	index = page->index;
1310 	inode = mapping->host;
1311 	info = SHMEM_I(inode);
1312 	if (info->flags & VM_LOCKED)
1313 		goto redirty;
1314 	if (!total_swap_pages)
1315 		goto redirty;
1316 
1317 	/*
1318 	 * Our capabilities prevent regular writeback or sync from ever calling
1319 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1320 	 * its underlying filesystem, in which case tmpfs should write out to
1321 	 * swap only in response to memory pressure, and not for the writeback
1322 	 * threads or sync.
1323 	 */
1324 	if (!wbc->for_reclaim) {
1325 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1326 		goto redirty;
1327 	}
1328 
1329 	/*
1330 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1331 	 * value into swapfile.c, the only way we can correctly account for a
1332 	 * fallocated page arriving here is now to initialize it and write it.
1333 	 *
1334 	 * That's okay for a page already fallocated earlier, but if we have
1335 	 * not yet completed the fallocation, then (a) we want to keep track
1336 	 * of this page in case we have to undo it, and (b) it may not be a
1337 	 * good idea to continue anyway, once we're pushing into swap.  So
1338 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1339 	 */
1340 	if (!PageUptodate(page)) {
1341 		if (inode->i_private) {
1342 			struct shmem_falloc *shmem_falloc;
1343 			spin_lock(&inode->i_lock);
1344 			shmem_falloc = inode->i_private;
1345 			if (shmem_falloc &&
1346 			    !shmem_falloc->waitq &&
1347 			    index >= shmem_falloc->start &&
1348 			    index < shmem_falloc->next)
1349 				shmem_falloc->nr_unswapped++;
1350 			else
1351 				shmem_falloc = NULL;
1352 			spin_unlock(&inode->i_lock);
1353 			if (shmem_falloc)
1354 				goto redirty;
1355 		}
1356 		clear_highpage(page);
1357 		flush_dcache_page(page);
1358 		SetPageUptodate(page);
1359 	}
1360 
1361 	swap = get_swap_page(page);
1362 	if (!swap.val)
1363 		goto redirty;
1364 
1365 	/*
1366 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1367 	 * if it's not already there.  Do it now before the page is
1368 	 * moved to swap cache, when its pagelock no longer protects
1369 	 * the inode from eviction.  But don't unlock the mutex until
1370 	 * we've incremented swapped, because shmem_unuse_inode() will
1371 	 * prune a !swapped inode from the swaplist under this mutex.
1372 	 */
1373 	mutex_lock(&shmem_swaplist_mutex);
1374 	if (list_empty(&info->swaplist))
1375 		list_add(&info->swaplist, &shmem_swaplist);
1376 
1377 	if (add_to_swap_cache(page, swap,
1378 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1379 		spin_lock_irq(&info->lock);
1380 		shmem_recalc_inode(inode);
1381 		info->swapped++;
1382 		spin_unlock_irq(&info->lock);
1383 
1384 		swap_shmem_alloc(swap);
1385 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1386 
1387 		mutex_unlock(&shmem_swaplist_mutex);
1388 		BUG_ON(page_mapped(page));
1389 		swap_writepage(page, wbc);
1390 		return 0;
1391 	}
1392 
1393 	mutex_unlock(&shmem_swaplist_mutex);
1394 	put_swap_page(page, swap);
1395 redirty:
1396 	set_page_dirty(page);
1397 	if (wbc->for_reclaim)
1398 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1399 	unlock_page(page);
1400 	return 0;
1401 }
1402 
1403 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1404 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1405 {
1406 	char buffer[64];
1407 
1408 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1409 		return;		/* show nothing */
1410 
1411 	mpol_to_str(buffer, sizeof(buffer), mpol);
1412 
1413 	seq_printf(seq, ",mpol=%s", buffer);
1414 }
1415 
1416 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1417 {
1418 	struct mempolicy *mpol = NULL;
1419 	if (sbinfo->mpol) {
1420 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1421 		mpol = sbinfo->mpol;
1422 		mpol_get(mpol);
1423 		spin_unlock(&sbinfo->stat_lock);
1424 	}
1425 	return mpol;
1426 }
1427 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1428 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1429 {
1430 }
1431 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1432 {
1433 	return NULL;
1434 }
1435 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1436 #ifndef CONFIG_NUMA
1437 #define vm_policy vm_private_data
1438 #endif
1439 
1440 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1441 		struct shmem_inode_info *info, pgoff_t index)
1442 {
1443 	/* Create a pseudo vma that just contains the policy */
1444 	vma_init(vma, NULL);
1445 	/* Bias interleave by inode number to distribute better across nodes */
1446 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1447 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1448 }
1449 
1450 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1451 {
1452 	/* Drop reference taken by mpol_shared_policy_lookup() */
1453 	mpol_cond_put(vma->vm_policy);
1454 }
1455 
1456 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1457 			struct shmem_inode_info *info, pgoff_t index)
1458 {
1459 	struct vm_area_struct pvma;
1460 	struct page *page;
1461 	struct vm_fault vmf;
1462 
1463 	shmem_pseudo_vma_init(&pvma, info, index);
1464 	vmf.vma = &pvma;
1465 	vmf.address = 0;
1466 	page = swap_cluster_readahead(swap, gfp, &vmf);
1467 	shmem_pseudo_vma_destroy(&pvma);
1468 
1469 	return page;
1470 }
1471 
1472 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1473 		struct shmem_inode_info *info, pgoff_t index)
1474 {
1475 	struct vm_area_struct pvma;
1476 	struct address_space *mapping = info->vfs_inode.i_mapping;
1477 	pgoff_t hindex;
1478 	struct page *page;
1479 
1480 	hindex = round_down(index, HPAGE_PMD_NR);
1481 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1482 								XA_PRESENT))
1483 		return NULL;
1484 
1485 	shmem_pseudo_vma_init(&pvma, info, hindex);
1486 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1487 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1488 	shmem_pseudo_vma_destroy(&pvma);
1489 	if (page)
1490 		prep_transhuge_page(page);
1491 	else
1492 		count_vm_event(THP_FILE_FALLBACK);
1493 	return page;
1494 }
1495 
1496 static struct page *shmem_alloc_page(gfp_t gfp,
1497 			struct shmem_inode_info *info, pgoff_t index)
1498 {
1499 	struct vm_area_struct pvma;
1500 	struct page *page;
1501 
1502 	shmem_pseudo_vma_init(&pvma, info, index);
1503 	page = alloc_page_vma(gfp, &pvma, 0);
1504 	shmem_pseudo_vma_destroy(&pvma);
1505 
1506 	return page;
1507 }
1508 
1509 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1510 		struct inode *inode,
1511 		pgoff_t index, bool huge)
1512 {
1513 	struct shmem_inode_info *info = SHMEM_I(inode);
1514 	struct page *page;
1515 	int nr;
1516 	int err = -ENOSPC;
1517 
1518 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1519 		huge = false;
1520 	nr = huge ? HPAGE_PMD_NR : 1;
1521 
1522 	if (!shmem_inode_acct_block(inode, nr))
1523 		goto failed;
1524 
1525 	if (huge)
1526 		page = shmem_alloc_hugepage(gfp, info, index);
1527 	else
1528 		page = shmem_alloc_page(gfp, info, index);
1529 	if (page) {
1530 		__SetPageLocked(page);
1531 		__SetPageSwapBacked(page);
1532 		return page;
1533 	}
1534 
1535 	err = -ENOMEM;
1536 	shmem_inode_unacct_blocks(inode, nr);
1537 failed:
1538 	return ERR_PTR(err);
1539 }
1540 
1541 /*
1542  * When a page is moved from swapcache to shmem filecache (either by the
1543  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1544  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1545  * ignorance of the mapping it belongs to.  If that mapping has special
1546  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1547  * we may need to copy to a suitable page before moving to filecache.
1548  *
1549  * In a future release, this may well be extended to respect cpuset and
1550  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1551  * but for now it is a simple matter of zone.
1552  */
1553 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1554 {
1555 	return page_zonenum(page) > gfp_zone(gfp);
1556 }
1557 
1558 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1559 				struct shmem_inode_info *info, pgoff_t index)
1560 {
1561 	struct page *oldpage, *newpage;
1562 	struct address_space *swap_mapping;
1563 	swp_entry_t entry;
1564 	pgoff_t swap_index;
1565 	int error;
1566 
1567 	oldpage = *pagep;
1568 	entry.val = page_private(oldpage);
1569 	swap_index = swp_offset(entry);
1570 	swap_mapping = page_mapping(oldpage);
1571 
1572 	/*
1573 	 * We have arrived here because our zones are constrained, so don't
1574 	 * limit chance of success by further cpuset and node constraints.
1575 	 */
1576 	gfp &= ~GFP_CONSTRAINT_MASK;
1577 	newpage = shmem_alloc_page(gfp, info, index);
1578 	if (!newpage)
1579 		return -ENOMEM;
1580 
1581 	get_page(newpage);
1582 	copy_highpage(newpage, oldpage);
1583 	flush_dcache_page(newpage);
1584 
1585 	__SetPageLocked(newpage);
1586 	__SetPageSwapBacked(newpage);
1587 	SetPageUptodate(newpage);
1588 	set_page_private(newpage, entry.val);
1589 	SetPageSwapCache(newpage);
1590 
1591 	/*
1592 	 * Our caller will very soon move newpage out of swapcache, but it's
1593 	 * a nice clean interface for us to replace oldpage by newpage there.
1594 	 */
1595 	xa_lock_irq(&swap_mapping->i_pages);
1596 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1597 	if (!error) {
1598 		mem_cgroup_migrate(oldpage, newpage);
1599 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1600 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1601 	}
1602 	xa_unlock_irq(&swap_mapping->i_pages);
1603 
1604 	if (unlikely(error)) {
1605 		/*
1606 		 * Is this possible?  I think not, now that our callers check
1607 		 * both PageSwapCache and page_private after getting page lock;
1608 		 * but be defensive.  Reverse old to newpage for clear and free.
1609 		 */
1610 		oldpage = newpage;
1611 	} else {
1612 		lru_cache_add(newpage);
1613 		*pagep = newpage;
1614 	}
1615 
1616 	ClearPageSwapCache(oldpage);
1617 	set_page_private(oldpage, 0);
1618 
1619 	unlock_page(oldpage);
1620 	put_page(oldpage);
1621 	put_page(oldpage);
1622 	return error;
1623 }
1624 
1625 /*
1626  * Swap in the page pointed to by *pagep.
1627  * Caller has to make sure that *pagep contains a valid swapped page.
1628  * Returns 0 and the page in pagep if success. On failure, returns the
1629  * the error code and NULL in *pagep.
1630  */
1631 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1632 			     struct page **pagep, enum sgp_type sgp,
1633 			     gfp_t gfp, struct vm_area_struct *vma,
1634 			     vm_fault_t *fault_type)
1635 {
1636 	struct address_space *mapping = inode->i_mapping;
1637 	struct shmem_inode_info *info = SHMEM_I(inode);
1638 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1639 	struct page *page;
1640 	swp_entry_t swap;
1641 	int error;
1642 
1643 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1644 	swap = radix_to_swp_entry(*pagep);
1645 	*pagep = NULL;
1646 
1647 	/* Look it up and read it in.. */
1648 	page = lookup_swap_cache(swap, NULL, 0);
1649 	if (!page) {
1650 		/* Or update major stats only when swapin succeeds?? */
1651 		if (fault_type) {
1652 			*fault_type |= VM_FAULT_MAJOR;
1653 			count_vm_event(PGMAJFAULT);
1654 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1655 		}
1656 		/* Here we actually start the io */
1657 		page = shmem_swapin(swap, gfp, info, index);
1658 		if (!page) {
1659 			error = -ENOMEM;
1660 			goto failed;
1661 		}
1662 	}
1663 
1664 	/* We have to do this with page locked to prevent races */
1665 	lock_page(page);
1666 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1667 	    !shmem_confirm_swap(mapping, index, swap)) {
1668 		error = -EEXIST;
1669 		goto unlock;
1670 	}
1671 	if (!PageUptodate(page)) {
1672 		error = -EIO;
1673 		goto failed;
1674 	}
1675 	wait_on_page_writeback(page);
1676 
1677 	if (shmem_should_replace_page(page, gfp)) {
1678 		error = shmem_replace_page(&page, gfp, info, index);
1679 		if (error)
1680 			goto failed;
1681 	}
1682 
1683 	error = shmem_add_to_page_cache(page, mapping, index,
1684 					swp_to_radix_entry(swap), gfp,
1685 					charge_mm);
1686 	if (error)
1687 		goto failed;
1688 
1689 	spin_lock_irq(&info->lock);
1690 	info->swapped--;
1691 	shmem_recalc_inode(inode);
1692 	spin_unlock_irq(&info->lock);
1693 
1694 	if (sgp == SGP_WRITE)
1695 		mark_page_accessed(page);
1696 
1697 	delete_from_swap_cache(page);
1698 	set_page_dirty(page);
1699 	swap_free(swap);
1700 
1701 	*pagep = page;
1702 	return 0;
1703 failed:
1704 	if (!shmem_confirm_swap(mapping, index, swap))
1705 		error = -EEXIST;
1706 unlock:
1707 	if (page) {
1708 		unlock_page(page);
1709 		put_page(page);
1710 	}
1711 
1712 	return error;
1713 }
1714 
1715 /*
1716  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1717  *
1718  * If we allocate a new one we do not mark it dirty. That's up to the
1719  * vm. If we swap it in we mark it dirty since we also free the swap
1720  * entry since a page cannot live in both the swap and page cache.
1721  *
1722  * vmf and fault_type are only supplied by shmem_fault:
1723  * otherwise they are NULL.
1724  */
1725 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1726 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1727 	struct vm_area_struct *vma, struct vm_fault *vmf,
1728 			vm_fault_t *fault_type)
1729 {
1730 	struct address_space *mapping = inode->i_mapping;
1731 	struct shmem_inode_info *info = SHMEM_I(inode);
1732 	struct shmem_sb_info *sbinfo;
1733 	struct mm_struct *charge_mm;
1734 	struct page *page;
1735 	enum sgp_type sgp_huge = sgp;
1736 	pgoff_t hindex = index;
1737 	int error;
1738 	int once = 0;
1739 	int alloced = 0;
1740 
1741 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1742 		return -EFBIG;
1743 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1744 		sgp = SGP_CACHE;
1745 repeat:
1746 	if (sgp <= SGP_CACHE &&
1747 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1748 		return -EINVAL;
1749 	}
1750 
1751 	sbinfo = SHMEM_SB(inode->i_sb);
1752 	charge_mm = vma ? vma->vm_mm : current->mm;
1753 
1754 	page = find_lock_entry(mapping, index);
1755 	if (xa_is_value(page)) {
1756 		error = shmem_swapin_page(inode, index, &page,
1757 					  sgp, gfp, vma, fault_type);
1758 		if (error == -EEXIST)
1759 			goto repeat;
1760 
1761 		*pagep = page;
1762 		return error;
1763 	}
1764 
1765 	if (page && sgp == SGP_WRITE)
1766 		mark_page_accessed(page);
1767 
1768 	/* fallocated page? */
1769 	if (page && !PageUptodate(page)) {
1770 		if (sgp != SGP_READ)
1771 			goto clear;
1772 		unlock_page(page);
1773 		put_page(page);
1774 		page = NULL;
1775 	}
1776 	if (page || sgp == SGP_READ) {
1777 		*pagep = page;
1778 		return 0;
1779 	}
1780 
1781 	/*
1782 	 * Fast cache lookup did not find it:
1783 	 * bring it back from swap or allocate.
1784 	 */
1785 
1786 	if (vma && userfaultfd_missing(vma)) {
1787 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1788 		return 0;
1789 	}
1790 
1791 	/* shmem_symlink() */
1792 	if (mapping->a_ops != &shmem_aops)
1793 		goto alloc_nohuge;
1794 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1795 		goto alloc_nohuge;
1796 	if (shmem_huge == SHMEM_HUGE_FORCE)
1797 		goto alloc_huge;
1798 	switch (sbinfo->huge) {
1799 	case SHMEM_HUGE_NEVER:
1800 		goto alloc_nohuge;
1801 	case SHMEM_HUGE_WITHIN_SIZE: {
1802 		loff_t i_size;
1803 		pgoff_t off;
1804 
1805 		off = round_up(index, HPAGE_PMD_NR);
1806 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1807 		if (i_size >= HPAGE_PMD_SIZE &&
1808 		    i_size >> PAGE_SHIFT >= off)
1809 			goto alloc_huge;
1810 
1811 		fallthrough;
1812 	}
1813 	case SHMEM_HUGE_ADVISE:
1814 		if (sgp_huge == SGP_HUGE)
1815 			goto alloc_huge;
1816 		/* TODO: implement fadvise() hints */
1817 		goto alloc_nohuge;
1818 	}
1819 
1820 alloc_huge:
1821 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1822 	if (IS_ERR(page)) {
1823 alloc_nohuge:
1824 		page = shmem_alloc_and_acct_page(gfp, inode,
1825 						 index, false);
1826 	}
1827 	if (IS_ERR(page)) {
1828 		int retry = 5;
1829 
1830 		error = PTR_ERR(page);
1831 		page = NULL;
1832 		if (error != -ENOSPC)
1833 			goto unlock;
1834 		/*
1835 		 * Try to reclaim some space by splitting a huge page
1836 		 * beyond i_size on the filesystem.
1837 		 */
1838 		while (retry--) {
1839 			int ret;
1840 
1841 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1842 			if (ret == SHRINK_STOP)
1843 				break;
1844 			if (ret)
1845 				goto alloc_nohuge;
1846 		}
1847 		goto unlock;
1848 	}
1849 
1850 	if (PageTransHuge(page))
1851 		hindex = round_down(index, HPAGE_PMD_NR);
1852 	else
1853 		hindex = index;
1854 
1855 	if (sgp == SGP_WRITE)
1856 		__SetPageReferenced(page);
1857 
1858 	error = shmem_add_to_page_cache(page, mapping, hindex,
1859 					NULL, gfp & GFP_RECLAIM_MASK,
1860 					charge_mm);
1861 	if (error)
1862 		goto unacct;
1863 	lru_cache_add(page);
1864 
1865 	spin_lock_irq(&info->lock);
1866 	info->alloced += compound_nr(page);
1867 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1868 	shmem_recalc_inode(inode);
1869 	spin_unlock_irq(&info->lock);
1870 	alloced = true;
1871 
1872 	if (PageTransHuge(page) &&
1873 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1874 			hindex + HPAGE_PMD_NR - 1) {
1875 		/*
1876 		 * Part of the huge page is beyond i_size: subject
1877 		 * to shrink under memory pressure.
1878 		 */
1879 		spin_lock(&sbinfo->shrinklist_lock);
1880 		/*
1881 		 * _careful to defend against unlocked access to
1882 		 * ->shrink_list in shmem_unused_huge_shrink()
1883 		 */
1884 		if (list_empty_careful(&info->shrinklist)) {
1885 			list_add_tail(&info->shrinklist,
1886 				      &sbinfo->shrinklist);
1887 			sbinfo->shrinklist_len++;
1888 		}
1889 		spin_unlock(&sbinfo->shrinklist_lock);
1890 	}
1891 
1892 	/*
1893 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1894 	 */
1895 	if (sgp == SGP_FALLOC)
1896 		sgp = SGP_WRITE;
1897 clear:
1898 	/*
1899 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1900 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1901 	 * it now, lest undo on failure cancel our earlier guarantee.
1902 	 */
1903 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1904 		struct page *head = compound_head(page);
1905 		int i;
1906 
1907 		for (i = 0; i < compound_nr(head); i++) {
1908 			clear_highpage(head + i);
1909 			flush_dcache_page(head + i);
1910 		}
1911 		SetPageUptodate(head);
1912 	}
1913 
1914 	/* Perhaps the file has been truncated since we checked */
1915 	if (sgp <= SGP_CACHE &&
1916 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1917 		if (alloced) {
1918 			ClearPageDirty(page);
1919 			delete_from_page_cache(page);
1920 			spin_lock_irq(&info->lock);
1921 			shmem_recalc_inode(inode);
1922 			spin_unlock_irq(&info->lock);
1923 		}
1924 		error = -EINVAL;
1925 		goto unlock;
1926 	}
1927 	*pagep = page + index - hindex;
1928 	return 0;
1929 
1930 	/*
1931 	 * Error recovery.
1932 	 */
1933 unacct:
1934 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1935 
1936 	if (PageTransHuge(page)) {
1937 		unlock_page(page);
1938 		put_page(page);
1939 		goto alloc_nohuge;
1940 	}
1941 unlock:
1942 	if (page) {
1943 		unlock_page(page);
1944 		put_page(page);
1945 	}
1946 	if (error == -ENOSPC && !once++) {
1947 		spin_lock_irq(&info->lock);
1948 		shmem_recalc_inode(inode);
1949 		spin_unlock_irq(&info->lock);
1950 		goto repeat;
1951 	}
1952 	if (error == -EEXIST)
1953 		goto repeat;
1954 	return error;
1955 }
1956 
1957 /*
1958  * This is like autoremove_wake_function, but it removes the wait queue
1959  * entry unconditionally - even if something else had already woken the
1960  * target.
1961  */
1962 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1963 {
1964 	int ret = default_wake_function(wait, mode, sync, key);
1965 	list_del_init(&wait->entry);
1966 	return ret;
1967 }
1968 
1969 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1970 {
1971 	struct vm_area_struct *vma = vmf->vma;
1972 	struct inode *inode = file_inode(vma->vm_file);
1973 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1974 	enum sgp_type sgp;
1975 	int err;
1976 	vm_fault_t ret = VM_FAULT_LOCKED;
1977 
1978 	/*
1979 	 * Trinity finds that probing a hole which tmpfs is punching can
1980 	 * prevent the hole-punch from ever completing: which in turn
1981 	 * locks writers out with its hold on i_mutex.  So refrain from
1982 	 * faulting pages into the hole while it's being punched.  Although
1983 	 * shmem_undo_range() does remove the additions, it may be unable to
1984 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1985 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1986 	 *
1987 	 * It does not matter if we sometimes reach this check just before the
1988 	 * hole-punch begins, so that one fault then races with the punch:
1989 	 * we just need to make racing faults a rare case.
1990 	 *
1991 	 * The implementation below would be much simpler if we just used a
1992 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1993 	 * and bloating every shmem inode for this unlikely case would be sad.
1994 	 */
1995 	if (unlikely(inode->i_private)) {
1996 		struct shmem_falloc *shmem_falloc;
1997 
1998 		spin_lock(&inode->i_lock);
1999 		shmem_falloc = inode->i_private;
2000 		if (shmem_falloc &&
2001 		    shmem_falloc->waitq &&
2002 		    vmf->pgoff >= shmem_falloc->start &&
2003 		    vmf->pgoff < shmem_falloc->next) {
2004 			struct file *fpin;
2005 			wait_queue_head_t *shmem_falloc_waitq;
2006 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2007 
2008 			ret = VM_FAULT_NOPAGE;
2009 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2010 			if (fpin)
2011 				ret = VM_FAULT_RETRY;
2012 
2013 			shmem_falloc_waitq = shmem_falloc->waitq;
2014 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2015 					TASK_UNINTERRUPTIBLE);
2016 			spin_unlock(&inode->i_lock);
2017 			schedule();
2018 
2019 			/*
2020 			 * shmem_falloc_waitq points into the shmem_fallocate()
2021 			 * stack of the hole-punching task: shmem_falloc_waitq
2022 			 * is usually invalid by the time we reach here, but
2023 			 * finish_wait() does not dereference it in that case;
2024 			 * though i_lock needed lest racing with wake_up_all().
2025 			 */
2026 			spin_lock(&inode->i_lock);
2027 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2028 			spin_unlock(&inode->i_lock);
2029 
2030 			if (fpin)
2031 				fput(fpin);
2032 			return ret;
2033 		}
2034 		spin_unlock(&inode->i_lock);
2035 	}
2036 
2037 	sgp = SGP_CACHE;
2038 
2039 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2040 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2041 		sgp = SGP_NOHUGE;
2042 	else if (vma->vm_flags & VM_HUGEPAGE)
2043 		sgp = SGP_HUGE;
2044 
2045 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2046 				  gfp, vma, vmf, &ret);
2047 	if (err)
2048 		return vmf_error(err);
2049 	return ret;
2050 }
2051 
2052 unsigned long shmem_get_unmapped_area(struct file *file,
2053 				      unsigned long uaddr, unsigned long len,
2054 				      unsigned long pgoff, unsigned long flags)
2055 {
2056 	unsigned long (*get_area)(struct file *,
2057 		unsigned long, unsigned long, unsigned long, unsigned long);
2058 	unsigned long addr;
2059 	unsigned long offset;
2060 	unsigned long inflated_len;
2061 	unsigned long inflated_addr;
2062 	unsigned long inflated_offset;
2063 
2064 	if (len > TASK_SIZE)
2065 		return -ENOMEM;
2066 
2067 	get_area = current->mm->get_unmapped_area;
2068 	addr = get_area(file, uaddr, len, pgoff, flags);
2069 
2070 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2071 		return addr;
2072 	if (IS_ERR_VALUE(addr))
2073 		return addr;
2074 	if (addr & ~PAGE_MASK)
2075 		return addr;
2076 	if (addr > TASK_SIZE - len)
2077 		return addr;
2078 
2079 	if (shmem_huge == SHMEM_HUGE_DENY)
2080 		return addr;
2081 	if (len < HPAGE_PMD_SIZE)
2082 		return addr;
2083 	if (flags & MAP_FIXED)
2084 		return addr;
2085 	/*
2086 	 * Our priority is to support MAP_SHARED mapped hugely;
2087 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2088 	 * But if caller specified an address hint and we allocated area there
2089 	 * successfully, respect that as before.
2090 	 */
2091 	if (uaddr == addr)
2092 		return addr;
2093 
2094 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2095 		struct super_block *sb;
2096 
2097 		if (file) {
2098 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2099 			sb = file_inode(file)->i_sb;
2100 		} else {
2101 			/*
2102 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2103 			 * for "/dev/zero", to create a shared anonymous object.
2104 			 */
2105 			if (IS_ERR(shm_mnt))
2106 				return addr;
2107 			sb = shm_mnt->mnt_sb;
2108 		}
2109 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2110 			return addr;
2111 	}
2112 
2113 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2114 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2115 		return addr;
2116 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2117 		return addr;
2118 
2119 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2120 	if (inflated_len > TASK_SIZE)
2121 		return addr;
2122 	if (inflated_len < len)
2123 		return addr;
2124 
2125 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2126 	if (IS_ERR_VALUE(inflated_addr))
2127 		return addr;
2128 	if (inflated_addr & ~PAGE_MASK)
2129 		return addr;
2130 
2131 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2132 	inflated_addr += offset - inflated_offset;
2133 	if (inflated_offset > offset)
2134 		inflated_addr += HPAGE_PMD_SIZE;
2135 
2136 	if (inflated_addr > TASK_SIZE - len)
2137 		return addr;
2138 	return inflated_addr;
2139 }
2140 
2141 #ifdef CONFIG_NUMA
2142 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2143 {
2144 	struct inode *inode = file_inode(vma->vm_file);
2145 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2146 }
2147 
2148 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2149 					  unsigned long addr)
2150 {
2151 	struct inode *inode = file_inode(vma->vm_file);
2152 	pgoff_t index;
2153 
2154 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2155 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2156 }
2157 #endif
2158 
2159 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2160 {
2161 	struct inode *inode = file_inode(file);
2162 	struct shmem_inode_info *info = SHMEM_I(inode);
2163 	int retval = -ENOMEM;
2164 
2165 	/*
2166 	 * What serializes the accesses to info->flags?
2167 	 * ipc_lock_object() when called from shmctl_do_lock(),
2168 	 * no serialization needed when called from shm_destroy().
2169 	 */
2170 	if (lock && !(info->flags & VM_LOCKED)) {
2171 		if (!user_shm_lock(inode->i_size, user))
2172 			goto out_nomem;
2173 		info->flags |= VM_LOCKED;
2174 		mapping_set_unevictable(file->f_mapping);
2175 	}
2176 	if (!lock && (info->flags & VM_LOCKED) && user) {
2177 		user_shm_unlock(inode->i_size, user);
2178 		info->flags &= ~VM_LOCKED;
2179 		mapping_clear_unevictable(file->f_mapping);
2180 	}
2181 	retval = 0;
2182 
2183 out_nomem:
2184 	return retval;
2185 }
2186 
2187 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2188 {
2189 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2190 
2191 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2192 		/*
2193 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2194 		 * "future write" seal active.
2195 		 */
2196 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2197 			return -EPERM;
2198 
2199 		/*
2200 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2201 		 * MAP_SHARED and read-only, take care to not allow mprotect to
2202 		 * revert protections on such mappings. Do this only for shared
2203 		 * mappings. For private mappings, don't need to mask
2204 		 * VM_MAYWRITE as we still want them to be COW-writable.
2205 		 */
2206 		if (vma->vm_flags & VM_SHARED)
2207 			vma->vm_flags &= ~(VM_MAYWRITE);
2208 	}
2209 
2210 	file_accessed(file);
2211 	vma->vm_ops = &shmem_vm_ops;
2212 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2213 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2214 			(vma->vm_end & HPAGE_PMD_MASK)) {
2215 		khugepaged_enter(vma, vma->vm_flags);
2216 	}
2217 	return 0;
2218 }
2219 
2220 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2221 				     umode_t mode, dev_t dev, unsigned long flags)
2222 {
2223 	struct inode *inode;
2224 	struct shmem_inode_info *info;
2225 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2226 
2227 	if (shmem_reserve_inode(sb))
2228 		return NULL;
2229 
2230 	inode = new_inode(sb);
2231 	if (inode) {
2232 		inode->i_ino = get_next_ino();
2233 		inode_init_owner(inode, dir, mode);
2234 		inode->i_blocks = 0;
2235 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2236 		inode->i_generation = prandom_u32();
2237 		info = SHMEM_I(inode);
2238 		memset(info, 0, (char *)inode - (char *)info);
2239 		spin_lock_init(&info->lock);
2240 		atomic_set(&info->stop_eviction, 0);
2241 		info->seals = F_SEAL_SEAL;
2242 		info->flags = flags & VM_NORESERVE;
2243 		INIT_LIST_HEAD(&info->shrinklist);
2244 		INIT_LIST_HEAD(&info->swaplist);
2245 		simple_xattrs_init(&info->xattrs);
2246 		cache_no_acl(inode);
2247 
2248 		switch (mode & S_IFMT) {
2249 		default:
2250 			inode->i_op = &shmem_special_inode_operations;
2251 			init_special_inode(inode, mode, dev);
2252 			break;
2253 		case S_IFREG:
2254 			inode->i_mapping->a_ops = &shmem_aops;
2255 			inode->i_op = &shmem_inode_operations;
2256 			inode->i_fop = &shmem_file_operations;
2257 			mpol_shared_policy_init(&info->policy,
2258 						 shmem_get_sbmpol(sbinfo));
2259 			break;
2260 		case S_IFDIR:
2261 			inc_nlink(inode);
2262 			/* Some things misbehave if size == 0 on a directory */
2263 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2264 			inode->i_op = &shmem_dir_inode_operations;
2265 			inode->i_fop = &simple_dir_operations;
2266 			break;
2267 		case S_IFLNK:
2268 			/*
2269 			 * Must not load anything in the rbtree,
2270 			 * mpol_free_shared_policy will not be called.
2271 			 */
2272 			mpol_shared_policy_init(&info->policy, NULL);
2273 			break;
2274 		}
2275 
2276 		lockdep_annotate_inode_mutex_key(inode);
2277 	} else
2278 		shmem_free_inode(sb);
2279 	return inode;
2280 }
2281 
2282 bool shmem_mapping(struct address_space *mapping)
2283 {
2284 	return mapping->a_ops == &shmem_aops;
2285 }
2286 
2287 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2288 				  pmd_t *dst_pmd,
2289 				  struct vm_area_struct *dst_vma,
2290 				  unsigned long dst_addr,
2291 				  unsigned long src_addr,
2292 				  bool zeropage,
2293 				  struct page **pagep)
2294 {
2295 	struct inode *inode = file_inode(dst_vma->vm_file);
2296 	struct shmem_inode_info *info = SHMEM_I(inode);
2297 	struct address_space *mapping = inode->i_mapping;
2298 	gfp_t gfp = mapping_gfp_mask(mapping);
2299 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2300 	spinlock_t *ptl;
2301 	void *page_kaddr;
2302 	struct page *page;
2303 	pte_t _dst_pte, *dst_pte;
2304 	int ret;
2305 	pgoff_t offset, max_off;
2306 
2307 	ret = -ENOMEM;
2308 	if (!shmem_inode_acct_block(inode, 1))
2309 		goto out;
2310 
2311 	if (!*pagep) {
2312 		page = shmem_alloc_page(gfp, info, pgoff);
2313 		if (!page)
2314 			goto out_unacct_blocks;
2315 
2316 		if (!zeropage) {	/* mcopy_atomic */
2317 			page_kaddr = kmap_atomic(page);
2318 			ret = copy_from_user(page_kaddr,
2319 					     (const void __user *)src_addr,
2320 					     PAGE_SIZE);
2321 			kunmap_atomic(page_kaddr);
2322 
2323 			/* fallback to copy_from_user outside mmap_sem */
2324 			if (unlikely(ret)) {
2325 				*pagep = page;
2326 				shmem_inode_unacct_blocks(inode, 1);
2327 				/* don't free the page */
2328 				return -ENOENT;
2329 			}
2330 		} else {		/* mfill_zeropage_atomic */
2331 			clear_highpage(page);
2332 		}
2333 	} else {
2334 		page = *pagep;
2335 		*pagep = NULL;
2336 	}
2337 
2338 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2339 	__SetPageLocked(page);
2340 	__SetPageSwapBacked(page);
2341 	__SetPageUptodate(page);
2342 
2343 	ret = -EFAULT;
2344 	offset = linear_page_index(dst_vma, dst_addr);
2345 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2346 	if (unlikely(offset >= max_off))
2347 		goto out_release;
2348 
2349 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2350 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2351 	if (ret)
2352 		goto out_release;
2353 
2354 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2355 	if (dst_vma->vm_flags & VM_WRITE)
2356 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2357 	else {
2358 		/*
2359 		 * We don't set the pte dirty if the vma has no
2360 		 * VM_WRITE permission, so mark the page dirty or it
2361 		 * could be freed from under us. We could do it
2362 		 * unconditionally before unlock_page(), but doing it
2363 		 * only if VM_WRITE is not set is faster.
2364 		 */
2365 		set_page_dirty(page);
2366 	}
2367 
2368 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2369 
2370 	ret = -EFAULT;
2371 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2372 	if (unlikely(offset >= max_off))
2373 		goto out_release_unlock;
2374 
2375 	ret = -EEXIST;
2376 	if (!pte_none(*dst_pte))
2377 		goto out_release_unlock;
2378 
2379 	lru_cache_add(page);
2380 
2381 	spin_lock_irq(&info->lock);
2382 	info->alloced++;
2383 	inode->i_blocks += BLOCKS_PER_PAGE;
2384 	shmem_recalc_inode(inode);
2385 	spin_unlock_irq(&info->lock);
2386 
2387 	inc_mm_counter(dst_mm, mm_counter_file(page));
2388 	page_add_file_rmap(page, false);
2389 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2390 
2391 	/* No need to invalidate - it was non-present before */
2392 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2393 	pte_unmap_unlock(dst_pte, ptl);
2394 	unlock_page(page);
2395 	ret = 0;
2396 out:
2397 	return ret;
2398 out_release_unlock:
2399 	pte_unmap_unlock(dst_pte, ptl);
2400 	ClearPageDirty(page);
2401 	delete_from_page_cache(page);
2402 out_release:
2403 	unlock_page(page);
2404 	put_page(page);
2405 out_unacct_blocks:
2406 	shmem_inode_unacct_blocks(inode, 1);
2407 	goto out;
2408 }
2409 
2410 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2411 			   pmd_t *dst_pmd,
2412 			   struct vm_area_struct *dst_vma,
2413 			   unsigned long dst_addr,
2414 			   unsigned long src_addr,
2415 			   struct page **pagep)
2416 {
2417 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2418 				      dst_addr, src_addr, false, pagep);
2419 }
2420 
2421 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2422 			     pmd_t *dst_pmd,
2423 			     struct vm_area_struct *dst_vma,
2424 			     unsigned long dst_addr)
2425 {
2426 	struct page *page = NULL;
2427 
2428 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2429 				      dst_addr, 0, true, &page);
2430 }
2431 
2432 #ifdef CONFIG_TMPFS
2433 static const struct inode_operations shmem_symlink_inode_operations;
2434 static const struct inode_operations shmem_short_symlink_operations;
2435 
2436 #ifdef CONFIG_TMPFS_XATTR
2437 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2438 #else
2439 #define shmem_initxattrs NULL
2440 #endif
2441 
2442 static int
2443 shmem_write_begin(struct file *file, struct address_space *mapping,
2444 			loff_t pos, unsigned len, unsigned flags,
2445 			struct page **pagep, void **fsdata)
2446 {
2447 	struct inode *inode = mapping->host;
2448 	struct shmem_inode_info *info = SHMEM_I(inode);
2449 	pgoff_t index = pos >> PAGE_SHIFT;
2450 
2451 	/* i_mutex is held by caller */
2452 	if (unlikely(info->seals & (F_SEAL_GROW |
2453 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2454 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2455 			return -EPERM;
2456 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2457 			return -EPERM;
2458 	}
2459 
2460 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2461 }
2462 
2463 static int
2464 shmem_write_end(struct file *file, struct address_space *mapping,
2465 			loff_t pos, unsigned len, unsigned copied,
2466 			struct page *page, void *fsdata)
2467 {
2468 	struct inode *inode = mapping->host;
2469 
2470 	if (pos + copied > inode->i_size)
2471 		i_size_write(inode, pos + copied);
2472 
2473 	if (!PageUptodate(page)) {
2474 		struct page *head = compound_head(page);
2475 		if (PageTransCompound(page)) {
2476 			int i;
2477 
2478 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2479 				if (head + i == page)
2480 					continue;
2481 				clear_highpage(head + i);
2482 				flush_dcache_page(head + i);
2483 			}
2484 		}
2485 		if (copied < PAGE_SIZE) {
2486 			unsigned from = pos & (PAGE_SIZE - 1);
2487 			zero_user_segments(page, 0, from,
2488 					from + copied, PAGE_SIZE);
2489 		}
2490 		SetPageUptodate(head);
2491 	}
2492 	set_page_dirty(page);
2493 	unlock_page(page);
2494 	put_page(page);
2495 
2496 	return copied;
2497 }
2498 
2499 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2500 {
2501 	struct file *file = iocb->ki_filp;
2502 	struct inode *inode = file_inode(file);
2503 	struct address_space *mapping = inode->i_mapping;
2504 	pgoff_t index;
2505 	unsigned long offset;
2506 	enum sgp_type sgp = SGP_READ;
2507 	int error = 0;
2508 	ssize_t retval = 0;
2509 	loff_t *ppos = &iocb->ki_pos;
2510 
2511 	/*
2512 	 * Might this read be for a stacking filesystem?  Then when reading
2513 	 * holes of a sparse file, we actually need to allocate those pages,
2514 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2515 	 */
2516 	if (!iter_is_iovec(to))
2517 		sgp = SGP_CACHE;
2518 
2519 	index = *ppos >> PAGE_SHIFT;
2520 	offset = *ppos & ~PAGE_MASK;
2521 
2522 	for (;;) {
2523 		struct page *page = NULL;
2524 		pgoff_t end_index;
2525 		unsigned long nr, ret;
2526 		loff_t i_size = i_size_read(inode);
2527 
2528 		end_index = i_size >> PAGE_SHIFT;
2529 		if (index > end_index)
2530 			break;
2531 		if (index == end_index) {
2532 			nr = i_size & ~PAGE_MASK;
2533 			if (nr <= offset)
2534 				break;
2535 		}
2536 
2537 		error = shmem_getpage(inode, index, &page, sgp);
2538 		if (error) {
2539 			if (error == -EINVAL)
2540 				error = 0;
2541 			break;
2542 		}
2543 		if (page) {
2544 			if (sgp == SGP_CACHE)
2545 				set_page_dirty(page);
2546 			unlock_page(page);
2547 		}
2548 
2549 		/*
2550 		 * We must evaluate after, since reads (unlike writes)
2551 		 * are called without i_mutex protection against truncate
2552 		 */
2553 		nr = PAGE_SIZE;
2554 		i_size = i_size_read(inode);
2555 		end_index = i_size >> PAGE_SHIFT;
2556 		if (index == end_index) {
2557 			nr = i_size & ~PAGE_MASK;
2558 			if (nr <= offset) {
2559 				if (page)
2560 					put_page(page);
2561 				break;
2562 			}
2563 		}
2564 		nr -= offset;
2565 
2566 		if (page) {
2567 			/*
2568 			 * If users can be writing to this page using arbitrary
2569 			 * virtual addresses, take care about potential aliasing
2570 			 * before reading the page on the kernel side.
2571 			 */
2572 			if (mapping_writably_mapped(mapping))
2573 				flush_dcache_page(page);
2574 			/*
2575 			 * Mark the page accessed if we read the beginning.
2576 			 */
2577 			if (!offset)
2578 				mark_page_accessed(page);
2579 		} else {
2580 			page = ZERO_PAGE(0);
2581 			get_page(page);
2582 		}
2583 
2584 		/*
2585 		 * Ok, we have the page, and it's up-to-date, so
2586 		 * now we can copy it to user space...
2587 		 */
2588 		ret = copy_page_to_iter(page, offset, nr, to);
2589 		retval += ret;
2590 		offset += ret;
2591 		index += offset >> PAGE_SHIFT;
2592 		offset &= ~PAGE_MASK;
2593 
2594 		put_page(page);
2595 		if (!iov_iter_count(to))
2596 			break;
2597 		if (ret < nr) {
2598 			error = -EFAULT;
2599 			break;
2600 		}
2601 		cond_resched();
2602 	}
2603 
2604 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2605 	file_accessed(file);
2606 	return retval ? retval : error;
2607 }
2608 
2609 /*
2610  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2611  */
2612 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2613 				    pgoff_t index, pgoff_t end, int whence)
2614 {
2615 	struct page *page;
2616 	struct pagevec pvec;
2617 	pgoff_t indices[PAGEVEC_SIZE];
2618 	bool done = false;
2619 	int i;
2620 
2621 	pagevec_init(&pvec);
2622 	pvec.nr = 1;		/* start small: we may be there already */
2623 	while (!done) {
2624 		pvec.nr = find_get_entries(mapping, index,
2625 					pvec.nr, pvec.pages, indices);
2626 		if (!pvec.nr) {
2627 			if (whence == SEEK_DATA)
2628 				index = end;
2629 			break;
2630 		}
2631 		for (i = 0; i < pvec.nr; i++, index++) {
2632 			if (index < indices[i]) {
2633 				if (whence == SEEK_HOLE) {
2634 					done = true;
2635 					break;
2636 				}
2637 				index = indices[i];
2638 			}
2639 			page = pvec.pages[i];
2640 			if (page && !xa_is_value(page)) {
2641 				if (!PageUptodate(page))
2642 					page = NULL;
2643 			}
2644 			if (index >= end ||
2645 			    (page && whence == SEEK_DATA) ||
2646 			    (!page && whence == SEEK_HOLE)) {
2647 				done = true;
2648 				break;
2649 			}
2650 		}
2651 		pagevec_remove_exceptionals(&pvec);
2652 		pagevec_release(&pvec);
2653 		pvec.nr = PAGEVEC_SIZE;
2654 		cond_resched();
2655 	}
2656 	return index;
2657 }
2658 
2659 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2660 {
2661 	struct address_space *mapping = file->f_mapping;
2662 	struct inode *inode = mapping->host;
2663 	pgoff_t start, end;
2664 	loff_t new_offset;
2665 
2666 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2667 		return generic_file_llseek_size(file, offset, whence,
2668 					MAX_LFS_FILESIZE, i_size_read(inode));
2669 	inode_lock(inode);
2670 	/* We're holding i_mutex so we can access i_size directly */
2671 
2672 	if (offset < 0 || offset >= inode->i_size)
2673 		offset = -ENXIO;
2674 	else {
2675 		start = offset >> PAGE_SHIFT;
2676 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2677 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2678 		new_offset <<= PAGE_SHIFT;
2679 		if (new_offset > offset) {
2680 			if (new_offset < inode->i_size)
2681 				offset = new_offset;
2682 			else if (whence == SEEK_DATA)
2683 				offset = -ENXIO;
2684 			else
2685 				offset = inode->i_size;
2686 		}
2687 	}
2688 
2689 	if (offset >= 0)
2690 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2691 	inode_unlock(inode);
2692 	return offset;
2693 }
2694 
2695 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2696 							 loff_t len)
2697 {
2698 	struct inode *inode = file_inode(file);
2699 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2700 	struct shmem_inode_info *info = SHMEM_I(inode);
2701 	struct shmem_falloc shmem_falloc;
2702 	pgoff_t start, index, end;
2703 	int error;
2704 
2705 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2706 		return -EOPNOTSUPP;
2707 
2708 	inode_lock(inode);
2709 
2710 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2711 		struct address_space *mapping = file->f_mapping;
2712 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2713 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2714 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2715 
2716 		/* protected by i_mutex */
2717 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2718 			error = -EPERM;
2719 			goto out;
2720 		}
2721 
2722 		shmem_falloc.waitq = &shmem_falloc_waitq;
2723 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2724 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2725 		spin_lock(&inode->i_lock);
2726 		inode->i_private = &shmem_falloc;
2727 		spin_unlock(&inode->i_lock);
2728 
2729 		if ((u64)unmap_end > (u64)unmap_start)
2730 			unmap_mapping_range(mapping, unmap_start,
2731 					    1 + unmap_end - unmap_start, 0);
2732 		shmem_truncate_range(inode, offset, offset + len - 1);
2733 		/* No need to unmap again: hole-punching leaves COWed pages */
2734 
2735 		spin_lock(&inode->i_lock);
2736 		inode->i_private = NULL;
2737 		wake_up_all(&shmem_falloc_waitq);
2738 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2739 		spin_unlock(&inode->i_lock);
2740 		error = 0;
2741 		goto out;
2742 	}
2743 
2744 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2745 	error = inode_newsize_ok(inode, offset + len);
2746 	if (error)
2747 		goto out;
2748 
2749 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2750 		error = -EPERM;
2751 		goto out;
2752 	}
2753 
2754 	start = offset >> PAGE_SHIFT;
2755 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2756 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2757 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2758 		error = -ENOSPC;
2759 		goto out;
2760 	}
2761 
2762 	shmem_falloc.waitq = NULL;
2763 	shmem_falloc.start = start;
2764 	shmem_falloc.next  = start;
2765 	shmem_falloc.nr_falloced = 0;
2766 	shmem_falloc.nr_unswapped = 0;
2767 	spin_lock(&inode->i_lock);
2768 	inode->i_private = &shmem_falloc;
2769 	spin_unlock(&inode->i_lock);
2770 
2771 	for (index = start; index < end; index++) {
2772 		struct page *page;
2773 
2774 		/*
2775 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2776 		 * been interrupted because we are using up too much memory.
2777 		 */
2778 		if (signal_pending(current))
2779 			error = -EINTR;
2780 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2781 			error = -ENOMEM;
2782 		else
2783 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2784 		if (error) {
2785 			/* Remove the !PageUptodate pages we added */
2786 			if (index > start) {
2787 				shmem_undo_range(inode,
2788 				    (loff_t)start << PAGE_SHIFT,
2789 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2790 			}
2791 			goto undone;
2792 		}
2793 
2794 		/*
2795 		 * Inform shmem_writepage() how far we have reached.
2796 		 * No need for lock or barrier: we have the page lock.
2797 		 */
2798 		shmem_falloc.next++;
2799 		if (!PageUptodate(page))
2800 			shmem_falloc.nr_falloced++;
2801 
2802 		/*
2803 		 * If !PageUptodate, leave it that way so that freeable pages
2804 		 * can be recognized if we need to rollback on error later.
2805 		 * But set_page_dirty so that memory pressure will swap rather
2806 		 * than free the pages we are allocating (and SGP_CACHE pages
2807 		 * might still be clean: we now need to mark those dirty too).
2808 		 */
2809 		set_page_dirty(page);
2810 		unlock_page(page);
2811 		put_page(page);
2812 		cond_resched();
2813 	}
2814 
2815 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2816 		i_size_write(inode, offset + len);
2817 	inode->i_ctime = current_time(inode);
2818 undone:
2819 	spin_lock(&inode->i_lock);
2820 	inode->i_private = NULL;
2821 	spin_unlock(&inode->i_lock);
2822 out:
2823 	inode_unlock(inode);
2824 	return error;
2825 }
2826 
2827 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2828 {
2829 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2830 
2831 	buf->f_type = TMPFS_MAGIC;
2832 	buf->f_bsize = PAGE_SIZE;
2833 	buf->f_namelen = NAME_MAX;
2834 	if (sbinfo->max_blocks) {
2835 		buf->f_blocks = sbinfo->max_blocks;
2836 		buf->f_bavail =
2837 		buf->f_bfree  = sbinfo->max_blocks -
2838 				percpu_counter_sum(&sbinfo->used_blocks);
2839 	}
2840 	if (sbinfo->max_inodes) {
2841 		buf->f_files = sbinfo->max_inodes;
2842 		buf->f_ffree = sbinfo->free_inodes;
2843 	}
2844 	/* else leave those fields 0 like simple_statfs */
2845 	return 0;
2846 }
2847 
2848 /*
2849  * File creation. Allocate an inode, and we're done..
2850  */
2851 static int
2852 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2853 {
2854 	struct inode *inode;
2855 	int error = -ENOSPC;
2856 
2857 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2858 	if (inode) {
2859 		error = simple_acl_create(dir, inode);
2860 		if (error)
2861 			goto out_iput;
2862 		error = security_inode_init_security(inode, dir,
2863 						     &dentry->d_name,
2864 						     shmem_initxattrs, NULL);
2865 		if (error && error != -EOPNOTSUPP)
2866 			goto out_iput;
2867 
2868 		error = 0;
2869 		dir->i_size += BOGO_DIRENT_SIZE;
2870 		dir->i_ctime = dir->i_mtime = current_time(dir);
2871 		d_instantiate(dentry, inode);
2872 		dget(dentry); /* Extra count - pin the dentry in core */
2873 	}
2874 	return error;
2875 out_iput:
2876 	iput(inode);
2877 	return error;
2878 }
2879 
2880 static int
2881 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2882 {
2883 	struct inode *inode;
2884 	int error = -ENOSPC;
2885 
2886 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2887 	if (inode) {
2888 		error = security_inode_init_security(inode, dir,
2889 						     NULL,
2890 						     shmem_initxattrs, NULL);
2891 		if (error && error != -EOPNOTSUPP)
2892 			goto out_iput;
2893 		error = simple_acl_create(dir, inode);
2894 		if (error)
2895 			goto out_iput;
2896 		d_tmpfile(dentry, inode);
2897 	}
2898 	return error;
2899 out_iput:
2900 	iput(inode);
2901 	return error;
2902 }
2903 
2904 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2905 {
2906 	int error;
2907 
2908 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2909 		return error;
2910 	inc_nlink(dir);
2911 	return 0;
2912 }
2913 
2914 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2915 		bool excl)
2916 {
2917 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2918 }
2919 
2920 /*
2921  * Link a file..
2922  */
2923 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2924 {
2925 	struct inode *inode = d_inode(old_dentry);
2926 	int ret = 0;
2927 
2928 	/*
2929 	 * No ordinary (disk based) filesystem counts links as inodes;
2930 	 * but each new link needs a new dentry, pinning lowmem, and
2931 	 * tmpfs dentries cannot be pruned until they are unlinked.
2932 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2933 	 * first link must skip that, to get the accounting right.
2934 	 */
2935 	if (inode->i_nlink) {
2936 		ret = shmem_reserve_inode(inode->i_sb);
2937 		if (ret)
2938 			goto out;
2939 	}
2940 
2941 	dir->i_size += BOGO_DIRENT_SIZE;
2942 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2943 	inc_nlink(inode);
2944 	ihold(inode);	/* New dentry reference */
2945 	dget(dentry);		/* Extra pinning count for the created dentry */
2946 	d_instantiate(dentry, inode);
2947 out:
2948 	return ret;
2949 }
2950 
2951 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2952 {
2953 	struct inode *inode = d_inode(dentry);
2954 
2955 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2956 		shmem_free_inode(inode->i_sb);
2957 
2958 	dir->i_size -= BOGO_DIRENT_SIZE;
2959 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2960 	drop_nlink(inode);
2961 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2962 	return 0;
2963 }
2964 
2965 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2966 {
2967 	if (!simple_empty(dentry))
2968 		return -ENOTEMPTY;
2969 
2970 	drop_nlink(d_inode(dentry));
2971 	drop_nlink(dir);
2972 	return shmem_unlink(dir, dentry);
2973 }
2974 
2975 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2976 {
2977 	bool old_is_dir = d_is_dir(old_dentry);
2978 	bool new_is_dir = d_is_dir(new_dentry);
2979 
2980 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2981 		if (old_is_dir) {
2982 			drop_nlink(old_dir);
2983 			inc_nlink(new_dir);
2984 		} else {
2985 			drop_nlink(new_dir);
2986 			inc_nlink(old_dir);
2987 		}
2988 	}
2989 	old_dir->i_ctime = old_dir->i_mtime =
2990 	new_dir->i_ctime = new_dir->i_mtime =
2991 	d_inode(old_dentry)->i_ctime =
2992 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2993 
2994 	return 0;
2995 }
2996 
2997 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2998 {
2999 	struct dentry *whiteout;
3000 	int error;
3001 
3002 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3003 	if (!whiteout)
3004 		return -ENOMEM;
3005 
3006 	error = shmem_mknod(old_dir, whiteout,
3007 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3008 	dput(whiteout);
3009 	if (error)
3010 		return error;
3011 
3012 	/*
3013 	 * Cheat and hash the whiteout while the old dentry is still in
3014 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3015 	 *
3016 	 * d_lookup() will consistently find one of them at this point,
3017 	 * not sure which one, but that isn't even important.
3018 	 */
3019 	d_rehash(whiteout);
3020 	return 0;
3021 }
3022 
3023 /*
3024  * The VFS layer already does all the dentry stuff for rename,
3025  * we just have to decrement the usage count for the target if
3026  * it exists so that the VFS layer correctly free's it when it
3027  * gets overwritten.
3028  */
3029 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3030 {
3031 	struct inode *inode = d_inode(old_dentry);
3032 	int they_are_dirs = S_ISDIR(inode->i_mode);
3033 
3034 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3035 		return -EINVAL;
3036 
3037 	if (flags & RENAME_EXCHANGE)
3038 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3039 
3040 	if (!simple_empty(new_dentry))
3041 		return -ENOTEMPTY;
3042 
3043 	if (flags & RENAME_WHITEOUT) {
3044 		int error;
3045 
3046 		error = shmem_whiteout(old_dir, old_dentry);
3047 		if (error)
3048 			return error;
3049 	}
3050 
3051 	if (d_really_is_positive(new_dentry)) {
3052 		(void) shmem_unlink(new_dir, new_dentry);
3053 		if (they_are_dirs) {
3054 			drop_nlink(d_inode(new_dentry));
3055 			drop_nlink(old_dir);
3056 		}
3057 	} else if (they_are_dirs) {
3058 		drop_nlink(old_dir);
3059 		inc_nlink(new_dir);
3060 	}
3061 
3062 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3063 	new_dir->i_size += BOGO_DIRENT_SIZE;
3064 	old_dir->i_ctime = old_dir->i_mtime =
3065 	new_dir->i_ctime = new_dir->i_mtime =
3066 	inode->i_ctime = current_time(old_dir);
3067 	return 0;
3068 }
3069 
3070 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3071 {
3072 	int error;
3073 	int len;
3074 	struct inode *inode;
3075 	struct page *page;
3076 
3077 	len = strlen(symname) + 1;
3078 	if (len > PAGE_SIZE)
3079 		return -ENAMETOOLONG;
3080 
3081 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3082 				VM_NORESERVE);
3083 	if (!inode)
3084 		return -ENOSPC;
3085 
3086 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3087 					     shmem_initxattrs, NULL);
3088 	if (error && error != -EOPNOTSUPP) {
3089 		iput(inode);
3090 		return error;
3091 	}
3092 
3093 	inode->i_size = len-1;
3094 	if (len <= SHORT_SYMLINK_LEN) {
3095 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3096 		if (!inode->i_link) {
3097 			iput(inode);
3098 			return -ENOMEM;
3099 		}
3100 		inode->i_op = &shmem_short_symlink_operations;
3101 	} else {
3102 		inode_nohighmem(inode);
3103 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3104 		if (error) {
3105 			iput(inode);
3106 			return error;
3107 		}
3108 		inode->i_mapping->a_ops = &shmem_aops;
3109 		inode->i_op = &shmem_symlink_inode_operations;
3110 		memcpy(page_address(page), symname, len);
3111 		SetPageUptodate(page);
3112 		set_page_dirty(page);
3113 		unlock_page(page);
3114 		put_page(page);
3115 	}
3116 	dir->i_size += BOGO_DIRENT_SIZE;
3117 	dir->i_ctime = dir->i_mtime = current_time(dir);
3118 	d_instantiate(dentry, inode);
3119 	dget(dentry);
3120 	return 0;
3121 }
3122 
3123 static void shmem_put_link(void *arg)
3124 {
3125 	mark_page_accessed(arg);
3126 	put_page(arg);
3127 }
3128 
3129 static const char *shmem_get_link(struct dentry *dentry,
3130 				  struct inode *inode,
3131 				  struct delayed_call *done)
3132 {
3133 	struct page *page = NULL;
3134 	int error;
3135 	if (!dentry) {
3136 		page = find_get_page(inode->i_mapping, 0);
3137 		if (!page)
3138 			return ERR_PTR(-ECHILD);
3139 		if (!PageUptodate(page)) {
3140 			put_page(page);
3141 			return ERR_PTR(-ECHILD);
3142 		}
3143 	} else {
3144 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3145 		if (error)
3146 			return ERR_PTR(error);
3147 		unlock_page(page);
3148 	}
3149 	set_delayed_call(done, shmem_put_link, page);
3150 	return page_address(page);
3151 }
3152 
3153 #ifdef CONFIG_TMPFS_XATTR
3154 /*
3155  * Superblocks without xattr inode operations may get some security.* xattr
3156  * support from the LSM "for free". As soon as we have any other xattrs
3157  * like ACLs, we also need to implement the security.* handlers at
3158  * filesystem level, though.
3159  */
3160 
3161 /*
3162  * Callback for security_inode_init_security() for acquiring xattrs.
3163  */
3164 static int shmem_initxattrs(struct inode *inode,
3165 			    const struct xattr *xattr_array,
3166 			    void *fs_info)
3167 {
3168 	struct shmem_inode_info *info = SHMEM_I(inode);
3169 	const struct xattr *xattr;
3170 	struct simple_xattr *new_xattr;
3171 	size_t len;
3172 
3173 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3174 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3175 		if (!new_xattr)
3176 			return -ENOMEM;
3177 
3178 		len = strlen(xattr->name) + 1;
3179 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3180 					  GFP_KERNEL);
3181 		if (!new_xattr->name) {
3182 			kfree(new_xattr);
3183 			return -ENOMEM;
3184 		}
3185 
3186 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3187 		       XATTR_SECURITY_PREFIX_LEN);
3188 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3189 		       xattr->name, len);
3190 
3191 		simple_xattr_list_add(&info->xattrs, new_xattr);
3192 	}
3193 
3194 	return 0;
3195 }
3196 
3197 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3198 				   struct dentry *unused, struct inode *inode,
3199 				   const char *name, void *buffer, size_t size)
3200 {
3201 	struct shmem_inode_info *info = SHMEM_I(inode);
3202 
3203 	name = xattr_full_name(handler, name);
3204 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3205 }
3206 
3207 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3208 				   struct dentry *unused, struct inode *inode,
3209 				   const char *name, const void *value,
3210 				   size_t size, int flags)
3211 {
3212 	struct shmem_inode_info *info = SHMEM_I(inode);
3213 
3214 	name = xattr_full_name(handler, name);
3215 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3216 }
3217 
3218 static const struct xattr_handler shmem_security_xattr_handler = {
3219 	.prefix = XATTR_SECURITY_PREFIX,
3220 	.get = shmem_xattr_handler_get,
3221 	.set = shmem_xattr_handler_set,
3222 };
3223 
3224 static const struct xattr_handler shmem_trusted_xattr_handler = {
3225 	.prefix = XATTR_TRUSTED_PREFIX,
3226 	.get = shmem_xattr_handler_get,
3227 	.set = shmem_xattr_handler_set,
3228 };
3229 
3230 static const struct xattr_handler *shmem_xattr_handlers[] = {
3231 #ifdef CONFIG_TMPFS_POSIX_ACL
3232 	&posix_acl_access_xattr_handler,
3233 	&posix_acl_default_xattr_handler,
3234 #endif
3235 	&shmem_security_xattr_handler,
3236 	&shmem_trusted_xattr_handler,
3237 	NULL
3238 };
3239 
3240 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3241 {
3242 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3243 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3244 }
3245 #endif /* CONFIG_TMPFS_XATTR */
3246 
3247 static const struct inode_operations shmem_short_symlink_operations = {
3248 	.get_link	= simple_get_link,
3249 #ifdef CONFIG_TMPFS_XATTR
3250 	.listxattr	= shmem_listxattr,
3251 #endif
3252 };
3253 
3254 static const struct inode_operations shmem_symlink_inode_operations = {
3255 	.get_link	= shmem_get_link,
3256 #ifdef CONFIG_TMPFS_XATTR
3257 	.listxattr	= shmem_listxattr,
3258 #endif
3259 };
3260 
3261 static struct dentry *shmem_get_parent(struct dentry *child)
3262 {
3263 	return ERR_PTR(-ESTALE);
3264 }
3265 
3266 static int shmem_match(struct inode *ino, void *vfh)
3267 {
3268 	__u32 *fh = vfh;
3269 	__u64 inum = fh[2];
3270 	inum = (inum << 32) | fh[1];
3271 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3272 }
3273 
3274 /* Find any alias of inode, but prefer a hashed alias */
3275 static struct dentry *shmem_find_alias(struct inode *inode)
3276 {
3277 	struct dentry *alias = d_find_alias(inode);
3278 
3279 	return alias ?: d_find_any_alias(inode);
3280 }
3281 
3282 
3283 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3284 		struct fid *fid, int fh_len, int fh_type)
3285 {
3286 	struct inode *inode;
3287 	struct dentry *dentry = NULL;
3288 	u64 inum;
3289 
3290 	if (fh_len < 3)
3291 		return NULL;
3292 
3293 	inum = fid->raw[2];
3294 	inum = (inum << 32) | fid->raw[1];
3295 
3296 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3297 			shmem_match, fid->raw);
3298 	if (inode) {
3299 		dentry = shmem_find_alias(inode);
3300 		iput(inode);
3301 	}
3302 
3303 	return dentry;
3304 }
3305 
3306 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3307 				struct inode *parent)
3308 {
3309 	if (*len < 3) {
3310 		*len = 3;
3311 		return FILEID_INVALID;
3312 	}
3313 
3314 	if (inode_unhashed(inode)) {
3315 		/* Unfortunately insert_inode_hash is not idempotent,
3316 		 * so as we hash inodes here rather than at creation
3317 		 * time, we need a lock to ensure we only try
3318 		 * to do it once
3319 		 */
3320 		static DEFINE_SPINLOCK(lock);
3321 		spin_lock(&lock);
3322 		if (inode_unhashed(inode))
3323 			__insert_inode_hash(inode,
3324 					    inode->i_ino + inode->i_generation);
3325 		spin_unlock(&lock);
3326 	}
3327 
3328 	fh[0] = inode->i_generation;
3329 	fh[1] = inode->i_ino;
3330 	fh[2] = ((__u64)inode->i_ino) >> 32;
3331 
3332 	*len = 3;
3333 	return 1;
3334 }
3335 
3336 static const struct export_operations shmem_export_ops = {
3337 	.get_parent     = shmem_get_parent,
3338 	.encode_fh      = shmem_encode_fh,
3339 	.fh_to_dentry	= shmem_fh_to_dentry,
3340 };
3341 
3342 enum shmem_param {
3343 	Opt_gid,
3344 	Opt_huge,
3345 	Opt_mode,
3346 	Opt_mpol,
3347 	Opt_nr_blocks,
3348 	Opt_nr_inodes,
3349 	Opt_size,
3350 	Opt_uid,
3351 };
3352 
3353 static const struct constant_table shmem_param_enums_huge[] = {
3354 	{"never",	SHMEM_HUGE_NEVER },
3355 	{"always",	SHMEM_HUGE_ALWAYS },
3356 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3357 	{"advise",	SHMEM_HUGE_ADVISE },
3358 	{}
3359 };
3360 
3361 const struct fs_parameter_spec shmem_fs_parameters[] = {
3362 	fsparam_u32   ("gid",		Opt_gid),
3363 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3364 	fsparam_u32oct("mode",		Opt_mode),
3365 	fsparam_string("mpol",		Opt_mpol),
3366 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3367 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3368 	fsparam_string("size",		Opt_size),
3369 	fsparam_u32   ("uid",		Opt_uid),
3370 	{}
3371 };
3372 
3373 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3374 {
3375 	struct shmem_options *ctx = fc->fs_private;
3376 	struct fs_parse_result result;
3377 	unsigned long long size;
3378 	char *rest;
3379 	int opt;
3380 
3381 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3382 	if (opt < 0)
3383 		return opt;
3384 
3385 	switch (opt) {
3386 	case Opt_size:
3387 		size = memparse(param->string, &rest);
3388 		if (*rest == '%') {
3389 			size <<= PAGE_SHIFT;
3390 			size *= totalram_pages();
3391 			do_div(size, 100);
3392 			rest++;
3393 		}
3394 		if (*rest)
3395 			goto bad_value;
3396 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3397 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3398 		break;
3399 	case Opt_nr_blocks:
3400 		ctx->blocks = memparse(param->string, &rest);
3401 		if (*rest)
3402 			goto bad_value;
3403 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3404 		break;
3405 	case Opt_nr_inodes:
3406 		ctx->inodes = memparse(param->string, &rest);
3407 		if (*rest)
3408 			goto bad_value;
3409 		ctx->seen |= SHMEM_SEEN_INODES;
3410 		break;
3411 	case Opt_mode:
3412 		ctx->mode = result.uint_32 & 07777;
3413 		break;
3414 	case Opt_uid:
3415 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3416 		if (!uid_valid(ctx->uid))
3417 			goto bad_value;
3418 		break;
3419 	case Opt_gid:
3420 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3421 		if (!gid_valid(ctx->gid))
3422 			goto bad_value;
3423 		break;
3424 	case Opt_huge:
3425 		ctx->huge = result.uint_32;
3426 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3427 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3428 		      has_transparent_hugepage()))
3429 			goto unsupported_parameter;
3430 		ctx->seen |= SHMEM_SEEN_HUGE;
3431 		break;
3432 	case Opt_mpol:
3433 		if (IS_ENABLED(CONFIG_NUMA)) {
3434 			mpol_put(ctx->mpol);
3435 			ctx->mpol = NULL;
3436 			if (mpol_parse_str(param->string, &ctx->mpol))
3437 				goto bad_value;
3438 			break;
3439 		}
3440 		goto unsupported_parameter;
3441 	}
3442 	return 0;
3443 
3444 unsupported_parameter:
3445 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3446 bad_value:
3447 	return invalfc(fc, "Bad value for '%s'", param->key);
3448 }
3449 
3450 static int shmem_parse_options(struct fs_context *fc, void *data)
3451 {
3452 	char *options = data;
3453 
3454 	if (options) {
3455 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3456 		if (err)
3457 			return err;
3458 	}
3459 
3460 	while (options != NULL) {
3461 		char *this_char = options;
3462 		for (;;) {
3463 			/*
3464 			 * NUL-terminate this option: unfortunately,
3465 			 * mount options form a comma-separated list,
3466 			 * but mpol's nodelist may also contain commas.
3467 			 */
3468 			options = strchr(options, ',');
3469 			if (options == NULL)
3470 				break;
3471 			options++;
3472 			if (!isdigit(*options)) {
3473 				options[-1] = '\0';
3474 				break;
3475 			}
3476 		}
3477 		if (*this_char) {
3478 			char *value = strchr(this_char,'=');
3479 			size_t len = 0;
3480 			int err;
3481 
3482 			if (value) {
3483 				*value++ = '\0';
3484 				len = strlen(value);
3485 			}
3486 			err = vfs_parse_fs_string(fc, this_char, value, len);
3487 			if (err < 0)
3488 				return err;
3489 		}
3490 	}
3491 	return 0;
3492 }
3493 
3494 /*
3495  * Reconfigure a shmem filesystem.
3496  *
3497  * Note that we disallow change from limited->unlimited blocks/inodes while any
3498  * are in use; but we must separately disallow unlimited->limited, because in
3499  * that case we have no record of how much is already in use.
3500  */
3501 static int shmem_reconfigure(struct fs_context *fc)
3502 {
3503 	struct shmem_options *ctx = fc->fs_private;
3504 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3505 	unsigned long inodes;
3506 	const char *err;
3507 
3508 	spin_lock(&sbinfo->stat_lock);
3509 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3510 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3511 		if (!sbinfo->max_blocks) {
3512 			err = "Cannot retroactively limit size";
3513 			goto out;
3514 		}
3515 		if (percpu_counter_compare(&sbinfo->used_blocks,
3516 					   ctx->blocks) > 0) {
3517 			err = "Too small a size for current use";
3518 			goto out;
3519 		}
3520 	}
3521 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3522 		if (!sbinfo->max_inodes) {
3523 			err = "Cannot retroactively limit inodes";
3524 			goto out;
3525 		}
3526 		if (ctx->inodes < inodes) {
3527 			err = "Too few inodes for current use";
3528 			goto out;
3529 		}
3530 	}
3531 
3532 	if (ctx->seen & SHMEM_SEEN_HUGE)
3533 		sbinfo->huge = ctx->huge;
3534 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3535 		sbinfo->max_blocks  = ctx->blocks;
3536 	if (ctx->seen & SHMEM_SEEN_INODES) {
3537 		sbinfo->max_inodes  = ctx->inodes;
3538 		sbinfo->free_inodes = ctx->inodes - inodes;
3539 	}
3540 
3541 	/*
3542 	 * Preserve previous mempolicy unless mpol remount option was specified.
3543 	 */
3544 	if (ctx->mpol) {
3545 		mpol_put(sbinfo->mpol);
3546 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3547 		ctx->mpol = NULL;
3548 	}
3549 	spin_unlock(&sbinfo->stat_lock);
3550 	return 0;
3551 out:
3552 	spin_unlock(&sbinfo->stat_lock);
3553 	return invalfc(fc, "%s", err);
3554 }
3555 
3556 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3557 {
3558 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3559 
3560 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3561 		seq_printf(seq, ",size=%luk",
3562 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3563 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3564 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3565 	if (sbinfo->mode != (0777 | S_ISVTX))
3566 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3567 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3568 		seq_printf(seq, ",uid=%u",
3569 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3570 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3571 		seq_printf(seq, ",gid=%u",
3572 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3574 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3575 	if (sbinfo->huge)
3576 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3577 #endif
3578 	shmem_show_mpol(seq, sbinfo->mpol);
3579 	return 0;
3580 }
3581 
3582 #endif /* CONFIG_TMPFS */
3583 
3584 static void shmem_put_super(struct super_block *sb)
3585 {
3586 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3587 
3588 	percpu_counter_destroy(&sbinfo->used_blocks);
3589 	mpol_put(sbinfo->mpol);
3590 	kfree(sbinfo);
3591 	sb->s_fs_info = NULL;
3592 }
3593 
3594 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3595 {
3596 	struct shmem_options *ctx = fc->fs_private;
3597 	struct inode *inode;
3598 	struct shmem_sb_info *sbinfo;
3599 	int err = -ENOMEM;
3600 
3601 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3602 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3603 				L1_CACHE_BYTES), GFP_KERNEL);
3604 	if (!sbinfo)
3605 		return -ENOMEM;
3606 
3607 	sb->s_fs_info = sbinfo;
3608 
3609 #ifdef CONFIG_TMPFS
3610 	/*
3611 	 * Per default we only allow half of the physical ram per
3612 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3613 	 * but the internal instance is left unlimited.
3614 	 */
3615 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3616 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3617 			ctx->blocks = shmem_default_max_blocks();
3618 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3619 			ctx->inodes = shmem_default_max_inodes();
3620 	} else {
3621 		sb->s_flags |= SB_NOUSER;
3622 	}
3623 	sb->s_export_op = &shmem_export_ops;
3624 	sb->s_flags |= SB_NOSEC;
3625 #else
3626 	sb->s_flags |= SB_NOUSER;
3627 #endif
3628 	sbinfo->max_blocks = ctx->blocks;
3629 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3630 	sbinfo->uid = ctx->uid;
3631 	sbinfo->gid = ctx->gid;
3632 	sbinfo->mode = ctx->mode;
3633 	sbinfo->huge = ctx->huge;
3634 	sbinfo->mpol = ctx->mpol;
3635 	ctx->mpol = NULL;
3636 
3637 	spin_lock_init(&sbinfo->stat_lock);
3638 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3639 		goto failed;
3640 	spin_lock_init(&sbinfo->shrinklist_lock);
3641 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3642 
3643 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3644 	sb->s_blocksize = PAGE_SIZE;
3645 	sb->s_blocksize_bits = PAGE_SHIFT;
3646 	sb->s_magic = TMPFS_MAGIC;
3647 	sb->s_op = &shmem_ops;
3648 	sb->s_time_gran = 1;
3649 #ifdef CONFIG_TMPFS_XATTR
3650 	sb->s_xattr = shmem_xattr_handlers;
3651 #endif
3652 #ifdef CONFIG_TMPFS_POSIX_ACL
3653 	sb->s_flags |= SB_POSIXACL;
3654 #endif
3655 	uuid_gen(&sb->s_uuid);
3656 
3657 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3658 	if (!inode)
3659 		goto failed;
3660 	inode->i_uid = sbinfo->uid;
3661 	inode->i_gid = sbinfo->gid;
3662 	sb->s_root = d_make_root(inode);
3663 	if (!sb->s_root)
3664 		goto failed;
3665 	return 0;
3666 
3667 failed:
3668 	shmem_put_super(sb);
3669 	return err;
3670 }
3671 
3672 static int shmem_get_tree(struct fs_context *fc)
3673 {
3674 	return get_tree_nodev(fc, shmem_fill_super);
3675 }
3676 
3677 static void shmem_free_fc(struct fs_context *fc)
3678 {
3679 	struct shmem_options *ctx = fc->fs_private;
3680 
3681 	if (ctx) {
3682 		mpol_put(ctx->mpol);
3683 		kfree(ctx);
3684 	}
3685 }
3686 
3687 static const struct fs_context_operations shmem_fs_context_ops = {
3688 	.free			= shmem_free_fc,
3689 	.get_tree		= shmem_get_tree,
3690 #ifdef CONFIG_TMPFS
3691 	.parse_monolithic	= shmem_parse_options,
3692 	.parse_param		= shmem_parse_one,
3693 	.reconfigure		= shmem_reconfigure,
3694 #endif
3695 };
3696 
3697 static struct kmem_cache *shmem_inode_cachep;
3698 
3699 static struct inode *shmem_alloc_inode(struct super_block *sb)
3700 {
3701 	struct shmem_inode_info *info;
3702 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3703 	if (!info)
3704 		return NULL;
3705 	return &info->vfs_inode;
3706 }
3707 
3708 static void shmem_free_in_core_inode(struct inode *inode)
3709 {
3710 	if (S_ISLNK(inode->i_mode))
3711 		kfree(inode->i_link);
3712 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3713 }
3714 
3715 static void shmem_destroy_inode(struct inode *inode)
3716 {
3717 	if (S_ISREG(inode->i_mode))
3718 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3719 }
3720 
3721 static void shmem_init_inode(void *foo)
3722 {
3723 	struct shmem_inode_info *info = foo;
3724 	inode_init_once(&info->vfs_inode);
3725 }
3726 
3727 static void shmem_init_inodecache(void)
3728 {
3729 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3730 				sizeof(struct shmem_inode_info),
3731 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3732 }
3733 
3734 static void shmem_destroy_inodecache(void)
3735 {
3736 	kmem_cache_destroy(shmem_inode_cachep);
3737 }
3738 
3739 static const struct address_space_operations shmem_aops = {
3740 	.writepage	= shmem_writepage,
3741 	.set_page_dirty	= __set_page_dirty_no_writeback,
3742 #ifdef CONFIG_TMPFS
3743 	.write_begin	= shmem_write_begin,
3744 	.write_end	= shmem_write_end,
3745 #endif
3746 #ifdef CONFIG_MIGRATION
3747 	.migratepage	= migrate_page,
3748 #endif
3749 	.error_remove_page = generic_error_remove_page,
3750 };
3751 
3752 static const struct file_operations shmem_file_operations = {
3753 	.mmap		= shmem_mmap,
3754 	.get_unmapped_area = shmem_get_unmapped_area,
3755 #ifdef CONFIG_TMPFS
3756 	.llseek		= shmem_file_llseek,
3757 	.read_iter	= shmem_file_read_iter,
3758 	.write_iter	= generic_file_write_iter,
3759 	.fsync		= noop_fsync,
3760 	.splice_read	= generic_file_splice_read,
3761 	.splice_write	= iter_file_splice_write,
3762 	.fallocate	= shmem_fallocate,
3763 #endif
3764 };
3765 
3766 static const struct inode_operations shmem_inode_operations = {
3767 	.getattr	= shmem_getattr,
3768 	.setattr	= shmem_setattr,
3769 #ifdef CONFIG_TMPFS_XATTR
3770 	.listxattr	= shmem_listxattr,
3771 	.set_acl	= simple_set_acl,
3772 #endif
3773 };
3774 
3775 static const struct inode_operations shmem_dir_inode_operations = {
3776 #ifdef CONFIG_TMPFS
3777 	.create		= shmem_create,
3778 	.lookup		= simple_lookup,
3779 	.link		= shmem_link,
3780 	.unlink		= shmem_unlink,
3781 	.symlink	= shmem_symlink,
3782 	.mkdir		= shmem_mkdir,
3783 	.rmdir		= shmem_rmdir,
3784 	.mknod		= shmem_mknod,
3785 	.rename		= shmem_rename2,
3786 	.tmpfile	= shmem_tmpfile,
3787 #endif
3788 #ifdef CONFIG_TMPFS_XATTR
3789 	.listxattr	= shmem_listxattr,
3790 #endif
3791 #ifdef CONFIG_TMPFS_POSIX_ACL
3792 	.setattr	= shmem_setattr,
3793 	.set_acl	= simple_set_acl,
3794 #endif
3795 };
3796 
3797 static const struct inode_operations shmem_special_inode_operations = {
3798 #ifdef CONFIG_TMPFS_XATTR
3799 	.listxattr	= shmem_listxattr,
3800 #endif
3801 #ifdef CONFIG_TMPFS_POSIX_ACL
3802 	.setattr	= shmem_setattr,
3803 	.set_acl	= simple_set_acl,
3804 #endif
3805 };
3806 
3807 static const struct super_operations shmem_ops = {
3808 	.alloc_inode	= shmem_alloc_inode,
3809 	.free_inode	= shmem_free_in_core_inode,
3810 	.destroy_inode	= shmem_destroy_inode,
3811 #ifdef CONFIG_TMPFS
3812 	.statfs		= shmem_statfs,
3813 	.show_options	= shmem_show_options,
3814 #endif
3815 	.evict_inode	= shmem_evict_inode,
3816 	.drop_inode	= generic_delete_inode,
3817 	.put_super	= shmem_put_super,
3818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3819 	.nr_cached_objects	= shmem_unused_huge_count,
3820 	.free_cached_objects	= shmem_unused_huge_scan,
3821 #endif
3822 };
3823 
3824 static const struct vm_operations_struct shmem_vm_ops = {
3825 	.fault		= shmem_fault,
3826 	.map_pages	= filemap_map_pages,
3827 #ifdef CONFIG_NUMA
3828 	.set_policy     = shmem_set_policy,
3829 	.get_policy     = shmem_get_policy,
3830 #endif
3831 };
3832 
3833 int shmem_init_fs_context(struct fs_context *fc)
3834 {
3835 	struct shmem_options *ctx;
3836 
3837 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3838 	if (!ctx)
3839 		return -ENOMEM;
3840 
3841 	ctx->mode = 0777 | S_ISVTX;
3842 	ctx->uid = current_fsuid();
3843 	ctx->gid = current_fsgid();
3844 
3845 	fc->fs_private = ctx;
3846 	fc->ops = &shmem_fs_context_ops;
3847 	return 0;
3848 }
3849 
3850 static struct file_system_type shmem_fs_type = {
3851 	.owner		= THIS_MODULE,
3852 	.name		= "tmpfs",
3853 	.init_fs_context = shmem_init_fs_context,
3854 #ifdef CONFIG_TMPFS
3855 	.parameters	= shmem_fs_parameters,
3856 #endif
3857 	.kill_sb	= kill_litter_super,
3858 	.fs_flags	= FS_USERNS_MOUNT,
3859 };
3860 
3861 int __init shmem_init(void)
3862 {
3863 	int error;
3864 
3865 	shmem_init_inodecache();
3866 
3867 	error = register_filesystem(&shmem_fs_type);
3868 	if (error) {
3869 		pr_err("Could not register tmpfs\n");
3870 		goto out2;
3871 	}
3872 
3873 	shm_mnt = kern_mount(&shmem_fs_type);
3874 	if (IS_ERR(shm_mnt)) {
3875 		error = PTR_ERR(shm_mnt);
3876 		pr_err("Could not kern_mount tmpfs\n");
3877 		goto out1;
3878 	}
3879 
3880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3881 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3882 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3883 	else
3884 		shmem_huge = 0; /* just in case it was patched */
3885 #endif
3886 	return 0;
3887 
3888 out1:
3889 	unregister_filesystem(&shmem_fs_type);
3890 out2:
3891 	shmem_destroy_inodecache();
3892 	shm_mnt = ERR_PTR(error);
3893 	return error;
3894 }
3895 
3896 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3897 static ssize_t shmem_enabled_show(struct kobject *kobj,
3898 		struct kobj_attribute *attr, char *buf)
3899 {
3900 	static const int values[] = {
3901 		SHMEM_HUGE_ALWAYS,
3902 		SHMEM_HUGE_WITHIN_SIZE,
3903 		SHMEM_HUGE_ADVISE,
3904 		SHMEM_HUGE_NEVER,
3905 		SHMEM_HUGE_DENY,
3906 		SHMEM_HUGE_FORCE,
3907 	};
3908 	int i, count;
3909 
3910 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3911 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3912 
3913 		count += sprintf(buf + count, fmt,
3914 				shmem_format_huge(values[i]));
3915 	}
3916 	buf[count - 1] = '\n';
3917 	return count;
3918 }
3919 
3920 static ssize_t shmem_enabled_store(struct kobject *kobj,
3921 		struct kobj_attribute *attr, const char *buf, size_t count)
3922 {
3923 	char tmp[16];
3924 	int huge;
3925 
3926 	if (count + 1 > sizeof(tmp))
3927 		return -EINVAL;
3928 	memcpy(tmp, buf, count);
3929 	tmp[count] = '\0';
3930 	if (count && tmp[count - 1] == '\n')
3931 		tmp[count - 1] = '\0';
3932 
3933 	huge = shmem_parse_huge(tmp);
3934 	if (huge == -EINVAL)
3935 		return -EINVAL;
3936 	if (!has_transparent_hugepage() &&
3937 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3938 		return -EINVAL;
3939 
3940 	shmem_huge = huge;
3941 	if (shmem_huge > SHMEM_HUGE_DENY)
3942 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3943 	return count;
3944 }
3945 
3946 struct kobj_attribute shmem_enabled_attr =
3947 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3948 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3949 
3950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3951 bool shmem_huge_enabled(struct vm_area_struct *vma)
3952 {
3953 	struct inode *inode = file_inode(vma->vm_file);
3954 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3955 	loff_t i_size;
3956 	pgoff_t off;
3957 
3958 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3959 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3960 		return false;
3961 	if (shmem_huge == SHMEM_HUGE_FORCE)
3962 		return true;
3963 	if (shmem_huge == SHMEM_HUGE_DENY)
3964 		return false;
3965 	switch (sbinfo->huge) {
3966 		case SHMEM_HUGE_NEVER:
3967 			return false;
3968 		case SHMEM_HUGE_ALWAYS:
3969 			return true;
3970 		case SHMEM_HUGE_WITHIN_SIZE:
3971 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3972 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3973 			if (i_size >= HPAGE_PMD_SIZE &&
3974 					i_size >> PAGE_SHIFT >= off)
3975 				return true;
3976 			fallthrough;
3977 		case SHMEM_HUGE_ADVISE:
3978 			/* TODO: implement fadvise() hints */
3979 			return (vma->vm_flags & VM_HUGEPAGE);
3980 		default:
3981 			VM_BUG_ON(1);
3982 			return false;
3983 	}
3984 }
3985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3986 
3987 #else /* !CONFIG_SHMEM */
3988 
3989 /*
3990  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3991  *
3992  * This is intended for small system where the benefits of the full
3993  * shmem code (swap-backed and resource-limited) are outweighed by
3994  * their complexity. On systems without swap this code should be
3995  * effectively equivalent, but much lighter weight.
3996  */
3997 
3998 static struct file_system_type shmem_fs_type = {
3999 	.name		= "tmpfs",
4000 	.init_fs_context = ramfs_init_fs_context,
4001 	.parameters	= ramfs_fs_parameters,
4002 	.kill_sb	= kill_litter_super,
4003 	.fs_flags	= FS_USERNS_MOUNT,
4004 };
4005 
4006 int __init shmem_init(void)
4007 {
4008 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4009 
4010 	shm_mnt = kern_mount(&shmem_fs_type);
4011 	BUG_ON(IS_ERR(shm_mnt));
4012 
4013 	return 0;
4014 }
4015 
4016 int shmem_unuse(unsigned int type, bool frontswap,
4017 		unsigned long *fs_pages_to_unuse)
4018 {
4019 	return 0;
4020 }
4021 
4022 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4023 {
4024 	return 0;
4025 }
4026 
4027 void shmem_unlock_mapping(struct address_space *mapping)
4028 {
4029 }
4030 
4031 #ifdef CONFIG_MMU
4032 unsigned long shmem_get_unmapped_area(struct file *file,
4033 				      unsigned long addr, unsigned long len,
4034 				      unsigned long pgoff, unsigned long flags)
4035 {
4036 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4037 }
4038 #endif
4039 
4040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4041 {
4042 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4043 }
4044 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4045 
4046 #define shmem_vm_ops				generic_file_vm_ops
4047 #define shmem_file_operations			ramfs_file_operations
4048 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4049 #define shmem_acct_size(flags, size)		0
4050 #define shmem_unacct_size(flags, size)		do {} while (0)
4051 
4052 #endif /* CONFIG_SHMEM */
4053 
4054 /* common code */
4055 
4056 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4057 				       unsigned long flags, unsigned int i_flags)
4058 {
4059 	struct inode *inode;
4060 	struct file *res;
4061 
4062 	if (IS_ERR(mnt))
4063 		return ERR_CAST(mnt);
4064 
4065 	if (size < 0 || size > MAX_LFS_FILESIZE)
4066 		return ERR_PTR(-EINVAL);
4067 
4068 	if (shmem_acct_size(flags, size))
4069 		return ERR_PTR(-ENOMEM);
4070 
4071 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4072 				flags);
4073 	if (unlikely(!inode)) {
4074 		shmem_unacct_size(flags, size);
4075 		return ERR_PTR(-ENOSPC);
4076 	}
4077 	inode->i_flags |= i_flags;
4078 	inode->i_size = size;
4079 	clear_nlink(inode);	/* It is unlinked */
4080 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4081 	if (!IS_ERR(res))
4082 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4083 				&shmem_file_operations);
4084 	if (IS_ERR(res))
4085 		iput(inode);
4086 	return res;
4087 }
4088 
4089 /**
4090  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4091  * 	kernel internal.  There will be NO LSM permission checks against the
4092  * 	underlying inode.  So users of this interface must do LSM checks at a
4093  *	higher layer.  The users are the big_key and shm implementations.  LSM
4094  *	checks are provided at the key or shm level rather than the inode.
4095  * @name: name for dentry (to be seen in /proc/<pid>/maps
4096  * @size: size to be set for the file
4097  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4098  */
4099 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4100 {
4101 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4102 }
4103 
4104 /**
4105  * shmem_file_setup - get an unlinked file living in tmpfs
4106  * @name: name for dentry (to be seen in /proc/<pid>/maps
4107  * @size: size to be set for the file
4108  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4109  */
4110 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4111 {
4112 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4113 }
4114 EXPORT_SYMBOL_GPL(shmem_file_setup);
4115 
4116 /**
4117  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4118  * @mnt: the tmpfs mount where the file will be created
4119  * @name: name for dentry (to be seen in /proc/<pid>/maps
4120  * @size: size to be set for the file
4121  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4122  */
4123 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4124 				       loff_t size, unsigned long flags)
4125 {
4126 	return __shmem_file_setup(mnt, name, size, flags, 0);
4127 }
4128 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4129 
4130 /**
4131  * shmem_zero_setup - setup a shared anonymous mapping
4132  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4133  */
4134 int shmem_zero_setup(struct vm_area_struct *vma)
4135 {
4136 	struct file *file;
4137 	loff_t size = vma->vm_end - vma->vm_start;
4138 
4139 	/*
4140 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4141 	 * between XFS directory reading and selinux: since this file is only
4142 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4143 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4144 	 */
4145 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4146 	if (IS_ERR(file))
4147 		return PTR_ERR(file);
4148 
4149 	if (vma->vm_file)
4150 		fput(vma->vm_file);
4151 	vma->vm_file = file;
4152 	vma->vm_ops = &shmem_vm_ops;
4153 
4154 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4155 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4156 			(vma->vm_end & HPAGE_PMD_MASK)) {
4157 		khugepaged_enter(vma, vma->vm_flags);
4158 	}
4159 
4160 	return 0;
4161 }
4162 
4163 /**
4164  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4165  * @mapping:	the page's address_space
4166  * @index:	the page index
4167  * @gfp:	the page allocator flags to use if allocating
4168  *
4169  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4170  * with any new page allocations done using the specified allocation flags.
4171  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4172  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4173  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4174  *
4175  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4176  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4177  */
4178 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4179 					 pgoff_t index, gfp_t gfp)
4180 {
4181 #ifdef CONFIG_SHMEM
4182 	struct inode *inode = mapping->host;
4183 	struct page *page;
4184 	int error;
4185 
4186 	BUG_ON(mapping->a_ops != &shmem_aops);
4187 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4188 				  gfp, NULL, NULL, NULL);
4189 	if (error)
4190 		page = ERR_PTR(error);
4191 	else
4192 		unlock_page(page);
4193 	return page;
4194 #else
4195 	/*
4196 	 * The tiny !SHMEM case uses ramfs without swap
4197 	 */
4198 	return read_cache_page_gfp(mapping, index, gfp);
4199 #endif
4200 }
4201 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4202