1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 #include <asm/pgtable.h> 86 87 #include "internal.h" 88 89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* Pretend that each entry is of this size in directory's i_size */ 93 #define BOGO_DIRENT_SIZE 20 94 95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 96 #define SHORT_SYMLINK_LEN 128 97 98 /* 99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 100 * inode->i_private (with i_mutex making sure that it has only one user at 101 * a time): we would prefer not to enlarge the shmem inode just for that. 102 */ 103 struct shmem_falloc { 104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 105 pgoff_t start; /* start of range currently being fallocated */ 106 pgoff_t next; /* the next page offset to be fallocated */ 107 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 109 }; 110 111 struct shmem_options { 112 unsigned long long blocks; 113 unsigned long long inodes; 114 struct mempolicy *mpol; 115 kuid_t uid; 116 kgid_t gid; 117 umode_t mode; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 140 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 141 struct shmem_inode_info *info, pgoff_t index); 142 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 143 struct page **pagep, enum sgp_type sgp, 144 gfp_t gfp, struct vm_area_struct *vma, 145 vm_fault_t *fault_type); 146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp, 148 gfp_t gfp, struct vm_area_struct *vma, 149 struct vm_fault *vmf, vm_fault_t *fault_type); 150 151 int shmem_getpage(struct inode *inode, pgoff_t index, 152 struct page **pagep, enum sgp_type sgp) 153 { 154 return shmem_getpage_gfp(inode, index, pagep, sgp, 155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 156 } 157 158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 159 { 160 return sb->s_fs_info; 161 } 162 163 /* 164 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 165 * for shared memory and for shared anonymous (/dev/zero) mappings 166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 167 * consistent with the pre-accounting of private mappings ... 168 */ 169 static inline int shmem_acct_size(unsigned long flags, loff_t size) 170 { 171 return (flags & VM_NORESERVE) ? 172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 173 } 174 175 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 176 { 177 if (!(flags & VM_NORESERVE)) 178 vm_unacct_memory(VM_ACCT(size)); 179 } 180 181 static inline int shmem_reacct_size(unsigned long flags, 182 loff_t oldsize, loff_t newsize) 183 { 184 if (!(flags & VM_NORESERVE)) { 185 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 186 return security_vm_enough_memory_mm(current->mm, 187 VM_ACCT(newsize) - VM_ACCT(oldsize)); 188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 190 } 191 return 0; 192 } 193 194 /* 195 * ... whereas tmpfs objects are accounted incrementally as 196 * pages are allocated, in order to allow large sparse files. 197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 199 */ 200 static inline int shmem_acct_block(unsigned long flags, long pages) 201 { 202 if (!(flags & VM_NORESERVE)) 203 return 0; 204 205 return security_vm_enough_memory_mm(current->mm, 206 pages * VM_ACCT(PAGE_SIZE)); 207 } 208 209 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 210 { 211 if (flags & VM_NORESERVE) 212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 213 } 214 215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 216 { 217 struct shmem_inode_info *info = SHMEM_I(inode); 218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 219 220 if (shmem_acct_block(info->flags, pages)) 221 return false; 222 223 if (sbinfo->max_blocks) { 224 if (percpu_counter_compare(&sbinfo->used_blocks, 225 sbinfo->max_blocks - pages) > 0) 226 goto unacct; 227 percpu_counter_add(&sbinfo->used_blocks, pages); 228 } 229 230 return true; 231 232 unacct: 233 shmem_unacct_blocks(info->flags, pages); 234 return false; 235 } 236 237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 238 { 239 struct shmem_inode_info *info = SHMEM_I(inode); 240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 241 242 if (sbinfo->max_blocks) 243 percpu_counter_sub(&sbinfo->used_blocks, pages); 244 shmem_unacct_blocks(info->flags, pages); 245 } 246 247 static const struct super_operations shmem_ops; 248 static const struct address_space_operations shmem_aops; 249 static const struct file_operations shmem_file_operations; 250 static const struct inode_operations shmem_inode_operations; 251 static const struct inode_operations shmem_dir_inode_operations; 252 static const struct inode_operations shmem_special_inode_operations; 253 static const struct vm_operations_struct shmem_vm_ops; 254 static struct file_system_type shmem_fs_type; 255 256 bool vma_is_shmem(struct vm_area_struct *vma) 257 { 258 return vma->vm_ops == &shmem_vm_ops; 259 } 260 261 static LIST_HEAD(shmem_swaplist); 262 static DEFINE_MUTEX(shmem_swaplist_mutex); 263 264 static int shmem_reserve_inode(struct super_block *sb) 265 { 266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 267 if (sbinfo->max_inodes) { 268 spin_lock(&sbinfo->stat_lock); 269 if (!sbinfo->free_inodes) { 270 spin_unlock(&sbinfo->stat_lock); 271 return -ENOSPC; 272 } 273 sbinfo->free_inodes--; 274 spin_unlock(&sbinfo->stat_lock); 275 } 276 return 0; 277 } 278 279 static void shmem_free_inode(struct super_block *sb) 280 { 281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 282 if (sbinfo->max_inodes) { 283 spin_lock(&sbinfo->stat_lock); 284 sbinfo->free_inodes++; 285 spin_unlock(&sbinfo->stat_lock); 286 } 287 } 288 289 /** 290 * shmem_recalc_inode - recalculate the block usage of an inode 291 * @inode: inode to recalc 292 * 293 * We have to calculate the free blocks since the mm can drop 294 * undirtied hole pages behind our back. 295 * 296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 298 * 299 * It has to be called with the spinlock held. 300 */ 301 static void shmem_recalc_inode(struct inode *inode) 302 { 303 struct shmem_inode_info *info = SHMEM_I(inode); 304 long freed; 305 306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 307 if (freed > 0) { 308 info->alloced -= freed; 309 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 310 shmem_inode_unacct_blocks(inode, freed); 311 } 312 } 313 314 bool shmem_charge(struct inode *inode, long pages) 315 { 316 struct shmem_inode_info *info = SHMEM_I(inode); 317 unsigned long flags; 318 319 if (!shmem_inode_acct_block(inode, pages)) 320 return false; 321 322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 323 inode->i_mapping->nrpages += pages; 324 325 spin_lock_irqsave(&info->lock, flags); 326 info->alloced += pages; 327 inode->i_blocks += pages * BLOCKS_PER_PAGE; 328 shmem_recalc_inode(inode); 329 spin_unlock_irqrestore(&info->lock, flags); 330 331 return true; 332 } 333 334 void shmem_uncharge(struct inode *inode, long pages) 335 { 336 struct shmem_inode_info *info = SHMEM_I(inode); 337 unsigned long flags; 338 339 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 340 341 spin_lock_irqsave(&info->lock, flags); 342 info->alloced -= pages; 343 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 344 shmem_recalc_inode(inode); 345 spin_unlock_irqrestore(&info->lock, flags); 346 347 shmem_inode_unacct_blocks(inode, pages); 348 } 349 350 /* 351 * Replace item expected in xarray by a new item, while holding xa_lock. 352 */ 353 static int shmem_replace_entry(struct address_space *mapping, 354 pgoff_t index, void *expected, void *replacement) 355 { 356 XA_STATE(xas, &mapping->i_pages, index); 357 void *item; 358 359 VM_BUG_ON(!expected); 360 VM_BUG_ON(!replacement); 361 item = xas_load(&xas); 362 if (item != expected) 363 return -ENOENT; 364 xas_store(&xas, replacement); 365 return 0; 366 } 367 368 /* 369 * Sometimes, before we decide whether to proceed or to fail, we must check 370 * that an entry was not already brought back from swap by a racing thread. 371 * 372 * Checking page is not enough: by the time a SwapCache page is locked, it 373 * might be reused, and again be SwapCache, using the same swap as before. 374 */ 375 static bool shmem_confirm_swap(struct address_space *mapping, 376 pgoff_t index, swp_entry_t swap) 377 { 378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 379 } 380 381 /* 382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 383 * 384 * SHMEM_HUGE_NEVER: 385 * disables huge pages for the mount; 386 * SHMEM_HUGE_ALWAYS: 387 * enables huge pages for the mount; 388 * SHMEM_HUGE_WITHIN_SIZE: 389 * only allocate huge pages if the page will be fully within i_size, 390 * also respect fadvise()/madvise() hints; 391 * SHMEM_HUGE_ADVISE: 392 * only allocate huge pages if requested with fadvise()/madvise(); 393 */ 394 395 #define SHMEM_HUGE_NEVER 0 396 #define SHMEM_HUGE_ALWAYS 1 397 #define SHMEM_HUGE_WITHIN_SIZE 2 398 #define SHMEM_HUGE_ADVISE 3 399 400 /* 401 * Special values. 402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 403 * 404 * SHMEM_HUGE_DENY: 405 * disables huge on shm_mnt and all mounts, for emergency use; 406 * SHMEM_HUGE_FORCE: 407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 408 * 409 */ 410 #define SHMEM_HUGE_DENY (-1) 411 #define SHMEM_HUGE_FORCE (-2) 412 413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 414 /* ifdef here to avoid bloating shmem.o when not necessary */ 415 416 static int shmem_huge __read_mostly; 417 418 #if defined(CONFIG_SYSFS) 419 static int shmem_parse_huge(const char *str) 420 { 421 if (!strcmp(str, "never")) 422 return SHMEM_HUGE_NEVER; 423 if (!strcmp(str, "always")) 424 return SHMEM_HUGE_ALWAYS; 425 if (!strcmp(str, "within_size")) 426 return SHMEM_HUGE_WITHIN_SIZE; 427 if (!strcmp(str, "advise")) 428 return SHMEM_HUGE_ADVISE; 429 if (!strcmp(str, "deny")) 430 return SHMEM_HUGE_DENY; 431 if (!strcmp(str, "force")) 432 return SHMEM_HUGE_FORCE; 433 return -EINVAL; 434 } 435 #endif 436 437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 438 static const char *shmem_format_huge(int huge) 439 { 440 switch (huge) { 441 case SHMEM_HUGE_NEVER: 442 return "never"; 443 case SHMEM_HUGE_ALWAYS: 444 return "always"; 445 case SHMEM_HUGE_WITHIN_SIZE: 446 return "within_size"; 447 case SHMEM_HUGE_ADVISE: 448 return "advise"; 449 case SHMEM_HUGE_DENY: 450 return "deny"; 451 case SHMEM_HUGE_FORCE: 452 return "force"; 453 default: 454 VM_BUG_ON(1); 455 return "bad_val"; 456 } 457 } 458 #endif 459 460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 461 struct shrink_control *sc, unsigned long nr_to_split) 462 { 463 LIST_HEAD(list), *pos, *next; 464 LIST_HEAD(to_remove); 465 struct inode *inode; 466 struct shmem_inode_info *info; 467 struct page *page; 468 unsigned long batch = sc ? sc->nr_to_scan : 128; 469 int removed = 0, split = 0; 470 471 if (list_empty(&sbinfo->shrinklist)) 472 return SHRINK_STOP; 473 474 spin_lock(&sbinfo->shrinklist_lock); 475 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 476 info = list_entry(pos, struct shmem_inode_info, shrinklist); 477 478 /* pin the inode */ 479 inode = igrab(&info->vfs_inode); 480 481 /* inode is about to be evicted */ 482 if (!inode) { 483 list_del_init(&info->shrinklist); 484 removed++; 485 goto next; 486 } 487 488 /* Check if there's anything to gain */ 489 if (round_up(inode->i_size, PAGE_SIZE) == 490 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 491 list_move(&info->shrinklist, &to_remove); 492 removed++; 493 goto next; 494 } 495 496 list_move(&info->shrinklist, &list); 497 next: 498 if (!--batch) 499 break; 500 } 501 spin_unlock(&sbinfo->shrinklist_lock); 502 503 list_for_each_safe(pos, next, &to_remove) { 504 info = list_entry(pos, struct shmem_inode_info, shrinklist); 505 inode = &info->vfs_inode; 506 list_del_init(&info->shrinklist); 507 iput(inode); 508 } 509 510 list_for_each_safe(pos, next, &list) { 511 int ret; 512 513 info = list_entry(pos, struct shmem_inode_info, shrinklist); 514 inode = &info->vfs_inode; 515 516 if (nr_to_split && split >= nr_to_split) 517 goto leave; 518 519 page = find_get_page(inode->i_mapping, 520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 521 if (!page) 522 goto drop; 523 524 /* No huge page at the end of the file: nothing to split */ 525 if (!PageTransHuge(page)) { 526 put_page(page); 527 goto drop; 528 } 529 530 /* 531 * Leave the inode on the list if we failed to lock 532 * the page at this time. 533 * 534 * Waiting for the lock may lead to deadlock in the 535 * reclaim path. 536 */ 537 if (!trylock_page(page)) { 538 put_page(page); 539 goto leave; 540 } 541 542 ret = split_huge_page(page); 543 unlock_page(page); 544 put_page(page); 545 546 /* If split failed leave the inode on the list */ 547 if (ret) 548 goto leave; 549 550 split++; 551 drop: 552 list_del_init(&info->shrinklist); 553 removed++; 554 leave: 555 iput(inode); 556 } 557 558 spin_lock(&sbinfo->shrinklist_lock); 559 list_splice_tail(&list, &sbinfo->shrinklist); 560 sbinfo->shrinklist_len -= removed; 561 spin_unlock(&sbinfo->shrinklist_lock); 562 563 return split; 564 } 565 566 static long shmem_unused_huge_scan(struct super_block *sb, 567 struct shrink_control *sc) 568 { 569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 570 571 if (!READ_ONCE(sbinfo->shrinklist_len)) 572 return SHRINK_STOP; 573 574 return shmem_unused_huge_shrink(sbinfo, sc, 0); 575 } 576 577 static long shmem_unused_huge_count(struct super_block *sb, 578 struct shrink_control *sc) 579 { 580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 581 return READ_ONCE(sbinfo->shrinklist_len); 582 } 583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 584 585 #define shmem_huge SHMEM_HUGE_DENY 586 587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 588 struct shrink_control *sc, unsigned long nr_to_split) 589 { 590 return 0; 591 } 592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 593 594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 595 { 596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 598 shmem_huge != SHMEM_HUGE_DENY) 599 return true; 600 return false; 601 } 602 603 /* 604 * Like add_to_page_cache_locked, but error if expected item has gone. 605 */ 606 static int shmem_add_to_page_cache(struct page *page, 607 struct address_space *mapping, 608 pgoff_t index, void *expected, gfp_t gfp, 609 struct mm_struct *charge_mm) 610 { 611 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 612 unsigned long i = 0; 613 unsigned long nr = compound_nr(page); 614 int error; 615 616 VM_BUG_ON_PAGE(PageTail(page), page); 617 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 618 VM_BUG_ON_PAGE(!PageLocked(page), page); 619 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 620 VM_BUG_ON(expected && PageTransHuge(page)); 621 622 page_ref_add(page, nr); 623 page->mapping = mapping; 624 page->index = index; 625 626 if (!PageSwapCache(page)) { 627 error = mem_cgroup_charge(page, charge_mm, gfp); 628 if (error) { 629 if (PageTransHuge(page)) { 630 count_vm_event(THP_FILE_FALLBACK); 631 count_vm_event(THP_FILE_FALLBACK_CHARGE); 632 } 633 goto error; 634 } 635 } 636 cgroup_throttle_swaprate(page, gfp); 637 638 do { 639 void *entry; 640 xas_lock_irq(&xas); 641 entry = xas_find_conflict(&xas); 642 if (entry != expected) 643 xas_set_err(&xas, -EEXIST); 644 xas_create_range(&xas); 645 if (xas_error(&xas)) 646 goto unlock; 647 next: 648 xas_store(&xas, page); 649 if (++i < nr) { 650 xas_next(&xas); 651 goto next; 652 } 653 if (PageTransHuge(page)) { 654 count_vm_event(THP_FILE_ALLOC); 655 __inc_node_page_state(page, NR_SHMEM_THPS); 656 } 657 mapping->nrpages += nr; 658 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 659 __mod_lruvec_page_state(page, NR_SHMEM, nr); 660 unlock: 661 xas_unlock_irq(&xas); 662 } while (xas_nomem(&xas, gfp)); 663 664 if (xas_error(&xas)) { 665 error = xas_error(&xas); 666 goto error; 667 } 668 669 return 0; 670 error: 671 page->mapping = NULL; 672 page_ref_sub(page, nr); 673 return error; 674 } 675 676 /* 677 * Like delete_from_page_cache, but substitutes swap for page. 678 */ 679 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 680 { 681 struct address_space *mapping = page->mapping; 682 int error; 683 684 VM_BUG_ON_PAGE(PageCompound(page), page); 685 686 xa_lock_irq(&mapping->i_pages); 687 error = shmem_replace_entry(mapping, page->index, page, radswap); 688 page->mapping = NULL; 689 mapping->nrpages--; 690 __dec_lruvec_page_state(page, NR_FILE_PAGES); 691 __dec_lruvec_page_state(page, NR_SHMEM); 692 xa_unlock_irq(&mapping->i_pages); 693 put_page(page); 694 BUG_ON(error); 695 } 696 697 /* 698 * Remove swap entry from page cache, free the swap and its page cache. 699 */ 700 static int shmem_free_swap(struct address_space *mapping, 701 pgoff_t index, void *radswap) 702 { 703 void *old; 704 705 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 706 if (old != radswap) 707 return -ENOENT; 708 free_swap_and_cache(radix_to_swp_entry(radswap)); 709 return 0; 710 } 711 712 /* 713 * Determine (in bytes) how many of the shmem object's pages mapped by the 714 * given offsets are swapped out. 715 * 716 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 717 * as long as the inode doesn't go away and racy results are not a problem. 718 */ 719 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 720 pgoff_t start, pgoff_t end) 721 { 722 XA_STATE(xas, &mapping->i_pages, start); 723 struct page *page; 724 unsigned long swapped = 0; 725 726 rcu_read_lock(); 727 xas_for_each(&xas, page, end - 1) { 728 if (xas_retry(&xas, page)) 729 continue; 730 if (xa_is_value(page)) 731 swapped++; 732 733 if (need_resched()) { 734 xas_pause(&xas); 735 cond_resched_rcu(); 736 } 737 } 738 739 rcu_read_unlock(); 740 741 return swapped << PAGE_SHIFT; 742 } 743 744 /* 745 * Determine (in bytes) how many of the shmem object's pages mapped by the 746 * given vma is swapped out. 747 * 748 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 749 * as long as the inode doesn't go away and racy results are not a problem. 750 */ 751 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 752 { 753 struct inode *inode = file_inode(vma->vm_file); 754 struct shmem_inode_info *info = SHMEM_I(inode); 755 struct address_space *mapping = inode->i_mapping; 756 unsigned long swapped; 757 758 /* Be careful as we don't hold info->lock */ 759 swapped = READ_ONCE(info->swapped); 760 761 /* 762 * The easier cases are when the shmem object has nothing in swap, or 763 * the vma maps it whole. Then we can simply use the stats that we 764 * already track. 765 */ 766 if (!swapped) 767 return 0; 768 769 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 770 return swapped << PAGE_SHIFT; 771 772 /* Here comes the more involved part */ 773 return shmem_partial_swap_usage(mapping, 774 linear_page_index(vma, vma->vm_start), 775 linear_page_index(vma, vma->vm_end)); 776 } 777 778 /* 779 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 780 */ 781 void shmem_unlock_mapping(struct address_space *mapping) 782 { 783 struct pagevec pvec; 784 pgoff_t indices[PAGEVEC_SIZE]; 785 pgoff_t index = 0; 786 787 pagevec_init(&pvec); 788 /* 789 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 790 */ 791 while (!mapping_unevictable(mapping)) { 792 /* 793 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 794 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 795 */ 796 pvec.nr = find_get_entries(mapping, index, 797 PAGEVEC_SIZE, pvec.pages, indices); 798 if (!pvec.nr) 799 break; 800 index = indices[pvec.nr - 1] + 1; 801 pagevec_remove_exceptionals(&pvec); 802 check_move_unevictable_pages(&pvec); 803 pagevec_release(&pvec); 804 cond_resched(); 805 } 806 } 807 808 /* 809 * Check whether a hole-punch or truncation needs to split a huge page, 810 * returning true if no split was required, or the split has been successful. 811 * 812 * Eviction (or truncation to 0 size) should never need to split a huge page; 813 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 814 * head, and then succeeded to trylock on tail. 815 * 816 * A split can only succeed when there are no additional references on the 817 * huge page: so the split below relies upon find_get_entries() having stopped 818 * when it found a subpage of the huge page, without getting further references. 819 */ 820 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 821 { 822 if (!PageTransCompound(page)) 823 return true; 824 825 /* Just proceed to delete a huge page wholly within the range punched */ 826 if (PageHead(page) && 827 page->index >= start && page->index + HPAGE_PMD_NR <= end) 828 return true; 829 830 /* Try to split huge page, so we can truly punch the hole or truncate */ 831 return split_huge_page(page) >= 0; 832 } 833 834 /* 835 * Remove range of pages and swap entries from page cache, and free them. 836 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 837 */ 838 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 839 bool unfalloc) 840 { 841 struct address_space *mapping = inode->i_mapping; 842 struct shmem_inode_info *info = SHMEM_I(inode); 843 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 844 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 845 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 846 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 847 struct pagevec pvec; 848 pgoff_t indices[PAGEVEC_SIZE]; 849 long nr_swaps_freed = 0; 850 pgoff_t index; 851 int i; 852 853 if (lend == -1) 854 end = -1; /* unsigned, so actually very big */ 855 856 pagevec_init(&pvec); 857 index = start; 858 while (index < end) { 859 pvec.nr = find_get_entries(mapping, index, 860 min(end - index, (pgoff_t)PAGEVEC_SIZE), 861 pvec.pages, indices); 862 if (!pvec.nr) 863 break; 864 for (i = 0; i < pagevec_count(&pvec); i++) { 865 struct page *page = pvec.pages[i]; 866 867 index = indices[i]; 868 if (index >= end) 869 break; 870 871 if (xa_is_value(page)) { 872 if (unfalloc) 873 continue; 874 nr_swaps_freed += !shmem_free_swap(mapping, 875 index, page); 876 continue; 877 } 878 879 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 880 881 if (!trylock_page(page)) 882 continue; 883 884 if ((!unfalloc || !PageUptodate(page)) && 885 page_mapping(page) == mapping) { 886 VM_BUG_ON_PAGE(PageWriteback(page), page); 887 if (shmem_punch_compound(page, start, end)) 888 truncate_inode_page(mapping, page); 889 } 890 unlock_page(page); 891 } 892 pagevec_remove_exceptionals(&pvec); 893 pagevec_release(&pvec); 894 cond_resched(); 895 index++; 896 } 897 898 if (partial_start) { 899 struct page *page = NULL; 900 shmem_getpage(inode, start - 1, &page, SGP_READ); 901 if (page) { 902 unsigned int top = PAGE_SIZE; 903 if (start > end) { 904 top = partial_end; 905 partial_end = 0; 906 } 907 zero_user_segment(page, partial_start, top); 908 set_page_dirty(page); 909 unlock_page(page); 910 put_page(page); 911 } 912 } 913 if (partial_end) { 914 struct page *page = NULL; 915 shmem_getpage(inode, end, &page, SGP_READ); 916 if (page) { 917 zero_user_segment(page, 0, partial_end); 918 set_page_dirty(page); 919 unlock_page(page); 920 put_page(page); 921 } 922 } 923 if (start >= end) 924 return; 925 926 index = start; 927 while (index < end) { 928 cond_resched(); 929 930 pvec.nr = find_get_entries(mapping, index, 931 min(end - index, (pgoff_t)PAGEVEC_SIZE), 932 pvec.pages, indices); 933 if (!pvec.nr) { 934 /* If all gone or hole-punch or unfalloc, we're done */ 935 if (index == start || end != -1) 936 break; 937 /* But if truncating, restart to make sure all gone */ 938 index = start; 939 continue; 940 } 941 for (i = 0; i < pagevec_count(&pvec); i++) { 942 struct page *page = pvec.pages[i]; 943 944 index = indices[i]; 945 if (index >= end) 946 break; 947 948 if (xa_is_value(page)) { 949 if (unfalloc) 950 continue; 951 if (shmem_free_swap(mapping, index, page)) { 952 /* Swap was replaced by page: retry */ 953 index--; 954 break; 955 } 956 nr_swaps_freed++; 957 continue; 958 } 959 960 lock_page(page); 961 962 if (!unfalloc || !PageUptodate(page)) { 963 if (page_mapping(page) != mapping) { 964 /* Page was replaced by swap: retry */ 965 unlock_page(page); 966 index--; 967 break; 968 } 969 VM_BUG_ON_PAGE(PageWriteback(page), page); 970 if (shmem_punch_compound(page, start, end)) 971 truncate_inode_page(mapping, page); 972 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 973 /* Wipe the page and don't get stuck */ 974 clear_highpage(page); 975 flush_dcache_page(page); 976 set_page_dirty(page); 977 if (index < 978 round_up(start, HPAGE_PMD_NR)) 979 start = index + 1; 980 } 981 } 982 unlock_page(page); 983 } 984 pagevec_remove_exceptionals(&pvec); 985 pagevec_release(&pvec); 986 index++; 987 } 988 989 spin_lock_irq(&info->lock); 990 info->swapped -= nr_swaps_freed; 991 shmem_recalc_inode(inode); 992 spin_unlock_irq(&info->lock); 993 } 994 995 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 996 { 997 shmem_undo_range(inode, lstart, lend, false); 998 inode->i_ctime = inode->i_mtime = current_time(inode); 999 } 1000 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1001 1002 static int shmem_getattr(const struct path *path, struct kstat *stat, 1003 u32 request_mask, unsigned int query_flags) 1004 { 1005 struct inode *inode = path->dentry->d_inode; 1006 struct shmem_inode_info *info = SHMEM_I(inode); 1007 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1008 1009 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1010 spin_lock_irq(&info->lock); 1011 shmem_recalc_inode(inode); 1012 spin_unlock_irq(&info->lock); 1013 } 1014 generic_fillattr(inode, stat); 1015 1016 if (is_huge_enabled(sb_info)) 1017 stat->blksize = HPAGE_PMD_SIZE; 1018 1019 return 0; 1020 } 1021 1022 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1023 { 1024 struct inode *inode = d_inode(dentry); 1025 struct shmem_inode_info *info = SHMEM_I(inode); 1026 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1027 int error; 1028 1029 error = setattr_prepare(dentry, attr); 1030 if (error) 1031 return error; 1032 1033 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1034 loff_t oldsize = inode->i_size; 1035 loff_t newsize = attr->ia_size; 1036 1037 /* protected by i_mutex */ 1038 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1039 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1040 return -EPERM; 1041 1042 if (newsize != oldsize) { 1043 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1044 oldsize, newsize); 1045 if (error) 1046 return error; 1047 i_size_write(inode, newsize); 1048 inode->i_ctime = inode->i_mtime = current_time(inode); 1049 } 1050 if (newsize <= oldsize) { 1051 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1052 if (oldsize > holebegin) 1053 unmap_mapping_range(inode->i_mapping, 1054 holebegin, 0, 1); 1055 if (info->alloced) 1056 shmem_truncate_range(inode, 1057 newsize, (loff_t)-1); 1058 /* unmap again to remove racily COWed private pages */ 1059 if (oldsize > holebegin) 1060 unmap_mapping_range(inode->i_mapping, 1061 holebegin, 0, 1); 1062 1063 /* 1064 * Part of the huge page can be beyond i_size: subject 1065 * to shrink under memory pressure. 1066 */ 1067 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1068 spin_lock(&sbinfo->shrinklist_lock); 1069 /* 1070 * _careful to defend against unlocked access to 1071 * ->shrink_list in shmem_unused_huge_shrink() 1072 */ 1073 if (list_empty_careful(&info->shrinklist)) { 1074 list_add_tail(&info->shrinklist, 1075 &sbinfo->shrinklist); 1076 sbinfo->shrinklist_len++; 1077 } 1078 spin_unlock(&sbinfo->shrinklist_lock); 1079 } 1080 } 1081 } 1082 1083 setattr_copy(inode, attr); 1084 if (attr->ia_valid & ATTR_MODE) 1085 error = posix_acl_chmod(inode, inode->i_mode); 1086 return error; 1087 } 1088 1089 static void shmem_evict_inode(struct inode *inode) 1090 { 1091 struct shmem_inode_info *info = SHMEM_I(inode); 1092 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1093 1094 if (inode->i_mapping->a_ops == &shmem_aops) { 1095 shmem_unacct_size(info->flags, inode->i_size); 1096 inode->i_size = 0; 1097 shmem_truncate_range(inode, 0, (loff_t)-1); 1098 if (!list_empty(&info->shrinklist)) { 1099 spin_lock(&sbinfo->shrinklist_lock); 1100 if (!list_empty(&info->shrinklist)) { 1101 list_del_init(&info->shrinklist); 1102 sbinfo->shrinklist_len--; 1103 } 1104 spin_unlock(&sbinfo->shrinklist_lock); 1105 } 1106 while (!list_empty(&info->swaplist)) { 1107 /* Wait while shmem_unuse() is scanning this inode... */ 1108 wait_var_event(&info->stop_eviction, 1109 !atomic_read(&info->stop_eviction)); 1110 mutex_lock(&shmem_swaplist_mutex); 1111 /* ...but beware of the race if we peeked too early */ 1112 if (!atomic_read(&info->stop_eviction)) 1113 list_del_init(&info->swaplist); 1114 mutex_unlock(&shmem_swaplist_mutex); 1115 } 1116 } 1117 1118 simple_xattrs_free(&info->xattrs); 1119 WARN_ON(inode->i_blocks); 1120 shmem_free_inode(inode->i_sb); 1121 clear_inode(inode); 1122 } 1123 1124 extern struct swap_info_struct *swap_info[]; 1125 1126 static int shmem_find_swap_entries(struct address_space *mapping, 1127 pgoff_t start, unsigned int nr_entries, 1128 struct page **entries, pgoff_t *indices, 1129 unsigned int type, bool frontswap) 1130 { 1131 XA_STATE(xas, &mapping->i_pages, start); 1132 struct page *page; 1133 swp_entry_t entry; 1134 unsigned int ret = 0; 1135 1136 if (!nr_entries) 1137 return 0; 1138 1139 rcu_read_lock(); 1140 xas_for_each(&xas, page, ULONG_MAX) { 1141 if (xas_retry(&xas, page)) 1142 continue; 1143 1144 if (!xa_is_value(page)) 1145 continue; 1146 1147 entry = radix_to_swp_entry(page); 1148 if (swp_type(entry) != type) 1149 continue; 1150 if (frontswap && 1151 !frontswap_test(swap_info[type], swp_offset(entry))) 1152 continue; 1153 1154 indices[ret] = xas.xa_index; 1155 entries[ret] = page; 1156 1157 if (need_resched()) { 1158 xas_pause(&xas); 1159 cond_resched_rcu(); 1160 } 1161 if (++ret == nr_entries) 1162 break; 1163 } 1164 rcu_read_unlock(); 1165 1166 return ret; 1167 } 1168 1169 /* 1170 * Move the swapped pages for an inode to page cache. Returns the count 1171 * of pages swapped in, or the error in case of failure. 1172 */ 1173 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1174 pgoff_t *indices) 1175 { 1176 int i = 0; 1177 int ret = 0; 1178 int error = 0; 1179 struct address_space *mapping = inode->i_mapping; 1180 1181 for (i = 0; i < pvec.nr; i++) { 1182 struct page *page = pvec.pages[i]; 1183 1184 if (!xa_is_value(page)) 1185 continue; 1186 error = shmem_swapin_page(inode, indices[i], 1187 &page, SGP_CACHE, 1188 mapping_gfp_mask(mapping), 1189 NULL, NULL); 1190 if (error == 0) { 1191 unlock_page(page); 1192 put_page(page); 1193 ret++; 1194 } 1195 if (error == -ENOMEM) 1196 break; 1197 error = 0; 1198 } 1199 return error ? error : ret; 1200 } 1201 1202 /* 1203 * If swap found in inode, free it and move page from swapcache to filecache. 1204 */ 1205 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1206 bool frontswap, unsigned long *fs_pages_to_unuse) 1207 { 1208 struct address_space *mapping = inode->i_mapping; 1209 pgoff_t start = 0; 1210 struct pagevec pvec; 1211 pgoff_t indices[PAGEVEC_SIZE]; 1212 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1213 int ret = 0; 1214 1215 pagevec_init(&pvec); 1216 do { 1217 unsigned int nr_entries = PAGEVEC_SIZE; 1218 1219 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1220 nr_entries = *fs_pages_to_unuse; 1221 1222 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1223 pvec.pages, indices, 1224 type, frontswap); 1225 if (pvec.nr == 0) { 1226 ret = 0; 1227 break; 1228 } 1229 1230 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1231 if (ret < 0) 1232 break; 1233 1234 if (frontswap_partial) { 1235 *fs_pages_to_unuse -= ret; 1236 if (*fs_pages_to_unuse == 0) { 1237 ret = FRONTSWAP_PAGES_UNUSED; 1238 break; 1239 } 1240 } 1241 1242 start = indices[pvec.nr - 1]; 1243 } while (true); 1244 1245 return ret; 1246 } 1247 1248 /* 1249 * Read all the shared memory data that resides in the swap 1250 * device 'type' back into memory, so the swap device can be 1251 * unused. 1252 */ 1253 int shmem_unuse(unsigned int type, bool frontswap, 1254 unsigned long *fs_pages_to_unuse) 1255 { 1256 struct shmem_inode_info *info, *next; 1257 int error = 0; 1258 1259 if (list_empty(&shmem_swaplist)) 1260 return 0; 1261 1262 mutex_lock(&shmem_swaplist_mutex); 1263 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1264 if (!info->swapped) { 1265 list_del_init(&info->swaplist); 1266 continue; 1267 } 1268 /* 1269 * Drop the swaplist mutex while searching the inode for swap; 1270 * but before doing so, make sure shmem_evict_inode() will not 1271 * remove placeholder inode from swaplist, nor let it be freed 1272 * (igrab() would protect from unlink, but not from unmount). 1273 */ 1274 atomic_inc(&info->stop_eviction); 1275 mutex_unlock(&shmem_swaplist_mutex); 1276 1277 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1278 fs_pages_to_unuse); 1279 cond_resched(); 1280 1281 mutex_lock(&shmem_swaplist_mutex); 1282 next = list_next_entry(info, swaplist); 1283 if (!info->swapped) 1284 list_del_init(&info->swaplist); 1285 if (atomic_dec_and_test(&info->stop_eviction)) 1286 wake_up_var(&info->stop_eviction); 1287 if (error) 1288 break; 1289 } 1290 mutex_unlock(&shmem_swaplist_mutex); 1291 1292 return error; 1293 } 1294 1295 /* 1296 * Move the page from the page cache to the swap cache. 1297 */ 1298 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1299 { 1300 struct shmem_inode_info *info; 1301 struct address_space *mapping; 1302 struct inode *inode; 1303 swp_entry_t swap; 1304 pgoff_t index; 1305 1306 VM_BUG_ON_PAGE(PageCompound(page), page); 1307 BUG_ON(!PageLocked(page)); 1308 mapping = page->mapping; 1309 index = page->index; 1310 inode = mapping->host; 1311 info = SHMEM_I(inode); 1312 if (info->flags & VM_LOCKED) 1313 goto redirty; 1314 if (!total_swap_pages) 1315 goto redirty; 1316 1317 /* 1318 * Our capabilities prevent regular writeback or sync from ever calling 1319 * shmem_writepage; but a stacking filesystem might use ->writepage of 1320 * its underlying filesystem, in which case tmpfs should write out to 1321 * swap only in response to memory pressure, and not for the writeback 1322 * threads or sync. 1323 */ 1324 if (!wbc->for_reclaim) { 1325 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1326 goto redirty; 1327 } 1328 1329 /* 1330 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1331 * value into swapfile.c, the only way we can correctly account for a 1332 * fallocated page arriving here is now to initialize it and write it. 1333 * 1334 * That's okay for a page already fallocated earlier, but if we have 1335 * not yet completed the fallocation, then (a) we want to keep track 1336 * of this page in case we have to undo it, and (b) it may not be a 1337 * good idea to continue anyway, once we're pushing into swap. So 1338 * reactivate the page, and let shmem_fallocate() quit when too many. 1339 */ 1340 if (!PageUptodate(page)) { 1341 if (inode->i_private) { 1342 struct shmem_falloc *shmem_falloc; 1343 spin_lock(&inode->i_lock); 1344 shmem_falloc = inode->i_private; 1345 if (shmem_falloc && 1346 !shmem_falloc->waitq && 1347 index >= shmem_falloc->start && 1348 index < shmem_falloc->next) 1349 shmem_falloc->nr_unswapped++; 1350 else 1351 shmem_falloc = NULL; 1352 spin_unlock(&inode->i_lock); 1353 if (shmem_falloc) 1354 goto redirty; 1355 } 1356 clear_highpage(page); 1357 flush_dcache_page(page); 1358 SetPageUptodate(page); 1359 } 1360 1361 swap = get_swap_page(page); 1362 if (!swap.val) 1363 goto redirty; 1364 1365 /* 1366 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1367 * if it's not already there. Do it now before the page is 1368 * moved to swap cache, when its pagelock no longer protects 1369 * the inode from eviction. But don't unlock the mutex until 1370 * we've incremented swapped, because shmem_unuse_inode() will 1371 * prune a !swapped inode from the swaplist under this mutex. 1372 */ 1373 mutex_lock(&shmem_swaplist_mutex); 1374 if (list_empty(&info->swaplist)) 1375 list_add(&info->swaplist, &shmem_swaplist); 1376 1377 if (add_to_swap_cache(page, swap, 1378 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) { 1379 spin_lock_irq(&info->lock); 1380 shmem_recalc_inode(inode); 1381 info->swapped++; 1382 spin_unlock_irq(&info->lock); 1383 1384 swap_shmem_alloc(swap); 1385 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1386 1387 mutex_unlock(&shmem_swaplist_mutex); 1388 BUG_ON(page_mapped(page)); 1389 swap_writepage(page, wbc); 1390 return 0; 1391 } 1392 1393 mutex_unlock(&shmem_swaplist_mutex); 1394 put_swap_page(page, swap); 1395 redirty: 1396 set_page_dirty(page); 1397 if (wbc->for_reclaim) 1398 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1399 unlock_page(page); 1400 return 0; 1401 } 1402 1403 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1404 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1405 { 1406 char buffer[64]; 1407 1408 if (!mpol || mpol->mode == MPOL_DEFAULT) 1409 return; /* show nothing */ 1410 1411 mpol_to_str(buffer, sizeof(buffer), mpol); 1412 1413 seq_printf(seq, ",mpol=%s", buffer); 1414 } 1415 1416 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1417 { 1418 struct mempolicy *mpol = NULL; 1419 if (sbinfo->mpol) { 1420 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1421 mpol = sbinfo->mpol; 1422 mpol_get(mpol); 1423 spin_unlock(&sbinfo->stat_lock); 1424 } 1425 return mpol; 1426 } 1427 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1428 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1429 { 1430 } 1431 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1432 { 1433 return NULL; 1434 } 1435 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1436 #ifndef CONFIG_NUMA 1437 #define vm_policy vm_private_data 1438 #endif 1439 1440 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1441 struct shmem_inode_info *info, pgoff_t index) 1442 { 1443 /* Create a pseudo vma that just contains the policy */ 1444 vma_init(vma, NULL); 1445 /* Bias interleave by inode number to distribute better across nodes */ 1446 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1447 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1448 } 1449 1450 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1451 { 1452 /* Drop reference taken by mpol_shared_policy_lookup() */ 1453 mpol_cond_put(vma->vm_policy); 1454 } 1455 1456 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1457 struct shmem_inode_info *info, pgoff_t index) 1458 { 1459 struct vm_area_struct pvma; 1460 struct page *page; 1461 struct vm_fault vmf; 1462 1463 shmem_pseudo_vma_init(&pvma, info, index); 1464 vmf.vma = &pvma; 1465 vmf.address = 0; 1466 page = swap_cluster_readahead(swap, gfp, &vmf); 1467 shmem_pseudo_vma_destroy(&pvma); 1468 1469 return page; 1470 } 1471 1472 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1473 struct shmem_inode_info *info, pgoff_t index) 1474 { 1475 struct vm_area_struct pvma; 1476 struct address_space *mapping = info->vfs_inode.i_mapping; 1477 pgoff_t hindex; 1478 struct page *page; 1479 1480 hindex = round_down(index, HPAGE_PMD_NR); 1481 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1482 XA_PRESENT)) 1483 return NULL; 1484 1485 shmem_pseudo_vma_init(&pvma, info, hindex); 1486 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1487 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1488 shmem_pseudo_vma_destroy(&pvma); 1489 if (page) 1490 prep_transhuge_page(page); 1491 else 1492 count_vm_event(THP_FILE_FALLBACK); 1493 return page; 1494 } 1495 1496 static struct page *shmem_alloc_page(gfp_t gfp, 1497 struct shmem_inode_info *info, pgoff_t index) 1498 { 1499 struct vm_area_struct pvma; 1500 struct page *page; 1501 1502 shmem_pseudo_vma_init(&pvma, info, index); 1503 page = alloc_page_vma(gfp, &pvma, 0); 1504 shmem_pseudo_vma_destroy(&pvma); 1505 1506 return page; 1507 } 1508 1509 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1510 struct inode *inode, 1511 pgoff_t index, bool huge) 1512 { 1513 struct shmem_inode_info *info = SHMEM_I(inode); 1514 struct page *page; 1515 int nr; 1516 int err = -ENOSPC; 1517 1518 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1519 huge = false; 1520 nr = huge ? HPAGE_PMD_NR : 1; 1521 1522 if (!shmem_inode_acct_block(inode, nr)) 1523 goto failed; 1524 1525 if (huge) 1526 page = shmem_alloc_hugepage(gfp, info, index); 1527 else 1528 page = shmem_alloc_page(gfp, info, index); 1529 if (page) { 1530 __SetPageLocked(page); 1531 __SetPageSwapBacked(page); 1532 return page; 1533 } 1534 1535 err = -ENOMEM; 1536 shmem_inode_unacct_blocks(inode, nr); 1537 failed: 1538 return ERR_PTR(err); 1539 } 1540 1541 /* 1542 * When a page is moved from swapcache to shmem filecache (either by the 1543 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1544 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1545 * ignorance of the mapping it belongs to. If that mapping has special 1546 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1547 * we may need to copy to a suitable page before moving to filecache. 1548 * 1549 * In a future release, this may well be extended to respect cpuset and 1550 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1551 * but for now it is a simple matter of zone. 1552 */ 1553 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1554 { 1555 return page_zonenum(page) > gfp_zone(gfp); 1556 } 1557 1558 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1559 struct shmem_inode_info *info, pgoff_t index) 1560 { 1561 struct page *oldpage, *newpage; 1562 struct address_space *swap_mapping; 1563 swp_entry_t entry; 1564 pgoff_t swap_index; 1565 int error; 1566 1567 oldpage = *pagep; 1568 entry.val = page_private(oldpage); 1569 swap_index = swp_offset(entry); 1570 swap_mapping = page_mapping(oldpage); 1571 1572 /* 1573 * We have arrived here because our zones are constrained, so don't 1574 * limit chance of success by further cpuset and node constraints. 1575 */ 1576 gfp &= ~GFP_CONSTRAINT_MASK; 1577 newpage = shmem_alloc_page(gfp, info, index); 1578 if (!newpage) 1579 return -ENOMEM; 1580 1581 get_page(newpage); 1582 copy_highpage(newpage, oldpage); 1583 flush_dcache_page(newpage); 1584 1585 __SetPageLocked(newpage); 1586 __SetPageSwapBacked(newpage); 1587 SetPageUptodate(newpage); 1588 set_page_private(newpage, entry.val); 1589 SetPageSwapCache(newpage); 1590 1591 /* 1592 * Our caller will very soon move newpage out of swapcache, but it's 1593 * a nice clean interface for us to replace oldpage by newpage there. 1594 */ 1595 xa_lock_irq(&swap_mapping->i_pages); 1596 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1597 if (!error) { 1598 mem_cgroup_migrate(oldpage, newpage); 1599 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1600 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1601 } 1602 xa_unlock_irq(&swap_mapping->i_pages); 1603 1604 if (unlikely(error)) { 1605 /* 1606 * Is this possible? I think not, now that our callers check 1607 * both PageSwapCache and page_private after getting page lock; 1608 * but be defensive. Reverse old to newpage for clear and free. 1609 */ 1610 oldpage = newpage; 1611 } else { 1612 lru_cache_add(newpage); 1613 *pagep = newpage; 1614 } 1615 1616 ClearPageSwapCache(oldpage); 1617 set_page_private(oldpage, 0); 1618 1619 unlock_page(oldpage); 1620 put_page(oldpage); 1621 put_page(oldpage); 1622 return error; 1623 } 1624 1625 /* 1626 * Swap in the page pointed to by *pagep. 1627 * Caller has to make sure that *pagep contains a valid swapped page. 1628 * Returns 0 and the page in pagep if success. On failure, returns the 1629 * the error code and NULL in *pagep. 1630 */ 1631 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1632 struct page **pagep, enum sgp_type sgp, 1633 gfp_t gfp, struct vm_area_struct *vma, 1634 vm_fault_t *fault_type) 1635 { 1636 struct address_space *mapping = inode->i_mapping; 1637 struct shmem_inode_info *info = SHMEM_I(inode); 1638 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1639 struct page *page; 1640 swp_entry_t swap; 1641 int error; 1642 1643 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1644 swap = radix_to_swp_entry(*pagep); 1645 *pagep = NULL; 1646 1647 /* Look it up and read it in.. */ 1648 page = lookup_swap_cache(swap, NULL, 0); 1649 if (!page) { 1650 /* Or update major stats only when swapin succeeds?? */ 1651 if (fault_type) { 1652 *fault_type |= VM_FAULT_MAJOR; 1653 count_vm_event(PGMAJFAULT); 1654 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1655 } 1656 /* Here we actually start the io */ 1657 page = shmem_swapin(swap, gfp, info, index); 1658 if (!page) { 1659 error = -ENOMEM; 1660 goto failed; 1661 } 1662 } 1663 1664 /* We have to do this with page locked to prevent races */ 1665 lock_page(page); 1666 if (!PageSwapCache(page) || page_private(page) != swap.val || 1667 !shmem_confirm_swap(mapping, index, swap)) { 1668 error = -EEXIST; 1669 goto unlock; 1670 } 1671 if (!PageUptodate(page)) { 1672 error = -EIO; 1673 goto failed; 1674 } 1675 wait_on_page_writeback(page); 1676 1677 if (shmem_should_replace_page(page, gfp)) { 1678 error = shmem_replace_page(&page, gfp, info, index); 1679 if (error) 1680 goto failed; 1681 } 1682 1683 error = shmem_add_to_page_cache(page, mapping, index, 1684 swp_to_radix_entry(swap), gfp, 1685 charge_mm); 1686 if (error) 1687 goto failed; 1688 1689 spin_lock_irq(&info->lock); 1690 info->swapped--; 1691 shmem_recalc_inode(inode); 1692 spin_unlock_irq(&info->lock); 1693 1694 if (sgp == SGP_WRITE) 1695 mark_page_accessed(page); 1696 1697 delete_from_swap_cache(page); 1698 set_page_dirty(page); 1699 swap_free(swap); 1700 1701 *pagep = page; 1702 return 0; 1703 failed: 1704 if (!shmem_confirm_swap(mapping, index, swap)) 1705 error = -EEXIST; 1706 unlock: 1707 if (page) { 1708 unlock_page(page); 1709 put_page(page); 1710 } 1711 1712 return error; 1713 } 1714 1715 /* 1716 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1717 * 1718 * If we allocate a new one we do not mark it dirty. That's up to the 1719 * vm. If we swap it in we mark it dirty since we also free the swap 1720 * entry since a page cannot live in both the swap and page cache. 1721 * 1722 * vmf and fault_type are only supplied by shmem_fault: 1723 * otherwise they are NULL. 1724 */ 1725 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1726 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1727 struct vm_area_struct *vma, struct vm_fault *vmf, 1728 vm_fault_t *fault_type) 1729 { 1730 struct address_space *mapping = inode->i_mapping; 1731 struct shmem_inode_info *info = SHMEM_I(inode); 1732 struct shmem_sb_info *sbinfo; 1733 struct mm_struct *charge_mm; 1734 struct page *page; 1735 enum sgp_type sgp_huge = sgp; 1736 pgoff_t hindex = index; 1737 int error; 1738 int once = 0; 1739 int alloced = 0; 1740 1741 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1742 return -EFBIG; 1743 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1744 sgp = SGP_CACHE; 1745 repeat: 1746 if (sgp <= SGP_CACHE && 1747 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1748 return -EINVAL; 1749 } 1750 1751 sbinfo = SHMEM_SB(inode->i_sb); 1752 charge_mm = vma ? vma->vm_mm : current->mm; 1753 1754 page = find_lock_entry(mapping, index); 1755 if (xa_is_value(page)) { 1756 error = shmem_swapin_page(inode, index, &page, 1757 sgp, gfp, vma, fault_type); 1758 if (error == -EEXIST) 1759 goto repeat; 1760 1761 *pagep = page; 1762 return error; 1763 } 1764 1765 if (page && sgp == SGP_WRITE) 1766 mark_page_accessed(page); 1767 1768 /* fallocated page? */ 1769 if (page && !PageUptodate(page)) { 1770 if (sgp != SGP_READ) 1771 goto clear; 1772 unlock_page(page); 1773 put_page(page); 1774 page = NULL; 1775 } 1776 if (page || sgp == SGP_READ) { 1777 *pagep = page; 1778 return 0; 1779 } 1780 1781 /* 1782 * Fast cache lookup did not find it: 1783 * bring it back from swap or allocate. 1784 */ 1785 1786 if (vma && userfaultfd_missing(vma)) { 1787 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1788 return 0; 1789 } 1790 1791 /* shmem_symlink() */ 1792 if (mapping->a_ops != &shmem_aops) 1793 goto alloc_nohuge; 1794 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1795 goto alloc_nohuge; 1796 if (shmem_huge == SHMEM_HUGE_FORCE) 1797 goto alloc_huge; 1798 switch (sbinfo->huge) { 1799 case SHMEM_HUGE_NEVER: 1800 goto alloc_nohuge; 1801 case SHMEM_HUGE_WITHIN_SIZE: { 1802 loff_t i_size; 1803 pgoff_t off; 1804 1805 off = round_up(index, HPAGE_PMD_NR); 1806 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1807 if (i_size >= HPAGE_PMD_SIZE && 1808 i_size >> PAGE_SHIFT >= off) 1809 goto alloc_huge; 1810 1811 fallthrough; 1812 } 1813 case SHMEM_HUGE_ADVISE: 1814 if (sgp_huge == SGP_HUGE) 1815 goto alloc_huge; 1816 /* TODO: implement fadvise() hints */ 1817 goto alloc_nohuge; 1818 } 1819 1820 alloc_huge: 1821 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1822 if (IS_ERR(page)) { 1823 alloc_nohuge: 1824 page = shmem_alloc_and_acct_page(gfp, inode, 1825 index, false); 1826 } 1827 if (IS_ERR(page)) { 1828 int retry = 5; 1829 1830 error = PTR_ERR(page); 1831 page = NULL; 1832 if (error != -ENOSPC) 1833 goto unlock; 1834 /* 1835 * Try to reclaim some space by splitting a huge page 1836 * beyond i_size on the filesystem. 1837 */ 1838 while (retry--) { 1839 int ret; 1840 1841 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1842 if (ret == SHRINK_STOP) 1843 break; 1844 if (ret) 1845 goto alloc_nohuge; 1846 } 1847 goto unlock; 1848 } 1849 1850 if (PageTransHuge(page)) 1851 hindex = round_down(index, HPAGE_PMD_NR); 1852 else 1853 hindex = index; 1854 1855 if (sgp == SGP_WRITE) 1856 __SetPageReferenced(page); 1857 1858 error = shmem_add_to_page_cache(page, mapping, hindex, 1859 NULL, gfp & GFP_RECLAIM_MASK, 1860 charge_mm); 1861 if (error) 1862 goto unacct; 1863 lru_cache_add(page); 1864 1865 spin_lock_irq(&info->lock); 1866 info->alloced += compound_nr(page); 1867 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1868 shmem_recalc_inode(inode); 1869 spin_unlock_irq(&info->lock); 1870 alloced = true; 1871 1872 if (PageTransHuge(page) && 1873 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1874 hindex + HPAGE_PMD_NR - 1) { 1875 /* 1876 * Part of the huge page is beyond i_size: subject 1877 * to shrink under memory pressure. 1878 */ 1879 spin_lock(&sbinfo->shrinklist_lock); 1880 /* 1881 * _careful to defend against unlocked access to 1882 * ->shrink_list in shmem_unused_huge_shrink() 1883 */ 1884 if (list_empty_careful(&info->shrinklist)) { 1885 list_add_tail(&info->shrinklist, 1886 &sbinfo->shrinklist); 1887 sbinfo->shrinklist_len++; 1888 } 1889 spin_unlock(&sbinfo->shrinklist_lock); 1890 } 1891 1892 /* 1893 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1894 */ 1895 if (sgp == SGP_FALLOC) 1896 sgp = SGP_WRITE; 1897 clear: 1898 /* 1899 * Let SGP_WRITE caller clear ends if write does not fill page; 1900 * but SGP_FALLOC on a page fallocated earlier must initialize 1901 * it now, lest undo on failure cancel our earlier guarantee. 1902 */ 1903 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1904 struct page *head = compound_head(page); 1905 int i; 1906 1907 for (i = 0; i < compound_nr(head); i++) { 1908 clear_highpage(head + i); 1909 flush_dcache_page(head + i); 1910 } 1911 SetPageUptodate(head); 1912 } 1913 1914 /* Perhaps the file has been truncated since we checked */ 1915 if (sgp <= SGP_CACHE && 1916 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1917 if (alloced) { 1918 ClearPageDirty(page); 1919 delete_from_page_cache(page); 1920 spin_lock_irq(&info->lock); 1921 shmem_recalc_inode(inode); 1922 spin_unlock_irq(&info->lock); 1923 } 1924 error = -EINVAL; 1925 goto unlock; 1926 } 1927 *pagep = page + index - hindex; 1928 return 0; 1929 1930 /* 1931 * Error recovery. 1932 */ 1933 unacct: 1934 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1935 1936 if (PageTransHuge(page)) { 1937 unlock_page(page); 1938 put_page(page); 1939 goto alloc_nohuge; 1940 } 1941 unlock: 1942 if (page) { 1943 unlock_page(page); 1944 put_page(page); 1945 } 1946 if (error == -ENOSPC && !once++) { 1947 spin_lock_irq(&info->lock); 1948 shmem_recalc_inode(inode); 1949 spin_unlock_irq(&info->lock); 1950 goto repeat; 1951 } 1952 if (error == -EEXIST) 1953 goto repeat; 1954 return error; 1955 } 1956 1957 /* 1958 * This is like autoremove_wake_function, but it removes the wait queue 1959 * entry unconditionally - even if something else had already woken the 1960 * target. 1961 */ 1962 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1963 { 1964 int ret = default_wake_function(wait, mode, sync, key); 1965 list_del_init(&wait->entry); 1966 return ret; 1967 } 1968 1969 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1970 { 1971 struct vm_area_struct *vma = vmf->vma; 1972 struct inode *inode = file_inode(vma->vm_file); 1973 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1974 enum sgp_type sgp; 1975 int err; 1976 vm_fault_t ret = VM_FAULT_LOCKED; 1977 1978 /* 1979 * Trinity finds that probing a hole which tmpfs is punching can 1980 * prevent the hole-punch from ever completing: which in turn 1981 * locks writers out with its hold on i_mutex. So refrain from 1982 * faulting pages into the hole while it's being punched. Although 1983 * shmem_undo_range() does remove the additions, it may be unable to 1984 * keep up, as each new page needs its own unmap_mapping_range() call, 1985 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1986 * 1987 * It does not matter if we sometimes reach this check just before the 1988 * hole-punch begins, so that one fault then races with the punch: 1989 * we just need to make racing faults a rare case. 1990 * 1991 * The implementation below would be much simpler if we just used a 1992 * standard mutex or completion: but we cannot take i_mutex in fault, 1993 * and bloating every shmem inode for this unlikely case would be sad. 1994 */ 1995 if (unlikely(inode->i_private)) { 1996 struct shmem_falloc *shmem_falloc; 1997 1998 spin_lock(&inode->i_lock); 1999 shmem_falloc = inode->i_private; 2000 if (shmem_falloc && 2001 shmem_falloc->waitq && 2002 vmf->pgoff >= shmem_falloc->start && 2003 vmf->pgoff < shmem_falloc->next) { 2004 struct file *fpin; 2005 wait_queue_head_t *shmem_falloc_waitq; 2006 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2007 2008 ret = VM_FAULT_NOPAGE; 2009 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2010 if (fpin) 2011 ret = VM_FAULT_RETRY; 2012 2013 shmem_falloc_waitq = shmem_falloc->waitq; 2014 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2015 TASK_UNINTERRUPTIBLE); 2016 spin_unlock(&inode->i_lock); 2017 schedule(); 2018 2019 /* 2020 * shmem_falloc_waitq points into the shmem_fallocate() 2021 * stack of the hole-punching task: shmem_falloc_waitq 2022 * is usually invalid by the time we reach here, but 2023 * finish_wait() does not dereference it in that case; 2024 * though i_lock needed lest racing with wake_up_all(). 2025 */ 2026 spin_lock(&inode->i_lock); 2027 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2028 spin_unlock(&inode->i_lock); 2029 2030 if (fpin) 2031 fput(fpin); 2032 return ret; 2033 } 2034 spin_unlock(&inode->i_lock); 2035 } 2036 2037 sgp = SGP_CACHE; 2038 2039 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2040 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2041 sgp = SGP_NOHUGE; 2042 else if (vma->vm_flags & VM_HUGEPAGE) 2043 sgp = SGP_HUGE; 2044 2045 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2046 gfp, vma, vmf, &ret); 2047 if (err) 2048 return vmf_error(err); 2049 return ret; 2050 } 2051 2052 unsigned long shmem_get_unmapped_area(struct file *file, 2053 unsigned long uaddr, unsigned long len, 2054 unsigned long pgoff, unsigned long flags) 2055 { 2056 unsigned long (*get_area)(struct file *, 2057 unsigned long, unsigned long, unsigned long, unsigned long); 2058 unsigned long addr; 2059 unsigned long offset; 2060 unsigned long inflated_len; 2061 unsigned long inflated_addr; 2062 unsigned long inflated_offset; 2063 2064 if (len > TASK_SIZE) 2065 return -ENOMEM; 2066 2067 get_area = current->mm->get_unmapped_area; 2068 addr = get_area(file, uaddr, len, pgoff, flags); 2069 2070 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2071 return addr; 2072 if (IS_ERR_VALUE(addr)) 2073 return addr; 2074 if (addr & ~PAGE_MASK) 2075 return addr; 2076 if (addr > TASK_SIZE - len) 2077 return addr; 2078 2079 if (shmem_huge == SHMEM_HUGE_DENY) 2080 return addr; 2081 if (len < HPAGE_PMD_SIZE) 2082 return addr; 2083 if (flags & MAP_FIXED) 2084 return addr; 2085 /* 2086 * Our priority is to support MAP_SHARED mapped hugely; 2087 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2088 * But if caller specified an address hint and we allocated area there 2089 * successfully, respect that as before. 2090 */ 2091 if (uaddr == addr) 2092 return addr; 2093 2094 if (shmem_huge != SHMEM_HUGE_FORCE) { 2095 struct super_block *sb; 2096 2097 if (file) { 2098 VM_BUG_ON(file->f_op != &shmem_file_operations); 2099 sb = file_inode(file)->i_sb; 2100 } else { 2101 /* 2102 * Called directly from mm/mmap.c, or drivers/char/mem.c 2103 * for "/dev/zero", to create a shared anonymous object. 2104 */ 2105 if (IS_ERR(shm_mnt)) 2106 return addr; 2107 sb = shm_mnt->mnt_sb; 2108 } 2109 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2110 return addr; 2111 } 2112 2113 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2114 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2115 return addr; 2116 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2117 return addr; 2118 2119 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2120 if (inflated_len > TASK_SIZE) 2121 return addr; 2122 if (inflated_len < len) 2123 return addr; 2124 2125 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2126 if (IS_ERR_VALUE(inflated_addr)) 2127 return addr; 2128 if (inflated_addr & ~PAGE_MASK) 2129 return addr; 2130 2131 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2132 inflated_addr += offset - inflated_offset; 2133 if (inflated_offset > offset) 2134 inflated_addr += HPAGE_PMD_SIZE; 2135 2136 if (inflated_addr > TASK_SIZE - len) 2137 return addr; 2138 return inflated_addr; 2139 } 2140 2141 #ifdef CONFIG_NUMA 2142 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2143 { 2144 struct inode *inode = file_inode(vma->vm_file); 2145 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2146 } 2147 2148 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2149 unsigned long addr) 2150 { 2151 struct inode *inode = file_inode(vma->vm_file); 2152 pgoff_t index; 2153 2154 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2155 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2156 } 2157 #endif 2158 2159 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2160 { 2161 struct inode *inode = file_inode(file); 2162 struct shmem_inode_info *info = SHMEM_I(inode); 2163 int retval = -ENOMEM; 2164 2165 /* 2166 * What serializes the accesses to info->flags? 2167 * ipc_lock_object() when called from shmctl_do_lock(), 2168 * no serialization needed when called from shm_destroy(). 2169 */ 2170 if (lock && !(info->flags & VM_LOCKED)) { 2171 if (!user_shm_lock(inode->i_size, user)) 2172 goto out_nomem; 2173 info->flags |= VM_LOCKED; 2174 mapping_set_unevictable(file->f_mapping); 2175 } 2176 if (!lock && (info->flags & VM_LOCKED) && user) { 2177 user_shm_unlock(inode->i_size, user); 2178 info->flags &= ~VM_LOCKED; 2179 mapping_clear_unevictable(file->f_mapping); 2180 } 2181 retval = 0; 2182 2183 out_nomem: 2184 return retval; 2185 } 2186 2187 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2188 { 2189 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2190 2191 if (info->seals & F_SEAL_FUTURE_WRITE) { 2192 /* 2193 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2194 * "future write" seal active. 2195 */ 2196 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2197 return -EPERM; 2198 2199 /* 2200 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2201 * MAP_SHARED and read-only, take care to not allow mprotect to 2202 * revert protections on such mappings. Do this only for shared 2203 * mappings. For private mappings, don't need to mask 2204 * VM_MAYWRITE as we still want them to be COW-writable. 2205 */ 2206 if (vma->vm_flags & VM_SHARED) 2207 vma->vm_flags &= ~(VM_MAYWRITE); 2208 } 2209 2210 file_accessed(file); 2211 vma->vm_ops = &shmem_vm_ops; 2212 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2213 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2214 (vma->vm_end & HPAGE_PMD_MASK)) { 2215 khugepaged_enter(vma, vma->vm_flags); 2216 } 2217 return 0; 2218 } 2219 2220 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2221 umode_t mode, dev_t dev, unsigned long flags) 2222 { 2223 struct inode *inode; 2224 struct shmem_inode_info *info; 2225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2226 2227 if (shmem_reserve_inode(sb)) 2228 return NULL; 2229 2230 inode = new_inode(sb); 2231 if (inode) { 2232 inode->i_ino = get_next_ino(); 2233 inode_init_owner(inode, dir, mode); 2234 inode->i_blocks = 0; 2235 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2236 inode->i_generation = prandom_u32(); 2237 info = SHMEM_I(inode); 2238 memset(info, 0, (char *)inode - (char *)info); 2239 spin_lock_init(&info->lock); 2240 atomic_set(&info->stop_eviction, 0); 2241 info->seals = F_SEAL_SEAL; 2242 info->flags = flags & VM_NORESERVE; 2243 INIT_LIST_HEAD(&info->shrinklist); 2244 INIT_LIST_HEAD(&info->swaplist); 2245 simple_xattrs_init(&info->xattrs); 2246 cache_no_acl(inode); 2247 2248 switch (mode & S_IFMT) { 2249 default: 2250 inode->i_op = &shmem_special_inode_operations; 2251 init_special_inode(inode, mode, dev); 2252 break; 2253 case S_IFREG: 2254 inode->i_mapping->a_ops = &shmem_aops; 2255 inode->i_op = &shmem_inode_operations; 2256 inode->i_fop = &shmem_file_operations; 2257 mpol_shared_policy_init(&info->policy, 2258 shmem_get_sbmpol(sbinfo)); 2259 break; 2260 case S_IFDIR: 2261 inc_nlink(inode); 2262 /* Some things misbehave if size == 0 on a directory */ 2263 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2264 inode->i_op = &shmem_dir_inode_operations; 2265 inode->i_fop = &simple_dir_operations; 2266 break; 2267 case S_IFLNK: 2268 /* 2269 * Must not load anything in the rbtree, 2270 * mpol_free_shared_policy will not be called. 2271 */ 2272 mpol_shared_policy_init(&info->policy, NULL); 2273 break; 2274 } 2275 2276 lockdep_annotate_inode_mutex_key(inode); 2277 } else 2278 shmem_free_inode(sb); 2279 return inode; 2280 } 2281 2282 bool shmem_mapping(struct address_space *mapping) 2283 { 2284 return mapping->a_ops == &shmem_aops; 2285 } 2286 2287 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2288 pmd_t *dst_pmd, 2289 struct vm_area_struct *dst_vma, 2290 unsigned long dst_addr, 2291 unsigned long src_addr, 2292 bool zeropage, 2293 struct page **pagep) 2294 { 2295 struct inode *inode = file_inode(dst_vma->vm_file); 2296 struct shmem_inode_info *info = SHMEM_I(inode); 2297 struct address_space *mapping = inode->i_mapping; 2298 gfp_t gfp = mapping_gfp_mask(mapping); 2299 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2300 spinlock_t *ptl; 2301 void *page_kaddr; 2302 struct page *page; 2303 pte_t _dst_pte, *dst_pte; 2304 int ret; 2305 pgoff_t offset, max_off; 2306 2307 ret = -ENOMEM; 2308 if (!shmem_inode_acct_block(inode, 1)) 2309 goto out; 2310 2311 if (!*pagep) { 2312 page = shmem_alloc_page(gfp, info, pgoff); 2313 if (!page) 2314 goto out_unacct_blocks; 2315 2316 if (!zeropage) { /* mcopy_atomic */ 2317 page_kaddr = kmap_atomic(page); 2318 ret = copy_from_user(page_kaddr, 2319 (const void __user *)src_addr, 2320 PAGE_SIZE); 2321 kunmap_atomic(page_kaddr); 2322 2323 /* fallback to copy_from_user outside mmap_sem */ 2324 if (unlikely(ret)) { 2325 *pagep = page; 2326 shmem_inode_unacct_blocks(inode, 1); 2327 /* don't free the page */ 2328 return -ENOENT; 2329 } 2330 } else { /* mfill_zeropage_atomic */ 2331 clear_highpage(page); 2332 } 2333 } else { 2334 page = *pagep; 2335 *pagep = NULL; 2336 } 2337 2338 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2339 __SetPageLocked(page); 2340 __SetPageSwapBacked(page); 2341 __SetPageUptodate(page); 2342 2343 ret = -EFAULT; 2344 offset = linear_page_index(dst_vma, dst_addr); 2345 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2346 if (unlikely(offset >= max_off)) 2347 goto out_release; 2348 2349 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2350 gfp & GFP_RECLAIM_MASK, dst_mm); 2351 if (ret) 2352 goto out_release; 2353 2354 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2355 if (dst_vma->vm_flags & VM_WRITE) 2356 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2357 else { 2358 /* 2359 * We don't set the pte dirty if the vma has no 2360 * VM_WRITE permission, so mark the page dirty or it 2361 * could be freed from under us. We could do it 2362 * unconditionally before unlock_page(), but doing it 2363 * only if VM_WRITE is not set is faster. 2364 */ 2365 set_page_dirty(page); 2366 } 2367 2368 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2369 2370 ret = -EFAULT; 2371 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2372 if (unlikely(offset >= max_off)) 2373 goto out_release_unlock; 2374 2375 ret = -EEXIST; 2376 if (!pte_none(*dst_pte)) 2377 goto out_release_unlock; 2378 2379 lru_cache_add(page); 2380 2381 spin_lock_irq(&info->lock); 2382 info->alloced++; 2383 inode->i_blocks += BLOCKS_PER_PAGE; 2384 shmem_recalc_inode(inode); 2385 spin_unlock_irq(&info->lock); 2386 2387 inc_mm_counter(dst_mm, mm_counter_file(page)); 2388 page_add_file_rmap(page, false); 2389 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2390 2391 /* No need to invalidate - it was non-present before */ 2392 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2393 pte_unmap_unlock(dst_pte, ptl); 2394 unlock_page(page); 2395 ret = 0; 2396 out: 2397 return ret; 2398 out_release_unlock: 2399 pte_unmap_unlock(dst_pte, ptl); 2400 ClearPageDirty(page); 2401 delete_from_page_cache(page); 2402 out_release: 2403 unlock_page(page); 2404 put_page(page); 2405 out_unacct_blocks: 2406 shmem_inode_unacct_blocks(inode, 1); 2407 goto out; 2408 } 2409 2410 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2411 pmd_t *dst_pmd, 2412 struct vm_area_struct *dst_vma, 2413 unsigned long dst_addr, 2414 unsigned long src_addr, 2415 struct page **pagep) 2416 { 2417 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2418 dst_addr, src_addr, false, pagep); 2419 } 2420 2421 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2422 pmd_t *dst_pmd, 2423 struct vm_area_struct *dst_vma, 2424 unsigned long dst_addr) 2425 { 2426 struct page *page = NULL; 2427 2428 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2429 dst_addr, 0, true, &page); 2430 } 2431 2432 #ifdef CONFIG_TMPFS 2433 static const struct inode_operations shmem_symlink_inode_operations; 2434 static const struct inode_operations shmem_short_symlink_operations; 2435 2436 #ifdef CONFIG_TMPFS_XATTR 2437 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2438 #else 2439 #define shmem_initxattrs NULL 2440 #endif 2441 2442 static int 2443 shmem_write_begin(struct file *file, struct address_space *mapping, 2444 loff_t pos, unsigned len, unsigned flags, 2445 struct page **pagep, void **fsdata) 2446 { 2447 struct inode *inode = mapping->host; 2448 struct shmem_inode_info *info = SHMEM_I(inode); 2449 pgoff_t index = pos >> PAGE_SHIFT; 2450 2451 /* i_mutex is held by caller */ 2452 if (unlikely(info->seals & (F_SEAL_GROW | 2453 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2454 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2455 return -EPERM; 2456 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2457 return -EPERM; 2458 } 2459 2460 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2461 } 2462 2463 static int 2464 shmem_write_end(struct file *file, struct address_space *mapping, 2465 loff_t pos, unsigned len, unsigned copied, 2466 struct page *page, void *fsdata) 2467 { 2468 struct inode *inode = mapping->host; 2469 2470 if (pos + copied > inode->i_size) 2471 i_size_write(inode, pos + copied); 2472 2473 if (!PageUptodate(page)) { 2474 struct page *head = compound_head(page); 2475 if (PageTransCompound(page)) { 2476 int i; 2477 2478 for (i = 0; i < HPAGE_PMD_NR; i++) { 2479 if (head + i == page) 2480 continue; 2481 clear_highpage(head + i); 2482 flush_dcache_page(head + i); 2483 } 2484 } 2485 if (copied < PAGE_SIZE) { 2486 unsigned from = pos & (PAGE_SIZE - 1); 2487 zero_user_segments(page, 0, from, 2488 from + copied, PAGE_SIZE); 2489 } 2490 SetPageUptodate(head); 2491 } 2492 set_page_dirty(page); 2493 unlock_page(page); 2494 put_page(page); 2495 2496 return copied; 2497 } 2498 2499 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2500 { 2501 struct file *file = iocb->ki_filp; 2502 struct inode *inode = file_inode(file); 2503 struct address_space *mapping = inode->i_mapping; 2504 pgoff_t index; 2505 unsigned long offset; 2506 enum sgp_type sgp = SGP_READ; 2507 int error = 0; 2508 ssize_t retval = 0; 2509 loff_t *ppos = &iocb->ki_pos; 2510 2511 /* 2512 * Might this read be for a stacking filesystem? Then when reading 2513 * holes of a sparse file, we actually need to allocate those pages, 2514 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2515 */ 2516 if (!iter_is_iovec(to)) 2517 sgp = SGP_CACHE; 2518 2519 index = *ppos >> PAGE_SHIFT; 2520 offset = *ppos & ~PAGE_MASK; 2521 2522 for (;;) { 2523 struct page *page = NULL; 2524 pgoff_t end_index; 2525 unsigned long nr, ret; 2526 loff_t i_size = i_size_read(inode); 2527 2528 end_index = i_size >> PAGE_SHIFT; 2529 if (index > end_index) 2530 break; 2531 if (index == end_index) { 2532 nr = i_size & ~PAGE_MASK; 2533 if (nr <= offset) 2534 break; 2535 } 2536 2537 error = shmem_getpage(inode, index, &page, sgp); 2538 if (error) { 2539 if (error == -EINVAL) 2540 error = 0; 2541 break; 2542 } 2543 if (page) { 2544 if (sgp == SGP_CACHE) 2545 set_page_dirty(page); 2546 unlock_page(page); 2547 } 2548 2549 /* 2550 * We must evaluate after, since reads (unlike writes) 2551 * are called without i_mutex protection against truncate 2552 */ 2553 nr = PAGE_SIZE; 2554 i_size = i_size_read(inode); 2555 end_index = i_size >> PAGE_SHIFT; 2556 if (index == end_index) { 2557 nr = i_size & ~PAGE_MASK; 2558 if (nr <= offset) { 2559 if (page) 2560 put_page(page); 2561 break; 2562 } 2563 } 2564 nr -= offset; 2565 2566 if (page) { 2567 /* 2568 * If users can be writing to this page using arbitrary 2569 * virtual addresses, take care about potential aliasing 2570 * before reading the page on the kernel side. 2571 */ 2572 if (mapping_writably_mapped(mapping)) 2573 flush_dcache_page(page); 2574 /* 2575 * Mark the page accessed if we read the beginning. 2576 */ 2577 if (!offset) 2578 mark_page_accessed(page); 2579 } else { 2580 page = ZERO_PAGE(0); 2581 get_page(page); 2582 } 2583 2584 /* 2585 * Ok, we have the page, and it's up-to-date, so 2586 * now we can copy it to user space... 2587 */ 2588 ret = copy_page_to_iter(page, offset, nr, to); 2589 retval += ret; 2590 offset += ret; 2591 index += offset >> PAGE_SHIFT; 2592 offset &= ~PAGE_MASK; 2593 2594 put_page(page); 2595 if (!iov_iter_count(to)) 2596 break; 2597 if (ret < nr) { 2598 error = -EFAULT; 2599 break; 2600 } 2601 cond_resched(); 2602 } 2603 2604 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2605 file_accessed(file); 2606 return retval ? retval : error; 2607 } 2608 2609 /* 2610 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2611 */ 2612 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2613 pgoff_t index, pgoff_t end, int whence) 2614 { 2615 struct page *page; 2616 struct pagevec pvec; 2617 pgoff_t indices[PAGEVEC_SIZE]; 2618 bool done = false; 2619 int i; 2620 2621 pagevec_init(&pvec); 2622 pvec.nr = 1; /* start small: we may be there already */ 2623 while (!done) { 2624 pvec.nr = find_get_entries(mapping, index, 2625 pvec.nr, pvec.pages, indices); 2626 if (!pvec.nr) { 2627 if (whence == SEEK_DATA) 2628 index = end; 2629 break; 2630 } 2631 for (i = 0; i < pvec.nr; i++, index++) { 2632 if (index < indices[i]) { 2633 if (whence == SEEK_HOLE) { 2634 done = true; 2635 break; 2636 } 2637 index = indices[i]; 2638 } 2639 page = pvec.pages[i]; 2640 if (page && !xa_is_value(page)) { 2641 if (!PageUptodate(page)) 2642 page = NULL; 2643 } 2644 if (index >= end || 2645 (page && whence == SEEK_DATA) || 2646 (!page && whence == SEEK_HOLE)) { 2647 done = true; 2648 break; 2649 } 2650 } 2651 pagevec_remove_exceptionals(&pvec); 2652 pagevec_release(&pvec); 2653 pvec.nr = PAGEVEC_SIZE; 2654 cond_resched(); 2655 } 2656 return index; 2657 } 2658 2659 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2660 { 2661 struct address_space *mapping = file->f_mapping; 2662 struct inode *inode = mapping->host; 2663 pgoff_t start, end; 2664 loff_t new_offset; 2665 2666 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2667 return generic_file_llseek_size(file, offset, whence, 2668 MAX_LFS_FILESIZE, i_size_read(inode)); 2669 inode_lock(inode); 2670 /* We're holding i_mutex so we can access i_size directly */ 2671 2672 if (offset < 0 || offset >= inode->i_size) 2673 offset = -ENXIO; 2674 else { 2675 start = offset >> PAGE_SHIFT; 2676 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2677 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2678 new_offset <<= PAGE_SHIFT; 2679 if (new_offset > offset) { 2680 if (new_offset < inode->i_size) 2681 offset = new_offset; 2682 else if (whence == SEEK_DATA) 2683 offset = -ENXIO; 2684 else 2685 offset = inode->i_size; 2686 } 2687 } 2688 2689 if (offset >= 0) 2690 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2691 inode_unlock(inode); 2692 return offset; 2693 } 2694 2695 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2696 loff_t len) 2697 { 2698 struct inode *inode = file_inode(file); 2699 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2700 struct shmem_inode_info *info = SHMEM_I(inode); 2701 struct shmem_falloc shmem_falloc; 2702 pgoff_t start, index, end; 2703 int error; 2704 2705 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2706 return -EOPNOTSUPP; 2707 2708 inode_lock(inode); 2709 2710 if (mode & FALLOC_FL_PUNCH_HOLE) { 2711 struct address_space *mapping = file->f_mapping; 2712 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2713 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2714 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2715 2716 /* protected by i_mutex */ 2717 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2718 error = -EPERM; 2719 goto out; 2720 } 2721 2722 shmem_falloc.waitq = &shmem_falloc_waitq; 2723 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2724 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2725 spin_lock(&inode->i_lock); 2726 inode->i_private = &shmem_falloc; 2727 spin_unlock(&inode->i_lock); 2728 2729 if ((u64)unmap_end > (u64)unmap_start) 2730 unmap_mapping_range(mapping, unmap_start, 2731 1 + unmap_end - unmap_start, 0); 2732 shmem_truncate_range(inode, offset, offset + len - 1); 2733 /* No need to unmap again: hole-punching leaves COWed pages */ 2734 2735 spin_lock(&inode->i_lock); 2736 inode->i_private = NULL; 2737 wake_up_all(&shmem_falloc_waitq); 2738 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2739 spin_unlock(&inode->i_lock); 2740 error = 0; 2741 goto out; 2742 } 2743 2744 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2745 error = inode_newsize_ok(inode, offset + len); 2746 if (error) 2747 goto out; 2748 2749 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2750 error = -EPERM; 2751 goto out; 2752 } 2753 2754 start = offset >> PAGE_SHIFT; 2755 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2756 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2757 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2758 error = -ENOSPC; 2759 goto out; 2760 } 2761 2762 shmem_falloc.waitq = NULL; 2763 shmem_falloc.start = start; 2764 shmem_falloc.next = start; 2765 shmem_falloc.nr_falloced = 0; 2766 shmem_falloc.nr_unswapped = 0; 2767 spin_lock(&inode->i_lock); 2768 inode->i_private = &shmem_falloc; 2769 spin_unlock(&inode->i_lock); 2770 2771 for (index = start; index < end; index++) { 2772 struct page *page; 2773 2774 /* 2775 * Good, the fallocate(2) manpage permits EINTR: we may have 2776 * been interrupted because we are using up too much memory. 2777 */ 2778 if (signal_pending(current)) 2779 error = -EINTR; 2780 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2781 error = -ENOMEM; 2782 else 2783 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2784 if (error) { 2785 /* Remove the !PageUptodate pages we added */ 2786 if (index > start) { 2787 shmem_undo_range(inode, 2788 (loff_t)start << PAGE_SHIFT, 2789 ((loff_t)index << PAGE_SHIFT) - 1, true); 2790 } 2791 goto undone; 2792 } 2793 2794 /* 2795 * Inform shmem_writepage() how far we have reached. 2796 * No need for lock or barrier: we have the page lock. 2797 */ 2798 shmem_falloc.next++; 2799 if (!PageUptodate(page)) 2800 shmem_falloc.nr_falloced++; 2801 2802 /* 2803 * If !PageUptodate, leave it that way so that freeable pages 2804 * can be recognized if we need to rollback on error later. 2805 * But set_page_dirty so that memory pressure will swap rather 2806 * than free the pages we are allocating (and SGP_CACHE pages 2807 * might still be clean: we now need to mark those dirty too). 2808 */ 2809 set_page_dirty(page); 2810 unlock_page(page); 2811 put_page(page); 2812 cond_resched(); 2813 } 2814 2815 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2816 i_size_write(inode, offset + len); 2817 inode->i_ctime = current_time(inode); 2818 undone: 2819 spin_lock(&inode->i_lock); 2820 inode->i_private = NULL; 2821 spin_unlock(&inode->i_lock); 2822 out: 2823 inode_unlock(inode); 2824 return error; 2825 } 2826 2827 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2828 { 2829 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2830 2831 buf->f_type = TMPFS_MAGIC; 2832 buf->f_bsize = PAGE_SIZE; 2833 buf->f_namelen = NAME_MAX; 2834 if (sbinfo->max_blocks) { 2835 buf->f_blocks = sbinfo->max_blocks; 2836 buf->f_bavail = 2837 buf->f_bfree = sbinfo->max_blocks - 2838 percpu_counter_sum(&sbinfo->used_blocks); 2839 } 2840 if (sbinfo->max_inodes) { 2841 buf->f_files = sbinfo->max_inodes; 2842 buf->f_ffree = sbinfo->free_inodes; 2843 } 2844 /* else leave those fields 0 like simple_statfs */ 2845 return 0; 2846 } 2847 2848 /* 2849 * File creation. Allocate an inode, and we're done.. 2850 */ 2851 static int 2852 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2853 { 2854 struct inode *inode; 2855 int error = -ENOSPC; 2856 2857 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2858 if (inode) { 2859 error = simple_acl_create(dir, inode); 2860 if (error) 2861 goto out_iput; 2862 error = security_inode_init_security(inode, dir, 2863 &dentry->d_name, 2864 shmem_initxattrs, NULL); 2865 if (error && error != -EOPNOTSUPP) 2866 goto out_iput; 2867 2868 error = 0; 2869 dir->i_size += BOGO_DIRENT_SIZE; 2870 dir->i_ctime = dir->i_mtime = current_time(dir); 2871 d_instantiate(dentry, inode); 2872 dget(dentry); /* Extra count - pin the dentry in core */ 2873 } 2874 return error; 2875 out_iput: 2876 iput(inode); 2877 return error; 2878 } 2879 2880 static int 2881 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2882 { 2883 struct inode *inode; 2884 int error = -ENOSPC; 2885 2886 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2887 if (inode) { 2888 error = security_inode_init_security(inode, dir, 2889 NULL, 2890 shmem_initxattrs, NULL); 2891 if (error && error != -EOPNOTSUPP) 2892 goto out_iput; 2893 error = simple_acl_create(dir, inode); 2894 if (error) 2895 goto out_iput; 2896 d_tmpfile(dentry, inode); 2897 } 2898 return error; 2899 out_iput: 2900 iput(inode); 2901 return error; 2902 } 2903 2904 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2905 { 2906 int error; 2907 2908 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2909 return error; 2910 inc_nlink(dir); 2911 return 0; 2912 } 2913 2914 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2915 bool excl) 2916 { 2917 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2918 } 2919 2920 /* 2921 * Link a file.. 2922 */ 2923 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2924 { 2925 struct inode *inode = d_inode(old_dentry); 2926 int ret = 0; 2927 2928 /* 2929 * No ordinary (disk based) filesystem counts links as inodes; 2930 * but each new link needs a new dentry, pinning lowmem, and 2931 * tmpfs dentries cannot be pruned until they are unlinked. 2932 * But if an O_TMPFILE file is linked into the tmpfs, the 2933 * first link must skip that, to get the accounting right. 2934 */ 2935 if (inode->i_nlink) { 2936 ret = shmem_reserve_inode(inode->i_sb); 2937 if (ret) 2938 goto out; 2939 } 2940 2941 dir->i_size += BOGO_DIRENT_SIZE; 2942 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2943 inc_nlink(inode); 2944 ihold(inode); /* New dentry reference */ 2945 dget(dentry); /* Extra pinning count for the created dentry */ 2946 d_instantiate(dentry, inode); 2947 out: 2948 return ret; 2949 } 2950 2951 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2952 { 2953 struct inode *inode = d_inode(dentry); 2954 2955 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2956 shmem_free_inode(inode->i_sb); 2957 2958 dir->i_size -= BOGO_DIRENT_SIZE; 2959 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2960 drop_nlink(inode); 2961 dput(dentry); /* Undo the count from "create" - this does all the work */ 2962 return 0; 2963 } 2964 2965 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2966 { 2967 if (!simple_empty(dentry)) 2968 return -ENOTEMPTY; 2969 2970 drop_nlink(d_inode(dentry)); 2971 drop_nlink(dir); 2972 return shmem_unlink(dir, dentry); 2973 } 2974 2975 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2976 { 2977 bool old_is_dir = d_is_dir(old_dentry); 2978 bool new_is_dir = d_is_dir(new_dentry); 2979 2980 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2981 if (old_is_dir) { 2982 drop_nlink(old_dir); 2983 inc_nlink(new_dir); 2984 } else { 2985 drop_nlink(new_dir); 2986 inc_nlink(old_dir); 2987 } 2988 } 2989 old_dir->i_ctime = old_dir->i_mtime = 2990 new_dir->i_ctime = new_dir->i_mtime = 2991 d_inode(old_dentry)->i_ctime = 2992 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2993 2994 return 0; 2995 } 2996 2997 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2998 { 2999 struct dentry *whiteout; 3000 int error; 3001 3002 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3003 if (!whiteout) 3004 return -ENOMEM; 3005 3006 error = shmem_mknod(old_dir, whiteout, 3007 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3008 dput(whiteout); 3009 if (error) 3010 return error; 3011 3012 /* 3013 * Cheat and hash the whiteout while the old dentry is still in 3014 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3015 * 3016 * d_lookup() will consistently find one of them at this point, 3017 * not sure which one, but that isn't even important. 3018 */ 3019 d_rehash(whiteout); 3020 return 0; 3021 } 3022 3023 /* 3024 * The VFS layer already does all the dentry stuff for rename, 3025 * we just have to decrement the usage count for the target if 3026 * it exists so that the VFS layer correctly free's it when it 3027 * gets overwritten. 3028 */ 3029 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3030 { 3031 struct inode *inode = d_inode(old_dentry); 3032 int they_are_dirs = S_ISDIR(inode->i_mode); 3033 3034 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3035 return -EINVAL; 3036 3037 if (flags & RENAME_EXCHANGE) 3038 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3039 3040 if (!simple_empty(new_dentry)) 3041 return -ENOTEMPTY; 3042 3043 if (flags & RENAME_WHITEOUT) { 3044 int error; 3045 3046 error = shmem_whiteout(old_dir, old_dentry); 3047 if (error) 3048 return error; 3049 } 3050 3051 if (d_really_is_positive(new_dentry)) { 3052 (void) shmem_unlink(new_dir, new_dentry); 3053 if (they_are_dirs) { 3054 drop_nlink(d_inode(new_dentry)); 3055 drop_nlink(old_dir); 3056 } 3057 } else if (they_are_dirs) { 3058 drop_nlink(old_dir); 3059 inc_nlink(new_dir); 3060 } 3061 3062 old_dir->i_size -= BOGO_DIRENT_SIZE; 3063 new_dir->i_size += BOGO_DIRENT_SIZE; 3064 old_dir->i_ctime = old_dir->i_mtime = 3065 new_dir->i_ctime = new_dir->i_mtime = 3066 inode->i_ctime = current_time(old_dir); 3067 return 0; 3068 } 3069 3070 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3071 { 3072 int error; 3073 int len; 3074 struct inode *inode; 3075 struct page *page; 3076 3077 len = strlen(symname) + 1; 3078 if (len > PAGE_SIZE) 3079 return -ENAMETOOLONG; 3080 3081 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3082 VM_NORESERVE); 3083 if (!inode) 3084 return -ENOSPC; 3085 3086 error = security_inode_init_security(inode, dir, &dentry->d_name, 3087 shmem_initxattrs, NULL); 3088 if (error && error != -EOPNOTSUPP) { 3089 iput(inode); 3090 return error; 3091 } 3092 3093 inode->i_size = len-1; 3094 if (len <= SHORT_SYMLINK_LEN) { 3095 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3096 if (!inode->i_link) { 3097 iput(inode); 3098 return -ENOMEM; 3099 } 3100 inode->i_op = &shmem_short_symlink_operations; 3101 } else { 3102 inode_nohighmem(inode); 3103 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3104 if (error) { 3105 iput(inode); 3106 return error; 3107 } 3108 inode->i_mapping->a_ops = &shmem_aops; 3109 inode->i_op = &shmem_symlink_inode_operations; 3110 memcpy(page_address(page), symname, len); 3111 SetPageUptodate(page); 3112 set_page_dirty(page); 3113 unlock_page(page); 3114 put_page(page); 3115 } 3116 dir->i_size += BOGO_DIRENT_SIZE; 3117 dir->i_ctime = dir->i_mtime = current_time(dir); 3118 d_instantiate(dentry, inode); 3119 dget(dentry); 3120 return 0; 3121 } 3122 3123 static void shmem_put_link(void *arg) 3124 { 3125 mark_page_accessed(arg); 3126 put_page(arg); 3127 } 3128 3129 static const char *shmem_get_link(struct dentry *dentry, 3130 struct inode *inode, 3131 struct delayed_call *done) 3132 { 3133 struct page *page = NULL; 3134 int error; 3135 if (!dentry) { 3136 page = find_get_page(inode->i_mapping, 0); 3137 if (!page) 3138 return ERR_PTR(-ECHILD); 3139 if (!PageUptodate(page)) { 3140 put_page(page); 3141 return ERR_PTR(-ECHILD); 3142 } 3143 } else { 3144 error = shmem_getpage(inode, 0, &page, SGP_READ); 3145 if (error) 3146 return ERR_PTR(error); 3147 unlock_page(page); 3148 } 3149 set_delayed_call(done, shmem_put_link, page); 3150 return page_address(page); 3151 } 3152 3153 #ifdef CONFIG_TMPFS_XATTR 3154 /* 3155 * Superblocks without xattr inode operations may get some security.* xattr 3156 * support from the LSM "for free". As soon as we have any other xattrs 3157 * like ACLs, we also need to implement the security.* handlers at 3158 * filesystem level, though. 3159 */ 3160 3161 /* 3162 * Callback for security_inode_init_security() for acquiring xattrs. 3163 */ 3164 static int shmem_initxattrs(struct inode *inode, 3165 const struct xattr *xattr_array, 3166 void *fs_info) 3167 { 3168 struct shmem_inode_info *info = SHMEM_I(inode); 3169 const struct xattr *xattr; 3170 struct simple_xattr *new_xattr; 3171 size_t len; 3172 3173 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3174 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3175 if (!new_xattr) 3176 return -ENOMEM; 3177 3178 len = strlen(xattr->name) + 1; 3179 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3180 GFP_KERNEL); 3181 if (!new_xattr->name) { 3182 kfree(new_xattr); 3183 return -ENOMEM; 3184 } 3185 3186 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3187 XATTR_SECURITY_PREFIX_LEN); 3188 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3189 xattr->name, len); 3190 3191 simple_xattr_list_add(&info->xattrs, new_xattr); 3192 } 3193 3194 return 0; 3195 } 3196 3197 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3198 struct dentry *unused, struct inode *inode, 3199 const char *name, void *buffer, size_t size) 3200 { 3201 struct shmem_inode_info *info = SHMEM_I(inode); 3202 3203 name = xattr_full_name(handler, name); 3204 return simple_xattr_get(&info->xattrs, name, buffer, size); 3205 } 3206 3207 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3208 struct dentry *unused, struct inode *inode, 3209 const char *name, const void *value, 3210 size_t size, int flags) 3211 { 3212 struct shmem_inode_info *info = SHMEM_I(inode); 3213 3214 name = xattr_full_name(handler, name); 3215 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3216 } 3217 3218 static const struct xattr_handler shmem_security_xattr_handler = { 3219 .prefix = XATTR_SECURITY_PREFIX, 3220 .get = shmem_xattr_handler_get, 3221 .set = shmem_xattr_handler_set, 3222 }; 3223 3224 static const struct xattr_handler shmem_trusted_xattr_handler = { 3225 .prefix = XATTR_TRUSTED_PREFIX, 3226 .get = shmem_xattr_handler_get, 3227 .set = shmem_xattr_handler_set, 3228 }; 3229 3230 static const struct xattr_handler *shmem_xattr_handlers[] = { 3231 #ifdef CONFIG_TMPFS_POSIX_ACL 3232 &posix_acl_access_xattr_handler, 3233 &posix_acl_default_xattr_handler, 3234 #endif 3235 &shmem_security_xattr_handler, 3236 &shmem_trusted_xattr_handler, 3237 NULL 3238 }; 3239 3240 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3241 { 3242 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3243 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3244 } 3245 #endif /* CONFIG_TMPFS_XATTR */ 3246 3247 static const struct inode_operations shmem_short_symlink_operations = { 3248 .get_link = simple_get_link, 3249 #ifdef CONFIG_TMPFS_XATTR 3250 .listxattr = shmem_listxattr, 3251 #endif 3252 }; 3253 3254 static const struct inode_operations shmem_symlink_inode_operations = { 3255 .get_link = shmem_get_link, 3256 #ifdef CONFIG_TMPFS_XATTR 3257 .listxattr = shmem_listxattr, 3258 #endif 3259 }; 3260 3261 static struct dentry *shmem_get_parent(struct dentry *child) 3262 { 3263 return ERR_PTR(-ESTALE); 3264 } 3265 3266 static int shmem_match(struct inode *ino, void *vfh) 3267 { 3268 __u32 *fh = vfh; 3269 __u64 inum = fh[2]; 3270 inum = (inum << 32) | fh[1]; 3271 return ino->i_ino == inum && fh[0] == ino->i_generation; 3272 } 3273 3274 /* Find any alias of inode, but prefer a hashed alias */ 3275 static struct dentry *shmem_find_alias(struct inode *inode) 3276 { 3277 struct dentry *alias = d_find_alias(inode); 3278 3279 return alias ?: d_find_any_alias(inode); 3280 } 3281 3282 3283 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3284 struct fid *fid, int fh_len, int fh_type) 3285 { 3286 struct inode *inode; 3287 struct dentry *dentry = NULL; 3288 u64 inum; 3289 3290 if (fh_len < 3) 3291 return NULL; 3292 3293 inum = fid->raw[2]; 3294 inum = (inum << 32) | fid->raw[1]; 3295 3296 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3297 shmem_match, fid->raw); 3298 if (inode) { 3299 dentry = shmem_find_alias(inode); 3300 iput(inode); 3301 } 3302 3303 return dentry; 3304 } 3305 3306 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3307 struct inode *parent) 3308 { 3309 if (*len < 3) { 3310 *len = 3; 3311 return FILEID_INVALID; 3312 } 3313 3314 if (inode_unhashed(inode)) { 3315 /* Unfortunately insert_inode_hash is not idempotent, 3316 * so as we hash inodes here rather than at creation 3317 * time, we need a lock to ensure we only try 3318 * to do it once 3319 */ 3320 static DEFINE_SPINLOCK(lock); 3321 spin_lock(&lock); 3322 if (inode_unhashed(inode)) 3323 __insert_inode_hash(inode, 3324 inode->i_ino + inode->i_generation); 3325 spin_unlock(&lock); 3326 } 3327 3328 fh[0] = inode->i_generation; 3329 fh[1] = inode->i_ino; 3330 fh[2] = ((__u64)inode->i_ino) >> 32; 3331 3332 *len = 3; 3333 return 1; 3334 } 3335 3336 static const struct export_operations shmem_export_ops = { 3337 .get_parent = shmem_get_parent, 3338 .encode_fh = shmem_encode_fh, 3339 .fh_to_dentry = shmem_fh_to_dentry, 3340 }; 3341 3342 enum shmem_param { 3343 Opt_gid, 3344 Opt_huge, 3345 Opt_mode, 3346 Opt_mpol, 3347 Opt_nr_blocks, 3348 Opt_nr_inodes, 3349 Opt_size, 3350 Opt_uid, 3351 }; 3352 3353 static const struct constant_table shmem_param_enums_huge[] = { 3354 {"never", SHMEM_HUGE_NEVER }, 3355 {"always", SHMEM_HUGE_ALWAYS }, 3356 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3357 {"advise", SHMEM_HUGE_ADVISE }, 3358 {} 3359 }; 3360 3361 const struct fs_parameter_spec shmem_fs_parameters[] = { 3362 fsparam_u32 ("gid", Opt_gid), 3363 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3364 fsparam_u32oct("mode", Opt_mode), 3365 fsparam_string("mpol", Opt_mpol), 3366 fsparam_string("nr_blocks", Opt_nr_blocks), 3367 fsparam_string("nr_inodes", Opt_nr_inodes), 3368 fsparam_string("size", Opt_size), 3369 fsparam_u32 ("uid", Opt_uid), 3370 {} 3371 }; 3372 3373 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3374 { 3375 struct shmem_options *ctx = fc->fs_private; 3376 struct fs_parse_result result; 3377 unsigned long long size; 3378 char *rest; 3379 int opt; 3380 3381 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3382 if (opt < 0) 3383 return opt; 3384 3385 switch (opt) { 3386 case Opt_size: 3387 size = memparse(param->string, &rest); 3388 if (*rest == '%') { 3389 size <<= PAGE_SHIFT; 3390 size *= totalram_pages(); 3391 do_div(size, 100); 3392 rest++; 3393 } 3394 if (*rest) 3395 goto bad_value; 3396 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3397 ctx->seen |= SHMEM_SEEN_BLOCKS; 3398 break; 3399 case Opt_nr_blocks: 3400 ctx->blocks = memparse(param->string, &rest); 3401 if (*rest) 3402 goto bad_value; 3403 ctx->seen |= SHMEM_SEEN_BLOCKS; 3404 break; 3405 case Opt_nr_inodes: 3406 ctx->inodes = memparse(param->string, &rest); 3407 if (*rest) 3408 goto bad_value; 3409 ctx->seen |= SHMEM_SEEN_INODES; 3410 break; 3411 case Opt_mode: 3412 ctx->mode = result.uint_32 & 07777; 3413 break; 3414 case Opt_uid: 3415 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3416 if (!uid_valid(ctx->uid)) 3417 goto bad_value; 3418 break; 3419 case Opt_gid: 3420 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3421 if (!gid_valid(ctx->gid)) 3422 goto bad_value; 3423 break; 3424 case Opt_huge: 3425 ctx->huge = result.uint_32; 3426 if (ctx->huge != SHMEM_HUGE_NEVER && 3427 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3428 has_transparent_hugepage())) 3429 goto unsupported_parameter; 3430 ctx->seen |= SHMEM_SEEN_HUGE; 3431 break; 3432 case Opt_mpol: 3433 if (IS_ENABLED(CONFIG_NUMA)) { 3434 mpol_put(ctx->mpol); 3435 ctx->mpol = NULL; 3436 if (mpol_parse_str(param->string, &ctx->mpol)) 3437 goto bad_value; 3438 break; 3439 } 3440 goto unsupported_parameter; 3441 } 3442 return 0; 3443 3444 unsupported_parameter: 3445 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3446 bad_value: 3447 return invalfc(fc, "Bad value for '%s'", param->key); 3448 } 3449 3450 static int shmem_parse_options(struct fs_context *fc, void *data) 3451 { 3452 char *options = data; 3453 3454 if (options) { 3455 int err = security_sb_eat_lsm_opts(options, &fc->security); 3456 if (err) 3457 return err; 3458 } 3459 3460 while (options != NULL) { 3461 char *this_char = options; 3462 for (;;) { 3463 /* 3464 * NUL-terminate this option: unfortunately, 3465 * mount options form a comma-separated list, 3466 * but mpol's nodelist may also contain commas. 3467 */ 3468 options = strchr(options, ','); 3469 if (options == NULL) 3470 break; 3471 options++; 3472 if (!isdigit(*options)) { 3473 options[-1] = '\0'; 3474 break; 3475 } 3476 } 3477 if (*this_char) { 3478 char *value = strchr(this_char,'='); 3479 size_t len = 0; 3480 int err; 3481 3482 if (value) { 3483 *value++ = '\0'; 3484 len = strlen(value); 3485 } 3486 err = vfs_parse_fs_string(fc, this_char, value, len); 3487 if (err < 0) 3488 return err; 3489 } 3490 } 3491 return 0; 3492 } 3493 3494 /* 3495 * Reconfigure a shmem filesystem. 3496 * 3497 * Note that we disallow change from limited->unlimited blocks/inodes while any 3498 * are in use; but we must separately disallow unlimited->limited, because in 3499 * that case we have no record of how much is already in use. 3500 */ 3501 static int shmem_reconfigure(struct fs_context *fc) 3502 { 3503 struct shmem_options *ctx = fc->fs_private; 3504 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3505 unsigned long inodes; 3506 const char *err; 3507 3508 spin_lock(&sbinfo->stat_lock); 3509 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3510 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3511 if (!sbinfo->max_blocks) { 3512 err = "Cannot retroactively limit size"; 3513 goto out; 3514 } 3515 if (percpu_counter_compare(&sbinfo->used_blocks, 3516 ctx->blocks) > 0) { 3517 err = "Too small a size for current use"; 3518 goto out; 3519 } 3520 } 3521 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3522 if (!sbinfo->max_inodes) { 3523 err = "Cannot retroactively limit inodes"; 3524 goto out; 3525 } 3526 if (ctx->inodes < inodes) { 3527 err = "Too few inodes for current use"; 3528 goto out; 3529 } 3530 } 3531 3532 if (ctx->seen & SHMEM_SEEN_HUGE) 3533 sbinfo->huge = ctx->huge; 3534 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3535 sbinfo->max_blocks = ctx->blocks; 3536 if (ctx->seen & SHMEM_SEEN_INODES) { 3537 sbinfo->max_inodes = ctx->inodes; 3538 sbinfo->free_inodes = ctx->inodes - inodes; 3539 } 3540 3541 /* 3542 * Preserve previous mempolicy unless mpol remount option was specified. 3543 */ 3544 if (ctx->mpol) { 3545 mpol_put(sbinfo->mpol); 3546 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3547 ctx->mpol = NULL; 3548 } 3549 spin_unlock(&sbinfo->stat_lock); 3550 return 0; 3551 out: 3552 spin_unlock(&sbinfo->stat_lock); 3553 return invalfc(fc, "%s", err); 3554 } 3555 3556 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3557 { 3558 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3559 3560 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3561 seq_printf(seq, ",size=%luk", 3562 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3563 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3564 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3565 if (sbinfo->mode != (0777 | S_ISVTX)) 3566 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3567 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3568 seq_printf(seq, ",uid=%u", 3569 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3570 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3571 seq_printf(seq, ",gid=%u", 3572 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3574 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3575 if (sbinfo->huge) 3576 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3577 #endif 3578 shmem_show_mpol(seq, sbinfo->mpol); 3579 return 0; 3580 } 3581 3582 #endif /* CONFIG_TMPFS */ 3583 3584 static void shmem_put_super(struct super_block *sb) 3585 { 3586 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3587 3588 percpu_counter_destroy(&sbinfo->used_blocks); 3589 mpol_put(sbinfo->mpol); 3590 kfree(sbinfo); 3591 sb->s_fs_info = NULL; 3592 } 3593 3594 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3595 { 3596 struct shmem_options *ctx = fc->fs_private; 3597 struct inode *inode; 3598 struct shmem_sb_info *sbinfo; 3599 int err = -ENOMEM; 3600 3601 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3602 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3603 L1_CACHE_BYTES), GFP_KERNEL); 3604 if (!sbinfo) 3605 return -ENOMEM; 3606 3607 sb->s_fs_info = sbinfo; 3608 3609 #ifdef CONFIG_TMPFS 3610 /* 3611 * Per default we only allow half of the physical ram per 3612 * tmpfs instance, limiting inodes to one per page of lowmem; 3613 * but the internal instance is left unlimited. 3614 */ 3615 if (!(sb->s_flags & SB_KERNMOUNT)) { 3616 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3617 ctx->blocks = shmem_default_max_blocks(); 3618 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3619 ctx->inodes = shmem_default_max_inodes(); 3620 } else { 3621 sb->s_flags |= SB_NOUSER; 3622 } 3623 sb->s_export_op = &shmem_export_ops; 3624 sb->s_flags |= SB_NOSEC; 3625 #else 3626 sb->s_flags |= SB_NOUSER; 3627 #endif 3628 sbinfo->max_blocks = ctx->blocks; 3629 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3630 sbinfo->uid = ctx->uid; 3631 sbinfo->gid = ctx->gid; 3632 sbinfo->mode = ctx->mode; 3633 sbinfo->huge = ctx->huge; 3634 sbinfo->mpol = ctx->mpol; 3635 ctx->mpol = NULL; 3636 3637 spin_lock_init(&sbinfo->stat_lock); 3638 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3639 goto failed; 3640 spin_lock_init(&sbinfo->shrinklist_lock); 3641 INIT_LIST_HEAD(&sbinfo->shrinklist); 3642 3643 sb->s_maxbytes = MAX_LFS_FILESIZE; 3644 sb->s_blocksize = PAGE_SIZE; 3645 sb->s_blocksize_bits = PAGE_SHIFT; 3646 sb->s_magic = TMPFS_MAGIC; 3647 sb->s_op = &shmem_ops; 3648 sb->s_time_gran = 1; 3649 #ifdef CONFIG_TMPFS_XATTR 3650 sb->s_xattr = shmem_xattr_handlers; 3651 #endif 3652 #ifdef CONFIG_TMPFS_POSIX_ACL 3653 sb->s_flags |= SB_POSIXACL; 3654 #endif 3655 uuid_gen(&sb->s_uuid); 3656 3657 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3658 if (!inode) 3659 goto failed; 3660 inode->i_uid = sbinfo->uid; 3661 inode->i_gid = sbinfo->gid; 3662 sb->s_root = d_make_root(inode); 3663 if (!sb->s_root) 3664 goto failed; 3665 return 0; 3666 3667 failed: 3668 shmem_put_super(sb); 3669 return err; 3670 } 3671 3672 static int shmem_get_tree(struct fs_context *fc) 3673 { 3674 return get_tree_nodev(fc, shmem_fill_super); 3675 } 3676 3677 static void shmem_free_fc(struct fs_context *fc) 3678 { 3679 struct shmem_options *ctx = fc->fs_private; 3680 3681 if (ctx) { 3682 mpol_put(ctx->mpol); 3683 kfree(ctx); 3684 } 3685 } 3686 3687 static const struct fs_context_operations shmem_fs_context_ops = { 3688 .free = shmem_free_fc, 3689 .get_tree = shmem_get_tree, 3690 #ifdef CONFIG_TMPFS 3691 .parse_monolithic = shmem_parse_options, 3692 .parse_param = shmem_parse_one, 3693 .reconfigure = shmem_reconfigure, 3694 #endif 3695 }; 3696 3697 static struct kmem_cache *shmem_inode_cachep; 3698 3699 static struct inode *shmem_alloc_inode(struct super_block *sb) 3700 { 3701 struct shmem_inode_info *info; 3702 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3703 if (!info) 3704 return NULL; 3705 return &info->vfs_inode; 3706 } 3707 3708 static void shmem_free_in_core_inode(struct inode *inode) 3709 { 3710 if (S_ISLNK(inode->i_mode)) 3711 kfree(inode->i_link); 3712 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3713 } 3714 3715 static void shmem_destroy_inode(struct inode *inode) 3716 { 3717 if (S_ISREG(inode->i_mode)) 3718 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3719 } 3720 3721 static void shmem_init_inode(void *foo) 3722 { 3723 struct shmem_inode_info *info = foo; 3724 inode_init_once(&info->vfs_inode); 3725 } 3726 3727 static void shmem_init_inodecache(void) 3728 { 3729 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3730 sizeof(struct shmem_inode_info), 3731 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3732 } 3733 3734 static void shmem_destroy_inodecache(void) 3735 { 3736 kmem_cache_destroy(shmem_inode_cachep); 3737 } 3738 3739 static const struct address_space_operations shmem_aops = { 3740 .writepage = shmem_writepage, 3741 .set_page_dirty = __set_page_dirty_no_writeback, 3742 #ifdef CONFIG_TMPFS 3743 .write_begin = shmem_write_begin, 3744 .write_end = shmem_write_end, 3745 #endif 3746 #ifdef CONFIG_MIGRATION 3747 .migratepage = migrate_page, 3748 #endif 3749 .error_remove_page = generic_error_remove_page, 3750 }; 3751 3752 static const struct file_operations shmem_file_operations = { 3753 .mmap = shmem_mmap, 3754 .get_unmapped_area = shmem_get_unmapped_area, 3755 #ifdef CONFIG_TMPFS 3756 .llseek = shmem_file_llseek, 3757 .read_iter = shmem_file_read_iter, 3758 .write_iter = generic_file_write_iter, 3759 .fsync = noop_fsync, 3760 .splice_read = generic_file_splice_read, 3761 .splice_write = iter_file_splice_write, 3762 .fallocate = shmem_fallocate, 3763 #endif 3764 }; 3765 3766 static const struct inode_operations shmem_inode_operations = { 3767 .getattr = shmem_getattr, 3768 .setattr = shmem_setattr, 3769 #ifdef CONFIG_TMPFS_XATTR 3770 .listxattr = shmem_listxattr, 3771 .set_acl = simple_set_acl, 3772 #endif 3773 }; 3774 3775 static const struct inode_operations shmem_dir_inode_operations = { 3776 #ifdef CONFIG_TMPFS 3777 .create = shmem_create, 3778 .lookup = simple_lookup, 3779 .link = shmem_link, 3780 .unlink = shmem_unlink, 3781 .symlink = shmem_symlink, 3782 .mkdir = shmem_mkdir, 3783 .rmdir = shmem_rmdir, 3784 .mknod = shmem_mknod, 3785 .rename = shmem_rename2, 3786 .tmpfile = shmem_tmpfile, 3787 #endif 3788 #ifdef CONFIG_TMPFS_XATTR 3789 .listxattr = shmem_listxattr, 3790 #endif 3791 #ifdef CONFIG_TMPFS_POSIX_ACL 3792 .setattr = shmem_setattr, 3793 .set_acl = simple_set_acl, 3794 #endif 3795 }; 3796 3797 static const struct inode_operations shmem_special_inode_operations = { 3798 #ifdef CONFIG_TMPFS_XATTR 3799 .listxattr = shmem_listxattr, 3800 #endif 3801 #ifdef CONFIG_TMPFS_POSIX_ACL 3802 .setattr = shmem_setattr, 3803 .set_acl = simple_set_acl, 3804 #endif 3805 }; 3806 3807 static const struct super_operations shmem_ops = { 3808 .alloc_inode = shmem_alloc_inode, 3809 .free_inode = shmem_free_in_core_inode, 3810 .destroy_inode = shmem_destroy_inode, 3811 #ifdef CONFIG_TMPFS 3812 .statfs = shmem_statfs, 3813 .show_options = shmem_show_options, 3814 #endif 3815 .evict_inode = shmem_evict_inode, 3816 .drop_inode = generic_delete_inode, 3817 .put_super = shmem_put_super, 3818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3819 .nr_cached_objects = shmem_unused_huge_count, 3820 .free_cached_objects = shmem_unused_huge_scan, 3821 #endif 3822 }; 3823 3824 static const struct vm_operations_struct shmem_vm_ops = { 3825 .fault = shmem_fault, 3826 .map_pages = filemap_map_pages, 3827 #ifdef CONFIG_NUMA 3828 .set_policy = shmem_set_policy, 3829 .get_policy = shmem_get_policy, 3830 #endif 3831 }; 3832 3833 int shmem_init_fs_context(struct fs_context *fc) 3834 { 3835 struct shmem_options *ctx; 3836 3837 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3838 if (!ctx) 3839 return -ENOMEM; 3840 3841 ctx->mode = 0777 | S_ISVTX; 3842 ctx->uid = current_fsuid(); 3843 ctx->gid = current_fsgid(); 3844 3845 fc->fs_private = ctx; 3846 fc->ops = &shmem_fs_context_ops; 3847 return 0; 3848 } 3849 3850 static struct file_system_type shmem_fs_type = { 3851 .owner = THIS_MODULE, 3852 .name = "tmpfs", 3853 .init_fs_context = shmem_init_fs_context, 3854 #ifdef CONFIG_TMPFS 3855 .parameters = shmem_fs_parameters, 3856 #endif 3857 .kill_sb = kill_litter_super, 3858 .fs_flags = FS_USERNS_MOUNT, 3859 }; 3860 3861 int __init shmem_init(void) 3862 { 3863 int error; 3864 3865 shmem_init_inodecache(); 3866 3867 error = register_filesystem(&shmem_fs_type); 3868 if (error) { 3869 pr_err("Could not register tmpfs\n"); 3870 goto out2; 3871 } 3872 3873 shm_mnt = kern_mount(&shmem_fs_type); 3874 if (IS_ERR(shm_mnt)) { 3875 error = PTR_ERR(shm_mnt); 3876 pr_err("Could not kern_mount tmpfs\n"); 3877 goto out1; 3878 } 3879 3880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3881 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3882 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3883 else 3884 shmem_huge = 0; /* just in case it was patched */ 3885 #endif 3886 return 0; 3887 3888 out1: 3889 unregister_filesystem(&shmem_fs_type); 3890 out2: 3891 shmem_destroy_inodecache(); 3892 shm_mnt = ERR_PTR(error); 3893 return error; 3894 } 3895 3896 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3897 static ssize_t shmem_enabled_show(struct kobject *kobj, 3898 struct kobj_attribute *attr, char *buf) 3899 { 3900 static const int values[] = { 3901 SHMEM_HUGE_ALWAYS, 3902 SHMEM_HUGE_WITHIN_SIZE, 3903 SHMEM_HUGE_ADVISE, 3904 SHMEM_HUGE_NEVER, 3905 SHMEM_HUGE_DENY, 3906 SHMEM_HUGE_FORCE, 3907 }; 3908 int i, count; 3909 3910 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3911 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3912 3913 count += sprintf(buf + count, fmt, 3914 shmem_format_huge(values[i])); 3915 } 3916 buf[count - 1] = '\n'; 3917 return count; 3918 } 3919 3920 static ssize_t shmem_enabled_store(struct kobject *kobj, 3921 struct kobj_attribute *attr, const char *buf, size_t count) 3922 { 3923 char tmp[16]; 3924 int huge; 3925 3926 if (count + 1 > sizeof(tmp)) 3927 return -EINVAL; 3928 memcpy(tmp, buf, count); 3929 tmp[count] = '\0'; 3930 if (count && tmp[count - 1] == '\n') 3931 tmp[count - 1] = '\0'; 3932 3933 huge = shmem_parse_huge(tmp); 3934 if (huge == -EINVAL) 3935 return -EINVAL; 3936 if (!has_transparent_hugepage() && 3937 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3938 return -EINVAL; 3939 3940 shmem_huge = huge; 3941 if (shmem_huge > SHMEM_HUGE_DENY) 3942 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3943 return count; 3944 } 3945 3946 struct kobj_attribute shmem_enabled_attr = 3947 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3948 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3949 3950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3951 bool shmem_huge_enabled(struct vm_area_struct *vma) 3952 { 3953 struct inode *inode = file_inode(vma->vm_file); 3954 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3955 loff_t i_size; 3956 pgoff_t off; 3957 3958 if ((vma->vm_flags & VM_NOHUGEPAGE) || 3959 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 3960 return false; 3961 if (shmem_huge == SHMEM_HUGE_FORCE) 3962 return true; 3963 if (shmem_huge == SHMEM_HUGE_DENY) 3964 return false; 3965 switch (sbinfo->huge) { 3966 case SHMEM_HUGE_NEVER: 3967 return false; 3968 case SHMEM_HUGE_ALWAYS: 3969 return true; 3970 case SHMEM_HUGE_WITHIN_SIZE: 3971 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3972 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3973 if (i_size >= HPAGE_PMD_SIZE && 3974 i_size >> PAGE_SHIFT >= off) 3975 return true; 3976 fallthrough; 3977 case SHMEM_HUGE_ADVISE: 3978 /* TODO: implement fadvise() hints */ 3979 return (vma->vm_flags & VM_HUGEPAGE); 3980 default: 3981 VM_BUG_ON(1); 3982 return false; 3983 } 3984 } 3985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3986 3987 #else /* !CONFIG_SHMEM */ 3988 3989 /* 3990 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3991 * 3992 * This is intended for small system where the benefits of the full 3993 * shmem code (swap-backed and resource-limited) are outweighed by 3994 * their complexity. On systems without swap this code should be 3995 * effectively equivalent, but much lighter weight. 3996 */ 3997 3998 static struct file_system_type shmem_fs_type = { 3999 .name = "tmpfs", 4000 .init_fs_context = ramfs_init_fs_context, 4001 .parameters = ramfs_fs_parameters, 4002 .kill_sb = kill_litter_super, 4003 .fs_flags = FS_USERNS_MOUNT, 4004 }; 4005 4006 int __init shmem_init(void) 4007 { 4008 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4009 4010 shm_mnt = kern_mount(&shmem_fs_type); 4011 BUG_ON(IS_ERR(shm_mnt)); 4012 4013 return 0; 4014 } 4015 4016 int shmem_unuse(unsigned int type, bool frontswap, 4017 unsigned long *fs_pages_to_unuse) 4018 { 4019 return 0; 4020 } 4021 4022 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4023 { 4024 return 0; 4025 } 4026 4027 void shmem_unlock_mapping(struct address_space *mapping) 4028 { 4029 } 4030 4031 #ifdef CONFIG_MMU 4032 unsigned long shmem_get_unmapped_area(struct file *file, 4033 unsigned long addr, unsigned long len, 4034 unsigned long pgoff, unsigned long flags) 4035 { 4036 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4037 } 4038 #endif 4039 4040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4041 { 4042 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4043 } 4044 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4045 4046 #define shmem_vm_ops generic_file_vm_ops 4047 #define shmem_file_operations ramfs_file_operations 4048 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4049 #define shmem_acct_size(flags, size) 0 4050 #define shmem_unacct_size(flags, size) do {} while (0) 4051 4052 #endif /* CONFIG_SHMEM */ 4053 4054 /* common code */ 4055 4056 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4057 unsigned long flags, unsigned int i_flags) 4058 { 4059 struct inode *inode; 4060 struct file *res; 4061 4062 if (IS_ERR(mnt)) 4063 return ERR_CAST(mnt); 4064 4065 if (size < 0 || size > MAX_LFS_FILESIZE) 4066 return ERR_PTR(-EINVAL); 4067 4068 if (shmem_acct_size(flags, size)) 4069 return ERR_PTR(-ENOMEM); 4070 4071 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4072 flags); 4073 if (unlikely(!inode)) { 4074 shmem_unacct_size(flags, size); 4075 return ERR_PTR(-ENOSPC); 4076 } 4077 inode->i_flags |= i_flags; 4078 inode->i_size = size; 4079 clear_nlink(inode); /* It is unlinked */ 4080 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4081 if (!IS_ERR(res)) 4082 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4083 &shmem_file_operations); 4084 if (IS_ERR(res)) 4085 iput(inode); 4086 return res; 4087 } 4088 4089 /** 4090 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4091 * kernel internal. There will be NO LSM permission checks against the 4092 * underlying inode. So users of this interface must do LSM checks at a 4093 * higher layer. The users are the big_key and shm implementations. LSM 4094 * checks are provided at the key or shm level rather than the inode. 4095 * @name: name for dentry (to be seen in /proc/<pid>/maps 4096 * @size: size to be set for the file 4097 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4098 */ 4099 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4100 { 4101 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4102 } 4103 4104 /** 4105 * shmem_file_setup - get an unlinked file living in tmpfs 4106 * @name: name for dentry (to be seen in /proc/<pid>/maps 4107 * @size: size to be set for the file 4108 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4109 */ 4110 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4111 { 4112 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4113 } 4114 EXPORT_SYMBOL_GPL(shmem_file_setup); 4115 4116 /** 4117 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4118 * @mnt: the tmpfs mount where the file will be created 4119 * @name: name for dentry (to be seen in /proc/<pid>/maps 4120 * @size: size to be set for the file 4121 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4122 */ 4123 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4124 loff_t size, unsigned long flags) 4125 { 4126 return __shmem_file_setup(mnt, name, size, flags, 0); 4127 } 4128 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4129 4130 /** 4131 * shmem_zero_setup - setup a shared anonymous mapping 4132 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4133 */ 4134 int shmem_zero_setup(struct vm_area_struct *vma) 4135 { 4136 struct file *file; 4137 loff_t size = vma->vm_end - vma->vm_start; 4138 4139 /* 4140 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4141 * between XFS directory reading and selinux: since this file is only 4142 * accessible to the user through its mapping, use S_PRIVATE flag to 4143 * bypass file security, in the same way as shmem_kernel_file_setup(). 4144 */ 4145 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4146 if (IS_ERR(file)) 4147 return PTR_ERR(file); 4148 4149 if (vma->vm_file) 4150 fput(vma->vm_file); 4151 vma->vm_file = file; 4152 vma->vm_ops = &shmem_vm_ops; 4153 4154 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4155 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4156 (vma->vm_end & HPAGE_PMD_MASK)) { 4157 khugepaged_enter(vma, vma->vm_flags); 4158 } 4159 4160 return 0; 4161 } 4162 4163 /** 4164 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4165 * @mapping: the page's address_space 4166 * @index: the page index 4167 * @gfp: the page allocator flags to use if allocating 4168 * 4169 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4170 * with any new page allocations done using the specified allocation flags. 4171 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4172 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4173 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4174 * 4175 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4176 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4177 */ 4178 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4179 pgoff_t index, gfp_t gfp) 4180 { 4181 #ifdef CONFIG_SHMEM 4182 struct inode *inode = mapping->host; 4183 struct page *page; 4184 int error; 4185 4186 BUG_ON(mapping->a_ops != &shmem_aops); 4187 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4188 gfp, NULL, NULL, NULL); 4189 if (error) 4190 page = ERR_PTR(error); 4191 else 4192 unlock_page(page); 4193 return page; 4194 #else 4195 /* 4196 * The tiny !SHMEM case uses ramfs without swap 4197 */ 4198 return read_cache_page_gfp(mapping, index, gfp); 4199 #endif 4200 } 4201 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4202