xref: /openbmc/linux/mm/shmem.c (revision 98366c20)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
56 
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC	0x01021994
59 
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63 
64 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66 
67 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68 
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN	 VM_READ
71 #define SHMEM_TRUNCATE	 VM_WRITE
72 
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT	 64
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81 	SGP_QUICK,	/* don't try more than file page cache lookup */
82 	SGP_READ,	/* don't exceed i_size, don't allocate page */
83 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84 	SGP_WRITE,	/* may exceed i_size, may allocate page */
85 	SGP_FAULT,	/* same as SGP_CACHE, return with page locked */
86 };
87 
88 static int shmem_getpage(struct inode *inode, unsigned long idx,
89 			 struct page **pagep, enum sgp_type sgp, int *type);
90 
91 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
92 {
93 	/*
94 	 * The above definition of ENTRIES_PER_PAGE, and the use of
95 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
96 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
97 	 *
98 	 * Mobility flags are masked out as swap vectors cannot move
99 	 */
100 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
101 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
102 }
103 
104 static inline void shmem_dir_free(struct page *page)
105 {
106 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
107 }
108 
109 static struct page **shmem_dir_map(struct page *page)
110 {
111 	return (struct page **)kmap_atomic(page, KM_USER0);
112 }
113 
114 static inline void shmem_dir_unmap(struct page **dir)
115 {
116 	kunmap_atomic(dir, KM_USER0);
117 }
118 
119 static swp_entry_t *shmem_swp_map(struct page *page)
120 {
121 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
122 }
123 
124 static inline void shmem_swp_balance_unmap(void)
125 {
126 	/*
127 	 * When passing a pointer to an i_direct entry, to code which
128 	 * also handles indirect entries and so will shmem_swp_unmap,
129 	 * we must arrange for the preempt count to remain in balance.
130 	 * What kmap_atomic of a lowmem page does depends on config
131 	 * and architecture, so pretend to kmap_atomic some lowmem page.
132 	 */
133 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
134 }
135 
136 static inline void shmem_swp_unmap(swp_entry_t *entry)
137 {
138 	kunmap_atomic(entry, KM_USER1);
139 }
140 
141 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
142 {
143 	return sb->s_fs_info;
144 }
145 
146 /*
147  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
148  * for shared memory and for shared anonymous (/dev/zero) mappings
149  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
150  * consistent with the pre-accounting of private mappings ...
151  */
152 static inline int shmem_acct_size(unsigned long flags, loff_t size)
153 {
154 	return (flags & VM_ACCOUNT)?
155 		security_vm_enough_memory(VM_ACCT(size)): 0;
156 }
157 
158 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
159 {
160 	if (flags & VM_ACCOUNT)
161 		vm_unacct_memory(VM_ACCT(size));
162 }
163 
164 /*
165  * ... whereas tmpfs objects are accounted incrementally as
166  * pages are allocated, in order to allow huge sparse files.
167  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
168  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169  */
170 static inline int shmem_acct_block(unsigned long flags)
171 {
172 	return (flags & VM_ACCOUNT)?
173 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
174 }
175 
176 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
177 {
178 	if (!(flags & VM_ACCOUNT))
179 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
180 }
181 
182 static const struct super_operations shmem_ops;
183 static const struct address_space_operations shmem_aops;
184 static const struct file_operations shmem_file_operations;
185 static const struct inode_operations shmem_inode_operations;
186 static const struct inode_operations shmem_dir_inode_operations;
187 static const struct inode_operations shmem_special_inode_operations;
188 static struct vm_operations_struct shmem_vm_ops;
189 
190 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
191 	.ra_pages	= 0,	/* No readahead */
192 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
193 	.unplug_io_fn	= default_unplug_io_fn,
194 };
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_SPINLOCK(shmem_swaplist_lock);
198 
199 static void shmem_free_blocks(struct inode *inode, long pages)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
202 	if (sbinfo->max_blocks) {
203 		spin_lock(&sbinfo->stat_lock);
204 		sbinfo->free_blocks += pages;
205 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
206 		spin_unlock(&sbinfo->stat_lock);
207 	}
208 }
209 
210 /*
211  * shmem_recalc_inode - recalculate the size of an inode
212  *
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	long freed;
227 
228 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 	if (freed > 0) {
230 		info->alloced -= freed;
231 		shmem_unacct_blocks(info->flags, freed);
232 		shmem_free_blocks(inode, freed);
233 	}
234 }
235 
236 /*
237  * shmem_swp_entry - find the swap vector position in the info structure
238  *
239  * @info:  info structure for the inode
240  * @index: index of the page to find
241  * @page:  optional page to add to the structure. Has to be preset to
242  *         all zeros
243  *
244  * If there is no space allocated yet it will return NULL when
245  * page is NULL, else it will use the page for the needed block,
246  * setting it to NULL on return to indicate that it has been used.
247  *
248  * The swap vector is organized the following way:
249  *
250  * There are SHMEM_NR_DIRECT entries directly stored in the
251  * shmem_inode_info structure. So small files do not need an addional
252  * allocation.
253  *
254  * For pages with index > SHMEM_NR_DIRECT there is the pointer
255  * i_indirect which points to a page which holds in the first half
256  * doubly indirect blocks, in the second half triple indirect blocks:
257  *
258  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
259  * following layout (for SHMEM_NR_DIRECT == 16):
260  *
261  * i_indirect -> dir --> 16-19
262  * 	      |	     +-> 20-23
263  * 	      |
264  * 	      +-->dir2 --> 24-27
265  * 	      |	       +-> 28-31
266  * 	      |	       +-> 32-35
267  * 	      |	       +-> 36-39
268  * 	      |
269  * 	      +-->dir3 --> 40-43
270  * 	       	       +-> 44-47
271  * 	      	       +-> 48-51
272  * 	      	       +-> 52-55
273  */
274 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
275 {
276 	unsigned long offset;
277 	struct page **dir;
278 	struct page *subdir;
279 
280 	if (index < SHMEM_NR_DIRECT) {
281 		shmem_swp_balance_unmap();
282 		return info->i_direct+index;
283 	}
284 	if (!info->i_indirect) {
285 		if (page) {
286 			info->i_indirect = *page;
287 			*page = NULL;
288 		}
289 		return NULL;			/* need another page */
290 	}
291 
292 	index -= SHMEM_NR_DIRECT;
293 	offset = index % ENTRIES_PER_PAGE;
294 	index /= ENTRIES_PER_PAGE;
295 	dir = shmem_dir_map(info->i_indirect);
296 
297 	if (index >= ENTRIES_PER_PAGE/2) {
298 		index -= ENTRIES_PER_PAGE/2;
299 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
300 		index %= ENTRIES_PER_PAGE;
301 		subdir = *dir;
302 		if (!subdir) {
303 			if (page) {
304 				*dir = *page;
305 				*page = NULL;
306 			}
307 			shmem_dir_unmap(dir);
308 			return NULL;		/* need another page */
309 		}
310 		shmem_dir_unmap(dir);
311 		dir = shmem_dir_map(subdir);
312 	}
313 
314 	dir += index;
315 	subdir = *dir;
316 	if (!subdir) {
317 		if (!page || !(subdir = *page)) {
318 			shmem_dir_unmap(dir);
319 			return NULL;		/* need a page */
320 		}
321 		*dir = subdir;
322 		*page = NULL;
323 	}
324 	shmem_dir_unmap(dir);
325 	return shmem_swp_map(subdir) + offset;
326 }
327 
328 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
329 {
330 	long incdec = value? 1: -1;
331 
332 	entry->val = value;
333 	info->swapped += incdec;
334 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
335 		struct page *page = kmap_atomic_to_page(entry);
336 		set_page_private(page, page_private(page) + incdec);
337 	}
338 }
339 
340 /*
341  * shmem_swp_alloc - get the position of the swap entry for the page.
342  *                   If it does not exist allocate the entry.
343  *
344  * @info:	info structure for the inode
345  * @index:	index of the page to find
346  * @sgp:	check and recheck i_size? skip allocation?
347  */
348 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
349 {
350 	struct inode *inode = &info->vfs_inode;
351 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
352 	struct page *page = NULL;
353 	swp_entry_t *entry;
354 
355 	if (sgp != SGP_WRITE &&
356 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
357 		return ERR_PTR(-EINVAL);
358 
359 	while (!(entry = shmem_swp_entry(info, index, &page))) {
360 		if (sgp == SGP_READ)
361 			return shmem_swp_map(ZERO_PAGE(0));
362 		/*
363 		 * Test free_blocks against 1 not 0, since we have 1 data
364 		 * page (and perhaps indirect index pages) yet to allocate:
365 		 * a waste to allocate index if we cannot allocate data.
366 		 */
367 		if (sbinfo->max_blocks) {
368 			spin_lock(&sbinfo->stat_lock);
369 			if (sbinfo->free_blocks <= 1) {
370 				spin_unlock(&sbinfo->stat_lock);
371 				return ERR_PTR(-ENOSPC);
372 			}
373 			sbinfo->free_blocks--;
374 			inode->i_blocks += BLOCKS_PER_PAGE;
375 			spin_unlock(&sbinfo->stat_lock);
376 		}
377 
378 		spin_unlock(&info->lock);
379 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
380 		if (page)
381 			set_page_private(page, 0);
382 		spin_lock(&info->lock);
383 
384 		if (!page) {
385 			shmem_free_blocks(inode, 1);
386 			return ERR_PTR(-ENOMEM);
387 		}
388 		if (sgp != SGP_WRITE &&
389 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
390 			entry = ERR_PTR(-EINVAL);
391 			break;
392 		}
393 		if (info->next_index <= index)
394 			info->next_index = index + 1;
395 	}
396 	if (page) {
397 		/* another task gave its page, or truncated the file */
398 		shmem_free_blocks(inode, 1);
399 		shmem_dir_free(page);
400 	}
401 	if (info->next_index <= index && !IS_ERR(entry))
402 		info->next_index = index + 1;
403 	return entry;
404 }
405 
406 /*
407  * shmem_free_swp - free some swap entries in a directory
408  *
409  * @dir:        pointer to the directory
410  * @edir:       pointer after last entry of the directory
411  * @punch_lock: pointer to spinlock when needed for the holepunch case
412  */
413 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
414 						spinlock_t *punch_lock)
415 {
416 	spinlock_t *punch_unlock = NULL;
417 	swp_entry_t *ptr;
418 	int freed = 0;
419 
420 	for (ptr = dir; ptr < edir; ptr++) {
421 		if (ptr->val) {
422 			if (unlikely(punch_lock)) {
423 				punch_unlock = punch_lock;
424 				punch_lock = NULL;
425 				spin_lock(punch_unlock);
426 				if (!ptr->val)
427 					continue;
428 			}
429 			free_swap_and_cache(*ptr);
430 			*ptr = (swp_entry_t){0};
431 			freed++;
432 		}
433 	}
434 	if (punch_unlock)
435 		spin_unlock(punch_unlock);
436 	return freed;
437 }
438 
439 static int shmem_map_and_free_swp(struct page *subdir, int offset,
440 		int limit, struct page ***dir, spinlock_t *punch_lock)
441 {
442 	swp_entry_t *ptr;
443 	int freed = 0;
444 
445 	ptr = shmem_swp_map(subdir);
446 	for (; offset < limit; offset += LATENCY_LIMIT) {
447 		int size = limit - offset;
448 		if (size > LATENCY_LIMIT)
449 			size = LATENCY_LIMIT;
450 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
451 							punch_lock);
452 		if (need_resched()) {
453 			shmem_swp_unmap(ptr);
454 			if (*dir) {
455 				shmem_dir_unmap(*dir);
456 				*dir = NULL;
457 			}
458 			cond_resched();
459 			ptr = shmem_swp_map(subdir);
460 		}
461 	}
462 	shmem_swp_unmap(ptr);
463 	return freed;
464 }
465 
466 static void shmem_free_pages(struct list_head *next)
467 {
468 	struct page *page;
469 	int freed = 0;
470 
471 	do {
472 		page = container_of(next, struct page, lru);
473 		next = next->next;
474 		shmem_dir_free(page);
475 		freed++;
476 		if (freed >= LATENCY_LIMIT) {
477 			cond_resched();
478 			freed = 0;
479 		}
480 	} while (next);
481 }
482 
483 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
484 {
485 	struct shmem_inode_info *info = SHMEM_I(inode);
486 	unsigned long idx;
487 	unsigned long size;
488 	unsigned long limit;
489 	unsigned long stage;
490 	unsigned long diroff;
491 	struct page **dir;
492 	struct page *topdir;
493 	struct page *middir;
494 	struct page *subdir;
495 	swp_entry_t *ptr;
496 	LIST_HEAD(pages_to_free);
497 	long nr_pages_to_free = 0;
498 	long nr_swaps_freed = 0;
499 	int offset;
500 	int freed;
501 	int punch_hole;
502 	spinlock_t *needs_lock;
503 	spinlock_t *punch_lock;
504 	unsigned long upper_limit;
505 
506 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
507 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
508 	if (idx >= info->next_index)
509 		return;
510 
511 	spin_lock(&info->lock);
512 	info->flags |= SHMEM_TRUNCATE;
513 	if (likely(end == (loff_t) -1)) {
514 		limit = info->next_index;
515 		upper_limit = SHMEM_MAX_INDEX;
516 		info->next_index = idx;
517 		needs_lock = NULL;
518 		punch_hole = 0;
519 	} else {
520 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
521 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
522 							PAGE_CACHE_SHIFT;
523 			upper_limit = SHMEM_MAX_INDEX;
524 		} else {
525 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
526 			upper_limit = limit;
527 		}
528 		needs_lock = &info->lock;
529 		punch_hole = 1;
530 	}
531 
532 	topdir = info->i_indirect;
533 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
534 		info->i_indirect = NULL;
535 		nr_pages_to_free++;
536 		list_add(&topdir->lru, &pages_to_free);
537 	}
538 	spin_unlock(&info->lock);
539 
540 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
541 		ptr = info->i_direct;
542 		size = limit;
543 		if (size > SHMEM_NR_DIRECT)
544 			size = SHMEM_NR_DIRECT;
545 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
546 	}
547 
548 	/*
549 	 * If there are no indirect blocks or we are punching a hole
550 	 * below indirect blocks, nothing to be done.
551 	 */
552 	if (!topdir || limit <= SHMEM_NR_DIRECT)
553 		goto done2;
554 
555 	/*
556 	 * The truncation case has already dropped info->lock, and we're safe
557 	 * because i_size and next_index have already been lowered, preventing
558 	 * access beyond.  But in the punch_hole case, we still need to take
559 	 * the lock when updating the swap directory, because there might be
560 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
561 	 * shmem_writepage.  However, whenever we find we can remove a whole
562 	 * directory page (not at the misaligned start or end of the range),
563 	 * we first NULLify its pointer in the level above, and then have no
564 	 * need to take the lock when updating its contents: needs_lock and
565 	 * punch_lock (either pointing to info->lock or NULL) manage this.
566 	 */
567 
568 	upper_limit -= SHMEM_NR_DIRECT;
569 	limit -= SHMEM_NR_DIRECT;
570 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
571 	offset = idx % ENTRIES_PER_PAGE;
572 	idx -= offset;
573 
574 	dir = shmem_dir_map(topdir);
575 	stage = ENTRIES_PER_PAGEPAGE/2;
576 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
577 		middir = topdir;
578 		diroff = idx/ENTRIES_PER_PAGE;
579 	} else {
580 		dir += ENTRIES_PER_PAGE/2;
581 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
582 		while (stage <= idx)
583 			stage += ENTRIES_PER_PAGEPAGE;
584 		middir = *dir;
585 		if (*dir) {
586 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
587 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
588 			if (!diroff && !offset && upper_limit >= stage) {
589 				if (needs_lock) {
590 					spin_lock(needs_lock);
591 					*dir = NULL;
592 					spin_unlock(needs_lock);
593 					needs_lock = NULL;
594 				} else
595 					*dir = NULL;
596 				nr_pages_to_free++;
597 				list_add(&middir->lru, &pages_to_free);
598 			}
599 			shmem_dir_unmap(dir);
600 			dir = shmem_dir_map(middir);
601 		} else {
602 			diroff = 0;
603 			offset = 0;
604 			idx = stage;
605 		}
606 	}
607 
608 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
609 		if (unlikely(idx == stage)) {
610 			shmem_dir_unmap(dir);
611 			dir = shmem_dir_map(topdir) +
612 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
613 			while (!*dir) {
614 				dir++;
615 				idx += ENTRIES_PER_PAGEPAGE;
616 				if (idx >= limit)
617 					goto done1;
618 			}
619 			stage = idx + ENTRIES_PER_PAGEPAGE;
620 			middir = *dir;
621 			if (punch_hole)
622 				needs_lock = &info->lock;
623 			if (upper_limit >= stage) {
624 				if (needs_lock) {
625 					spin_lock(needs_lock);
626 					*dir = NULL;
627 					spin_unlock(needs_lock);
628 					needs_lock = NULL;
629 				} else
630 					*dir = NULL;
631 				nr_pages_to_free++;
632 				list_add(&middir->lru, &pages_to_free);
633 			}
634 			shmem_dir_unmap(dir);
635 			cond_resched();
636 			dir = shmem_dir_map(middir);
637 			diroff = 0;
638 		}
639 		punch_lock = needs_lock;
640 		subdir = dir[diroff];
641 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
642 			if (needs_lock) {
643 				spin_lock(needs_lock);
644 				dir[diroff] = NULL;
645 				spin_unlock(needs_lock);
646 				punch_lock = NULL;
647 			} else
648 				dir[diroff] = NULL;
649 			nr_pages_to_free++;
650 			list_add(&subdir->lru, &pages_to_free);
651 		}
652 		if (subdir && page_private(subdir) /* has swap entries */) {
653 			size = limit - idx;
654 			if (size > ENTRIES_PER_PAGE)
655 				size = ENTRIES_PER_PAGE;
656 			freed = shmem_map_and_free_swp(subdir,
657 					offset, size, &dir, punch_lock);
658 			if (!dir)
659 				dir = shmem_dir_map(middir);
660 			nr_swaps_freed += freed;
661 			if (offset || punch_lock) {
662 				spin_lock(&info->lock);
663 				set_page_private(subdir,
664 					page_private(subdir) - freed);
665 				spin_unlock(&info->lock);
666 			} else
667 				BUG_ON(page_private(subdir) != freed);
668 		}
669 		offset = 0;
670 	}
671 done1:
672 	shmem_dir_unmap(dir);
673 done2:
674 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
675 		/*
676 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
677 		 * may have swizzled a page in from swap since vmtruncate or
678 		 * generic_delete_inode did it, before we lowered next_index.
679 		 * Also, though shmem_getpage checks i_size before adding to
680 		 * cache, no recheck after: so fix the narrow window there too.
681 		 *
682 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
683 		 * every time for punch_hole (which never got a chance to clear
684 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
685 		 * yet hardly ever necessary: try to optimize them out later.
686 		 */
687 		truncate_inode_pages_range(inode->i_mapping, start, end);
688 		if (punch_hole)
689 			unmap_mapping_range(inode->i_mapping, start,
690 							end - start, 1);
691 	}
692 
693 	spin_lock(&info->lock);
694 	info->flags &= ~SHMEM_TRUNCATE;
695 	info->swapped -= nr_swaps_freed;
696 	if (nr_pages_to_free)
697 		shmem_free_blocks(inode, nr_pages_to_free);
698 	shmem_recalc_inode(inode);
699 	spin_unlock(&info->lock);
700 
701 	/*
702 	 * Empty swap vector directory pages to be freed?
703 	 */
704 	if (!list_empty(&pages_to_free)) {
705 		pages_to_free.prev->next = NULL;
706 		shmem_free_pages(pages_to_free.next);
707 	}
708 }
709 
710 static void shmem_truncate(struct inode *inode)
711 {
712 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
713 }
714 
715 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
716 {
717 	struct inode *inode = dentry->d_inode;
718 	struct page *page = NULL;
719 	int error;
720 
721 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
722 		if (attr->ia_size < inode->i_size) {
723 			/*
724 			 * If truncating down to a partial page, then
725 			 * if that page is already allocated, hold it
726 			 * in memory until the truncation is over, so
727 			 * truncate_partial_page cannnot miss it were
728 			 * it assigned to swap.
729 			 */
730 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
731 				(void) shmem_getpage(inode,
732 					attr->ia_size>>PAGE_CACHE_SHIFT,
733 						&page, SGP_READ, NULL);
734 			}
735 			/*
736 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
737 			 * detect if any pages might have been added to cache
738 			 * after truncate_inode_pages.  But we needn't bother
739 			 * if it's being fully truncated to zero-length: the
740 			 * nrpages check is efficient enough in that case.
741 			 */
742 			if (attr->ia_size) {
743 				struct shmem_inode_info *info = SHMEM_I(inode);
744 				spin_lock(&info->lock);
745 				info->flags &= ~SHMEM_PAGEIN;
746 				spin_unlock(&info->lock);
747 			}
748 		}
749 	}
750 
751 	error = inode_change_ok(inode, attr);
752 	if (!error)
753 		error = inode_setattr(inode, attr);
754 #ifdef CONFIG_TMPFS_POSIX_ACL
755 	if (!error && (attr->ia_valid & ATTR_MODE))
756 		error = generic_acl_chmod(inode, &shmem_acl_ops);
757 #endif
758 	if (page)
759 		page_cache_release(page);
760 	return error;
761 }
762 
763 static void shmem_delete_inode(struct inode *inode)
764 {
765 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
766 	struct shmem_inode_info *info = SHMEM_I(inode);
767 
768 	if (inode->i_op->truncate == shmem_truncate) {
769 		truncate_inode_pages(inode->i_mapping, 0);
770 		shmem_unacct_size(info->flags, inode->i_size);
771 		inode->i_size = 0;
772 		shmem_truncate(inode);
773 		if (!list_empty(&info->swaplist)) {
774 			spin_lock(&shmem_swaplist_lock);
775 			list_del_init(&info->swaplist);
776 			spin_unlock(&shmem_swaplist_lock);
777 		}
778 	}
779 	BUG_ON(inode->i_blocks);
780 	if (sbinfo->max_inodes) {
781 		spin_lock(&sbinfo->stat_lock);
782 		sbinfo->free_inodes++;
783 		spin_unlock(&sbinfo->stat_lock);
784 	}
785 	clear_inode(inode);
786 }
787 
788 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
789 {
790 	swp_entry_t *ptr;
791 
792 	for (ptr = dir; ptr < edir; ptr++) {
793 		if (ptr->val == entry.val)
794 			return ptr - dir;
795 	}
796 	return -1;
797 }
798 
799 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
800 {
801 	struct inode *inode;
802 	unsigned long idx;
803 	unsigned long size;
804 	unsigned long limit;
805 	unsigned long stage;
806 	struct page **dir;
807 	struct page *subdir;
808 	swp_entry_t *ptr;
809 	int offset;
810 
811 	idx = 0;
812 	ptr = info->i_direct;
813 	spin_lock(&info->lock);
814 	limit = info->next_index;
815 	size = limit;
816 	if (size > SHMEM_NR_DIRECT)
817 		size = SHMEM_NR_DIRECT;
818 	offset = shmem_find_swp(entry, ptr, ptr+size);
819 	if (offset >= 0) {
820 		shmem_swp_balance_unmap();
821 		goto found;
822 	}
823 	if (!info->i_indirect)
824 		goto lost2;
825 
826 	dir = shmem_dir_map(info->i_indirect);
827 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
828 
829 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
830 		if (unlikely(idx == stage)) {
831 			shmem_dir_unmap(dir-1);
832 			dir = shmem_dir_map(info->i_indirect) +
833 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
834 			while (!*dir) {
835 				dir++;
836 				idx += ENTRIES_PER_PAGEPAGE;
837 				if (idx >= limit)
838 					goto lost1;
839 			}
840 			stage = idx + ENTRIES_PER_PAGEPAGE;
841 			subdir = *dir;
842 			shmem_dir_unmap(dir);
843 			dir = shmem_dir_map(subdir);
844 		}
845 		subdir = *dir;
846 		if (subdir && page_private(subdir)) {
847 			ptr = shmem_swp_map(subdir);
848 			size = limit - idx;
849 			if (size > ENTRIES_PER_PAGE)
850 				size = ENTRIES_PER_PAGE;
851 			offset = shmem_find_swp(entry, ptr, ptr+size);
852 			if (offset >= 0) {
853 				shmem_dir_unmap(dir);
854 				goto found;
855 			}
856 			shmem_swp_unmap(ptr);
857 		}
858 	}
859 lost1:
860 	shmem_dir_unmap(dir-1);
861 lost2:
862 	spin_unlock(&info->lock);
863 	return 0;
864 found:
865 	idx += offset;
866 	inode = &info->vfs_inode;
867 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
868 		info->flags |= SHMEM_PAGEIN;
869 		shmem_swp_set(info, ptr + offset, 0);
870 	}
871 	shmem_swp_unmap(ptr);
872 	spin_unlock(&info->lock);
873 	/*
874 	 * Decrement swap count even when the entry is left behind:
875 	 * try_to_unuse will skip over mms, then reincrement count.
876 	 */
877 	swap_free(entry);
878 	return 1;
879 }
880 
881 /*
882  * shmem_unuse() search for an eventually swapped out shmem page.
883  */
884 int shmem_unuse(swp_entry_t entry, struct page *page)
885 {
886 	struct list_head *p, *next;
887 	struct shmem_inode_info *info;
888 	int found = 0;
889 
890 	spin_lock(&shmem_swaplist_lock);
891 	list_for_each_safe(p, next, &shmem_swaplist) {
892 		info = list_entry(p, struct shmem_inode_info, swaplist);
893 		if (!info->swapped)
894 			list_del_init(&info->swaplist);
895 		else if (shmem_unuse_inode(info, entry, page)) {
896 			/* move head to start search for next from here */
897 			list_move_tail(&shmem_swaplist, &info->swaplist);
898 			found = 1;
899 			break;
900 		}
901 	}
902 	spin_unlock(&shmem_swaplist_lock);
903 	return found;
904 }
905 
906 /*
907  * Move the page from the page cache to the swap cache.
908  */
909 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
910 {
911 	struct shmem_inode_info *info;
912 	swp_entry_t *entry, swap;
913 	struct address_space *mapping;
914 	unsigned long index;
915 	struct inode *inode;
916 
917 	BUG_ON(!PageLocked(page));
918 	/*
919 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
920 	 * sync from ever calling shmem_writepage; but a stacking filesystem
921 	 * may use the ->writepage of its underlying filesystem, in which case
922 	 * we want to do nothing when that underlying filesystem is tmpfs
923 	 * (writing out to swap is useful as a response to memory pressure, but
924 	 * of no use to stabilize the data) - just redirty the page, unlock it
925 	 * and claim success in this case.  AOP_WRITEPAGE_ACTIVATE, and the
926 	 * page_mapped check below, must be avoided unless we're in reclaim.
927 	 */
928 	if (!wbc->for_reclaim) {
929 		set_page_dirty(page);
930 		unlock_page(page);
931 		return 0;
932 	}
933 	BUG_ON(page_mapped(page));
934 
935 	mapping = page->mapping;
936 	index = page->index;
937 	inode = mapping->host;
938 	info = SHMEM_I(inode);
939 	if (info->flags & VM_LOCKED)
940 		goto redirty;
941 	swap = get_swap_page();
942 	if (!swap.val)
943 		goto redirty;
944 
945 	spin_lock(&info->lock);
946 	shmem_recalc_inode(inode);
947 	if (index >= info->next_index) {
948 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
949 		goto unlock;
950 	}
951 	entry = shmem_swp_entry(info, index, NULL);
952 	BUG_ON(!entry);
953 	BUG_ON(entry->val);
954 
955 	if (move_to_swap_cache(page, swap) == 0) {
956 		shmem_swp_set(info, entry, swap.val);
957 		shmem_swp_unmap(entry);
958 		spin_unlock(&info->lock);
959 		if (list_empty(&info->swaplist)) {
960 			spin_lock(&shmem_swaplist_lock);
961 			/* move instead of add in case we're racing */
962 			list_move_tail(&info->swaplist, &shmem_swaplist);
963 			spin_unlock(&shmem_swaplist_lock);
964 		}
965 		unlock_page(page);
966 		return 0;
967 	}
968 
969 	shmem_swp_unmap(entry);
970 unlock:
971 	spin_unlock(&info->lock);
972 	swap_free(swap);
973 redirty:
974 	set_page_dirty(page);
975 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
976 }
977 
978 #ifdef CONFIG_NUMA
979 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
980 {
981 	char *nodelist = strchr(value, ':');
982 	int err = 1;
983 
984 	if (nodelist) {
985 		/* NUL-terminate policy string */
986 		*nodelist++ = '\0';
987 		if (nodelist_parse(nodelist, *policy_nodes))
988 			goto out;
989 		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
990 			goto out;
991 	}
992 	if (!strcmp(value, "default")) {
993 		*policy = MPOL_DEFAULT;
994 		/* Don't allow a nodelist */
995 		if (!nodelist)
996 			err = 0;
997 	} else if (!strcmp(value, "prefer")) {
998 		*policy = MPOL_PREFERRED;
999 		/* Insist on a nodelist of one node only */
1000 		if (nodelist) {
1001 			char *rest = nodelist;
1002 			while (isdigit(*rest))
1003 				rest++;
1004 			if (!*rest)
1005 				err = 0;
1006 		}
1007 	} else if (!strcmp(value, "bind")) {
1008 		*policy = MPOL_BIND;
1009 		/* Insist on a nodelist */
1010 		if (nodelist)
1011 			err = 0;
1012 	} else if (!strcmp(value, "interleave")) {
1013 		*policy = MPOL_INTERLEAVE;
1014 		/*
1015 		 * Default to online nodes with memory if no nodelist
1016 		 */
1017 		if (!nodelist)
1018 			*policy_nodes = node_states[N_HIGH_MEMORY];
1019 		err = 0;
1020 	}
1021 out:
1022 	/* Restore string for error message */
1023 	if (nodelist)
1024 		*--nodelist = ':';
1025 	return err;
1026 }
1027 
1028 static struct page *shmem_swapin_async(struct shared_policy *p,
1029 				       swp_entry_t entry, unsigned long idx)
1030 {
1031 	struct page *page;
1032 	struct vm_area_struct pvma;
1033 
1034 	/* Create a pseudo vma that just contains the policy */
1035 	memset(&pvma, 0, sizeof(struct vm_area_struct));
1036 	pvma.vm_end = PAGE_SIZE;
1037 	pvma.vm_pgoff = idx;
1038 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1039 	page = read_swap_cache_async(entry, &pvma, 0);
1040 	mpol_free(pvma.vm_policy);
1041 	return page;
1042 }
1043 
1044 static struct page *shmem_swapin(struct shmem_inode_info *info,
1045 				 swp_entry_t entry, unsigned long idx)
1046 {
1047 	struct shared_policy *p = &info->policy;
1048 	int i, num;
1049 	struct page *page;
1050 	unsigned long offset;
1051 
1052 	num = valid_swaphandles(entry, &offset);
1053 	for (i = 0; i < num; offset++, i++) {
1054 		page = shmem_swapin_async(p,
1055 				swp_entry(swp_type(entry), offset), idx);
1056 		if (!page)
1057 			break;
1058 		page_cache_release(page);
1059 	}
1060 	lru_add_drain();	/* Push any new pages onto the LRU now */
1061 	return shmem_swapin_async(p, entry, idx);
1062 }
1063 
1064 static struct page *
1065 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1066 		 unsigned long idx)
1067 {
1068 	struct vm_area_struct pvma;
1069 	struct page *page;
1070 
1071 	memset(&pvma, 0, sizeof(struct vm_area_struct));
1072 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1073 	pvma.vm_pgoff = idx;
1074 	pvma.vm_end = PAGE_SIZE;
1075 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1076 	mpol_free(pvma.vm_policy);
1077 	return page;
1078 }
1079 #else
1080 static inline int shmem_parse_mpol(char *value, int *policy,
1081 						nodemask_t *policy_nodes)
1082 {
1083 	return 1;
1084 }
1085 
1086 static inline struct page *
1087 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1088 {
1089 	swapin_readahead(entry, 0, NULL);
1090 	return read_swap_cache_async(entry, NULL, 0);
1091 }
1092 
1093 static inline struct page *
1094 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1095 {
1096 	return alloc_page(gfp | __GFP_ZERO);
1097 }
1098 #endif
1099 
1100 /*
1101  * shmem_getpage - either get the page from swap or allocate a new one
1102  *
1103  * If we allocate a new one we do not mark it dirty. That's up to the
1104  * vm. If we swap it in we mark it dirty since we also free the swap
1105  * entry since a page cannot live in both the swap and page cache
1106  */
1107 static int shmem_getpage(struct inode *inode, unsigned long idx,
1108 			struct page **pagep, enum sgp_type sgp, int *type)
1109 {
1110 	struct address_space *mapping = inode->i_mapping;
1111 	struct shmem_inode_info *info = SHMEM_I(inode);
1112 	struct shmem_sb_info *sbinfo;
1113 	struct page *filepage = *pagep;
1114 	struct page *swappage;
1115 	swp_entry_t *entry;
1116 	swp_entry_t swap;
1117 	int error;
1118 
1119 	if (idx >= SHMEM_MAX_INDEX)
1120 		return -EFBIG;
1121 
1122 	if (type)
1123 		*type = 0;
1124 
1125 	/*
1126 	 * Normally, filepage is NULL on entry, and either found
1127 	 * uptodate immediately, or allocated and zeroed, or read
1128 	 * in under swappage, which is then assigned to filepage.
1129 	 * But shmem_readpage and shmem_write_begin pass in a locked
1130 	 * filepage, which may be found not uptodate by other callers
1131 	 * too, and may need to be copied from the swappage read in.
1132 	 */
1133 repeat:
1134 	if (!filepage)
1135 		filepage = find_lock_page(mapping, idx);
1136 	if (filepage && PageUptodate(filepage))
1137 		goto done;
1138 	error = 0;
1139 	if (sgp == SGP_QUICK)
1140 		goto failed;
1141 
1142 	spin_lock(&info->lock);
1143 	shmem_recalc_inode(inode);
1144 	entry = shmem_swp_alloc(info, idx, sgp);
1145 	if (IS_ERR(entry)) {
1146 		spin_unlock(&info->lock);
1147 		error = PTR_ERR(entry);
1148 		goto failed;
1149 	}
1150 	swap = *entry;
1151 
1152 	if (swap.val) {
1153 		/* Look it up and read it in.. */
1154 		swappage = lookup_swap_cache(swap);
1155 		if (!swappage) {
1156 			shmem_swp_unmap(entry);
1157 			/* here we actually do the io */
1158 			if (type && !(*type & VM_FAULT_MAJOR)) {
1159 				__count_vm_event(PGMAJFAULT);
1160 				*type |= VM_FAULT_MAJOR;
1161 			}
1162 			spin_unlock(&info->lock);
1163 			swappage = shmem_swapin(info, swap, idx);
1164 			if (!swappage) {
1165 				spin_lock(&info->lock);
1166 				entry = shmem_swp_alloc(info, idx, sgp);
1167 				if (IS_ERR(entry))
1168 					error = PTR_ERR(entry);
1169 				else {
1170 					if (entry->val == swap.val)
1171 						error = -ENOMEM;
1172 					shmem_swp_unmap(entry);
1173 				}
1174 				spin_unlock(&info->lock);
1175 				if (error)
1176 					goto failed;
1177 				goto repeat;
1178 			}
1179 			wait_on_page_locked(swappage);
1180 			page_cache_release(swappage);
1181 			goto repeat;
1182 		}
1183 
1184 		/* We have to do this with page locked to prevent races */
1185 		if (TestSetPageLocked(swappage)) {
1186 			shmem_swp_unmap(entry);
1187 			spin_unlock(&info->lock);
1188 			wait_on_page_locked(swappage);
1189 			page_cache_release(swappage);
1190 			goto repeat;
1191 		}
1192 		if (PageWriteback(swappage)) {
1193 			shmem_swp_unmap(entry);
1194 			spin_unlock(&info->lock);
1195 			wait_on_page_writeback(swappage);
1196 			unlock_page(swappage);
1197 			page_cache_release(swappage);
1198 			goto repeat;
1199 		}
1200 		if (!PageUptodate(swappage)) {
1201 			shmem_swp_unmap(entry);
1202 			spin_unlock(&info->lock);
1203 			unlock_page(swappage);
1204 			page_cache_release(swappage);
1205 			error = -EIO;
1206 			goto failed;
1207 		}
1208 
1209 		if (filepage) {
1210 			shmem_swp_set(info, entry, 0);
1211 			shmem_swp_unmap(entry);
1212 			delete_from_swap_cache(swappage);
1213 			spin_unlock(&info->lock);
1214 			copy_highpage(filepage, swappage);
1215 			unlock_page(swappage);
1216 			page_cache_release(swappage);
1217 			flush_dcache_page(filepage);
1218 			SetPageUptodate(filepage);
1219 			set_page_dirty(filepage);
1220 			swap_free(swap);
1221 		} else if (!(error = move_from_swap_cache(
1222 				swappage, idx, mapping))) {
1223 			info->flags |= SHMEM_PAGEIN;
1224 			shmem_swp_set(info, entry, 0);
1225 			shmem_swp_unmap(entry);
1226 			spin_unlock(&info->lock);
1227 			filepage = swappage;
1228 			swap_free(swap);
1229 		} else {
1230 			shmem_swp_unmap(entry);
1231 			spin_unlock(&info->lock);
1232 			unlock_page(swappage);
1233 			page_cache_release(swappage);
1234 			if (error == -ENOMEM) {
1235 				/* let kswapd refresh zone for GFP_ATOMICs */
1236 				congestion_wait(WRITE, HZ/50);
1237 			}
1238 			goto repeat;
1239 		}
1240 	} else if (sgp == SGP_READ && !filepage) {
1241 		shmem_swp_unmap(entry);
1242 		filepage = find_get_page(mapping, idx);
1243 		if (filepage &&
1244 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1245 			spin_unlock(&info->lock);
1246 			wait_on_page_locked(filepage);
1247 			page_cache_release(filepage);
1248 			filepage = NULL;
1249 			goto repeat;
1250 		}
1251 		spin_unlock(&info->lock);
1252 	} else {
1253 		shmem_swp_unmap(entry);
1254 		sbinfo = SHMEM_SB(inode->i_sb);
1255 		if (sbinfo->max_blocks) {
1256 			spin_lock(&sbinfo->stat_lock);
1257 			if (sbinfo->free_blocks == 0 ||
1258 			    shmem_acct_block(info->flags)) {
1259 				spin_unlock(&sbinfo->stat_lock);
1260 				spin_unlock(&info->lock);
1261 				error = -ENOSPC;
1262 				goto failed;
1263 			}
1264 			sbinfo->free_blocks--;
1265 			inode->i_blocks += BLOCKS_PER_PAGE;
1266 			spin_unlock(&sbinfo->stat_lock);
1267 		} else if (shmem_acct_block(info->flags)) {
1268 			spin_unlock(&info->lock);
1269 			error = -ENOSPC;
1270 			goto failed;
1271 		}
1272 
1273 		if (!filepage) {
1274 			spin_unlock(&info->lock);
1275 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1276 						    info,
1277 						    idx);
1278 			if (!filepage) {
1279 				shmem_unacct_blocks(info->flags, 1);
1280 				shmem_free_blocks(inode, 1);
1281 				error = -ENOMEM;
1282 				goto failed;
1283 			}
1284 
1285 			spin_lock(&info->lock);
1286 			entry = shmem_swp_alloc(info, idx, sgp);
1287 			if (IS_ERR(entry))
1288 				error = PTR_ERR(entry);
1289 			else {
1290 				swap = *entry;
1291 				shmem_swp_unmap(entry);
1292 			}
1293 			if (error || swap.val || 0 != add_to_page_cache_lru(
1294 					filepage, mapping, idx, GFP_ATOMIC)) {
1295 				spin_unlock(&info->lock);
1296 				page_cache_release(filepage);
1297 				shmem_unacct_blocks(info->flags, 1);
1298 				shmem_free_blocks(inode, 1);
1299 				filepage = NULL;
1300 				if (error)
1301 					goto failed;
1302 				goto repeat;
1303 			}
1304 			info->flags |= SHMEM_PAGEIN;
1305 		}
1306 
1307 		info->alloced++;
1308 		spin_unlock(&info->lock);
1309 		flush_dcache_page(filepage);
1310 		SetPageUptodate(filepage);
1311 	}
1312 done:
1313 	if (*pagep != filepage) {
1314 		*pagep = filepage;
1315 		if (sgp != SGP_FAULT)
1316 			unlock_page(filepage);
1317 
1318 	}
1319 	return 0;
1320 
1321 failed:
1322 	if (*pagep != filepage) {
1323 		unlock_page(filepage);
1324 		page_cache_release(filepage);
1325 	}
1326 	return error;
1327 }
1328 
1329 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1330 {
1331 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1332 	int error;
1333 	int ret;
1334 
1335 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1336 		return VM_FAULT_SIGBUS;
1337 
1338 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret);
1339 	if (error)
1340 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1341 
1342 	mark_page_accessed(vmf->page);
1343 	return ret | VM_FAULT_LOCKED;
1344 }
1345 
1346 #ifdef CONFIG_NUMA
1347 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1348 {
1349 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1350 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1351 }
1352 
1353 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1354 					  unsigned long addr)
1355 {
1356 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1357 	unsigned long idx;
1358 
1359 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1360 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1361 }
1362 #endif
1363 
1364 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1365 {
1366 	struct inode *inode = file->f_path.dentry->d_inode;
1367 	struct shmem_inode_info *info = SHMEM_I(inode);
1368 	int retval = -ENOMEM;
1369 
1370 	spin_lock(&info->lock);
1371 	if (lock && !(info->flags & VM_LOCKED)) {
1372 		if (!user_shm_lock(inode->i_size, user))
1373 			goto out_nomem;
1374 		info->flags |= VM_LOCKED;
1375 	}
1376 	if (!lock && (info->flags & VM_LOCKED) && user) {
1377 		user_shm_unlock(inode->i_size, user);
1378 		info->flags &= ~VM_LOCKED;
1379 	}
1380 	retval = 0;
1381 out_nomem:
1382 	spin_unlock(&info->lock);
1383 	return retval;
1384 }
1385 
1386 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1387 {
1388 	file_accessed(file);
1389 	vma->vm_ops = &shmem_vm_ops;
1390 	vma->vm_flags |= VM_CAN_NONLINEAR;
1391 	return 0;
1392 }
1393 
1394 static struct inode *
1395 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1396 {
1397 	struct inode *inode;
1398 	struct shmem_inode_info *info;
1399 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1400 
1401 	if (sbinfo->max_inodes) {
1402 		spin_lock(&sbinfo->stat_lock);
1403 		if (!sbinfo->free_inodes) {
1404 			spin_unlock(&sbinfo->stat_lock);
1405 			return NULL;
1406 		}
1407 		sbinfo->free_inodes--;
1408 		spin_unlock(&sbinfo->stat_lock);
1409 	}
1410 
1411 	inode = new_inode(sb);
1412 	if (inode) {
1413 		inode->i_mode = mode;
1414 		inode->i_uid = current->fsuid;
1415 		inode->i_gid = current->fsgid;
1416 		inode->i_blocks = 0;
1417 		inode->i_mapping->a_ops = &shmem_aops;
1418 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1419 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1420 		inode->i_generation = get_seconds();
1421 		info = SHMEM_I(inode);
1422 		memset(info, 0, (char *)inode - (char *)info);
1423 		spin_lock_init(&info->lock);
1424 		INIT_LIST_HEAD(&info->swaplist);
1425 
1426 		switch (mode & S_IFMT) {
1427 		default:
1428 			inode->i_op = &shmem_special_inode_operations;
1429 			init_special_inode(inode, mode, dev);
1430 			break;
1431 		case S_IFREG:
1432 			inode->i_op = &shmem_inode_operations;
1433 			inode->i_fop = &shmem_file_operations;
1434 			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1435 							&sbinfo->policy_nodes);
1436 			break;
1437 		case S_IFDIR:
1438 			inc_nlink(inode);
1439 			/* Some things misbehave if size == 0 on a directory */
1440 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1441 			inode->i_op = &shmem_dir_inode_operations;
1442 			inode->i_fop = &simple_dir_operations;
1443 			break;
1444 		case S_IFLNK:
1445 			/*
1446 			 * Must not load anything in the rbtree,
1447 			 * mpol_free_shared_policy will not be called.
1448 			 */
1449 			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1450 						NULL);
1451 			break;
1452 		}
1453 	} else if (sbinfo->max_inodes) {
1454 		spin_lock(&sbinfo->stat_lock);
1455 		sbinfo->free_inodes++;
1456 		spin_unlock(&sbinfo->stat_lock);
1457 	}
1458 	return inode;
1459 }
1460 
1461 #ifdef CONFIG_TMPFS
1462 static const struct inode_operations shmem_symlink_inode_operations;
1463 static const struct inode_operations shmem_symlink_inline_operations;
1464 
1465 /*
1466  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1467  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1468  * below the loop driver, in the generic fashion that many filesystems support.
1469  */
1470 static int shmem_readpage(struct file *file, struct page *page)
1471 {
1472 	struct inode *inode = page->mapping->host;
1473 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1474 	unlock_page(page);
1475 	return error;
1476 }
1477 
1478 static int
1479 shmem_write_begin(struct file *file, struct address_space *mapping,
1480 			loff_t pos, unsigned len, unsigned flags,
1481 			struct page **pagep, void **fsdata)
1482 {
1483 	struct inode *inode = mapping->host;
1484 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1485 	*pagep = NULL;
1486 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1487 }
1488 
1489 static int
1490 shmem_write_end(struct file *file, struct address_space *mapping,
1491 			loff_t pos, unsigned len, unsigned copied,
1492 			struct page *page, void *fsdata)
1493 {
1494 	struct inode *inode = mapping->host;
1495 
1496 	set_page_dirty(page);
1497 	page_cache_release(page);
1498 
1499 	if (pos+copied > inode->i_size)
1500 		i_size_write(inode, pos+copied);
1501 
1502 	return copied;
1503 }
1504 
1505 static ssize_t
1506 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1507 {
1508 	struct inode	*inode = file->f_path.dentry->d_inode;
1509 	loff_t		pos;
1510 	unsigned long	written;
1511 	ssize_t		err;
1512 
1513 	if ((ssize_t) count < 0)
1514 		return -EINVAL;
1515 
1516 	if (!access_ok(VERIFY_READ, buf, count))
1517 		return -EFAULT;
1518 
1519 	mutex_lock(&inode->i_mutex);
1520 
1521 	pos = *ppos;
1522 	written = 0;
1523 
1524 	err = generic_write_checks(file, &pos, &count, 0);
1525 	if (err || !count)
1526 		goto out;
1527 
1528 	err = remove_suid(file->f_path.dentry);
1529 	if (err)
1530 		goto out;
1531 
1532 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1533 
1534 	do {
1535 		struct page *page = NULL;
1536 		unsigned long bytes, index, offset;
1537 		char *kaddr;
1538 		int left;
1539 
1540 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1541 		index = pos >> PAGE_CACHE_SHIFT;
1542 		bytes = PAGE_CACHE_SIZE - offset;
1543 		if (bytes > count)
1544 			bytes = count;
1545 
1546 		/*
1547 		 * We don't hold page lock across copy from user -
1548 		 * what would it guard against? - so no deadlock here.
1549 		 * But it still may be a good idea to prefault below.
1550 		 */
1551 
1552 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1553 		if (err)
1554 			break;
1555 
1556 		left = bytes;
1557 		if (PageHighMem(page)) {
1558 			volatile unsigned char dummy;
1559 			__get_user(dummy, buf);
1560 			__get_user(dummy, buf + bytes - 1);
1561 
1562 			kaddr = kmap_atomic(page, KM_USER0);
1563 			left = __copy_from_user_inatomic(kaddr + offset,
1564 							buf, bytes);
1565 			kunmap_atomic(kaddr, KM_USER0);
1566 		}
1567 		if (left) {
1568 			kaddr = kmap(page);
1569 			left = __copy_from_user(kaddr + offset, buf, bytes);
1570 			kunmap(page);
1571 		}
1572 
1573 		written += bytes;
1574 		count -= bytes;
1575 		pos += bytes;
1576 		buf += bytes;
1577 		if (pos > inode->i_size)
1578 			i_size_write(inode, pos);
1579 
1580 		flush_dcache_page(page);
1581 		set_page_dirty(page);
1582 		mark_page_accessed(page);
1583 		page_cache_release(page);
1584 
1585 		if (left) {
1586 			pos -= left;
1587 			written -= left;
1588 			err = -EFAULT;
1589 			break;
1590 		}
1591 
1592 		/*
1593 		 * Our dirty pages are not counted in nr_dirty,
1594 		 * and we do not attempt to balance dirty pages.
1595 		 */
1596 
1597 		cond_resched();
1598 	} while (count);
1599 
1600 	*ppos = pos;
1601 	if (written)
1602 		err = written;
1603 out:
1604 	mutex_unlock(&inode->i_mutex);
1605 	return err;
1606 }
1607 
1608 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1609 {
1610 	struct inode *inode = filp->f_path.dentry->d_inode;
1611 	struct address_space *mapping = inode->i_mapping;
1612 	unsigned long index, offset;
1613 
1614 	index = *ppos >> PAGE_CACHE_SHIFT;
1615 	offset = *ppos & ~PAGE_CACHE_MASK;
1616 
1617 	for (;;) {
1618 		struct page *page = NULL;
1619 		unsigned long end_index, nr, ret;
1620 		loff_t i_size = i_size_read(inode);
1621 
1622 		end_index = i_size >> PAGE_CACHE_SHIFT;
1623 		if (index > end_index)
1624 			break;
1625 		if (index == end_index) {
1626 			nr = i_size & ~PAGE_CACHE_MASK;
1627 			if (nr <= offset)
1628 				break;
1629 		}
1630 
1631 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1632 		if (desc->error) {
1633 			if (desc->error == -EINVAL)
1634 				desc->error = 0;
1635 			break;
1636 		}
1637 
1638 		/*
1639 		 * We must evaluate after, since reads (unlike writes)
1640 		 * are called without i_mutex protection against truncate
1641 		 */
1642 		nr = PAGE_CACHE_SIZE;
1643 		i_size = i_size_read(inode);
1644 		end_index = i_size >> PAGE_CACHE_SHIFT;
1645 		if (index == end_index) {
1646 			nr = i_size & ~PAGE_CACHE_MASK;
1647 			if (nr <= offset) {
1648 				if (page)
1649 					page_cache_release(page);
1650 				break;
1651 			}
1652 		}
1653 		nr -= offset;
1654 
1655 		if (page) {
1656 			/*
1657 			 * If users can be writing to this page using arbitrary
1658 			 * virtual addresses, take care about potential aliasing
1659 			 * before reading the page on the kernel side.
1660 			 */
1661 			if (mapping_writably_mapped(mapping))
1662 				flush_dcache_page(page);
1663 			/*
1664 			 * Mark the page accessed if we read the beginning.
1665 			 */
1666 			if (!offset)
1667 				mark_page_accessed(page);
1668 		} else {
1669 			page = ZERO_PAGE(0);
1670 			page_cache_get(page);
1671 		}
1672 
1673 		/*
1674 		 * Ok, we have the page, and it's up-to-date, so
1675 		 * now we can copy it to user space...
1676 		 *
1677 		 * The actor routine returns how many bytes were actually used..
1678 		 * NOTE! This may not be the same as how much of a user buffer
1679 		 * we filled up (we may be padding etc), so we can only update
1680 		 * "pos" here (the actor routine has to update the user buffer
1681 		 * pointers and the remaining count).
1682 		 */
1683 		ret = actor(desc, page, offset, nr);
1684 		offset += ret;
1685 		index += offset >> PAGE_CACHE_SHIFT;
1686 		offset &= ~PAGE_CACHE_MASK;
1687 
1688 		page_cache_release(page);
1689 		if (ret != nr || !desc->count)
1690 			break;
1691 
1692 		cond_resched();
1693 	}
1694 
1695 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1696 	file_accessed(filp);
1697 }
1698 
1699 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1700 {
1701 	read_descriptor_t desc;
1702 
1703 	if ((ssize_t) count < 0)
1704 		return -EINVAL;
1705 	if (!access_ok(VERIFY_WRITE, buf, count))
1706 		return -EFAULT;
1707 	if (!count)
1708 		return 0;
1709 
1710 	desc.written = 0;
1711 	desc.count = count;
1712 	desc.arg.buf = buf;
1713 	desc.error = 0;
1714 
1715 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1716 	if (desc.written)
1717 		return desc.written;
1718 	return desc.error;
1719 }
1720 
1721 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1722 {
1723 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1724 
1725 	buf->f_type = TMPFS_MAGIC;
1726 	buf->f_bsize = PAGE_CACHE_SIZE;
1727 	buf->f_namelen = NAME_MAX;
1728 	spin_lock(&sbinfo->stat_lock);
1729 	if (sbinfo->max_blocks) {
1730 		buf->f_blocks = sbinfo->max_blocks;
1731 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1732 	}
1733 	if (sbinfo->max_inodes) {
1734 		buf->f_files = sbinfo->max_inodes;
1735 		buf->f_ffree = sbinfo->free_inodes;
1736 	}
1737 	/* else leave those fields 0 like simple_statfs */
1738 	spin_unlock(&sbinfo->stat_lock);
1739 	return 0;
1740 }
1741 
1742 /*
1743  * File creation. Allocate an inode, and we're done..
1744  */
1745 static int
1746 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1747 {
1748 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1749 	int error = -ENOSPC;
1750 
1751 	if (inode) {
1752 		error = security_inode_init_security(inode, dir, NULL, NULL,
1753 						     NULL);
1754 		if (error) {
1755 			if (error != -EOPNOTSUPP) {
1756 				iput(inode);
1757 				return error;
1758 			}
1759 		}
1760 		error = shmem_acl_init(inode, dir);
1761 		if (error) {
1762 			iput(inode);
1763 			return error;
1764 		}
1765 		if (dir->i_mode & S_ISGID) {
1766 			inode->i_gid = dir->i_gid;
1767 			if (S_ISDIR(mode))
1768 				inode->i_mode |= S_ISGID;
1769 		}
1770 		dir->i_size += BOGO_DIRENT_SIZE;
1771 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1772 		d_instantiate(dentry, inode);
1773 		dget(dentry); /* Extra count - pin the dentry in core */
1774 	}
1775 	return error;
1776 }
1777 
1778 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1779 {
1780 	int error;
1781 
1782 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1783 		return error;
1784 	inc_nlink(dir);
1785 	return 0;
1786 }
1787 
1788 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1789 		struct nameidata *nd)
1790 {
1791 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1792 }
1793 
1794 /*
1795  * Link a file..
1796  */
1797 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1798 {
1799 	struct inode *inode = old_dentry->d_inode;
1800 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1801 
1802 	/*
1803 	 * No ordinary (disk based) filesystem counts links as inodes;
1804 	 * but each new link needs a new dentry, pinning lowmem, and
1805 	 * tmpfs dentries cannot be pruned until they are unlinked.
1806 	 */
1807 	if (sbinfo->max_inodes) {
1808 		spin_lock(&sbinfo->stat_lock);
1809 		if (!sbinfo->free_inodes) {
1810 			spin_unlock(&sbinfo->stat_lock);
1811 			return -ENOSPC;
1812 		}
1813 		sbinfo->free_inodes--;
1814 		spin_unlock(&sbinfo->stat_lock);
1815 	}
1816 
1817 	dir->i_size += BOGO_DIRENT_SIZE;
1818 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1819 	inc_nlink(inode);
1820 	atomic_inc(&inode->i_count);	/* New dentry reference */
1821 	dget(dentry);		/* Extra pinning count for the created dentry */
1822 	d_instantiate(dentry, inode);
1823 	return 0;
1824 }
1825 
1826 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1827 {
1828 	struct inode *inode = dentry->d_inode;
1829 
1830 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1831 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1832 		if (sbinfo->max_inodes) {
1833 			spin_lock(&sbinfo->stat_lock);
1834 			sbinfo->free_inodes++;
1835 			spin_unlock(&sbinfo->stat_lock);
1836 		}
1837 	}
1838 
1839 	dir->i_size -= BOGO_DIRENT_SIZE;
1840 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1841 	drop_nlink(inode);
1842 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1843 	return 0;
1844 }
1845 
1846 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1847 {
1848 	if (!simple_empty(dentry))
1849 		return -ENOTEMPTY;
1850 
1851 	drop_nlink(dentry->d_inode);
1852 	drop_nlink(dir);
1853 	return shmem_unlink(dir, dentry);
1854 }
1855 
1856 /*
1857  * The VFS layer already does all the dentry stuff for rename,
1858  * we just have to decrement the usage count for the target if
1859  * it exists so that the VFS layer correctly free's it when it
1860  * gets overwritten.
1861  */
1862 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1863 {
1864 	struct inode *inode = old_dentry->d_inode;
1865 	int they_are_dirs = S_ISDIR(inode->i_mode);
1866 
1867 	if (!simple_empty(new_dentry))
1868 		return -ENOTEMPTY;
1869 
1870 	if (new_dentry->d_inode) {
1871 		(void) shmem_unlink(new_dir, new_dentry);
1872 		if (they_are_dirs)
1873 			drop_nlink(old_dir);
1874 	} else if (they_are_dirs) {
1875 		drop_nlink(old_dir);
1876 		inc_nlink(new_dir);
1877 	}
1878 
1879 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1880 	new_dir->i_size += BOGO_DIRENT_SIZE;
1881 	old_dir->i_ctime = old_dir->i_mtime =
1882 	new_dir->i_ctime = new_dir->i_mtime =
1883 	inode->i_ctime = CURRENT_TIME;
1884 	return 0;
1885 }
1886 
1887 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1888 {
1889 	int error;
1890 	int len;
1891 	struct inode *inode;
1892 	struct page *page = NULL;
1893 	char *kaddr;
1894 	struct shmem_inode_info *info;
1895 
1896 	len = strlen(symname) + 1;
1897 	if (len > PAGE_CACHE_SIZE)
1898 		return -ENAMETOOLONG;
1899 
1900 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1901 	if (!inode)
1902 		return -ENOSPC;
1903 
1904 	error = security_inode_init_security(inode, dir, NULL, NULL,
1905 					     NULL);
1906 	if (error) {
1907 		if (error != -EOPNOTSUPP) {
1908 			iput(inode);
1909 			return error;
1910 		}
1911 		error = 0;
1912 	}
1913 
1914 	info = SHMEM_I(inode);
1915 	inode->i_size = len-1;
1916 	if (len <= (char *)inode - (char *)info) {
1917 		/* do it inline */
1918 		memcpy(info, symname, len);
1919 		inode->i_op = &shmem_symlink_inline_operations;
1920 	} else {
1921 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1922 		if (error) {
1923 			iput(inode);
1924 			return error;
1925 		}
1926 		inode->i_op = &shmem_symlink_inode_operations;
1927 		kaddr = kmap_atomic(page, KM_USER0);
1928 		memcpy(kaddr, symname, len);
1929 		kunmap_atomic(kaddr, KM_USER0);
1930 		set_page_dirty(page);
1931 		page_cache_release(page);
1932 	}
1933 	if (dir->i_mode & S_ISGID)
1934 		inode->i_gid = dir->i_gid;
1935 	dir->i_size += BOGO_DIRENT_SIZE;
1936 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1937 	d_instantiate(dentry, inode);
1938 	dget(dentry);
1939 	return 0;
1940 }
1941 
1942 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1943 {
1944 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1945 	return NULL;
1946 }
1947 
1948 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1949 {
1950 	struct page *page = NULL;
1951 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1952 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1953 	return page;
1954 }
1955 
1956 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1957 {
1958 	if (!IS_ERR(nd_get_link(nd))) {
1959 		struct page *page = cookie;
1960 		kunmap(page);
1961 		mark_page_accessed(page);
1962 		page_cache_release(page);
1963 	}
1964 }
1965 
1966 static const struct inode_operations shmem_symlink_inline_operations = {
1967 	.readlink	= generic_readlink,
1968 	.follow_link	= shmem_follow_link_inline,
1969 };
1970 
1971 static const struct inode_operations shmem_symlink_inode_operations = {
1972 	.truncate	= shmem_truncate,
1973 	.readlink	= generic_readlink,
1974 	.follow_link	= shmem_follow_link,
1975 	.put_link	= shmem_put_link,
1976 };
1977 
1978 #ifdef CONFIG_TMPFS_POSIX_ACL
1979 /**
1980  * Superblocks without xattr inode operations will get security.* xattr
1981  * support from the VFS "for free". As soon as we have any other xattrs
1982  * like ACLs, we also need to implement the security.* handlers at
1983  * filesystem level, though.
1984  */
1985 
1986 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1987 					size_t list_len, const char *name,
1988 					size_t name_len)
1989 {
1990 	return security_inode_listsecurity(inode, list, list_len);
1991 }
1992 
1993 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1994 				    void *buffer, size_t size)
1995 {
1996 	if (strcmp(name, "") == 0)
1997 		return -EINVAL;
1998 	return security_inode_getsecurity(inode, name, buffer, size,
1999 					  -EOPNOTSUPP);
2000 }
2001 
2002 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2003 				    const void *value, size_t size, int flags)
2004 {
2005 	if (strcmp(name, "") == 0)
2006 		return -EINVAL;
2007 	return security_inode_setsecurity(inode, name, value, size, flags);
2008 }
2009 
2010 static struct xattr_handler shmem_xattr_security_handler = {
2011 	.prefix = XATTR_SECURITY_PREFIX,
2012 	.list   = shmem_xattr_security_list,
2013 	.get    = shmem_xattr_security_get,
2014 	.set    = shmem_xattr_security_set,
2015 };
2016 
2017 static struct xattr_handler *shmem_xattr_handlers[] = {
2018 	&shmem_xattr_acl_access_handler,
2019 	&shmem_xattr_acl_default_handler,
2020 	&shmem_xattr_security_handler,
2021 	NULL
2022 };
2023 #endif
2024 
2025 static struct dentry *shmem_get_parent(struct dentry *child)
2026 {
2027 	return ERR_PTR(-ESTALE);
2028 }
2029 
2030 static int shmem_match(struct inode *ino, void *vfh)
2031 {
2032 	__u32 *fh = vfh;
2033 	__u64 inum = fh[2];
2034 	inum = (inum << 32) | fh[1];
2035 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2036 }
2037 
2038 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2039 		struct fid *fid, int fh_len, int fh_type)
2040 {
2041 	struct inode *inode;
2042 	struct dentry *dentry = NULL;
2043 	u64 inum = fid->raw[2];
2044 	inum = (inum << 32) | fid->raw[1];
2045 
2046 	if (fh_len < 3)
2047 		return NULL;
2048 
2049 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2050 			shmem_match, fid->raw);
2051 	if (inode) {
2052 		dentry = d_find_alias(inode);
2053 		iput(inode);
2054 	}
2055 
2056 	return dentry;
2057 }
2058 
2059 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2060 				int connectable)
2061 {
2062 	struct inode *inode = dentry->d_inode;
2063 
2064 	if (*len < 3)
2065 		return 255;
2066 
2067 	if (hlist_unhashed(&inode->i_hash)) {
2068 		/* Unfortunately insert_inode_hash is not idempotent,
2069 		 * so as we hash inodes here rather than at creation
2070 		 * time, we need a lock to ensure we only try
2071 		 * to do it once
2072 		 */
2073 		static DEFINE_SPINLOCK(lock);
2074 		spin_lock(&lock);
2075 		if (hlist_unhashed(&inode->i_hash))
2076 			__insert_inode_hash(inode,
2077 					    inode->i_ino + inode->i_generation);
2078 		spin_unlock(&lock);
2079 	}
2080 
2081 	fh[0] = inode->i_generation;
2082 	fh[1] = inode->i_ino;
2083 	fh[2] = ((__u64)inode->i_ino) >> 32;
2084 
2085 	*len = 3;
2086 	return 1;
2087 }
2088 
2089 static const struct export_operations shmem_export_ops = {
2090 	.get_parent     = shmem_get_parent,
2091 	.encode_fh      = shmem_encode_fh,
2092 	.fh_to_dentry	= shmem_fh_to_dentry,
2093 };
2094 
2095 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2096 	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2097 	int *policy, nodemask_t *policy_nodes)
2098 {
2099 	char *this_char, *value, *rest;
2100 
2101 	while (options != NULL) {
2102 		this_char = options;
2103 		for (;;) {
2104 			/*
2105 			 * NUL-terminate this option: unfortunately,
2106 			 * mount options form a comma-separated list,
2107 			 * but mpol's nodelist may also contain commas.
2108 			 */
2109 			options = strchr(options, ',');
2110 			if (options == NULL)
2111 				break;
2112 			options++;
2113 			if (!isdigit(*options)) {
2114 				options[-1] = '\0';
2115 				break;
2116 			}
2117 		}
2118 		if (!*this_char)
2119 			continue;
2120 		if ((value = strchr(this_char,'=')) != NULL) {
2121 			*value++ = 0;
2122 		} else {
2123 			printk(KERN_ERR
2124 			    "tmpfs: No value for mount option '%s'\n",
2125 			    this_char);
2126 			return 1;
2127 		}
2128 
2129 		if (!strcmp(this_char,"size")) {
2130 			unsigned long long size;
2131 			size = memparse(value,&rest);
2132 			if (*rest == '%') {
2133 				size <<= PAGE_SHIFT;
2134 				size *= totalram_pages;
2135 				do_div(size, 100);
2136 				rest++;
2137 			}
2138 			if (*rest)
2139 				goto bad_val;
2140 			*blocks = size >> PAGE_CACHE_SHIFT;
2141 		} else if (!strcmp(this_char,"nr_blocks")) {
2142 			*blocks = memparse(value,&rest);
2143 			if (*rest)
2144 				goto bad_val;
2145 		} else if (!strcmp(this_char,"nr_inodes")) {
2146 			*inodes = memparse(value,&rest);
2147 			if (*rest)
2148 				goto bad_val;
2149 		} else if (!strcmp(this_char,"mode")) {
2150 			if (!mode)
2151 				continue;
2152 			*mode = simple_strtoul(value,&rest,8);
2153 			if (*rest)
2154 				goto bad_val;
2155 		} else if (!strcmp(this_char,"uid")) {
2156 			if (!uid)
2157 				continue;
2158 			*uid = simple_strtoul(value,&rest,0);
2159 			if (*rest)
2160 				goto bad_val;
2161 		} else if (!strcmp(this_char,"gid")) {
2162 			if (!gid)
2163 				continue;
2164 			*gid = simple_strtoul(value,&rest,0);
2165 			if (*rest)
2166 				goto bad_val;
2167 		} else if (!strcmp(this_char,"mpol")) {
2168 			if (shmem_parse_mpol(value,policy,policy_nodes))
2169 				goto bad_val;
2170 		} else {
2171 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2172 			       this_char);
2173 			return 1;
2174 		}
2175 	}
2176 	return 0;
2177 
2178 bad_val:
2179 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2180 	       value, this_char);
2181 	return 1;
2182 
2183 }
2184 
2185 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2186 {
2187 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2188 	unsigned long max_blocks = sbinfo->max_blocks;
2189 	unsigned long max_inodes = sbinfo->max_inodes;
2190 	int policy = sbinfo->policy;
2191 	nodemask_t policy_nodes = sbinfo->policy_nodes;
2192 	unsigned long blocks;
2193 	unsigned long inodes;
2194 	int error = -EINVAL;
2195 
2196 	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2197 				&max_inodes, &policy, &policy_nodes))
2198 		return error;
2199 
2200 	spin_lock(&sbinfo->stat_lock);
2201 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2202 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2203 	if (max_blocks < blocks)
2204 		goto out;
2205 	if (max_inodes < inodes)
2206 		goto out;
2207 	/*
2208 	 * Those tests also disallow limited->unlimited while any are in
2209 	 * use, so i_blocks will always be zero when max_blocks is zero;
2210 	 * but we must separately disallow unlimited->limited, because
2211 	 * in that case we have no record of how much is already in use.
2212 	 */
2213 	if (max_blocks && !sbinfo->max_blocks)
2214 		goto out;
2215 	if (max_inodes && !sbinfo->max_inodes)
2216 		goto out;
2217 
2218 	error = 0;
2219 	sbinfo->max_blocks  = max_blocks;
2220 	sbinfo->free_blocks = max_blocks - blocks;
2221 	sbinfo->max_inodes  = max_inodes;
2222 	sbinfo->free_inodes = max_inodes - inodes;
2223 	sbinfo->policy = policy;
2224 	sbinfo->policy_nodes = policy_nodes;
2225 out:
2226 	spin_unlock(&sbinfo->stat_lock);
2227 	return error;
2228 }
2229 #endif
2230 
2231 static void shmem_put_super(struct super_block *sb)
2232 {
2233 	kfree(sb->s_fs_info);
2234 	sb->s_fs_info = NULL;
2235 }
2236 
2237 static int shmem_fill_super(struct super_block *sb,
2238 			    void *data, int silent)
2239 {
2240 	struct inode *inode;
2241 	struct dentry *root;
2242 	int mode   = S_IRWXUGO | S_ISVTX;
2243 	uid_t uid = current->fsuid;
2244 	gid_t gid = current->fsgid;
2245 	int err = -ENOMEM;
2246 	struct shmem_sb_info *sbinfo;
2247 	unsigned long blocks = 0;
2248 	unsigned long inodes = 0;
2249 	int policy = MPOL_DEFAULT;
2250 	nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2251 
2252 #ifdef CONFIG_TMPFS
2253 	/*
2254 	 * Per default we only allow half of the physical ram per
2255 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2256 	 * but the internal instance is left unlimited.
2257 	 */
2258 	if (!(sb->s_flags & MS_NOUSER)) {
2259 		blocks = totalram_pages / 2;
2260 		inodes = totalram_pages - totalhigh_pages;
2261 		if (inodes > blocks)
2262 			inodes = blocks;
2263 		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2264 					&inodes, &policy, &policy_nodes))
2265 			return -EINVAL;
2266 	}
2267 	sb->s_export_op = &shmem_export_ops;
2268 #else
2269 	sb->s_flags |= MS_NOUSER;
2270 #endif
2271 
2272 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2273 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2274 				L1_CACHE_BYTES), GFP_KERNEL);
2275 	if (!sbinfo)
2276 		return -ENOMEM;
2277 
2278 	spin_lock_init(&sbinfo->stat_lock);
2279 	sbinfo->max_blocks = blocks;
2280 	sbinfo->free_blocks = blocks;
2281 	sbinfo->max_inodes = inodes;
2282 	sbinfo->free_inodes = inodes;
2283 	sbinfo->policy = policy;
2284 	sbinfo->policy_nodes = policy_nodes;
2285 
2286 	sb->s_fs_info = sbinfo;
2287 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2288 	sb->s_blocksize = PAGE_CACHE_SIZE;
2289 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2290 	sb->s_magic = TMPFS_MAGIC;
2291 	sb->s_op = &shmem_ops;
2292 	sb->s_time_gran = 1;
2293 #ifdef CONFIG_TMPFS_POSIX_ACL
2294 	sb->s_xattr = shmem_xattr_handlers;
2295 	sb->s_flags |= MS_POSIXACL;
2296 #endif
2297 
2298 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2299 	if (!inode)
2300 		goto failed;
2301 	inode->i_uid = uid;
2302 	inode->i_gid = gid;
2303 	root = d_alloc_root(inode);
2304 	if (!root)
2305 		goto failed_iput;
2306 	sb->s_root = root;
2307 	return 0;
2308 
2309 failed_iput:
2310 	iput(inode);
2311 failed:
2312 	shmem_put_super(sb);
2313 	return err;
2314 }
2315 
2316 static struct kmem_cache *shmem_inode_cachep;
2317 
2318 static struct inode *shmem_alloc_inode(struct super_block *sb)
2319 {
2320 	struct shmem_inode_info *p;
2321 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2322 	if (!p)
2323 		return NULL;
2324 	return &p->vfs_inode;
2325 }
2326 
2327 static void shmem_destroy_inode(struct inode *inode)
2328 {
2329 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2330 		/* only struct inode is valid if it's an inline symlink */
2331 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2332 	}
2333 	shmem_acl_destroy_inode(inode);
2334 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2335 }
2336 
2337 static void init_once(struct kmem_cache *cachep, void *foo)
2338 {
2339 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2340 
2341 	inode_init_once(&p->vfs_inode);
2342 #ifdef CONFIG_TMPFS_POSIX_ACL
2343 	p->i_acl = NULL;
2344 	p->i_default_acl = NULL;
2345 #endif
2346 }
2347 
2348 static int init_inodecache(void)
2349 {
2350 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2351 				sizeof(struct shmem_inode_info),
2352 				0, SLAB_PANIC, init_once);
2353 	return 0;
2354 }
2355 
2356 static void destroy_inodecache(void)
2357 {
2358 	kmem_cache_destroy(shmem_inode_cachep);
2359 }
2360 
2361 static const struct address_space_operations shmem_aops = {
2362 	.writepage	= shmem_writepage,
2363 	.set_page_dirty	= __set_page_dirty_no_writeback,
2364 #ifdef CONFIG_TMPFS
2365 	.readpage	= shmem_readpage,
2366 	.write_begin	= shmem_write_begin,
2367 	.write_end	= shmem_write_end,
2368 #endif
2369 	.migratepage	= migrate_page,
2370 };
2371 
2372 static const struct file_operations shmem_file_operations = {
2373 	.mmap		= shmem_mmap,
2374 #ifdef CONFIG_TMPFS
2375 	.llseek		= generic_file_llseek,
2376 	.read		= shmem_file_read,
2377 	.write		= shmem_file_write,
2378 	.fsync		= simple_sync_file,
2379 	.splice_read	= generic_file_splice_read,
2380 	.splice_write	= generic_file_splice_write,
2381 #endif
2382 };
2383 
2384 static const struct inode_operations shmem_inode_operations = {
2385 	.truncate	= shmem_truncate,
2386 	.setattr	= shmem_notify_change,
2387 	.truncate_range	= shmem_truncate_range,
2388 #ifdef CONFIG_TMPFS_POSIX_ACL
2389 	.setxattr	= generic_setxattr,
2390 	.getxattr	= generic_getxattr,
2391 	.listxattr	= generic_listxattr,
2392 	.removexattr	= generic_removexattr,
2393 	.permission	= shmem_permission,
2394 #endif
2395 
2396 };
2397 
2398 static const struct inode_operations shmem_dir_inode_operations = {
2399 #ifdef CONFIG_TMPFS
2400 	.create		= shmem_create,
2401 	.lookup		= simple_lookup,
2402 	.link		= shmem_link,
2403 	.unlink		= shmem_unlink,
2404 	.symlink	= shmem_symlink,
2405 	.mkdir		= shmem_mkdir,
2406 	.rmdir		= shmem_rmdir,
2407 	.mknod		= shmem_mknod,
2408 	.rename		= shmem_rename,
2409 #endif
2410 #ifdef CONFIG_TMPFS_POSIX_ACL
2411 	.setattr	= shmem_notify_change,
2412 	.setxattr	= generic_setxattr,
2413 	.getxattr	= generic_getxattr,
2414 	.listxattr	= generic_listxattr,
2415 	.removexattr	= generic_removexattr,
2416 	.permission	= shmem_permission,
2417 #endif
2418 };
2419 
2420 static const struct inode_operations shmem_special_inode_operations = {
2421 #ifdef CONFIG_TMPFS_POSIX_ACL
2422 	.setattr	= shmem_notify_change,
2423 	.setxattr	= generic_setxattr,
2424 	.getxattr	= generic_getxattr,
2425 	.listxattr	= generic_listxattr,
2426 	.removexattr	= generic_removexattr,
2427 	.permission	= shmem_permission,
2428 #endif
2429 };
2430 
2431 static const struct super_operations shmem_ops = {
2432 	.alloc_inode	= shmem_alloc_inode,
2433 	.destroy_inode	= shmem_destroy_inode,
2434 #ifdef CONFIG_TMPFS
2435 	.statfs		= shmem_statfs,
2436 	.remount_fs	= shmem_remount_fs,
2437 #endif
2438 	.delete_inode	= shmem_delete_inode,
2439 	.drop_inode	= generic_delete_inode,
2440 	.put_super	= shmem_put_super,
2441 };
2442 
2443 static struct vm_operations_struct shmem_vm_ops = {
2444 	.fault		= shmem_fault,
2445 #ifdef CONFIG_NUMA
2446 	.set_policy     = shmem_set_policy,
2447 	.get_policy     = shmem_get_policy,
2448 #endif
2449 };
2450 
2451 
2452 static int shmem_get_sb(struct file_system_type *fs_type,
2453 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2454 {
2455 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2456 }
2457 
2458 static struct file_system_type tmpfs_fs_type = {
2459 	.owner		= THIS_MODULE,
2460 	.name		= "tmpfs",
2461 	.get_sb		= shmem_get_sb,
2462 	.kill_sb	= kill_litter_super,
2463 };
2464 static struct vfsmount *shm_mnt;
2465 
2466 static int __init init_tmpfs(void)
2467 {
2468 	int error;
2469 
2470 	error = bdi_init(&shmem_backing_dev_info);
2471 	if (error)
2472 		goto out4;
2473 
2474 	error = init_inodecache();
2475 	if (error)
2476 		goto out3;
2477 
2478 	error = register_filesystem(&tmpfs_fs_type);
2479 	if (error) {
2480 		printk(KERN_ERR "Could not register tmpfs\n");
2481 		goto out2;
2482 	}
2483 
2484 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2485 				tmpfs_fs_type.name, NULL);
2486 	if (IS_ERR(shm_mnt)) {
2487 		error = PTR_ERR(shm_mnt);
2488 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2489 		goto out1;
2490 	}
2491 	return 0;
2492 
2493 out1:
2494 	unregister_filesystem(&tmpfs_fs_type);
2495 out2:
2496 	destroy_inodecache();
2497 out3:
2498 	bdi_destroy(&shmem_backing_dev_info);
2499 out4:
2500 	shm_mnt = ERR_PTR(error);
2501 	return error;
2502 }
2503 module_init(init_tmpfs)
2504 
2505 /*
2506  * shmem_file_setup - get an unlinked file living in tmpfs
2507  *
2508  * @name: name for dentry (to be seen in /proc/<pid>/maps
2509  * @size: size to be set for the file
2510  *
2511  */
2512 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2513 {
2514 	int error;
2515 	struct file *file;
2516 	struct inode *inode;
2517 	struct dentry *dentry, *root;
2518 	struct qstr this;
2519 
2520 	if (IS_ERR(shm_mnt))
2521 		return (void *)shm_mnt;
2522 
2523 	if (size < 0 || size > SHMEM_MAX_BYTES)
2524 		return ERR_PTR(-EINVAL);
2525 
2526 	if (shmem_acct_size(flags, size))
2527 		return ERR_PTR(-ENOMEM);
2528 
2529 	error = -ENOMEM;
2530 	this.name = name;
2531 	this.len = strlen(name);
2532 	this.hash = 0; /* will go */
2533 	root = shm_mnt->mnt_root;
2534 	dentry = d_alloc(root, &this);
2535 	if (!dentry)
2536 		goto put_memory;
2537 
2538 	error = -ENFILE;
2539 	file = get_empty_filp();
2540 	if (!file)
2541 		goto put_dentry;
2542 
2543 	error = -ENOSPC;
2544 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2545 	if (!inode)
2546 		goto close_file;
2547 
2548 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2549 	d_instantiate(dentry, inode);
2550 	inode->i_size = size;
2551 	inode->i_nlink = 0;	/* It is unlinked */
2552 	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2553 			&shmem_file_operations);
2554 	return file;
2555 
2556 close_file:
2557 	put_filp(file);
2558 put_dentry:
2559 	dput(dentry);
2560 put_memory:
2561 	shmem_unacct_size(flags, size);
2562 	return ERR_PTR(error);
2563 }
2564 
2565 /*
2566  * shmem_zero_setup - setup a shared anonymous mapping
2567  *
2568  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2569  */
2570 int shmem_zero_setup(struct vm_area_struct *vma)
2571 {
2572 	struct file *file;
2573 	loff_t size = vma->vm_end - vma->vm_start;
2574 
2575 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2576 	if (IS_ERR(file))
2577 		return PTR_ERR(file);
2578 
2579 	if (vma->vm_file)
2580 		fput(vma->vm_file);
2581 	vma->vm_file = file;
2582 	vma->vm_ops = &shmem_vm_ops;
2583 	return 0;
2584 }
2585