1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/file.h> 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/swap.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/posix_acl.h> 46 #include <linux/generic_acl.h> 47 #include <linux/mman.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/backing-dev.h> 51 #include <linux/shmem_fs.h> 52 #include <linux/writeback.h> 53 #include <linux/blkdev.h> 54 #include <linux/pagevec.h> 55 #include <linux/percpu_counter.h> 56 #include <linux/falloc.h> 57 #include <linux/splice.h> 58 #include <linux/security.h> 59 #include <linux/swapops.h> 60 #include <linux/mempolicy.h> 61 #include <linux/namei.h> 62 #include <linux/ctype.h> 63 #include <linux/migrate.h> 64 #include <linux/highmem.h> 65 #include <linux/seq_file.h> 66 #include <linux/magic.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/pgtable.h> 70 71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 73 74 /* Pretend that each entry is of this size in directory's i_size */ 75 #define BOGO_DIRENT_SIZE 20 76 77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 78 #define SHORT_SYMLINK_LEN 128 79 80 struct shmem_xattr { 81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */ 82 char *name; /* xattr name */ 83 size_t size; 84 char value[0]; 85 }; 86 87 /* 88 * shmem_fallocate and shmem_writepage communicate via inode->i_private 89 * (with i_mutex making sure that it has only one user at a time): 90 * we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 pgoff_t start; /* start of range currently being fallocated */ 94 pgoff_t next; /* the next page offset to be fallocated */ 95 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 97 }; 98 99 /* Flag allocation requirements to shmem_getpage */ 100 enum sgp_type { 101 SGP_READ, /* don't exceed i_size, don't allocate page */ 102 SGP_CACHE, /* don't exceed i_size, may allocate page */ 103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 125 126 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 127 struct page **pagep, enum sgp_type sgp, int *fault_type) 128 { 129 return shmem_getpage_gfp(inode, index, pagep, sgp, 130 mapping_gfp_mask(inode->i_mapping), fault_type); 131 } 132 133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 134 { 135 return sb->s_fs_info; 136 } 137 138 /* 139 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 140 * for shared memory and for shared anonymous (/dev/zero) mappings 141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 142 * consistent with the pre-accounting of private mappings ... 143 */ 144 static inline int shmem_acct_size(unsigned long flags, loff_t size) 145 { 146 return (flags & VM_NORESERVE) ? 147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 148 } 149 150 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 151 { 152 if (!(flags & VM_NORESERVE)) 153 vm_unacct_memory(VM_ACCT(size)); 154 } 155 156 /* 157 * ... whereas tmpfs objects are accounted incrementally as 158 * pages are allocated, in order to allow huge sparse files. 159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 161 */ 162 static inline int shmem_acct_block(unsigned long flags) 163 { 164 return (flags & VM_NORESERVE) ? 165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 166 } 167 168 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 169 { 170 if (flags & VM_NORESERVE) 171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 172 } 173 174 static const struct super_operations shmem_ops; 175 static const struct address_space_operations shmem_aops; 176 static const struct file_operations shmem_file_operations; 177 static const struct inode_operations shmem_inode_operations; 178 static const struct inode_operations shmem_dir_inode_operations; 179 static const struct inode_operations shmem_special_inode_operations; 180 static const struct vm_operations_struct shmem_vm_ops; 181 182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 183 .ra_pages = 0, /* No readahead */ 184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 185 }; 186 187 static LIST_HEAD(shmem_swaplist); 188 static DEFINE_MUTEX(shmem_swaplist_mutex); 189 190 static int shmem_reserve_inode(struct super_block *sb) 191 { 192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 193 if (sbinfo->max_inodes) { 194 spin_lock(&sbinfo->stat_lock); 195 if (!sbinfo->free_inodes) { 196 spin_unlock(&sbinfo->stat_lock); 197 return -ENOSPC; 198 } 199 sbinfo->free_inodes--; 200 spin_unlock(&sbinfo->stat_lock); 201 } 202 return 0; 203 } 204 205 static void shmem_free_inode(struct super_block *sb) 206 { 207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 208 if (sbinfo->max_inodes) { 209 spin_lock(&sbinfo->stat_lock); 210 sbinfo->free_inodes++; 211 spin_unlock(&sbinfo->stat_lock); 212 } 213 } 214 215 /** 216 * shmem_recalc_inode - recalculate the block usage of an inode 217 * @inode: inode to recalc 218 * 219 * We have to calculate the free blocks since the mm can drop 220 * undirtied hole pages behind our back. 221 * 222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 224 * 225 * It has to be called with the spinlock held. 226 */ 227 static void shmem_recalc_inode(struct inode *inode) 228 { 229 struct shmem_inode_info *info = SHMEM_I(inode); 230 long freed; 231 232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 233 if (freed > 0) { 234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 235 if (sbinfo->max_blocks) 236 percpu_counter_add(&sbinfo->used_blocks, -freed); 237 info->alloced -= freed; 238 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 239 shmem_unacct_blocks(info->flags, freed); 240 } 241 } 242 243 /* 244 * Replace item expected in radix tree by a new item, while holding tree lock. 245 */ 246 static int shmem_radix_tree_replace(struct address_space *mapping, 247 pgoff_t index, void *expected, void *replacement) 248 { 249 void **pslot; 250 void *item = NULL; 251 252 VM_BUG_ON(!expected); 253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 254 if (pslot) 255 item = radix_tree_deref_slot_protected(pslot, 256 &mapping->tree_lock); 257 if (item != expected) 258 return -ENOENT; 259 if (replacement) 260 radix_tree_replace_slot(pslot, replacement); 261 else 262 radix_tree_delete(&mapping->page_tree, index); 263 return 0; 264 } 265 266 /* 267 * Sometimes, before we decide whether to proceed or to fail, we must check 268 * that an entry was not already brought back from swap by a racing thread. 269 * 270 * Checking page is not enough: by the time a SwapCache page is locked, it 271 * might be reused, and again be SwapCache, using the same swap as before. 272 */ 273 static bool shmem_confirm_swap(struct address_space *mapping, 274 pgoff_t index, swp_entry_t swap) 275 { 276 void *item; 277 278 rcu_read_lock(); 279 item = radix_tree_lookup(&mapping->page_tree, index); 280 rcu_read_unlock(); 281 return item == swp_to_radix_entry(swap); 282 } 283 284 /* 285 * Like add_to_page_cache_locked, but error if expected item has gone. 286 */ 287 static int shmem_add_to_page_cache(struct page *page, 288 struct address_space *mapping, 289 pgoff_t index, gfp_t gfp, void *expected) 290 { 291 int error; 292 293 VM_BUG_ON(!PageLocked(page)); 294 VM_BUG_ON(!PageSwapBacked(page)); 295 296 page_cache_get(page); 297 page->mapping = mapping; 298 page->index = index; 299 300 spin_lock_irq(&mapping->tree_lock); 301 if (!expected) 302 error = radix_tree_insert(&mapping->page_tree, index, page); 303 else 304 error = shmem_radix_tree_replace(mapping, index, expected, 305 page); 306 if (!error) { 307 mapping->nrpages++; 308 __inc_zone_page_state(page, NR_FILE_PAGES); 309 __inc_zone_page_state(page, NR_SHMEM); 310 spin_unlock_irq(&mapping->tree_lock); 311 } else { 312 page->mapping = NULL; 313 spin_unlock_irq(&mapping->tree_lock); 314 page_cache_release(page); 315 } 316 return error; 317 } 318 319 /* 320 * Like delete_from_page_cache, but substitutes swap for page. 321 */ 322 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 323 { 324 struct address_space *mapping = page->mapping; 325 int error; 326 327 spin_lock_irq(&mapping->tree_lock); 328 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 329 page->mapping = NULL; 330 mapping->nrpages--; 331 __dec_zone_page_state(page, NR_FILE_PAGES); 332 __dec_zone_page_state(page, NR_SHMEM); 333 spin_unlock_irq(&mapping->tree_lock); 334 page_cache_release(page); 335 BUG_ON(error); 336 } 337 338 /* 339 * Like find_get_pages, but collecting swap entries as well as pages. 340 */ 341 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping, 342 pgoff_t start, unsigned int nr_pages, 343 struct page **pages, pgoff_t *indices) 344 { 345 unsigned int i; 346 unsigned int ret; 347 unsigned int nr_found; 348 349 rcu_read_lock(); 350 restart: 351 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 352 (void ***)pages, indices, start, nr_pages); 353 ret = 0; 354 for (i = 0; i < nr_found; i++) { 355 struct page *page; 356 repeat: 357 page = radix_tree_deref_slot((void **)pages[i]); 358 if (unlikely(!page)) 359 continue; 360 if (radix_tree_exception(page)) { 361 if (radix_tree_deref_retry(page)) 362 goto restart; 363 /* 364 * Otherwise, we must be storing a swap entry 365 * here as an exceptional entry: so return it 366 * without attempting to raise page count. 367 */ 368 goto export; 369 } 370 if (!page_cache_get_speculative(page)) 371 goto repeat; 372 373 /* Has the page moved? */ 374 if (unlikely(page != *((void **)pages[i]))) { 375 page_cache_release(page); 376 goto repeat; 377 } 378 export: 379 indices[ret] = indices[i]; 380 pages[ret] = page; 381 ret++; 382 } 383 if (unlikely(!ret && nr_found)) 384 goto restart; 385 rcu_read_unlock(); 386 return ret; 387 } 388 389 /* 390 * Remove swap entry from radix tree, free the swap and its page cache. 391 */ 392 static int shmem_free_swap(struct address_space *mapping, 393 pgoff_t index, void *radswap) 394 { 395 int error; 396 397 spin_lock_irq(&mapping->tree_lock); 398 error = shmem_radix_tree_replace(mapping, index, radswap, NULL); 399 spin_unlock_irq(&mapping->tree_lock); 400 if (!error) 401 free_swap_and_cache(radix_to_swp_entry(radswap)); 402 return error; 403 } 404 405 /* 406 * Pagevec may contain swap entries, so shuffle up pages before releasing. 407 */ 408 static void shmem_deswap_pagevec(struct pagevec *pvec) 409 { 410 int i, j; 411 412 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 413 struct page *page = pvec->pages[i]; 414 if (!radix_tree_exceptional_entry(page)) 415 pvec->pages[j++] = page; 416 } 417 pvec->nr = j; 418 } 419 420 /* 421 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 422 */ 423 void shmem_unlock_mapping(struct address_space *mapping) 424 { 425 struct pagevec pvec; 426 pgoff_t indices[PAGEVEC_SIZE]; 427 pgoff_t index = 0; 428 429 pagevec_init(&pvec, 0); 430 /* 431 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 432 */ 433 while (!mapping_unevictable(mapping)) { 434 /* 435 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 436 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 437 */ 438 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 439 PAGEVEC_SIZE, pvec.pages, indices); 440 if (!pvec.nr) 441 break; 442 index = indices[pvec.nr - 1] + 1; 443 shmem_deswap_pagevec(&pvec); 444 check_move_unevictable_pages(pvec.pages, pvec.nr); 445 pagevec_release(&pvec); 446 cond_resched(); 447 } 448 } 449 450 /* 451 * Remove range of pages and swap entries from radix tree, and free them. 452 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 453 */ 454 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 455 bool unfalloc) 456 { 457 struct address_space *mapping = inode->i_mapping; 458 struct shmem_inode_info *info = SHMEM_I(inode); 459 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 460 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 461 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 462 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 463 struct pagevec pvec; 464 pgoff_t indices[PAGEVEC_SIZE]; 465 long nr_swaps_freed = 0; 466 pgoff_t index; 467 int i; 468 469 if (lend == -1) 470 end = -1; /* unsigned, so actually very big */ 471 472 pagevec_init(&pvec, 0); 473 index = start; 474 while (index < end) { 475 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 476 min(end - index, (pgoff_t)PAGEVEC_SIZE), 477 pvec.pages, indices); 478 if (!pvec.nr) 479 break; 480 mem_cgroup_uncharge_start(); 481 for (i = 0; i < pagevec_count(&pvec); i++) { 482 struct page *page = pvec.pages[i]; 483 484 index = indices[i]; 485 if (index >= end) 486 break; 487 488 if (radix_tree_exceptional_entry(page)) { 489 if (unfalloc) 490 continue; 491 nr_swaps_freed += !shmem_free_swap(mapping, 492 index, page); 493 continue; 494 } 495 496 if (!trylock_page(page)) 497 continue; 498 if (!unfalloc || !PageUptodate(page)) { 499 if (page->mapping == mapping) { 500 VM_BUG_ON(PageWriteback(page)); 501 truncate_inode_page(mapping, page); 502 } 503 } 504 unlock_page(page); 505 } 506 shmem_deswap_pagevec(&pvec); 507 pagevec_release(&pvec); 508 mem_cgroup_uncharge_end(); 509 cond_resched(); 510 index++; 511 } 512 513 if (partial_start) { 514 struct page *page = NULL; 515 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 516 if (page) { 517 unsigned int top = PAGE_CACHE_SIZE; 518 if (start > end) { 519 top = partial_end; 520 partial_end = 0; 521 } 522 zero_user_segment(page, partial_start, top); 523 set_page_dirty(page); 524 unlock_page(page); 525 page_cache_release(page); 526 } 527 } 528 if (partial_end) { 529 struct page *page = NULL; 530 shmem_getpage(inode, end, &page, SGP_READ, NULL); 531 if (page) { 532 zero_user_segment(page, 0, partial_end); 533 set_page_dirty(page); 534 unlock_page(page); 535 page_cache_release(page); 536 } 537 } 538 if (start >= end) 539 return; 540 541 index = start; 542 for ( ; ; ) { 543 cond_resched(); 544 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 545 min(end - index, (pgoff_t)PAGEVEC_SIZE), 546 pvec.pages, indices); 547 if (!pvec.nr) { 548 if (index == start || unfalloc) 549 break; 550 index = start; 551 continue; 552 } 553 if ((index == start || unfalloc) && indices[0] >= end) { 554 shmem_deswap_pagevec(&pvec); 555 pagevec_release(&pvec); 556 break; 557 } 558 mem_cgroup_uncharge_start(); 559 for (i = 0; i < pagevec_count(&pvec); i++) { 560 struct page *page = pvec.pages[i]; 561 562 index = indices[i]; 563 if (index >= end) 564 break; 565 566 if (radix_tree_exceptional_entry(page)) { 567 if (unfalloc) 568 continue; 569 nr_swaps_freed += !shmem_free_swap(mapping, 570 index, page); 571 continue; 572 } 573 574 lock_page(page); 575 if (!unfalloc || !PageUptodate(page)) { 576 if (page->mapping == mapping) { 577 VM_BUG_ON(PageWriteback(page)); 578 truncate_inode_page(mapping, page); 579 } 580 } 581 unlock_page(page); 582 } 583 shmem_deswap_pagevec(&pvec); 584 pagevec_release(&pvec); 585 mem_cgroup_uncharge_end(); 586 index++; 587 } 588 589 spin_lock(&info->lock); 590 info->swapped -= nr_swaps_freed; 591 shmem_recalc_inode(inode); 592 spin_unlock(&info->lock); 593 } 594 595 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 596 { 597 shmem_undo_range(inode, lstart, lend, false); 598 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 599 } 600 EXPORT_SYMBOL_GPL(shmem_truncate_range); 601 602 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 603 { 604 struct inode *inode = dentry->d_inode; 605 int error; 606 607 error = inode_change_ok(inode, attr); 608 if (error) 609 return error; 610 611 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 612 loff_t oldsize = inode->i_size; 613 loff_t newsize = attr->ia_size; 614 615 if (newsize != oldsize) { 616 i_size_write(inode, newsize); 617 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 618 } 619 if (newsize < oldsize) { 620 loff_t holebegin = round_up(newsize, PAGE_SIZE); 621 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 622 shmem_truncate_range(inode, newsize, (loff_t)-1); 623 /* unmap again to remove racily COWed private pages */ 624 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 625 } 626 } 627 628 setattr_copy(inode, attr); 629 #ifdef CONFIG_TMPFS_POSIX_ACL 630 if (attr->ia_valid & ATTR_MODE) 631 error = generic_acl_chmod(inode); 632 #endif 633 return error; 634 } 635 636 static void shmem_evict_inode(struct inode *inode) 637 { 638 struct shmem_inode_info *info = SHMEM_I(inode); 639 struct shmem_xattr *xattr, *nxattr; 640 641 if (inode->i_mapping->a_ops == &shmem_aops) { 642 shmem_unacct_size(info->flags, inode->i_size); 643 inode->i_size = 0; 644 shmem_truncate_range(inode, 0, (loff_t)-1); 645 if (!list_empty(&info->swaplist)) { 646 mutex_lock(&shmem_swaplist_mutex); 647 list_del_init(&info->swaplist); 648 mutex_unlock(&shmem_swaplist_mutex); 649 } 650 } else 651 kfree(info->symlink); 652 653 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) { 654 kfree(xattr->name); 655 kfree(xattr); 656 } 657 BUG_ON(inode->i_blocks); 658 shmem_free_inode(inode->i_sb); 659 clear_inode(inode); 660 } 661 662 /* 663 * If swap found in inode, free it and move page from swapcache to filecache. 664 */ 665 static int shmem_unuse_inode(struct shmem_inode_info *info, 666 swp_entry_t swap, struct page **pagep) 667 { 668 struct address_space *mapping = info->vfs_inode.i_mapping; 669 void *radswap; 670 pgoff_t index; 671 gfp_t gfp; 672 int error = 0; 673 674 radswap = swp_to_radix_entry(swap); 675 index = radix_tree_locate_item(&mapping->page_tree, radswap); 676 if (index == -1) 677 return 0; 678 679 /* 680 * Move _head_ to start search for next from here. 681 * But be careful: shmem_evict_inode checks list_empty without taking 682 * mutex, and there's an instant in list_move_tail when info->swaplist 683 * would appear empty, if it were the only one on shmem_swaplist. 684 */ 685 if (shmem_swaplist.next != &info->swaplist) 686 list_move_tail(&shmem_swaplist, &info->swaplist); 687 688 gfp = mapping_gfp_mask(mapping); 689 if (shmem_should_replace_page(*pagep, gfp)) { 690 mutex_unlock(&shmem_swaplist_mutex); 691 error = shmem_replace_page(pagep, gfp, info, index); 692 mutex_lock(&shmem_swaplist_mutex); 693 /* 694 * We needed to drop mutex to make that restrictive page 695 * allocation, but the inode might have been freed while we 696 * dropped it: although a racing shmem_evict_inode() cannot 697 * complete without emptying the radix_tree, our page lock 698 * on this swapcache page is not enough to prevent that - 699 * free_swap_and_cache() of our swap entry will only 700 * trylock_page(), removing swap from radix_tree whatever. 701 * 702 * We must not proceed to shmem_add_to_page_cache() if the 703 * inode has been freed, but of course we cannot rely on 704 * inode or mapping or info to check that. However, we can 705 * safely check if our swap entry is still in use (and here 706 * it can't have got reused for another page): if it's still 707 * in use, then the inode cannot have been freed yet, and we 708 * can safely proceed (if it's no longer in use, that tells 709 * nothing about the inode, but we don't need to unuse swap). 710 */ 711 if (!page_swapcount(*pagep)) 712 error = -ENOENT; 713 } 714 715 /* 716 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 717 * but also to hold up shmem_evict_inode(): so inode cannot be freed 718 * beneath us (pagelock doesn't help until the page is in pagecache). 719 */ 720 if (!error) 721 error = shmem_add_to_page_cache(*pagep, mapping, index, 722 GFP_NOWAIT, radswap); 723 if (error != -ENOMEM) { 724 /* 725 * Truncation and eviction use free_swap_and_cache(), which 726 * only does trylock page: if we raced, best clean up here. 727 */ 728 delete_from_swap_cache(*pagep); 729 set_page_dirty(*pagep); 730 if (!error) { 731 spin_lock(&info->lock); 732 info->swapped--; 733 spin_unlock(&info->lock); 734 swap_free(swap); 735 } 736 error = 1; /* not an error, but entry was found */ 737 } 738 return error; 739 } 740 741 /* 742 * Search through swapped inodes to find and replace swap by page. 743 */ 744 int shmem_unuse(swp_entry_t swap, struct page *page) 745 { 746 struct list_head *this, *next; 747 struct shmem_inode_info *info; 748 int found = 0; 749 int error = 0; 750 751 /* 752 * There's a faint possibility that swap page was replaced before 753 * caller locked it: caller will come back later with the right page. 754 */ 755 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 756 goto out; 757 758 /* 759 * Charge page using GFP_KERNEL while we can wait, before taking 760 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 761 * Charged back to the user (not to caller) when swap account is used. 762 */ 763 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 764 if (error) 765 goto out; 766 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 767 768 mutex_lock(&shmem_swaplist_mutex); 769 list_for_each_safe(this, next, &shmem_swaplist) { 770 info = list_entry(this, struct shmem_inode_info, swaplist); 771 if (info->swapped) 772 found = shmem_unuse_inode(info, swap, &page); 773 else 774 list_del_init(&info->swaplist); 775 cond_resched(); 776 if (found) 777 break; 778 } 779 mutex_unlock(&shmem_swaplist_mutex); 780 781 if (found < 0) 782 error = found; 783 out: 784 unlock_page(page); 785 page_cache_release(page); 786 return error; 787 } 788 789 /* 790 * Move the page from the page cache to the swap cache. 791 */ 792 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 793 { 794 struct shmem_inode_info *info; 795 struct address_space *mapping; 796 struct inode *inode; 797 swp_entry_t swap; 798 pgoff_t index; 799 800 BUG_ON(!PageLocked(page)); 801 mapping = page->mapping; 802 index = page->index; 803 inode = mapping->host; 804 info = SHMEM_I(inode); 805 if (info->flags & VM_LOCKED) 806 goto redirty; 807 if (!total_swap_pages) 808 goto redirty; 809 810 /* 811 * shmem_backing_dev_info's capabilities prevent regular writeback or 812 * sync from ever calling shmem_writepage; but a stacking filesystem 813 * might use ->writepage of its underlying filesystem, in which case 814 * tmpfs should write out to swap only in response to memory pressure, 815 * and not for the writeback threads or sync. 816 */ 817 if (!wbc->for_reclaim) { 818 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 819 goto redirty; 820 } 821 822 /* 823 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 824 * value into swapfile.c, the only way we can correctly account for a 825 * fallocated page arriving here is now to initialize it and write it. 826 * 827 * That's okay for a page already fallocated earlier, but if we have 828 * not yet completed the fallocation, then (a) we want to keep track 829 * of this page in case we have to undo it, and (b) it may not be a 830 * good idea to continue anyway, once we're pushing into swap. So 831 * reactivate the page, and let shmem_fallocate() quit when too many. 832 */ 833 if (!PageUptodate(page)) { 834 if (inode->i_private) { 835 struct shmem_falloc *shmem_falloc; 836 spin_lock(&inode->i_lock); 837 shmem_falloc = inode->i_private; 838 if (shmem_falloc && 839 index >= shmem_falloc->start && 840 index < shmem_falloc->next) 841 shmem_falloc->nr_unswapped++; 842 else 843 shmem_falloc = NULL; 844 spin_unlock(&inode->i_lock); 845 if (shmem_falloc) 846 goto redirty; 847 } 848 clear_highpage(page); 849 flush_dcache_page(page); 850 SetPageUptodate(page); 851 } 852 853 swap = get_swap_page(); 854 if (!swap.val) 855 goto redirty; 856 857 /* 858 * Add inode to shmem_unuse()'s list of swapped-out inodes, 859 * if it's not already there. Do it now before the page is 860 * moved to swap cache, when its pagelock no longer protects 861 * the inode from eviction. But don't unlock the mutex until 862 * we've incremented swapped, because shmem_unuse_inode() will 863 * prune a !swapped inode from the swaplist under this mutex. 864 */ 865 mutex_lock(&shmem_swaplist_mutex); 866 if (list_empty(&info->swaplist)) 867 list_add_tail(&info->swaplist, &shmem_swaplist); 868 869 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 870 swap_shmem_alloc(swap); 871 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 872 873 spin_lock(&info->lock); 874 info->swapped++; 875 shmem_recalc_inode(inode); 876 spin_unlock(&info->lock); 877 878 mutex_unlock(&shmem_swaplist_mutex); 879 BUG_ON(page_mapped(page)); 880 swap_writepage(page, wbc); 881 return 0; 882 } 883 884 mutex_unlock(&shmem_swaplist_mutex); 885 swapcache_free(swap, NULL); 886 redirty: 887 set_page_dirty(page); 888 if (wbc->for_reclaim) 889 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 890 unlock_page(page); 891 return 0; 892 } 893 894 #ifdef CONFIG_NUMA 895 #ifdef CONFIG_TMPFS 896 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 897 { 898 char buffer[64]; 899 900 if (!mpol || mpol->mode == MPOL_DEFAULT) 901 return; /* show nothing */ 902 903 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 904 905 seq_printf(seq, ",mpol=%s", buffer); 906 } 907 908 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 909 { 910 struct mempolicy *mpol = NULL; 911 if (sbinfo->mpol) { 912 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 913 mpol = sbinfo->mpol; 914 mpol_get(mpol); 915 spin_unlock(&sbinfo->stat_lock); 916 } 917 return mpol; 918 } 919 #endif /* CONFIG_TMPFS */ 920 921 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 922 struct shmem_inode_info *info, pgoff_t index) 923 { 924 struct mempolicy mpol, *spol; 925 struct vm_area_struct pvma; 926 927 spol = mpol_cond_copy(&mpol, 928 mpol_shared_policy_lookup(&info->policy, index)); 929 930 /* Create a pseudo vma that just contains the policy */ 931 pvma.vm_start = 0; 932 /* Bias interleave by inode number to distribute better across nodes */ 933 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 934 pvma.vm_ops = NULL; 935 pvma.vm_policy = spol; 936 return swapin_readahead(swap, gfp, &pvma, 0); 937 } 938 939 static struct page *shmem_alloc_page(gfp_t gfp, 940 struct shmem_inode_info *info, pgoff_t index) 941 { 942 struct vm_area_struct pvma; 943 944 /* Create a pseudo vma that just contains the policy */ 945 pvma.vm_start = 0; 946 /* Bias interleave by inode number to distribute better across nodes */ 947 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 948 pvma.vm_ops = NULL; 949 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 950 951 /* 952 * alloc_page_vma() will drop the shared policy reference 953 */ 954 return alloc_page_vma(gfp, &pvma, 0); 955 } 956 #else /* !CONFIG_NUMA */ 957 #ifdef CONFIG_TMPFS 958 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 959 { 960 } 961 #endif /* CONFIG_TMPFS */ 962 963 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 964 struct shmem_inode_info *info, pgoff_t index) 965 { 966 return swapin_readahead(swap, gfp, NULL, 0); 967 } 968 969 static inline struct page *shmem_alloc_page(gfp_t gfp, 970 struct shmem_inode_info *info, pgoff_t index) 971 { 972 return alloc_page(gfp); 973 } 974 #endif /* CONFIG_NUMA */ 975 976 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 977 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 978 { 979 return NULL; 980 } 981 #endif 982 983 /* 984 * When a page is moved from swapcache to shmem filecache (either by the 985 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 986 * shmem_unuse_inode()), it may have been read in earlier from swap, in 987 * ignorance of the mapping it belongs to. If that mapping has special 988 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 989 * we may need to copy to a suitable page before moving to filecache. 990 * 991 * In a future release, this may well be extended to respect cpuset and 992 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 993 * but for now it is a simple matter of zone. 994 */ 995 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 996 { 997 return page_zonenum(page) > gfp_zone(gfp); 998 } 999 1000 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1001 struct shmem_inode_info *info, pgoff_t index) 1002 { 1003 struct page *oldpage, *newpage; 1004 struct address_space *swap_mapping; 1005 pgoff_t swap_index; 1006 int error; 1007 1008 oldpage = *pagep; 1009 swap_index = page_private(oldpage); 1010 swap_mapping = page_mapping(oldpage); 1011 1012 /* 1013 * We have arrived here because our zones are constrained, so don't 1014 * limit chance of success by further cpuset and node constraints. 1015 */ 1016 gfp &= ~GFP_CONSTRAINT_MASK; 1017 newpage = shmem_alloc_page(gfp, info, index); 1018 if (!newpage) 1019 return -ENOMEM; 1020 1021 page_cache_get(newpage); 1022 copy_highpage(newpage, oldpage); 1023 flush_dcache_page(newpage); 1024 1025 __set_page_locked(newpage); 1026 SetPageUptodate(newpage); 1027 SetPageSwapBacked(newpage); 1028 set_page_private(newpage, swap_index); 1029 SetPageSwapCache(newpage); 1030 1031 /* 1032 * Our caller will very soon move newpage out of swapcache, but it's 1033 * a nice clean interface for us to replace oldpage by newpage there. 1034 */ 1035 spin_lock_irq(&swap_mapping->tree_lock); 1036 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1037 newpage); 1038 if (!error) { 1039 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1040 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1041 } 1042 spin_unlock_irq(&swap_mapping->tree_lock); 1043 1044 if (unlikely(error)) { 1045 /* 1046 * Is this possible? I think not, now that our callers check 1047 * both PageSwapCache and page_private after getting page lock; 1048 * but be defensive. Reverse old to newpage for clear and free. 1049 */ 1050 oldpage = newpage; 1051 } else { 1052 mem_cgroup_replace_page_cache(oldpage, newpage); 1053 lru_cache_add_anon(newpage); 1054 *pagep = newpage; 1055 } 1056 1057 ClearPageSwapCache(oldpage); 1058 set_page_private(oldpage, 0); 1059 1060 unlock_page(oldpage); 1061 page_cache_release(oldpage); 1062 page_cache_release(oldpage); 1063 return error; 1064 } 1065 1066 /* 1067 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1068 * 1069 * If we allocate a new one we do not mark it dirty. That's up to the 1070 * vm. If we swap it in we mark it dirty since we also free the swap 1071 * entry since a page cannot live in both the swap and page cache 1072 */ 1073 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1074 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1075 { 1076 struct address_space *mapping = inode->i_mapping; 1077 struct shmem_inode_info *info; 1078 struct shmem_sb_info *sbinfo; 1079 struct page *page; 1080 swp_entry_t swap; 1081 int error; 1082 int once = 0; 1083 int alloced = 0; 1084 1085 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1086 return -EFBIG; 1087 repeat: 1088 swap.val = 0; 1089 page = find_lock_page(mapping, index); 1090 if (radix_tree_exceptional_entry(page)) { 1091 swap = radix_to_swp_entry(page); 1092 page = NULL; 1093 } 1094 1095 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1096 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1097 error = -EINVAL; 1098 goto failed; 1099 } 1100 1101 /* fallocated page? */ 1102 if (page && !PageUptodate(page)) { 1103 if (sgp != SGP_READ) 1104 goto clear; 1105 unlock_page(page); 1106 page_cache_release(page); 1107 page = NULL; 1108 } 1109 if (page || (sgp == SGP_READ && !swap.val)) { 1110 *pagep = page; 1111 return 0; 1112 } 1113 1114 /* 1115 * Fast cache lookup did not find it: 1116 * bring it back from swap or allocate. 1117 */ 1118 info = SHMEM_I(inode); 1119 sbinfo = SHMEM_SB(inode->i_sb); 1120 1121 if (swap.val) { 1122 /* Look it up and read it in.. */ 1123 page = lookup_swap_cache(swap); 1124 if (!page) { 1125 /* here we actually do the io */ 1126 if (fault_type) 1127 *fault_type |= VM_FAULT_MAJOR; 1128 page = shmem_swapin(swap, gfp, info, index); 1129 if (!page) { 1130 error = -ENOMEM; 1131 goto failed; 1132 } 1133 } 1134 1135 /* We have to do this with page locked to prevent races */ 1136 lock_page(page); 1137 if (!PageSwapCache(page) || page_private(page) != swap.val || 1138 !shmem_confirm_swap(mapping, index, swap)) { 1139 error = -EEXIST; /* try again */ 1140 goto unlock; 1141 } 1142 if (!PageUptodate(page)) { 1143 error = -EIO; 1144 goto failed; 1145 } 1146 wait_on_page_writeback(page); 1147 1148 if (shmem_should_replace_page(page, gfp)) { 1149 error = shmem_replace_page(&page, gfp, info, index); 1150 if (error) 1151 goto failed; 1152 } 1153 1154 error = mem_cgroup_cache_charge(page, current->mm, 1155 gfp & GFP_RECLAIM_MASK); 1156 if (!error) { 1157 error = shmem_add_to_page_cache(page, mapping, index, 1158 gfp, swp_to_radix_entry(swap)); 1159 /* We already confirmed swap, and make no allocation */ 1160 VM_BUG_ON(error); 1161 } 1162 if (error) 1163 goto failed; 1164 1165 spin_lock(&info->lock); 1166 info->swapped--; 1167 shmem_recalc_inode(inode); 1168 spin_unlock(&info->lock); 1169 1170 delete_from_swap_cache(page); 1171 set_page_dirty(page); 1172 swap_free(swap); 1173 1174 } else { 1175 if (shmem_acct_block(info->flags)) { 1176 error = -ENOSPC; 1177 goto failed; 1178 } 1179 if (sbinfo->max_blocks) { 1180 if (percpu_counter_compare(&sbinfo->used_blocks, 1181 sbinfo->max_blocks) >= 0) { 1182 error = -ENOSPC; 1183 goto unacct; 1184 } 1185 percpu_counter_inc(&sbinfo->used_blocks); 1186 } 1187 1188 page = shmem_alloc_page(gfp, info, index); 1189 if (!page) { 1190 error = -ENOMEM; 1191 goto decused; 1192 } 1193 1194 SetPageSwapBacked(page); 1195 __set_page_locked(page); 1196 error = mem_cgroup_cache_charge(page, current->mm, 1197 gfp & GFP_RECLAIM_MASK); 1198 if (error) 1199 goto decused; 1200 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK); 1201 if (!error) { 1202 error = shmem_add_to_page_cache(page, mapping, index, 1203 gfp, NULL); 1204 radix_tree_preload_end(); 1205 } 1206 if (error) { 1207 mem_cgroup_uncharge_cache_page(page); 1208 goto decused; 1209 } 1210 lru_cache_add_anon(page); 1211 1212 spin_lock(&info->lock); 1213 info->alloced++; 1214 inode->i_blocks += BLOCKS_PER_PAGE; 1215 shmem_recalc_inode(inode); 1216 spin_unlock(&info->lock); 1217 alloced = true; 1218 1219 /* 1220 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1221 */ 1222 if (sgp == SGP_FALLOC) 1223 sgp = SGP_WRITE; 1224 clear: 1225 /* 1226 * Let SGP_WRITE caller clear ends if write does not fill page; 1227 * but SGP_FALLOC on a page fallocated earlier must initialize 1228 * it now, lest undo on failure cancel our earlier guarantee. 1229 */ 1230 if (sgp != SGP_WRITE) { 1231 clear_highpage(page); 1232 flush_dcache_page(page); 1233 SetPageUptodate(page); 1234 } 1235 if (sgp == SGP_DIRTY) 1236 set_page_dirty(page); 1237 } 1238 1239 /* Perhaps the file has been truncated since we checked */ 1240 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1241 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1242 error = -EINVAL; 1243 if (alloced) 1244 goto trunc; 1245 else 1246 goto failed; 1247 } 1248 *pagep = page; 1249 return 0; 1250 1251 /* 1252 * Error recovery. 1253 */ 1254 trunc: 1255 info = SHMEM_I(inode); 1256 ClearPageDirty(page); 1257 delete_from_page_cache(page); 1258 spin_lock(&info->lock); 1259 info->alloced--; 1260 inode->i_blocks -= BLOCKS_PER_PAGE; 1261 spin_unlock(&info->lock); 1262 decused: 1263 sbinfo = SHMEM_SB(inode->i_sb); 1264 if (sbinfo->max_blocks) 1265 percpu_counter_add(&sbinfo->used_blocks, -1); 1266 unacct: 1267 shmem_unacct_blocks(info->flags, 1); 1268 failed: 1269 if (swap.val && error != -EINVAL && 1270 !shmem_confirm_swap(mapping, index, swap)) 1271 error = -EEXIST; 1272 unlock: 1273 if (page) { 1274 unlock_page(page); 1275 page_cache_release(page); 1276 } 1277 if (error == -ENOSPC && !once++) { 1278 info = SHMEM_I(inode); 1279 spin_lock(&info->lock); 1280 shmem_recalc_inode(inode); 1281 spin_unlock(&info->lock); 1282 goto repeat; 1283 } 1284 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1285 goto repeat; 1286 return error; 1287 } 1288 1289 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1290 { 1291 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1292 int error; 1293 int ret = VM_FAULT_LOCKED; 1294 1295 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1296 if (error) 1297 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1298 1299 if (ret & VM_FAULT_MAJOR) { 1300 count_vm_event(PGMAJFAULT); 1301 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1302 } 1303 return ret; 1304 } 1305 1306 #ifdef CONFIG_NUMA 1307 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1308 { 1309 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1310 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1311 } 1312 1313 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1314 unsigned long addr) 1315 { 1316 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1317 pgoff_t index; 1318 1319 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1320 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1321 } 1322 #endif 1323 1324 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1325 { 1326 struct inode *inode = file->f_path.dentry->d_inode; 1327 struct shmem_inode_info *info = SHMEM_I(inode); 1328 int retval = -ENOMEM; 1329 1330 spin_lock(&info->lock); 1331 if (lock && !(info->flags & VM_LOCKED)) { 1332 if (!user_shm_lock(inode->i_size, user)) 1333 goto out_nomem; 1334 info->flags |= VM_LOCKED; 1335 mapping_set_unevictable(file->f_mapping); 1336 } 1337 if (!lock && (info->flags & VM_LOCKED) && user) { 1338 user_shm_unlock(inode->i_size, user); 1339 info->flags &= ~VM_LOCKED; 1340 mapping_clear_unevictable(file->f_mapping); 1341 } 1342 retval = 0; 1343 1344 out_nomem: 1345 spin_unlock(&info->lock); 1346 return retval; 1347 } 1348 1349 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1350 { 1351 file_accessed(file); 1352 vma->vm_ops = &shmem_vm_ops; 1353 vma->vm_flags |= VM_CAN_NONLINEAR; 1354 return 0; 1355 } 1356 1357 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1358 umode_t mode, dev_t dev, unsigned long flags) 1359 { 1360 struct inode *inode; 1361 struct shmem_inode_info *info; 1362 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1363 1364 if (shmem_reserve_inode(sb)) 1365 return NULL; 1366 1367 inode = new_inode(sb); 1368 if (inode) { 1369 inode->i_ino = get_next_ino(); 1370 inode_init_owner(inode, dir, mode); 1371 inode->i_blocks = 0; 1372 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1373 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1374 inode->i_generation = get_seconds(); 1375 info = SHMEM_I(inode); 1376 memset(info, 0, (char *)inode - (char *)info); 1377 spin_lock_init(&info->lock); 1378 info->flags = flags & VM_NORESERVE; 1379 INIT_LIST_HEAD(&info->swaplist); 1380 INIT_LIST_HEAD(&info->xattr_list); 1381 cache_no_acl(inode); 1382 1383 switch (mode & S_IFMT) { 1384 default: 1385 inode->i_op = &shmem_special_inode_operations; 1386 init_special_inode(inode, mode, dev); 1387 break; 1388 case S_IFREG: 1389 inode->i_mapping->a_ops = &shmem_aops; 1390 inode->i_op = &shmem_inode_operations; 1391 inode->i_fop = &shmem_file_operations; 1392 mpol_shared_policy_init(&info->policy, 1393 shmem_get_sbmpol(sbinfo)); 1394 break; 1395 case S_IFDIR: 1396 inc_nlink(inode); 1397 /* Some things misbehave if size == 0 on a directory */ 1398 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1399 inode->i_op = &shmem_dir_inode_operations; 1400 inode->i_fop = &simple_dir_operations; 1401 break; 1402 case S_IFLNK: 1403 /* 1404 * Must not load anything in the rbtree, 1405 * mpol_free_shared_policy will not be called. 1406 */ 1407 mpol_shared_policy_init(&info->policy, NULL); 1408 break; 1409 } 1410 } else 1411 shmem_free_inode(sb); 1412 return inode; 1413 } 1414 1415 #ifdef CONFIG_TMPFS 1416 static const struct inode_operations shmem_symlink_inode_operations; 1417 static const struct inode_operations shmem_short_symlink_operations; 1418 1419 #ifdef CONFIG_TMPFS_XATTR 1420 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1421 #else 1422 #define shmem_initxattrs NULL 1423 #endif 1424 1425 static int 1426 shmem_write_begin(struct file *file, struct address_space *mapping, 1427 loff_t pos, unsigned len, unsigned flags, 1428 struct page **pagep, void **fsdata) 1429 { 1430 struct inode *inode = mapping->host; 1431 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1432 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1433 } 1434 1435 static int 1436 shmem_write_end(struct file *file, struct address_space *mapping, 1437 loff_t pos, unsigned len, unsigned copied, 1438 struct page *page, void *fsdata) 1439 { 1440 struct inode *inode = mapping->host; 1441 1442 if (pos + copied > inode->i_size) 1443 i_size_write(inode, pos + copied); 1444 1445 if (!PageUptodate(page)) { 1446 if (copied < PAGE_CACHE_SIZE) { 1447 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1448 zero_user_segments(page, 0, from, 1449 from + copied, PAGE_CACHE_SIZE); 1450 } 1451 SetPageUptodate(page); 1452 } 1453 set_page_dirty(page); 1454 unlock_page(page); 1455 page_cache_release(page); 1456 1457 return copied; 1458 } 1459 1460 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1461 { 1462 struct inode *inode = filp->f_path.dentry->d_inode; 1463 struct address_space *mapping = inode->i_mapping; 1464 pgoff_t index; 1465 unsigned long offset; 1466 enum sgp_type sgp = SGP_READ; 1467 1468 /* 1469 * Might this read be for a stacking filesystem? Then when reading 1470 * holes of a sparse file, we actually need to allocate those pages, 1471 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1472 */ 1473 if (segment_eq(get_fs(), KERNEL_DS)) 1474 sgp = SGP_DIRTY; 1475 1476 index = *ppos >> PAGE_CACHE_SHIFT; 1477 offset = *ppos & ~PAGE_CACHE_MASK; 1478 1479 for (;;) { 1480 struct page *page = NULL; 1481 pgoff_t end_index; 1482 unsigned long nr, ret; 1483 loff_t i_size = i_size_read(inode); 1484 1485 end_index = i_size >> PAGE_CACHE_SHIFT; 1486 if (index > end_index) 1487 break; 1488 if (index == end_index) { 1489 nr = i_size & ~PAGE_CACHE_MASK; 1490 if (nr <= offset) 1491 break; 1492 } 1493 1494 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1495 if (desc->error) { 1496 if (desc->error == -EINVAL) 1497 desc->error = 0; 1498 break; 1499 } 1500 if (page) 1501 unlock_page(page); 1502 1503 /* 1504 * We must evaluate after, since reads (unlike writes) 1505 * are called without i_mutex protection against truncate 1506 */ 1507 nr = PAGE_CACHE_SIZE; 1508 i_size = i_size_read(inode); 1509 end_index = i_size >> PAGE_CACHE_SHIFT; 1510 if (index == end_index) { 1511 nr = i_size & ~PAGE_CACHE_MASK; 1512 if (nr <= offset) { 1513 if (page) 1514 page_cache_release(page); 1515 break; 1516 } 1517 } 1518 nr -= offset; 1519 1520 if (page) { 1521 /* 1522 * If users can be writing to this page using arbitrary 1523 * virtual addresses, take care about potential aliasing 1524 * before reading the page on the kernel side. 1525 */ 1526 if (mapping_writably_mapped(mapping)) 1527 flush_dcache_page(page); 1528 /* 1529 * Mark the page accessed if we read the beginning. 1530 */ 1531 if (!offset) 1532 mark_page_accessed(page); 1533 } else { 1534 page = ZERO_PAGE(0); 1535 page_cache_get(page); 1536 } 1537 1538 /* 1539 * Ok, we have the page, and it's up-to-date, so 1540 * now we can copy it to user space... 1541 * 1542 * The actor routine returns how many bytes were actually used.. 1543 * NOTE! This may not be the same as how much of a user buffer 1544 * we filled up (we may be padding etc), so we can only update 1545 * "pos" here (the actor routine has to update the user buffer 1546 * pointers and the remaining count). 1547 */ 1548 ret = actor(desc, page, offset, nr); 1549 offset += ret; 1550 index += offset >> PAGE_CACHE_SHIFT; 1551 offset &= ~PAGE_CACHE_MASK; 1552 1553 page_cache_release(page); 1554 if (ret != nr || !desc->count) 1555 break; 1556 1557 cond_resched(); 1558 } 1559 1560 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1561 file_accessed(filp); 1562 } 1563 1564 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1565 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1566 { 1567 struct file *filp = iocb->ki_filp; 1568 ssize_t retval; 1569 unsigned long seg; 1570 size_t count; 1571 loff_t *ppos = &iocb->ki_pos; 1572 1573 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1574 if (retval) 1575 return retval; 1576 1577 for (seg = 0; seg < nr_segs; seg++) { 1578 read_descriptor_t desc; 1579 1580 desc.written = 0; 1581 desc.arg.buf = iov[seg].iov_base; 1582 desc.count = iov[seg].iov_len; 1583 if (desc.count == 0) 1584 continue; 1585 desc.error = 0; 1586 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1587 retval += desc.written; 1588 if (desc.error) { 1589 retval = retval ?: desc.error; 1590 break; 1591 } 1592 if (desc.count > 0) 1593 break; 1594 } 1595 return retval; 1596 } 1597 1598 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1599 struct pipe_inode_info *pipe, size_t len, 1600 unsigned int flags) 1601 { 1602 struct address_space *mapping = in->f_mapping; 1603 struct inode *inode = mapping->host; 1604 unsigned int loff, nr_pages, req_pages; 1605 struct page *pages[PIPE_DEF_BUFFERS]; 1606 struct partial_page partial[PIPE_DEF_BUFFERS]; 1607 struct page *page; 1608 pgoff_t index, end_index; 1609 loff_t isize, left; 1610 int error, page_nr; 1611 struct splice_pipe_desc spd = { 1612 .pages = pages, 1613 .partial = partial, 1614 .nr_pages_max = PIPE_DEF_BUFFERS, 1615 .flags = flags, 1616 .ops = &page_cache_pipe_buf_ops, 1617 .spd_release = spd_release_page, 1618 }; 1619 1620 isize = i_size_read(inode); 1621 if (unlikely(*ppos >= isize)) 1622 return 0; 1623 1624 left = isize - *ppos; 1625 if (unlikely(left < len)) 1626 len = left; 1627 1628 if (splice_grow_spd(pipe, &spd)) 1629 return -ENOMEM; 1630 1631 index = *ppos >> PAGE_CACHE_SHIFT; 1632 loff = *ppos & ~PAGE_CACHE_MASK; 1633 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1634 nr_pages = min(req_pages, pipe->buffers); 1635 1636 spd.nr_pages = find_get_pages_contig(mapping, index, 1637 nr_pages, spd.pages); 1638 index += spd.nr_pages; 1639 error = 0; 1640 1641 while (spd.nr_pages < nr_pages) { 1642 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1643 if (error) 1644 break; 1645 unlock_page(page); 1646 spd.pages[spd.nr_pages++] = page; 1647 index++; 1648 } 1649 1650 index = *ppos >> PAGE_CACHE_SHIFT; 1651 nr_pages = spd.nr_pages; 1652 spd.nr_pages = 0; 1653 1654 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1655 unsigned int this_len; 1656 1657 if (!len) 1658 break; 1659 1660 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1661 page = spd.pages[page_nr]; 1662 1663 if (!PageUptodate(page) || page->mapping != mapping) { 1664 error = shmem_getpage(inode, index, &page, 1665 SGP_CACHE, NULL); 1666 if (error) 1667 break; 1668 unlock_page(page); 1669 page_cache_release(spd.pages[page_nr]); 1670 spd.pages[page_nr] = page; 1671 } 1672 1673 isize = i_size_read(inode); 1674 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1675 if (unlikely(!isize || index > end_index)) 1676 break; 1677 1678 if (end_index == index) { 1679 unsigned int plen; 1680 1681 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1682 if (plen <= loff) 1683 break; 1684 1685 this_len = min(this_len, plen - loff); 1686 len = this_len; 1687 } 1688 1689 spd.partial[page_nr].offset = loff; 1690 spd.partial[page_nr].len = this_len; 1691 len -= this_len; 1692 loff = 0; 1693 spd.nr_pages++; 1694 index++; 1695 } 1696 1697 while (page_nr < nr_pages) 1698 page_cache_release(spd.pages[page_nr++]); 1699 1700 if (spd.nr_pages) 1701 error = splice_to_pipe(pipe, &spd); 1702 1703 splice_shrink_spd(&spd); 1704 1705 if (error > 0) { 1706 *ppos += error; 1707 file_accessed(in); 1708 } 1709 return error; 1710 } 1711 1712 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 1713 loff_t len) 1714 { 1715 struct inode *inode = file->f_path.dentry->d_inode; 1716 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1717 struct shmem_falloc shmem_falloc; 1718 pgoff_t start, index, end; 1719 int error; 1720 1721 mutex_lock(&inode->i_mutex); 1722 1723 if (mode & FALLOC_FL_PUNCH_HOLE) { 1724 struct address_space *mapping = file->f_mapping; 1725 loff_t unmap_start = round_up(offset, PAGE_SIZE); 1726 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 1727 1728 if ((u64)unmap_end > (u64)unmap_start) 1729 unmap_mapping_range(mapping, unmap_start, 1730 1 + unmap_end - unmap_start, 0); 1731 shmem_truncate_range(inode, offset, offset + len - 1); 1732 /* No need to unmap again: hole-punching leaves COWed pages */ 1733 error = 0; 1734 goto out; 1735 } 1736 1737 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 1738 error = inode_newsize_ok(inode, offset + len); 1739 if (error) 1740 goto out; 1741 1742 start = offset >> PAGE_CACHE_SHIFT; 1743 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1744 /* Try to avoid a swapstorm if len is impossible to satisfy */ 1745 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 1746 error = -ENOSPC; 1747 goto out; 1748 } 1749 1750 shmem_falloc.start = start; 1751 shmem_falloc.next = start; 1752 shmem_falloc.nr_falloced = 0; 1753 shmem_falloc.nr_unswapped = 0; 1754 spin_lock(&inode->i_lock); 1755 inode->i_private = &shmem_falloc; 1756 spin_unlock(&inode->i_lock); 1757 1758 for (index = start; index < end; index++) { 1759 struct page *page; 1760 1761 /* 1762 * Good, the fallocate(2) manpage permits EINTR: we may have 1763 * been interrupted because we are using up too much memory. 1764 */ 1765 if (signal_pending(current)) 1766 error = -EINTR; 1767 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 1768 error = -ENOMEM; 1769 else 1770 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 1771 NULL); 1772 if (error) { 1773 /* Remove the !PageUptodate pages we added */ 1774 shmem_undo_range(inode, 1775 (loff_t)start << PAGE_CACHE_SHIFT, 1776 (loff_t)index << PAGE_CACHE_SHIFT, true); 1777 goto undone; 1778 } 1779 1780 /* 1781 * Inform shmem_writepage() how far we have reached. 1782 * No need for lock or barrier: we have the page lock. 1783 */ 1784 shmem_falloc.next++; 1785 if (!PageUptodate(page)) 1786 shmem_falloc.nr_falloced++; 1787 1788 /* 1789 * If !PageUptodate, leave it that way so that freeable pages 1790 * can be recognized if we need to rollback on error later. 1791 * But set_page_dirty so that memory pressure will swap rather 1792 * than free the pages we are allocating (and SGP_CACHE pages 1793 * might still be clean: we now need to mark those dirty too). 1794 */ 1795 set_page_dirty(page); 1796 unlock_page(page); 1797 page_cache_release(page); 1798 cond_resched(); 1799 } 1800 1801 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 1802 i_size_write(inode, offset + len); 1803 inode->i_ctime = CURRENT_TIME; 1804 undone: 1805 spin_lock(&inode->i_lock); 1806 inode->i_private = NULL; 1807 spin_unlock(&inode->i_lock); 1808 out: 1809 mutex_unlock(&inode->i_mutex); 1810 return error; 1811 } 1812 1813 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1814 { 1815 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1816 1817 buf->f_type = TMPFS_MAGIC; 1818 buf->f_bsize = PAGE_CACHE_SIZE; 1819 buf->f_namelen = NAME_MAX; 1820 if (sbinfo->max_blocks) { 1821 buf->f_blocks = sbinfo->max_blocks; 1822 buf->f_bavail = 1823 buf->f_bfree = sbinfo->max_blocks - 1824 percpu_counter_sum(&sbinfo->used_blocks); 1825 } 1826 if (sbinfo->max_inodes) { 1827 buf->f_files = sbinfo->max_inodes; 1828 buf->f_ffree = sbinfo->free_inodes; 1829 } 1830 /* else leave those fields 0 like simple_statfs */ 1831 return 0; 1832 } 1833 1834 /* 1835 * File creation. Allocate an inode, and we're done.. 1836 */ 1837 static int 1838 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1839 { 1840 struct inode *inode; 1841 int error = -ENOSPC; 1842 1843 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1844 if (inode) { 1845 error = security_inode_init_security(inode, dir, 1846 &dentry->d_name, 1847 shmem_initxattrs, NULL); 1848 if (error) { 1849 if (error != -EOPNOTSUPP) { 1850 iput(inode); 1851 return error; 1852 } 1853 } 1854 #ifdef CONFIG_TMPFS_POSIX_ACL 1855 error = generic_acl_init(inode, dir); 1856 if (error) { 1857 iput(inode); 1858 return error; 1859 } 1860 #else 1861 error = 0; 1862 #endif 1863 dir->i_size += BOGO_DIRENT_SIZE; 1864 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1865 d_instantiate(dentry, inode); 1866 dget(dentry); /* Extra count - pin the dentry in core */ 1867 } 1868 return error; 1869 } 1870 1871 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1872 { 1873 int error; 1874 1875 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1876 return error; 1877 inc_nlink(dir); 1878 return 0; 1879 } 1880 1881 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1882 bool excl) 1883 { 1884 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1885 } 1886 1887 /* 1888 * Link a file.. 1889 */ 1890 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1891 { 1892 struct inode *inode = old_dentry->d_inode; 1893 int ret; 1894 1895 /* 1896 * No ordinary (disk based) filesystem counts links as inodes; 1897 * but each new link needs a new dentry, pinning lowmem, and 1898 * tmpfs dentries cannot be pruned until they are unlinked. 1899 */ 1900 ret = shmem_reserve_inode(inode->i_sb); 1901 if (ret) 1902 goto out; 1903 1904 dir->i_size += BOGO_DIRENT_SIZE; 1905 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1906 inc_nlink(inode); 1907 ihold(inode); /* New dentry reference */ 1908 dget(dentry); /* Extra pinning count for the created dentry */ 1909 d_instantiate(dentry, inode); 1910 out: 1911 return ret; 1912 } 1913 1914 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1915 { 1916 struct inode *inode = dentry->d_inode; 1917 1918 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1919 shmem_free_inode(inode->i_sb); 1920 1921 dir->i_size -= BOGO_DIRENT_SIZE; 1922 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1923 drop_nlink(inode); 1924 dput(dentry); /* Undo the count from "create" - this does all the work */ 1925 return 0; 1926 } 1927 1928 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1929 { 1930 if (!simple_empty(dentry)) 1931 return -ENOTEMPTY; 1932 1933 drop_nlink(dentry->d_inode); 1934 drop_nlink(dir); 1935 return shmem_unlink(dir, dentry); 1936 } 1937 1938 /* 1939 * The VFS layer already does all the dentry stuff for rename, 1940 * we just have to decrement the usage count for the target if 1941 * it exists so that the VFS layer correctly free's it when it 1942 * gets overwritten. 1943 */ 1944 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1945 { 1946 struct inode *inode = old_dentry->d_inode; 1947 int they_are_dirs = S_ISDIR(inode->i_mode); 1948 1949 if (!simple_empty(new_dentry)) 1950 return -ENOTEMPTY; 1951 1952 if (new_dentry->d_inode) { 1953 (void) shmem_unlink(new_dir, new_dentry); 1954 if (they_are_dirs) 1955 drop_nlink(old_dir); 1956 } else if (they_are_dirs) { 1957 drop_nlink(old_dir); 1958 inc_nlink(new_dir); 1959 } 1960 1961 old_dir->i_size -= BOGO_DIRENT_SIZE; 1962 new_dir->i_size += BOGO_DIRENT_SIZE; 1963 old_dir->i_ctime = old_dir->i_mtime = 1964 new_dir->i_ctime = new_dir->i_mtime = 1965 inode->i_ctime = CURRENT_TIME; 1966 return 0; 1967 } 1968 1969 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1970 { 1971 int error; 1972 int len; 1973 struct inode *inode; 1974 struct page *page; 1975 char *kaddr; 1976 struct shmem_inode_info *info; 1977 1978 len = strlen(symname) + 1; 1979 if (len > PAGE_CACHE_SIZE) 1980 return -ENAMETOOLONG; 1981 1982 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 1983 if (!inode) 1984 return -ENOSPC; 1985 1986 error = security_inode_init_security(inode, dir, &dentry->d_name, 1987 shmem_initxattrs, NULL); 1988 if (error) { 1989 if (error != -EOPNOTSUPP) { 1990 iput(inode); 1991 return error; 1992 } 1993 error = 0; 1994 } 1995 1996 info = SHMEM_I(inode); 1997 inode->i_size = len-1; 1998 if (len <= SHORT_SYMLINK_LEN) { 1999 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2000 if (!info->symlink) { 2001 iput(inode); 2002 return -ENOMEM; 2003 } 2004 inode->i_op = &shmem_short_symlink_operations; 2005 } else { 2006 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2007 if (error) { 2008 iput(inode); 2009 return error; 2010 } 2011 inode->i_mapping->a_ops = &shmem_aops; 2012 inode->i_op = &shmem_symlink_inode_operations; 2013 kaddr = kmap_atomic(page); 2014 memcpy(kaddr, symname, len); 2015 kunmap_atomic(kaddr); 2016 SetPageUptodate(page); 2017 set_page_dirty(page); 2018 unlock_page(page); 2019 page_cache_release(page); 2020 } 2021 dir->i_size += BOGO_DIRENT_SIZE; 2022 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2023 d_instantiate(dentry, inode); 2024 dget(dentry); 2025 return 0; 2026 } 2027 2028 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 2029 { 2030 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 2031 return NULL; 2032 } 2033 2034 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2035 { 2036 struct page *page = NULL; 2037 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2038 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 2039 if (page) 2040 unlock_page(page); 2041 return page; 2042 } 2043 2044 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2045 { 2046 if (!IS_ERR(nd_get_link(nd))) { 2047 struct page *page = cookie; 2048 kunmap(page); 2049 mark_page_accessed(page); 2050 page_cache_release(page); 2051 } 2052 } 2053 2054 #ifdef CONFIG_TMPFS_XATTR 2055 /* 2056 * Superblocks without xattr inode operations may get some security.* xattr 2057 * support from the LSM "for free". As soon as we have any other xattrs 2058 * like ACLs, we also need to implement the security.* handlers at 2059 * filesystem level, though. 2060 */ 2061 2062 /* 2063 * Allocate new xattr and copy in the value; but leave the name to callers. 2064 */ 2065 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size) 2066 { 2067 struct shmem_xattr *new_xattr; 2068 size_t len; 2069 2070 /* wrap around? */ 2071 len = sizeof(*new_xattr) + size; 2072 if (len <= sizeof(*new_xattr)) 2073 return NULL; 2074 2075 new_xattr = kmalloc(len, GFP_KERNEL); 2076 if (!new_xattr) 2077 return NULL; 2078 2079 new_xattr->size = size; 2080 memcpy(new_xattr->value, value, size); 2081 return new_xattr; 2082 } 2083 2084 /* 2085 * Callback for security_inode_init_security() for acquiring xattrs. 2086 */ 2087 static int shmem_initxattrs(struct inode *inode, 2088 const struct xattr *xattr_array, 2089 void *fs_info) 2090 { 2091 struct shmem_inode_info *info = SHMEM_I(inode); 2092 const struct xattr *xattr; 2093 struct shmem_xattr *new_xattr; 2094 size_t len; 2095 2096 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2097 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len); 2098 if (!new_xattr) 2099 return -ENOMEM; 2100 2101 len = strlen(xattr->name) + 1; 2102 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2103 GFP_KERNEL); 2104 if (!new_xattr->name) { 2105 kfree(new_xattr); 2106 return -ENOMEM; 2107 } 2108 2109 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2110 XATTR_SECURITY_PREFIX_LEN); 2111 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2112 xattr->name, len); 2113 2114 spin_lock(&info->lock); 2115 list_add(&new_xattr->list, &info->xattr_list); 2116 spin_unlock(&info->lock); 2117 } 2118 2119 return 0; 2120 } 2121 2122 static int shmem_xattr_get(struct dentry *dentry, const char *name, 2123 void *buffer, size_t size) 2124 { 2125 struct shmem_inode_info *info; 2126 struct shmem_xattr *xattr; 2127 int ret = -ENODATA; 2128 2129 info = SHMEM_I(dentry->d_inode); 2130 2131 spin_lock(&info->lock); 2132 list_for_each_entry(xattr, &info->xattr_list, list) { 2133 if (strcmp(name, xattr->name)) 2134 continue; 2135 2136 ret = xattr->size; 2137 if (buffer) { 2138 if (size < xattr->size) 2139 ret = -ERANGE; 2140 else 2141 memcpy(buffer, xattr->value, xattr->size); 2142 } 2143 break; 2144 } 2145 spin_unlock(&info->lock); 2146 return ret; 2147 } 2148 2149 static int shmem_xattr_set(struct inode *inode, const char *name, 2150 const void *value, size_t size, int flags) 2151 { 2152 struct shmem_inode_info *info = SHMEM_I(inode); 2153 struct shmem_xattr *xattr; 2154 struct shmem_xattr *new_xattr = NULL; 2155 int err = 0; 2156 2157 /* value == NULL means remove */ 2158 if (value) { 2159 new_xattr = shmem_xattr_alloc(value, size); 2160 if (!new_xattr) 2161 return -ENOMEM; 2162 2163 new_xattr->name = kstrdup(name, GFP_KERNEL); 2164 if (!new_xattr->name) { 2165 kfree(new_xattr); 2166 return -ENOMEM; 2167 } 2168 } 2169 2170 spin_lock(&info->lock); 2171 list_for_each_entry(xattr, &info->xattr_list, list) { 2172 if (!strcmp(name, xattr->name)) { 2173 if (flags & XATTR_CREATE) { 2174 xattr = new_xattr; 2175 err = -EEXIST; 2176 } else if (new_xattr) { 2177 list_replace(&xattr->list, &new_xattr->list); 2178 } else { 2179 list_del(&xattr->list); 2180 } 2181 goto out; 2182 } 2183 } 2184 if (flags & XATTR_REPLACE) { 2185 xattr = new_xattr; 2186 err = -ENODATA; 2187 } else { 2188 list_add(&new_xattr->list, &info->xattr_list); 2189 xattr = NULL; 2190 } 2191 out: 2192 spin_unlock(&info->lock); 2193 if (xattr) 2194 kfree(xattr->name); 2195 kfree(xattr); 2196 return err; 2197 } 2198 2199 static const struct xattr_handler *shmem_xattr_handlers[] = { 2200 #ifdef CONFIG_TMPFS_POSIX_ACL 2201 &generic_acl_access_handler, 2202 &generic_acl_default_handler, 2203 #endif 2204 NULL 2205 }; 2206 2207 static int shmem_xattr_validate(const char *name) 2208 { 2209 struct { const char *prefix; size_t len; } arr[] = { 2210 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2211 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2212 }; 2213 int i; 2214 2215 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2216 size_t preflen = arr[i].len; 2217 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2218 if (!name[preflen]) 2219 return -EINVAL; 2220 return 0; 2221 } 2222 } 2223 return -EOPNOTSUPP; 2224 } 2225 2226 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2227 void *buffer, size_t size) 2228 { 2229 int err; 2230 2231 /* 2232 * If this is a request for a synthetic attribute in the system.* 2233 * namespace use the generic infrastructure to resolve a handler 2234 * for it via sb->s_xattr. 2235 */ 2236 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2237 return generic_getxattr(dentry, name, buffer, size); 2238 2239 err = shmem_xattr_validate(name); 2240 if (err) 2241 return err; 2242 2243 return shmem_xattr_get(dentry, name, buffer, size); 2244 } 2245 2246 static int shmem_setxattr(struct dentry *dentry, const char *name, 2247 const void *value, size_t size, int flags) 2248 { 2249 int err; 2250 2251 /* 2252 * If this is a request for a synthetic attribute in the system.* 2253 * namespace use the generic infrastructure to resolve a handler 2254 * for it via sb->s_xattr. 2255 */ 2256 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2257 return generic_setxattr(dentry, name, value, size, flags); 2258 2259 err = shmem_xattr_validate(name); 2260 if (err) 2261 return err; 2262 2263 if (size == 0) 2264 value = ""; /* empty EA, do not remove */ 2265 2266 return shmem_xattr_set(dentry->d_inode, name, value, size, flags); 2267 2268 } 2269 2270 static int shmem_removexattr(struct dentry *dentry, const char *name) 2271 { 2272 int err; 2273 2274 /* 2275 * If this is a request for a synthetic attribute in the system.* 2276 * namespace use the generic infrastructure to resolve a handler 2277 * for it via sb->s_xattr. 2278 */ 2279 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2280 return generic_removexattr(dentry, name); 2281 2282 err = shmem_xattr_validate(name); 2283 if (err) 2284 return err; 2285 2286 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE); 2287 } 2288 2289 static bool xattr_is_trusted(const char *name) 2290 { 2291 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); 2292 } 2293 2294 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2295 { 2296 bool trusted = capable(CAP_SYS_ADMIN); 2297 struct shmem_xattr *xattr; 2298 struct shmem_inode_info *info; 2299 size_t used = 0; 2300 2301 info = SHMEM_I(dentry->d_inode); 2302 2303 spin_lock(&info->lock); 2304 list_for_each_entry(xattr, &info->xattr_list, list) { 2305 size_t len; 2306 2307 /* skip "trusted." attributes for unprivileged callers */ 2308 if (!trusted && xattr_is_trusted(xattr->name)) 2309 continue; 2310 2311 len = strlen(xattr->name) + 1; 2312 used += len; 2313 if (buffer) { 2314 if (size < used) { 2315 used = -ERANGE; 2316 break; 2317 } 2318 memcpy(buffer, xattr->name, len); 2319 buffer += len; 2320 } 2321 } 2322 spin_unlock(&info->lock); 2323 2324 return used; 2325 } 2326 #endif /* CONFIG_TMPFS_XATTR */ 2327 2328 static const struct inode_operations shmem_short_symlink_operations = { 2329 .readlink = generic_readlink, 2330 .follow_link = shmem_follow_short_symlink, 2331 #ifdef CONFIG_TMPFS_XATTR 2332 .setxattr = shmem_setxattr, 2333 .getxattr = shmem_getxattr, 2334 .listxattr = shmem_listxattr, 2335 .removexattr = shmem_removexattr, 2336 #endif 2337 }; 2338 2339 static const struct inode_operations shmem_symlink_inode_operations = { 2340 .readlink = generic_readlink, 2341 .follow_link = shmem_follow_link, 2342 .put_link = shmem_put_link, 2343 #ifdef CONFIG_TMPFS_XATTR 2344 .setxattr = shmem_setxattr, 2345 .getxattr = shmem_getxattr, 2346 .listxattr = shmem_listxattr, 2347 .removexattr = shmem_removexattr, 2348 #endif 2349 }; 2350 2351 static struct dentry *shmem_get_parent(struct dentry *child) 2352 { 2353 return ERR_PTR(-ESTALE); 2354 } 2355 2356 static int shmem_match(struct inode *ino, void *vfh) 2357 { 2358 __u32 *fh = vfh; 2359 __u64 inum = fh[2]; 2360 inum = (inum << 32) | fh[1]; 2361 return ino->i_ino == inum && fh[0] == ino->i_generation; 2362 } 2363 2364 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2365 struct fid *fid, int fh_len, int fh_type) 2366 { 2367 struct inode *inode; 2368 struct dentry *dentry = NULL; 2369 u64 inum = fid->raw[2]; 2370 inum = (inum << 32) | fid->raw[1]; 2371 2372 if (fh_len < 3) 2373 return NULL; 2374 2375 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2376 shmem_match, fid->raw); 2377 if (inode) { 2378 dentry = d_find_alias(inode); 2379 iput(inode); 2380 } 2381 2382 return dentry; 2383 } 2384 2385 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2386 struct inode *parent) 2387 { 2388 if (*len < 3) { 2389 *len = 3; 2390 return 255; 2391 } 2392 2393 if (inode_unhashed(inode)) { 2394 /* Unfortunately insert_inode_hash is not idempotent, 2395 * so as we hash inodes here rather than at creation 2396 * time, we need a lock to ensure we only try 2397 * to do it once 2398 */ 2399 static DEFINE_SPINLOCK(lock); 2400 spin_lock(&lock); 2401 if (inode_unhashed(inode)) 2402 __insert_inode_hash(inode, 2403 inode->i_ino + inode->i_generation); 2404 spin_unlock(&lock); 2405 } 2406 2407 fh[0] = inode->i_generation; 2408 fh[1] = inode->i_ino; 2409 fh[2] = ((__u64)inode->i_ino) >> 32; 2410 2411 *len = 3; 2412 return 1; 2413 } 2414 2415 static const struct export_operations shmem_export_ops = { 2416 .get_parent = shmem_get_parent, 2417 .encode_fh = shmem_encode_fh, 2418 .fh_to_dentry = shmem_fh_to_dentry, 2419 }; 2420 2421 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2422 bool remount) 2423 { 2424 char *this_char, *value, *rest; 2425 uid_t uid; 2426 gid_t gid; 2427 2428 while (options != NULL) { 2429 this_char = options; 2430 for (;;) { 2431 /* 2432 * NUL-terminate this option: unfortunately, 2433 * mount options form a comma-separated list, 2434 * but mpol's nodelist may also contain commas. 2435 */ 2436 options = strchr(options, ','); 2437 if (options == NULL) 2438 break; 2439 options++; 2440 if (!isdigit(*options)) { 2441 options[-1] = '\0'; 2442 break; 2443 } 2444 } 2445 if (!*this_char) 2446 continue; 2447 if ((value = strchr(this_char,'=')) != NULL) { 2448 *value++ = 0; 2449 } else { 2450 printk(KERN_ERR 2451 "tmpfs: No value for mount option '%s'\n", 2452 this_char); 2453 return 1; 2454 } 2455 2456 if (!strcmp(this_char,"size")) { 2457 unsigned long long size; 2458 size = memparse(value,&rest); 2459 if (*rest == '%') { 2460 size <<= PAGE_SHIFT; 2461 size *= totalram_pages; 2462 do_div(size, 100); 2463 rest++; 2464 } 2465 if (*rest) 2466 goto bad_val; 2467 sbinfo->max_blocks = 2468 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2469 } else if (!strcmp(this_char,"nr_blocks")) { 2470 sbinfo->max_blocks = memparse(value, &rest); 2471 if (*rest) 2472 goto bad_val; 2473 } else if (!strcmp(this_char,"nr_inodes")) { 2474 sbinfo->max_inodes = memparse(value, &rest); 2475 if (*rest) 2476 goto bad_val; 2477 } else if (!strcmp(this_char,"mode")) { 2478 if (remount) 2479 continue; 2480 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2481 if (*rest) 2482 goto bad_val; 2483 } else if (!strcmp(this_char,"uid")) { 2484 if (remount) 2485 continue; 2486 uid = simple_strtoul(value, &rest, 0); 2487 if (*rest) 2488 goto bad_val; 2489 sbinfo->uid = make_kuid(current_user_ns(), uid); 2490 if (!uid_valid(sbinfo->uid)) 2491 goto bad_val; 2492 } else if (!strcmp(this_char,"gid")) { 2493 if (remount) 2494 continue; 2495 gid = simple_strtoul(value, &rest, 0); 2496 if (*rest) 2497 goto bad_val; 2498 sbinfo->gid = make_kgid(current_user_ns(), gid); 2499 if (!gid_valid(sbinfo->gid)) 2500 goto bad_val; 2501 } else if (!strcmp(this_char,"mpol")) { 2502 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2503 goto bad_val; 2504 } else { 2505 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2506 this_char); 2507 return 1; 2508 } 2509 } 2510 return 0; 2511 2512 bad_val: 2513 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2514 value, this_char); 2515 return 1; 2516 2517 } 2518 2519 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2520 { 2521 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2522 struct shmem_sb_info config = *sbinfo; 2523 unsigned long inodes; 2524 int error = -EINVAL; 2525 2526 if (shmem_parse_options(data, &config, true)) 2527 return error; 2528 2529 spin_lock(&sbinfo->stat_lock); 2530 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2531 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2532 goto out; 2533 if (config.max_inodes < inodes) 2534 goto out; 2535 /* 2536 * Those tests disallow limited->unlimited while any are in use; 2537 * but we must separately disallow unlimited->limited, because 2538 * in that case we have no record of how much is already in use. 2539 */ 2540 if (config.max_blocks && !sbinfo->max_blocks) 2541 goto out; 2542 if (config.max_inodes && !sbinfo->max_inodes) 2543 goto out; 2544 2545 error = 0; 2546 sbinfo->max_blocks = config.max_blocks; 2547 sbinfo->max_inodes = config.max_inodes; 2548 sbinfo->free_inodes = config.max_inodes - inodes; 2549 2550 mpol_put(sbinfo->mpol); 2551 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2552 out: 2553 spin_unlock(&sbinfo->stat_lock); 2554 return error; 2555 } 2556 2557 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2558 { 2559 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2560 2561 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2562 seq_printf(seq, ",size=%luk", 2563 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2564 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2565 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2566 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2567 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2568 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2569 seq_printf(seq, ",uid=%u", 2570 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2571 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2572 seq_printf(seq, ",gid=%u", 2573 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2574 shmem_show_mpol(seq, sbinfo->mpol); 2575 return 0; 2576 } 2577 #endif /* CONFIG_TMPFS */ 2578 2579 static void shmem_put_super(struct super_block *sb) 2580 { 2581 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2582 2583 percpu_counter_destroy(&sbinfo->used_blocks); 2584 kfree(sbinfo); 2585 sb->s_fs_info = NULL; 2586 } 2587 2588 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2589 { 2590 struct inode *inode; 2591 struct shmem_sb_info *sbinfo; 2592 int err = -ENOMEM; 2593 2594 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2595 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2596 L1_CACHE_BYTES), GFP_KERNEL); 2597 if (!sbinfo) 2598 return -ENOMEM; 2599 2600 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2601 sbinfo->uid = current_fsuid(); 2602 sbinfo->gid = current_fsgid(); 2603 sb->s_fs_info = sbinfo; 2604 2605 #ifdef CONFIG_TMPFS 2606 /* 2607 * Per default we only allow half of the physical ram per 2608 * tmpfs instance, limiting inodes to one per page of lowmem; 2609 * but the internal instance is left unlimited. 2610 */ 2611 if (!(sb->s_flags & MS_NOUSER)) { 2612 sbinfo->max_blocks = shmem_default_max_blocks(); 2613 sbinfo->max_inodes = shmem_default_max_inodes(); 2614 if (shmem_parse_options(data, sbinfo, false)) { 2615 err = -EINVAL; 2616 goto failed; 2617 } 2618 } 2619 sb->s_export_op = &shmem_export_ops; 2620 sb->s_flags |= MS_NOSEC; 2621 #else 2622 sb->s_flags |= MS_NOUSER; 2623 #endif 2624 2625 spin_lock_init(&sbinfo->stat_lock); 2626 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2627 goto failed; 2628 sbinfo->free_inodes = sbinfo->max_inodes; 2629 2630 sb->s_maxbytes = MAX_LFS_FILESIZE; 2631 sb->s_blocksize = PAGE_CACHE_SIZE; 2632 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2633 sb->s_magic = TMPFS_MAGIC; 2634 sb->s_op = &shmem_ops; 2635 sb->s_time_gran = 1; 2636 #ifdef CONFIG_TMPFS_XATTR 2637 sb->s_xattr = shmem_xattr_handlers; 2638 #endif 2639 #ifdef CONFIG_TMPFS_POSIX_ACL 2640 sb->s_flags |= MS_POSIXACL; 2641 #endif 2642 2643 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2644 if (!inode) 2645 goto failed; 2646 inode->i_uid = sbinfo->uid; 2647 inode->i_gid = sbinfo->gid; 2648 sb->s_root = d_make_root(inode); 2649 if (!sb->s_root) 2650 goto failed; 2651 return 0; 2652 2653 failed: 2654 shmem_put_super(sb); 2655 return err; 2656 } 2657 2658 static struct kmem_cache *shmem_inode_cachep; 2659 2660 static struct inode *shmem_alloc_inode(struct super_block *sb) 2661 { 2662 struct shmem_inode_info *info; 2663 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2664 if (!info) 2665 return NULL; 2666 return &info->vfs_inode; 2667 } 2668 2669 static void shmem_destroy_callback(struct rcu_head *head) 2670 { 2671 struct inode *inode = container_of(head, struct inode, i_rcu); 2672 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2673 } 2674 2675 static void shmem_destroy_inode(struct inode *inode) 2676 { 2677 if (S_ISREG(inode->i_mode)) 2678 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2679 call_rcu(&inode->i_rcu, shmem_destroy_callback); 2680 } 2681 2682 static void shmem_init_inode(void *foo) 2683 { 2684 struct shmem_inode_info *info = foo; 2685 inode_init_once(&info->vfs_inode); 2686 } 2687 2688 static int shmem_init_inodecache(void) 2689 { 2690 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2691 sizeof(struct shmem_inode_info), 2692 0, SLAB_PANIC, shmem_init_inode); 2693 return 0; 2694 } 2695 2696 static void shmem_destroy_inodecache(void) 2697 { 2698 kmem_cache_destroy(shmem_inode_cachep); 2699 } 2700 2701 static const struct address_space_operations shmem_aops = { 2702 .writepage = shmem_writepage, 2703 .set_page_dirty = __set_page_dirty_no_writeback, 2704 #ifdef CONFIG_TMPFS 2705 .write_begin = shmem_write_begin, 2706 .write_end = shmem_write_end, 2707 #endif 2708 .migratepage = migrate_page, 2709 .error_remove_page = generic_error_remove_page, 2710 }; 2711 2712 static const struct file_operations shmem_file_operations = { 2713 .mmap = shmem_mmap, 2714 #ifdef CONFIG_TMPFS 2715 .llseek = generic_file_llseek, 2716 .read = do_sync_read, 2717 .write = do_sync_write, 2718 .aio_read = shmem_file_aio_read, 2719 .aio_write = generic_file_aio_write, 2720 .fsync = noop_fsync, 2721 .splice_read = shmem_file_splice_read, 2722 .splice_write = generic_file_splice_write, 2723 .fallocate = shmem_fallocate, 2724 #endif 2725 }; 2726 2727 static const struct inode_operations shmem_inode_operations = { 2728 .setattr = shmem_setattr, 2729 #ifdef CONFIG_TMPFS_XATTR 2730 .setxattr = shmem_setxattr, 2731 .getxattr = shmem_getxattr, 2732 .listxattr = shmem_listxattr, 2733 .removexattr = shmem_removexattr, 2734 #endif 2735 }; 2736 2737 static const struct inode_operations shmem_dir_inode_operations = { 2738 #ifdef CONFIG_TMPFS 2739 .create = shmem_create, 2740 .lookup = simple_lookup, 2741 .link = shmem_link, 2742 .unlink = shmem_unlink, 2743 .symlink = shmem_symlink, 2744 .mkdir = shmem_mkdir, 2745 .rmdir = shmem_rmdir, 2746 .mknod = shmem_mknod, 2747 .rename = shmem_rename, 2748 #endif 2749 #ifdef CONFIG_TMPFS_XATTR 2750 .setxattr = shmem_setxattr, 2751 .getxattr = shmem_getxattr, 2752 .listxattr = shmem_listxattr, 2753 .removexattr = shmem_removexattr, 2754 #endif 2755 #ifdef CONFIG_TMPFS_POSIX_ACL 2756 .setattr = shmem_setattr, 2757 #endif 2758 }; 2759 2760 static const struct inode_operations shmem_special_inode_operations = { 2761 #ifdef CONFIG_TMPFS_XATTR 2762 .setxattr = shmem_setxattr, 2763 .getxattr = shmem_getxattr, 2764 .listxattr = shmem_listxattr, 2765 .removexattr = shmem_removexattr, 2766 #endif 2767 #ifdef CONFIG_TMPFS_POSIX_ACL 2768 .setattr = shmem_setattr, 2769 #endif 2770 }; 2771 2772 static const struct super_operations shmem_ops = { 2773 .alloc_inode = shmem_alloc_inode, 2774 .destroy_inode = shmem_destroy_inode, 2775 #ifdef CONFIG_TMPFS 2776 .statfs = shmem_statfs, 2777 .remount_fs = shmem_remount_fs, 2778 .show_options = shmem_show_options, 2779 #endif 2780 .evict_inode = shmem_evict_inode, 2781 .drop_inode = generic_delete_inode, 2782 .put_super = shmem_put_super, 2783 }; 2784 2785 static const struct vm_operations_struct shmem_vm_ops = { 2786 .fault = shmem_fault, 2787 #ifdef CONFIG_NUMA 2788 .set_policy = shmem_set_policy, 2789 .get_policy = shmem_get_policy, 2790 #endif 2791 }; 2792 2793 static struct dentry *shmem_mount(struct file_system_type *fs_type, 2794 int flags, const char *dev_name, void *data) 2795 { 2796 return mount_nodev(fs_type, flags, data, shmem_fill_super); 2797 } 2798 2799 static struct file_system_type shmem_fs_type = { 2800 .owner = THIS_MODULE, 2801 .name = "tmpfs", 2802 .mount = shmem_mount, 2803 .kill_sb = kill_litter_super, 2804 }; 2805 2806 int __init shmem_init(void) 2807 { 2808 int error; 2809 2810 error = bdi_init(&shmem_backing_dev_info); 2811 if (error) 2812 goto out4; 2813 2814 error = shmem_init_inodecache(); 2815 if (error) 2816 goto out3; 2817 2818 error = register_filesystem(&shmem_fs_type); 2819 if (error) { 2820 printk(KERN_ERR "Could not register tmpfs\n"); 2821 goto out2; 2822 } 2823 2824 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER, 2825 shmem_fs_type.name, NULL); 2826 if (IS_ERR(shm_mnt)) { 2827 error = PTR_ERR(shm_mnt); 2828 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2829 goto out1; 2830 } 2831 return 0; 2832 2833 out1: 2834 unregister_filesystem(&shmem_fs_type); 2835 out2: 2836 shmem_destroy_inodecache(); 2837 out3: 2838 bdi_destroy(&shmem_backing_dev_info); 2839 out4: 2840 shm_mnt = ERR_PTR(error); 2841 return error; 2842 } 2843 2844 #else /* !CONFIG_SHMEM */ 2845 2846 /* 2847 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2848 * 2849 * This is intended for small system where the benefits of the full 2850 * shmem code (swap-backed and resource-limited) are outweighed by 2851 * their complexity. On systems without swap this code should be 2852 * effectively equivalent, but much lighter weight. 2853 */ 2854 2855 #include <linux/ramfs.h> 2856 2857 static struct file_system_type shmem_fs_type = { 2858 .name = "tmpfs", 2859 .mount = ramfs_mount, 2860 .kill_sb = kill_litter_super, 2861 }; 2862 2863 int __init shmem_init(void) 2864 { 2865 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 2866 2867 shm_mnt = kern_mount(&shmem_fs_type); 2868 BUG_ON(IS_ERR(shm_mnt)); 2869 2870 return 0; 2871 } 2872 2873 int shmem_unuse(swp_entry_t swap, struct page *page) 2874 { 2875 return 0; 2876 } 2877 2878 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2879 { 2880 return 0; 2881 } 2882 2883 void shmem_unlock_mapping(struct address_space *mapping) 2884 { 2885 } 2886 2887 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 2888 { 2889 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 2890 } 2891 EXPORT_SYMBOL_GPL(shmem_truncate_range); 2892 2893 #define shmem_vm_ops generic_file_vm_ops 2894 #define shmem_file_operations ramfs_file_operations 2895 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2896 #define shmem_acct_size(flags, size) 0 2897 #define shmem_unacct_size(flags, size) do {} while (0) 2898 2899 #endif /* CONFIG_SHMEM */ 2900 2901 /* common code */ 2902 2903 /** 2904 * shmem_file_setup - get an unlinked file living in tmpfs 2905 * @name: name for dentry (to be seen in /proc/<pid>/maps 2906 * @size: size to be set for the file 2907 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2908 */ 2909 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2910 { 2911 int error; 2912 struct file *file; 2913 struct inode *inode; 2914 struct path path; 2915 struct dentry *root; 2916 struct qstr this; 2917 2918 if (IS_ERR(shm_mnt)) 2919 return (void *)shm_mnt; 2920 2921 if (size < 0 || size > MAX_LFS_FILESIZE) 2922 return ERR_PTR(-EINVAL); 2923 2924 if (shmem_acct_size(flags, size)) 2925 return ERR_PTR(-ENOMEM); 2926 2927 error = -ENOMEM; 2928 this.name = name; 2929 this.len = strlen(name); 2930 this.hash = 0; /* will go */ 2931 root = shm_mnt->mnt_root; 2932 path.dentry = d_alloc(root, &this); 2933 if (!path.dentry) 2934 goto put_memory; 2935 path.mnt = mntget(shm_mnt); 2936 2937 error = -ENOSPC; 2938 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 2939 if (!inode) 2940 goto put_dentry; 2941 2942 d_instantiate(path.dentry, inode); 2943 inode->i_size = size; 2944 clear_nlink(inode); /* It is unlinked */ 2945 #ifndef CONFIG_MMU 2946 error = ramfs_nommu_expand_for_mapping(inode, size); 2947 if (error) 2948 goto put_dentry; 2949 #endif 2950 2951 error = -ENFILE; 2952 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 2953 &shmem_file_operations); 2954 if (!file) 2955 goto put_dentry; 2956 2957 return file; 2958 2959 put_dentry: 2960 path_put(&path); 2961 put_memory: 2962 shmem_unacct_size(flags, size); 2963 return ERR_PTR(error); 2964 } 2965 EXPORT_SYMBOL_GPL(shmem_file_setup); 2966 2967 /** 2968 * shmem_zero_setup - setup a shared anonymous mapping 2969 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2970 */ 2971 int shmem_zero_setup(struct vm_area_struct *vma) 2972 { 2973 struct file *file; 2974 loff_t size = vma->vm_end - vma->vm_start; 2975 2976 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2977 if (IS_ERR(file)) 2978 return PTR_ERR(file); 2979 2980 if (vma->vm_file) 2981 fput(vma->vm_file); 2982 vma->vm_file = file; 2983 vma->vm_ops = &shmem_vm_ops; 2984 vma->vm_flags |= VM_CAN_NONLINEAR; 2985 return 0; 2986 } 2987 2988 /** 2989 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 2990 * @mapping: the page's address_space 2991 * @index: the page index 2992 * @gfp: the page allocator flags to use if allocating 2993 * 2994 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 2995 * with any new page allocations done using the specified allocation flags. 2996 * But read_cache_page_gfp() uses the ->readpage() method: which does not 2997 * suit tmpfs, since it may have pages in swapcache, and needs to find those 2998 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 2999 * 3000 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3001 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3002 */ 3003 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3004 pgoff_t index, gfp_t gfp) 3005 { 3006 #ifdef CONFIG_SHMEM 3007 struct inode *inode = mapping->host; 3008 struct page *page; 3009 int error; 3010 3011 BUG_ON(mapping->a_ops != &shmem_aops); 3012 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3013 if (error) 3014 page = ERR_PTR(error); 3015 else 3016 unlock_page(page); 3017 return page; 3018 #else 3019 /* 3020 * The tiny !SHMEM case uses ramfs without swap 3021 */ 3022 return read_cache_page_gfp(mapping, index, gfp); 3023 #endif 3024 } 3025 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3026