xref: /openbmc/linux/mm/shmem.c (revision 95e9fd10)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70 
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73 
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76 
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79 
80 struct shmem_xattr {
81 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
82 	char *name;		/* xattr name */
83 	size_t size;
84 	char value[0];
85 };
86 
87 /*
88  * shmem_fallocate and shmem_writepage communicate via inode->i_private
89  * (with i_mutex making sure that it has only one user at a time):
90  * we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	pgoff_t start;		/* start of range currently being fallocated */
94 	pgoff_t next;		/* the next page offset to be fallocated */
95 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
96 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
97 };
98 
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 	SGP_READ,	/* don't exceed i_size, don't allocate page */
102 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
103 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
104 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
105 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125 
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 	struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 	return shmem_getpage_gfp(inode, index, pagep, sgp,
130 			mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132 
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 	return sb->s_fs_info;
136 }
137 
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 	return (flags & VM_NORESERVE) ?
147 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149 
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 	if (!(flags & VM_NORESERVE))
153 		vm_unacct_memory(VM_ACCT(size));
154 }
155 
156 /*
157  * ... whereas tmpfs objects are accounted incrementally as
158  * pages are allocated, in order to allow huge sparse files.
159  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161  */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 	return (flags & VM_NORESERVE) ?
165 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167 
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 	if (flags & VM_NORESERVE)
171 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173 
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181 
182 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
183 	.ra_pages	= 0,	/* No readahead */
184 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186 
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189 
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 	if (sbinfo->max_inodes) {
194 		spin_lock(&sbinfo->stat_lock);
195 		if (!sbinfo->free_inodes) {
196 			spin_unlock(&sbinfo->stat_lock);
197 			return -ENOSPC;
198 		}
199 		sbinfo->free_inodes--;
200 		spin_unlock(&sbinfo->stat_lock);
201 	}
202 	return 0;
203 }
204 
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 	if (sbinfo->max_inodes) {
209 		spin_lock(&sbinfo->stat_lock);
210 		sbinfo->free_inodes++;
211 		spin_unlock(&sbinfo->stat_lock);
212 	}
213 }
214 
215 /**
216  * shmem_recalc_inode - recalculate the block usage of an inode
217  * @inode: inode to recalc
218  *
219  * We have to calculate the free blocks since the mm can drop
220  * undirtied hole pages behind our back.
221  *
222  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
223  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224  *
225  * It has to be called with the spinlock held.
226  */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 	struct shmem_inode_info *info = SHMEM_I(inode);
230 	long freed;
231 
232 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 	if (freed > 0) {
234 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 		if (sbinfo->max_blocks)
236 			percpu_counter_add(&sbinfo->used_blocks, -freed);
237 		info->alloced -= freed;
238 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 		shmem_unacct_blocks(info->flags, freed);
240 	}
241 }
242 
243 /*
244  * Replace item expected in radix tree by a new item, while holding tree lock.
245  */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 			pgoff_t index, void *expected, void *replacement)
248 {
249 	void **pslot;
250 	void *item = NULL;
251 
252 	VM_BUG_ON(!expected);
253 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 	if (pslot)
255 		item = radix_tree_deref_slot_protected(pslot,
256 							&mapping->tree_lock);
257 	if (item != expected)
258 		return -ENOENT;
259 	if (replacement)
260 		radix_tree_replace_slot(pslot, replacement);
261 	else
262 		radix_tree_delete(&mapping->page_tree, index);
263 	return 0;
264 }
265 
266 /*
267  * Sometimes, before we decide whether to proceed or to fail, we must check
268  * that an entry was not already brought back from swap by a racing thread.
269  *
270  * Checking page is not enough: by the time a SwapCache page is locked, it
271  * might be reused, and again be SwapCache, using the same swap as before.
272  */
273 static bool shmem_confirm_swap(struct address_space *mapping,
274 			       pgoff_t index, swp_entry_t swap)
275 {
276 	void *item;
277 
278 	rcu_read_lock();
279 	item = radix_tree_lookup(&mapping->page_tree, index);
280 	rcu_read_unlock();
281 	return item == swp_to_radix_entry(swap);
282 }
283 
284 /*
285  * Like add_to_page_cache_locked, but error if expected item has gone.
286  */
287 static int shmem_add_to_page_cache(struct page *page,
288 				   struct address_space *mapping,
289 				   pgoff_t index, gfp_t gfp, void *expected)
290 {
291 	int error;
292 
293 	VM_BUG_ON(!PageLocked(page));
294 	VM_BUG_ON(!PageSwapBacked(page));
295 
296 	page_cache_get(page);
297 	page->mapping = mapping;
298 	page->index = index;
299 
300 	spin_lock_irq(&mapping->tree_lock);
301 	if (!expected)
302 		error = radix_tree_insert(&mapping->page_tree, index, page);
303 	else
304 		error = shmem_radix_tree_replace(mapping, index, expected,
305 								 page);
306 	if (!error) {
307 		mapping->nrpages++;
308 		__inc_zone_page_state(page, NR_FILE_PAGES);
309 		__inc_zone_page_state(page, NR_SHMEM);
310 		spin_unlock_irq(&mapping->tree_lock);
311 	} else {
312 		page->mapping = NULL;
313 		spin_unlock_irq(&mapping->tree_lock);
314 		page_cache_release(page);
315 	}
316 	return error;
317 }
318 
319 /*
320  * Like delete_from_page_cache, but substitutes swap for page.
321  */
322 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
323 {
324 	struct address_space *mapping = page->mapping;
325 	int error;
326 
327 	spin_lock_irq(&mapping->tree_lock);
328 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
329 	page->mapping = NULL;
330 	mapping->nrpages--;
331 	__dec_zone_page_state(page, NR_FILE_PAGES);
332 	__dec_zone_page_state(page, NR_SHMEM);
333 	spin_unlock_irq(&mapping->tree_lock);
334 	page_cache_release(page);
335 	BUG_ON(error);
336 }
337 
338 /*
339  * Like find_get_pages, but collecting swap entries as well as pages.
340  */
341 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
342 					pgoff_t start, unsigned int nr_pages,
343 					struct page **pages, pgoff_t *indices)
344 {
345 	unsigned int i;
346 	unsigned int ret;
347 	unsigned int nr_found;
348 
349 	rcu_read_lock();
350 restart:
351 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
352 				(void ***)pages, indices, start, nr_pages);
353 	ret = 0;
354 	for (i = 0; i < nr_found; i++) {
355 		struct page *page;
356 repeat:
357 		page = radix_tree_deref_slot((void **)pages[i]);
358 		if (unlikely(!page))
359 			continue;
360 		if (radix_tree_exception(page)) {
361 			if (radix_tree_deref_retry(page))
362 				goto restart;
363 			/*
364 			 * Otherwise, we must be storing a swap entry
365 			 * here as an exceptional entry: so return it
366 			 * without attempting to raise page count.
367 			 */
368 			goto export;
369 		}
370 		if (!page_cache_get_speculative(page))
371 			goto repeat;
372 
373 		/* Has the page moved? */
374 		if (unlikely(page != *((void **)pages[i]))) {
375 			page_cache_release(page);
376 			goto repeat;
377 		}
378 export:
379 		indices[ret] = indices[i];
380 		pages[ret] = page;
381 		ret++;
382 	}
383 	if (unlikely(!ret && nr_found))
384 		goto restart;
385 	rcu_read_unlock();
386 	return ret;
387 }
388 
389 /*
390  * Remove swap entry from radix tree, free the swap and its page cache.
391  */
392 static int shmem_free_swap(struct address_space *mapping,
393 			   pgoff_t index, void *radswap)
394 {
395 	int error;
396 
397 	spin_lock_irq(&mapping->tree_lock);
398 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
399 	spin_unlock_irq(&mapping->tree_lock);
400 	if (!error)
401 		free_swap_and_cache(radix_to_swp_entry(radswap));
402 	return error;
403 }
404 
405 /*
406  * Pagevec may contain swap entries, so shuffle up pages before releasing.
407  */
408 static void shmem_deswap_pagevec(struct pagevec *pvec)
409 {
410 	int i, j;
411 
412 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
413 		struct page *page = pvec->pages[i];
414 		if (!radix_tree_exceptional_entry(page))
415 			pvec->pages[j++] = page;
416 	}
417 	pvec->nr = j;
418 }
419 
420 /*
421  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
422  */
423 void shmem_unlock_mapping(struct address_space *mapping)
424 {
425 	struct pagevec pvec;
426 	pgoff_t indices[PAGEVEC_SIZE];
427 	pgoff_t index = 0;
428 
429 	pagevec_init(&pvec, 0);
430 	/*
431 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
432 	 */
433 	while (!mapping_unevictable(mapping)) {
434 		/*
435 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
436 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
437 		 */
438 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
439 					PAGEVEC_SIZE, pvec.pages, indices);
440 		if (!pvec.nr)
441 			break;
442 		index = indices[pvec.nr - 1] + 1;
443 		shmem_deswap_pagevec(&pvec);
444 		check_move_unevictable_pages(pvec.pages, pvec.nr);
445 		pagevec_release(&pvec);
446 		cond_resched();
447 	}
448 }
449 
450 /*
451  * Remove range of pages and swap entries from radix tree, and free them.
452  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
453  */
454 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
455 								 bool unfalloc)
456 {
457 	struct address_space *mapping = inode->i_mapping;
458 	struct shmem_inode_info *info = SHMEM_I(inode);
459 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
460 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
461 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
462 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
463 	struct pagevec pvec;
464 	pgoff_t indices[PAGEVEC_SIZE];
465 	long nr_swaps_freed = 0;
466 	pgoff_t index;
467 	int i;
468 
469 	if (lend == -1)
470 		end = -1;	/* unsigned, so actually very big */
471 
472 	pagevec_init(&pvec, 0);
473 	index = start;
474 	while (index < end) {
475 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
476 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
477 							pvec.pages, indices);
478 		if (!pvec.nr)
479 			break;
480 		mem_cgroup_uncharge_start();
481 		for (i = 0; i < pagevec_count(&pvec); i++) {
482 			struct page *page = pvec.pages[i];
483 
484 			index = indices[i];
485 			if (index >= end)
486 				break;
487 
488 			if (radix_tree_exceptional_entry(page)) {
489 				if (unfalloc)
490 					continue;
491 				nr_swaps_freed += !shmem_free_swap(mapping,
492 								index, page);
493 				continue;
494 			}
495 
496 			if (!trylock_page(page))
497 				continue;
498 			if (!unfalloc || !PageUptodate(page)) {
499 				if (page->mapping == mapping) {
500 					VM_BUG_ON(PageWriteback(page));
501 					truncate_inode_page(mapping, page);
502 				}
503 			}
504 			unlock_page(page);
505 		}
506 		shmem_deswap_pagevec(&pvec);
507 		pagevec_release(&pvec);
508 		mem_cgroup_uncharge_end();
509 		cond_resched();
510 		index++;
511 	}
512 
513 	if (partial_start) {
514 		struct page *page = NULL;
515 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
516 		if (page) {
517 			unsigned int top = PAGE_CACHE_SIZE;
518 			if (start > end) {
519 				top = partial_end;
520 				partial_end = 0;
521 			}
522 			zero_user_segment(page, partial_start, top);
523 			set_page_dirty(page);
524 			unlock_page(page);
525 			page_cache_release(page);
526 		}
527 	}
528 	if (partial_end) {
529 		struct page *page = NULL;
530 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
531 		if (page) {
532 			zero_user_segment(page, 0, partial_end);
533 			set_page_dirty(page);
534 			unlock_page(page);
535 			page_cache_release(page);
536 		}
537 	}
538 	if (start >= end)
539 		return;
540 
541 	index = start;
542 	for ( ; ; ) {
543 		cond_resched();
544 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
545 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
546 							pvec.pages, indices);
547 		if (!pvec.nr) {
548 			if (index == start || unfalloc)
549 				break;
550 			index = start;
551 			continue;
552 		}
553 		if ((index == start || unfalloc) && indices[0] >= end) {
554 			shmem_deswap_pagevec(&pvec);
555 			pagevec_release(&pvec);
556 			break;
557 		}
558 		mem_cgroup_uncharge_start();
559 		for (i = 0; i < pagevec_count(&pvec); i++) {
560 			struct page *page = pvec.pages[i];
561 
562 			index = indices[i];
563 			if (index >= end)
564 				break;
565 
566 			if (radix_tree_exceptional_entry(page)) {
567 				if (unfalloc)
568 					continue;
569 				nr_swaps_freed += !shmem_free_swap(mapping,
570 								index, page);
571 				continue;
572 			}
573 
574 			lock_page(page);
575 			if (!unfalloc || !PageUptodate(page)) {
576 				if (page->mapping == mapping) {
577 					VM_BUG_ON(PageWriteback(page));
578 					truncate_inode_page(mapping, page);
579 				}
580 			}
581 			unlock_page(page);
582 		}
583 		shmem_deswap_pagevec(&pvec);
584 		pagevec_release(&pvec);
585 		mem_cgroup_uncharge_end();
586 		index++;
587 	}
588 
589 	spin_lock(&info->lock);
590 	info->swapped -= nr_swaps_freed;
591 	shmem_recalc_inode(inode);
592 	spin_unlock(&info->lock);
593 }
594 
595 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
596 {
597 	shmem_undo_range(inode, lstart, lend, false);
598 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
599 }
600 EXPORT_SYMBOL_GPL(shmem_truncate_range);
601 
602 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
603 {
604 	struct inode *inode = dentry->d_inode;
605 	int error;
606 
607 	error = inode_change_ok(inode, attr);
608 	if (error)
609 		return error;
610 
611 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
612 		loff_t oldsize = inode->i_size;
613 		loff_t newsize = attr->ia_size;
614 
615 		if (newsize != oldsize) {
616 			i_size_write(inode, newsize);
617 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
618 		}
619 		if (newsize < oldsize) {
620 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
621 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
622 			shmem_truncate_range(inode, newsize, (loff_t)-1);
623 			/* unmap again to remove racily COWed private pages */
624 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
625 		}
626 	}
627 
628 	setattr_copy(inode, attr);
629 #ifdef CONFIG_TMPFS_POSIX_ACL
630 	if (attr->ia_valid & ATTR_MODE)
631 		error = generic_acl_chmod(inode);
632 #endif
633 	return error;
634 }
635 
636 static void shmem_evict_inode(struct inode *inode)
637 {
638 	struct shmem_inode_info *info = SHMEM_I(inode);
639 	struct shmem_xattr *xattr, *nxattr;
640 
641 	if (inode->i_mapping->a_ops == &shmem_aops) {
642 		shmem_unacct_size(info->flags, inode->i_size);
643 		inode->i_size = 0;
644 		shmem_truncate_range(inode, 0, (loff_t)-1);
645 		if (!list_empty(&info->swaplist)) {
646 			mutex_lock(&shmem_swaplist_mutex);
647 			list_del_init(&info->swaplist);
648 			mutex_unlock(&shmem_swaplist_mutex);
649 		}
650 	} else
651 		kfree(info->symlink);
652 
653 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
654 		kfree(xattr->name);
655 		kfree(xattr);
656 	}
657 	BUG_ON(inode->i_blocks);
658 	shmem_free_inode(inode->i_sb);
659 	clear_inode(inode);
660 }
661 
662 /*
663  * If swap found in inode, free it and move page from swapcache to filecache.
664  */
665 static int shmem_unuse_inode(struct shmem_inode_info *info,
666 			     swp_entry_t swap, struct page **pagep)
667 {
668 	struct address_space *mapping = info->vfs_inode.i_mapping;
669 	void *radswap;
670 	pgoff_t index;
671 	gfp_t gfp;
672 	int error = 0;
673 
674 	radswap = swp_to_radix_entry(swap);
675 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
676 	if (index == -1)
677 		return 0;
678 
679 	/*
680 	 * Move _head_ to start search for next from here.
681 	 * But be careful: shmem_evict_inode checks list_empty without taking
682 	 * mutex, and there's an instant in list_move_tail when info->swaplist
683 	 * would appear empty, if it were the only one on shmem_swaplist.
684 	 */
685 	if (shmem_swaplist.next != &info->swaplist)
686 		list_move_tail(&shmem_swaplist, &info->swaplist);
687 
688 	gfp = mapping_gfp_mask(mapping);
689 	if (shmem_should_replace_page(*pagep, gfp)) {
690 		mutex_unlock(&shmem_swaplist_mutex);
691 		error = shmem_replace_page(pagep, gfp, info, index);
692 		mutex_lock(&shmem_swaplist_mutex);
693 		/*
694 		 * We needed to drop mutex to make that restrictive page
695 		 * allocation, but the inode might have been freed while we
696 		 * dropped it: although a racing shmem_evict_inode() cannot
697 		 * complete without emptying the radix_tree, our page lock
698 		 * on this swapcache page is not enough to prevent that -
699 		 * free_swap_and_cache() of our swap entry will only
700 		 * trylock_page(), removing swap from radix_tree whatever.
701 		 *
702 		 * We must not proceed to shmem_add_to_page_cache() if the
703 		 * inode has been freed, but of course we cannot rely on
704 		 * inode or mapping or info to check that.  However, we can
705 		 * safely check if our swap entry is still in use (and here
706 		 * it can't have got reused for another page): if it's still
707 		 * in use, then the inode cannot have been freed yet, and we
708 		 * can safely proceed (if it's no longer in use, that tells
709 		 * nothing about the inode, but we don't need to unuse swap).
710 		 */
711 		if (!page_swapcount(*pagep))
712 			error = -ENOENT;
713 	}
714 
715 	/*
716 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
717 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
718 	 * beneath us (pagelock doesn't help until the page is in pagecache).
719 	 */
720 	if (!error)
721 		error = shmem_add_to_page_cache(*pagep, mapping, index,
722 						GFP_NOWAIT, radswap);
723 	if (error != -ENOMEM) {
724 		/*
725 		 * Truncation and eviction use free_swap_and_cache(), which
726 		 * only does trylock page: if we raced, best clean up here.
727 		 */
728 		delete_from_swap_cache(*pagep);
729 		set_page_dirty(*pagep);
730 		if (!error) {
731 			spin_lock(&info->lock);
732 			info->swapped--;
733 			spin_unlock(&info->lock);
734 			swap_free(swap);
735 		}
736 		error = 1;	/* not an error, but entry was found */
737 	}
738 	return error;
739 }
740 
741 /*
742  * Search through swapped inodes to find and replace swap by page.
743  */
744 int shmem_unuse(swp_entry_t swap, struct page *page)
745 {
746 	struct list_head *this, *next;
747 	struct shmem_inode_info *info;
748 	int found = 0;
749 	int error = 0;
750 
751 	/*
752 	 * There's a faint possibility that swap page was replaced before
753 	 * caller locked it: caller will come back later with the right page.
754 	 */
755 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
756 		goto out;
757 
758 	/*
759 	 * Charge page using GFP_KERNEL while we can wait, before taking
760 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
761 	 * Charged back to the user (not to caller) when swap account is used.
762 	 */
763 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
764 	if (error)
765 		goto out;
766 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
767 
768 	mutex_lock(&shmem_swaplist_mutex);
769 	list_for_each_safe(this, next, &shmem_swaplist) {
770 		info = list_entry(this, struct shmem_inode_info, swaplist);
771 		if (info->swapped)
772 			found = shmem_unuse_inode(info, swap, &page);
773 		else
774 			list_del_init(&info->swaplist);
775 		cond_resched();
776 		if (found)
777 			break;
778 	}
779 	mutex_unlock(&shmem_swaplist_mutex);
780 
781 	if (found < 0)
782 		error = found;
783 out:
784 	unlock_page(page);
785 	page_cache_release(page);
786 	return error;
787 }
788 
789 /*
790  * Move the page from the page cache to the swap cache.
791  */
792 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
793 {
794 	struct shmem_inode_info *info;
795 	struct address_space *mapping;
796 	struct inode *inode;
797 	swp_entry_t swap;
798 	pgoff_t index;
799 
800 	BUG_ON(!PageLocked(page));
801 	mapping = page->mapping;
802 	index = page->index;
803 	inode = mapping->host;
804 	info = SHMEM_I(inode);
805 	if (info->flags & VM_LOCKED)
806 		goto redirty;
807 	if (!total_swap_pages)
808 		goto redirty;
809 
810 	/*
811 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
812 	 * sync from ever calling shmem_writepage; but a stacking filesystem
813 	 * might use ->writepage of its underlying filesystem, in which case
814 	 * tmpfs should write out to swap only in response to memory pressure,
815 	 * and not for the writeback threads or sync.
816 	 */
817 	if (!wbc->for_reclaim) {
818 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
819 		goto redirty;
820 	}
821 
822 	/*
823 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
824 	 * value into swapfile.c, the only way we can correctly account for a
825 	 * fallocated page arriving here is now to initialize it and write it.
826 	 *
827 	 * That's okay for a page already fallocated earlier, but if we have
828 	 * not yet completed the fallocation, then (a) we want to keep track
829 	 * of this page in case we have to undo it, and (b) it may not be a
830 	 * good idea to continue anyway, once we're pushing into swap.  So
831 	 * reactivate the page, and let shmem_fallocate() quit when too many.
832 	 */
833 	if (!PageUptodate(page)) {
834 		if (inode->i_private) {
835 			struct shmem_falloc *shmem_falloc;
836 			spin_lock(&inode->i_lock);
837 			shmem_falloc = inode->i_private;
838 			if (shmem_falloc &&
839 			    index >= shmem_falloc->start &&
840 			    index < shmem_falloc->next)
841 				shmem_falloc->nr_unswapped++;
842 			else
843 				shmem_falloc = NULL;
844 			spin_unlock(&inode->i_lock);
845 			if (shmem_falloc)
846 				goto redirty;
847 		}
848 		clear_highpage(page);
849 		flush_dcache_page(page);
850 		SetPageUptodate(page);
851 	}
852 
853 	swap = get_swap_page();
854 	if (!swap.val)
855 		goto redirty;
856 
857 	/*
858 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
859 	 * if it's not already there.  Do it now before the page is
860 	 * moved to swap cache, when its pagelock no longer protects
861 	 * the inode from eviction.  But don't unlock the mutex until
862 	 * we've incremented swapped, because shmem_unuse_inode() will
863 	 * prune a !swapped inode from the swaplist under this mutex.
864 	 */
865 	mutex_lock(&shmem_swaplist_mutex);
866 	if (list_empty(&info->swaplist))
867 		list_add_tail(&info->swaplist, &shmem_swaplist);
868 
869 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
870 		swap_shmem_alloc(swap);
871 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
872 
873 		spin_lock(&info->lock);
874 		info->swapped++;
875 		shmem_recalc_inode(inode);
876 		spin_unlock(&info->lock);
877 
878 		mutex_unlock(&shmem_swaplist_mutex);
879 		BUG_ON(page_mapped(page));
880 		swap_writepage(page, wbc);
881 		return 0;
882 	}
883 
884 	mutex_unlock(&shmem_swaplist_mutex);
885 	swapcache_free(swap, NULL);
886 redirty:
887 	set_page_dirty(page);
888 	if (wbc->for_reclaim)
889 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
890 	unlock_page(page);
891 	return 0;
892 }
893 
894 #ifdef CONFIG_NUMA
895 #ifdef CONFIG_TMPFS
896 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
897 {
898 	char buffer[64];
899 
900 	if (!mpol || mpol->mode == MPOL_DEFAULT)
901 		return;		/* show nothing */
902 
903 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
904 
905 	seq_printf(seq, ",mpol=%s", buffer);
906 }
907 
908 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909 {
910 	struct mempolicy *mpol = NULL;
911 	if (sbinfo->mpol) {
912 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
913 		mpol = sbinfo->mpol;
914 		mpol_get(mpol);
915 		spin_unlock(&sbinfo->stat_lock);
916 	}
917 	return mpol;
918 }
919 #endif /* CONFIG_TMPFS */
920 
921 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
922 			struct shmem_inode_info *info, pgoff_t index)
923 {
924 	struct mempolicy mpol, *spol;
925 	struct vm_area_struct pvma;
926 
927 	spol = mpol_cond_copy(&mpol,
928 			mpol_shared_policy_lookup(&info->policy, index));
929 
930 	/* Create a pseudo vma that just contains the policy */
931 	pvma.vm_start = 0;
932 	/* Bias interleave by inode number to distribute better across nodes */
933 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
934 	pvma.vm_ops = NULL;
935 	pvma.vm_policy = spol;
936 	return swapin_readahead(swap, gfp, &pvma, 0);
937 }
938 
939 static struct page *shmem_alloc_page(gfp_t gfp,
940 			struct shmem_inode_info *info, pgoff_t index)
941 {
942 	struct vm_area_struct pvma;
943 
944 	/* Create a pseudo vma that just contains the policy */
945 	pvma.vm_start = 0;
946 	/* Bias interleave by inode number to distribute better across nodes */
947 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
948 	pvma.vm_ops = NULL;
949 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
950 
951 	/*
952 	 * alloc_page_vma() will drop the shared policy reference
953 	 */
954 	return alloc_page_vma(gfp, &pvma, 0);
955 }
956 #else /* !CONFIG_NUMA */
957 #ifdef CONFIG_TMPFS
958 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
959 {
960 }
961 #endif /* CONFIG_TMPFS */
962 
963 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
964 			struct shmem_inode_info *info, pgoff_t index)
965 {
966 	return swapin_readahead(swap, gfp, NULL, 0);
967 }
968 
969 static inline struct page *shmem_alloc_page(gfp_t gfp,
970 			struct shmem_inode_info *info, pgoff_t index)
971 {
972 	return alloc_page(gfp);
973 }
974 #endif /* CONFIG_NUMA */
975 
976 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
977 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
978 {
979 	return NULL;
980 }
981 #endif
982 
983 /*
984  * When a page is moved from swapcache to shmem filecache (either by the
985  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
986  * shmem_unuse_inode()), it may have been read in earlier from swap, in
987  * ignorance of the mapping it belongs to.  If that mapping has special
988  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
989  * we may need to copy to a suitable page before moving to filecache.
990  *
991  * In a future release, this may well be extended to respect cpuset and
992  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
993  * but for now it is a simple matter of zone.
994  */
995 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
996 {
997 	return page_zonenum(page) > gfp_zone(gfp);
998 }
999 
1000 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1001 				struct shmem_inode_info *info, pgoff_t index)
1002 {
1003 	struct page *oldpage, *newpage;
1004 	struct address_space *swap_mapping;
1005 	pgoff_t swap_index;
1006 	int error;
1007 
1008 	oldpage = *pagep;
1009 	swap_index = page_private(oldpage);
1010 	swap_mapping = page_mapping(oldpage);
1011 
1012 	/*
1013 	 * We have arrived here because our zones are constrained, so don't
1014 	 * limit chance of success by further cpuset and node constraints.
1015 	 */
1016 	gfp &= ~GFP_CONSTRAINT_MASK;
1017 	newpage = shmem_alloc_page(gfp, info, index);
1018 	if (!newpage)
1019 		return -ENOMEM;
1020 
1021 	page_cache_get(newpage);
1022 	copy_highpage(newpage, oldpage);
1023 	flush_dcache_page(newpage);
1024 
1025 	__set_page_locked(newpage);
1026 	SetPageUptodate(newpage);
1027 	SetPageSwapBacked(newpage);
1028 	set_page_private(newpage, swap_index);
1029 	SetPageSwapCache(newpage);
1030 
1031 	/*
1032 	 * Our caller will very soon move newpage out of swapcache, but it's
1033 	 * a nice clean interface for us to replace oldpage by newpage there.
1034 	 */
1035 	spin_lock_irq(&swap_mapping->tree_lock);
1036 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1037 								   newpage);
1038 	if (!error) {
1039 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1040 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1041 	}
1042 	spin_unlock_irq(&swap_mapping->tree_lock);
1043 
1044 	if (unlikely(error)) {
1045 		/*
1046 		 * Is this possible?  I think not, now that our callers check
1047 		 * both PageSwapCache and page_private after getting page lock;
1048 		 * but be defensive.  Reverse old to newpage for clear and free.
1049 		 */
1050 		oldpage = newpage;
1051 	} else {
1052 		mem_cgroup_replace_page_cache(oldpage, newpage);
1053 		lru_cache_add_anon(newpage);
1054 		*pagep = newpage;
1055 	}
1056 
1057 	ClearPageSwapCache(oldpage);
1058 	set_page_private(oldpage, 0);
1059 
1060 	unlock_page(oldpage);
1061 	page_cache_release(oldpage);
1062 	page_cache_release(oldpage);
1063 	return error;
1064 }
1065 
1066 /*
1067  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1068  *
1069  * If we allocate a new one we do not mark it dirty. That's up to the
1070  * vm. If we swap it in we mark it dirty since we also free the swap
1071  * entry since a page cannot live in both the swap and page cache
1072  */
1073 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1074 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1075 {
1076 	struct address_space *mapping = inode->i_mapping;
1077 	struct shmem_inode_info *info;
1078 	struct shmem_sb_info *sbinfo;
1079 	struct page *page;
1080 	swp_entry_t swap;
1081 	int error;
1082 	int once = 0;
1083 	int alloced = 0;
1084 
1085 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1086 		return -EFBIG;
1087 repeat:
1088 	swap.val = 0;
1089 	page = find_lock_page(mapping, index);
1090 	if (radix_tree_exceptional_entry(page)) {
1091 		swap = radix_to_swp_entry(page);
1092 		page = NULL;
1093 	}
1094 
1095 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1096 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1097 		error = -EINVAL;
1098 		goto failed;
1099 	}
1100 
1101 	/* fallocated page? */
1102 	if (page && !PageUptodate(page)) {
1103 		if (sgp != SGP_READ)
1104 			goto clear;
1105 		unlock_page(page);
1106 		page_cache_release(page);
1107 		page = NULL;
1108 	}
1109 	if (page || (sgp == SGP_READ && !swap.val)) {
1110 		*pagep = page;
1111 		return 0;
1112 	}
1113 
1114 	/*
1115 	 * Fast cache lookup did not find it:
1116 	 * bring it back from swap or allocate.
1117 	 */
1118 	info = SHMEM_I(inode);
1119 	sbinfo = SHMEM_SB(inode->i_sb);
1120 
1121 	if (swap.val) {
1122 		/* Look it up and read it in.. */
1123 		page = lookup_swap_cache(swap);
1124 		if (!page) {
1125 			/* here we actually do the io */
1126 			if (fault_type)
1127 				*fault_type |= VM_FAULT_MAJOR;
1128 			page = shmem_swapin(swap, gfp, info, index);
1129 			if (!page) {
1130 				error = -ENOMEM;
1131 				goto failed;
1132 			}
1133 		}
1134 
1135 		/* We have to do this with page locked to prevent races */
1136 		lock_page(page);
1137 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1138 		    !shmem_confirm_swap(mapping, index, swap)) {
1139 			error = -EEXIST;	/* try again */
1140 			goto unlock;
1141 		}
1142 		if (!PageUptodate(page)) {
1143 			error = -EIO;
1144 			goto failed;
1145 		}
1146 		wait_on_page_writeback(page);
1147 
1148 		if (shmem_should_replace_page(page, gfp)) {
1149 			error = shmem_replace_page(&page, gfp, info, index);
1150 			if (error)
1151 				goto failed;
1152 		}
1153 
1154 		error = mem_cgroup_cache_charge(page, current->mm,
1155 						gfp & GFP_RECLAIM_MASK);
1156 		if (!error) {
1157 			error = shmem_add_to_page_cache(page, mapping, index,
1158 						gfp, swp_to_radix_entry(swap));
1159 			/* We already confirmed swap, and make no allocation */
1160 			VM_BUG_ON(error);
1161 		}
1162 		if (error)
1163 			goto failed;
1164 
1165 		spin_lock(&info->lock);
1166 		info->swapped--;
1167 		shmem_recalc_inode(inode);
1168 		spin_unlock(&info->lock);
1169 
1170 		delete_from_swap_cache(page);
1171 		set_page_dirty(page);
1172 		swap_free(swap);
1173 
1174 	} else {
1175 		if (shmem_acct_block(info->flags)) {
1176 			error = -ENOSPC;
1177 			goto failed;
1178 		}
1179 		if (sbinfo->max_blocks) {
1180 			if (percpu_counter_compare(&sbinfo->used_blocks,
1181 						sbinfo->max_blocks) >= 0) {
1182 				error = -ENOSPC;
1183 				goto unacct;
1184 			}
1185 			percpu_counter_inc(&sbinfo->used_blocks);
1186 		}
1187 
1188 		page = shmem_alloc_page(gfp, info, index);
1189 		if (!page) {
1190 			error = -ENOMEM;
1191 			goto decused;
1192 		}
1193 
1194 		SetPageSwapBacked(page);
1195 		__set_page_locked(page);
1196 		error = mem_cgroup_cache_charge(page, current->mm,
1197 						gfp & GFP_RECLAIM_MASK);
1198 		if (error)
1199 			goto decused;
1200 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1201 		if (!error) {
1202 			error = shmem_add_to_page_cache(page, mapping, index,
1203 							gfp, NULL);
1204 			radix_tree_preload_end();
1205 		}
1206 		if (error) {
1207 			mem_cgroup_uncharge_cache_page(page);
1208 			goto decused;
1209 		}
1210 		lru_cache_add_anon(page);
1211 
1212 		spin_lock(&info->lock);
1213 		info->alloced++;
1214 		inode->i_blocks += BLOCKS_PER_PAGE;
1215 		shmem_recalc_inode(inode);
1216 		spin_unlock(&info->lock);
1217 		alloced = true;
1218 
1219 		/*
1220 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1221 		 */
1222 		if (sgp == SGP_FALLOC)
1223 			sgp = SGP_WRITE;
1224 clear:
1225 		/*
1226 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1227 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1228 		 * it now, lest undo on failure cancel our earlier guarantee.
1229 		 */
1230 		if (sgp != SGP_WRITE) {
1231 			clear_highpage(page);
1232 			flush_dcache_page(page);
1233 			SetPageUptodate(page);
1234 		}
1235 		if (sgp == SGP_DIRTY)
1236 			set_page_dirty(page);
1237 	}
1238 
1239 	/* Perhaps the file has been truncated since we checked */
1240 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1241 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1242 		error = -EINVAL;
1243 		if (alloced)
1244 			goto trunc;
1245 		else
1246 			goto failed;
1247 	}
1248 	*pagep = page;
1249 	return 0;
1250 
1251 	/*
1252 	 * Error recovery.
1253 	 */
1254 trunc:
1255 	info = SHMEM_I(inode);
1256 	ClearPageDirty(page);
1257 	delete_from_page_cache(page);
1258 	spin_lock(&info->lock);
1259 	info->alloced--;
1260 	inode->i_blocks -= BLOCKS_PER_PAGE;
1261 	spin_unlock(&info->lock);
1262 decused:
1263 	sbinfo = SHMEM_SB(inode->i_sb);
1264 	if (sbinfo->max_blocks)
1265 		percpu_counter_add(&sbinfo->used_blocks, -1);
1266 unacct:
1267 	shmem_unacct_blocks(info->flags, 1);
1268 failed:
1269 	if (swap.val && error != -EINVAL &&
1270 	    !shmem_confirm_swap(mapping, index, swap))
1271 		error = -EEXIST;
1272 unlock:
1273 	if (page) {
1274 		unlock_page(page);
1275 		page_cache_release(page);
1276 	}
1277 	if (error == -ENOSPC && !once++) {
1278 		info = SHMEM_I(inode);
1279 		spin_lock(&info->lock);
1280 		shmem_recalc_inode(inode);
1281 		spin_unlock(&info->lock);
1282 		goto repeat;
1283 	}
1284 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1285 		goto repeat;
1286 	return error;
1287 }
1288 
1289 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1290 {
1291 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1292 	int error;
1293 	int ret = VM_FAULT_LOCKED;
1294 
1295 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1296 	if (error)
1297 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1298 
1299 	if (ret & VM_FAULT_MAJOR) {
1300 		count_vm_event(PGMAJFAULT);
1301 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1302 	}
1303 	return ret;
1304 }
1305 
1306 #ifdef CONFIG_NUMA
1307 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1308 {
1309 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1310 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1311 }
1312 
1313 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1314 					  unsigned long addr)
1315 {
1316 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1317 	pgoff_t index;
1318 
1319 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1320 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1321 }
1322 #endif
1323 
1324 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1325 {
1326 	struct inode *inode = file->f_path.dentry->d_inode;
1327 	struct shmem_inode_info *info = SHMEM_I(inode);
1328 	int retval = -ENOMEM;
1329 
1330 	spin_lock(&info->lock);
1331 	if (lock && !(info->flags & VM_LOCKED)) {
1332 		if (!user_shm_lock(inode->i_size, user))
1333 			goto out_nomem;
1334 		info->flags |= VM_LOCKED;
1335 		mapping_set_unevictable(file->f_mapping);
1336 	}
1337 	if (!lock && (info->flags & VM_LOCKED) && user) {
1338 		user_shm_unlock(inode->i_size, user);
1339 		info->flags &= ~VM_LOCKED;
1340 		mapping_clear_unevictable(file->f_mapping);
1341 	}
1342 	retval = 0;
1343 
1344 out_nomem:
1345 	spin_unlock(&info->lock);
1346 	return retval;
1347 }
1348 
1349 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1350 {
1351 	file_accessed(file);
1352 	vma->vm_ops = &shmem_vm_ops;
1353 	vma->vm_flags |= VM_CAN_NONLINEAR;
1354 	return 0;
1355 }
1356 
1357 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1358 				     umode_t mode, dev_t dev, unsigned long flags)
1359 {
1360 	struct inode *inode;
1361 	struct shmem_inode_info *info;
1362 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1363 
1364 	if (shmem_reserve_inode(sb))
1365 		return NULL;
1366 
1367 	inode = new_inode(sb);
1368 	if (inode) {
1369 		inode->i_ino = get_next_ino();
1370 		inode_init_owner(inode, dir, mode);
1371 		inode->i_blocks = 0;
1372 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1373 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1374 		inode->i_generation = get_seconds();
1375 		info = SHMEM_I(inode);
1376 		memset(info, 0, (char *)inode - (char *)info);
1377 		spin_lock_init(&info->lock);
1378 		info->flags = flags & VM_NORESERVE;
1379 		INIT_LIST_HEAD(&info->swaplist);
1380 		INIT_LIST_HEAD(&info->xattr_list);
1381 		cache_no_acl(inode);
1382 
1383 		switch (mode & S_IFMT) {
1384 		default:
1385 			inode->i_op = &shmem_special_inode_operations;
1386 			init_special_inode(inode, mode, dev);
1387 			break;
1388 		case S_IFREG:
1389 			inode->i_mapping->a_ops = &shmem_aops;
1390 			inode->i_op = &shmem_inode_operations;
1391 			inode->i_fop = &shmem_file_operations;
1392 			mpol_shared_policy_init(&info->policy,
1393 						 shmem_get_sbmpol(sbinfo));
1394 			break;
1395 		case S_IFDIR:
1396 			inc_nlink(inode);
1397 			/* Some things misbehave if size == 0 on a directory */
1398 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1399 			inode->i_op = &shmem_dir_inode_operations;
1400 			inode->i_fop = &simple_dir_operations;
1401 			break;
1402 		case S_IFLNK:
1403 			/*
1404 			 * Must not load anything in the rbtree,
1405 			 * mpol_free_shared_policy will not be called.
1406 			 */
1407 			mpol_shared_policy_init(&info->policy, NULL);
1408 			break;
1409 		}
1410 	} else
1411 		shmem_free_inode(sb);
1412 	return inode;
1413 }
1414 
1415 #ifdef CONFIG_TMPFS
1416 static const struct inode_operations shmem_symlink_inode_operations;
1417 static const struct inode_operations shmem_short_symlink_operations;
1418 
1419 #ifdef CONFIG_TMPFS_XATTR
1420 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1421 #else
1422 #define shmem_initxattrs NULL
1423 #endif
1424 
1425 static int
1426 shmem_write_begin(struct file *file, struct address_space *mapping,
1427 			loff_t pos, unsigned len, unsigned flags,
1428 			struct page **pagep, void **fsdata)
1429 {
1430 	struct inode *inode = mapping->host;
1431 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1432 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1433 }
1434 
1435 static int
1436 shmem_write_end(struct file *file, struct address_space *mapping,
1437 			loff_t pos, unsigned len, unsigned copied,
1438 			struct page *page, void *fsdata)
1439 {
1440 	struct inode *inode = mapping->host;
1441 
1442 	if (pos + copied > inode->i_size)
1443 		i_size_write(inode, pos + copied);
1444 
1445 	if (!PageUptodate(page)) {
1446 		if (copied < PAGE_CACHE_SIZE) {
1447 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1448 			zero_user_segments(page, 0, from,
1449 					from + copied, PAGE_CACHE_SIZE);
1450 		}
1451 		SetPageUptodate(page);
1452 	}
1453 	set_page_dirty(page);
1454 	unlock_page(page);
1455 	page_cache_release(page);
1456 
1457 	return copied;
1458 }
1459 
1460 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1461 {
1462 	struct inode *inode = filp->f_path.dentry->d_inode;
1463 	struct address_space *mapping = inode->i_mapping;
1464 	pgoff_t index;
1465 	unsigned long offset;
1466 	enum sgp_type sgp = SGP_READ;
1467 
1468 	/*
1469 	 * Might this read be for a stacking filesystem?  Then when reading
1470 	 * holes of a sparse file, we actually need to allocate those pages,
1471 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1472 	 */
1473 	if (segment_eq(get_fs(), KERNEL_DS))
1474 		sgp = SGP_DIRTY;
1475 
1476 	index = *ppos >> PAGE_CACHE_SHIFT;
1477 	offset = *ppos & ~PAGE_CACHE_MASK;
1478 
1479 	for (;;) {
1480 		struct page *page = NULL;
1481 		pgoff_t end_index;
1482 		unsigned long nr, ret;
1483 		loff_t i_size = i_size_read(inode);
1484 
1485 		end_index = i_size >> PAGE_CACHE_SHIFT;
1486 		if (index > end_index)
1487 			break;
1488 		if (index == end_index) {
1489 			nr = i_size & ~PAGE_CACHE_MASK;
1490 			if (nr <= offset)
1491 				break;
1492 		}
1493 
1494 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1495 		if (desc->error) {
1496 			if (desc->error == -EINVAL)
1497 				desc->error = 0;
1498 			break;
1499 		}
1500 		if (page)
1501 			unlock_page(page);
1502 
1503 		/*
1504 		 * We must evaluate after, since reads (unlike writes)
1505 		 * are called without i_mutex protection against truncate
1506 		 */
1507 		nr = PAGE_CACHE_SIZE;
1508 		i_size = i_size_read(inode);
1509 		end_index = i_size >> PAGE_CACHE_SHIFT;
1510 		if (index == end_index) {
1511 			nr = i_size & ~PAGE_CACHE_MASK;
1512 			if (nr <= offset) {
1513 				if (page)
1514 					page_cache_release(page);
1515 				break;
1516 			}
1517 		}
1518 		nr -= offset;
1519 
1520 		if (page) {
1521 			/*
1522 			 * If users can be writing to this page using arbitrary
1523 			 * virtual addresses, take care about potential aliasing
1524 			 * before reading the page on the kernel side.
1525 			 */
1526 			if (mapping_writably_mapped(mapping))
1527 				flush_dcache_page(page);
1528 			/*
1529 			 * Mark the page accessed if we read the beginning.
1530 			 */
1531 			if (!offset)
1532 				mark_page_accessed(page);
1533 		} else {
1534 			page = ZERO_PAGE(0);
1535 			page_cache_get(page);
1536 		}
1537 
1538 		/*
1539 		 * Ok, we have the page, and it's up-to-date, so
1540 		 * now we can copy it to user space...
1541 		 *
1542 		 * The actor routine returns how many bytes were actually used..
1543 		 * NOTE! This may not be the same as how much of a user buffer
1544 		 * we filled up (we may be padding etc), so we can only update
1545 		 * "pos" here (the actor routine has to update the user buffer
1546 		 * pointers and the remaining count).
1547 		 */
1548 		ret = actor(desc, page, offset, nr);
1549 		offset += ret;
1550 		index += offset >> PAGE_CACHE_SHIFT;
1551 		offset &= ~PAGE_CACHE_MASK;
1552 
1553 		page_cache_release(page);
1554 		if (ret != nr || !desc->count)
1555 			break;
1556 
1557 		cond_resched();
1558 	}
1559 
1560 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1561 	file_accessed(filp);
1562 }
1563 
1564 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1565 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1566 {
1567 	struct file *filp = iocb->ki_filp;
1568 	ssize_t retval;
1569 	unsigned long seg;
1570 	size_t count;
1571 	loff_t *ppos = &iocb->ki_pos;
1572 
1573 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1574 	if (retval)
1575 		return retval;
1576 
1577 	for (seg = 0; seg < nr_segs; seg++) {
1578 		read_descriptor_t desc;
1579 
1580 		desc.written = 0;
1581 		desc.arg.buf = iov[seg].iov_base;
1582 		desc.count = iov[seg].iov_len;
1583 		if (desc.count == 0)
1584 			continue;
1585 		desc.error = 0;
1586 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1587 		retval += desc.written;
1588 		if (desc.error) {
1589 			retval = retval ?: desc.error;
1590 			break;
1591 		}
1592 		if (desc.count > 0)
1593 			break;
1594 	}
1595 	return retval;
1596 }
1597 
1598 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1599 				struct pipe_inode_info *pipe, size_t len,
1600 				unsigned int flags)
1601 {
1602 	struct address_space *mapping = in->f_mapping;
1603 	struct inode *inode = mapping->host;
1604 	unsigned int loff, nr_pages, req_pages;
1605 	struct page *pages[PIPE_DEF_BUFFERS];
1606 	struct partial_page partial[PIPE_DEF_BUFFERS];
1607 	struct page *page;
1608 	pgoff_t index, end_index;
1609 	loff_t isize, left;
1610 	int error, page_nr;
1611 	struct splice_pipe_desc spd = {
1612 		.pages = pages,
1613 		.partial = partial,
1614 		.nr_pages_max = PIPE_DEF_BUFFERS,
1615 		.flags = flags,
1616 		.ops = &page_cache_pipe_buf_ops,
1617 		.spd_release = spd_release_page,
1618 	};
1619 
1620 	isize = i_size_read(inode);
1621 	if (unlikely(*ppos >= isize))
1622 		return 0;
1623 
1624 	left = isize - *ppos;
1625 	if (unlikely(left < len))
1626 		len = left;
1627 
1628 	if (splice_grow_spd(pipe, &spd))
1629 		return -ENOMEM;
1630 
1631 	index = *ppos >> PAGE_CACHE_SHIFT;
1632 	loff = *ppos & ~PAGE_CACHE_MASK;
1633 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1634 	nr_pages = min(req_pages, pipe->buffers);
1635 
1636 	spd.nr_pages = find_get_pages_contig(mapping, index,
1637 						nr_pages, spd.pages);
1638 	index += spd.nr_pages;
1639 	error = 0;
1640 
1641 	while (spd.nr_pages < nr_pages) {
1642 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1643 		if (error)
1644 			break;
1645 		unlock_page(page);
1646 		spd.pages[spd.nr_pages++] = page;
1647 		index++;
1648 	}
1649 
1650 	index = *ppos >> PAGE_CACHE_SHIFT;
1651 	nr_pages = spd.nr_pages;
1652 	spd.nr_pages = 0;
1653 
1654 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1655 		unsigned int this_len;
1656 
1657 		if (!len)
1658 			break;
1659 
1660 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1661 		page = spd.pages[page_nr];
1662 
1663 		if (!PageUptodate(page) || page->mapping != mapping) {
1664 			error = shmem_getpage(inode, index, &page,
1665 							SGP_CACHE, NULL);
1666 			if (error)
1667 				break;
1668 			unlock_page(page);
1669 			page_cache_release(spd.pages[page_nr]);
1670 			spd.pages[page_nr] = page;
1671 		}
1672 
1673 		isize = i_size_read(inode);
1674 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1675 		if (unlikely(!isize || index > end_index))
1676 			break;
1677 
1678 		if (end_index == index) {
1679 			unsigned int plen;
1680 
1681 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1682 			if (plen <= loff)
1683 				break;
1684 
1685 			this_len = min(this_len, plen - loff);
1686 			len = this_len;
1687 		}
1688 
1689 		spd.partial[page_nr].offset = loff;
1690 		spd.partial[page_nr].len = this_len;
1691 		len -= this_len;
1692 		loff = 0;
1693 		spd.nr_pages++;
1694 		index++;
1695 	}
1696 
1697 	while (page_nr < nr_pages)
1698 		page_cache_release(spd.pages[page_nr++]);
1699 
1700 	if (spd.nr_pages)
1701 		error = splice_to_pipe(pipe, &spd);
1702 
1703 	splice_shrink_spd(&spd);
1704 
1705 	if (error > 0) {
1706 		*ppos += error;
1707 		file_accessed(in);
1708 	}
1709 	return error;
1710 }
1711 
1712 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1713 							 loff_t len)
1714 {
1715 	struct inode *inode = file->f_path.dentry->d_inode;
1716 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1717 	struct shmem_falloc shmem_falloc;
1718 	pgoff_t start, index, end;
1719 	int error;
1720 
1721 	mutex_lock(&inode->i_mutex);
1722 
1723 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1724 		struct address_space *mapping = file->f_mapping;
1725 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1726 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1727 
1728 		if ((u64)unmap_end > (u64)unmap_start)
1729 			unmap_mapping_range(mapping, unmap_start,
1730 					    1 + unmap_end - unmap_start, 0);
1731 		shmem_truncate_range(inode, offset, offset + len - 1);
1732 		/* No need to unmap again: hole-punching leaves COWed pages */
1733 		error = 0;
1734 		goto out;
1735 	}
1736 
1737 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1738 	error = inode_newsize_ok(inode, offset + len);
1739 	if (error)
1740 		goto out;
1741 
1742 	start = offset >> PAGE_CACHE_SHIFT;
1743 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1744 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1745 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1746 		error = -ENOSPC;
1747 		goto out;
1748 	}
1749 
1750 	shmem_falloc.start = start;
1751 	shmem_falloc.next  = start;
1752 	shmem_falloc.nr_falloced = 0;
1753 	shmem_falloc.nr_unswapped = 0;
1754 	spin_lock(&inode->i_lock);
1755 	inode->i_private = &shmem_falloc;
1756 	spin_unlock(&inode->i_lock);
1757 
1758 	for (index = start; index < end; index++) {
1759 		struct page *page;
1760 
1761 		/*
1762 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1763 		 * been interrupted because we are using up too much memory.
1764 		 */
1765 		if (signal_pending(current))
1766 			error = -EINTR;
1767 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1768 			error = -ENOMEM;
1769 		else
1770 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1771 									NULL);
1772 		if (error) {
1773 			/* Remove the !PageUptodate pages we added */
1774 			shmem_undo_range(inode,
1775 				(loff_t)start << PAGE_CACHE_SHIFT,
1776 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1777 			goto undone;
1778 		}
1779 
1780 		/*
1781 		 * Inform shmem_writepage() how far we have reached.
1782 		 * No need for lock or barrier: we have the page lock.
1783 		 */
1784 		shmem_falloc.next++;
1785 		if (!PageUptodate(page))
1786 			shmem_falloc.nr_falloced++;
1787 
1788 		/*
1789 		 * If !PageUptodate, leave it that way so that freeable pages
1790 		 * can be recognized if we need to rollback on error later.
1791 		 * But set_page_dirty so that memory pressure will swap rather
1792 		 * than free the pages we are allocating (and SGP_CACHE pages
1793 		 * might still be clean: we now need to mark those dirty too).
1794 		 */
1795 		set_page_dirty(page);
1796 		unlock_page(page);
1797 		page_cache_release(page);
1798 		cond_resched();
1799 	}
1800 
1801 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1802 		i_size_write(inode, offset + len);
1803 	inode->i_ctime = CURRENT_TIME;
1804 undone:
1805 	spin_lock(&inode->i_lock);
1806 	inode->i_private = NULL;
1807 	spin_unlock(&inode->i_lock);
1808 out:
1809 	mutex_unlock(&inode->i_mutex);
1810 	return error;
1811 }
1812 
1813 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1814 {
1815 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1816 
1817 	buf->f_type = TMPFS_MAGIC;
1818 	buf->f_bsize = PAGE_CACHE_SIZE;
1819 	buf->f_namelen = NAME_MAX;
1820 	if (sbinfo->max_blocks) {
1821 		buf->f_blocks = sbinfo->max_blocks;
1822 		buf->f_bavail =
1823 		buf->f_bfree  = sbinfo->max_blocks -
1824 				percpu_counter_sum(&sbinfo->used_blocks);
1825 	}
1826 	if (sbinfo->max_inodes) {
1827 		buf->f_files = sbinfo->max_inodes;
1828 		buf->f_ffree = sbinfo->free_inodes;
1829 	}
1830 	/* else leave those fields 0 like simple_statfs */
1831 	return 0;
1832 }
1833 
1834 /*
1835  * File creation. Allocate an inode, and we're done..
1836  */
1837 static int
1838 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1839 {
1840 	struct inode *inode;
1841 	int error = -ENOSPC;
1842 
1843 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1844 	if (inode) {
1845 		error = security_inode_init_security(inode, dir,
1846 						     &dentry->d_name,
1847 						     shmem_initxattrs, NULL);
1848 		if (error) {
1849 			if (error != -EOPNOTSUPP) {
1850 				iput(inode);
1851 				return error;
1852 			}
1853 		}
1854 #ifdef CONFIG_TMPFS_POSIX_ACL
1855 		error = generic_acl_init(inode, dir);
1856 		if (error) {
1857 			iput(inode);
1858 			return error;
1859 		}
1860 #else
1861 		error = 0;
1862 #endif
1863 		dir->i_size += BOGO_DIRENT_SIZE;
1864 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1865 		d_instantiate(dentry, inode);
1866 		dget(dentry); /* Extra count - pin the dentry in core */
1867 	}
1868 	return error;
1869 }
1870 
1871 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1872 {
1873 	int error;
1874 
1875 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1876 		return error;
1877 	inc_nlink(dir);
1878 	return 0;
1879 }
1880 
1881 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1882 		bool excl)
1883 {
1884 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1885 }
1886 
1887 /*
1888  * Link a file..
1889  */
1890 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1891 {
1892 	struct inode *inode = old_dentry->d_inode;
1893 	int ret;
1894 
1895 	/*
1896 	 * No ordinary (disk based) filesystem counts links as inodes;
1897 	 * but each new link needs a new dentry, pinning lowmem, and
1898 	 * tmpfs dentries cannot be pruned until they are unlinked.
1899 	 */
1900 	ret = shmem_reserve_inode(inode->i_sb);
1901 	if (ret)
1902 		goto out;
1903 
1904 	dir->i_size += BOGO_DIRENT_SIZE;
1905 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1906 	inc_nlink(inode);
1907 	ihold(inode);	/* New dentry reference */
1908 	dget(dentry);		/* Extra pinning count for the created dentry */
1909 	d_instantiate(dentry, inode);
1910 out:
1911 	return ret;
1912 }
1913 
1914 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1915 {
1916 	struct inode *inode = dentry->d_inode;
1917 
1918 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1919 		shmem_free_inode(inode->i_sb);
1920 
1921 	dir->i_size -= BOGO_DIRENT_SIZE;
1922 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1923 	drop_nlink(inode);
1924 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1925 	return 0;
1926 }
1927 
1928 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1929 {
1930 	if (!simple_empty(dentry))
1931 		return -ENOTEMPTY;
1932 
1933 	drop_nlink(dentry->d_inode);
1934 	drop_nlink(dir);
1935 	return shmem_unlink(dir, dentry);
1936 }
1937 
1938 /*
1939  * The VFS layer already does all the dentry stuff for rename,
1940  * we just have to decrement the usage count for the target if
1941  * it exists so that the VFS layer correctly free's it when it
1942  * gets overwritten.
1943  */
1944 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1945 {
1946 	struct inode *inode = old_dentry->d_inode;
1947 	int they_are_dirs = S_ISDIR(inode->i_mode);
1948 
1949 	if (!simple_empty(new_dentry))
1950 		return -ENOTEMPTY;
1951 
1952 	if (new_dentry->d_inode) {
1953 		(void) shmem_unlink(new_dir, new_dentry);
1954 		if (they_are_dirs)
1955 			drop_nlink(old_dir);
1956 	} else if (they_are_dirs) {
1957 		drop_nlink(old_dir);
1958 		inc_nlink(new_dir);
1959 	}
1960 
1961 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1962 	new_dir->i_size += BOGO_DIRENT_SIZE;
1963 	old_dir->i_ctime = old_dir->i_mtime =
1964 	new_dir->i_ctime = new_dir->i_mtime =
1965 	inode->i_ctime = CURRENT_TIME;
1966 	return 0;
1967 }
1968 
1969 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1970 {
1971 	int error;
1972 	int len;
1973 	struct inode *inode;
1974 	struct page *page;
1975 	char *kaddr;
1976 	struct shmem_inode_info *info;
1977 
1978 	len = strlen(symname) + 1;
1979 	if (len > PAGE_CACHE_SIZE)
1980 		return -ENAMETOOLONG;
1981 
1982 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1983 	if (!inode)
1984 		return -ENOSPC;
1985 
1986 	error = security_inode_init_security(inode, dir, &dentry->d_name,
1987 					     shmem_initxattrs, NULL);
1988 	if (error) {
1989 		if (error != -EOPNOTSUPP) {
1990 			iput(inode);
1991 			return error;
1992 		}
1993 		error = 0;
1994 	}
1995 
1996 	info = SHMEM_I(inode);
1997 	inode->i_size = len-1;
1998 	if (len <= SHORT_SYMLINK_LEN) {
1999 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2000 		if (!info->symlink) {
2001 			iput(inode);
2002 			return -ENOMEM;
2003 		}
2004 		inode->i_op = &shmem_short_symlink_operations;
2005 	} else {
2006 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2007 		if (error) {
2008 			iput(inode);
2009 			return error;
2010 		}
2011 		inode->i_mapping->a_ops = &shmem_aops;
2012 		inode->i_op = &shmem_symlink_inode_operations;
2013 		kaddr = kmap_atomic(page);
2014 		memcpy(kaddr, symname, len);
2015 		kunmap_atomic(kaddr);
2016 		SetPageUptodate(page);
2017 		set_page_dirty(page);
2018 		unlock_page(page);
2019 		page_cache_release(page);
2020 	}
2021 	dir->i_size += BOGO_DIRENT_SIZE;
2022 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2023 	d_instantiate(dentry, inode);
2024 	dget(dentry);
2025 	return 0;
2026 }
2027 
2028 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2029 {
2030 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2031 	return NULL;
2032 }
2033 
2034 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2035 {
2036 	struct page *page = NULL;
2037 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2038 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2039 	if (page)
2040 		unlock_page(page);
2041 	return page;
2042 }
2043 
2044 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2045 {
2046 	if (!IS_ERR(nd_get_link(nd))) {
2047 		struct page *page = cookie;
2048 		kunmap(page);
2049 		mark_page_accessed(page);
2050 		page_cache_release(page);
2051 	}
2052 }
2053 
2054 #ifdef CONFIG_TMPFS_XATTR
2055 /*
2056  * Superblocks without xattr inode operations may get some security.* xattr
2057  * support from the LSM "for free". As soon as we have any other xattrs
2058  * like ACLs, we also need to implement the security.* handlers at
2059  * filesystem level, though.
2060  */
2061 
2062 /*
2063  * Allocate new xattr and copy in the value; but leave the name to callers.
2064  */
2065 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2066 {
2067 	struct shmem_xattr *new_xattr;
2068 	size_t len;
2069 
2070 	/* wrap around? */
2071 	len = sizeof(*new_xattr) + size;
2072 	if (len <= sizeof(*new_xattr))
2073 		return NULL;
2074 
2075 	new_xattr = kmalloc(len, GFP_KERNEL);
2076 	if (!new_xattr)
2077 		return NULL;
2078 
2079 	new_xattr->size = size;
2080 	memcpy(new_xattr->value, value, size);
2081 	return new_xattr;
2082 }
2083 
2084 /*
2085  * Callback for security_inode_init_security() for acquiring xattrs.
2086  */
2087 static int shmem_initxattrs(struct inode *inode,
2088 			    const struct xattr *xattr_array,
2089 			    void *fs_info)
2090 {
2091 	struct shmem_inode_info *info = SHMEM_I(inode);
2092 	const struct xattr *xattr;
2093 	struct shmem_xattr *new_xattr;
2094 	size_t len;
2095 
2096 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2097 		new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2098 		if (!new_xattr)
2099 			return -ENOMEM;
2100 
2101 		len = strlen(xattr->name) + 1;
2102 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2103 					  GFP_KERNEL);
2104 		if (!new_xattr->name) {
2105 			kfree(new_xattr);
2106 			return -ENOMEM;
2107 		}
2108 
2109 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2110 		       XATTR_SECURITY_PREFIX_LEN);
2111 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2112 		       xattr->name, len);
2113 
2114 		spin_lock(&info->lock);
2115 		list_add(&new_xattr->list, &info->xattr_list);
2116 		spin_unlock(&info->lock);
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2123 			   void *buffer, size_t size)
2124 {
2125 	struct shmem_inode_info *info;
2126 	struct shmem_xattr *xattr;
2127 	int ret = -ENODATA;
2128 
2129 	info = SHMEM_I(dentry->d_inode);
2130 
2131 	spin_lock(&info->lock);
2132 	list_for_each_entry(xattr, &info->xattr_list, list) {
2133 		if (strcmp(name, xattr->name))
2134 			continue;
2135 
2136 		ret = xattr->size;
2137 		if (buffer) {
2138 			if (size < xattr->size)
2139 				ret = -ERANGE;
2140 			else
2141 				memcpy(buffer, xattr->value, xattr->size);
2142 		}
2143 		break;
2144 	}
2145 	spin_unlock(&info->lock);
2146 	return ret;
2147 }
2148 
2149 static int shmem_xattr_set(struct inode *inode, const char *name,
2150 			   const void *value, size_t size, int flags)
2151 {
2152 	struct shmem_inode_info *info = SHMEM_I(inode);
2153 	struct shmem_xattr *xattr;
2154 	struct shmem_xattr *new_xattr = NULL;
2155 	int err = 0;
2156 
2157 	/* value == NULL means remove */
2158 	if (value) {
2159 		new_xattr = shmem_xattr_alloc(value, size);
2160 		if (!new_xattr)
2161 			return -ENOMEM;
2162 
2163 		new_xattr->name = kstrdup(name, GFP_KERNEL);
2164 		if (!new_xattr->name) {
2165 			kfree(new_xattr);
2166 			return -ENOMEM;
2167 		}
2168 	}
2169 
2170 	spin_lock(&info->lock);
2171 	list_for_each_entry(xattr, &info->xattr_list, list) {
2172 		if (!strcmp(name, xattr->name)) {
2173 			if (flags & XATTR_CREATE) {
2174 				xattr = new_xattr;
2175 				err = -EEXIST;
2176 			} else if (new_xattr) {
2177 				list_replace(&xattr->list, &new_xattr->list);
2178 			} else {
2179 				list_del(&xattr->list);
2180 			}
2181 			goto out;
2182 		}
2183 	}
2184 	if (flags & XATTR_REPLACE) {
2185 		xattr = new_xattr;
2186 		err = -ENODATA;
2187 	} else {
2188 		list_add(&new_xattr->list, &info->xattr_list);
2189 		xattr = NULL;
2190 	}
2191 out:
2192 	spin_unlock(&info->lock);
2193 	if (xattr)
2194 		kfree(xattr->name);
2195 	kfree(xattr);
2196 	return err;
2197 }
2198 
2199 static const struct xattr_handler *shmem_xattr_handlers[] = {
2200 #ifdef CONFIG_TMPFS_POSIX_ACL
2201 	&generic_acl_access_handler,
2202 	&generic_acl_default_handler,
2203 #endif
2204 	NULL
2205 };
2206 
2207 static int shmem_xattr_validate(const char *name)
2208 {
2209 	struct { const char *prefix; size_t len; } arr[] = {
2210 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2211 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2212 	};
2213 	int i;
2214 
2215 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2216 		size_t preflen = arr[i].len;
2217 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2218 			if (!name[preflen])
2219 				return -EINVAL;
2220 			return 0;
2221 		}
2222 	}
2223 	return -EOPNOTSUPP;
2224 }
2225 
2226 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2227 			      void *buffer, size_t size)
2228 {
2229 	int err;
2230 
2231 	/*
2232 	 * If this is a request for a synthetic attribute in the system.*
2233 	 * namespace use the generic infrastructure to resolve a handler
2234 	 * for it via sb->s_xattr.
2235 	 */
2236 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2237 		return generic_getxattr(dentry, name, buffer, size);
2238 
2239 	err = shmem_xattr_validate(name);
2240 	if (err)
2241 		return err;
2242 
2243 	return shmem_xattr_get(dentry, name, buffer, size);
2244 }
2245 
2246 static int shmem_setxattr(struct dentry *dentry, const char *name,
2247 			  const void *value, size_t size, int flags)
2248 {
2249 	int err;
2250 
2251 	/*
2252 	 * If this is a request for a synthetic attribute in the system.*
2253 	 * namespace use the generic infrastructure to resolve a handler
2254 	 * for it via sb->s_xattr.
2255 	 */
2256 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2257 		return generic_setxattr(dentry, name, value, size, flags);
2258 
2259 	err = shmem_xattr_validate(name);
2260 	if (err)
2261 		return err;
2262 
2263 	if (size == 0)
2264 		value = "";  /* empty EA, do not remove */
2265 
2266 	return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2267 
2268 }
2269 
2270 static int shmem_removexattr(struct dentry *dentry, const char *name)
2271 {
2272 	int err;
2273 
2274 	/*
2275 	 * If this is a request for a synthetic attribute in the system.*
2276 	 * namespace use the generic infrastructure to resolve a handler
2277 	 * for it via sb->s_xattr.
2278 	 */
2279 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2280 		return generic_removexattr(dentry, name);
2281 
2282 	err = shmem_xattr_validate(name);
2283 	if (err)
2284 		return err;
2285 
2286 	return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2287 }
2288 
2289 static bool xattr_is_trusted(const char *name)
2290 {
2291 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2292 }
2293 
2294 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2295 {
2296 	bool trusted = capable(CAP_SYS_ADMIN);
2297 	struct shmem_xattr *xattr;
2298 	struct shmem_inode_info *info;
2299 	size_t used = 0;
2300 
2301 	info = SHMEM_I(dentry->d_inode);
2302 
2303 	spin_lock(&info->lock);
2304 	list_for_each_entry(xattr, &info->xattr_list, list) {
2305 		size_t len;
2306 
2307 		/* skip "trusted." attributes for unprivileged callers */
2308 		if (!trusted && xattr_is_trusted(xattr->name))
2309 			continue;
2310 
2311 		len = strlen(xattr->name) + 1;
2312 		used += len;
2313 		if (buffer) {
2314 			if (size < used) {
2315 				used = -ERANGE;
2316 				break;
2317 			}
2318 			memcpy(buffer, xattr->name, len);
2319 			buffer += len;
2320 		}
2321 	}
2322 	spin_unlock(&info->lock);
2323 
2324 	return used;
2325 }
2326 #endif /* CONFIG_TMPFS_XATTR */
2327 
2328 static const struct inode_operations shmem_short_symlink_operations = {
2329 	.readlink	= generic_readlink,
2330 	.follow_link	= shmem_follow_short_symlink,
2331 #ifdef CONFIG_TMPFS_XATTR
2332 	.setxattr	= shmem_setxattr,
2333 	.getxattr	= shmem_getxattr,
2334 	.listxattr	= shmem_listxattr,
2335 	.removexattr	= shmem_removexattr,
2336 #endif
2337 };
2338 
2339 static const struct inode_operations shmem_symlink_inode_operations = {
2340 	.readlink	= generic_readlink,
2341 	.follow_link	= shmem_follow_link,
2342 	.put_link	= shmem_put_link,
2343 #ifdef CONFIG_TMPFS_XATTR
2344 	.setxattr	= shmem_setxattr,
2345 	.getxattr	= shmem_getxattr,
2346 	.listxattr	= shmem_listxattr,
2347 	.removexattr	= shmem_removexattr,
2348 #endif
2349 };
2350 
2351 static struct dentry *shmem_get_parent(struct dentry *child)
2352 {
2353 	return ERR_PTR(-ESTALE);
2354 }
2355 
2356 static int shmem_match(struct inode *ino, void *vfh)
2357 {
2358 	__u32 *fh = vfh;
2359 	__u64 inum = fh[2];
2360 	inum = (inum << 32) | fh[1];
2361 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2362 }
2363 
2364 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2365 		struct fid *fid, int fh_len, int fh_type)
2366 {
2367 	struct inode *inode;
2368 	struct dentry *dentry = NULL;
2369 	u64 inum = fid->raw[2];
2370 	inum = (inum << 32) | fid->raw[1];
2371 
2372 	if (fh_len < 3)
2373 		return NULL;
2374 
2375 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2376 			shmem_match, fid->raw);
2377 	if (inode) {
2378 		dentry = d_find_alias(inode);
2379 		iput(inode);
2380 	}
2381 
2382 	return dentry;
2383 }
2384 
2385 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2386 				struct inode *parent)
2387 {
2388 	if (*len < 3) {
2389 		*len = 3;
2390 		return 255;
2391 	}
2392 
2393 	if (inode_unhashed(inode)) {
2394 		/* Unfortunately insert_inode_hash is not idempotent,
2395 		 * so as we hash inodes here rather than at creation
2396 		 * time, we need a lock to ensure we only try
2397 		 * to do it once
2398 		 */
2399 		static DEFINE_SPINLOCK(lock);
2400 		spin_lock(&lock);
2401 		if (inode_unhashed(inode))
2402 			__insert_inode_hash(inode,
2403 					    inode->i_ino + inode->i_generation);
2404 		spin_unlock(&lock);
2405 	}
2406 
2407 	fh[0] = inode->i_generation;
2408 	fh[1] = inode->i_ino;
2409 	fh[2] = ((__u64)inode->i_ino) >> 32;
2410 
2411 	*len = 3;
2412 	return 1;
2413 }
2414 
2415 static const struct export_operations shmem_export_ops = {
2416 	.get_parent     = shmem_get_parent,
2417 	.encode_fh      = shmem_encode_fh,
2418 	.fh_to_dentry	= shmem_fh_to_dentry,
2419 };
2420 
2421 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2422 			       bool remount)
2423 {
2424 	char *this_char, *value, *rest;
2425 	uid_t uid;
2426 	gid_t gid;
2427 
2428 	while (options != NULL) {
2429 		this_char = options;
2430 		for (;;) {
2431 			/*
2432 			 * NUL-terminate this option: unfortunately,
2433 			 * mount options form a comma-separated list,
2434 			 * but mpol's nodelist may also contain commas.
2435 			 */
2436 			options = strchr(options, ',');
2437 			if (options == NULL)
2438 				break;
2439 			options++;
2440 			if (!isdigit(*options)) {
2441 				options[-1] = '\0';
2442 				break;
2443 			}
2444 		}
2445 		if (!*this_char)
2446 			continue;
2447 		if ((value = strchr(this_char,'=')) != NULL) {
2448 			*value++ = 0;
2449 		} else {
2450 			printk(KERN_ERR
2451 			    "tmpfs: No value for mount option '%s'\n",
2452 			    this_char);
2453 			return 1;
2454 		}
2455 
2456 		if (!strcmp(this_char,"size")) {
2457 			unsigned long long size;
2458 			size = memparse(value,&rest);
2459 			if (*rest == '%') {
2460 				size <<= PAGE_SHIFT;
2461 				size *= totalram_pages;
2462 				do_div(size, 100);
2463 				rest++;
2464 			}
2465 			if (*rest)
2466 				goto bad_val;
2467 			sbinfo->max_blocks =
2468 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2469 		} else if (!strcmp(this_char,"nr_blocks")) {
2470 			sbinfo->max_blocks = memparse(value, &rest);
2471 			if (*rest)
2472 				goto bad_val;
2473 		} else if (!strcmp(this_char,"nr_inodes")) {
2474 			sbinfo->max_inodes = memparse(value, &rest);
2475 			if (*rest)
2476 				goto bad_val;
2477 		} else if (!strcmp(this_char,"mode")) {
2478 			if (remount)
2479 				continue;
2480 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2481 			if (*rest)
2482 				goto bad_val;
2483 		} else if (!strcmp(this_char,"uid")) {
2484 			if (remount)
2485 				continue;
2486 			uid = simple_strtoul(value, &rest, 0);
2487 			if (*rest)
2488 				goto bad_val;
2489 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2490 			if (!uid_valid(sbinfo->uid))
2491 				goto bad_val;
2492 		} else if (!strcmp(this_char,"gid")) {
2493 			if (remount)
2494 				continue;
2495 			gid = simple_strtoul(value, &rest, 0);
2496 			if (*rest)
2497 				goto bad_val;
2498 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2499 			if (!gid_valid(sbinfo->gid))
2500 				goto bad_val;
2501 		} else if (!strcmp(this_char,"mpol")) {
2502 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2503 				goto bad_val;
2504 		} else {
2505 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2506 			       this_char);
2507 			return 1;
2508 		}
2509 	}
2510 	return 0;
2511 
2512 bad_val:
2513 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2514 	       value, this_char);
2515 	return 1;
2516 
2517 }
2518 
2519 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2520 {
2521 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2522 	struct shmem_sb_info config = *sbinfo;
2523 	unsigned long inodes;
2524 	int error = -EINVAL;
2525 
2526 	if (shmem_parse_options(data, &config, true))
2527 		return error;
2528 
2529 	spin_lock(&sbinfo->stat_lock);
2530 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2531 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2532 		goto out;
2533 	if (config.max_inodes < inodes)
2534 		goto out;
2535 	/*
2536 	 * Those tests disallow limited->unlimited while any are in use;
2537 	 * but we must separately disallow unlimited->limited, because
2538 	 * in that case we have no record of how much is already in use.
2539 	 */
2540 	if (config.max_blocks && !sbinfo->max_blocks)
2541 		goto out;
2542 	if (config.max_inodes && !sbinfo->max_inodes)
2543 		goto out;
2544 
2545 	error = 0;
2546 	sbinfo->max_blocks  = config.max_blocks;
2547 	sbinfo->max_inodes  = config.max_inodes;
2548 	sbinfo->free_inodes = config.max_inodes - inodes;
2549 
2550 	mpol_put(sbinfo->mpol);
2551 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2552 out:
2553 	spin_unlock(&sbinfo->stat_lock);
2554 	return error;
2555 }
2556 
2557 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2558 {
2559 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2560 
2561 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2562 		seq_printf(seq, ",size=%luk",
2563 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2564 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2565 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2566 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2567 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2568 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2569 		seq_printf(seq, ",uid=%u",
2570 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2571 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2572 		seq_printf(seq, ",gid=%u",
2573 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2574 	shmem_show_mpol(seq, sbinfo->mpol);
2575 	return 0;
2576 }
2577 #endif /* CONFIG_TMPFS */
2578 
2579 static void shmem_put_super(struct super_block *sb)
2580 {
2581 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2582 
2583 	percpu_counter_destroy(&sbinfo->used_blocks);
2584 	kfree(sbinfo);
2585 	sb->s_fs_info = NULL;
2586 }
2587 
2588 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2589 {
2590 	struct inode *inode;
2591 	struct shmem_sb_info *sbinfo;
2592 	int err = -ENOMEM;
2593 
2594 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2595 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2596 				L1_CACHE_BYTES), GFP_KERNEL);
2597 	if (!sbinfo)
2598 		return -ENOMEM;
2599 
2600 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2601 	sbinfo->uid = current_fsuid();
2602 	sbinfo->gid = current_fsgid();
2603 	sb->s_fs_info = sbinfo;
2604 
2605 #ifdef CONFIG_TMPFS
2606 	/*
2607 	 * Per default we only allow half of the physical ram per
2608 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2609 	 * but the internal instance is left unlimited.
2610 	 */
2611 	if (!(sb->s_flags & MS_NOUSER)) {
2612 		sbinfo->max_blocks = shmem_default_max_blocks();
2613 		sbinfo->max_inodes = shmem_default_max_inodes();
2614 		if (shmem_parse_options(data, sbinfo, false)) {
2615 			err = -EINVAL;
2616 			goto failed;
2617 		}
2618 	}
2619 	sb->s_export_op = &shmem_export_ops;
2620 	sb->s_flags |= MS_NOSEC;
2621 #else
2622 	sb->s_flags |= MS_NOUSER;
2623 #endif
2624 
2625 	spin_lock_init(&sbinfo->stat_lock);
2626 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2627 		goto failed;
2628 	sbinfo->free_inodes = sbinfo->max_inodes;
2629 
2630 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2631 	sb->s_blocksize = PAGE_CACHE_SIZE;
2632 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2633 	sb->s_magic = TMPFS_MAGIC;
2634 	sb->s_op = &shmem_ops;
2635 	sb->s_time_gran = 1;
2636 #ifdef CONFIG_TMPFS_XATTR
2637 	sb->s_xattr = shmem_xattr_handlers;
2638 #endif
2639 #ifdef CONFIG_TMPFS_POSIX_ACL
2640 	sb->s_flags |= MS_POSIXACL;
2641 #endif
2642 
2643 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2644 	if (!inode)
2645 		goto failed;
2646 	inode->i_uid = sbinfo->uid;
2647 	inode->i_gid = sbinfo->gid;
2648 	sb->s_root = d_make_root(inode);
2649 	if (!sb->s_root)
2650 		goto failed;
2651 	return 0;
2652 
2653 failed:
2654 	shmem_put_super(sb);
2655 	return err;
2656 }
2657 
2658 static struct kmem_cache *shmem_inode_cachep;
2659 
2660 static struct inode *shmem_alloc_inode(struct super_block *sb)
2661 {
2662 	struct shmem_inode_info *info;
2663 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2664 	if (!info)
2665 		return NULL;
2666 	return &info->vfs_inode;
2667 }
2668 
2669 static void shmem_destroy_callback(struct rcu_head *head)
2670 {
2671 	struct inode *inode = container_of(head, struct inode, i_rcu);
2672 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2673 }
2674 
2675 static void shmem_destroy_inode(struct inode *inode)
2676 {
2677 	if (S_ISREG(inode->i_mode))
2678 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2679 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2680 }
2681 
2682 static void shmem_init_inode(void *foo)
2683 {
2684 	struct shmem_inode_info *info = foo;
2685 	inode_init_once(&info->vfs_inode);
2686 }
2687 
2688 static int shmem_init_inodecache(void)
2689 {
2690 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2691 				sizeof(struct shmem_inode_info),
2692 				0, SLAB_PANIC, shmem_init_inode);
2693 	return 0;
2694 }
2695 
2696 static void shmem_destroy_inodecache(void)
2697 {
2698 	kmem_cache_destroy(shmem_inode_cachep);
2699 }
2700 
2701 static const struct address_space_operations shmem_aops = {
2702 	.writepage	= shmem_writepage,
2703 	.set_page_dirty	= __set_page_dirty_no_writeback,
2704 #ifdef CONFIG_TMPFS
2705 	.write_begin	= shmem_write_begin,
2706 	.write_end	= shmem_write_end,
2707 #endif
2708 	.migratepage	= migrate_page,
2709 	.error_remove_page = generic_error_remove_page,
2710 };
2711 
2712 static const struct file_operations shmem_file_operations = {
2713 	.mmap		= shmem_mmap,
2714 #ifdef CONFIG_TMPFS
2715 	.llseek		= generic_file_llseek,
2716 	.read		= do_sync_read,
2717 	.write		= do_sync_write,
2718 	.aio_read	= shmem_file_aio_read,
2719 	.aio_write	= generic_file_aio_write,
2720 	.fsync		= noop_fsync,
2721 	.splice_read	= shmem_file_splice_read,
2722 	.splice_write	= generic_file_splice_write,
2723 	.fallocate	= shmem_fallocate,
2724 #endif
2725 };
2726 
2727 static const struct inode_operations shmem_inode_operations = {
2728 	.setattr	= shmem_setattr,
2729 #ifdef CONFIG_TMPFS_XATTR
2730 	.setxattr	= shmem_setxattr,
2731 	.getxattr	= shmem_getxattr,
2732 	.listxattr	= shmem_listxattr,
2733 	.removexattr	= shmem_removexattr,
2734 #endif
2735 };
2736 
2737 static const struct inode_operations shmem_dir_inode_operations = {
2738 #ifdef CONFIG_TMPFS
2739 	.create		= shmem_create,
2740 	.lookup		= simple_lookup,
2741 	.link		= shmem_link,
2742 	.unlink		= shmem_unlink,
2743 	.symlink	= shmem_symlink,
2744 	.mkdir		= shmem_mkdir,
2745 	.rmdir		= shmem_rmdir,
2746 	.mknod		= shmem_mknod,
2747 	.rename		= shmem_rename,
2748 #endif
2749 #ifdef CONFIG_TMPFS_XATTR
2750 	.setxattr	= shmem_setxattr,
2751 	.getxattr	= shmem_getxattr,
2752 	.listxattr	= shmem_listxattr,
2753 	.removexattr	= shmem_removexattr,
2754 #endif
2755 #ifdef CONFIG_TMPFS_POSIX_ACL
2756 	.setattr	= shmem_setattr,
2757 #endif
2758 };
2759 
2760 static const struct inode_operations shmem_special_inode_operations = {
2761 #ifdef CONFIG_TMPFS_XATTR
2762 	.setxattr	= shmem_setxattr,
2763 	.getxattr	= shmem_getxattr,
2764 	.listxattr	= shmem_listxattr,
2765 	.removexattr	= shmem_removexattr,
2766 #endif
2767 #ifdef CONFIG_TMPFS_POSIX_ACL
2768 	.setattr	= shmem_setattr,
2769 #endif
2770 };
2771 
2772 static const struct super_operations shmem_ops = {
2773 	.alloc_inode	= shmem_alloc_inode,
2774 	.destroy_inode	= shmem_destroy_inode,
2775 #ifdef CONFIG_TMPFS
2776 	.statfs		= shmem_statfs,
2777 	.remount_fs	= shmem_remount_fs,
2778 	.show_options	= shmem_show_options,
2779 #endif
2780 	.evict_inode	= shmem_evict_inode,
2781 	.drop_inode	= generic_delete_inode,
2782 	.put_super	= shmem_put_super,
2783 };
2784 
2785 static const struct vm_operations_struct shmem_vm_ops = {
2786 	.fault		= shmem_fault,
2787 #ifdef CONFIG_NUMA
2788 	.set_policy     = shmem_set_policy,
2789 	.get_policy     = shmem_get_policy,
2790 #endif
2791 };
2792 
2793 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2794 	int flags, const char *dev_name, void *data)
2795 {
2796 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2797 }
2798 
2799 static struct file_system_type shmem_fs_type = {
2800 	.owner		= THIS_MODULE,
2801 	.name		= "tmpfs",
2802 	.mount		= shmem_mount,
2803 	.kill_sb	= kill_litter_super,
2804 };
2805 
2806 int __init shmem_init(void)
2807 {
2808 	int error;
2809 
2810 	error = bdi_init(&shmem_backing_dev_info);
2811 	if (error)
2812 		goto out4;
2813 
2814 	error = shmem_init_inodecache();
2815 	if (error)
2816 		goto out3;
2817 
2818 	error = register_filesystem(&shmem_fs_type);
2819 	if (error) {
2820 		printk(KERN_ERR "Could not register tmpfs\n");
2821 		goto out2;
2822 	}
2823 
2824 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2825 				 shmem_fs_type.name, NULL);
2826 	if (IS_ERR(shm_mnt)) {
2827 		error = PTR_ERR(shm_mnt);
2828 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2829 		goto out1;
2830 	}
2831 	return 0;
2832 
2833 out1:
2834 	unregister_filesystem(&shmem_fs_type);
2835 out2:
2836 	shmem_destroy_inodecache();
2837 out3:
2838 	bdi_destroy(&shmem_backing_dev_info);
2839 out4:
2840 	shm_mnt = ERR_PTR(error);
2841 	return error;
2842 }
2843 
2844 #else /* !CONFIG_SHMEM */
2845 
2846 /*
2847  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2848  *
2849  * This is intended for small system where the benefits of the full
2850  * shmem code (swap-backed and resource-limited) are outweighed by
2851  * their complexity. On systems without swap this code should be
2852  * effectively equivalent, but much lighter weight.
2853  */
2854 
2855 #include <linux/ramfs.h>
2856 
2857 static struct file_system_type shmem_fs_type = {
2858 	.name		= "tmpfs",
2859 	.mount		= ramfs_mount,
2860 	.kill_sb	= kill_litter_super,
2861 };
2862 
2863 int __init shmem_init(void)
2864 {
2865 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2866 
2867 	shm_mnt = kern_mount(&shmem_fs_type);
2868 	BUG_ON(IS_ERR(shm_mnt));
2869 
2870 	return 0;
2871 }
2872 
2873 int shmem_unuse(swp_entry_t swap, struct page *page)
2874 {
2875 	return 0;
2876 }
2877 
2878 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2879 {
2880 	return 0;
2881 }
2882 
2883 void shmem_unlock_mapping(struct address_space *mapping)
2884 {
2885 }
2886 
2887 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2888 {
2889 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2890 }
2891 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2892 
2893 #define shmem_vm_ops				generic_file_vm_ops
2894 #define shmem_file_operations			ramfs_file_operations
2895 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2896 #define shmem_acct_size(flags, size)		0
2897 #define shmem_unacct_size(flags, size)		do {} while (0)
2898 
2899 #endif /* CONFIG_SHMEM */
2900 
2901 /* common code */
2902 
2903 /**
2904  * shmem_file_setup - get an unlinked file living in tmpfs
2905  * @name: name for dentry (to be seen in /proc/<pid>/maps
2906  * @size: size to be set for the file
2907  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2908  */
2909 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2910 {
2911 	int error;
2912 	struct file *file;
2913 	struct inode *inode;
2914 	struct path path;
2915 	struct dentry *root;
2916 	struct qstr this;
2917 
2918 	if (IS_ERR(shm_mnt))
2919 		return (void *)shm_mnt;
2920 
2921 	if (size < 0 || size > MAX_LFS_FILESIZE)
2922 		return ERR_PTR(-EINVAL);
2923 
2924 	if (shmem_acct_size(flags, size))
2925 		return ERR_PTR(-ENOMEM);
2926 
2927 	error = -ENOMEM;
2928 	this.name = name;
2929 	this.len = strlen(name);
2930 	this.hash = 0; /* will go */
2931 	root = shm_mnt->mnt_root;
2932 	path.dentry = d_alloc(root, &this);
2933 	if (!path.dentry)
2934 		goto put_memory;
2935 	path.mnt = mntget(shm_mnt);
2936 
2937 	error = -ENOSPC;
2938 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2939 	if (!inode)
2940 		goto put_dentry;
2941 
2942 	d_instantiate(path.dentry, inode);
2943 	inode->i_size = size;
2944 	clear_nlink(inode);	/* It is unlinked */
2945 #ifndef CONFIG_MMU
2946 	error = ramfs_nommu_expand_for_mapping(inode, size);
2947 	if (error)
2948 		goto put_dentry;
2949 #endif
2950 
2951 	error = -ENFILE;
2952 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2953 		  &shmem_file_operations);
2954 	if (!file)
2955 		goto put_dentry;
2956 
2957 	return file;
2958 
2959 put_dentry:
2960 	path_put(&path);
2961 put_memory:
2962 	shmem_unacct_size(flags, size);
2963 	return ERR_PTR(error);
2964 }
2965 EXPORT_SYMBOL_GPL(shmem_file_setup);
2966 
2967 /**
2968  * shmem_zero_setup - setup a shared anonymous mapping
2969  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2970  */
2971 int shmem_zero_setup(struct vm_area_struct *vma)
2972 {
2973 	struct file *file;
2974 	loff_t size = vma->vm_end - vma->vm_start;
2975 
2976 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2977 	if (IS_ERR(file))
2978 		return PTR_ERR(file);
2979 
2980 	if (vma->vm_file)
2981 		fput(vma->vm_file);
2982 	vma->vm_file = file;
2983 	vma->vm_ops = &shmem_vm_ops;
2984 	vma->vm_flags |= VM_CAN_NONLINEAR;
2985 	return 0;
2986 }
2987 
2988 /**
2989  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2990  * @mapping:	the page's address_space
2991  * @index:	the page index
2992  * @gfp:	the page allocator flags to use if allocating
2993  *
2994  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2995  * with any new page allocations done using the specified allocation flags.
2996  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2997  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2998  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2999  *
3000  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3001  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3002  */
3003 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3004 					 pgoff_t index, gfp_t gfp)
3005 {
3006 #ifdef CONFIG_SHMEM
3007 	struct inode *inode = mapping->host;
3008 	struct page *page;
3009 	int error;
3010 
3011 	BUG_ON(mapping->a_ops != &shmem_aops);
3012 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3013 	if (error)
3014 		page = ERR_PTR(error);
3015 	else
3016 		unlock_page(page);
3017 	return page;
3018 #else
3019 	/*
3020 	 * The tiny !SHMEM case uses ramfs without swap
3021 	 */
3022 	return read_cache_page_gfp(mapping, index, gfp);
3023 #endif
3024 }
3025 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3026