1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 struct shmem_options { 111 unsigned long long blocks; 112 unsigned long long inodes; 113 struct mempolicy *mpol; 114 kuid_t uid; 115 kgid_t gid; 116 umode_t mode; 117 int huge; 118 int seen; 119 #define SHMEM_SEEN_BLOCKS 1 120 #define SHMEM_SEEN_INODES 2 121 #define SHMEM_SEEN_HUGE 4 122 }; 123 124 #ifdef CONFIG_TMPFS 125 static unsigned long shmem_default_max_blocks(void) 126 { 127 return totalram_pages() / 2; 128 } 129 130 static unsigned long shmem_default_max_inodes(void) 131 { 132 unsigned long nr_pages = totalram_pages(); 133 134 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 135 } 136 #endif 137 138 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 139 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 140 struct shmem_inode_info *info, pgoff_t index); 141 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 142 struct page **pagep, enum sgp_type sgp, 143 gfp_t gfp, struct vm_area_struct *vma, 144 vm_fault_t *fault_type); 145 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 146 struct page **pagep, enum sgp_type sgp, 147 gfp_t gfp, struct vm_area_struct *vma, 148 struct vm_fault *vmf, vm_fault_t *fault_type); 149 150 int shmem_getpage(struct inode *inode, pgoff_t index, 151 struct page **pagep, enum sgp_type sgp) 152 { 153 return shmem_getpage_gfp(inode, index, pagep, sgp, 154 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 155 } 156 157 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 158 { 159 return sb->s_fs_info; 160 } 161 162 /* 163 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 164 * for shared memory and for shared anonymous (/dev/zero) mappings 165 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 166 * consistent with the pre-accounting of private mappings ... 167 */ 168 static inline int shmem_acct_size(unsigned long flags, loff_t size) 169 { 170 return (flags & VM_NORESERVE) ? 171 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 172 } 173 174 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 175 { 176 if (!(flags & VM_NORESERVE)) 177 vm_unacct_memory(VM_ACCT(size)); 178 } 179 180 static inline int shmem_reacct_size(unsigned long flags, 181 loff_t oldsize, loff_t newsize) 182 { 183 if (!(flags & VM_NORESERVE)) { 184 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 185 return security_vm_enough_memory_mm(current->mm, 186 VM_ACCT(newsize) - VM_ACCT(oldsize)); 187 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 188 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 189 } 190 return 0; 191 } 192 193 /* 194 * ... whereas tmpfs objects are accounted incrementally as 195 * pages are allocated, in order to allow large sparse files. 196 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 197 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 198 */ 199 static inline int shmem_acct_block(unsigned long flags, long pages) 200 { 201 if (!(flags & VM_NORESERVE)) 202 return 0; 203 204 return security_vm_enough_memory_mm(current->mm, 205 pages * VM_ACCT(PAGE_SIZE)); 206 } 207 208 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 209 { 210 if (flags & VM_NORESERVE) 211 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 212 } 213 214 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 215 { 216 struct shmem_inode_info *info = SHMEM_I(inode); 217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 218 219 if (shmem_acct_block(info->flags, pages)) 220 return false; 221 222 if (sbinfo->max_blocks) { 223 if (percpu_counter_compare(&sbinfo->used_blocks, 224 sbinfo->max_blocks - pages) > 0) 225 goto unacct; 226 percpu_counter_add(&sbinfo->used_blocks, pages); 227 } 228 229 return true; 230 231 unacct: 232 shmem_unacct_blocks(info->flags, pages); 233 return false; 234 } 235 236 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 237 { 238 struct shmem_inode_info *info = SHMEM_I(inode); 239 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 240 241 if (sbinfo->max_blocks) 242 percpu_counter_sub(&sbinfo->used_blocks, pages); 243 shmem_unacct_blocks(info->flags, pages); 244 } 245 246 static const struct super_operations shmem_ops; 247 static const struct address_space_operations shmem_aops; 248 static const struct file_operations shmem_file_operations; 249 static const struct inode_operations shmem_inode_operations; 250 static const struct inode_operations shmem_dir_inode_operations; 251 static const struct inode_operations shmem_special_inode_operations; 252 static const struct vm_operations_struct shmem_vm_ops; 253 static struct file_system_type shmem_fs_type; 254 255 bool vma_is_shmem(struct vm_area_struct *vma) 256 { 257 return vma->vm_ops == &shmem_vm_ops; 258 } 259 260 static LIST_HEAD(shmem_swaplist); 261 static DEFINE_MUTEX(shmem_swaplist_mutex); 262 263 static int shmem_reserve_inode(struct super_block *sb) 264 { 265 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 266 if (sbinfo->max_inodes) { 267 spin_lock(&sbinfo->stat_lock); 268 if (!sbinfo->free_inodes) { 269 spin_unlock(&sbinfo->stat_lock); 270 return -ENOSPC; 271 } 272 sbinfo->free_inodes--; 273 spin_unlock(&sbinfo->stat_lock); 274 } 275 return 0; 276 } 277 278 static void shmem_free_inode(struct super_block *sb) 279 { 280 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 281 if (sbinfo->max_inodes) { 282 spin_lock(&sbinfo->stat_lock); 283 sbinfo->free_inodes++; 284 spin_unlock(&sbinfo->stat_lock); 285 } 286 } 287 288 /** 289 * shmem_recalc_inode - recalculate the block usage of an inode 290 * @inode: inode to recalc 291 * 292 * We have to calculate the free blocks since the mm can drop 293 * undirtied hole pages behind our back. 294 * 295 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 296 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 297 * 298 * It has to be called with the spinlock held. 299 */ 300 static void shmem_recalc_inode(struct inode *inode) 301 { 302 struct shmem_inode_info *info = SHMEM_I(inode); 303 long freed; 304 305 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 306 if (freed > 0) { 307 info->alloced -= freed; 308 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 309 shmem_inode_unacct_blocks(inode, freed); 310 } 311 } 312 313 bool shmem_charge(struct inode *inode, long pages) 314 { 315 struct shmem_inode_info *info = SHMEM_I(inode); 316 unsigned long flags; 317 318 if (!shmem_inode_acct_block(inode, pages)) 319 return false; 320 321 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 322 inode->i_mapping->nrpages += pages; 323 324 spin_lock_irqsave(&info->lock, flags); 325 info->alloced += pages; 326 inode->i_blocks += pages * BLOCKS_PER_PAGE; 327 shmem_recalc_inode(inode); 328 spin_unlock_irqrestore(&info->lock, flags); 329 330 return true; 331 } 332 333 void shmem_uncharge(struct inode *inode, long pages) 334 { 335 struct shmem_inode_info *info = SHMEM_I(inode); 336 unsigned long flags; 337 338 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 339 340 spin_lock_irqsave(&info->lock, flags); 341 info->alloced -= pages; 342 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 343 shmem_recalc_inode(inode); 344 spin_unlock_irqrestore(&info->lock, flags); 345 346 shmem_inode_unacct_blocks(inode, pages); 347 } 348 349 /* 350 * Replace item expected in xarray by a new item, while holding xa_lock. 351 */ 352 static int shmem_replace_entry(struct address_space *mapping, 353 pgoff_t index, void *expected, void *replacement) 354 { 355 XA_STATE(xas, &mapping->i_pages, index); 356 void *item; 357 358 VM_BUG_ON(!expected); 359 VM_BUG_ON(!replacement); 360 item = xas_load(&xas); 361 if (item != expected) 362 return -ENOENT; 363 xas_store(&xas, replacement); 364 return 0; 365 } 366 367 /* 368 * Sometimes, before we decide whether to proceed or to fail, we must check 369 * that an entry was not already brought back from swap by a racing thread. 370 * 371 * Checking page is not enough: by the time a SwapCache page is locked, it 372 * might be reused, and again be SwapCache, using the same swap as before. 373 */ 374 static bool shmem_confirm_swap(struct address_space *mapping, 375 pgoff_t index, swp_entry_t swap) 376 { 377 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 378 } 379 380 /* 381 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 382 * 383 * SHMEM_HUGE_NEVER: 384 * disables huge pages for the mount; 385 * SHMEM_HUGE_ALWAYS: 386 * enables huge pages for the mount; 387 * SHMEM_HUGE_WITHIN_SIZE: 388 * only allocate huge pages if the page will be fully within i_size, 389 * also respect fadvise()/madvise() hints; 390 * SHMEM_HUGE_ADVISE: 391 * only allocate huge pages if requested with fadvise()/madvise(); 392 */ 393 394 #define SHMEM_HUGE_NEVER 0 395 #define SHMEM_HUGE_ALWAYS 1 396 #define SHMEM_HUGE_WITHIN_SIZE 2 397 #define SHMEM_HUGE_ADVISE 3 398 399 /* 400 * Special values. 401 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 402 * 403 * SHMEM_HUGE_DENY: 404 * disables huge on shm_mnt and all mounts, for emergency use; 405 * SHMEM_HUGE_FORCE: 406 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 407 * 408 */ 409 #define SHMEM_HUGE_DENY (-1) 410 #define SHMEM_HUGE_FORCE (-2) 411 412 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 413 /* ifdef here to avoid bloating shmem.o when not necessary */ 414 415 static int shmem_huge __read_mostly; 416 417 #if defined(CONFIG_SYSFS) 418 static int shmem_parse_huge(const char *str) 419 { 420 if (!strcmp(str, "never")) 421 return SHMEM_HUGE_NEVER; 422 if (!strcmp(str, "always")) 423 return SHMEM_HUGE_ALWAYS; 424 if (!strcmp(str, "within_size")) 425 return SHMEM_HUGE_WITHIN_SIZE; 426 if (!strcmp(str, "advise")) 427 return SHMEM_HUGE_ADVISE; 428 if (!strcmp(str, "deny")) 429 return SHMEM_HUGE_DENY; 430 if (!strcmp(str, "force")) 431 return SHMEM_HUGE_FORCE; 432 return -EINVAL; 433 } 434 #endif 435 436 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 437 static const char *shmem_format_huge(int huge) 438 { 439 switch (huge) { 440 case SHMEM_HUGE_NEVER: 441 return "never"; 442 case SHMEM_HUGE_ALWAYS: 443 return "always"; 444 case SHMEM_HUGE_WITHIN_SIZE: 445 return "within_size"; 446 case SHMEM_HUGE_ADVISE: 447 return "advise"; 448 case SHMEM_HUGE_DENY: 449 return "deny"; 450 case SHMEM_HUGE_FORCE: 451 return "force"; 452 default: 453 VM_BUG_ON(1); 454 return "bad_val"; 455 } 456 } 457 #endif 458 459 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 460 struct shrink_control *sc, unsigned long nr_to_split) 461 { 462 LIST_HEAD(list), *pos, *next; 463 LIST_HEAD(to_remove); 464 struct inode *inode; 465 struct shmem_inode_info *info; 466 struct page *page; 467 unsigned long batch = sc ? sc->nr_to_scan : 128; 468 int removed = 0, split = 0; 469 470 if (list_empty(&sbinfo->shrinklist)) 471 return SHRINK_STOP; 472 473 spin_lock(&sbinfo->shrinklist_lock); 474 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 475 info = list_entry(pos, struct shmem_inode_info, shrinklist); 476 477 /* pin the inode */ 478 inode = igrab(&info->vfs_inode); 479 480 /* inode is about to be evicted */ 481 if (!inode) { 482 list_del_init(&info->shrinklist); 483 removed++; 484 goto next; 485 } 486 487 /* Check if there's anything to gain */ 488 if (round_up(inode->i_size, PAGE_SIZE) == 489 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 490 list_move(&info->shrinklist, &to_remove); 491 removed++; 492 goto next; 493 } 494 495 list_move(&info->shrinklist, &list); 496 next: 497 if (!--batch) 498 break; 499 } 500 spin_unlock(&sbinfo->shrinklist_lock); 501 502 list_for_each_safe(pos, next, &to_remove) { 503 info = list_entry(pos, struct shmem_inode_info, shrinklist); 504 inode = &info->vfs_inode; 505 list_del_init(&info->shrinklist); 506 iput(inode); 507 } 508 509 list_for_each_safe(pos, next, &list) { 510 int ret; 511 512 info = list_entry(pos, struct shmem_inode_info, shrinklist); 513 inode = &info->vfs_inode; 514 515 if (nr_to_split && split >= nr_to_split) 516 goto leave; 517 518 page = find_get_page(inode->i_mapping, 519 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 520 if (!page) 521 goto drop; 522 523 /* No huge page at the end of the file: nothing to split */ 524 if (!PageTransHuge(page)) { 525 put_page(page); 526 goto drop; 527 } 528 529 /* 530 * Leave the inode on the list if we failed to lock 531 * the page at this time. 532 * 533 * Waiting for the lock may lead to deadlock in the 534 * reclaim path. 535 */ 536 if (!trylock_page(page)) { 537 put_page(page); 538 goto leave; 539 } 540 541 ret = split_huge_page(page); 542 unlock_page(page); 543 put_page(page); 544 545 /* If split failed leave the inode on the list */ 546 if (ret) 547 goto leave; 548 549 split++; 550 drop: 551 list_del_init(&info->shrinklist); 552 removed++; 553 leave: 554 iput(inode); 555 } 556 557 spin_lock(&sbinfo->shrinklist_lock); 558 list_splice_tail(&list, &sbinfo->shrinklist); 559 sbinfo->shrinklist_len -= removed; 560 spin_unlock(&sbinfo->shrinklist_lock); 561 562 return split; 563 } 564 565 static long shmem_unused_huge_scan(struct super_block *sb, 566 struct shrink_control *sc) 567 { 568 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 569 570 if (!READ_ONCE(sbinfo->shrinklist_len)) 571 return SHRINK_STOP; 572 573 return shmem_unused_huge_shrink(sbinfo, sc, 0); 574 } 575 576 static long shmem_unused_huge_count(struct super_block *sb, 577 struct shrink_control *sc) 578 { 579 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 580 return READ_ONCE(sbinfo->shrinklist_len); 581 } 582 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 583 584 #define shmem_huge SHMEM_HUGE_DENY 585 586 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 587 struct shrink_control *sc, unsigned long nr_to_split) 588 { 589 return 0; 590 } 591 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 592 593 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 594 { 595 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 596 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 597 shmem_huge != SHMEM_HUGE_DENY) 598 return true; 599 return false; 600 } 601 602 /* 603 * Like add_to_page_cache_locked, but error if expected item has gone. 604 */ 605 static int shmem_add_to_page_cache(struct page *page, 606 struct address_space *mapping, 607 pgoff_t index, void *expected, gfp_t gfp, 608 struct mm_struct *charge_mm) 609 { 610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 611 unsigned long i = 0; 612 unsigned long nr = compound_nr(page); 613 int error; 614 615 VM_BUG_ON_PAGE(PageTail(page), page); 616 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 617 VM_BUG_ON_PAGE(!PageLocked(page), page); 618 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 619 VM_BUG_ON(expected && PageTransHuge(page)); 620 621 page_ref_add(page, nr); 622 page->mapping = mapping; 623 page->index = index; 624 625 if (!PageSwapCache(page)) { 626 error = mem_cgroup_charge(page, charge_mm, gfp); 627 if (error) { 628 if (PageTransHuge(page)) { 629 count_vm_event(THP_FILE_FALLBACK); 630 count_vm_event(THP_FILE_FALLBACK_CHARGE); 631 } 632 goto error; 633 } 634 } 635 cgroup_throttle_swaprate(page, gfp); 636 637 do { 638 void *entry; 639 xas_lock_irq(&xas); 640 entry = xas_find_conflict(&xas); 641 if (entry != expected) 642 xas_set_err(&xas, -EEXIST); 643 xas_create_range(&xas); 644 if (xas_error(&xas)) 645 goto unlock; 646 next: 647 xas_store(&xas, page); 648 if (++i < nr) { 649 xas_next(&xas); 650 goto next; 651 } 652 if (PageTransHuge(page)) { 653 count_vm_event(THP_FILE_ALLOC); 654 __inc_node_page_state(page, NR_SHMEM_THPS); 655 } 656 mapping->nrpages += nr; 657 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 658 __mod_lruvec_page_state(page, NR_SHMEM, nr); 659 unlock: 660 xas_unlock_irq(&xas); 661 } while (xas_nomem(&xas, gfp)); 662 663 if (xas_error(&xas)) { 664 error = xas_error(&xas); 665 goto error; 666 } 667 668 return 0; 669 error: 670 page->mapping = NULL; 671 page_ref_sub(page, nr); 672 return error; 673 } 674 675 /* 676 * Like delete_from_page_cache, but substitutes swap for page. 677 */ 678 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 679 { 680 struct address_space *mapping = page->mapping; 681 int error; 682 683 VM_BUG_ON_PAGE(PageCompound(page), page); 684 685 xa_lock_irq(&mapping->i_pages); 686 error = shmem_replace_entry(mapping, page->index, page, radswap); 687 page->mapping = NULL; 688 mapping->nrpages--; 689 __dec_lruvec_page_state(page, NR_FILE_PAGES); 690 __dec_lruvec_page_state(page, NR_SHMEM); 691 xa_unlock_irq(&mapping->i_pages); 692 put_page(page); 693 BUG_ON(error); 694 } 695 696 /* 697 * Remove swap entry from page cache, free the swap and its page cache. 698 */ 699 static int shmem_free_swap(struct address_space *mapping, 700 pgoff_t index, void *radswap) 701 { 702 void *old; 703 704 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 705 if (old != radswap) 706 return -ENOENT; 707 free_swap_and_cache(radix_to_swp_entry(radswap)); 708 return 0; 709 } 710 711 /* 712 * Determine (in bytes) how many of the shmem object's pages mapped by the 713 * given offsets are swapped out. 714 * 715 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 716 * as long as the inode doesn't go away and racy results are not a problem. 717 */ 718 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 719 pgoff_t start, pgoff_t end) 720 { 721 XA_STATE(xas, &mapping->i_pages, start); 722 struct page *page; 723 unsigned long swapped = 0; 724 725 rcu_read_lock(); 726 xas_for_each(&xas, page, end - 1) { 727 if (xas_retry(&xas, page)) 728 continue; 729 if (xa_is_value(page)) 730 swapped++; 731 732 if (need_resched()) { 733 xas_pause(&xas); 734 cond_resched_rcu(); 735 } 736 } 737 738 rcu_read_unlock(); 739 740 return swapped << PAGE_SHIFT; 741 } 742 743 /* 744 * Determine (in bytes) how many of the shmem object's pages mapped by the 745 * given vma is swapped out. 746 * 747 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 748 * as long as the inode doesn't go away and racy results are not a problem. 749 */ 750 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 751 { 752 struct inode *inode = file_inode(vma->vm_file); 753 struct shmem_inode_info *info = SHMEM_I(inode); 754 struct address_space *mapping = inode->i_mapping; 755 unsigned long swapped; 756 757 /* Be careful as we don't hold info->lock */ 758 swapped = READ_ONCE(info->swapped); 759 760 /* 761 * The easier cases are when the shmem object has nothing in swap, or 762 * the vma maps it whole. Then we can simply use the stats that we 763 * already track. 764 */ 765 if (!swapped) 766 return 0; 767 768 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 769 return swapped << PAGE_SHIFT; 770 771 /* Here comes the more involved part */ 772 return shmem_partial_swap_usage(mapping, 773 linear_page_index(vma, vma->vm_start), 774 linear_page_index(vma, vma->vm_end)); 775 } 776 777 /* 778 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 779 */ 780 void shmem_unlock_mapping(struct address_space *mapping) 781 { 782 struct pagevec pvec; 783 pgoff_t indices[PAGEVEC_SIZE]; 784 pgoff_t index = 0; 785 786 pagevec_init(&pvec); 787 /* 788 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 789 */ 790 while (!mapping_unevictable(mapping)) { 791 /* 792 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 793 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 794 */ 795 pvec.nr = find_get_entries(mapping, index, 796 PAGEVEC_SIZE, pvec.pages, indices); 797 if (!pvec.nr) 798 break; 799 index = indices[pvec.nr - 1] + 1; 800 pagevec_remove_exceptionals(&pvec); 801 check_move_unevictable_pages(&pvec); 802 pagevec_release(&pvec); 803 cond_resched(); 804 } 805 } 806 807 /* 808 * Check whether a hole-punch or truncation needs to split a huge page, 809 * returning true if no split was required, or the split has been successful. 810 * 811 * Eviction (or truncation to 0 size) should never need to split a huge page; 812 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 813 * head, and then succeeded to trylock on tail. 814 * 815 * A split can only succeed when there are no additional references on the 816 * huge page: so the split below relies upon find_get_entries() having stopped 817 * when it found a subpage of the huge page, without getting further references. 818 */ 819 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 820 { 821 if (!PageTransCompound(page)) 822 return true; 823 824 /* Just proceed to delete a huge page wholly within the range punched */ 825 if (PageHead(page) && 826 page->index >= start && page->index + HPAGE_PMD_NR <= end) 827 return true; 828 829 /* Try to split huge page, so we can truly punch the hole or truncate */ 830 return split_huge_page(page) >= 0; 831 } 832 833 /* 834 * Remove range of pages and swap entries from page cache, and free them. 835 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 836 */ 837 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 838 bool unfalloc) 839 { 840 struct address_space *mapping = inode->i_mapping; 841 struct shmem_inode_info *info = SHMEM_I(inode); 842 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 843 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 844 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 845 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 846 struct pagevec pvec; 847 pgoff_t indices[PAGEVEC_SIZE]; 848 long nr_swaps_freed = 0; 849 pgoff_t index; 850 int i; 851 852 if (lend == -1) 853 end = -1; /* unsigned, so actually very big */ 854 855 pagevec_init(&pvec); 856 index = start; 857 while (index < end) { 858 pvec.nr = find_get_entries(mapping, index, 859 min(end - index, (pgoff_t)PAGEVEC_SIZE), 860 pvec.pages, indices); 861 if (!pvec.nr) 862 break; 863 for (i = 0; i < pagevec_count(&pvec); i++) { 864 struct page *page = pvec.pages[i]; 865 866 index = indices[i]; 867 if (index >= end) 868 break; 869 870 if (xa_is_value(page)) { 871 if (unfalloc) 872 continue; 873 nr_swaps_freed += !shmem_free_swap(mapping, 874 index, page); 875 continue; 876 } 877 878 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 879 880 if (!trylock_page(page)) 881 continue; 882 883 if ((!unfalloc || !PageUptodate(page)) && 884 page_mapping(page) == mapping) { 885 VM_BUG_ON_PAGE(PageWriteback(page), page); 886 if (shmem_punch_compound(page, start, end)) 887 truncate_inode_page(mapping, page); 888 } 889 unlock_page(page); 890 } 891 pagevec_remove_exceptionals(&pvec); 892 pagevec_release(&pvec); 893 cond_resched(); 894 index++; 895 } 896 897 if (partial_start) { 898 struct page *page = NULL; 899 shmem_getpage(inode, start - 1, &page, SGP_READ); 900 if (page) { 901 unsigned int top = PAGE_SIZE; 902 if (start > end) { 903 top = partial_end; 904 partial_end = 0; 905 } 906 zero_user_segment(page, partial_start, top); 907 set_page_dirty(page); 908 unlock_page(page); 909 put_page(page); 910 } 911 } 912 if (partial_end) { 913 struct page *page = NULL; 914 shmem_getpage(inode, end, &page, SGP_READ); 915 if (page) { 916 zero_user_segment(page, 0, partial_end); 917 set_page_dirty(page); 918 unlock_page(page); 919 put_page(page); 920 } 921 } 922 if (start >= end) 923 return; 924 925 index = start; 926 while (index < end) { 927 cond_resched(); 928 929 pvec.nr = find_get_entries(mapping, index, 930 min(end - index, (pgoff_t)PAGEVEC_SIZE), 931 pvec.pages, indices); 932 if (!pvec.nr) { 933 /* If all gone or hole-punch or unfalloc, we're done */ 934 if (index == start || end != -1) 935 break; 936 /* But if truncating, restart to make sure all gone */ 937 index = start; 938 continue; 939 } 940 for (i = 0; i < pagevec_count(&pvec); i++) { 941 struct page *page = pvec.pages[i]; 942 943 index = indices[i]; 944 if (index >= end) 945 break; 946 947 if (xa_is_value(page)) { 948 if (unfalloc) 949 continue; 950 if (shmem_free_swap(mapping, index, page)) { 951 /* Swap was replaced by page: retry */ 952 index--; 953 break; 954 } 955 nr_swaps_freed++; 956 continue; 957 } 958 959 lock_page(page); 960 961 if (!unfalloc || !PageUptodate(page)) { 962 if (page_mapping(page) != mapping) { 963 /* Page was replaced by swap: retry */ 964 unlock_page(page); 965 index--; 966 break; 967 } 968 VM_BUG_ON_PAGE(PageWriteback(page), page); 969 if (shmem_punch_compound(page, start, end)) 970 truncate_inode_page(mapping, page); 971 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 972 /* Wipe the page and don't get stuck */ 973 clear_highpage(page); 974 flush_dcache_page(page); 975 set_page_dirty(page); 976 if (index < 977 round_up(start, HPAGE_PMD_NR)) 978 start = index + 1; 979 } 980 } 981 unlock_page(page); 982 } 983 pagevec_remove_exceptionals(&pvec); 984 pagevec_release(&pvec); 985 index++; 986 } 987 988 spin_lock_irq(&info->lock); 989 info->swapped -= nr_swaps_freed; 990 shmem_recalc_inode(inode); 991 spin_unlock_irq(&info->lock); 992 } 993 994 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 995 { 996 shmem_undo_range(inode, lstart, lend, false); 997 inode->i_ctime = inode->i_mtime = current_time(inode); 998 } 999 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1000 1001 static int shmem_getattr(const struct path *path, struct kstat *stat, 1002 u32 request_mask, unsigned int query_flags) 1003 { 1004 struct inode *inode = path->dentry->d_inode; 1005 struct shmem_inode_info *info = SHMEM_I(inode); 1006 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1007 1008 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1009 spin_lock_irq(&info->lock); 1010 shmem_recalc_inode(inode); 1011 spin_unlock_irq(&info->lock); 1012 } 1013 generic_fillattr(inode, stat); 1014 1015 if (is_huge_enabled(sb_info)) 1016 stat->blksize = HPAGE_PMD_SIZE; 1017 1018 return 0; 1019 } 1020 1021 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1022 { 1023 struct inode *inode = d_inode(dentry); 1024 struct shmem_inode_info *info = SHMEM_I(inode); 1025 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1026 int error; 1027 1028 error = setattr_prepare(dentry, attr); 1029 if (error) 1030 return error; 1031 1032 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1033 loff_t oldsize = inode->i_size; 1034 loff_t newsize = attr->ia_size; 1035 1036 /* protected by i_mutex */ 1037 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1038 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1039 return -EPERM; 1040 1041 if (newsize != oldsize) { 1042 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1043 oldsize, newsize); 1044 if (error) 1045 return error; 1046 i_size_write(inode, newsize); 1047 inode->i_ctime = inode->i_mtime = current_time(inode); 1048 } 1049 if (newsize <= oldsize) { 1050 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1051 if (oldsize > holebegin) 1052 unmap_mapping_range(inode->i_mapping, 1053 holebegin, 0, 1); 1054 if (info->alloced) 1055 shmem_truncate_range(inode, 1056 newsize, (loff_t)-1); 1057 /* unmap again to remove racily COWed private pages */ 1058 if (oldsize > holebegin) 1059 unmap_mapping_range(inode->i_mapping, 1060 holebegin, 0, 1); 1061 1062 /* 1063 * Part of the huge page can be beyond i_size: subject 1064 * to shrink under memory pressure. 1065 */ 1066 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1067 spin_lock(&sbinfo->shrinklist_lock); 1068 /* 1069 * _careful to defend against unlocked access to 1070 * ->shrink_list in shmem_unused_huge_shrink() 1071 */ 1072 if (list_empty_careful(&info->shrinklist)) { 1073 list_add_tail(&info->shrinklist, 1074 &sbinfo->shrinklist); 1075 sbinfo->shrinklist_len++; 1076 } 1077 spin_unlock(&sbinfo->shrinklist_lock); 1078 } 1079 } 1080 } 1081 1082 setattr_copy(inode, attr); 1083 if (attr->ia_valid & ATTR_MODE) 1084 error = posix_acl_chmod(inode, inode->i_mode); 1085 return error; 1086 } 1087 1088 static void shmem_evict_inode(struct inode *inode) 1089 { 1090 struct shmem_inode_info *info = SHMEM_I(inode); 1091 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1092 1093 if (inode->i_mapping->a_ops == &shmem_aops) { 1094 shmem_unacct_size(info->flags, inode->i_size); 1095 inode->i_size = 0; 1096 shmem_truncate_range(inode, 0, (loff_t)-1); 1097 if (!list_empty(&info->shrinklist)) { 1098 spin_lock(&sbinfo->shrinklist_lock); 1099 if (!list_empty(&info->shrinklist)) { 1100 list_del_init(&info->shrinklist); 1101 sbinfo->shrinklist_len--; 1102 } 1103 spin_unlock(&sbinfo->shrinklist_lock); 1104 } 1105 while (!list_empty(&info->swaplist)) { 1106 /* Wait while shmem_unuse() is scanning this inode... */ 1107 wait_var_event(&info->stop_eviction, 1108 !atomic_read(&info->stop_eviction)); 1109 mutex_lock(&shmem_swaplist_mutex); 1110 /* ...but beware of the race if we peeked too early */ 1111 if (!atomic_read(&info->stop_eviction)) 1112 list_del_init(&info->swaplist); 1113 mutex_unlock(&shmem_swaplist_mutex); 1114 } 1115 } 1116 1117 simple_xattrs_free(&info->xattrs); 1118 WARN_ON(inode->i_blocks); 1119 shmem_free_inode(inode->i_sb); 1120 clear_inode(inode); 1121 } 1122 1123 extern struct swap_info_struct *swap_info[]; 1124 1125 static int shmem_find_swap_entries(struct address_space *mapping, 1126 pgoff_t start, unsigned int nr_entries, 1127 struct page **entries, pgoff_t *indices, 1128 unsigned int type, bool frontswap) 1129 { 1130 XA_STATE(xas, &mapping->i_pages, start); 1131 struct page *page; 1132 swp_entry_t entry; 1133 unsigned int ret = 0; 1134 1135 if (!nr_entries) 1136 return 0; 1137 1138 rcu_read_lock(); 1139 xas_for_each(&xas, page, ULONG_MAX) { 1140 if (xas_retry(&xas, page)) 1141 continue; 1142 1143 if (!xa_is_value(page)) 1144 continue; 1145 1146 entry = radix_to_swp_entry(page); 1147 if (swp_type(entry) != type) 1148 continue; 1149 if (frontswap && 1150 !frontswap_test(swap_info[type], swp_offset(entry))) 1151 continue; 1152 1153 indices[ret] = xas.xa_index; 1154 entries[ret] = page; 1155 1156 if (need_resched()) { 1157 xas_pause(&xas); 1158 cond_resched_rcu(); 1159 } 1160 if (++ret == nr_entries) 1161 break; 1162 } 1163 rcu_read_unlock(); 1164 1165 return ret; 1166 } 1167 1168 /* 1169 * Move the swapped pages for an inode to page cache. Returns the count 1170 * of pages swapped in, or the error in case of failure. 1171 */ 1172 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1173 pgoff_t *indices) 1174 { 1175 int i = 0; 1176 int ret = 0; 1177 int error = 0; 1178 struct address_space *mapping = inode->i_mapping; 1179 1180 for (i = 0; i < pvec.nr; i++) { 1181 struct page *page = pvec.pages[i]; 1182 1183 if (!xa_is_value(page)) 1184 continue; 1185 error = shmem_swapin_page(inode, indices[i], 1186 &page, SGP_CACHE, 1187 mapping_gfp_mask(mapping), 1188 NULL, NULL); 1189 if (error == 0) { 1190 unlock_page(page); 1191 put_page(page); 1192 ret++; 1193 } 1194 if (error == -ENOMEM) 1195 break; 1196 error = 0; 1197 } 1198 return error ? error : ret; 1199 } 1200 1201 /* 1202 * If swap found in inode, free it and move page from swapcache to filecache. 1203 */ 1204 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1205 bool frontswap, unsigned long *fs_pages_to_unuse) 1206 { 1207 struct address_space *mapping = inode->i_mapping; 1208 pgoff_t start = 0; 1209 struct pagevec pvec; 1210 pgoff_t indices[PAGEVEC_SIZE]; 1211 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1212 int ret = 0; 1213 1214 pagevec_init(&pvec); 1215 do { 1216 unsigned int nr_entries = PAGEVEC_SIZE; 1217 1218 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1219 nr_entries = *fs_pages_to_unuse; 1220 1221 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1222 pvec.pages, indices, 1223 type, frontswap); 1224 if (pvec.nr == 0) { 1225 ret = 0; 1226 break; 1227 } 1228 1229 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1230 if (ret < 0) 1231 break; 1232 1233 if (frontswap_partial) { 1234 *fs_pages_to_unuse -= ret; 1235 if (*fs_pages_to_unuse == 0) { 1236 ret = FRONTSWAP_PAGES_UNUSED; 1237 break; 1238 } 1239 } 1240 1241 start = indices[pvec.nr - 1]; 1242 } while (true); 1243 1244 return ret; 1245 } 1246 1247 /* 1248 * Read all the shared memory data that resides in the swap 1249 * device 'type' back into memory, so the swap device can be 1250 * unused. 1251 */ 1252 int shmem_unuse(unsigned int type, bool frontswap, 1253 unsigned long *fs_pages_to_unuse) 1254 { 1255 struct shmem_inode_info *info, *next; 1256 int error = 0; 1257 1258 if (list_empty(&shmem_swaplist)) 1259 return 0; 1260 1261 mutex_lock(&shmem_swaplist_mutex); 1262 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1263 if (!info->swapped) { 1264 list_del_init(&info->swaplist); 1265 continue; 1266 } 1267 /* 1268 * Drop the swaplist mutex while searching the inode for swap; 1269 * but before doing so, make sure shmem_evict_inode() will not 1270 * remove placeholder inode from swaplist, nor let it be freed 1271 * (igrab() would protect from unlink, but not from unmount). 1272 */ 1273 atomic_inc(&info->stop_eviction); 1274 mutex_unlock(&shmem_swaplist_mutex); 1275 1276 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1277 fs_pages_to_unuse); 1278 cond_resched(); 1279 1280 mutex_lock(&shmem_swaplist_mutex); 1281 next = list_next_entry(info, swaplist); 1282 if (!info->swapped) 1283 list_del_init(&info->swaplist); 1284 if (atomic_dec_and_test(&info->stop_eviction)) 1285 wake_up_var(&info->stop_eviction); 1286 if (error) 1287 break; 1288 } 1289 mutex_unlock(&shmem_swaplist_mutex); 1290 1291 return error; 1292 } 1293 1294 /* 1295 * Move the page from the page cache to the swap cache. 1296 */ 1297 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1298 { 1299 struct shmem_inode_info *info; 1300 struct address_space *mapping; 1301 struct inode *inode; 1302 swp_entry_t swap; 1303 pgoff_t index; 1304 1305 VM_BUG_ON_PAGE(PageCompound(page), page); 1306 BUG_ON(!PageLocked(page)); 1307 mapping = page->mapping; 1308 index = page->index; 1309 inode = mapping->host; 1310 info = SHMEM_I(inode); 1311 if (info->flags & VM_LOCKED) 1312 goto redirty; 1313 if (!total_swap_pages) 1314 goto redirty; 1315 1316 /* 1317 * Our capabilities prevent regular writeback or sync from ever calling 1318 * shmem_writepage; but a stacking filesystem might use ->writepage of 1319 * its underlying filesystem, in which case tmpfs should write out to 1320 * swap only in response to memory pressure, and not for the writeback 1321 * threads or sync. 1322 */ 1323 if (!wbc->for_reclaim) { 1324 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1325 goto redirty; 1326 } 1327 1328 /* 1329 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1330 * value into swapfile.c, the only way we can correctly account for a 1331 * fallocated page arriving here is now to initialize it and write it. 1332 * 1333 * That's okay for a page already fallocated earlier, but if we have 1334 * not yet completed the fallocation, then (a) we want to keep track 1335 * of this page in case we have to undo it, and (b) it may not be a 1336 * good idea to continue anyway, once we're pushing into swap. So 1337 * reactivate the page, and let shmem_fallocate() quit when too many. 1338 */ 1339 if (!PageUptodate(page)) { 1340 if (inode->i_private) { 1341 struct shmem_falloc *shmem_falloc; 1342 spin_lock(&inode->i_lock); 1343 shmem_falloc = inode->i_private; 1344 if (shmem_falloc && 1345 !shmem_falloc->waitq && 1346 index >= shmem_falloc->start && 1347 index < shmem_falloc->next) 1348 shmem_falloc->nr_unswapped++; 1349 else 1350 shmem_falloc = NULL; 1351 spin_unlock(&inode->i_lock); 1352 if (shmem_falloc) 1353 goto redirty; 1354 } 1355 clear_highpage(page); 1356 flush_dcache_page(page); 1357 SetPageUptodate(page); 1358 } 1359 1360 swap = get_swap_page(page); 1361 if (!swap.val) 1362 goto redirty; 1363 1364 /* 1365 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1366 * if it's not already there. Do it now before the page is 1367 * moved to swap cache, when its pagelock no longer protects 1368 * the inode from eviction. But don't unlock the mutex until 1369 * we've incremented swapped, because shmem_unuse_inode() will 1370 * prune a !swapped inode from the swaplist under this mutex. 1371 */ 1372 mutex_lock(&shmem_swaplist_mutex); 1373 if (list_empty(&info->swaplist)) 1374 list_add(&info->swaplist, &shmem_swaplist); 1375 1376 if (add_to_swap_cache(page, swap, 1377 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) { 1378 spin_lock_irq(&info->lock); 1379 shmem_recalc_inode(inode); 1380 info->swapped++; 1381 spin_unlock_irq(&info->lock); 1382 1383 swap_shmem_alloc(swap); 1384 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1385 1386 mutex_unlock(&shmem_swaplist_mutex); 1387 BUG_ON(page_mapped(page)); 1388 swap_writepage(page, wbc); 1389 return 0; 1390 } 1391 1392 mutex_unlock(&shmem_swaplist_mutex); 1393 put_swap_page(page, swap); 1394 redirty: 1395 set_page_dirty(page); 1396 if (wbc->for_reclaim) 1397 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1398 unlock_page(page); 1399 return 0; 1400 } 1401 1402 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1403 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1404 { 1405 char buffer[64]; 1406 1407 if (!mpol || mpol->mode == MPOL_DEFAULT) 1408 return; /* show nothing */ 1409 1410 mpol_to_str(buffer, sizeof(buffer), mpol); 1411 1412 seq_printf(seq, ",mpol=%s", buffer); 1413 } 1414 1415 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1416 { 1417 struct mempolicy *mpol = NULL; 1418 if (sbinfo->mpol) { 1419 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1420 mpol = sbinfo->mpol; 1421 mpol_get(mpol); 1422 spin_unlock(&sbinfo->stat_lock); 1423 } 1424 return mpol; 1425 } 1426 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1427 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1428 { 1429 } 1430 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1431 { 1432 return NULL; 1433 } 1434 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1435 #ifndef CONFIG_NUMA 1436 #define vm_policy vm_private_data 1437 #endif 1438 1439 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1440 struct shmem_inode_info *info, pgoff_t index) 1441 { 1442 /* Create a pseudo vma that just contains the policy */ 1443 vma_init(vma, NULL); 1444 /* Bias interleave by inode number to distribute better across nodes */ 1445 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1446 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1447 } 1448 1449 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1450 { 1451 /* Drop reference taken by mpol_shared_policy_lookup() */ 1452 mpol_cond_put(vma->vm_policy); 1453 } 1454 1455 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1456 struct shmem_inode_info *info, pgoff_t index) 1457 { 1458 struct vm_area_struct pvma; 1459 struct page *page; 1460 struct vm_fault vmf; 1461 1462 shmem_pseudo_vma_init(&pvma, info, index); 1463 vmf.vma = &pvma; 1464 vmf.address = 0; 1465 page = swap_cluster_readahead(swap, gfp, &vmf); 1466 shmem_pseudo_vma_destroy(&pvma); 1467 1468 return page; 1469 } 1470 1471 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1472 struct shmem_inode_info *info, pgoff_t index) 1473 { 1474 struct vm_area_struct pvma; 1475 struct address_space *mapping = info->vfs_inode.i_mapping; 1476 pgoff_t hindex; 1477 struct page *page; 1478 1479 hindex = round_down(index, HPAGE_PMD_NR); 1480 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1481 XA_PRESENT)) 1482 return NULL; 1483 1484 shmem_pseudo_vma_init(&pvma, info, hindex); 1485 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1486 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1487 shmem_pseudo_vma_destroy(&pvma); 1488 if (page) 1489 prep_transhuge_page(page); 1490 else 1491 count_vm_event(THP_FILE_FALLBACK); 1492 return page; 1493 } 1494 1495 static struct page *shmem_alloc_page(gfp_t gfp, 1496 struct shmem_inode_info *info, pgoff_t index) 1497 { 1498 struct vm_area_struct pvma; 1499 struct page *page; 1500 1501 shmem_pseudo_vma_init(&pvma, info, index); 1502 page = alloc_page_vma(gfp, &pvma, 0); 1503 shmem_pseudo_vma_destroy(&pvma); 1504 1505 return page; 1506 } 1507 1508 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1509 struct inode *inode, 1510 pgoff_t index, bool huge) 1511 { 1512 struct shmem_inode_info *info = SHMEM_I(inode); 1513 struct page *page; 1514 int nr; 1515 int err = -ENOSPC; 1516 1517 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1518 huge = false; 1519 nr = huge ? HPAGE_PMD_NR : 1; 1520 1521 if (!shmem_inode_acct_block(inode, nr)) 1522 goto failed; 1523 1524 if (huge) 1525 page = shmem_alloc_hugepage(gfp, info, index); 1526 else 1527 page = shmem_alloc_page(gfp, info, index); 1528 if (page) { 1529 __SetPageLocked(page); 1530 __SetPageSwapBacked(page); 1531 return page; 1532 } 1533 1534 err = -ENOMEM; 1535 shmem_inode_unacct_blocks(inode, nr); 1536 failed: 1537 return ERR_PTR(err); 1538 } 1539 1540 /* 1541 * When a page is moved from swapcache to shmem filecache (either by the 1542 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1543 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1544 * ignorance of the mapping it belongs to. If that mapping has special 1545 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1546 * we may need to copy to a suitable page before moving to filecache. 1547 * 1548 * In a future release, this may well be extended to respect cpuset and 1549 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1550 * but for now it is a simple matter of zone. 1551 */ 1552 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1553 { 1554 return page_zonenum(page) > gfp_zone(gfp); 1555 } 1556 1557 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1558 struct shmem_inode_info *info, pgoff_t index) 1559 { 1560 struct page *oldpage, *newpage; 1561 struct address_space *swap_mapping; 1562 swp_entry_t entry; 1563 pgoff_t swap_index; 1564 int error; 1565 1566 oldpage = *pagep; 1567 entry.val = page_private(oldpage); 1568 swap_index = swp_offset(entry); 1569 swap_mapping = page_mapping(oldpage); 1570 1571 /* 1572 * We have arrived here because our zones are constrained, so don't 1573 * limit chance of success by further cpuset and node constraints. 1574 */ 1575 gfp &= ~GFP_CONSTRAINT_MASK; 1576 newpage = shmem_alloc_page(gfp, info, index); 1577 if (!newpage) 1578 return -ENOMEM; 1579 1580 get_page(newpage); 1581 copy_highpage(newpage, oldpage); 1582 flush_dcache_page(newpage); 1583 1584 __SetPageLocked(newpage); 1585 __SetPageSwapBacked(newpage); 1586 SetPageUptodate(newpage); 1587 set_page_private(newpage, entry.val); 1588 SetPageSwapCache(newpage); 1589 1590 /* 1591 * Our caller will very soon move newpage out of swapcache, but it's 1592 * a nice clean interface for us to replace oldpage by newpage there. 1593 */ 1594 xa_lock_irq(&swap_mapping->i_pages); 1595 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1596 if (!error) { 1597 mem_cgroup_migrate(oldpage, newpage); 1598 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1599 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1600 } 1601 xa_unlock_irq(&swap_mapping->i_pages); 1602 1603 if (unlikely(error)) { 1604 /* 1605 * Is this possible? I think not, now that our callers check 1606 * both PageSwapCache and page_private after getting page lock; 1607 * but be defensive. Reverse old to newpage for clear and free. 1608 */ 1609 oldpage = newpage; 1610 } else { 1611 lru_cache_add(newpage); 1612 *pagep = newpage; 1613 } 1614 1615 ClearPageSwapCache(oldpage); 1616 set_page_private(oldpage, 0); 1617 1618 unlock_page(oldpage); 1619 put_page(oldpage); 1620 put_page(oldpage); 1621 return error; 1622 } 1623 1624 /* 1625 * Swap in the page pointed to by *pagep. 1626 * Caller has to make sure that *pagep contains a valid swapped page. 1627 * Returns 0 and the page in pagep if success. On failure, returns the 1628 * the error code and NULL in *pagep. 1629 */ 1630 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1631 struct page **pagep, enum sgp_type sgp, 1632 gfp_t gfp, struct vm_area_struct *vma, 1633 vm_fault_t *fault_type) 1634 { 1635 struct address_space *mapping = inode->i_mapping; 1636 struct shmem_inode_info *info = SHMEM_I(inode); 1637 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1638 struct page *page; 1639 swp_entry_t swap; 1640 int error; 1641 1642 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1643 swap = radix_to_swp_entry(*pagep); 1644 *pagep = NULL; 1645 1646 /* Look it up and read it in.. */ 1647 page = lookup_swap_cache(swap, NULL, 0); 1648 if (!page) { 1649 /* Or update major stats only when swapin succeeds?? */ 1650 if (fault_type) { 1651 *fault_type |= VM_FAULT_MAJOR; 1652 count_vm_event(PGMAJFAULT); 1653 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1654 } 1655 /* Here we actually start the io */ 1656 page = shmem_swapin(swap, gfp, info, index); 1657 if (!page) { 1658 error = -ENOMEM; 1659 goto failed; 1660 } 1661 } 1662 1663 /* We have to do this with page locked to prevent races */ 1664 lock_page(page); 1665 if (!PageSwapCache(page) || page_private(page) != swap.val || 1666 !shmem_confirm_swap(mapping, index, swap)) { 1667 error = -EEXIST; 1668 goto unlock; 1669 } 1670 if (!PageUptodate(page)) { 1671 error = -EIO; 1672 goto failed; 1673 } 1674 wait_on_page_writeback(page); 1675 1676 if (shmem_should_replace_page(page, gfp)) { 1677 error = shmem_replace_page(&page, gfp, info, index); 1678 if (error) 1679 goto failed; 1680 } 1681 1682 error = shmem_add_to_page_cache(page, mapping, index, 1683 swp_to_radix_entry(swap), gfp, 1684 charge_mm); 1685 if (error) 1686 goto failed; 1687 1688 spin_lock_irq(&info->lock); 1689 info->swapped--; 1690 shmem_recalc_inode(inode); 1691 spin_unlock_irq(&info->lock); 1692 1693 if (sgp == SGP_WRITE) 1694 mark_page_accessed(page); 1695 1696 delete_from_swap_cache(page); 1697 set_page_dirty(page); 1698 swap_free(swap); 1699 1700 *pagep = page; 1701 return 0; 1702 failed: 1703 if (!shmem_confirm_swap(mapping, index, swap)) 1704 error = -EEXIST; 1705 unlock: 1706 if (page) { 1707 unlock_page(page); 1708 put_page(page); 1709 } 1710 1711 return error; 1712 } 1713 1714 /* 1715 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1716 * 1717 * If we allocate a new one we do not mark it dirty. That's up to the 1718 * vm. If we swap it in we mark it dirty since we also free the swap 1719 * entry since a page cannot live in both the swap and page cache. 1720 * 1721 * vmf and fault_type are only supplied by shmem_fault: 1722 * otherwise they are NULL. 1723 */ 1724 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1725 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1726 struct vm_area_struct *vma, struct vm_fault *vmf, 1727 vm_fault_t *fault_type) 1728 { 1729 struct address_space *mapping = inode->i_mapping; 1730 struct shmem_inode_info *info = SHMEM_I(inode); 1731 struct shmem_sb_info *sbinfo; 1732 struct mm_struct *charge_mm; 1733 struct page *page; 1734 enum sgp_type sgp_huge = sgp; 1735 pgoff_t hindex = index; 1736 int error; 1737 int once = 0; 1738 int alloced = 0; 1739 1740 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1741 return -EFBIG; 1742 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1743 sgp = SGP_CACHE; 1744 repeat: 1745 if (sgp <= SGP_CACHE && 1746 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1747 return -EINVAL; 1748 } 1749 1750 sbinfo = SHMEM_SB(inode->i_sb); 1751 charge_mm = vma ? vma->vm_mm : current->mm; 1752 1753 page = find_lock_entry(mapping, index); 1754 if (xa_is_value(page)) { 1755 error = shmem_swapin_page(inode, index, &page, 1756 sgp, gfp, vma, fault_type); 1757 if (error == -EEXIST) 1758 goto repeat; 1759 1760 *pagep = page; 1761 return error; 1762 } 1763 1764 if (page && sgp == SGP_WRITE) 1765 mark_page_accessed(page); 1766 1767 /* fallocated page? */ 1768 if (page && !PageUptodate(page)) { 1769 if (sgp != SGP_READ) 1770 goto clear; 1771 unlock_page(page); 1772 put_page(page); 1773 page = NULL; 1774 } 1775 if (page || sgp == SGP_READ) { 1776 *pagep = page; 1777 return 0; 1778 } 1779 1780 /* 1781 * Fast cache lookup did not find it: 1782 * bring it back from swap or allocate. 1783 */ 1784 1785 if (vma && userfaultfd_missing(vma)) { 1786 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1787 return 0; 1788 } 1789 1790 /* shmem_symlink() */ 1791 if (mapping->a_ops != &shmem_aops) 1792 goto alloc_nohuge; 1793 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1794 goto alloc_nohuge; 1795 if (shmem_huge == SHMEM_HUGE_FORCE) 1796 goto alloc_huge; 1797 switch (sbinfo->huge) { 1798 case SHMEM_HUGE_NEVER: 1799 goto alloc_nohuge; 1800 case SHMEM_HUGE_WITHIN_SIZE: { 1801 loff_t i_size; 1802 pgoff_t off; 1803 1804 off = round_up(index, HPAGE_PMD_NR); 1805 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1806 if (i_size >= HPAGE_PMD_SIZE && 1807 i_size >> PAGE_SHIFT >= off) 1808 goto alloc_huge; 1809 1810 fallthrough; 1811 } 1812 case SHMEM_HUGE_ADVISE: 1813 if (sgp_huge == SGP_HUGE) 1814 goto alloc_huge; 1815 /* TODO: implement fadvise() hints */ 1816 goto alloc_nohuge; 1817 } 1818 1819 alloc_huge: 1820 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1821 if (IS_ERR(page)) { 1822 alloc_nohuge: 1823 page = shmem_alloc_and_acct_page(gfp, inode, 1824 index, false); 1825 } 1826 if (IS_ERR(page)) { 1827 int retry = 5; 1828 1829 error = PTR_ERR(page); 1830 page = NULL; 1831 if (error != -ENOSPC) 1832 goto unlock; 1833 /* 1834 * Try to reclaim some space by splitting a huge page 1835 * beyond i_size on the filesystem. 1836 */ 1837 while (retry--) { 1838 int ret; 1839 1840 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1841 if (ret == SHRINK_STOP) 1842 break; 1843 if (ret) 1844 goto alloc_nohuge; 1845 } 1846 goto unlock; 1847 } 1848 1849 if (PageTransHuge(page)) 1850 hindex = round_down(index, HPAGE_PMD_NR); 1851 else 1852 hindex = index; 1853 1854 if (sgp == SGP_WRITE) 1855 __SetPageReferenced(page); 1856 1857 error = shmem_add_to_page_cache(page, mapping, hindex, 1858 NULL, gfp & GFP_RECLAIM_MASK, 1859 charge_mm); 1860 if (error) 1861 goto unacct; 1862 lru_cache_add(page); 1863 1864 spin_lock_irq(&info->lock); 1865 info->alloced += compound_nr(page); 1866 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1867 shmem_recalc_inode(inode); 1868 spin_unlock_irq(&info->lock); 1869 alloced = true; 1870 1871 if (PageTransHuge(page) && 1872 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1873 hindex + HPAGE_PMD_NR - 1) { 1874 /* 1875 * Part of the huge page is beyond i_size: subject 1876 * to shrink under memory pressure. 1877 */ 1878 spin_lock(&sbinfo->shrinklist_lock); 1879 /* 1880 * _careful to defend against unlocked access to 1881 * ->shrink_list in shmem_unused_huge_shrink() 1882 */ 1883 if (list_empty_careful(&info->shrinklist)) { 1884 list_add_tail(&info->shrinklist, 1885 &sbinfo->shrinklist); 1886 sbinfo->shrinklist_len++; 1887 } 1888 spin_unlock(&sbinfo->shrinklist_lock); 1889 } 1890 1891 /* 1892 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1893 */ 1894 if (sgp == SGP_FALLOC) 1895 sgp = SGP_WRITE; 1896 clear: 1897 /* 1898 * Let SGP_WRITE caller clear ends if write does not fill page; 1899 * but SGP_FALLOC on a page fallocated earlier must initialize 1900 * it now, lest undo on failure cancel our earlier guarantee. 1901 */ 1902 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1903 struct page *head = compound_head(page); 1904 int i; 1905 1906 for (i = 0; i < compound_nr(head); i++) { 1907 clear_highpage(head + i); 1908 flush_dcache_page(head + i); 1909 } 1910 SetPageUptodate(head); 1911 } 1912 1913 /* Perhaps the file has been truncated since we checked */ 1914 if (sgp <= SGP_CACHE && 1915 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1916 if (alloced) { 1917 ClearPageDirty(page); 1918 delete_from_page_cache(page); 1919 spin_lock_irq(&info->lock); 1920 shmem_recalc_inode(inode); 1921 spin_unlock_irq(&info->lock); 1922 } 1923 error = -EINVAL; 1924 goto unlock; 1925 } 1926 *pagep = page + index - hindex; 1927 return 0; 1928 1929 /* 1930 * Error recovery. 1931 */ 1932 unacct: 1933 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1934 1935 if (PageTransHuge(page)) { 1936 unlock_page(page); 1937 put_page(page); 1938 goto alloc_nohuge; 1939 } 1940 unlock: 1941 if (page) { 1942 unlock_page(page); 1943 put_page(page); 1944 } 1945 if (error == -ENOSPC && !once++) { 1946 spin_lock_irq(&info->lock); 1947 shmem_recalc_inode(inode); 1948 spin_unlock_irq(&info->lock); 1949 goto repeat; 1950 } 1951 if (error == -EEXIST) 1952 goto repeat; 1953 return error; 1954 } 1955 1956 /* 1957 * This is like autoremove_wake_function, but it removes the wait queue 1958 * entry unconditionally - even if something else had already woken the 1959 * target. 1960 */ 1961 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1962 { 1963 int ret = default_wake_function(wait, mode, sync, key); 1964 list_del_init(&wait->entry); 1965 return ret; 1966 } 1967 1968 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1969 { 1970 struct vm_area_struct *vma = vmf->vma; 1971 struct inode *inode = file_inode(vma->vm_file); 1972 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1973 enum sgp_type sgp; 1974 int err; 1975 vm_fault_t ret = VM_FAULT_LOCKED; 1976 1977 /* 1978 * Trinity finds that probing a hole which tmpfs is punching can 1979 * prevent the hole-punch from ever completing: which in turn 1980 * locks writers out with its hold on i_mutex. So refrain from 1981 * faulting pages into the hole while it's being punched. Although 1982 * shmem_undo_range() does remove the additions, it may be unable to 1983 * keep up, as each new page needs its own unmap_mapping_range() call, 1984 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1985 * 1986 * It does not matter if we sometimes reach this check just before the 1987 * hole-punch begins, so that one fault then races with the punch: 1988 * we just need to make racing faults a rare case. 1989 * 1990 * The implementation below would be much simpler if we just used a 1991 * standard mutex or completion: but we cannot take i_mutex in fault, 1992 * and bloating every shmem inode for this unlikely case would be sad. 1993 */ 1994 if (unlikely(inode->i_private)) { 1995 struct shmem_falloc *shmem_falloc; 1996 1997 spin_lock(&inode->i_lock); 1998 shmem_falloc = inode->i_private; 1999 if (shmem_falloc && 2000 shmem_falloc->waitq && 2001 vmf->pgoff >= shmem_falloc->start && 2002 vmf->pgoff < shmem_falloc->next) { 2003 struct file *fpin; 2004 wait_queue_head_t *shmem_falloc_waitq; 2005 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2006 2007 ret = VM_FAULT_NOPAGE; 2008 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2009 if (fpin) 2010 ret = VM_FAULT_RETRY; 2011 2012 shmem_falloc_waitq = shmem_falloc->waitq; 2013 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2014 TASK_UNINTERRUPTIBLE); 2015 spin_unlock(&inode->i_lock); 2016 schedule(); 2017 2018 /* 2019 * shmem_falloc_waitq points into the shmem_fallocate() 2020 * stack of the hole-punching task: shmem_falloc_waitq 2021 * is usually invalid by the time we reach here, but 2022 * finish_wait() does not dereference it in that case; 2023 * though i_lock needed lest racing with wake_up_all(). 2024 */ 2025 spin_lock(&inode->i_lock); 2026 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2027 spin_unlock(&inode->i_lock); 2028 2029 if (fpin) 2030 fput(fpin); 2031 return ret; 2032 } 2033 spin_unlock(&inode->i_lock); 2034 } 2035 2036 sgp = SGP_CACHE; 2037 2038 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2039 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2040 sgp = SGP_NOHUGE; 2041 else if (vma->vm_flags & VM_HUGEPAGE) 2042 sgp = SGP_HUGE; 2043 2044 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2045 gfp, vma, vmf, &ret); 2046 if (err) 2047 return vmf_error(err); 2048 return ret; 2049 } 2050 2051 unsigned long shmem_get_unmapped_area(struct file *file, 2052 unsigned long uaddr, unsigned long len, 2053 unsigned long pgoff, unsigned long flags) 2054 { 2055 unsigned long (*get_area)(struct file *, 2056 unsigned long, unsigned long, unsigned long, unsigned long); 2057 unsigned long addr; 2058 unsigned long offset; 2059 unsigned long inflated_len; 2060 unsigned long inflated_addr; 2061 unsigned long inflated_offset; 2062 2063 if (len > TASK_SIZE) 2064 return -ENOMEM; 2065 2066 get_area = current->mm->get_unmapped_area; 2067 addr = get_area(file, uaddr, len, pgoff, flags); 2068 2069 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2070 return addr; 2071 if (IS_ERR_VALUE(addr)) 2072 return addr; 2073 if (addr & ~PAGE_MASK) 2074 return addr; 2075 if (addr > TASK_SIZE - len) 2076 return addr; 2077 2078 if (shmem_huge == SHMEM_HUGE_DENY) 2079 return addr; 2080 if (len < HPAGE_PMD_SIZE) 2081 return addr; 2082 if (flags & MAP_FIXED) 2083 return addr; 2084 /* 2085 * Our priority is to support MAP_SHARED mapped hugely; 2086 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2087 * But if caller specified an address hint and we allocated area there 2088 * successfully, respect that as before. 2089 */ 2090 if (uaddr == addr) 2091 return addr; 2092 2093 if (shmem_huge != SHMEM_HUGE_FORCE) { 2094 struct super_block *sb; 2095 2096 if (file) { 2097 VM_BUG_ON(file->f_op != &shmem_file_operations); 2098 sb = file_inode(file)->i_sb; 2099 } else { 2100 /* 2101 * Called directly from mm/mmap.c, or drivers/char/mem.c 2102 * for "/dev/zero", to create a shared anonymous object. 2103 */ 2104 if (IS_ERR(shm_mnt)) 2105 return addr; 2106 sb = shm_mnt->mnt_sb; 2107 } 2108 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2109 return addr; 2110 } 2111 2112 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2113 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2114 return addr; 2115 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2116 return addr; 2117 2118 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2119 if (inflated_len > TASK_SIZE) 2120 return addr; 2121 if (inflated_len < len) 2122 return addr; 2123 2124 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2125 if (IS_ERR_VALUE(inflated_addr)) 2126 return addr; 2127 if (inflated_addr & ~PAGE_MASK) 2128 return addr; 2129 2130 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2131 inflated_addr += offset - inflated_offset; 2132 if (inflated_offset > offset) 2133 inflated_addr += HPAGE_PMD_SIZE; 2134 2135 if (inflated_addr > TASK_SIZE - len) 2136 return addr; 2137 return inflated_addr; 2138 } 2139 2140 #ifdef CONFIG_NUMA 2141 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2142 { 2143 struct inode *inode = file_inode(vma->vm_file); 2144 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2145 } 2146 2147 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2148 unsigned long addr) 2149 { 2150 struct inode *inode = file_inode(vma->vm_file); 2151 pgoff_t index; 2152 2153 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2154 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2155 } 2156 #endif 2157 2158 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2159 { 2160 struct inode *inode = file_inode(file); 2161 struct shmem_inode_info *info = SHMEM_I(inode); 2162 int retval = -ENOMEM; 2163 2164 /* 2165 * What serializes the accesses to info->flags? 2166 * ipc_lock_object() when called from shmctl_do_lock(), 2167 * no serialization needed when called from shm_destroy(). 2168 */ 2169 if (lock && !(info->flags & VM_LOCKED)) { 2170 if (!user_shm_lock(inode->i_size, user)) 2171 goto out_nomem; 2172 info->flags |= VM_LOCKED; 2173 mapping_set_unevictable(file->f_mapping); 2174 } 2175 if (!lock && (info->flags & VM_LOCKED) && user) { 2176 user_shm_unlock(inode->i_size, user); 2177 info->flags &= ~VM_LOCKED; 2178 mapping_clear_unevictable(file->f_mapping); 2179 } 2180 retval = 0; 2181 2182 out_nomem: 2183 return retval; 2184 } 2185 2186 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2187 { 2188 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2189 2190 if (info->seals & F_SEAL_FUTURE_WRITE) { 2191 /* 2192 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2193 * "future write" seal active. 2194 */ 2195 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2196 return -EPERM; 2197 2198 /* 2199 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2200 * MAP_SHARED and read-only, take care to not allow mprotect to 2201 * revert protections on such mappings. Do this only for shared 2202 * mappings. For private mappings, don't need to mask 2203 * VM_MAYWRITE as we still want them to be COW-writable. 2204 */ 2205 if (vma->vm_flags & VM_SHARED) 2206 vma->vm_flags &= ~(VM_MAYWRITE); 2207 } 2208 2209 file_accessed(file); 2210 vma->vm_ops = &shmem_vm_ops; 2211 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2212 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2213 (vma->vm_end & HPAGE_PMD_MASK)) { 2214 khugepaged_enter(vma, vma->vm_flags); 2215 } 2216 return 0; 2217 } 2218 2219 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2220 umode_t mode, dev_t dev, unsigned long flags) 2221 { 2222 struct inode *inode; 2223 struct shmem_inode_info *info; 2224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2225 2226 if (shmem_reserve_inode(sb)) 2227 return NULL; 2228 2229 inode = new_inode(sb); 2230 if (inode) { 2231 inode->i_ino = get_next_ino(); 2232 inode_init_owner(inode, dir, mode); 2233 inode->i_blocks = 0; 2234 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2235 inode->i_generation = prandom_u32(); 2236 info = SHMEM_I(inode); 2237 memset(info, 0, (char *)inode - (char *)info); 2238 spin_lock_init(&info->lock); 2239 atomic_set(&info->stop_eviction, 0); 2240 info->seals = F_SEAL_SEAL; 2241 info->flags = flags & VM_NORESERVE; 2242 INIT_LIST_HEAD(&info->shrinklist); 2243 INIT_LIST_HEAD(&info->swaplist); 2244 simple_xattrs_init(&info->xattrs); 2245 cache_no_acl(inode); 2246 2247 switch (mode & S_IFMT) { 2248 default: 2249 inode->i_op = &shmem_special_inode_operations; 2250 init_special_inode(inode, mode, dev); 2251 break; 2252 case S_IFREG: 2253 inode->i_mapping->a_ops = &shmem_aops; 2254 inode->i_op = &shmem_inode_operations; 2255 inode->i_fop = &shmem_file_operations; 2256 mpol_shared_policy_init(&info->policy, 2257 shmem_get_sbmpol(sbinfo)); 2258 break; 2259 case S_IFDIR: 2260 inc_nlink(inode); 2261 /* Some things misbehave if size == 0 on a directory */ 2262 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2263 inode->i_op = &shmem_dir_inode_operations; 2264 inode->i_fop = &simple_dir_operations; 2265 break; 2266 case S_IFLNK: 2267 /* 2268 * Must not load anything in the rbtree, 2269 * mpol_free_shared_policy will not be called. 2270 */ 2271 mpol_shared_policy_init(&info->policy, NULL); 2272 break; 2273 } 2274 2275 lockdep_annotate_inode_mutex_key(inode); 2276 } else 2277 shmem_free_inode(sb); 2278 return inode; 2279 } 2280 2281 bool shmem_mapping(struct address_space *mapping) 2282 { 2283 return mapping->a_ops == &shmem_aops; 2284 } 2285 2286 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2287 pmd_t *dst_pmd, 2288 struct vm_area_struct *dst_vma, 2289 unsigned long dst_addr, 2290 unsigned long src_addr, 2291 bool zeropage, 2292 struct page **pagep) 2293 { 2294 struct inode *inode = file_inode(dst_vma->vm_file); 2295 struct shmem_inode_info *info = SHMEM_I(inode); 2296 struct address_space *mapping = inode->i_mapping; 2297 gfp_t gfp = mapping_gfp_mask(mapping); 2298 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2299 spinlock_t *ptl; 2300 void *page_kaddr; 2301 struct page *page; 2302 pte_t _dst_pte, *dst_pte; 2303 int ret; 2304 pgoff_t offset, max_off; 2305 2306 ret = -ENOMEM; 2307 if (!shmem_inode_acct_block(inode, 1)) 2308 goto out; 2309 2310 if (!*pagep) { 2311 page = shmem_alloc_page(gfp, info, pgoff); 2312 if (!page) 2313 goto out_unacct_blocks; 2314 2315 if (!zeropage) { /* mcopy_atomic */ 2316 page_kaddr = kmap_atomic(page); 2317 ret = copy_from_user(page_kaddr, 2318 (const void __user *)src_addr, 2319 PAGE_SIZE); 2320 kunmap_atomic(page_kaddr); 2321 2322 /* fallback to copy_from_user outside mmap_lock */ 2323 if (unlikely(ret)) { 2324 *pagep = page; 2325 shmem_inode_unacct_blocks(inode, 1); 2326 /* don't free the page */ 2327 return -ENOENT; 2328 } 2329 } else { /* mfill_zeropage_atomic */ 2330 clear_highpage(page); 2331 } 2332 } else { 2333 page = *pagep; 2334 *pagep = NULL; 2335 } 2336 2337 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2338 __SetPageLocked(page); 2339 __SetPageSwapBacked(page); 2340 __SetPageUptodate(page); 2341 2342 ret = -EFAULT; 2343 offset = linear_page_index(dst_vma, dst_addr); 2344 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2345 if (unlikely(offset >= max_off)) 2346 goto out_release; 2347 2348 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2349 gfp & GFP_RECLAIM_MASK, dst_mm); 2350 if (ret) 2351 goto out_release; 2352 2353 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2354 if (dst_vma->vm_flags & VM_WRITE) 2355 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2356 else { 2357 /* 2358 * We don't set the pte dirty if the vma has no 2359 * VM_WRITE permission, so mark the page dirty or it 2360 * could be freed from under us. We could do it 2361 * unconditionally before unlock_page(), but doing it 2362 * only if VM_WRITE is not set is faster. 2363 */ 2364 set_page_dirty(page); 2365 } 2366 2367 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2368 2369 ret = -EFAULT; 2370 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2371 if (unlikely(offset >= max_off)) 2372 goto out_release_unlock; 2373 2374 ret = -EEXIST; 2375 if (!pte_none(*dst_pte)) 2376 goto out_release_unlock; 2377 2378 lru_cache_add(page); 2379 2380 spin_lock_irq(&info->lock); 2381 info->alloced++; 2382 inode->i_blocks += BLOCKS_PER_PAGE; 2383 shmem_recalc_inode(inode); 2384 spin_unlock_irq(&info->lock); 2385 2386 inc_mm_counter(dst_mm, mm_counter_file(page)); 2387 page_add_file_rmap(page, false); 2388 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2389 2390 /* No need to invalidate - it was non-present before */ 2391 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2392 pte_unmap_unlock(dst_pte, ptl); 2393 unlock_page(page); 2394 ret = 0; 2395 out: 2396 return ret; 2397 out_release_unlock: 2398 pte_unmap_unlock(dst_pte, ptl); 2399 ClearPageDirty(page); 2400 delete_from_page_cache(page); 2401 out_release: 2402 unlock_page(page); 2403 put_page(page); 2404 out_unacct_blocks: 2405 shmem_inode_unacct_blocks(inode, 1); 2406 goto out; 2407 } 2408 2409 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2410 pmd_t *dst_pmd, 2411 struct vm_area_struct *dst_vma, 2412 unsigned long dst_addr, 2413 unsigned long src_addr, 2414 struct page **pagep) 2415 { 2416 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2417 dst_addr, src_addr, false, pagep); 2418 } 2419 2420 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2421 pmd_t *dst_pmd, 2422 struct vm_area_struct *dst_vma, 2423 unsigned long dst_addr) 2424 { 2425 struct page *page = NULL; 2426 2427 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2428 dst_addr, 0, true, &page); 2429 } 2430 2431 #ifdef CONFIG_TMPFS 2432 static const struct inode_operations shmem_symlink_inode_operations; 2433 static const struct inode_operations shmem_short_symlink_operations; 2434 2435 #ifdef CONFIG_TMPFS_XATTR 2436 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2437 #else 2438 #define shmem_initxattrs NULL 2439 #endif 2440 2441 static int 2442 shmem_write_begin(struct file *file, struct address_space *mapping, 2443 loff_t pos, unsigned len, unsigned flags, 2444 struct page **pagep, void **fsdata) 2445 { 2446 struct inode *inode = mapping->host; 2447 struct shmem_inode_info *info = SHMEM_I(inode); 2448 pgoff_t index = pos >> PAGE_SHIFT; 2449 2450 /* i_mutex is held by caller */ 2451 if (unlikely(info->seals & (F_SEAL_GROW | 2452 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2453 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2454 return -EPERM; 2455 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2456 return -EPERM; 2457 } 2458 2459 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2460 } 2461 2462 static int 2463 shmem_write_end(struct file *file, struct address_space *mapping, 2464 loff_t pos, unsigned len, unsigned copied, 2465 struct page *page, void *fsdata) 2466 { 2467 struct inode *inode = mapping->host; 2468 2469 if (pos + copied > inode->i_size) 2470 i_size_write(inode, pos + copied); 2471 2472 if (!PageUptodate(page)) { 2473 struct page *head = compound_head(page); 2474 if (PageTransCompound(page)) { 2475 int i; 2476 2477 for (i = 0; i < HPAGE_PMD_NR; i++) { 2478 if (head + i == page) 2479 continue; 2480 clear_highpage(head + i); 2481 flush_dcache_page(head + i); 2482 } 2483 } 2484 if (copied < PAGE_SIZE) { 2485 unsigned from = pos & (PAGE_SIZE - 1); 2486 zero_user_segments(page, 0, from, 2487 from + copied, PAGE_SIZE); 2488 } 2489 SetPageUptodate(head); 2490 } 2491 set_page_dirty(page); 2492 unlock_page(page); 2493 put_page(page); 2494 2495 return copied; 2496 } 2497 2498 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2499 { 2500 struct file *file = iocb->ki_filp; 2501 struct inode *inode = file_inode(file); 2502 struct address_space *mapping = inode->i_mapping; 2503 pgoff_t index; 2504 unsigned long offset; 2505 enum sgp_type sgp = SGP_READ; 2506 int error = 0; 2507 ssize_t retval = 0; 2508 loff_t *ppos = &iocb->ki_pos; 2509 2510 /* 2511 * Might this read be for a stacking filesystem? Then when reading 2512 * holes of a sparse file, we actually need to allocate those pages, 2513 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2514 */ 2515 if (!iter_is_iovec(to)) 2516 sgp = SGP_CACHE; 2517 2518 index = *ppos >> PAGE_SHIFT; 2519 offset = *ppos & ~PAGE_MASK; 2520 2521 for (;;) { 2522 struct page *page = NULL; 2523 pgoff_t end_index; 2524 unsigned long nr, ret; 2525 loff_t i_size = i_size_read(inode); 2526 2527 end_index = i_size >> PAGE_SHIFT; 2528 if (index > end_index) 2529 break; 2530 if (index == end_index) { 2531 nr = i_size & ~PAGE_MASK; 2532 if (nr <= offset) 2533 break; 2534 } 2535 2536 error = shmem_getpage(inode, index, &page, sgp); 2537 if (error) { 2538 if (error == -EINVAL) 2539 error = 0; 2540 break; 2541 } 2542 if (page) { 2543 if (sgp == SGP_CACHE) 2544 set_page_dirty(page); 2545 unlock_page(page); 2546 } 2547 2548 /* 2549 * We must evaluate after, since reads (unlike writes) 2550 * are called without i_mutex protection against truncate 2551 */ 2552 nr = PAGE_SIZE; 2553 i_size = i_size_read(inode); 2554 end_index = i_size >> PAGE_SHIFT; 2555 if (index == end_index) { 2556 nr = i_size & ~PAGE_MASK; 2557 if (nr <= offset) { 2558 if (page) 2559 put_page(page); 2560 break; 2561 } 2562 } 2563 nr -= offset; 2564 2565 if (page) { 2566 /* 2567 * If users can be writing to this page using arbitrary 2568 * virtual addresses, take care about potential aliasing 2569 * before reading the page on the kernel side. 2570 */ 2571 if (mapping_writably_mapped(mapping)) 2572 flush_dcache_page(page); 2573 /* 2574 * Mark the page accessed if we read the beginning. 2575 */ 2576 if (!offset) 2577 mark_page_accessed(page); 2578 } else { 2579 page = ZERO_PAGE(0); 2580 get_page(page); 2581 } 2582 2583 /* 2584 * Ok, we have the page, and it's up-to-date, so 2585 * now we can copy it to user space... 2586 */ 2587 ret = copy_page_to_iter(page, offset, nr, to); 2588 retval += ret; 2589 offset += ret; 2590 index += offset >> PAGE_SHIFT; 2591 offset &= ~PAGE_MASK; 2592 2593 put_page(page); 2594 if (!iov_iter_count(to)) 2595 break; 2596 if (ret < nr) { 2597 error = -EFAULT; 2598 break; 2599 } 2600 cond_resched(); 2601 } 2602 2603 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2604 file_accessed(file); 2605 return retval ? retval : error; 2606 } 2607 2608 /* 2609 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2610 */ 2611 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2612 pgoff_t index, pgoff_t end, int whence) 2613 { 2614 struct page *page; 2615 struct pagevec pvec; 2616 pgoff_t indices[PAGEVEC_SIZE]; 2617 bool done = false; 2618 int i; 2619 2620 pagevec_init(&pvec); 2621 pvec.nr = 1; /* start small: we may be there already */ 2622 while (!done) { 2623 pvec.nr = find_get_entries(mapping, index, 2624 pvec.nr, pvec.pages, indices); 2625 if (!pvec.nr) { 2626 if (whence == SEEK_DATA) 2627 index = end; 2628 break; 2629 } 2630 for (i = 0; i < pvec.nr; i++, index++) { 2631 if (index < indices[i]) { 2632 if (whence == SEEK_HOLE) { 2633 done = true; 2634 break; 2635 } 2636 index = indices[i]; 2637 } 2638 page = pvec.pages[i]; 2639 if (page && !xa_is_value(page)) { 2640 if (!PageUptodate(page)) 2641 page = NULL; 2642 } 2643 if (index >= end || 2644 (page && whence == SEEK_DATA) || 2645 (!page && whence == SEEK_HOLE)) { 2646 done = true; 2647 break; 2648 } 2649 } 2650 pagevec_remove_exceptionals(&pvec); 2651 pagevec_release(&pvec); 2652 pvec.nr = PAGEVEC_SIZE; 2653 cond_resched(); 2654 } 2655 return index; 2656 } 2657 2658 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2659 { 2660 struct address_space *mapping = file->f_mapping; 2661 struct inode *inode = mapping->host; 2662 pgoff_t start, end; 2663 loff_t new_offset; 2664 2665 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2666 return generic_file_llseek_size(file, offset, whence, 2667 MAX_LFS_FILESIZE, i_size_read(inode)); 2668 inode_lock(inode); 2669 /* We're holding i_mutex so we can access i_size directly */ 2670 2671 if (offset < 0 || offset >= inode->i_size) 2672 offset = -ENXIO; 2673 else { 2674 start = offset >> PAGE_SHIFT; 2675 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2676 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2677 new_offset <<= PAGE_SHIFT; 2678 if (new_offset > offset) { 2679 if (new_offset < inode->i_size) 2680 offset = new_offset; 2681 else if (whence == SEEK_DATA) 2682 offset = -ENXIO; 2683 else 2684 offset = inode->i_size; 2685 } 2686 } 2687 2688 if (offset >= 0) 2689 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2690 inode_unlock(inode); 2691 return offset; 2692 } 2693 2694 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2695 loff_t len) 2696 { 2697 struct inode *inode = file_inode(file); 2698 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2699 struct shmem_inode_info *info = SHMEM_I(inode); 2700 struct shmem_falloc shmem_falloc; 2701 pgoff_t start, index, end; 2702 int error; 2703 2704 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2705 return -EOPNOTSUPP; 2706 2707 inode_lock(inode); 2708 2709 if (mode & FALLOC_FL_PUNCH_HOLE) { 2710 struct address_space *mapping = file->f_mapping; 2711 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2712 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2713 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2714 2715 /* protected by i_mutex */ 2716 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2717 error = -EPERM; 2718 goto out; 2719 } 2720 2721 shmem_falloc.waitq = &shmem_falloc_waitq; 2722 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2723 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2724 spin_lock(&inode->i_lock); 2725 inode->i_private = &shmem_falloc; 2726 spin_unlock(&inode->i_lock); 2727 2728 if ((u64)unmap_end > (u64)unmap_start) 2729 unmap_mapping_range(mapping, unmap_start, 2730 1 + unmap_end - unmap_start, 0); 2731 shmem_truncate_range(inode, offset, offset + len - 1); 2732 /* No need to unmap again: hole-punching leaves COWed pages */ 2733 2734 spin_lock(&inode->i_lock); 2735 inode->i_private = NULL; 2736 wake_up_all(&shmem_falloc_waitq); 2737 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2738 spin_unlock(&inode->i_lock); 2739 error = 0; 2740 goto out; 2741 } 2742 2743 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2744 error = inode_newsize_ok(inode, offset + len); 2745 if (error) 2746 goto out; 2747 2748 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2749 error = -EPERM; 2750 goto out; 2751 } 2752 2753 start = offset >> PAGE_SHIFT; 2754 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2755 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2756 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2757 error = -ENOSPC; 2758 goto out; 2759 } 2760 2761 shmem_falloc.waitq = NULL; 2762 shmem_falloc.start = start; 2763 shmem_falloc.next = start; 2764 shmem_falloc.nr_falloced = 0; 2765 shmem_falloc.nr_unswapped = 0; 2766 spin_lock(&inode->i_lock); 2767 inode->i_private = &shmem_falloc; 2768 spin_unlock(&inode->i_lock); 2769 2770 for (index = start; index < end; index++) { 2771 struct page *page; 2772 2773 /* 2774 * Good, the fallocate(2) manpage permits EINTR: we may have 2775 * been interrupted because we are using up too much memory. 2776 */ 2777 if (signal_pending(current)) 2778 error = -EINTR; 2779 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2780 error = -ENOMEM; 2781 else 2782 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2783 if (error) { 2784 /* Remove the !PageUptodate pages we added */ 2785 if (index > start) { 2786 shmem_undo_range(inode, 2787 (loff_t)start << PAGE_SHIFT, 2788 ((loff_t)index << PAGE_SHIFT) - 1, true); 2789 } 2790 goto undone; 2791 } 2792 2793 /* 2794 * Inform shmem_writepage() how far we have reached. 2795 * No need for lock or barrier: we have the page lock. 2796 */ 2797 shmem_falloc.next++; 2798 if (!PageUptodate(page)) 2799 shmem_falloc.nr_falloced++; 2800 2801 /* 2802 * If !PageUptodate, leave it that way so that freeable pages 2803 * can be recognized if we need to rollback on error later. 2804 * But set_page_dirty so that memory pressure will swap rather 2805 * than free the pages we are allocating (and SGP_CACHE pages 2806 * might still be clean: we now need to mark those dirty too). 2807 */ 2808 set_page_dirty(page); 2809 unlock_page(page); 2810 put_page(page); 2811 cond_resched(); 2812 } 2813 2814 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2815 i_size_write(inode, offset + len); 2816 inode->i_ctime = current_time(inode); 2817 undone: 2818 spin_lock(&inode->i_lock); 2819 inode->i_private = NULL; 2820 spin_unlock(&inode->i_lock); 2821 out: 2822 inode_unlock(inode); 2823 return error; 2824 } 2825 2826 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2827 { 2828 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2829 2830 buf->f_type = TMPFS_MAGIC; 2831 buf->f_bsize = PAGE_SIZE; 2832 buf->f_namelen = NAME_MAX; 2833 if (sbinfo->max_blocks) { 2834 buf->f_blocks = sbinfo->max_blocks; 2835 buf->f_bavail = 2836 buf->f_bfree = sbinfo->max_blocks - 2837 percpu_counter_sum(&sbinfo->used_blocks); 2838 } 2839 if (sbinfo->max_inodes) { 2840 buf->f_files = sbinfo->max_inodes; 2841 buf->f_ffree = sbinfo->free_inodes; 2842 } 2843 /* else leave those fields 0 like simple_statfs */ 2844 return 0; 2845 } 2846 2847 /* 2848 * File creation. Allocate an inode, and we're done.. 2849 */ 2850 static int 2851 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2852 { 2853 struct inode *inode; 2854 int error = -ENOSPC; 2855 2856 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2857 if (inode) { 2858 error = simple_acl_create(dir, inode); 2859 if (error) 2860 goto out_iput; 2861 error = security_inode_init_security(inode, dir, 2862 &dentry->d_name, 2863 shmem_initxattrs, NULL); 2864 if (error && error != -EOPNOTSUPP) 2865 goto out_iput; 2866 2867 error = 0; 2868 dir->i_size += BOGO_DIRENT_SIZE; 2869 dir->i_ctime = dir->i_mtime = current_time(dir); 2870 d_instantiate(dentry, inode); 2871 dget(dentry); /* Extra count - pin the dentry in core */ 2872 } 2873 return error; 2874 out_iput: 2875 iput(inode); 2876 return error; 2877 } 2878 2879 static int 2880 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2881 { 2882 struct inode *inode; 2883 int error = -ENOSPC; 2884 2885 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2886 if (inode) { 2887 error = security_inode_init_security(inode, dir, 2888 NULL, 2889 shmem_initxattrs, NULL); 2890 if (error && error != -EOPNOTSUPP) 2891 goto out_iput; 2892 error = simple_acl_create(dir, inode); 2893 if (error) 2894 goto out_iput; 2895 d_tmpfile(dentry, inode); 2896 } 2897 return error; 2898 out_iput: 2899 iput(inode); 2900 return error; 2901 } 2902 2903 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2904 { 2905 int error; 2906 2907 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2908 return error; 2909 inc_nlink(dir); 2910 return 0; 2911 } 2912 2913 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2914 bool excl) 2915 { 2916 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2917 } 2918 2919 /* 2920 * Link a file.. 2921 */ 2922 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2923 { 2924 struct inode *inode = d_inode(old_dentry); 2925 int ret = 0; 2926 2927 /* 2928 * No ordinary (disk based) filesystem counts links as inodes; 2929 * but each new link needs a new dentry, pinning lowmem, and 2930 * tmpfs dentries cannot be pruned until they are unlinked. 2931 * But if an O_TMPFILE file is linked into the tmpfs, the 2932 * first link must skip that, to get the accounting right. 2933 */ 2934 if (inode->i_nlink) { 2935 ret = shmem_reserve_inode(inode->i_sb); 2936 if (ret) 2937 goto out; 2938 } 2939 2940 dir->i_size += BOGO_DIRENT_SIZE; 2941 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2942 inc_nlink(inode); 2943 ihold(inode); /* New dentry reference */ 2944 dget(dentry); /* Extra pinning count for the created dentry */ 2945 d_instantiate(dentry, inode); 2946 out: 2947 return ret; 2948 } 2949 2950 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2951 { 2952 struct inode *inode = d_inode(dentry); 2953 2954 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2955 shmem_free_inode(inode->i_sb); 2956 2957 dir->i_size -= BOGO_DIRENT_SIZE; 2958 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2959 drop_nlink(inode); 2960 dput(dentry); /* Undo the count from "create" - this does all the work */ 2961 return 0; 2962 } 2963 2964 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2965 { 2966 if (!simple_empty(dentry)) 2967 return -ENOTEMPTY; 2968 2969 drop_nlink(d_inode(dentry)); 2970 drop_nlink(dir); 2971 return shmem_unlink(dir, dentry); 2972 } 2973 2974 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2975 { 2976 bool old_is_dir = d_is_dir(old_dentry); 2977 bool new_is_dir = d_is_dir(new_dentry); 2978 2979 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2980 if (old_is_dir) { 2981 drop_nlink(old_dir); 2982 inc_nlink(new_dir); 2983 } else { 2984 drop_nlink(new_dir); 2985 inc_nlink(old_dir); 2986 } 2987 } 2988 old_dir->i_ctime = old_dir->i_mtime = 2989 new_dir->i_ctime = new_dir->i_mtime = 2990 d_inode(old_dentry)->i_ctime = 2991 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2992 2993 return 0; 2994 } 2995 2996 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2997 { 2998 struct dentry *whiteout; 2999 int error; 3000 3001 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3002 if (!whiteout) 3003 return -ENOMEM; 3004 3005 error = shmem_mknod(old_dir, whiteout, 3006 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3007 dput(whiteout); 3008 if (error) 3009 return error; 3010 3011 /* 3012 * Cheat and hash the whiteout while the old dentry is still in 3013 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3014 * 3015 * d_lookup() will consistently find one of them at this point, 3016 * not sure which one, but that isn't even important. 3017 */ 3018 d_rehash(whiteout); 3019 return 0; 3020 } 3021 3022 /* 3023 * The VFS layer already does all the dentry stuff for rename, 3024 * we just have to decrement the usage count for the target if 3025 * it exists so that the VFS layer correctly free's it when it 3026 * gets overwritten. 3027 */ 3028 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3029 { 3030 struct inode *inode = d_inode(old_dentry); 3031 int they_are_dirs = S_ISDIR(inode->i_mode); 3032 3033 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3034 return -EINVAL; 3035 3036 if (flags & RENAME_EXCHANGE) 3037 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3038 3039 if (!simple_empty(new_dentry)) 3040 return -ENOTEMPTY; 3041 3042 if (flags & RENAME_WHITEOUT) { 3043 int error; 3044 3045 error = shmem_whiteout(old_dir, old_dentry); 3046 if (error) 3047 return error; 3048 } 3049 3050 if (d_really_is_positive(new_dentry)) { 3051 (void) shmem_unlink(new_dir, new_dentry); 3052 if (they_are_dirs) { 3053 drop_nlink(d_inode(new_dentry)); 3054 drop_nlink(old_dir); 3055 } 3056 } else if (they_are_dirs) { 3057 drop_nlink(old_dir); 3058 inc_nlink(new_dir); 3059 } 3060 3061 old_dir->i_size -= BOGO_DIRENT_SIZE; 3062 new_dir->i_size += BOGO_DIRENT_SIZE; 3063 old_dir->i_ctime = old_dir->i_mtime = 3064 new_dir->i_ctime = new_dir->i_mtime = 3065 inode->i_ctime = current_time(old_dir); 3066 return 0; 3067 } 3068 3069 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3070 { 3071 int error; 3072 int len; 3073 struct inode *inode; 3074 struct page *page; 3075 3076 len = strlen(symname) + 1; 3077 if (len > PAGE_SIZE) 3078 return -ENAMETOOLONG; 3079 3080 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3081 VM_NORESERVE); 3082 if (!inode) 3083 return -ENOSPC; 3084 3085 error = security_inode_init_security(inode, dir, &dentry->d_name, 3086 shmem_initxattrs, NULL); 3087 if (error && error != -EOPNOTSUPP) { 3088 iput(inode); 3089 return error; 3090 } 3091 3092 inode->i_size = len-1; 3093 if (len <= SHORT_SYMLINK_LEN) { 3094 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3095 if (!inode->i_link) { 3096 iput(inode); 3097 return -ENOMEM; 3098 } 3099 inode->i_op = &shmem_short_symlink_operations; 3100 } else { 3101 inode_nohighmem(inode); 3102 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3103 if (error) { 3104 iput(inode); 3105 return error; 3106 } 3107 inode->i_mapping->a_ops = &shmem_aops; 3108 inode->i_op = &shmem_symlink_inode_operations; 3109 memcpy(page_address(page), symname, len); 3110 SetPageUptodate(page); 3111 set_page_dirty(page); 3112 unlock_page(page); 3113 put_page(page); 3114 } 3115 dir->i_size += BOGO_DIRENT_SIZE; 3116 dir->i_ctime = dir->i_mtime = current_time(dir); 3117 d_instantiate(dentry, inode); 3118 dget(dentry); 3119 return 0; 3120 } 3121 3122 static void shmem_put_link(void *arg) 3123 { 3124 mark_page_accessed(arg); 3125 put_page(arg); 3126 } 3127 3128 static const char *shmem_get_link(struct dentry *dentry, 3129 struct inode *inode, 3130 struct delayed_call *done) 3131 { 3132 struct page *page = NULL; 3133 int error; 3134 if (!dentry) { 3135 page = find_get_page(inode->i_mapping, 0); 3136 if (!page) 3137 return ERR_PTR(-ECHILD); 3138 if (!PageUptodate(page)) { 3139 put_page(page); 3140 return ERR_PTR(-ECHILD); 3141 } 3142 } else { 3143 error = shmem_getpage(inode, 0, &page, SGP_READ); 3144 if (error) 3145 return ERR_PTR(error); 3146 unlock_page(page); 3147 } 3148 set_delayed_call(done, shmem_put_link, page); 3149 return page_address(page); 3150 } 3151 3152 #ifdef CONFIG_TMPFS_XATTR 3153 /* 3154 * Superblocks without xattr inode operations may get some security.* xattr 3155 * support from the LSM "for free". As soon as we have any other xattrs 3156 * like ACLs, we also need to implement the security.* handlers at 3157 * filesystem level, though. 3158 */ 3159 3160 /* 3161 * Callback for security_inode_init_security() for acquiring xattrs. 3162 */ 3163 static int shmem_initxattrs(struct inode *inode, 3164 const struct xattr *xattr_array, 3165 void *fs_info) 3166 { 3167 struct shmem_inode_info *info = SHMEM_I(inode); 3168 const struct xattr *xattr; 3169 struct simple_xattr *new_xattr; 3170 size_t len; 3171 3172 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3173 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3174 if (!new_xattr) 3175 return -ENOMEM; 3176 3177 len = strlen(xattr->name) + 1; 3178 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3179 GFP_KERNEL); 3180 if (!new_xattr->name) { 3181 kfree(new_xattr); 3182 return -ENOMEM; 3183 } 3184 3185 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3186 XATTR_SECURITY_PREFIX_LEN); 3187 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3188 xattr->name, len); 3189 3190 simple_xattr_list_add(&info->xattrs, new_xattr); 3191 } 3192 3193 return 0; 3194 } 3195 3196 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3197 struct dentry *unused, struct inode *inode, 3198 const char *name, void *buffer, size_t size) 3199 { 3200 struct shmem_inode_info *info = SHMEM_I(inode); 3201 3202 name = xattr_full_name(handler, name); 3203 return simple_xattr_get(&info->xattrs, name, buffer, size); 3204 } 3205 3206 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3207 struct dentry *unused, struct inode *inode, 3208 const char *name, const void *value, 3209 size_t size, int flags) 3210 { 3211 struct shmem_inode_info *info = SHMEM_I(inode); 3212 3213 name = xattr_full_name(handler, name); 3214 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3215 } 3216 3217 static const struct xattr_handler shmem_security_xattr_handler = { 3218 .prefix = XATTR_SECURITY_PREFIX, 3219 .get = shmem_xattr_handler_get, 3220 .set = shmem_xattr_handler_set, 3221 }; 3222 3223 static const struct xattr_handler shmem_trusted_xattr_handler = { 3224 .prefix = XATTR_TRUSTED_PREFIX, 3225 .get = shmem_xattr_handler_get, 3226 .set = shmem_xattr_handler_set, 3227 }; 3228 3229 static const struct xattr_handler *shmem_xattr_handlers[] = { 3230 #ifdef CONFIG_TMPFS_POSIX_ACL 3231 &posix_acl_access_xattr_handler, 3232 &posix_acl_default_xattr_handler, 3233 #endif 3234 &shmem_security_xattr_handler, 3235 &shmem_trusted_xattr_handler, 3236 NULL 3237 }; 3238 3239 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3240 { 3241 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3242 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3243 } 3244 #endif /* CONFIG_TMPFS_XATTR */ 3245 3246 static const struct inode_operations shmem_short_symlink_operations = { 3247 .get_link = simple_get_link, 3248 #ifdef CONFIG_TMPFS_XATTR 3249 .listxattr = shmem_listxattr, 3250 #endif 3251 }; 3252 3253 static const struct inode_operations shmem_symlink_inode_operations = { 3254 .get_link = shmem_get_link, 3255 #ifdef CONFIG_TMPFS_XATTR 3256 .listxattr = shmem_listxattr, 3257 #endif 3258 }; 3259 3260 static struct dentry *shmem_get_parent(struct dentry *child) 3261 { 3262 return ERR_PTR(-ESTALE); 3263 } 3264 3265 static int shmem_match(struct inode *ino, void *vfh) 3266 { 3267 __u32 *fh = vfh; 3268 __u64 inum = fh[2]; 3269 inum = (inum << 32) | fh[1]; 3270 return ino->i_ino == inum && fh[0] == ino->i_generation; 3271 } 3272 3273 /* Find any alias of inode, but prefer a hashed alias */ 3274 static struct dentry *shmem_find_alias(struct inode *inode) 3275 { 3276 struct dentry *alias = d_find_alias(inode); 3277 3278 return alias ?: d_find_any_alias(inode); 3279 } 3280 3281 3282 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3283 struct fid *fid, int fh_len, int fh_type) 3284 { 3285 struct inode *inode; 3286 struct dentry *dentry = NULL; 3287 u64 inum; 3288 3289 if (fh_len < 3) 3290 return NULL; 3291 3292 inum = fid->raw[2]; 3293 inum = (inum << 32) | fid->raw[1]; 3294 3295 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3296 shmem_match, fid->raw); 3297 if (inode) { 3298 dentry = shmem_find_alias(inode); 3299 iput(inode); 3300 } 3301 3302 return dentry; 3303 } 3304 3305 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3306 struct inode *parent) 3307 { 3308 if (*len < 3) { 3309 *len = 3; 3310 return FILEID_INVALID; 3311 } 3312 3313 if (inode_unhashed(inode)) { 3314 /* Unfortunately insert_inode_hash is not idempotent, 3315 * so as we hash inodes here rather than at creation 3316 * time, we need a lock to ensure we only try 3317 * to do it once 3318 */ 3319 static DEFINE_SPINLOCK(lock); 3320 spin_lock(&lock); 3321 if (inode_unhashed(inode)) 3322 __insert_inode_hash(inode, 3323 inode->i_ino + inode->i_generation); 3324 spin_unlock(&lock); 3325 } 3326 3327 fh[0] = inode->i_generation; 3328 fh[1] = inode->i_ino; 3329 fh[2] = ((__u64)inode->i_ino) >> 32; 3330 3331 *len = 3; 3332 return 1; 3333 } 3334 3335 static const struct export_operations shmem_export_ops = { 3336 .get_parent = shmem_get_parent, 3337 .encode_fh = shmem_encode_fh, 3338 .fh_to_dentry = shmem_fh_to_dentry, 3339 }; 3340 3341 enum shmem_param { 3342 Opt_gid, 3343 Opt_huge, 3344 Opt_mode, 3345 Opt_mpol, 3346 Opt_nr_blocks, 3347 Opt_nr_inodes, 3348 Opt_size, 3349 Opt_uid, 3350 }; 3351 3352 static const struct constant_table shmem_param_enums_huge[] = { 3353 {"never", SHMEM_HUGE_NEVER }, 3354 {"always", SHMEM_HUGE_ALWAYS }, 3355 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3356 {"advise", SHMEM_HUGE_ADVISE }, 3357 {} 3358 }; 3359 3360 const struct fs_parameter_spec shmem_fs_parameters[] = { 3361 fsparam_u32 ("gid", Opt_gid), 3362 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3363 fsparam_u32oct("mode", Opt_mode), 3364 fsparam_string("mpol", Opt_mpol), 3365 fsparam_string("nr_blocks", Opt_nr_blocks), 3366 fsparam_string("nr_inodes", Opt_nr_inodes), 3367 fsparam_string("size", Opt_size), 3368 fsparam_u32 ("uid", Opt_uid), 3369 {} 3370 }; 3371 3372 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3373 { 3374 struct shmem_options *ctx = fc->fs_private; 3375 struct fs_parse_result result; 3376 unsigned long long size; 3377 char *rest; 3378 int opt; 3379 3380 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3381 if (opt < 0) 3382 return opt; 3383 3384 switch (opt) { 3385 case Opt_size: 3386 size = memparse(param->string, &rest); 3387 if (*rest == '%') { 3388 size <<= PAGE_SHIFT; 3389 size *= totalram_pages(); 3390 do_div(size, 100); 3391 rest++; 3392 } 3393 if (*rest) 3394 goto bad_value; 3395 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3396 ctx->seen |= SHMEM_SEEN_BLOCKS; 3397 break; 3398 case Opt_nr_blocks: 3399 ctx->blocks = memparse(param->string, &rest); 3400 if (*rest) 3401 goto bad_value; 3402 ctx->seen |= SHMEM_SEEN_BLOCKS; 3403 break; 3404 case Opt_nr_inodes: 3405 ctx->inodes = memparse(param->string, &rest); 3406 if (*rest) 3407 goto bad_value; 3408 ctx->seen |= SHMEM_SEEN_INODES; 3409 break; 3410 case Opt_mode: 3411 ctx->mode = result.uint_32 & 07777; 3412 break; 3413 case Opt_uid: 3414 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3415 if (!uid_valid(ctx->uid)) 3416 goto bad_value; 3417 break; 3418 case Opt_gid: 3419 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3420 if (!gid_valid(ctx->gid)) 3421 goto bad_value; 3422 break; 3423 case Opt_huge: 3424 ctx->huge = result.uint_32; 3425 if (ctx->huge != SHMEM_HUGE_NEVER && 3426 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3427 has_transparent_hugepage())) 3428 goto unsupported_parameter; 3429 ctx->seen |= SHMEM_SEEN_HUGE; 3430 break; 3431 case Opt_mpol: 3432 if (IS_ENABLED(CONFIG_NUMA)) { 3433 mpol_put(ctx->mpol); 3434 ctx->mpol = NULL; 3435 if (mpol_parse_str(param->string, &ctx->mpol)) 3436 goto bad_value; 3437 break; 3438 } 3439 goto unsupported_parameter; 3440 } 3441 return 0; 3442 3443 unsupported_parameter: 3444 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3445 bad_value: 3446 return invalfc(fc, "Bad value for '%s'", param->key); 3447 } 3448 3449 static int shmem_parse_options(struct fs_context *fc, void *data) 3450 { 3451 char *options = data; 3452 3453 if (options) { 3454 int err = security_sb_eat_lsm_opts(options, &fc->security); 3455 if (err) 3456 return err; 3457 } 3458 3459 while (options != NULL) { 3460 char *this_char = options; 3461 for (;;) { 3462 /* 3463 * NUL-terminate this option: unfortunately, 3464 * mount options form a comma-separated list, 3465 * but mpol's nodelist may also contain commas. 3466 */ 3467 options = strchr(options, ','); 3468 if (options == NULL) 3469 break; 3470 options++; 3471 if (!isdigit(*options)) { 3472 options[-1] = '\0'; 3473 break; 3474 } 3475 } 3476 if (*this_char) { 3477 char *value = strchr(this_char,'='); 3478 size_t len = 0; 3479 int err; 3480 3481 if (value) { 3482 *value++ = '\0'; 3483 len = strlen(value); 3484 } 3485 err = vfs_parse_fs_string(fc, this_char, value, len); 3486 if (err < 0) 3487 return err; 3488 } 3489 } 3490 return 0; 3491 } 3492 3493 /* 3494 * Reconfigure a shmem filesystem. 3495 * 3496 * Note that we disallow change from limited->unlimited blocks/inodes while any 3497 * are in use; but we must separately disallow unlimited->limited, because in 3498 * that case we have no record of how much is already in use. 3499 */ 3500 static int shmem_reconfigure(struct fs_context *fc) 3501 { 3502 struct shmem_options *ctx = fc->fs_private; 3503 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3504 unsigned long inodes; 3505 const char *err; 3506 3507 spin_lock(&sbinfo->stat_lock); 3508 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3509 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3510 if (!sbinfo->max_blocks) { 3511 err = "Cannot retroactively limit size"; 3512 goto out; 3513 } 3514 if (percpu_counter_compare(&sbinfo->used_blocks, 3515 ctx->blocks) > 0) { 3516 err = "Too small a size for current use"; 3517 goto out; 3518 } 3519 } 3520 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3521 if (!sbinfo->max_inodes) { 3522 err = "Cannot retroactively limit inodes"; 3523 goto out; 3524 } 3525 if (ctx->inodes < inodes) { 3526 err = "Too few inodes for current use"; 3527 goto out; 3528 } 3529 } 3530 3531 if (ctx->seen & SHMEM_SEEN_HUGE) 3532 sbinfo->huge = ctx->huge; 3533 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3534 sbinfo->max_blocks = ctx->blocks; 3535 if (ctx->seen & SHMEM_SEEN_INODES) { 3536 sbinfo->max_inodes = ctx->inodes; 3537 sbinfo->free_inodes = ctx->inodes - inodes; 3538 } 3539 3540 /* 3541 * Preserve previous mempolicy unless mpol remount option was specified. 3542 */ 3543 if (ctx->mpol) { 3544 mpol_put(sbinfo->mpol); 3545 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3546 ctx->mpol = NULL; 3547 } 3548 spin_unlock(&sbinfo->stat_lock); 3549 return 0; 3550 out: 3551 spin_unlock(&sbinfo->stat_lock); 3552 return invalfc(fc, "%s", err); 3553 } 3554 3555 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3556 { 3557 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3558 3559 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3560 seq_printf(seq, ",size=%luk", 3561 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3562 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3563 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3564 if (sbinfo->mode != (0777 | S_ISVTX)) 3565 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3566 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3567 seq_printf(seq, ",uid=%u", 3568 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3569 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3570 seq_printf(seq, ",gid=%u", 3571 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3573 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3574 if (sbinfo->huge) 3575 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3576 #endif 3577 shmem_show_mpol(seq, sbinfo->mpol); 3578 return 0; 3579 } 3580 3581 #endif /* CONFIG_TMPFS */ 3582 3583 static void shmem_put_super(struct super_block *sb) 3584 { 3585 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3586 3587 percpu_counter_destroy(&sbinfo->used_blocks); 3588 mpol_put(sbinfo->mpol); 3589 kfree(sbinfo); 3590 sb->s_fs_info = NULL; 3591 } 3592 3593 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3594 { 3595 struct shmem_options *ctx = fc->fs_private; 3596 struct inode *inode; 3597 struct shmem_sb_info *sbinfo; 3598 int err = -ENOMEM; 3599 3600 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3601 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3602 L1_CACHE_BYTES), GFP_KERNEL); 3603 if (!sbinfo) 3604 return -ENOMEM; 3605 3606 sb->s_fs_info = sbinfo; 3607 3608 #ifdef CONFIG_TMPFS 3609 /* 3610 * Per default we only allow half of the physical ram per 3611 * tmpfs instance, limiting inodes to one per page of lowmem; 3612 * but the internal instance is left unlimited. 3613 */ 3614 if (!(sb->s_flags & SB_KERNMOUNT)) { 3615 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3616 ctx->blocks = shmem_default_max_blocks(); 3617 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3618 ctx->inodes = shmem_default_max_inodes(); 3619 } else { 3620 sb->s_flags |= SB_NOUSER; 3621 } 3622 sb->s_export_op = &shmem_export_ops; 3623 sb->s_flags |= SB_NOSEC; 3624 #else 3625 sb->s_flags |= SB_NOUSER; 3626 #endif 3627 sbinfo->max_blocks = ctx->blocks; 3628 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3629 sbinfo->uid = ctx->uid; 3630 sbinfo->gid = ctx->gid; 3631 sbinfo->mode = ctx->mode; 3632 sbinfo->huge = ctx->huge; 3633 sbinfo->mpol = ctx->mpol; 3634 ctx->mpol = NULL; 3635 3636 spin_lock_init(&sbinfo->stat_lock); 3637 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3638 goto failed; 3639 spin_lock_init(&sbinfo->shrinklist_lock); 3640 INIT_LIST_HEAD(&sbinfo->shrinklist); 3641 3642 sb->s_maxbytes = MAX_LFS_FILESIZE; 3643 sb->s_blocksize = PAGE_SIZE; 3644 sb->s_blocksize_bits = PAGE_SHIFT; 3645 sb->s_magic = TMPFS_MAGIC; 3646 sb->s_op = &shmem_ops; 3647 sb->s_time_gran = 1; 3648 #ifdef CONFIG_TMPFS_XATTR 3649 sb->s_xattr = shmem_xattr_handlers; 3650 #endif 3651 #ifdef CONFIG_TMPFS_POSIX_ACL 3652 sb->s_flags |= SB_POSIXACL; 3653 #endif 3654 uuid_gen(&sb->s_uuid); 3655 3656 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3657 if (!inode) 3658 goto failed; 3659 inode->i_uid = sbinfo->uid; 3660 inode->i_gid = sbinfo->gid; 3661 sb->s_root = d_make_root(inode); 3662 if (!sb->s_root) 3663 goto failed; 3664 return 0; 3665 3666 failed: 3667 shmem_put_super(sb); 3668 return err; 3669 } 3670 3671 static int shmem_get_tree(struct fs_context *fc) 3672 { 3673 return get_tree_nodev(fc, shmem_fill_super); 3674 } 3675 3676 static void shmem_free_fc(struct fs_context *fc) 3677 { 3678 struct shmem_options *ctx = fc->fs_private; 3679 3680 if (ctx) { 3681 mpol_put(ctx->mpol); 3682 kfree(ctx); 3683 } 3684 } 3685 3686 static const struct fs_context_operations shmem_fs_context_ops = { 3687 .free = shmem_free_fc, 3688 .get_tree = shmem_get_tree, 3689 #ifdef CONFIG_TMPFS 3690 .parse_monolithic = shmem_parse_options, 3691 .parse_param = shmem_parse_one, 3692 .reconfigure = shmem_reconfigure, 3693 #endif 3694 }; 3695 3696 static struct kmem_cache *shmem_inode_cachep; 3697 3698 static struct inode *shmem_alloc_inode(struct super_block *sb) 3699 { 3700 struct shmem_inode_info *info; 3701 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3702 if (!info) 3703 return NULL; 3704 return &info->vfs_inode; 3705 } 3706 3707 static void shmem_free_in_core_inode(struct inode *inode) 3708 { 3709 if (S_ISLNK(inode->i_mode)) 3710 kfree(inode->i_link); 3711 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3712 } 3713 3714 static void shmem_destroy_inode(struct inode *inode) 3715 { 3716 if (S_ISREG(inode->i_mode)) 3717 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3718 } 3719 3720 static void shmem_init_inode(void *foo) 3721 { 3722 struct shmem_inode_info *info = foo; 3723 inode_init_once(&info->vfs_inode); 3724 } 3725 3726 static void shmem_init_inodecache(void) 3727 { 3728 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3729 sizeof(struct shmem_inode_info), 3730 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3731 } 3732 3733 static void shmem_destroy_inodecache(void) 3734 { 3735 kmem_cache_destroy(shmem_inode_cachep); 3736 } 3737 3738 static const struct address_space_operations shmem_aops = { 3739 .writepage = shmem_writepage, 3740 .set_page_dirty = __set_page_dirty_no_writeback, 3741 #ifdef CONFIG_TMPFS 3742 .write_begin = shmem_write_begin, 3743 .write_end = shmem_write_end, 3744 #endif 3745 #ifdef CONFIG_MIGRATION 3746 .migratepage = migrate_page, 3747 #endif 3748 .error_remove_page = generic_error_remove_page, 3749 }; 3750 3751 static const struct file_operations shmem_file_operations = { 3752 .mmap = shmem_mmap, 3753 .get_unmapped_area = shmem_get_unmapped_area, 3754 #ifdef CONFIG_TMPFS 3755 .llseek = shmem_file_llseek, 3756 .read_iter = shmem_file_read_iter, 3757 .write_iter = generic_file_write_iter, 3758 .fsync = noop_fsync, 3759 .splice_read = generic_file_splice_read, 3760 .splice_write = iter_file_splice_write, 3761 .fallocate = shmem_fallocate, 3762 #endif 3763 }; 3764 3765 static const struct inode_operations shmem_inode_operations = { 3766 .getattr = shmem_getattr, 3767 .setattr = shmem_setattr, 3768 #ifdef CONFIG_TMPFS_XATTR 3769 .listxattr = shmem_listxattr, 3770 .set_acl = simple_set_acl, 3771 #endif 3772 }; 3773 3774 static const struct inode_operations shmem_dir_inode_operations = { 3775 #ifdef CONFIG_TMPFS 3776 .create = shmem_create, 3777 .lookup = simple_lookup, 3778 .link = shmem_link, 3779 .unlink = shmem_unlink, 3780 .symlink = shmem_symlink, 3781 .mkdir = shmem_mkdir, 3782 .rmdir = shmem_rmdir, 3783 .mknod = shmem_mknod, 3784 .rename = shmem_rename2, 3785 .tmpfile = shmem_tmpfile, 3786 #endif 3787 #ifdef CONFIG_TMPFS_XATTR 3788 .listxattr = shmem_listxattr, 3789 #endif 3790 #ifdef CONFIG_TMPFS_POSIX_ACL 3791 .setattr = shmem_setattr, 3792 .set_acl = simple_set_acl, 3793 #endif 3794 }; 3795 3796 static const struct inode_operations shmem_special_inode_operations = { 3797 #ifdef CONFIG_TMPFS_XATTR 3798 .listxattr = shmem_listxattr, 3799 #endif 3800 #ifdef CONFIG_TMPFS_POSIX_ACL 3801 .setattr = shmem_setattr, 3802 .set_acl = simple_set_acl, 3803 #endif 3804 }; 3805 3806 static const struct super_operations shmem_ops = { 3807 .alloc_inode = shmem_alloc_inode, 3808 .free_inode = shmem_free_in_core_inode, 3809 .destroy_inode = shmem_destroy_inode, 3810 #ifdef CONFIG_TMPFS 3811 .statfs = shmem_statfs, 3812 .show_options = shmem_show_options, 3813 #endif 3814 .evict_inode = shmem_evict_inode, 3815 .drop_inode = generic_delete_inode, 3816 .put_super = shmem_put_super, 3817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3818 .nr_cached_objects = shmem_unused_huge_count, 3819 .free_cached_objects = shmem_unused_huge_scan, 3820 #endif 3821 }; 3822 3823 static const struct vm_operations_struct shmem_vm_ops = { 3824 .fault = shmem_fault, 3825 .map_pages = filemap_map_pages, 3826 #ifdef CONFIG_NUMA 3827 .set_policy = shmem_set_policy, 3828 .get_policy = shmem_get_policy, 3829 #endif 3830 }; 3831 3832 int shmem_init_fs_context(struct fs_context *fc) 3833 { 3834 struct shmem_options *ctx; 3835 3836 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3837 if (!ctx) 3838 return -ENOMEM; 3839 3840 ctx->mode = 0777 | S_ISVTX; 3841 ctx->uid = current_fsuid(); 3842 ctx->gid = current_fsgid(); 3843 3844 fc->fs_private = ctx; 3845 fc->ops = &shmem_fs_context_ops; 3846 return 0; 3847 } 3848 3849 static struct file_system_type shmem_fs_type = { 3850 .owner = THIS_MODULE, 3851 .name = "tmpfs", 3852 .init_fs_context = shmem_init_fs_context, 3853 #ifdef CONFIG_TMPFS 3854 .parameters = shmem_fs_parameters, 3855 #endif 3856 .kill_sb = kill_litter_super, 3857 .fs_flags = FS_USERNS_MOUNT, 3858 }; 3859 3860 int __init shmem_init(void) 3861 { 3862 int error; 3863 3864 shmem_init_inodecache(); 3865 3866 error = register_filesystem(&shmem_fs_type); 3867 if (error) { 3868 pr_err("Could not register tmpfs\n"); 3869 goto out2; 3870 } 3871 3872 shm_mnt = kern_mount(&shmem_fs_type); 3873 if (IS_ERR(shm_mnt)) { 3874 error = PTR_ERR(shm_mnt); 3875 pr_err("Could not kern_mount tmpfs\n"); 3876 goto out1; 3877 } 3878 3879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3880 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3881 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3882 else 3883 shmem_huge = 0; /* just in case it was patched */ 3884 #endif 3885 return 0; 3886 3887 out1: 3888 unregister_filesystem(&shmem_fs_type); 3889 out2: 3890 shmem_destroy_inodecache(); 3891 shm_mnt = ERR_PTR(error); 3892 return error; 3893 } 3894 3895 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3896 static ssize_t shmem_enabled_show(struct kobject *kobj, 3897 struct kobj_attribute *attr, char *buf) 3898 { 3899 static const int values[] = { 3900 SHMEM_HUGE_ALWAYS, 3901 SHMEM_HUGE_WITHIN_SIZE, 3902 SHMEM_HUGE_ADVISE, 3903 SHMEM_HUGE_NEVER, 3904 SHMEM_HUGE_DENY, 3905 SHMEM_HUGE_FORCE, 3906 }; 3907 int i, count; 3908 3909 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3910 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3911 3912 count += sprintf(buf + count, fmt, 3913 shmem_format_huge(values[i])); 3914 } 3915 buf[count - 1] = '\n'; 3916 return count; 3917 } 3918 3919 static ssize_t shmem_enabled_store(struct kobject *kobj, 3920 struct kobj_attribute *attr, const char *buf, size_t count) 3921 { 3922 char tmp[16]; 3923 int huge; 3924 3925 if (count + 1 > sizeof(tmp)) 3926 return -EINVAL; 3927 memcpy(tmp, buf, count); 3928 tmp[count] = '\0'; 3929 if (count && tmp[count - 1] == '\n') 3930 tmp[count - 1] = '\0'; 3931 3932 huge = shmem_parse_huge(tmp); 3933 if (huge == -EINVAL) 3934 return -EINVAL; 3935 if (!has_transparent_hugepage() && 3936 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3937 return -EINVAL; 3938 3939 shmem_huge = huge; 3940 if (shmem_huge > SHMEM_HUGE_DENY) 3941 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3942 return count; 3943 } 3944 3945 struct kobj_attribute shmem_enabled_attr = 3946 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3948 3949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3950 bool shmem_huge_enabled(struct vm_area_struct *vma) 3951 { 3952 struct inode *inode = file_inode(vma->vm_file); 3953 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3954 loff_t i_size; 3955 pgoff_t off; 3956 3957 if ((vma->vm_flags & VM_NOHUGEPAGE) || 3958 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 3959 return false; 3960 if (shmem_huge == SHMEM_HUGE_FORCE) 3961 return true; 3962 if (shmem_huge == SHMEM_HUGE_DENY) 3963 return false; 3964 switch (sbinfo->huge) { 3965 case SHMEM_HUGE_NEVER: 3966 return false; 3967 case SHMEM_HUGE_ALWAYS: 3968 return true; 3969 case SHMEM_HUGE_WITHIN_SIZE: 3970 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3971 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3972 if (i_size >= HPAGE_PMD_SIZE && 3973 i_size >> PAGE_SHIFT >= off) 3974 return true; 3975 fallthrough; 3976 case SHMEM_HUGE_ADVISE: 3977 /* TODO: implement fadvise() hints */ 3978 return (vma->vm_flags & VM_HUGEPAGE); 3979 default: 3980 VM_BUG_ON(1); 3981 return false; 3982 } 3983 } 3984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3985 3986 #else /* !CONFIG_SHMEM */ 3987 3988 /* 3989 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3990 * 3991 * This is intended for small system where the benefits of the full 3992 * shmem code (swap-backed and resource-limited) are outweighed by 3993 * their complexity. On systems without swap this code should be 3994 * effectively equivalent, but much lighter weight. 3995 */ 3996 3997 static struct file_system_type shmem_fs_type = { 3998 .name = "tmpfs", 3999 .init_fs_context = ramfs_init_fs_context, 4000 .parameters = ramfs_fs_parameters, 4001 .kill_sb = kill_litter_super, 4002 .fs_flags = FS_USERNS_MOUNT, 4003 }; 4004 4005 int __init shmem_init(void) 4006 { 4007 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4008 4009 shm_mnt = kern_mount(&shmem_fs_type); 4010 BUG_ON(IS_ERR(shm_mnt)); 4011 4012 return 0; 4013 } 4014 4015 int shmem_unuse(unsigned int type, bool frontswap, 4016 unsigned long *fs_pages_to_unuse) 4017 { 4018 return 0; 4019 } 4020 4021 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4022 { 4023 return 0; 4024 } 4025 4026 void shmem_unlock_mapping(struct address_space *mapping) 4027 { 4028 } 4029 4030 #ifdef CONFIG_MMU 4031 unsigned long shmem_get_unmapped_area(struct file *file, 4032 unsigned long addr, unsigned long len, 4033 unsigned long pgoff, unsigned long flags) 4034 { 4035 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4036 } 4037 #endif 4038 4039 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4040 { 4041 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4042 } 4043 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4044 4045 #define shmem_vm_ops generic_file_vm_ops 4046 #define shmem_file_operations ramfs_file_operations 4047 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4048 #define shmem_acct_size(flags, size) 0 4049 #define shmem_unacct_size(flags, size) do {} while (0) 4050 4051 #endif /* CONFIG_SHMEM */ 4052 4053 /* common code */ 4054 4055 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4056 unsigned long flags, unsigned int i_flags) 4057 { 4058 struct inode *inode; 4059 struct file *res; 4060 4061 if (IS_ERR(mnt)) 4062 return ERR_CAST(mnt); 4063 4064 if (size < 0 || size > MAX_LFS_FILESIZE) 4065 return ERR_PTR(-EINVAL); 4066 4067 if (shmem_acct_size(flags, size)) 4068 return ERR_PTR(-ENOMEM); 4069 4070 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4071 flags); 4072 if (unlikely(!inode)) { 4073 shmem_unacct_size(flags, size); 4074 return ERR_PTR(-ENOSPC); 4075 } 4076 inode->i_flags |= i_flags; 4077 inode->i_size = size; 4078 clear_nlink(inode); /* It is unlinked */ 4079 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4080 if (!IS_ERR(res)) 4081 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4082 &shmem_file_operations); 4083 if (IS_ERR(res)) 4084 iput(inode); 4085 return res; 4086 } 4087 4088 /** 4089 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4090 * kernel internal. There will be NO LSM permission checks against the 4091 * underlying inode. So users of this interface must do LSM checks at a 4092 * higher layer. The users are the big_key and shm implementations. LSM 4093 * checks are provided at the key or shm level rather than the inode. 4094 * @name: name for dentry (to be seen in /proc/<pid>/maps 4095 * @size: size to be set for the file 4096 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4097 */ 4098 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4099 { 4100 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4101 } 4102 4103 /** 4104 * shmem_file_setup - get an unlinked file living in tmpfs 4105 * @name: name for dentry (to be seen in /proc/<pid>/maps 4106 * @size: size to be set for the file 4107 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4108 */ 4109 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4110 { 4111 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4112 } 4113 EXPORT_SYMBOL_GPL(shmem_file_setup); 4114 4115 /** 4116 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4117 * @mnt: the tmpfs mount where the file will be created 4118 * @name: name for dentry (to be seen in /proc/<pid>/maps 4119 * @size: size to be set for the file 4120 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4121 */ 4122 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4123 loff_t size, unsigned long flags) 4124 { 4125 return __shmem_file_setup(mnt, name, size, flags, 0); 4126 } 4127 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4128 4129 /** 4130 * shmem_zero_setup - setup a shared anonymous mapping 4131 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4132 */ 4133 int shmem_zero_setup(struct vm_area_struct *vma) 4134 { 4135 struct file *file; 4136 loff_t size = vma->vm_end - vma->vm_start; 4137 4138 /* 4139 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4140 * between XFS directory reading and selinux: since this file is only 4141 * accessible to the user through its mapping, use S_PRIVATE flag to 4142 * bypass file security, in the same way as shmem_kernel_file_setup(). 4143 */ 4144 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4145 if (IS_ERR(file)) 4146 return PTR_ERR(file); 4147 4148 if (vma->vm_file) 4149 fput(vma->vm_file); 4150 vma->vm_file = file; 4151 vma->vm_ops = &shmem_vm_ops; 4152 4153 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4154 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4155 (vma->vm_end & HPAGE_PMD_MASK)) { 4156 khugepaged_enter(vma, vma->vm_flags); 4157 } 4158 4159 return 0; 4160 } 4161 4162 /** 4163 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4164 * @mapping: the page's address_space 4165 * @index: the page index 4166 * @gfp: the page allocator flags to use if allocating 4167 * 4168 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4169 * with any new page allocations done using the specified allocation flags. 4170 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4171 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4172 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4173 * 4174 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4175 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4176 */ 4177 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4178 pgoff_t index, gfp_t gfp) 4179 { 4180 #ifdef CONFIG_SHMEM 4181 struct inode *inode = mapping->host; 4182 struct page *page; 4183 int error; 4184 4185 BUG_ON(mapping->a_ops != &shmem_aops); 4186 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4187 gfp, NULL, NULL, NULL); 4188 if (error) 4189 page = ERR_PTR(error); 4190 else 4191 unlock_page(page); 4192 return page; 4193 #else 4194 /* 4195 * The tiny !SHMEM case uses ramfs without swap 4196 */ 4197 return read_cache_page_gfp(mapping, index, gfp); 4198 #endif 4199 } 4200 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4201