xref: /openbmc/linux/mm/shmem.c (revision 92e2eaa44a7f368dfa6e66428fc42f3eefa6baa3)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95 
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98 
99 /*
100  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101  * inode->i_private (with i_rwsem making sure that it has only one user at
102  * a time): we would prefer not to enlarge the shmem inode just for that.
103  */
104 struct shmem_falloc {
105 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 	pgoff_t start;		/* start of range currently being fallocated */
107 	pgoff_t next;		/* the next page offset to be fallocated */
108 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
109 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
110 };
111 
112 struct shmem_options {
113 	unsigned long long blocks;
114 	unsigned long long inodes;
115 	struct mempolicy *mpol;
116 	kuid_t uid;
117 	kgid_t gid;
118 	umode_t mode;
119 	bool full_inums;
120 	int huge;
121 	int seen;
122 	bool noswap;
123 	unsigned short quota_types;
124 	struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132 
133 #ifdef CONFIG_TMPFS
134 static unsigned long shmem_default_max_blocks(void)
135 {
136 	return totalram_pages() / 2;
137 }
138 
139 static unsigned long shmem_default_max_inodes(void)
140 {
141 	unsigned long nr_pages = totalram_pages();
142 
143 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 			ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147 
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 			     struct folio **foliop, enum sgp_type sgp,
150 			     gfp_t gfp, struct vm_area_struct *vma,
151 			     vm_fault_t *fault_type);
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static int shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 	int err = -ENOSPC;
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return err;
218 
219 	might_sleep();	/* when quotas */
220 	if (sbinfo->max_blocks) {
221 		if (percpu_counter_compare(&sbinfo->used_blocks,
222 					   sbinfo->max_blocks - pages) > 0)
223 			goto unacct;
224 
225 		err = dquot_alloc_block_nodirty(inode, pages);
226 		if (err)
227 			goto unacct;
228 
229 		percpu_counter_add(&sbinfo->used_blocks, pages);
230 	} else {
231 		err = dquot_alloc_block_nodirty(inode, pages);
232 		if (err)
233 			goto unacct;
234 	}
235 
236 	return 0;
237 
238 unacct:
239 	shmem_unacct_blocks(info->flags, pages);
240 	return err;
241 }
242 
243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 	struct shmem_inode_info *info = SHMEM_I(inode);
246 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 
248 	might_sleep();	/* when quotas */
249 	dquot_free_block_nodirty(inode, pages);
250 
251 	if (sbinfo->max_blocks)
252 		percpu_counter_sub(&sbinfo->used_blocks, pages);
253 	shmem_unacct_blocks(info->flags, pages);
254 }
255 
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265 
266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 	return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270 
271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275 
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278 
279 #ifdef CONFIG_TMPFS_QUOTA
280 
281 static int shmem_enable_quotas(struct super_block *sb,
282 			       unsigned short quota_types)
283 {
284 	int type, err = 0;
285 
286 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 		if (!(quota_types & (1 << type)))
289 			continue;
290 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 					  DQUOT_USAGE_ENABLED |
292 					  DQUOT_LIMITS_ENABLED);
293 		if (err)
294 			goto out_err;
295 	}
296 	return 0;
297 
298 out_err:
299 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 		type, err);
301 	for (type--; type >= 0; type--)
302 		dquot_quota_off(sb, type);
303 	return err;
304 }
305 
306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 	int type;
309 
310 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 		dquot_quota_off(sb, type);
312 }
313 
314 static struct dquot **shmem_get_dquots(struct inode *inode)
315 {
316 	return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319 
320 /*
321  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322  * produces a novel ino for the newly allocated inode.
323  *
324  * It may also be called when making a hard link to permit the space needed by
325  * each dentry. However, in that case, no new inode number is needed since that
326  * internally draws from another pool of inode numbers (currently global
327  * get_next_ino()). This case is indicated by passing NULL as inop.
328  */
329 #define SHMEM_INO_BATCH 1024
330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 	ino_t ino;
334 
335 	if (!(sb->s_flags & SB_KERNMOUNT)) {
336 		raw_spin_lock(&sbinfo->stat_lock);
337 		if (sbinfo->max_inodes) {
338 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 				raw_spin_unlock(&sbinfo->stat_lock);
340 				return -ENOSPC;
341 			}
342 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 		}
344 		if (inop) {
345 			ino = sbinfo->next_ino++;
346 			if (unlikely(is_zero_ino(ino)))
347 				ino = sbinfo->next_ino++;
348 			if (unlikely(!sbinfo->full_inums &&
349 				     ino > UINT_MAX)) {
350 				/*
351 				 * Emulate get_next_ino uint wraparound for
352 				 * compatibility
353 				 */
354 				if (IS_ENABLED(CONFIG_64BIT))
355 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 						__func__, MINOR(sb->s_dev));
357 				sbinfo->next_ino = 1;
358 				ino = sbinfo->next_ino++;
359 			}
360 			*inop = ino;
361 		}
362 		raw_spin_unlock(&sbinfo->stat_lock);
363 	} else if (inop) {
364 		/*
365 		 * __shmem_file_setup, one of our callers, is lock-free: it
366 		 * doesn't hold stat_lock in shmem_reserve_inode since
367 		 * max_inodes is always 0, and is called from potentially
368 		 * unknown contexts. As such, use a per-cpu batched allocator
369 		 * which doesn't require the per-sb stat_lock unless we are at
370 		 * the batch boundary.
371 		 *
372 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 		 * shmem mounts are not exposed to userspace, so we don't need
374 		 * to worry about things like glibc compatibility.
375 		 */
376 		ino_t *next_ino;
377 
378 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 		ino = *next_ino;
380 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 			raw_spin_lock(&sbinfo->stat_lock);
382 			ino = sbinfo->next_ino;
383 			sbinfo->next_ino += SHMEM_INO_BATCH;
384 			raw_spin_unlock(&sbinfo->stat_lock);
385 			if (unlikely(is_zero_ino(ino)))
386 				ino++;
387 		}
388 		*inop = ino;
389 		*next_ino = ++ino;
390 		put_cpu();
391 	}
392 
393 	return 0;
394 }
395 
396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 	if (sbinfo->max_inodes) {
400 		raw_spin_lock(&sbinfo->stat_lock);
401 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 		raw_spin_unlock(&sbinfo->stat_lock);
403 	}
404 }
405 
406 /**
407  * shmem_recalc_inode - recalculate the block usage of an inode
408  * @inode: inode to recalc
409  * @alloced: the change in number of pages allocated to inode
410  * @swapped: the change in number of pages swapped from inode
411  *
412  * We have to calculate the free blocks since the mm can drop
413  * undirtied hole pages behind our back.
414  *
415  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
416  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417  */
418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 	struct shmem_inode_info *info = SHMEM_I(inode);
421 	long freed;
422 
423 	spin_lock(&info->lock);
424 	info->alloced += alloced;
425 	info->swapped += swapped;
426 	freed = info->alloced - info->swapped -
427 		READ_ONCE(inode->i_mapping->nrpages);
428 	/*
429 	 * Special case: whereas normally shmem_recalc_inode() is called
430 	 * after i_mapping->nrpages has already been adjusted (up or down),
431 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 	 * been freed.  Compensate here, to avoid the need for a followup call.
434 	 */
435 	if (swapped > 0)
436 		freed += swapped;
437 	if (freed > 0)
438 		info->alloced -= freed;
439 	spin_unlock(&info->lock);
440 
441 	/* The quota case may block */
442 	if (freed > 0)
443 		shmem_inode_unacct_blocks(inode, freed);
444 }
445 
446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 	struct address_space *mapping = inode->i_mapping;
449 
450 	if (shmem_inode_acct_block(inode, pages))
451 		return false;
452 
453 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 	xa_lock_irq(&mapping->i_pages);
455 	mapping->nrpages += pages;
456 	xa_unlock_irq(&mapping->i_pages);
457 
458 	shmem_recalc_inode(inode, pages, 0);
459 	return true;
460 }
461 
462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 	/* pages argument is currently unused: keep it to help debugging */
465 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
466 
467 	shmem_recalc_inode(inode, 0, 0);
468 }
469 
470 /*
471  * Replace item expected in xarray by a new item, while holding xa_lock.
472  */
473 static int shmem_replace_entry(struct address_space *mapping,
474 			pgoff_t index, void *expected, void *replacement)
475 {
476 	XA_STATE(xas, &mapping->i_pages, index);
477 	void *item;
478 
479 	VM_BUG_ON(!expected);
480 	VM_BUG_ON(!replacement);
481 	item = xas_load(&xas);
482 	if (item != expected)
483 		return -ENOENT;
484 	xas_store(&xas, replacement);
485 	return 0;
486 }
487 
488 /*
489  * Sometimes, before we decide whether to proceed or to fail, we must check
490  * that an entry was not already brought back from swap by a racing thread.
491  *
492  * Checking page is not enough: by the time a SwapCache page is locked, it
493  * might be reused, and again be SwapCache, using the same swap as before.
494  */
495 static bool shmem_confirm_swap(struct address_space *mapping,
496 			       pgoff_t index, swp_entry_t swap)
497 {
498 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500 
501 /*
502  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503  *
504  * SHMEM_HUGE_NEVER:
505  *	disables huge pages for the mount;
506  * SHMEM_HUGE_ALWAYS:
507  *	enables huge pages for the mount;
508  * SHMEM_HUGE_WITHIN_SIZE:
509  *	only allocate huge pages if the page will be fully within i_size,
510  *	also respect fadvise()/madvise() hints;
511  * SHMEM_HUGE_ADVISE:
512  *	only allocate huge pages if requested with fadvise()/madvise();
513  */
514 
515 #define SHMEM_HUGE_NEVER	0
516 #define SHMEM_HUGE_ALWAYS	1
517 #define SHMEM_HUGE_WITHIN_SIZE	2
518 #define SHMEM_HUGE_ADVISE	3
519 
520 /*
521  * Special values.
522  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523  *
524  * SHMEM_HUGE_DENY:
525  *	disables huge on shm_mnt and all mounts, for emergency use;
526  * SHMEM_HUGE_FORCE:
527  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528  *
529  */
530 #define SHMEM_HUGE_DENY		(-1)
531 #define SHMEM_HUGE_FORCE	(-2)
532 
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535 
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537 
538 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
539 		   struct mm_struct *mm, unsigned long vm_flags)
540 {
541 	loff_t i_size;
542 
543 	if (!S_ISREG(inode->i_mode))
544 		return false;
545 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
546 		return false;
547 	if (shmem_huge == SHMEM_HUGE_DENY)
548 		return false;
549 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
550 		return true;
551 
552 	switch (SHMEM_SB(inode->i_sb)->huge) {
553 	case SHMEM_HUGE_ALWAYS:
554 		return true;
555 	case SHMEM_HUGE_WITHIN_SIZE:
556 		index = round_up(index + 1, HPAGE_PMD_NR);
557 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
558 		if (i_size >> PAGE_SHIFT >= index)
559 			return true;
560 		fallthrough;
561 	case SHMEM_HUGE_ADVISE:
562 		if (mm && (vm_flags & VM_HUGEPAGE))
563 			return true;
564 		fallthrough;
565 	default:
566 		return false;
567 	}
568 }
569 
570 #if defined(CONFIG_SYSFS)
571 static int shmem_parse_huge(const char *str)
572 {
573 	if (!strcmp(str, "never"))
574 		return SHMEM_HUGE_NEVER;
575 	if (!strcmp(str, "always"))
576 		return SHMEM_HUGE_ALWAYS;
577 	if (!strcmp(str, "within_size"))
578 		return SHMEM_HUGE_WITHIN_SIZE;
579 	if (!strcmp(str, "advise"))
580 		return SHMEM_HUGE_ADVISE;
581 	if (!strcmp(str, "deny"))
582 		return SHMEM_HUGE_DENY;
583 	if (!strcmp(str, "force"))
584 		return SHMEM_HUGE_FORCE;
585 	return -EINVAL;
586 }
587 #endif
588 
589 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
590 static const char *shmem_format_huge(int huge)
591 {
592 	switch (huge) {
593 	case SHMEM_HUGE_NEVER:
594 		return "never";
595 	case SHMEM_HUGE_ALWAYS:
596 		return "always";
597 	case SHMEM_HUGE_WITHIN_SIZE:
598 		return "within_size";
599 	case SHMEM_HUGE_ADVISE:
600 		return "advise";
601 	case SHMEM_HUGE_DENY:
602 		return "deny";
603 	case SHMEM_HUGE_FORCE:
604 		return "force";
605 	default:
606 		VM_BUG_ON(1);
607 		return "bad_val";
608 	}
609 }
610 #endif
611 
612 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
613 		struct shrink_control *sc, unsigned long nr_to_split)
614 {
615 	LIST_HEAD(list), *pos, *next;
616 	LIST_HEAD(to_remove);
617 	struct inode *inode;
618 	struct shmem_inode_info *info;
619 	struct folio *folio;
620 	unsigned long batch = sc ? sc->nr_to_scan : 128;
621 	int split = 0;
622 
623 	if (list_empty(&sbinfo->shrinklist))
624 		return SHRINK_STOP;
625 
626 	spin_lock(&sbinfo->shrinklist_lock);
627 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
628 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
629 
630 		/* pin the inode */
631 		inode = igrab(&info->vfs_inode);
632 
633 		/* inode is about to be evicted */
634 		if (!inode) {
635 			list_del_init(&info->shrinklist);
636 			goto next;
637 		}
638 
639 		/* Check if there's anything to gain */
640 		if (round_up(inode->i_size, PAGE_SIZE) ==
641 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
642 			list_move(&info->shrinklist, &to_remove);
643 			goto next;
644 		}
645 
646 		list_move(&info->shrinklist, &list);
647 next:
648 		sbinfo->shrinklist_len--;
649 		if (!--batch)
650 			break;
651 	}
652 	spin_unlock(&sbinfo->shrinklist_lock);
653 
654 	list_for_each_safe(pos, next, &to_remove) {
655 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
656 		inode = &info->vfs_inode;
657 		list_del_init(&info->shrinklist);
658 		iput(inode);
659 	}
660 
661 	list_for_each_safe(pos, next, &list) {
662 		int ret;
663 		pgoff_t index;
664 
665 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
666 		inode = &info->vfs_inode;
667 
668 		if (nr_to_split && split >= nr_to_split)
669 			goto move_back;
670 
671 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
672 		folio = filemap_get_folio(inode->i_mapping, index);
673 		if (IS_ERR(folio))
674 			goto drop;
675 
676 		/* No huge page at the end of the file: nothing to split */
677 		if (!folio_test_large(folio)) {
678 			folio_put(folio);
679 			goto drop;
680 		}
681 
682 		/*
683 		 * Move the inode on the list back to shrinklist if we failed
684 		 * to lock the page at this time.
685 		 *
686 		 * Waiting for the lock may lead to deadlock in the
687 		 * reclaim path.
688 		 */
689 		if (!folio_trylock(folio)) {
690 			folio_put(folio);
691 			goto move_back;
692 		}
693 
694 		ret = split_folio(folio);
695 		folio_unlock(folio);
696 		folio_put(folio);
697 
698 		/* If split failed move the inode on the list back to shrinklist */
699 		if (ret)
700 			goto move_back;
701 
702 		split++;
703 drop:
704 		list_del_init(&info->shrinklist);
705 		goto put;
706 move_back:
707 		/*
708 		 * Make sure the inode is either on the global list or deleted
709 		 * from any local list before iput() since it could be deleted
710 		 * in another thread once we put the inode (then the local list
711 		 * is corrupted).
712 		 */
713 		spin_lock(&sbinfo->shrinklist_lock);
714 		list_move(&info->shrinklist, &sbinfo->shrinklist);
715 		sbinfo->shrinklist_len++;
716 		spin_unlock(&sbinfo->shrinklist_lock);
717 put:
718 		iput(inode);
719 	}
720 
721 	return split;
722 }
723 
724 static long shmem_unused_huge_scan(struct super_block *sb,
725 		struct shrink_control *sc)
726 {
727 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
728 
729 	if (!READ_ONCE(sbinfo->shrinklist_len))
730 		return SHRINK_STOP;
731 
732 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
733 }
734 
735 static long shmem_unused_huge_count(struct super_block *sb,
736 		struct shrink_control *sc)
737 {
738 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739 	return READ_ONCE(sbinfo->shrinklist_len);
740 }
741 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
742 
743 #define shmem_huge SHMEM_HUGE_DENY
744 
745 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
746 		   struct mm_struct *mm, unsigned long vm_flags)
747 {
748 	return false;
749 }
750 
751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
752 		struct shrink_control *sc, unsigned long nr_to_split)
753 {
754 	return 0;
755 }
756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757 
758 /*
759  * Like filemap_add_folio, but error if expected item has gone.
760  */
761 static int shmem_add_to_page_cache(struct folio *folio,
762 				   struct address_space *mapping,
763 				   pgoff_t index, void *expected, gfp_t gfp,
764 				   struct mm_struct *charge_mm)
765 {
766 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
767 	long nr = folio_nr_pages(folio);
768 	int error;
769 
770 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
771 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
772 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
773 	VM_BUG_ON(expected && folio_test_large(folio));
774 
775 	folio_ref_add(folio, nr);
776 	folio->mapping = mapping;
777 	folio->index = index;
778 
779 	if (!folio_test_swapcache(folio)) {
780 		error = mem_cgroup_charge(folio, charge_mm, gfp);
781 		if (error) {
782 			if (folio_test_pmd_mappable(folio)) {
783 				count_vm_event(THP_FILE_FALLBACK);
784 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
785 			}
786 			goto error;
787 		}
788 	}
789 	folio_throttle_swaprate(folio, gfp);
790 
791 	do {
792 		xas_lock_irq(&xas);
793 		if (expected != xas_find_conflict(&xas)) {
794 			xas_set_err(&xas, -EEXIST);
795 			goto unlock;
796 		}
797 		if (expected && xas_find_conflict(&xas)) {
798 			xas_set_err(&xas, -EEXIST);
799 			goto unlock;
800 		}
801 		xas_store(&xas, folio);
802 		if (xas_error(&xas))
803 			goto unlock;
804 		if (folio_test_pmd_mappable(folio)) {
805 			count_vm_event(THP_FILE_ALLOC);
806 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
807 		}
808 		mapping->nrpages += nr;
809 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
810 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
811 unlock:
812 		xas_unlock_irq(&xas);
813 	} while (xas_nomem(&xas, gfp));
814 
815 	if (xas_error(&xas)) {
816 		error = xas_error(&xas);
817 		goto error;
818 	}
819 
820 	return 0;
821 error:
822 	folio->mapping = NULL;
823 	folio_ref_sub(folio, nr);
824 	return error;
825 }
826 
827 /*
828  * Like delete_from_page_cache, but substitutes swap for @folio.
829  */
830 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
831 {
832 	struct address_space *mapping = folio->mapping;
833 	long nr = folio_nr_pages(folio);
834 	int error;
835 
836 	xa_lock_irq(&mapping->i_pages);
837 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
838 	folio->mapping = NULL;
839 	mapping->nrpages -= nr;
840 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
841 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
842 	xa_unlock_irq(&mapping->i_pages);
843 	folio_put(folio);
844 	BUG_ON(error);
845 }
846 
847 /*
848  * Remove swap entry from page cache, free the swap and its page cache.
849  */
850 static int shmem_free_swap(struct address_space *mapping,
851 			   pgoff_t index, void *radswap)
852 {
853 	void *old;
854 
855 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
856 	if (old != radswap)
857 		return -ENOENT;
858 	free_swap_and_cache(radix_to_swp_entry(radswap));
859 	return 0;
860 }
861 
862 /*
863  * Determine (in bytes) how many of the shmem object's pages mapped by the
864  * given offsets are swapped out.
865  *
866  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
867  * as long as the inode doesn't go away and racy results are not a problem.
868  */
869 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
870 						pgoff_t start, pgoff_t end)
871 {
872 	XA_STATE(xas, &mapping->i_pages, start);
873 	struct page *page;
874 	unsigned long swapped = 0;
875 	unsigned long max = end - 1;
876 
877 	rcu_read_lock();
878 	xas_for_each(&xas, page, max) {
879 		if (xas_retry(&xas, page))
880 			continue;
881 		if (xa_is_value(page))
882 			swapped++;
883 		if (xas.xa_index == max)
884 			break;
885 		if (need_resched()) {
886 			xas_pause(&xas);
887 			cond_resched_rcu();
888 		}
889 	}
890 
891 	rcu_read_unlock();
892 
893 	return swapped << PAGE_SHIFT;
894 }
895 
896 /*
897  * Determine (in bytes) how many of the shmem object's pages mapped by the
898  * given vma is swapped out.
899  *
900  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
901  * as long as the inode doesn't go away and racy results are not a problem.
902  */
903 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
904 {
905 	struct inode *inode = file_inode(vma->vm_file);
906 	struct shmem_inode_info *info = SHMEM_I(inode);
907 	struct address_space *mapping = inode->i_mapping;
908 	unsigned long swapped;
909 
910 	/* Be careful as we don't hold info->lock */
911 	swapped = READ_ONCE(info->swapped);
912 
913 	/*
914 	 * The easier cases are when the shmem object has nothing in swap, or
915 	 * the vma maps it whole. Then we can simply use the stats that we
916 	 * already track.
917 	 */
918 	if (!swapped)
919 		return 0;
920 
921 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
922 		return swapped << PAGE_SHIFT;
923 
924 	/* Here comes the more involved part */
925 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
926 					vma->vm_pgoff + vma_pages(vma));
927 }
928 
929 /*
930  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
931  */
932 void shmem_unlock_mapping(struct address_space *mapping)
933 {
934 	struct folio_batch fbatch;
935 	pgoff_t index = 0;
936 
937 	folio_batch_init(&fbatch);
938 	/*
939 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
940 	 */
941 	while (!mapping_unevictable(mapping) &&
942 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
943 		check_move_unevictable_folios(&fbatch);
944 		folio_batch_release(&fbatch);
945 		cond_resched();
946 	}
947 }
948 
949 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
950 {
951 	struct folio *folio;
952 
953 	/*
954 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
955 	 * beyond i_size, and reports fallocated folios as holes.
956 	 */
957 	folio = filemap_get_entry(inode->i_mapping, index);
958 	if (!folio)
959 		return folio;
960 	if (!xa_is_value(folio)) {
961 		folio_lock(folio);
962 		if (folio->mapping == inode->i_mapping)
963 			return folio;
964 		/* The folio has been swapped out */
965 		folio_unlock(folio);
966 		folio_put(folio);
967 	}
968 	/*
969 	 * But read a folio back from swap if any of it is within i_size
970 	 * (although in some cases this is just a waste of time).
971 	 */
972 	folio = NULL;
973 	shmem_get_folio(inode, index, &folio, SGP_READ);
974 	return folio;
975 }
976 
977 /*
978  * Remove range of pages and swap entries from page cache, and free them.
979  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
980  */
981 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
982 								 bool unfalloc)
983 {
984 	struct address_space *mapping = inode->i_mapping;
985 	struct shmem_inode_info *info = SHMEM_I(inode);
986 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
987 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
988 	struct folio_batch fbatch;
989 	pgoff_t indices[PAGEVEC_SIZE];
990 	struct folio *folio;
991 	bool same_folio;
992 	long nr_swaps_freed = 0;
993 	pgoff_t index;
994 	int i;
995 
996 	if (lend == -1)
997 		end = -1;	/* unsigned, so actually very big */
998 
999 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1000 		info->fallocend = start;
1001 
1002 	folio_batch_init(&fbatch);
1003 	index = start;
1004 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1005 			&fbatch, indices)) {
1006 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1007 			folio = fbatch.folios[i];
1008 
1009 			if (xa_is_value(folio)) {
1010 				if (unfalloc)
1011 					continue;
1012 				nr_swaps_freed += !shmem_free_swap(mapping,
1013 							indices[i], folio);
1014 				continue;
1015 			}
1016 
1017 			if (!unfalloc || !folio_test_uptodate(folio))
1018 				truncate_inode_folio(mapping, folio);
1019 			folio_unlock(folio);
1020 		}
1021 		folio_batch_remove_exceptionals(&fbatch);
1022 		folio_batch_release(&fbatch);
1023 		cond_resched();
1024 	}
1025 
1026 	/*
1027 	 * When undoing a failed fallocate, we want none of the partial folio
1028 	 * zeroing and splitting below, but shall want to truncate the whole
1029 	 * folio when !uptodate indicates that it was added by this fallocate,
1030 	 * even when [lstart, lend] covers only a part of the folio.
1031 	 */
1032 	if (unfalloc)
1033 		goto whole_folios;
1034 
1035 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1036 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1037 	if (folio) {
1038 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1039 		folio_mark_dirty(folio);
1040 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1041 			start = folio_next_index(folio);
1042 			if (same_folio)
1043 				end = folio->index;
1044 		}
1045 		folio_unlock(folio);
1046 		folio_put(folio);
1047 		folio = NULL;
1048 	}
1049 
1050 	if (!same_folio)
1051 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1052 	if (folio) {
1053 		folio_mark_dirty(folio);
1054 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1055 			end = folio->index;
1056 		folio_unlock(folio);
1057 		folio_put(folio);
1058 	}
1059 
1060 whole_folios:
1061 
1062 	index = start;
1063 	while (index < end) {
1064 		cond_resched();
1065 
1066 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1067 				indices)) {
1068 			/* If all gone or hole-punch or unfalloc, we're done */
1069 			if (index == start || end != -1)
1070 				break;
1071 			/* But if truncating, restart to make sure all gone */
1072 			index = start;
1073 			continue;
1074 		}
1075 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1076 			folio = fbatch.folios[i];
1077 
1078 			if (xa_is_value(folio)) {
1079 				if (unfalloc)
1080 					continue;
1081 				if (shmem_free_swap(mapping, indices[i], folio)) {
1082 					/* Swap was replaced by page: retry */
1083 					index = indices[i];
1084 					break;
1085 				}
1086 				nr_swaps_freed++;
1087 				continue;
1088 			}
1089 
1090 			folio_lock(folio);
1091 
1092 			if (!unfalloc || !folio_test_uptodate(folio)) {
1093 				if (folio_mapping(folio) != mapping) {
1094 					/* Page was replaced by swap: retry */
1095 					folio_unlock(folio);
1096 					index = indices[i];
1097 					break;
1098 				}
1099 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1100 						folio);
1101 
1102 				if (!folio_test_large(folio)) {
1103 					truncate_inode_folio(mapping, folio);
1104 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1105 					/*
1106 					 * If we split a page, reset the loop so
1107 					 * that we pick up the new sub pages.
1108 					 * Otherwise the THP was entirely
1109 					 * dropped or the target range was
1110 					 * zeroed, so just continue the loop as
1111 					 * is.
1112 					 */
1113 					if (!folio_test_large(folio)) {
1114 						folio_unlock(folio);
1115 						index = start;
1116 						break;
1117 					}
1118 				}
1119 			}
1120 			folio_unlock(folio);
1121 		}
1122 		folio_batch_remove_exceptionals(&fbatch);
1123 		folio_batch_release(&fbatch);
1124 	}
1125 
1126 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1127 }
1128 
1129 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1130 {
1131 	shmem_undo_range(inode, lstart, lend, false);
1132 	inode->i_mtime = inode_set_ctime_current(inode);
1133 	inode_inc_iversion(inode);
1134 }
1135 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1136 
1137 static int shmem_getattr(struct mnt_idmap *idmap,
1138 			 const struct path *path, struct kstat *stat,
1139 			 u32 request_mask, unsigned int query_flags)
1140 {
1141 	struct inode *inode = path->dentry->d_inode;
1142 	struct shmem_inode_info *info = SHMEM_I(inode);
1143 
1144 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1145 		shmem_recalc_inode(inode, 0, 0);
1146 
1147 	if (info->fsflags & FS_APPEND_FL)
1148 		stat->attributes |= STATX_ATTR_APPEND;
1149 	if (info->fsflags & FS_IMMUTABLE_FL)
1150 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1151 	if (info->fsflags & FS_NODUMP_FL)
1152 		stat->attributes |= STATX_ATTR_NODUMP;
1153 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1154 			STATX_ATTR_IMMUTABLE |
1155 			STATX_ATTR_NODUMP);
1156 	generic_fillattr(idmap, request_mask, inode, stat);
1157 
1158 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1159 		stat->blksize = HPAGE_PMD_SIZE;
1160 
1161 	if (request_mask & STATX_BTIME) {
1162 		stat->result_mask |= STATX_BTIME;
1163 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1164 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 static int shmem_setattr(struct mnt_idmap *idmap,
1171 			 struct dentry *dentry, struct iattr *attr)
1172 {
1173 	struct inode *inode = d_inode(dentry);
1174 	struct shmem_inode_info *info = SHMEM_I(inode);
1175 	int error;
1176 	bool update_mtime = false;
1177 	bool update_ctime = true;
1178 
1179 	error = setattr_prepare(idmap, dentry, attr);
1180 	if (error)
1181 		return error;
1182 
1183 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1184 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1185 			return -EPERM;
1186 		}
1187 	}
1188 
1189 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1190 		loff_t oldsize = inode->i_size;
1191 		loff_t newsize = attr->ia_size;
1192 
1193 		/* protected by i_rwsem */
1194 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1195 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1196 			return -EPERM;
1197 
1198 		if (newsize != oldsize) {
1199 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1200 					oldsize, newsize);
1201 			if (error)
1202 				return error;
1203 			i_size_write(inode, newsize);
1204 			update_mtime = true;
1205 		} else {
1206 			update_ctime = false;
1207 		}
1208 		if (newsize <= oldsize) {
1209 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1210 			if (oldsize > holebegin)
1211 				unmap_mapping_range(inode->i_mapping,
1212 							holebegin, 0, 1);
1213 			if (info->alloced)
1214 				shmem_truncate_range(inode,
1215 							newsize, (loff_t)-1);
1216 			/* unmap again to remove racily COWed private pages */
1217 			if (oldsize > holebegin)
1218 				unmap_mapping_range(inode->i_mapping,
1219 							holebegin, 0, 1);
1220 		}
1221 	}
1222 
1223 	if (is_quota_modification(idmap, inode, attr)) {
1224 		error = dquot_initialize(inode);
1225 		if (error)
1226 			return error;
1227 	}
1228 
1229 	/* Transfer quota accounting */
1230 	if (i_uid_needs_update(idmap, attr, inode) ||
1231 	    i_gid_needs_update(idmap, attr, inode)) {
1232 		error = dquot_transfer(idmap, inode, attr);
1233 
1234 		if (error)
1235 			return error;
1236 	}
1237 
1238 	setattr_copy(idmap, inode, attr);
1239 	if (attr->ia_valid & ATTR_MODE)
1240 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1241 	if (!error && update_ctime) {
1242 		inode_set_ctime_current(inode);
1243 		if (update_mtime)
1244 			inode->i_mtime = inode_get_ctime(inode);
1245 		inode_inc_iversion(inode);
1246 	}
1247 	return error;
1248 }
1249 
1250 static void shmem_evict_inode(struct inode *inode)
1251 {
1252 	struct shmem_inode_info *info = SHMEM_I(inode);
1253 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1254 	size_t freed = 0;
1255 
1256 	if (shmem_mapping(inode->i_mapping)) {
1257 		shmem_unacct_size(info->flags, inode->i_size);
1258 		inode->i_size = 0;
1259 		mapping_set_exiting(inode->i_mapping);
1260 		shmem_truncate_range(inode, 0, (loff_t)-1);
1261 		if (!list_empty(&info->shrinklist)) {
1262 			spin_lock(&sbinfo->shrinklist_lock);
1263 			if (!list_empty(&info->shrinklist)) {
1264 				list_del_init(&info->shrinklist);
1265 				sbinfo->shrinklist_len--;
1266 			}
1267 			spin_unlock(&sbinfo->shrinklist_lock);
1268 		}
1269 		while (!list_empty(&info->swaplist)) {
1270 			/* Wait while shmem_unuse() is scanning this inode... */
1271 			wait_var_event(&info->stop_eviction,
1272 				       !atomic_read(&info->stop_eviction));
1273 			mutex_lock(&shmem_swaplist_mutex);
1274 			/* ...but beware of the race if we peeked too early */
1275 			if (!atomic_read(&info->stop_eviction))
1276 				list_del_init(&info->swaplist);
1277 			mutex_unlock(&shmem_swaplist_mutex);
1278 		}
1279 	}
1280 
1281 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1282 	shmem_free_inode(inode->i_sb, freed);
1283 	WARN_ON(inode->i_blocks);
1284 	clear_inode(inode);
1285 #ifdef CONFIG_TMPFS_QUOTA
1286 	dquot_free_inode(inode);
1287 	dquot_drop(inode);
1288 #endif
1289 }
1290 
1291 static int shmem_find_swap_entries(struct address_space *mapping,
1292 				   pgoff_t start, struct folio_batch *fbatch,
1293 				   pgoff_t *indices, unsigned int type)
1294 {
1295 	XA_STATE(xas, &mapping->i_pages, start);
1296 	struct folio *folio;
1297 	swp_entry_t entry;
1298 
1299 	rcu_read_lock();
1300 	xas_for_each(&xas, folio, ULONG_MAX) {
1301 		if (xas_retry(&xas, folio))
1302 			continue;
1303 
1304 		if (!xa_is_value(folio))
1305 			continue;
1306 
1307 		entry = radix_to_swp_entry(folio);
1308 		/*
1309 		 * swapin error entries can be found in the mapping. But they're
1310 		 * deliberately ignored here as we've done everything we can do.
1311 		 */
1312 		if (swp_type(entry) != type)
1313 			continue;
1314 
1315 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1316 		if (!folio_batch_add(fbatch, folio))
1317 			break;
1318 
1319 		if (need_resched()) {
1320 			xas_pause(&xas);
1321 			cond_resched_rcu();
1322 		}
1323 	}
1324 	rcu_read_unlock();
1325 
1326 	return xas.xa_index;
1327 }
1328 
1329 /*
1330  * Move the swapped pages for an inode to page cache. Returns the count
1331  * of pages swapped in, or the error in case of failure.
1332  */
1333 static int shmem_unuse_swap_entries(struct inode *inode,
1334 		struct folio_batch *fbatch, pgoff_t *indices)
1335 {
1336 	int i = 0;
1337 	int ret = 0;
1338 	int error = 0;
1339 	struct address_space *mapping = inode->i_mapping;
1340 
1341 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1342 		struct folio *folio = fbatch->folios[i];
1343 
1344 		if (!xa_is_value(folio))
1345 			continue;
1346 		error = shmem_swapin_folio(inode, indices[i],
1347 					  &folio, SGP_CACHE,
1348 					  mapping_gfp_mask(mapping),
1349 					  NULL, NULL);
1350 		if (error == 0) {
1351 			folio_unlock(folio);
1352 			folio_put(folio);
1353 			ret++;
1354 		}
1355 		if (error == -ENOMEM)
1356 			break;
1357 		error = 0;
1358 	}
1359 	return error ? error : ret;
1360 }
1361 
1362 /*
1363  * If swap found in inode, free it and move page from swapcache to filecache.
1364  */
1365 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1366 {
1367 	struct address_space *mapping = inode->i_mapping;
1368 	pgoff_t start = 0;
1369 	struct folio_batch fbatch;
1370 	pgoff_t indices[PAGEVEC_SIZE];
1371 	int ret = 0;
1372 
1373 	do {
1374 		folio_batch_init(&fbatch);
1375 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1376 		if (folio_batch_count(&fbatch) == 0) {
1377 			ret = 0;
1378 			break;
1379 		}
1380 
1381 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1382 		if (ret < 0)
1383 			break;
1384 
1385 		start = indices[folio_batch_count(&fbatch) - 1];
1386 	} while (true);
1387 
1388 	return ret;
1389 }
1390 
1391 /*
1392  * Read all the shared memory data that resides in the swap
1393  * device 'type' back into memory, so the swap device can be
1394  * unused.
1395  */
1396 int shmem_unuse(unsigned int type)
1397 {
1398 	struct shmem_inode_info *info, *next;
1399 	int error = 0;
1400 
1401 	if (list_empty(&shmem_swaplist))
1402 		return 0;
1403 
1404 	mutex_lock(&shmem_swaplist_mutex);
1405 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1406 		if (!info->swapped) {
1407 			list_del_init(&info->swaplist);
1408 			continue;
1409 		}
1410 		/*
1411 		 * Drop the swaplist mutex while searching the inode for swap;
1412 		 * but before doing so, make sure shmem_evict_inode() will not
1413 		 * remove placeholder inode from swaplist, nor let it be freed
1414 		 * (igrab() would protect from unlink, but not from unmount).
1415 		 */
1416 		atomic_inc(&info->stop_eviction);
1417 		mutex_unlock(&shmem_swaplist_mutex);
1418 
1419 		error = shmem_unuse_inode(&info->vfs_inode, type);
1420 		cond_resched();
1421 
1422 		mutex_lock(&shmem_swaplist_mutex);
1423 		next = list_next_entry(info, swaplist);
1424 		if (!info->swapped)
1425 			list_del_init(&info->swaplist);
1426 		if (atomic_dec_and_test(&info->stop_eviction))
1427 			wake_up_var(&info->stop_eviction);
1428 		if (error)
1429 			break;
1430 	}
1431 	mutex_unlock(&shmem_swaplist_mutex);
1432 
1433 	return error;
1434 }
1435 
1436 /*
1437  * Move the page from the page cache to the swap cache.
1438  */
1439 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1440 {
1441 	struct folio *folio = page_folio(page);
1442 	struct address_space *mapping = folio->mapping;
1443 	struct inode *inode = mapping->host;
1444 	struct shmem_inode_info *info = SHMEM_I(inode);
1445 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1446 	swp_entry_t swap;
1447 	pgoff_t index;
1448 
1449 	/*
1450 	 * Our capabilities prevent regular writeback or sync from ever calling
1451 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1452 	 * its underlying filesystem, in which case tmpfs should write out to
1453 	 * swap only in response to memory pressure, and not for the writeback
1454 	 * threads or sync.
1455 	 */
1456 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1457 		goto redirty;
1458 
1459 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1460 		goto redirty;
1461 
1462 	if (!total_swap_pages)
1463 		goto redirty;
1464 
1465 	/*
1466 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1467 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1468 	 * and its shmem_writeback() needs them to be split when swapping.
1469 	 */
1470 	if (folio_test_large(folio)) {
1471 		/* Ensure the subpages are still dirty */
1472 		folio_test_set_dirty(folio);
1473 		if (split_huge_page(page) < 0)
1474 			goto redirty;
1475 		folio = page_folio(page);
1476 		folio_clear_dirty(folio);
1477 	}
1478 
1479 	index = folio->index;
1480 
1481 	/*
1482 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1483 	 * value into swapfile.c, the only way we can correctly account for a
1484 	 * fallocated folio arriving here is now to initialize it and write it.
1485 	 *
1486 	 * That's okay for a folio already fallocated earlier, but if we have
1487 	 * not yet completed the fallocation, then (a) we want to keep track
1488 	 * of this folio in case we have to undo it, and (b) it may not be a
1489 	 * good idea to continue anyway, once we're pushing into swap.  So
1490 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1491 	 */
1492 	if (!folio_test_uptodate(folio)) {
1493 		if (inode->i_private) {
1494 			struct shmem_falloc *shmem_falloc;
1495 			spin_lock(&inode->i_lock);
1496 			shmem_falloc = inode->i_private;
1497 			if (shmem_falloc &&
1498 			    !shmem_falloc->waitq &&
1499 			    index >= shmem_falloc->start &&
1500 			    index < shmem_falloc->next)
1501 				shmem_falloc->nr_unswapped++;
1502 			else
1503 				shmem_falloc = NULL;
1504 			spin_unlock(&inode->i_lock);
1505 			if (shmem_falloc)
1506 				goto redirty;
1507 		}
1508 		folio_zero_range(folio, 0, folio_size(folio));
1509 		flush_dcache_folio(folio);
1510 		folio_mark_uptodate(folio);
1511 	}
1512 
1513 	swap = folio_alloc_swap(folio);
1514 	if (!swap.val)
1515 		goto redirty;
1516 
1517 	/*
1518 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1519 	 * if it's not already there.  Do it now before the folio is
1520 	 * moved to swap cache, when its pagelock no longer protects
1521 	 * the inode from eviction.  But don't unlock the mutex until
1522 	 * we've incremented swapped, because shmem_unuse_inode() will
1523 	 * prune a !swapped inode from the swaplist under this mutex.
1524 	 */
1525 	mutex_lock(&shmem_swaplist_mutex);
1526 	if (list_empty(&info->swaplist))
1527 		list_add(&info->swaplist, &shmem_swaplist);
1528 
1529 	if (add_to_swap_cache(folio, swap,
1530 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1531 			NULL) == 0) {
1532 		shmem_recalc_inode(inode, 0, 1);
1533 		swap_shmem_alloc(swap);
1534 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1535 
1536 		mutex_unlock(&shmem_swaplist_mutex);
1537 		BUG_ON(folio_mapped(folio));
1538 		swap_writepage(&folio->page, wbc);
1539 		return 0;
1540 	}
1541 
1542 	mutex_unlock(&shmem_swaplist_mutex);
1543 	put_swap_folio(folio, swap);
1544 redirty:
1545 	folio_mark_dirty(folio);
1546 	if (wbc->for_reclaim)
1547 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1548 	folio_unlock(folio);
1549 	return 0;
1550 }
1551 
1552 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1553 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1554 {
1555 	char buffer[64];
1556 
1557 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1558 		return;		/* show nothing */
1559 
1560 	mpol_to_str(buffer, sizeof(buffer), mpol);
1561 
1562 	seq_printf(seq, ",mpol=%s", buffer);
1563 }
1564 
1565 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1566 {
1567 	struct mempolicy *mpol = NULL;
1568 	if (sbinfo->mpol) {
1569 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1570 		mpol = sbinfo->mpol;
1571 		mpol_get(mpol);
1572 		raw_spin_unlock(&sbinfo->stat_lock);
1573 	}
1574 	return mpol;
1575 }
1576 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1577 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1578 {
1579 }
1580 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1581 {
1582 	return NULL;
1583 }
1584 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1585 #ifndef CONFIG_NUMA
1586 #define vm_policy vm_private_data
1587 #endif
1588 
1589 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1590 		struct shmem_inode_info *info, pgoff_t index)
1591 {
1592 	/* Create a pseudo vma that just contains the policy */
1593 	vma_init(vma, NULL);
1594 	/* Bias interleave by inode number to distribute better across nodes */
1595 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1596 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1597 }
1598 
1599 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1600 {
1601 	/* Drop reference taken by mpol_shared_policy_lookup() */
1602 	mpol_cond_put(vma->vm_policy);
1603 }
1604 
1605 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1606 			struct shmem_inode_info *info, pgoff_t index)
1607 {
1608 	struct vm_area_struct pvma;
1609 	struct page *page;
1610 	struct vm_fault vmf = {
1611 		.vma = &pvma,
1612 	};
1613 
1614 	shmem_pseudo_vma_init(&pvma, info, index);
1615 	page = swap_cluster_readahead(swap, gfp, &vmf);
1616 	shmem_pseudo_vma_destroy(&pvma);
1617 
1618 	if (!page)
1619 		return NULL;
1620 	return page_folio(page);
1621 }
1622 
1623 /*
1624  * Make sure huge_gfp is always more limited than limit_gfp.
1625  * Some of the flags set permissions, while others set limitations.
1626  */
1627 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1628 {
1629 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1630 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1631 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1632 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1633 
1634 	/* Allow allocations only from the originally specified zones. */
1635 	result |= zoneflags;
1636 
1637 	/*
1638 	 * Minimize the result gfp by taking the union with the deny flags,
1639 	 * and the intersection of the allow flags.
1640 	 */
1641 	result |= (limit_gfp & denyflags);
1642 	result |= (huge_gfp & limit_gfp) & allowflags;
1643 
1644 	return result;
1645 }
1646 
1647 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1648 		struct shmem_inode_info *info, pgoff_t index)
1649 {
1650 	struct vm_area_struct pvma;
1651 	struct address_space *mapping = info->vfs_inode.i_mapping;
1652 	pgoff_t hindex;
1653 	struct folio *folio;
1654 
1655 	hindex = round_down(index, HPAGE_PMD_NR);
1656 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1657 								XA_PRESENT))
1658 		return NULL;
1659 
1660 	shmem_pseudo_vma_init(&pvma, info, hindex);
1661 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1662 	shmem_pseudo_vma_destroy(&pvma);
1663 	if (!folio)
1664 		count_vm_event(THP_FILE_FALLBACK);
1665 	return folio;
1666 }
1667 
1668 static struct folio *shmem_alloc_folio(gfp_t gfp,
1669 			struct shmem_inode_info *info, pgoff_t index)
1670 {
1671 	struct vm_area_struct pvma;
1672 	struct folio *folio;
1673 
1674 	shmem_pseudo_vma_init(&pvma, info, index);
1675 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1676 	shmem_pseudo_vma_destroy(&pvma);
1677 
1678 	return folio;
1679 }
1680 
1681 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1682 		pgoff_t index, bool huge)
1683 {
1684 	struct shmem_inode_info *info = SHMEM_I(inode);
1685 	struct folio *folio;
1686 	int nr;
1687 	int err;
1688 
1689 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1690 		huge = false;
1691 	nr = huge ? HPAGE_PMD_NR : 1;
1692 
1693 	err = shmem_inode_acct_block(inode, nr);
1694 	if (err)
1695 		goto failed;
1696 
1697 	if (huge)
1698 		folio = shmem_alloc_hugefolio(gfp, info, index);
1699 	else
1700 		folio = shmem_alloc_folio(gfp, info, index);
1701 	if (folio) {
1702 		__folio_set_locked(folio);
1703 		__folio_set_swapbacked(folio);
1704 		return folio;
1705 	}
1706 
1707 	err = -ENOMEM;
1708 	shmem_inode_unacct_blocks(inode, nr);
1709 failed:
1710 	return ERR_PTR(err);
1711 }
1712 
1713 /*
1714  * When a page is moved from swapcache to shmem filecache (either by the
1715  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1716  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1717  * ignorance of the mapping it belongs to.  If that mapping has special
1718  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1719  * we may need to copy to a suitable page before moving to filecache.
1720  *
1721  * In a future release, this may well be extended to respect cpuset and
1722  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1723  * but for now it is a simple matter of zone.
1724  */
1725 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1726 {
1727 	return folio_zonenum(folio) > gfp_zone(gfp);
1728 }
1729 
1730 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1731 				struct shmem_inode_info *info, pgoff_t index)
1732 {
1733 	struct folio *old, *new;
1734 	struct address_space *swap_mapping;
1735 	swp_entry_t entry;
1736 	pgoff_t swap_index;
1737 	int error;
1738 
1739 	old = *foliop;
1740 	entry = old->swap;
1741 	swap_index = swp_offset(entry);
1742 	swap_mapping = swap_address_space(entry);
1743 
1744 	/*
1745 	 * We have arrived here because our zones are constrained, so don't
1746 	 * limit chance of success by further cpuset and node constraints.
1747 	 */
1748 	gfp &= ~GFP_CONSTRAINT_MASK;
1749 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1750 	new = shmem_alloc_folio(gfp, info, index);
1751 	if (!new)
1752 		return -ENOMEM;
1753 
1754 	folio_get(new);
1755 	folio_copy(new, old);
1756 	flush_dcache_folio(new);
1757 
1758 	__folio_set_locked(new);
1759 	__folio_set_swapbacked(new);
1760 	folio_mark_uptodate(new);
1761 	new->swap = entry;
1762 	folio_set_swapcache(new);
1763 
1764 	/*
1765 	 * Our caller will very soon move newpage out of swapcache, but it's
1766 	 * a nice clean interface for us to replace oldpage by newpage there.
1767 	 */
1768 	xa_lock_irq(&swap_mapping->i_pages);
1769 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1770 	if (!error) {
1771 		mem_cgroup_migrate(old, new);
1772 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1773 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1774 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1775 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1776 	}
1777 	xa_unlock_irq(&swap_mapping->i_pages);
1778 
1779 	if (unlikely(error)) {
1780 		/*
1781 		 * Is this possible?  I think not, now that our callers check
1782 		 * both PageSwapCache and page_private after getting page lock;
1783 		 * but be defensive.  Reverse old to newpage for clear and free.
1784 		 */
1785 		old = new;
1786 	} else {
1787 		folio_add_lru(new);
1788 		*foliop = new;
1789 	}
1790 
1791 	folio_clear_swapcache(old);
1792 	old->private = NULL;
1793 
1794 	folio_unlock(old);
1795 	folio_put_refs(old, 2);
1796 	return error;
1797 }
1798 
1799 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1800 					 struct folio *folio, swp_entry_t swap)
1801 {
1802 	struct address_space *mapping = inode->i_mapping;
1803 	swp_entry_t swapin_error;
1804 	void *old;
1805 
1806 	swapin_error = make_poisoned_swp_entry();
1807 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1808 			     swp_to_radix_entry(swap),
1809 			     swp_to_radix_entry(swapin_error), 0);
1810 	if (old != swp_to_radix_entry(swap))
1811 		return;
1812 
1813 	folio_wait_writeback(folio);
1814 	delete_from_swap_cache(folio);
1815 	/*
1816 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1817 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1818 	 * in shmem_evict_inode().
1819 	 */
1820 	shmem_recalc_inode(inode, -1, -1);
1821 	swap_free(swap);
1822 }
1823 
1824 /*
1825  * Swap in the folio pointed to by *foliop.
1826  * Caller has to make sure that *foliop contains a valid swapped folio.
1827  * Returns 0 and the folio in foliop if success. On failure, returns the
1828  * error code and NULL in *foliop.
1829  */
1830 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1831 			     struct folio **foliop, enum sgp_type sgp,
1832 			     gfp_t gfp, struct vm_area_struct *vma,
1833 			     vm_fault_t *fault_type)
1834 {
1835 	struct address_space *mapping = inode->i_mapping;
1836 	struct shmem_inode_info *info = SHMEM_I(inode);
1837 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1838 	struct swap_info_struct *si;
1839 	struct folio *folio = NULL;
1840 	swp_entry_t swap;
1841 	int error;
1842 
1843 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1844 	swap = radix_to_swp_entry(*foliop);
1845 	*foliop = NULL;
1846 
1847 	if (is_poisoned_swp_entry(swap))
1848 		return -EIO;
1849 
1850 	si = get_swap_device(swap);
1851 	if (!si) {
1852 		if (!shmem_confirm_swap(mapping, index, swap))
1853 			return -EEXIST;
1854 		else
1855 			return -EINVAL;
1856 	}
1857 
1858 	/* Look it up and read it in.. */
1859 	folio = swap_cache_get_folio(swap, NULL, 0);
1860 	if (!folio) {
1861 		/* Or update major stats only when swapin succeeds?? */
1862 		if (fault_type) {
1863 			*fault_type |= VM_FAULT_MAJOR;
1864 			count_vm_event(PGMAJFAULT);
1865 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1866 		}
1867 		/* Here we actually start the io */
1868 		folio = shmem_swapin(swap, gfp, info, index);
1869 		if (!folio) {
1870 			error = -ENOMEM;
1871 			goto failed;
1872 		}
1873 	}
1874 
1875 	/* We have to do this with folio locked to prevent races */
1876 	folio_lock(folio);
1877 	if (!folio_test_swapcache(folio) ||
1878 	    folio->swap.val != swap.val ||
1879 	    !shmem_confirm_swap(mapping, index, swap)) {
1880 		error = -EEXIST;
1881 		goto unlock;
1882 	}
1883 	if (!folio_test_uptodate(folio)) {
1884 		error = -EIO;
1885 		goto failed;
1886 	}
1887 	folio_wait_writeback(folio);
1888 
1889 	/*
1890 	 * Some architectures may have to restore extra metadata to the
1891 	 * folio after reading from swap.
1892 	 */
1893 	arch_swap_restore(swap, folio);
1894 
1895 	if (shmem_should_replace_folio(folio, gfp)) {
1896 		error = shmem_replace_folio(&folio, gfp, info, index);
1897 		if (error)
1898 			goto failed;
1899 	}
1900 
1901 	error = shmem_add_to_page_cache(folio, mapping, index,
1902 					swp_to_radix_entry(swap), gfp,
1903 					charge_mm);
1904 	if (error)
1905 		goto failed;
1906 
1907 	shmem_recalc_inode(inode, 0, -1);
1908 
1909 	if (sgp == SGP_WRITE)
1910 		folio_mark_accessed(folio);
1911 
1912 	delete_from_swap_cache(folio);
1913 	folio_mark_dirty(folio);
1914 	swap_free(swap);
1915 	put_swap_device(si);
1916 
1917 	*foliop = folio;
1918 	return 0;
1919 failed:
1920 	if (!shmem_confirm_swap(mapping, index, swap))
1921 		error = -EEXIST;
1922 	if (error == -EIO)
1923 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1924 unlock:
1925 	if (folio) {
1926 		folio_unlock(folio);
1927 		folio_put(folio);
1928 	}
1929 	put_swap_device(si);
1930 
1931 	return error;
1932 }
1933 
1934 /*
1935  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1936  *
1937  * If we allocate a new one we do not mark it dirty. That's up to the
1938  * vm. If we swap it in we mark it dirty since we also free the swap
1939  * entry since a page cannot live in both the swap and page cache.
1940  *
1941  * vma, vmf, and fault_type are only supplied by shmem_fault:
1942  * otherwise they are NULL.
1943  */
1944 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1945 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1946 		struct vm_area_struct *vma, struct vm_fault *vmf,
1947 		vm_fault_t *fault_type)
1948 {
1949 	struct address_space *mapping = inode->i_mapping;
1950 	struct shmem_inode_info *info = SHMEM_I(inode);
1951 	struct shmem_sb_info *sbinfo;
1952 	struct mm_struct *charge_mm;
1953 	struct folio *folio;
1954 	pgoff_t hindex;
1955 	gfp_t huge_gfp;
1956 	int error;
1957 	int once = 0;
1958 	int alloced = 0;
1959 
1960 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1961 		return -EFBIG;
1962 repeat:
1963 	if (sgp <= SGP_CACHE &&
1964 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1965 		return -EINVAL;
1966 	}
1967 
1968 	sbinfo = SHMEM_SB(inode->i_sb);
1969 	charge_mm = vma ? vma->vm_mm : NULL;
1970 
1971 	folio = filemap_get_entry(mapping, index);
1972 	if (folio && vma && userfaultfd_minor(vma)) {
1973 		if (!xa_is_value(folio))
1974 			folio_put(folio);
1975 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1976 		return 0;
1977 	}
1978 
1979 	if (xa_is_value(folio)) {
1980 		error = shmem_swapin_folio(inode, index, &folio,
1981 					  sgp, gfp, vma, fault_type);
1982 		if (error == -EEXIST)
1983 			goto repeat;
1984 
1985 		*foliop = folio;
1986 		return error;
1987 	}
1988 
1989 	if (folio) {
1990 		folio_lock(folio);
1991 
1992 		/* Has the folio been truncated or swapped out? */
1993 		if (unlikely(folio->mapping != mapping)) {
1994 			folio_unlock(folio);
1995 			folio_put(folio);
1996 			goto repeat;
1997 		}
1998 		if (sgp == SGP_WRITE)
1999 			folio_mark_accessed(folio);
2000 		if (folio_test_uptodate(folio))
2001 			goto out;
2002 		/* fallocated folio */
2003 		if (sgp != SGP_READ)
2004 			goto clear;
2005 		folio_unlock(folio);
2006 		folio_put(folio);
2007 	}
2008 
2009 	/*
2010 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2011 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2012 	 */
2013 	*foliop = NULL;
2014 	if (sgp == SGP_READ)
2015 		return 0;
2016 	if (sgp == SGP_NOALLOC)
2017 		return -ENOENT;
2018 
2019 	/*
2020 	 * Fast cache lookup and swap lookup did not find it: allocate.
2021 	 */
2022 
2023 	if (vma && userfaultfd_missing(vma)) {
2024 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2025 		return 0;
2026 	}
2027 
2028 	if (!shmem_is_huge(inode, index, false,
2029 			   vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
2030 		goto alloc_nohuge;
2031 
2032 	huge_gfp = vma_thp_gfp_mask(vma);
2033 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2034 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
2035 	if (IS_ERR(folio)) {
2036 alloc_nohuge:
2037 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
2038 	}
2039 	if (IS_ERR(folio)) {
2040 		int retry = 5;
2041 
2042 		error = PTR_ERR(folio);
2043 		folio = NULL;
2044 		if (error != -ENOSPC)
2045 			goto unlock;
2046 		/*
2047 		 * Try to reclaim some space by splitting a large folio
2048 		 * beyond i_size on the filesystem.
2049 		 */
2050 		while (retry--) {
2051 			int ret;
2052 
2053 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
2054 			if (ret == SHRINK_STOP)
2055 				break;
2056 			if (ret)
2057 				goto alloc_nohuge;
2058 		}
2059 		goto unlock;
2060 	}
2061 
2062 	hindex = round_down(index, folio_nr_pages(folio));
2063 
2064 	if (sgp == SGP_WRITE)
2065 		__folio_set_referenced(folio);
2066 
2067 	error = shmem_add_to_page_cache(folio, mapping, hindex,
2068 					NULL, gfp & GFP_RECLAIM_MASK,
2069 					charge_mm);
2070 	if (error)
2071 		goto unacct;
2072 
2073 	folio_add_lru(folio);
2074 	shmem_recalc_inode(inode, folio_nr_pages(folio), 0);
2075 	alloced = true;
2076 
2077 	if (folio_test_pmd_mappable(folio) &&
2078 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2079 					folio_next_index(folio) - 1) {
2080 		/*
2081 		 * Part of the large folio is beyond i_size: subject
2082 		 * to shrink under memory pressure.
2083 		 */
2084 		spin_lock(&sbinfo->shrinklist_lock);
2085 		/*
2086 		 * _careful to defend against unlocked access to
2087 		 * ->shrink_list in shmem_unused_huge_shrink()
2088 		 */
2089 		if (list_empty_careful(&info->shrinklist)) {
2090 			list_add_tail(&info->shrinklist,
2091 				      &sbinfo->shrinklist);
2092 			sbinfo->shrinklist_len++;
2093 		}
2094 		spin_unlock(&sbinfo->shrinklist_lock);
2095 	}
2096 
2097 	/*
2098 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2099 	 */
2100 	if (sgp == SGP_FALLOC)
2101 		sgp = SGP_WRITE;
2102 clear:
2103 	/*
2104 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2105 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2106 	 * it now, lest undo on failure cancel our earlier guarantee.
2107 	 */
2108 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2109 		long i, n = folio_nr_pages(folio);
2110 
2111 		for (i = 0; i < n; i++)
2112 			clear_highpage(folio_page(folio, i));
2113 		flush_dcache_folio(folio);
2114 		folio_mark_uptodate(folio);
2115 	}
2116 
2117 	/* Perhaps the file has been truncated since we checked */
2118 	if (sgp <= SGP_CACHE &&
2119 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2120 		if (alloced) {
2121 			folio_clear_dirty(folio);
2122 			filemap_remove_folio(folio);
2123 			shmem_recalc_inode(inode, 0, 0);
2124 		}
2125 		error = -EINVAL;
2126 		goto unlock;
2127 	}
2128 out:
2129 	*foliop = folio;
2130 	return 0;
2131 
2132 	/*
2133 	 * Error recovery.
2134 	 */
2135 unacct:
2136 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2137 
2138 	if (folio_test_large(folio)) {
2139 		folio_unlock(folio);
2140 		folio_put(folio);
2141 		goto alloc_nohuge;
2142 	}
2143 unlock:
2144 	if (folio) {
2145 		folio_unlock(folio);
2146 		folio_put(folio);
2147 	}
2148 	if (error == -ENOSPC && !once++) {
2149 		shmem_recalc_inode(inode, 0, 0);
2150 		goto repeat;
2151 	}
2152 	if (error == -EEXIST)
2153 		goto repeat;
2154 	return error;
2155 }
2156 
2157 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2158 		enum sgp_type sgp)
2159 {
2160 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2161 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2162 }
2163 
2164 /*
2165  * This is like autoremove_wake_function, but it removes the wait queue
2166  * entry unconditionally - even if something else had already woken the
2167  * target.
2168  */
2169 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2170 {
2171 	int ret = default_wake_function(wait, mode, sync, key);
2172 	list_del_init(&wait->entry);
2173 	return ret;
2174 }
2175 
2176 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2177 {
2178 	struct vm_area_struct *vma = vmf->vma;
2179 	struct inode *inode = file_inode(vma->vm_file);
2180 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2181 	struct folio *folio = NULL;
2182 	int err;
2183 	vm_fault_t ret = VM_FAULT_LOCKED;
2184 
2185 	/*
2186 	 * Trinity finds that probing a hole which tmpfs is punching can
2187 	 * prevent the hole-punch from ever completing: which in turn
2188 	 * locks writers out with its hold on i_rwsem.  So refrain from
2189 	 * faulting pages into the hole while it's being punched.  Although
2190 	 * shmem_undo_range() does remove the additions, it may be unable to
2191 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2192 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2193 	 *
2194 	 * It does not matter if we sometimes reach this check just before the
2195 	 * hole-punch begins, so that one fault then races with the punch:
2196 	 * we just need to make racing faults a rare case.
2197 	 *
2198 	 * The implementation below would be much simpler if we just used a
2199 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2200 	 * and bloating every shmem inode for this unlikely case would be sad.
2201 	 */
2202 	if (unlikely(inode->i_private)) {
2203 		struct shmem_falloc *shmem_falloc;
2204 
2205 		spin_lock(&inode->i_lock);
2206 		shmem_falloc = inode->i_private;
2207 		if (shmem_falloc &&
2208 		    shmem_falloc->waitq &&
2209 		    vmf->pgoff >= shmem_falloc->start &&
2210 		    vmf->pgoff < shmem_falloc->next) {
2211 			struct file *fpin;
2212 			wait_queue_head_t *shmem_falloc_waitq;
2213 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2214 
2215 			ret = VM_FAULT_NOPAGE;
2216 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2217 			if (fpin)
2218 				ret = VM_FAULT_RETRY;
2219 
2220 			shmem_falloc_waitq = shmem_falloc->waitq;
2221 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2222 					TASK_UNINTERRUPTIBLE);
2223 			spin_unlock(&inode->i_lock);
2224 			schedule();
2225 
2226 			/*
2227 			 * shmem_falloc_waitq points into the shmem_fallocate()
2228 			 * stack of the hole-punching task: shmem_falloc_waitq
2229 			 * is usually invalid by the time we reach here, but
2230 			 * finish_wait() does not dereference it in that case;
2231 			 * though i_lock needed lest racing with wake_up_all().
2232 			 */
2233 			spin_lock(&inode->i_lock);
2234 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2235 			spin_unlock(&inode->i_lock);
2236 
2237 			if (fpin)
2238 				fput(fpin);
2239 			return ret;
2240 		}
2241 		spin_unlock(&inode->i_lock);
2242 	}
2243 
2244 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2245 				  gfp, vma, vmf, &ret);
2246 	if (err)
2247 		return vmf_error(err);
2248 	if (folio)
2249 		vmf->page = folio_file_page(folio, vmf->pgoff);
2250 	return ret;
2251 }
2252 
2253 unsigned long shmem_get_unmapped_area(struct file *file,
2254 				      unsigned long uaddr, unsigned long len,
2255 				      unsigned long pgoff, unsigned long flags)
2256 {
2257 	unsigned long (*get_area)(struct file *,
2258 		unsigned long, unsigned long, unsigned long, unsigned long);
2259 	unsigned long addr;
2260 	unsigned long offset;
2261 	unsigned long inflated_len;
2262 	unsigned long inflated_addr;
2263 	unsigned long inflated_offset;
2264 
2265 	if (len > TASK_SIZE)
2266 		return -ENOMEM;
2267 
2268 	get_area = current->mm->get_unmapped_area;
2269 	addr = get_area(file, uaddr, len, pgoff, flags);
2270 
2271 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2272 		return addr;
2273 	if (IS_ERR_VALUE(addr))
2274 		return addr;
2275 	if (addr & ~PAGE_MASK)
2276 		return addr;
2277 	if (addr > TASK_SIZE - len)
2278 		return addr;
2279 
2280 	if (shmem_huge == SHMEM_HUGE_DENY)
2281 		return addr;
2282 	if (len < HPAGE_PMD_SIZE)
2283 		return addr;
2284 	if (flags & MAP_FIXED)
2285 		return addr;
2286 	/*
2287 	 * Our priority is to support MAP_SHARED mapped hugely;
2288 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2289 	 * But if caller specified an address hint and we allocated area there
2290 	 * successfully, respect that as before.
2291 	 */
2292 	if (uaddr == addr)
2293 		return addr;
2294 
2295 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2296 		struct super_block *sb;
2297 
2298 		if (file) {
2299 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2300 			sb = file_inode(file)->i_sb;
2301 		} else {
2302 			/*
2303 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2304 			 * for "/dev/zero", to create a shared anonymous object.
2305 			 */
2306 			if (IS_ERR(shm_mnt))
2307 				return addr;
2308 			sb = shm_mnt->mnt_sb;
2309 		}
2310 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2311 			return addr;
2312 	}
2313 
2314 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2315 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2316 		return addr;
2317 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2318 		return addr;
2319 
2320 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2321 	if (inflated_len > TASK_SIZE)
2322 		return addr;
2323 	if (inflated_len < len)
2324 		return addr;
2325 
2326 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2327 	if (IS_ERR_VALUE(inflated_addr))
2328 		return addr;
2329 	if (inflated_addr & ~PAGE_MASK)
2330 		return addr;
2331 
2332 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2333 	inflated_addr += offset - inflated_offset;
2334 	if (inflated_offset > offset)
2335 		inflated_addr += HPAGE_PMD_SIZE;
2336 
2337 	if (inflated_addr > TASK_SIZE - len)
2338 		return addr;
2339 	return inflated_addr;
2340 }
2341 
2342 #ifdef CONFIG_NUMA
2343 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2344 {
2345 	struct inode *inode = file_inode(vma->vm_file);
2346 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2347 }
2348 
2349 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2350 					  unsigned long addr)
2351 {
2352 	struct inode *inode = file_inode(vma->vm_file);
2353 	pgoff_t index;
2354 
2355 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2356 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2357 }
2358 #endif
2359 
2360 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2361 {
2362 	struct inode *inode = file_inode(file);
2363 	struct shmem_inode_info *info = SHMEM_I(inode);
2364 	int retval = -ENOMEM;
2365 
2366 	/*
2367 	 * What serializes the accesses to info->flags?
2368 	 * ipc_lock_object() when called from shmctl_do_lock(),
2369 	 * no serialization needed when called from shm_destroy().
2370 	 */
2371 	if (lock && !(info->flags & VM_LOCKED)) {
2372 		if (!user_shm_lock(inode->i_size, ucounts))
2373 			goto out_nomem;
2374 		info->flags |= VM_LOCKED;
2375 		mapping_set_unevictable(file->f_mapping);
2376 	}
2377 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2378 		user_shm_unlock(inode->i_size, ucounts);
2379 		info->flags &= ~VM_LOCKED;
2380 		mapping_clear_unevictable(file->f_mapping);
2381 	}
2382 	retval = 0;
2383 
2384 out_nomem:
2385 	return retval;
2386 }
2387 
2388 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2389 {
2390 	struct inode *inode = file_inode(file);
2391 	struct shmem_inode_info *info = SHMEM_I(inode);
2392 	int ret;
2393 
2394 	ret = seal_check_future_write(info->seals, vma);
2395 	if (ret)
2396 		return ret;
2397 
2398 	/* arm64 - allow memory tagging on RAM-based files */
2399 	vm_flags_set(vma, VM_MTE_ALLOWED);
2400 
2401 	file_accessed(file);
2402 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2403 	if (inode->i_nlink)
2404 		vma->vm_ops = &shmem_vm_ops;
2405 	else
2406 		vma->vm_ops = &shmem_anon_vm_ops;
2407 	return 0;
2408 }
2409 
2410 static int shmem_file_open(struct inode *inode, struct file *file)
2411 {
2412 	file->f_mode |= FMODE_CAN_ODIRECT;
2413 	return generic_file_open(inode, file);
2414 }
2415 
2416 #ifdef CONFIG_TMPFS_XATTR
2417 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2418 
2419 /*
2420  * chattr's fsflags are unrelated to extended attributes,
2421  * but tmpfs has chosen to enable them under the same config option.
2422  */
2423 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2424 {
2425 	unsigned int i_flags = 0;
2426 
2427 	if (fsflags & FS_NOATIME_FL)
2428 		i_flags |= S_NOATIME;
2429 	if (fsflags & FS_APPEND_FL)
2430 		i_flags |= S_APPEND;
2431 	if (fsflags & FS_IMMUTABLE_FL)
2432 		i_flags |= S_IMMUTABLE;
2433 	/*
2434 	 * But FS_NODUMP_FL does not require any action in i_flags.
2435 	 */
2436 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2437 }
2438 #else
2439 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2440 {
2441 }
2442 #define shmem_initxattrs NULL
2443 #endif
2444 
2445 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2446 {
2447 	return &SHMEM_I(inode)->dir_offsets;
2448 }
2449 
2450 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2451 					     struct super_block *sb,
2452 					     struct inode *dir, umode_t mode,
2453 					     dev_t dev, unsigned long flags)
2454 {
2455 	struct inode *inode;
2456 	struct shmem_inode_info *info;
2457 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2458 	ino_t ino;
2459 	int err;
2460 
2461 	err = shmem_reserve_inode(sb, &ino);
2462 	if (err)
2463 		return ERR_PTR(err);
2464 
2465 
2466 	inode = new_inode(sb);
2467 	if (!inode) {
2468 		shmem_free_inode(sb, 0);
2469 		return ERR_PTR(-ENOSPC);
2470 	}
2471 
2472 	inode->i_ino = ino;
2473 	inode_init_owner(idmap, inode, dir, mode);
2474 	inode->i_blocks = 0;
2475 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
2476 	inode->i_generation = get_random_u32();
2477 	info = SHMEM_I(inode);
2478 	memset(info, 0, (char *)inode - (char *)info);
2479 	spin_lock_init(&info->lock);
2480 	atomic_set(&info->stop_eviction, 0);
2481 	info->seals = F_SEAL_SEAL;
2482 	info->flags = flags & VM_NORESERVE;
2483 	info->i_crtime = inode->i_mtime;
2484 	info->fsflags = (dir == NULL) ? 0 :
2485 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2486 	if (info->fsflags)
2487 		shmem_set_inode_flags(inode, info->fsflags);
2488 	INIT_LIST_HEAD(&info->shrinklist);
2489 	INIT_LIST_HEAD(&info->swaplist);
2490 	INIT_LIST_HEAD(&info->swaplist);
2491 	if (sbinfo->noswap)
2492 		mapping_set_unevictable(inode->i_mapping);
2493 	simple_xattrs_init(&info->xattrs);
2494 	cache_no_acl(inode);
2495 	mapping_set_large_folios(inode->i_mapping);
2496 
2497 	switch (mode & S_IFMT) {
2498 	default:
2499 		inode->i_op = &shmem_special_inode_operations;
2500 		init_special_inode(inode, mode, dev);
2501 		break;
2502 	case S_IFREG:
2503 		inode->i_mapping->a_ops = &shmem_aops;
2504 		inode->i_op = &shmem_inode_operations;
2505 		inode->i_fop = &shmem_file_operations;
2506 		mpol_shared_policy_init(&info->policy,
2507 					 shmem_get_sbmpol(sbinfo));
2508 		break;
2509 	case S_IFDIR:
2510 		inc_nlink(inode);
2511 		/* Some things misbehave if size == 0 on a directory */
2512 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2513 		inode->i_op = &shmem_dir_inode_operations;
2514 		inode->i_fop = &simple_offset_dir_operations;
2515 		simple_offset_init(shmem_get_offset_ctx(inode));
2516 		break;
2517 	case S_IFLNK:
2518 		/*
2519 		 * Must not load anything in the rbtree,
2520 		 * mpol_free_shared_policy will not be called.
2521 		 */
2522 		mpol_shared_policy_init(&info->policy, NULL);
2523 		break;
2524 	}
2525 
2526 	lockdep_annotate_inode_mutex_key(inode);
2527 	return inode;
2528 }
2529 
2530 #ifdef CONFIG_TMPFS_QUOTA
2531 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2532 				     struct super_block *sb, struct inode *dir,
2533 				     umode_t mode, dev_t dev, unsigned long flags)
2534 {
2535 	int err;
2536 	struct inode *inode;
2537 
2538 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2539 	if (IS_ERR(inode))
2540 		return inode;
2541 
2542 	err = dquot_initialize(inode);
2543 	if (err)
2544 		goto errout;
2545 
2546 	err = dquot_alloc_inode(inode);
2547 	if (err) {
2548 		dquot_drop(inode);
2549 		goto errout;
2550 	}
2551 	return inode;
2552 
2553 errout:
2554 	inode->i_flags |= S_NOQUOTA;
2555 	iput(inode);
2556 	return ERR_PTR(err);
2557 }
2558 #else
2559 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2560 				     struct super_block *sb, struct inode *dir,
2561 				     umode_t mode, dev_t dev, unsigned long flags)
2562 {
2563 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2564 }
2565 #endif /* CONFIG_TMPFS_QUOTA */
2566 
2567 #ifdef CONFIG_USERFAULTFD
2568 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2569 			   struct vm_area_struct *dst_vma,
2570 			   unsigned long dst_addr,
2571 			   unsigned long src_addr,
2572 			   uffd_flags_t flags,
2573 			   struct folio **foliop)
2574 {
2575 	struct inode *inode = file_inode(dst_vma->vm_file);
2576 	struct shmem_inode_info *info = SHMEM_I(inode);
2577 	struct address_space *mapping = inode->i_mapping;
2578 	gfp_t gfp = mapping_gfp_mask(mapping);
2579 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2580 	void *page_kaddr;
2581 	struct folio *folio;
2582 	int ret;
2583 	pgoff_t max_off;
2584 
2585 	if (shmem_inode_acct_block(inode, 1)) {
2586 		/*
2587 		 * We may have got a page, returned -ENOENT triggering a retry,
2588 		 * and now we find ourselves with -ENOMEM. Release the page, to
2589 		 * avoid a BUG_ON in our caller.
2590 		 */
2591 		if (unlikely(*foliop)) {
2592 			folio_put(*foliop);
2593 			*foliop = NULL;
2594 		}
2595 		return -ENOMEM;
2596 	}
2597 
2598 	if (!*foliop) {
2599 		ret = -ENOMEM;
2600 		folio = shmem_alloc_folio(gfp, info, pgoff);
2601 		if (!folio)
2602 			goto out_unacct_blocks;
2603 
2604 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2605 			page_kaddr = kmap_local_folio(folio, 0);
2606 			/*
2607 			 * The read mmap_lock is held here.  Despite the
2608 			 * mmap_lock being read recursive a deadlock is still
2609 			 * possible if a writer has taken a lock.  For example:
2610 			 *
2611 			 * process A thread 1 takes read lock on own mmap_lock
2612 			 * process A thread 2 calls mmap, blocks taking write lock
2613 			 * process B thread 1 takes page fault, read lock on own mmap lock
2614 			 * process B thread 2 calls mmap, blocks taking write lock
2615 			 * process A thread 1 blocks taking read lock on process B
2616 			 * process B thread 1 blocks taking read lock on process A
2617 			 *
2618 			 * Disable page faults to prevent potential deadlock
2619 			 * and retry the copy outside the mmap_lock.
2620 			 */
2621 			pagefault_disable();
2622 			ret = copy_from_user(page_kaddr,
2623 					     (const void __user *)src_addr,
2624 					     PAGE_SIZE);
2625 			pagefault_enable();
2626 			kunmap_local(page_kaddr);
2627 
2628 			/* fallback to copy_from_user outside mmap_lock */
2629 			if (unlikely(ret)) {
2630 				*foliop = folio;
2631 				ret = -ENOENT;
2632 				/* don't free the page */
2633 				goto out_unacct_blocks;
2634 			}
2635 
2636 			flush_dcache_folio(folio);
2637 		} else {		/* ZEROPAGE */
2638 			clear_user_highpage(&folio->page, dst_addr);
2639 		}
2640 	} else {
2641 		folio = *foliop;
2642 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2643 		*foliop = NULL;
2644 	}
2645 
2646 	VM_BUG_ON(folio_test_locked(folio));
2647 	VM_BUG_ON(folio_test_swapbacked(folio));
2648 	__folio_set_locked(folio);
2649 	__folio_set_swapbacked(folio);
2650 	__folio_mark_uptodate(folio);
2651 
2652 	ret = -EFAULT;
2653 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2654 	if (unlikely(pgoff >= max_off))
2655 		goto out_release;
2656 
2657 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2658 				      gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2659 	if (ret)
2660 		goto out_release;
2661 
2662 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2663 				       &folio->page, true, flags);
2664 	if (ret)
2665 		goto out_delete_from_cache;
2666 
2667 	shmem_recalc_inode(inode, 1, 0);
2668 	folio_unlock(folio);
2669 	return 0;
2670 out_delete_from_cache:
2671 	filemap_remove_folio(folio);
2672 out_release:
2673 	folio_unlock(folio);
2674 	folio_put(folio);
2675 out_unacct_blocks:
2676 	shmem_inode_unacct_blocks(inode, 1);
2677 	return ret;
2678 }
2679 #endif /* CONFIG_USERFAULTFD */
2680 
2681 #ifdef CONFIG_TMPFS
2682 static const struct inode_operations shmem_symlink_inode_operations;
2683 static const struct inode_operations shmem_short_symlink_operations;
2684 
2685 static int
2686 shmem_write_begin(struct file *file, struct address_space *mapping,
2687 			loff_t pos, unsigned len,
2688 			struct page **pagep, void **fsdata)
2689 {
2690 	struct inode *inode = mapping->host;
2691 	struct shmem_inode_info *info = SHMEM_I(inode);
2692 	pgoff_t index = pos >> PAGE_SHIFT;
2693 	struct folio *folio;
2694 	int ret = 0;
2695 
2696 	/* i_rwsem is held by caller */
2697 	if (unlikely(info->seals & (F_SEAL_GROW |
2698 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2699 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2700 			return -EPERM;
2701 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2702 			return -EPERM;
2703 	}
2704 
2705 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2706 
2707 	if (ret)
2708 		return ret;
2709 
2710 	*pagep = folio_file_page(folio, index);
2711 	if (PageHWPoison(*pagep)) {
2712 		folio_unlock(folio);
2713 		folio_put(folio);
2714 		*pagep = NULL;
2715 		return -EIO;
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 static int
2722 shmem_write_end(struct file *file, struct address_space *mapping,
2723 			loff_t pos, unsigned len, unsigned copied,
2724 			struct page *page, void *fsdata)
2725 {
2726 	struct folio *folio = page_folio(page);
2727 	struct inode *inode = mapping->host;
2728 
2729 	if (pos + copied > inode->i_size)
2730 		i_size_write(inode, pos + copied);
2731 
2732 	if (!folio_test_uptodate(folio)) {
2733 		if (copied < folio_size(folio)) {
2734 			size_t from = offset_in_folio(folio, pos);
2735 			folio_zero_segments(folio, 0, from,
2736 					from + copied, folio_size(folio));
2737 		}
2738 		folio_mark_uptodate(folio);
2739 	}
2740 	folio_mark_dirty(folio);
2741 	folio_unlock(folio);
2742 	folio_put(folio);
2743 
2744 	return copied;
2745 }
2746 
2747 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2748 {
2749 	struct file *file = iocb->ki_filp;
2750 	struct inode *inode = file_inode(file);
2751 	struct address_space *mapping = inode->i_mapping;
2752 	pgoff_t index;
2753 	unsigned long offset;
2754 	int error = 0;
2755 	ssize_t retval = 0;
2756 	loff_t *ppos = &iocb->ki_pos;
2757 
2758 	index = *ppos >> PAGE_SHIFT;
2759 	offset = *ppos & ~PAGE_MASK;
2760 
2761 	for (;;) {
2762 		struct folio *folio = NULL;
2763 		struct page *page = NULL;
2764 		pgoff_t end_index;
2765 		unsigned long nr, ret;
2766 		loff_t i_size = i_size_read(inode);
2767 
2768 		end_index = i_size >> PAGE_SHIFT;
2769 		if (index > end_index)
2770 			break;
2771 		if (index == end_index) {
2772 			nr = i_size & ~PAGE_MASK;
2773 			if (nr <= offset)
2774 				break;
2775 		}
2776 
2777 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2778 		if (error) {
2779 			if (error == -EINVAL)
2780 				error = 0;
2781 			break;
2782 		}
2783 		if (folio) {
2784 			folio_unlock(folio);
2785 
2786 			page = folio_file_page(folio, index);
2787 			if (PageHWPoison(page)) {
2788 				folio_put(folio);
2789 				error = -EIO;
2790 				break;
2791 			}
2792 		}
2793 
2794 		/*
2795 		 * We must evaluate after, since reads (unlike writes)
2796 		 * are called without i_rwsem protection against truncate
2797 		 */
2798 		nr = PAGE_SIZE;
2799 		i_size = i_size_read(inode);
2800 		end_index = i_size >> PAGE_SHIFT;
2801 		if (index == end_index) {
2802 			nr = i_size & ~PAGE_MASK;
2803 			if (nr <= offset) {
2804 				if (folio)
2805 					folio_put(folio);
2806 				break;
2807 			}
2808 		}
2809 		nr -= offset;
2810 
2811 		if (folio) {
2812 			/*
2813 			 * If users can be writing to this page using arbitrary
2814 			 * virtual addresses, take care about potential aliasing
2815 			 * before reading the page on the kernel side.
2816 			 */
2817 			if (mapping_writably_mapped(mapping))
2818 				flush_dcache_page(page);
2819 			/*
2820 			 * Mark the page accessed if we read the beginning.
2821 			 */
2822 			if (!offset)
2823 				folio_mark_accessed(folio);
2824 			/*
2825 			 * Ok, we have the page, and it's up-to-date, so
2826 			 * now we can copy it to user space...
2827 			 */
2828 			ret = copy_page_to_iter(page, offset, nr, to);
2829 			folio_put(folio);
2830 
2831 		} else if (user_backed_iter(to)) {
2832 			/*
2833 			 * Copy to user tends to be so well optimized, but
2834 			 * clear_user() not so much, that it is noticeably
2835 			 * faster to copy the zero page instead of clearing.
2836 			 */
2837 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2838 		} else {
2839 			/*
2840 			 * But submitting the same page twice in a row to
2841 			 * splice() - or others? - can result in confusion:
2842 			 * so don't attempt that optimization on pipes etc.
2843 			 */
2844 			ret = iov_iter_zero(nr, to);
2845 		}
2846 
2847 		retval += ret;
2848 		offset += ret;
2849 		index += offset >> PAGE_SHIFT;
2850 		offset &= ~PAGE_MASK;
2851 
2852 		if (!iov_iter_count(to))
2853 			break;
2854 		if (ret < nr) {
2855 			error = -EFAULT;
2856 			break;
2857 		}
2858 		cond_resched();
2859 	}
2860 
2861 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2862 	file_accessed(file);
2863 	return retval ? retval : error;
2864 }
2865 
2866 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2867 {
2868 	struct file *file = iocb->ki_filp;
2869 	struct inode *inode = file->f_mapping->host;
2870 	ssize_t ret;
2871 
2872 	inode_lock(inode);
2873 	ret = generic_write_checks(iocb, from);
2874 	if (ret <= 0)
2875 		goto unlock;
2876 	ret = file_remove_privs(file);
2877 	if (ret)
2878 		goto unlock;
2879 	ret = file_update_time(file);
2880 	if (ret)
2881 		goto unlock;
2882 	ret = generic_perform_write(iocb, from);
2883 unlock:
2884 	inode_unlock(inode);
2885 	return ret;
2886 }
2887 
2888 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2889 			      struct pipe_buffer *buf)
2890 {
2891 	return true;
2892 }
2893 
2894 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2895 				  struct pipe_buffer *buf)
2896 {
2897 }
2898 
2899 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2900 				    struct pipe_buffer *buf)
2901 {
2902 	return false;
2903 }
2904 
2905 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2906 	.release	= zero_pipe_buf_release,
2907 	.try_steal	= zero_pipe_buf_try_steal,
2908 	.get		= zero_pipe_buf_get,
2909 };
2910 
2911 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2912 					loff_t fpos, size_t size)
2913 {
2914 	size_t offset = fpos & ~PAGE_MASK;
2915 
2916 	size = min_t(size_t, size, PAGE_SIZE - offset);
2917 
2918 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2919 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2920 
2921 		*buf = (struct pipe_buffer) {
2922 			.ops	= &zero_pipe_buf_ops,
2923 			.page	= ZERO_PAGE(0),
2924 			.offset	= offset,
2925 			.len	= size,
2926 		};
2927 		pipe->head++;
2928 	}
2929 
2930 	return size;
2931 }
2932 
2933 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2934 				      struct pipe_inode_info *pipe,
2935 				      size_t len, unsigned int flags)
2936 {
2937 	struct inode *inode = file_inode(in);
2938 	struct address_space *mapping = inode->i_mapping;
2939 	struct folio *folio = NULL;
2940 	size_t total_spliced = 0, used, npages, n, part;
2941 	loff_t isize;
2942 	int error = 0;
2943 
2944 	/* Work out how much data we can actually add into the pipe */
2945 	used = pipe_occupancy(pipe->head, pipe->tail);
2946 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2947 	len = min_t(size_t, len, npages * PAGE_SIZE);
2948 
2949 	do {
2950 		if (*ppos >= i_size_read(inode))
2951 			break;
2952 
2953 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2954 					SGP_READ);
2955 		if (error) {
2956 			if (error == -EINVAL)
2957 				error = 0;
2958 			break;
2959 		}
2960 		if (folio) {
2961 			folio_unlock(folio);
2962 
2963 			if (folio_test_hwpoison(folio) ||
2964 			    (folio_test_large(folio) &&
2965 			     folio_test_has_hwpoisoned(folio))) {
2966 				error = -EIO;
2967 				break;
2968 			}
2969 		}
2970 
2971 		/*
2972 		 * i_size must be checked after we know the pages are Uptodate.
2973 		 *
2974 		 * Checking i_size after the check allows us to calculate
2975 		 * the correct value for "nr", which means the zero-filled
2976 		 * part of the page is not copied back to userspace (unless
2977 		 * another truncate extends the file - this is desired though).
2978 		 */
2979 		isize = i_size_read(inode);
2980 		if (unlikely(*ppos >= isize))
2981 			break;
2982 		part = min_t(loff_t, isize - *ppos, len);
2983 
2984 		if (folio) {
2985 			/*
2986 			 * If users can be writing to this page using arbitrary
2987 			 * virtual addresses, take care about potential aliasing
2988 			 * before reading the page on the kernel side.
2989 			 */
2990 			if (mapping_writably_mapped(mapping))
2991 				flush_dcache_folio(folio);
2992 			folio_mark_accessed(folio);
2993 			/*
2994 			 * Ok, we have the page, and it's up-to-date, so we can
2995 			 * now splice it into the pipe.
2996 			 */
2997 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
2998 			folio_put(folio);
2999 			folio = NULL;
3000 		} else {
3001 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3002 		}
3003 
3004 		if (!n)
3005 			break;
3006 		len -= n;
3007 		total_spliced += n;
3008 		*ppos += n;
3009 		in->f_ra.prev_pos = *ppos;
3010 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3011 			break;
3012 
3013 		cond_resched();
3014 	} while (len);
3015 
3016 	if (folio)
3017 		folio_put(folio);
3018 
3019 	file_accessed(in);
3020 	return total_spliced ? total_spliced : error;
3021 }
3022 
3023 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3024 {
3025 	struct address_space *mapping = file->f_mapping;
3026 	struct inode *inode = mapping->host;
3027 
3028 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3029 		return generic_file_llseek_size(file, offset, whence,
3030 					MAX_LFS_FILESIZE, i_size_read(inode));
3031 	if (offset < 0)
3032 		return -ENXIO;
3033 
3034 	inode_lock(inode);
3035 	/* We're holding i_rwsem so we can access i_size directly */
3036 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3037 	if (offset >= 0)
3038 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3039 	inode_unlock(inode);
3040 	return offset;
3041 }
3042 
3043 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3044 							 loff_t len)
3045 {
3046 	struct inode *inode = file_inode(file);
3047 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3048 	struct shmem_inode_info *info = SHMEM_I(inode);
3049 	struct shmem_falloc shmem_falloc;
3050 	pgoff_t start, index, end, undo_fallocend;
3051 	int error;
3052 
3053 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3054 		return -EOPNOTSUPP;
3055 
3056 	inode_lock(inode);
3057 
3058 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3059 		struct address_space *mapping = file->f_mapping;
3060 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3061 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3062 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3063 
3064 		/* protected by i_rwsem */
3065 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3066 			error = -EPERM;
3067 			goto out;
3068 		}
3069 
3070 		shmem_falloc.waitq = &shmem_falloc_waitq;
3071 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3072 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3073 		spin_lock(&inode->i_lock);
3074 		inode->i_private = &shmem_falloc;
3075 		spin_unlock(&inode->i_lock);
3076 
3077 		if ((u64)unmap_end > (u64)unmap_start)
3078 			unmap_mapping_range(mapping, unmap_start,
3079 					    1 + unmap_end - unmap_start, 0);
3080 		shmem_truncate_range(inode, offset, offset + len - 1);
3081 		/* No need to unmap again: hole-punching leaves COWed pages */
3082 
3083 		spin_lock(&inode->i_lock);
3084 		inode->i_private = NULL;
3085 		wake_up_all(&shmem_falloc_waitq);
3086 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3087 		spin_unlock(&inode->i_lock);
3088 		error = 0;
3089 		goto out;
3090 	}
3091 
3092 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3093 	error = inode_newsize_ok(inode, offset + len);
3094 	if (error)
3095 		goto out;
3096 
3097 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3098 		error = -EPERM;
3099 		goto out;
3100 	}
3101 
3102 	start = offset >> PAGE_SHIFT;
3103 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3104 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3105 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3106 		error = -ENOSPC;
3107 		goto out;
3108 	}
3109 
3110 	shmem_falloc.waitq = NULL;
3111 	shmem_falloc.start = start;
3112 	shmem_falloc.next  = start;
3113 	shmem_falloc.nr_falloced = 0;
3114 	shmem_falloc.nr_unswapped = 0;
3115 	spin_lock(&inode->i_lock);
3116 	inode->i_private = &shmem_falloc;
3117 	spin_unlock(&inode->i_lock);
3118 
3119 	/*
3120 	 * info->fallocend is only relevant when huge pages might be
3121 	 * involved: to prevent split_huge_page() freeing fallocated
3122 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3123 	 */
3124 	undo_fallocend = info->fallocend;
3125 	if (info->fallocend < end)
3126 		info->fallocend = end;
3127 
3128 	for (index = start; index < end; ) {
3129 		struct folio *folio;
3130 
3131 		/*
3132 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3133 		 * been interrupted because we are using up too much memory.
3134 		 */
3135 		if (signal_pending(current))
3136 			error = -EINTR;
3137 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3138 			error = -ENOMEM;
3139 		else
3140 			error = shmem_get_folio(inode, index, &folio,
3141 						SGP_FALLOC);
3142 		if (error) {
3143 			info->fallocend = undo_fallocend;
3144 			/* Remove the !uptodate folios we added */
3145 			if (index > start) {
3146 				shmem_undo_range(inode,
3147 				    (loff_t)start << PAGE_SHIFT,
3148 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3149 			}
3150 			goto undone;
3151 		}
3152 
3153 		/*
3154 		 * Here is a more important optimization than it appears:
3155 		 * a second SGP_FALLOC on the same large folio will clear it,
3156 		 * making it uptodate and un-undoable if we fail later.
3157 		 */
3158 		index = folio_next_index(folio);
3159 		/* Beware 32-bit wraparound */
3160 		if (!index)
3161 			index--;
3162 
3163 		/*
3164 		 * Inform shmem_writepage() how far we have reached.
3165 		 * No need for lock or barrier: we have the page lock.
3166 		 */
3167 		if (!folio_test_uptodate(folio))
3168 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3169 		shmem_falloc.next = index;
3170 
3171 		/*
3172 		 * If !uptodate, leave it that way so that freeable folios
3173 		 * can be recognized if we need to rollback on error later.
3174 		 * But mark it dirty so that memory pressure will swap rather
3175 		 * than free the folios we are allocating (and SGP_CACHE folios
3176 		 * might still be clean: we now need to mark those dirty too).
3177 		 */
3178 		folio_mark_dirty(folio);
3179 		folio_unlock(folio);
3180 		folio_put(folio);
3181 		cond_resched();
3182 	}
3183 
3184 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3185 		i_size_write(inode, offset + len);
3186 undone:
3187 	spin_lock(&inode->i_lock);
3188 	inode->i_private = NULL;
3189 	spin_unlock(&inode->i_lock);
3190 out:
3191 	if (!error)
3192 		file_modified(file);
3193 	inode_unlock(inode);
3194 	return error;
3195 }
3196 
3197 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3198 {
3199 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3200 
3201 	buf->f_type = TMPFS_MAGIC;
3202 	buf->f_bsize = PAGE_SIZE;
3203 	buf->f_namelen = NAME_MAX;
3204 	if (sbinfo->max_blocks) {
3205 		buf->f_blocks = sbinfo->max_blocks;
3206 		buf->f_bavail =
3207 		buf->f_bfree  = sbinfo->max_blocks -
3208 				percpu_counter_sum(&sbinfo->used_blocks);
3209 	}
3210 	if (sbinfo->max_inodes) {
3211 		buf->f_files = sbinfo->max_inodes;
3212 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3213 	}
3214 	/* else leave those fields 0 like simple_statfs */
3215 
3216 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3217 
3218 	return 0;
3219 }
3220 
3221 /*
3222  * File creation. Allocate an inode, and we're done..
3223  */
3224 static int
3225 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3226 	    struct dentry *dentry, umode_t mode, dev_t dev)
3227 {
3228 	struct inode *inode;
3229 	int error;
3230 
3231 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3232 	if (IS_ERR(inode))
3233 		return PTR_ERR(inode);
3234 
3235 	error = simple_acl_create(dir, inode);
3236 	if (error)
3237 		goto out_iput;
3238 	error = security_inode_init_security(inode, dir,
3239 					     &dentry->d_name,
3240 					     shmem_initxattrs, NULL);
3241 	if (error && error != -EOPNOTSUPP)
3242 		goto out_iput;
3243 
3244 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3245 	if (error)
3246 		goto out_iput;
3247 
3248 	dir->i_size += BOGO_DIRENT_SIZE;
3249 	dir->i_mtime = inode_set_ctime_current(dir);
3250 	inode_inc_iversion(dir);
3251 	d_instantiate(dentry, inode);
3252 	dget(dentry); /* Extra count - pin the dentry in core */
3253 	return error;
3254 
3255 out_iput:
3256 	iput(inode);
3257 	return error;
3258 }
3259 
3260 static int
3261 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3262 	      struct file *file, umode_t mode)
3263 {
3264 	struct inode *inode;
3265 	int error;
3266 
3267 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3268 
3269 	if (IS_ERR(inode)) {
3270 		error = PTR_ERR(inode);
3271 		goto err_out;
3272 	}
3273 
3274 	error = security_inode_init_security(inode, dir,
3275 					     NULL,
3276 					     shmem_initxattrs, NULL);
3277 	if (error && error != -EOPNOTSUPP)
3278 		goto out_iput;
3279 	error = simple_acl_create(dir, inode);
3280 	if (error)
3281 		goto out_iput;
3282 	d_tmpfile(file, inode);
3283 
3284 err_out:
3285 	return finish_open_simple(file, error);
3286 out_iput:
3287 	iput(inode);
3288 	return error;
3289 }
3290 
3291 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3292 		       struct dentry *dentry, umode_t mode)
3293 {
3294 	int error;
3295 
3296 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3297 	if (error)
3298 		return error;
3299 	inc_nlink(dir);
3300 	return 0;
3301 }
3302 
3303 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3304 			struct dentry *dentry, umode_t mode, bool excl)
3305 {
3306 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3307 }
3308 
3309 /*
3310  * Link a file..
3311  */
3312 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3313 {
3314 	struct inode *inode = d_inode(old_dentry);
3315 	int ret = 0;
3316 
3317 	/*
3318 	 * No ordinary (disk based) filesystem counts links as inodes;
3319 	 * but each new link needs a new dentry, pinning lowmem, and
3320 	 * tmpfs dentries cannot be pruned until they are unlinked.
3321 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3322 	 * first link must skip that, to get the accounting right.
3323 	 */
3324 	if (inode->i_nlink) {
3325 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3326 		if (ret)
3327 			goto out;
3328 	}
3329 
3330 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3331 	if (ret) {
3332 		if (inode->i_nlink)
3333 			shmem_free_inode(inode->i_sb, 0);
3334 		goto out;
3335 	}
3336 
3337 	dir->i_size += BOGO_DIRENT_SIZE;
3338 	dir->i_mtime = inode_set_ctime_to_ts(dir,
3339 					     inode_set_ctime_current(inode));
3340 	inode_inc_iversion(dir);
3341 	inc_nlink(inode);
3342 	ihold(inode);	/* New dentry reference */
3343 	dget(dentry);		/* Extra pinning count for the created dentry */
3344 	d_instantiate(dentry, inode);
3345 out:
3346 	return ret;
3347 }
3348 
3349 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3350 {
3351 	struct inode *inode = d_inode(dentry);
3352 
3353 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3354 		shmem_free_inode(inode->i_sb, 0);
3355 
3356 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3357 
3358 	dir->i_size -= BOGO_DIRENT_SIZE;
3359 	dir->i_mtime = inode_set_ctime_to_ts(dir,
3360 					     inode_set_ctime_current(inode));
3361 	inode_inc_iversion(dir);
3362 	drop_nlink(inode);
3363 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3364 	return 0;
3365 }
3366 
3367 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3368 {
3369 	if (!simple_empty(dentry))
3370 		return -ENOTEMPTY;
3371 
3372 	drop_nlink(d_inode(dentry));
3373 	drop_nlink(dir);
3374 	return shmem_unlink(dir, dentry);
3375 }
3376 
3377 static int shmem_whiteout(struct mnt_idmap *idmap,
3378 			  struct inode *old_dir, struct dentry *old_dentry)
3379 {
3380 	struct dentry *whiteout;
3381 	int error;
3382 
3383 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3384 	if (!whiteout)
3385 		return -ENOMEM;
3386 
3387 	error = shmem_mknod(idmap, old_dir, whiteout,
3388 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3389 	dput(whiteout);
3390 	if (error)
3391 		return error;
3392 
3393 	/*
3394 	 * Cheat and hash the whiteout while the old dentry is still in
3395 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3396 	 *
3397 	 * d_lookup() will consistently find one of them at this point,
3398 	 * not sure which one, but that isn't even important.
3399 	 */
3400 	d_rehash(whiteout);
3401 	return 0;
3402 }
3403 
3404 /*
3405  * The VFS layer already does all the dentry stuff for rename,
3406  * we just have to decrement the usage count for the target if
3407  * it exists so that the VFS layer correctly free's it when it
3408  * gets overwritten.
3409  */
3410 static int shmem_rename2(struct mnt_idmap *idmap,
3411 			 struct inode *old_dir, struct dentry *old_dentry,
3412 			 struct inode *new_dir, struct dentry *new_dentry,
3413 			 unsigned int flags)
3414 {
3415 	struct inode *inode = d_inode(old_dentry);
3416 	int they_are_dirs = S_ISDIR(inode->i_mode);
3417 	int error;
3418 
3419 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3420 		return -EINVAL;
3421 
3422 	if (flags & RENAME_EXCHANGE)
3423 		return simple_offset_rename_exchange(old_dir, old_dentry,
3424 						     new_dir, new_dentry);
3425 
3426 	if (!simple_empty(new_dentry))
3427 		return -ENOTEMPTY;
3428 
3429 	if (flags & RENAME_WHITEOUT) {
3430 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3431 		if (error)
3432 			return error;
3433 	}
3434 
3435 	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3436 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3437 	if (error)
3438 		return error;
3439 
3440 	if (d_really_is_positive(new_dentry)) {
3441 		(void) shmem_unlink(new_dir, new_dentry);
3442 		if (they_are_dirs) {
3443 			drop_nlink(d_inode(new_dentry));
3444 			drop_nlink(old_dir);
3445 		}
3446 	} else if (they_are_dirs) {
3447 		drop_nlink(old_dir);
3448 		inc_nlink(new_dir);
3449 	}
3450 
3451 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3452 	new_dir->i_size += BOGO_DIRENT_SIZE;
3453 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3454 	inode_inc_iversion(old_dir);
3455 	inode_inc_iversion(new_dir);
3456 	return 0;
3457 }
3458 
3459 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3460 			 struct dentry *dentry, const char *symname)
3461 {
3462 	int error;
3463 	int len;
3464 	struct inode *inode;
3465 	struct folio *folio;
3466 
3467 	len = strlen(symname) + 1;
3468 	if (len > PAGE_SIZE)
3469 		return -ENAMETOOLONG;
3470 
3471 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3472 				VM_NORESERVE);
3473 
3474 	if (IS_ERR(inode))
3475 		return PTR_ERR(inode);
3476 
3477 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3478 					     shmem_initxattrs, NULL);
3479 	if (error && error != -EOPNOTSUPP)
3480 		goto out_iput;
3481 
3482 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3483 	if (error)
3484 		goto out_iput;
3485 
3486 	inode->i_size = len-1;
3487 	if (len <= SHORT_SYMLINK_LEN) {
3488 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3489 		if (!inode->i_link) {
3490 			error = -ENOMEM;
3491 			goto out_remove_offset;
3492 		}
3493 		inode->i_op = &shmem_short_symlink_operations;
3494 	} else {
3495 		inode_nohighmem(inode);
3496 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3497 		if (error)
3498 			goto out_remove_offset;
3499 		inode->i_mapping->a_ops = &shmem_aops;
3500 		inode->i_op = &shmem_symlink_inode_operations;
3501 		memcpy(folio_address(folio), symname, len);
3502 		folio_mark_uptodate(folio);
3503 		folio_mark_dirty(folio);
3504 		folio_unlock(folio);
3505 		folio_put(folio);
3506 	}
3507 	dir->i_size += BOGO_DIRENT_SIZE;
3508 	dir->i_mtime = inode_set_ctime_current(dir);
3509 	inode_inc_iversion(dir);
3510 	d_instantiate(dentry, inode);
3511 	dget(dentry);
3512 	return 0;
3513 
3514 out_remove_offset:
3515 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3516 out_iput:
3517 	iput(inode);
3518 	return error;
3519 }
3520 
3521 static void shmem_put_link(void *arg)
3522 {
3523 	folio_mark_accessed(arg);
3524 	folio_put(arg);
3525 }
3526 
3527 static const char *shmem_get_link(struct dentry *dentry,
3528 				  struct inode *inode,
3529 				  struct delayed_call *done)
3530 {
3531 	struct folio *folio = NULL;
3532 	int error;
3533 
3534 	if (!dentry) {
3535 		folio = filemap_get_folio(inode->i_mapping, 0);
3536 		if (IS_ERR(folio))
3537 			return ERR_PTR(-ECHILD);
3538 		if (PageHWPoison(folio_page(folio, 0)) ||
3539 		    !folio_test_uptodate(folio)) {
3540 			folio_put(folio);
3541 			return ERR_PTR(-ECHILD);
3542 		}
3543 	} else {
3544 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3545 		if (error)
3546 			return ERR_PTR(error);
3547 		if (!folio)
3548 			return ERR_PTR(-ECHILD);
3549 		if (PageHWPoison(folio_page(folio, 0))) {
3550 			folio_unlock(folio);
3551 			folio_put(folio);
3552 			return ERR_PTR(-ECHILD);
3553 		}
3554 		folio_unlock(folio);
3555 	}
3556 	set_delayed_call(done, shmem_put_link, folio);
3557 	return folio_address(folio);
3558 }
3559 
3560 #ifdef CONFIG_TMPFS_XATTR
3561 
3562 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3563 {
3564 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3565 
3566 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3567 
3568 	return 0;
3569 }
3570 
3571 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3572 			      struct dentry *dentry, struct fileattr *fa)
3573 {
3574 	struct inode *inode = d_inode(dentry);
3575 	struct shmem_inode_info *info = SHMEM_I(inode);
3576 
3577 	if (fileattr_has_fsx(fa))
3578 		return -EOPNOTSUPP;
3579 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3580 		return -EOPNOTSUPP;
3581 
3582 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3583 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3584 
3585 	shmem_set_inode_flags(inode, info->fsflags);
3586 	inode_set_ctime_current(inode);
3587 	inode_inc_iversion(inode);
3588 	return 0;
3589 }
3590 
3591 /*
3592  * Superblocks without xattr inode operations may get some security.* xattr
3593  * support from the LSM "for free". As soon as we have any other xattrs
3594  * like ACLs, we also need to implement the security.* handlers at
3595  * filesystem level, though.
3596  */
3597 
3598 /*
3599  * Callback for security_inode_init_security() for acquiring xattrs.
3600  */
3601 static int shmem_initxattrs(struct inode *inode,
3602 			    const struct xattr *xattr_array,
3603 			    void *fs_info)
3604 {
3605 	struct shmem_inode_info *info = SHMEM_I(inode);
3606 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3607 	const struct xattr *xattr;
3608 	struct simple_xattr *new_xattr;
3609 	size_t ispace = 0;
3610 	size_t len;
3611 
3612 	if (sbinfo->max_inodes) {
3613 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3614 			ispace += simple_xattr_space(xattr->name,
3615 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3616 		}
3617 		if (ispace) {
3618 			raw_spin_lock(&sbinfo->stat_lock);
3619 			if (sbinfo->free_ispace < ispace)
3620 				ispace = 0;
3621 			else
3622 				sbinfo->free_ispace -= ispace;
3623 			raw_spin_unlock(&sbinfo->stat_lock);
3624 			if (!ispace)
3625 				return -ENOSPC;
3626 		}
3627 	}
3628 
3629 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3630 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3631 		if (!new_xattr)
3632 			break;
3633 
3634 		len = strlen(xattr->name) + 1;
3635 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3636 					  GFP_KERNEL_ACCOUNT);
3637 		if (!new_xattr->name) {
3638 			kvfree(new_xattr);
3639 			break;
3640 		}
3641 
3642 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3643 		       XATTR_SECURITY_PREFIX_LEN);
3644 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3645 		       xattr->name, len);
3646 
3647 		simple_xattr_add(&info->xattrs, new_xattr);
3648 	}
3649 
3650 	if (xattr->name != NULL) {
3651 		if (ispace) {
3652 			raw_spin_lock(&sbinfo->stat_lock);
3653 			sbinfo->free_ispace += ispace;
3654 			raw_spin_unlock(&sbinfo->stat_lock);
3655 		}
3656 		simple_xattrs_free(&info->xattrs, NULL);
3657 		return -ENOMEM;
3658 	}
3659 
3660 	return 0;
3661 }
3662 
3663 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3664 				   struct dentry *unused, struct inode *inode,
3665 				   const char *name, void *buffer, size_t size)
3666 {
3667 	struct shmem_inode_info *info = SHMEM_I(inode);
3668 
3669 	name = xattr_full_name(handler, name);
3670 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3671 }
3672 
3673 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3674 				   struct mnt_idmap *idmap,
3675 				   struct dentry *unused, struct inode *inode,
3676 				   const char *name, const void *value,
3677 				   size_t size, int flags)
3678 {
3679 	struct shmem_inode_info *info = SHMEM_I(inode);
3680 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3681 	struct simple_xattr *old_xattr;
3682 	size_t ispace = 0;
3683 
3684 	name = xattr_full_name(handler, name);
3685 	if (value && sbinfo->max_inodes) {
3686 		ispace = simple_xattr_space(name, size);
3687 		raw_spin_lock(&sbinfo->stat_lock);
3688 		if (sbinfo->free_ispace < ispace)
3689 			ispace = 0;
3690 		else
3691 			sbinfo->free_ispace -= ispace;
3692 		raw_spin_unlock(&sbinfo->stat_lock);
3693 		if (!ispace)
3694 			return -ENOSPC;
3695 	}
3696 
3697 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3698 	if (!IS_ERR(old_xattr)) {
3699 		ispace = 0;
3700 		if (old_xattr && sbinfo->max_inodes)
3701 			ispace = simple_xattr_space(old_xattr->name,
3702 						    old_xattr->size);
3703 		simple_xattr_free(old_xattr);
3704 		old_xattr = NULL;
3705 		inode_set_ctime_current(inode);
3706 		inode_inc_iversion(inode);
3707 	}
3708 	if (ispace) {
3709 		raw_spin_lock(&sbinfo->stat_lock);
3710 		sbinfo->free_ispace += ispace;
3711 		raw_spin_unlock(&sbinfo->stat_lock);
3712 	}
3713 	return PTR_ERR(old_xattr);
3714 }
3715 
3716 static const struct xattr_handler shmem_security_xattr_handler = {
3717 	.prefix = XATTR_SECURITY_PREFIX,
3718 	.get = shmem_xattr_handler_get,
3719 	.set = shmem_xattr_handler_set,
3720 };
3721 
3722 static const struct xattr_handler shmem_trusted_xattr_handler = {
3723 	.prefix = XATTR_TRUSTED_PREFIX,
3724 	.get = shmem_xattr_handler_get,
3725 	.set = shmem_xattr_handler_set,
3726 };
3727 
3728 static const struct xattr_handler shmem_user_xattr_handler = {
3729 	.prefix = XATTR_USER_PREFIX,
3730 	.get = shmem_xattr_handler_get,
3731 	.set = shmem_xattr_handler_set,
3732 };
3733 
3734 static const struct xattr_handler *shmem_xattr_handlers[] = {
3735 	&shmem_security_xattr_handler,
3736 	&shmem_trusted_xattr_handler,
3737 	&shmem_user_xattr_handler,
3738 	NULL
3739 };
3740 
3741 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3742 {
3743 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3744 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3745 }
3746 #endif /* CONFIG_TMPFS_XATTR */
3747 
3748 static const struct inode_operations shmem_short_symlink_operations = {
3749 	.getattr	= shmem_getattr,
3750 	.setattr	= shmem_setattr,
3751 	.get_link	= simple_get_link,
3752 #ifdef CONFIG_TMPFS_XATTR
3753 	.listxattr	= shmem_listxattr,
3754 #endif
3755 };
3756 
3757 static const struct inode_operations shmem_symlink_inode_operations = {
3758 	.getattr	= shmem_getattr,
3759 	.setattr	= shmem_setattr,
3760 	.get_link	= shmem_get_link,
3761 #ifdef CONFIG_TMPFS_XATTR
3762 	.listxattr	= shmem_listxattr,
3763 #endif
3764 };
3765 
3766 static struct dentry *shmem_get_parent(struct dentry *child)
3767 {
3768 	return ERR_PTR(-ESTALE);
3769 }
3770 
3771 static int shmem_match(struct inode *ino, void *vfh)
3772 {
3773 	__u32 *fh = vfh;
3774 	__u64 inum = fh[2];
3775 	inum = (inum << 32) | fh[1];
3776 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3777 }
3778 
3779 /* Find any alias of inode, but prefer a hashed alias */
3780 static struct dentry *shmem_find_alias(struct inode *inode)
3781 {
3782 	struct dentry *alias = d_find_alias(inode);
3783 
3784 	return alias ?: d_find_any_alias(inode);
3785 }
3786 
3787 
3788 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3789 		struct fid *fid, int fh_len, int fh_type)
3790 {
3791 	struct inode *inode;
3792 	struct dentry *dentry = NULL;
3793 	u64 inum;
3794 
3795 	if (fh_len < 3)
3796 		return NULL;
3797 
3798 	inum = fid->raw[2];
3799 	inum = (inum << 32) | fid->raw[1];
3800 
3801 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3802 			shmem_match, fid->raw);
3803 	if (inode) {
3804 		dentry = shmem_find_alias(inode);
3805 		iput(inode);
3806 	}
3807 
3808 	return dentry;
3809 }
3810 
3811 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3812 				struct inode *parent)
3813 {
3814 	if (*len < 3) {
3815 		*len = 3;
3816 		return FILEID_INVALID;
3817 	}
3818 
3819 	if (inode_unhashed(inode)) {
3820 		/* Unfortunately insert_inode_hash is not idempotent,
3821 		 * so as we hash inodes here rather than at creation
3822 		 * time, we need a lock to ensure we only try
3823 		 * to do it once
3824 		 */
3825 		static DEFINE_SPINLOCK(lock);
3826 		spin_lock(&lock);
3827 		if (inode_unhashed(inode))
3828 			__insert_inode_hash(inode,
3829 					    inode->i_ino + inode->i_generation);
3830 		spin_unlock(&lock);
3831 	}
3832 
3833 	fh[0] = inode->i_generation;
3834 	fh[1] = inode->i_ino;
3835 	fh[2] = ((__u64)inode->i_ino) >> 32;
3836 
3837 	*len = 3;
3838 	return 1;
3839 }
3840 
3841 static const struct export_operations shmem_export_ops = {
3842 	.get_parent     = shmem_get_parent,
3843 	.encode_fh      = shmem_encode_fh,
3844 	.fh_to_dentry	= shmem_fh_to_dentry,
3845 };
3846 
3847 enum shmem_param {
3848 	Opt_gid,
3849 	Opt_huge,
3850 	Opt_mode,
3851 	Opt_mpol,
3852 	Opt_nr_blocks,
3853 	Opt_nr_inodes,
3854 	Opt_size,
3855 	Opt_uid,
3856 	Opt_inode32,
3857 	Opt_inode64,
3858 	Opt_noswap,
3859 	Opt_quota,
3860 	Opt_usrquota,
3861 	Opt_grpquota,
3862 	Opt_usrquota_block_hardlimit,
3863 	Opt_usrquota_inode_hardlimit,
3864 	Opt_grpquota_block_hardlimit,
3865 	Opt_grpquota_inode_hardlimit,
3866 };
3867 
3868 static const struct constant_table shmem_param_enums_huge[] = {
3869 	{"never",	SHMEM_HUGE_NEVER },
3870 	{"always",	SHMEM_HUGE_ALWAYS },
3871 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3872 	{"advise",	SHMEM_HUGE_ADVISE },
3873 	{}
3874 };
3875 
3876 const struct fs_parameter_spec shmem_fs_parameters[] = {
3877 	fsparam_u32   ("gid",		Opt_gid),
3878 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3879 	fsparam_u32oct("mode",		Opt_mode),
3880 	fsparam_string("mpol",		Opt_mpol),
3881 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3882 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3883 	fsparam_string("size",		Opt_size),
3884 	fsparam_u32   ("uid",		Opt_uid),
3885 	fsparam_flag  ("inode32",	Opt_inode32),
3886 	fsparam_flag  ("inode64",	Opt_inode64),
3887 	fsparam_flag  ("noswap",	Opt_noswap),
3888 #ifdef CONFIG_TMPFS_QUOTA
3889 	fsparam_flag  ("quota",		Opt_quota),
3890 	fsparam_flag  ("usrquota",	Opt_usrquota),
3891 	fsparam_flag  ("grpquota",	Opt_grpquota),
3892 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3893 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3894 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3895 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3896 #endif
3897 	{}
3898 };
3899 
3900 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3901 {
3902 	struct shmem_options *ctx = fc->fs_private;
3903 	struct fs_parse_result result;
3904 	unsigned long long size;
3905 	char *rest;
3906 	int opt;
3907 	kuid_t kuid;
3908 	kgid_t kgid;
3909 
3910 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3911 	if (opt < 0)
3912 		return opt;
3913 
3914 	switch (opt) {
3915 	case Opt_size:
3916 		size = memparse(param->string, &rest);
3917 		if (*rest == '%') {
3918 			size <<= PAGE_SHIFT;
3919 			size *= totalram_pages();
3920 			do_div(size, 100);
3921 			rest++;
3922 		}
3923 		if (*rest)
3924 			goto bad_value;
3925 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3926 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3927 		break;
3928 	case Opt_nr_blocks:
3929 		ctx->blocks = memparse(param->string, &rest);
3930 		if (*rest || ctx->blocks > LONG_MAX)
3931 			goto bad_value;
3932 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3933 		break;
3934 	case Opt_nr_inodes:
3935 		ctx->inodes = memparse(param->string, &rest);
3936 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3937 			goto bad_value;
3938 		ctx->seen |= SHMEM_SEEN_INODES;
3939 		break;
3940 	case Opt_mode:
3941 		ctx->mode = result.uint_32 & 07777;
3942 		break;
3943 	case Opt_uid:
3944 		kuid = make_kuid(current_user_ns(), result.uint_32);
3945 		if (!uid_valid(kuid))
3946 			goto bad_value;
3947 
3948 		/*
3949 		 * The requested uid must be representable in the
3950 		 * filesystem's idmapping.
3951 		 */
3952 		if (!kuid_has_mapping(fc->user_ns, kuid))
3953 			goto bad_value;
3954 
3955 		ctx->uid = kuid;
3956 		break;
3957 	case Opt_gid:
3958 		kgid = make_kgid(current_user_ns(), result.uint_32);
3959 		if (!gid_valid(kgid))
3960 			goto bad_value;
3961 
3962 		/*
3963 		 * The requested gid must be representable in the
3964 		 * filesystem's idmapping.
3965 		 */
3966 		if (!kgid_has_mapping(fc->user_ns, kgid))
3967 			goto bad_value;
3968 
3969 		ctx->gid = kgid;
3970 		break;
3971 	case Opt_huge:
3972 		ctx->huge = result.uint_32;
3973 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3974 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3975 		      has_transparent_hugepage()))
3976 			goto unsupported_parameter;
3977 		ctx->seen |= SHMEM_SEEN_HUGE;
3978 		break;
3979 	case Opt_mpol:
3980 		if (IS_ENABLED(CONFIG_NUMA)) {
3981 			mpol_put(ctx->mpol);
3982 			ctx->mpol = NULL;
3983 			if (mpol_parse_str(param->string, &ctx->mpol))
3984 				goto bad_value;
3985 			break;
3986 		}
3987 		goto unsupported_parameter;
3988 	case Opt_inode32:
3989 		ctx->full_inums = false;
3990 		ctx->seen |= SHMEM_SEEN_INUMS;
3991 		break;
3992 	case Opt_inode64:
3993 		if (sizeof(ino_t) < 8) {
3994 			return invalfc(fc,
3995 				       "Cannot use inode64 with <64bit inums in kernel\n");
3996 		}
3997 		ctx->full_inums = true;
3998 		ctx->seen |= SHMEM_SEEN_INUMS;
3999 		break;
4000 	case Opt_noswap:
4001 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4002 			return invalfc(fc,
4003 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4004 		}
4005 		ctx->noswap = true;
4006 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4007 		break;
4008 	case Opt_quota:
4009 		if (fc->user_ns != &init_user_ns)
4010 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4011 		ctx->seen |= SHMEM_SEEN_QUOTA;
4012 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4013 		break;
4014 	case Opt_usrquota:
4015 		if (fc->user_ns != &init_user_ns)
4016 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4017 		ctx->seen |= SHMEM_SEEN_QUOTA;
4018 		ctx->quota_types |= QTYPE_MASK_USR;
4019 		break;
4020 	case Opt_grpquota:
4021 		if (fc->user_ns != &init_user_ns)
4022 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4023 		ctx->seen |= SHMEM_SEEN_QUOTA;
4024 		ctx->quota_types |= QTYPE_MASK_GRP;
4025 		break;
4026 	case Opt_usrquota_block_hardlimit:
4027 		size = memparse(param->string, &rest);
4028 		if (*rest || !size)
4029 			goto bad_value;
4030 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4031 			return invalfc(fc,
4032 				       "User quota block hardlimit too large.");
4033 		ctx->qlimits.usrquota_bhardlimit = size;
4034 		break;
4035 	case Opt_grpquota_block_hardlimit:
4036 		size = memparse(param->string, &rest);
4037 		if (*rest || !size)
4038 			goto bad_value;
4039 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4040 			return invalfc(fc,
4041 				       "Group quota block hardlimit too large.");
4042 		ctx->qlimits.grpquota_bhardlimit = size;
4043 		break;
4044 	case Opt_usrquota_inode_hardlimit:
4045 		size = memparse(param->string, &rest);
4046 		if (*rest || !size)
4047 			goto bad_value;
4048 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4049 			return invalfc(fc,
4050 				       "User quota inode hardlimit too large.");
4051 		ctx->qlimits.usrquota_ihardlimit = size;
4052 		break;
4053 	case Opt_grpquota_inode_hardlimit:
4054 		size = memparse(param->string, &rest);
4055 		if (*rest || !size)
4056 			goto bad_value;
4057 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4058 			return invalfc(fc,
4059 				       "Group quota inode hardlimit too large.");
4060 		ctx->qlimits.grpquota_ihardlimit = size;
4061 		break;
4062 	}
4063 	return 0;
4064 
4065 unsupported_parameter:
4066 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4067 bad_value:
4068 	return invalfc(fc, "Bad value for '%s'", param->key);
4069 }
4070 
4071 static int shmem_parse_options(struct fs_context *fc, void *data)
4072 {
4073 	char *options = data;
4074 
4075 	if (options) {
4076 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4077 		if (err)
4078 			return err;
4079 	}
4080 
4081 	while (options != NULL) {
4082 		char *this_char = options;
4083 		for (;;) {
4084 			/*
4085 			 * NUL-terminate this option: unfortunately,
4086 			 * mount options form a comma-separated list,
4087 			 * but mpol's nodelist may also contain commas.
4088 			 */
4089 			options = strchr(options, ',');
4090 			if (options == NULL)
4091 				break;
4092 			options++;
4093 			if (!isdigit(*options)) {
4094 				options[-1] = '\0';
4095 				break;
4096 			}
4097 		}
4098 		if (*this_char) {
4099 			char *value = strchr(this_char, '=');
4100 			size_t len = 0;
4101 			int err;
4102 
4103 			if (value) {
4104 				*value++ = '\0';
4105 				len = strlen(value);
4106 			}
4107 			err = vfs_parse_fs_string(fc, this_char, value, len);
4108 			if (err < 0)
4109 				return err;
4110 		}
4111 	}
4112 	return 0;
4113 }
4114 
4115 /*
4116  * Reconfigure a shmem filesystem.
4117  */
4118 static int shmem_reconfigure(struct fs_context *fc)
4119 {
4120 	struct shmem_options *ctx = fc->fs_private;
4121 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4122 	unsigned long used_isp;
4123 	struct mempolicy *mpol = NULL;
4124 	const char *err;
4125 
4126 	raw_spin_lock(&sbinfo->stat_lock);
4127 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4128 
4129 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4130 		if (!sbinfo->max_blocks) {
4131 			err = "Cannot retroactively limit size";
4132 			goto out;
4133 		}
4134 		if (percpu_counter_compare(&sbinfo->used_blocks,
4135 					   ctx->blocks) > 0) {
4136 			err = "Too small a size for current use";
4137 			goto out;
4138 		}
4139 	}
4140 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4141 		if (!sbinfo->max_inodes) {
4142 			err = "Cannot retroactively limit inodes";
4143 			goto out;
4144 		}
4145 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4146 			err = "Too few inodes for current use";
4147 			goto out;
4148 		}
4149 	}
4150 
4151 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4152 	    sbinfo->next_ino > UINT_MAX) {
4153 		err = "Current inum too high to switch to 32-bit inums";
4154 		goto out;
4155 	}
4156 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4157 		err = "Cannot disable swap on remount";
4158 		goto out;
4159 	}
4160 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4161 		err = "Cannot enable swap on remount if it was disabled on first mount";
4162 		goto out;
4163 	}
4164 
4165 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4166 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4167 		err = "Cannot enable quota on remount";
4168 		goto out;
4169 	}
4170 
4171 #ifdef CONFIG_TMPFS_QUOTA
4172 #define CHANGED_LIMIT(name)						\
4173 	(ctx->qlimits.name## hardlimit &&				\
4174 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4175 
4176 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4177 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4178 		err = "Cannot change global quota limit on remount";
4179 		goto out;
4180 	}
4181 #endif /* CONFIG_TMPFS_QUOTA */
4182 
4183 	if (ctx->seen & SHMEM_SEEN_HUGE)
4184 		sbinfo->huge = ctx->huge;
4185 	if (ctx->seen & SHMEM_SEEN_INUMS)
4186 		sbinfo->full_inums = ctx->full_inums;
4187 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4188 		sbinfo->max_blocks  = ctx->blocks;
4189 	if (ctx->seen & SHMEM_SEEN_INODES) {
4190 		sbinfo->max_inodes  = ctx->inodes;
4191 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4192 	}
4193 
4194 	/*
4195 	 * Preserve previous mempolicy unless mpol remount option was specified.
4196 	 */
4197 	if (ctx->mpol) {
4198 		mpol = sbinfo->mpol;
4199 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4200 		ctx->mpol = NULL;
4201 	}
4202 
4203 	if (ctx->noswap)
4204 		sbinfo->noswap = true;
4205 
4206 	raw_spin_unlock(&sbinfo->stat_lock);
4207 	mpol_put(mpol);
4208 	return 0;
4209 out:
4210 	raw_spin_unlock(&sbinfo->stat_lock);
4211 	return invalfc(fc, "%s", err);
4212 }
4213 
4214 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4215 {
4216 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4217 	struct mempolicy *mpol;
4218 
4219 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4220 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4221 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4222 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4223 	if (sbinfo->mode != (0777 | S_ISVTX))
4224 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4225 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4226 		seq_printf(seq, ",uid=%u",
4227 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4228 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4229 		seq_printf(seq, ",gid=%u",
4230 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4231 
4232 	/*
4233 	 * Showing inode{64,32} might be useful even if it's the system default,
4234 	 * since then people don't have to resort to checking both here and
4235 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4236 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4237 	 *
4238 	 * We hide it when inode64 isn't the default and we are using 32-bit
4239 	 * inodes, since that probably just means the feature isn't even under
4240 	 * consideration.
4241 	 *
4242 	 * As such:
4243 	 *
4244 	 *                     +-----------------+-----------------+
4245 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4246 	 *  +------------------+-----------------+-----------------+
4247 	 *  | full_inums=true  | show            | show            |
4248 	 *  | full_inums=false | show            | hide            |
4249 	 *  +------------------+-----------------+-----------------+
4250 	 *
4251 	 */
4252 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4253 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4255 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4256 	if (sbinfo->huge)
4257 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4258 #endif
4259 	mpol = shmem_get_sbmpol(sbinfo);
4260 	shmem_show_mpol(seq, mpol);
4261 	mpol_put(mpol);
4262 	if (sbinfo->noswap)
4263 		seq_printf(seq, ",noswap");
4264 	return 0;
4265 }
4266 
4267 #endif /* CONFIG_TMPFS */
4268 
4269 static void shmem_put_super(struct super_block *sb)
4270 {
4271 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4272 
4273 #ifdef CONFIG_TMPFS_QUOTA
4274 	shmem_disable_quotas(sb);
4275 #endif
4276 	free_percpu(sbinfo->ino_batch);
4277 	percpu_counter_destroy(&sbinfo->used_blocks);
4278 	mpol_put(sbinfo->mpol);
4279 	kfree(sbinfo);
4280 	sb->s_fs_info = NULL;
4281 }
4282 
4283 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4284 {
4285 	struct shmem_options *ctx = fc->fs_private;
4286 	struct inode *inode;
4287 	struct shmem_sb_info *sbinfo;
4288 	int error = -ENOMEM;
4289 
4290 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4291 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4292 				L1_CACHE_BYTES), GFP_KERNEL);
4293 	if (!sbinfo)
4294 		return error;
4295 
4296 	sb->s_fs_info = sbinfo;
4297 
4298 #ifdef CONFIG_TMPFS
4299 	/*
4300 	 * Per default we only allow half of the physical ram per
4301 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4302 	 * but the internal instance is left unlimited.
4303 	 */
4304 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4305 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4306 			ctx->blocks = shmem_default_max_blocks();
4307 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4308 			ctx->inodes = shmem_default_max_inodes();
4309 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4310 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4311 		sbinfo->noswap = ctx->noswap;
4312 	} else {
4313 		sb->s_flags |= SB_NOUSER;
4314 	}
4315 	sb->s_export_op = &shmem_export_ops;
4316 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4317 #else
4318 	sb->s_flags |= SB_NOUSER;
4319 #endif
4320 	sbinfo->max_blocks = ctx->blocks;
4321 	sbinfo->max_inodes = ctx->inodes;
4322 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4323 	if (sb->s_flags & SB_KERNMOUNT) {
4324 		sbinfo->ino_batch = alloc_percpu(ino_t);
4325 		if (!sbinfo->ino_batch)
4326 			goto failed;
4327 	}
4328 	sbinfo->uid = ctx->uid;
4329 	sbinfo->gid = ctx->gid;
4330 	sbinfo->full_inums = ctx->full_inums;
4331 	sbinfo->mode = ctx->mode;
4332 	sbinfo->huge = ctx->huge;
4333 	sbinfo->mpol = ctx->mpol;
4334 	ctx->mpol = NULL;
4335 
4336 	raw_spin_lock_init(&sbinfo->stat_lock);
4337 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4338 		goto failed;
4339 	spin_lock_init(&sbinfo->shrinklist_lock);
4340 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4341 
4342 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4343 	sb->s_blocksize = PAGE_SIZE;
4344 	sb->s_blocksize_bits = PAGE_SHIFT;
4345 	sb->s_magic = TMPFS_MAGIC;
4346 	sb->s_op = &shmem_ops;
4347 	sb->s_time_gran = 1;
4348 #ifdef CONFIG_TMPFS_XATTR
4349 	sb->s_xattr = shmem_xattr_handlers;
4350 #endif
4351 #ifdef CONFIG_TMPFS_POSIX_ACL
4352 	sb->s_flags |= SB_POSIXACL;
4353 #endif
4354 	uuid_gen(&sb->s_uuid);
4355 
4356 #ifdef CONFIG_TMPFS_QUOTA
4357 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4358 		sb->dq_op = &shmem_quota_operations;
4359 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4360 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4361 
4362 		/* Copy the default limits from ctx into sbinfo */
4363 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4364 		       sizeof(struct shmem_quota_limits));
4365 
4366 		if (shmem_enable_quotas(sb, ctx->quota_types))
4367 			goto failed;
4368 	}
4369 #endif /* CONFIG_TMPFS_QUOTA */
4370 
4371 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4372 				VM_NORESERVE);
4373 	if (IS_ERR(inode)) {
4374 		error = PTR_ERR(inode);
4375 		goto failed;
4376 	}
4377 	inode->i_uid = sbinfo->uid;
4378 	inode->i_gid = sbinfo->gid;
4379 	sb->s_root = d_make_root(inode);
4380 	if (!sb->s_root)
4381 		goto failed;
4382 	return 0;
4383 
4384 failed:
4385 	shmem_put_super(sb);
4386 	return error;
4387 }
4388 
4389 static int shmem_get_tree(struct fs_context *fc)
4390 {
4391 	return get_tree_nodev(fc, shmem_fill_super);
4392 }
4393 
4394 static void shmem_free_fc(struct fs_context *fc)
4395 {
4396 	struct shmem_options *ctx = fc->fs_private;
4397 
4398 	if (ctx) {
4399 		mpol_put(ctx->mpol);
4400 		kfree(ctx);
4401 	}
4402 }
4403 
4404 static const struct fs_context_operations shmem_fs_context_ops = {
4405 	.free			= shmem_free_fc,
4406 	.get_tree		= shmem_get_tree,
4407 #ifdef CONFIG_TMPFS
4408 	.parse_monolithic	= shmem_parse_options,
4409 	.parse_param		= shmem_parse_one,
4410 	.reconfigure		= shmem_reconfigure,
4411 #endif
4412 };
4413 
4414 static struct kmem_cache *shmem_inode_cachep;
4415 
4416 static struct inode *shmem_alloc_inode(struct super_block *sb)
4417 {
4418 	struct shmem_inode_info *info;
4419 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4420 	if (!info)
4421 		return NULL;
4422 	return &info->vfs_inode;
4423 }
4424 
4425 static void shmem_free_in_core_inode(struct inode *inode)
4426 {
4427 	if (S_ISLNK(inode->i_mode))
4428 		kfree(inode->i_link);
4429 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4430 }
4431 
4432 static void shmem_destroy_inode(struct inode *inode)
4433 {
4434 	if (S_ISREG(inode->i_mode))
4435 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4436 	if (S_ISDIR(inode->i_mode))
4437 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4438 }
4439 
4440 static void shmem_init_inode(void *foo)
4441 {
4442 	struct shmem_inode_info *info = foo;
4443 	inode_init_once(&info->vfs_inode);
4444 }
4445 
4446 static void shmem_init_inodecache(void)
4447 {
4448 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4449 				sizeof(struct shmem_inode_info),
4450 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4451 }
4452 
4453 static void shmem_destroy_inodecache(void)
4454 {
4455 	kmem_cache_destroy(shmem_inode_cachep);
4456 }
4457 
4458 /* Keep the page in page cache instead of truncating it */
4459 static int shmem_error_remove_page(struct address_space *mapping,
4460 				   struct page *page)
4461 {
4462 	return 0;
4463 }
4464 
4465 const struct address_space_operations shmem_aops = {
4466 	.writepage	= shmem_writepage,
4467 	.dirty_folio	= noop_dirty_folio,
4468 #ifdef CONFIG_TMPFS
4469 	.write_begin	= shmem_write_begin,
4470 	.write_end	= shmem_write_end,
4471 #endif
4472 #ifdef CONFIG_MIGRATION
4473 	.migrate_folio	= migrate_folio,
4474 #endif
4475 	.error_remove_page = shmem_error_remove_page,
4476 };
4477 EXPORT_SYMBOL(shmem_aops);
4478 
4479 static const struct file_operations shmem_file_operations = {
4480 	.mmap		= shmem_mmap,
4481 	.open		= shmem_file_open,
4482 	.get_unmapped_area = shmem_get_unmapped_area,
4483 #ifdef CONFIG_TMPFS
4484 	.llseek		= shmem_file_llseek,
4485 	.read_iter	= shmem_file_read_iter,
4486 	.write_iter	= shmem_file_write_iter,
4487 	.fsync		= noop_fsync,
4488 	.splice_read	= shmem_file_splice_read,
4489 	.splice_write	= iter_file_splice_write,
4490 	.fallocate	= shmem_fallocate,
4491 #endif
4492 };
4493 
4494 static const struct inode_operations shmem_inode_operations = {
4495 	.getattr	= shmem_getattr,
4496 	.setattr	= shmem_setattr,
4497 #ifdef CONFIG_TMPFS_XATTR
4498 	.listxattr	= shmem_listxattr,
4499 	.set_acl	= simple_set_acl,
4500 	.fileattr_get	= shmem_fileattr_get,
4501 	.fileattr_set	= shmem_fileattr_set,
4502 #endif
4503 };
4504 
4505 static const struct inode_operations shmem_dir_inode_operations = {
4506 #ifdef CONFIG_TMPFS
4507 	.getattr	= shmem_getattr,
4508 	.create		= shmem_create,
4509 	.lookup		= simple_lookup,
4510 	.link		= shmem_link,
4511 	.unlink		= shmem_unlink,
4512 	.symlink	= shmem_symlink,
4513 	.mkdir		= shmem_mkdir,
4514 	.rmdir		= shmem_rmdir,
4515 	.mknod		= shmem_mknod,
4516 	.rename		= shmem_rename2,
4517 	.tmpfile	= shmem_tmpfile,
4518 	.get_offset_ctx	= shmem_get_offset_ctx,
4519 #endif
4520 #ifdef CONFIG_TMPFS_XATTR
4521 	.listxattr	= shmem_listxattr,
4522 	.fileattr_get	= shmem_fileattr_get,
4523 	.fileattr_set	= shmem_fileattr_set,
4524 #endif
4525 #ifdef CONFIG_TMPFS_POSIX_ACL
4526 	.setattr	= shmem_setattr,
4527 	.set_acl	= simple_set_acl,
4528 #endif
4529 };
4530 
4531 static const struct inode_operations shmem_special_inode_operations = {
4532 	.getattr	= shmem_getattr,
4533 #ifdef CONFIG_TMPFS_XATTR
4534 	.listxattr	= shmem_listxattr,
4535 #endif
4536 #ifdef CONFIG_TMPFS_POSIX_ACL
4537 	.setattr	= shmem_setattr,
4538 	.set_acl	= simple_set_acl,
4539 #endif
4540 };
4541 
4542 static const struct super_operations shmem_ops = {
4543 	.alloc_inode	= shmem_alloc_inode,
4544 	.free_inode	= shmem_free_in_core_inode,
4545 	.destroy_inode	= shmem_destroy_inode,
4546 #ifdef CONFIG_TMPFS
4547 	.statfs		= shmem_statfs,
4548 	.show_options	= shmem_show_options,
4549 #endif
4550 #ifdef CONFIG_TMPFS_QUOTA
4551 	.get_dquots	= shmem_get_dquots,
4552 #endif
4553 	.evict_inode	= shmem_evict_inode,
4554 	.drop_inode	= generic_delete_inode,
4555 	.put_super	= shmem_put_super,
4556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4557 	.nr_cached_objects	= shmem_unused_huge_count,
4558 	.free_cached_objects	= shmem_unused_huge_scan,
4559 #endif
4560 };
4561 
4562 static const struct vm_operations_struct shmem_vm_ops = {
4563 	.fault		= shmem_fault,
4564 	.map_pages	= filemap_map_pages,
4565 #ifdef CONFIG_NUMA
4566 	.set_policy     = shmem_set_policy,
4567 	.get_policy     = shmem_get_policy,
4568 #endif
4569 };
4570 
4571 static const struct vm_operations_struct shmem_anon_vm_ops = {
4572 	.fault		= shmem_fault,
4573 	.map_pages	= filemap_map_pages,
4574 #ifdef CONFIG_NUMA
4575 	.set_policy     = shmem_set_policy,
4576 	.get_policy     = shmem_get_policy,
4577 #endif
4578 };
4579 
4580 int shmem_init_fs_context(struct fs_context *fc)
4581 {
4582 	struct shmem_options *ctx;
4583 
4584 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4585 	if (!ctx)
4586 		return -ENOMEM;
4587 
4588 	ctx->mode = 0777 | S_ISVTX;
4589 	ctx->uid = current_fsuid();
4590 	ctx->gid = current_fsgid();
4591 
4592 	fc->fs_private = ctx;
4593 	fc->ops = &shmem_fs_context_ops;
4594 	return 0;
4595 }
4596 
4597 static struct file_system_type shmem_fs_type = {
4598 	.owner		= THIS_MODULE,
4599 	.name		= "tmpfs",
4600 	.init_fs_context = shmem_init_fs_context,
4601 #ifdef CONFIG_TMPFS
4602 	.parameters	= shmem_fs_parameters,
4603 #endif
4604 	.kill_sb	= kill_litter_super,
4605 #ifdef CONFIG_SHMEM
4606 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4607 #else
4608 	.fs_flags	= FS_USERNS_MOUNT,
4609 #endif
4610 };
4611 
4612 void __init shmem_init(void)
4613 {
4614 	int error;
4615 
4616 	shmem_init_inodecache();
4617 
4618 #ifdef CONFIG_TMPFS_QUOTA
4619 	error = register_quota_format(&shmem_quota_format);
4620 	if (error < 0) {
4621 		pr_err("Could not register quota format\n");
4622 		goto out3;
4623 	}
4624 #endif
4625 
4626 	error = register_filesystem(&shmem_fs_type);
4627 	if (error) {
4628 		pr_err("Could not register tmpfs\n");
4629 		goto out2;
4630 	}
4631 
4632 	shm_mnt = kern_mount(&shmem_fs_type);
4633 	if (IS_ERR(shm_mnt)) {
4634 		error = PTR_ERR(shm_mnt);
4635 		pr_err("Could not kern_mount tmpfs\n");
4636 		goto out1;
4637 	}
4638 
4639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4640 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4641 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4642 	else
4643 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4644 #endif
4645 	return;
4646 
4647 out1:
4648 	unregister_filesystem(&shmem_fs_type);
4649 out2:
4650 #ifdef CONFIG_TMPFS_QUOTA
4651 	unregister_quota_format(&shmem_quota_format);
4652 out3:
4653 #endif
4654 	shmem_destroy_inodecache();
4655 	shm_mnt = ERR_PTR(error);
4656 }
4657 
4658 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4659 static ssize_t shmem_enabled_show(struct kobject *kobj,
4660 				  struct kobj_attribute *attr, char *buf)
4661 {
4662 	static const int values[] = {
4663 		SHMEM_HUGE_ALWAYS,
4664 		SHMEM_HUGE_WITHIN_SIZE,
4665 		SHMEM_HUGE_ADVISE,
4666 		SHMEM_HUGE_NEVER,
4667 		SHMEM_HUGE_DENY,
4668 		SHMEM_HUGE_FORCE,
4669 	};
4670 	int len = 0;
4671 	int i;
4672 
4673 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4674 		len += sysfs_emit_at(buf, len,
4675 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4676 				     i ? " " : "",
4677 				     shmem_format_huge(values[i]));
4678 	}
4679 
4680 	len += sysfs_emit_at(buf, len, "\n");
4681 
4682 	return len;
4683 }
4684 
4685 static ssize_t shmem_enabled_store(struct kobject *kobj,
4686 		struct kobj_attribute *attr, const char *buf, size_t count)
4687 {
4688 	char tmp[16];
4689 	int huge;
4690 
4691 	if (count + 1 > sizeof(tmp))
4692 		return -EINVAL;
4693 	memcpy(tmp, buf, count);
4694 	tmp[count] = '\0';
4695 	if (count && tmp[count - 1] == '\n')
4696 		tmp[count - 1] = '\0';
4697 
4698 	huge = shmem_parse_huge(tmp);
4699 	if (huge == -EINVAL)
4700 		return -EINVAL;
4701 	if (!has_transparent_hugepage() &&
4702 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4703 		return -EINVAL;
4704 
4705 	shmem_huge = huge;
4706 	if (shmem_huge > SHMEM_HUGE_DENY)
4707 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4708 	return count;
4709 }
4710 
4711 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4713 
4714 #else /* !CONFIG_SHMEM */
4715 
4716 /*
4717  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4718  *
4719  * This is intended for small system where the benefits of the full
4720  * shmem code (swap-backed and resource-limited) are outweighed by
4721  * their complexity. On systems without swap this code should be
4722  * effectively equivalent, but much lighter weight.
4723  */
4724 
4725 static struct file_system_type shmem_fs_type = {
4726 	.name		= "tmpfs",
4727 	.init_fs_context = ramfs_init_fs_context,
4728 	.parameters	= ramfs_fs_parameters,
4729 	.kill_sb	= ramfs_kill_sb,
4730 	.fs_flags	= FS_USERNS_MOUNT,
4731 };
4732 
4733 void __init shmem_init(void)
4734 {
4735 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4736 
4737 	shm_mnt = kern_mount(&shmem_fs_type);
4738 	BUG_ON(IS_ERR(shm_mnt));
4739 }
4740 
4741 int shmem_unuse(unsigned int type)
4742 {
4743 	return 0;
4744 }
4745 
4746 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4747 {
4748 	return 0;
4749 }
4750 
4751 void shmem_unlock_mapping(struct address_space *mapping)
4752 {
4753 }
4754 
4755 #ifdef CONFIG_MMU
4756 unsigned long shmem_get_unmapped_area(struct file *file,
4757 				      unsigned long addr, unsigned long len,
4758 				      unsigned long pgoff, unsigned long flags)
4759 {
4760 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4761 }
4762 #endif
4763 
4764 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4765 {
4766 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4767 }
4768 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4769 
4770 #define shmem_vm_ops				generic_file_vm_ops
4771 #define shmem_anon_vm_ops			generic_file_vm_ops
4772 #define shmem_file_operations			ramfs_file_operations
4773 #define shmem_acct_size(flags, size)		0
4774 #define shmem_unacct_size(flags, size)		do {} while (0)
4775 
4776 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir,
4777 					    umode_t mode, dev_t dev, unsigned long flags)
4778 {
4779 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4780 	return inode ? inode : ERR_PTR(-ENOSPC);
4781 }
4782 
4783 #endif /* CONFIG_SHMEM */
4784 
4785 /* common code */
4786 
4787 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4788 				       unsigned long flags, unsigned int i_flags)
4789 {
4790 	struct inode *inode;
4791 	struct file *res;
4792 
4793 	if (IS_ERR(mnt))
4794 		return ERR_CAST(mnt);
4795 
4796 	if (size < 0 || size > MAX_LFS_FILESIZE)
4797 		return ERR_PTR(-EINVAL);
4798 
4799 	if (shmem_acct_size(flags, size))
4800 		return ERR_PTR(-ENOMEM);
4801 
4802 	if (is_idmapped_mnt(mnt))
4803 		return ERR_PTR(-EINVAL);
4804 
4805 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4806 				S_IFREG | S_IRWXUGO, 0, flags);
4807 
4808 	if (IS_ERR(inode)) {
4809 		shmem_unacct_size(flags, size);
4810 		return ERR_CAST(inode);
4811 	}
4812 	inode->i_flags |= i_flags;
4813 	inode->i_size = size;
4814 	clear_nlink(inode);	/* It is unlinked */
4815 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4816 	if (!IS_ERR(res))
4817 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4818 				&shmem_file_operations);
4819 	if (IS_ERR(res))
4820 		iput(inode);
4821 	return res;
4822 }
4823 
4824 /**
4825  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4826  * 	kernel internal.  There will be NO LSM permission checks against the
4827  * 	underlying inode.  So users of this interface must do LSM checks at a
4828  *	higher layer.  The users are the big_key and shm implementations.  LSM
4829  *	checks are provided at the key or shm level rather than the inode.
4830  * @name: name for dentry (to be seen in /proc/<pid>/maps
4831  * @size: size to be set for the file
4832  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4833  */
4834 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4835 {
4836 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4837 }
4838 
4839 /**
4840  * shmem_file_setup - get an unlinked file living in tmpfs
4841  * @name: name for dentry (to be seen in /proc/<pid>/maps
4842  * @size: size to be set for the file
4843  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4844  */
4845 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4846 {
4847 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4848 }
4849 EXPORT_SYMBOL_GPL(shmem_file_setup);
4850 
4851 /**
4852  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4853  * @mnt: the tmpfs mount where the file will be created
4854  * @name: name for dentry (to be seen in /proc/<pid>/maps
4855  * @size: size to be set for the file
4856  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4857  */
4858 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4859 				       loff_t size, unsigned long flags)
4860 {
4861 	return __shmem_file_setup(mnt, name, size, flags, 0);
4862 }
4863 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4864 
4865 /**
4866  * shmem_zero_setup - setup a shared anonymous mapping
4867  * @vma: the vma to be mmapped is prepared by do_mmap
4868  */
4869 int shmem_zero_setup(struct vm_area_struct *vma)
4870 {
4871 	struct file *file;
4872 	loff_t size = vma->vm_end - vma->vm_start;
4873 
4874 	/*
4875 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4876 	 * between XFS directory reading and selinux: since this file is only
4877 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4878 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4879 	 */
4880 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4881 	if (IS_ERR(file))
4882 		return PTR_ERR(file);
4883 
4884 	if (vma->vm_file)
4885 		fput(vma->vm_file);
4886 	vma->vm_file = file;
4887 	vma->vm_ops = &shmem_anon_vm_ops;
4888 
4889 	return 0;
4890 }
4891 
4892 /**
4893  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4894  * @mapping:	the folio's address_space
4895  * @index:	the folio index
4896  * @gfp:	the page allocator flags to use if allocating
4897  *
4898  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4899  * with any new page allocations done using the specified allocation flags.
4900  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4901  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4902  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4903  *
4904  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4905  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4906  */
4907 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4908 		pgoff_t index, gfp_t gfp)
4909 {
4910 #ifdef CONFIG_SHMEM
4911 	struct inode *inode = mapping->host;
4912 	struct folio *folio;
4913 	int error;
4914 
4915 	BUG_ON(!shmem_mapping(mapping));
4916 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4917 				  gfp, NULL, NULL, NULL);
4918 	if (error)
4919 		return ERR_PTR(error);
4920 
4921 	folio_unlock(folio);
4922 	return folio;
4923 #else
4924 	/*
4925 	 * The tiny !SHMEM case uses ramfs without swap
4926 	 */
4927 	return mapping_read_folio_gfp(mapping, index, gfp);
4928 #endif
4929 }
4930 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4931 
4932 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4933 					 pgoff_t index, gfp_t gfp)
4934 {
4935 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4936 	struct page *page;
4937 
4938 	if (IS_ERR(folio))
4939 		return &folio->page;
4940 
4941 	page = folio_file_page(folio, index);
4942 	if (PageHWPoison(page)) {
4943 		folio_put(folio);
4944 		return ERR_PTR(-EIO);
4945 	}
4946 
4947 	return page;
4948 }
4949 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4950