xref: /openbmc/linux/mm/shmem.c (revision 8dda2eac)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	bool full_inums;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 				struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 			     struct page **pagep, enum sgp_type sgp,
145 			     gfp_t gfp, struct vm_area_struct *vma,
146 			     vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp,
149 		gfp_t gfp, struct vm_area_struct *vma,
150 		struct vm_fault *vmf, vm_fault_t *fault_type);
151 
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 		struct page **pagep, enum sgp_type sgp)
154 {
155 	return shmem_getpage_gfp(inode, index, pagep, sgp,
156 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158 
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175 
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
182 static inline int shmem_reacct_size(unsigned long flags,
183 		loff_t oldsize, loff_t newsize)
184 {
185 	if (!(flags & VM_NORESERVE)) {
186 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 			return security_vm_enough_memory_mm(current->mm,
188 					VM_ACCT(newsize) - VM_ACCT(oldsize));
189 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 	}
192 	return 0;
193 }
194 
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 	if (!(flags & VM_NORESERVE))
204 		return 0;
205 
206 	return security_vm_enough_memory_mm(current->mm,
207 			pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 
221 	if (shmem_acct_block(info->flags, pages))
222 		return false;
223 
224 	if (sbinfo->max_blocks) {
225 		if (percpu_counter_compare(&sbinfo->used_blocks,
226 					   sbinfo->max_blocks - pages) > 0)
227 			goto unacct;
228 		percpu_counter_add(&sbinfo->used_blocks, pages);
229 	}
230 
231 	return true;
232 
233 unacct:
234 	shmem_unacct_blocks(info->flags, pages);
235 	return false;
236 }
237 
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 	struct shmem_inode_info *info = SHMEM_I(inode);
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 
243 	if (sbinfo->max_blocks)
244 		percpu_counter_sub(&sbinfo->used_blocks, pages);
245 	shmem_unacct_blocks(info->flags, pages);
246 }
247 
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256 
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 	return vma->vm_ops == &shmem_vm_ops;
260 }
261 
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 	ino_t ino;
279 
280 	if (!(sb->s_flags & SB_KERNMOUNT)) {
281 		spin_lock(&sbinfo->stat_lock);
282 		if (sbinfo->max_inodes) {
283 			if (!sbinfo->free_inodes) {
284 				spin_unlock(&sbinfo->stat_lock);
285 				return -ENOSPC;
286 			}
287 			sbinfo->free_inodes--;
288 		}
289 		if (inop) {
290 			ino = sbinfo->next_ino++;
291 			if (unlikely(is_zero_ino(ino)))
292 				ino = sbinfo->next_ino++;
293 			if (unlikely(!sbinfo->full_inums &&
294 				     ino > UINT_MAX)) {
295 				/*
296 				 * Emulate get_next_ino uint wraparound for
297 				 * compatibility
298 				 */
299 				if (IS_ENABLED(CONFIG_64BIT))
300 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 						__func__, MINOR(sb->s_dev));
302 				sbinfo->next_ino = 1;
303 				ino = sbinfo->next_ino++;
304 			}
305 			*inop = ino;
306 		}
307 		spin_unlock(&sbinfo->stat_lock);
308 	} else if (inop) {
309 		/*
310 		 * __shmem_file_setup, one of our callers, is lock-free: it
311 		 * doesn't hold stat_lock in shmem_reserve_inode since
312 		 * max_inodes is always 0, and is called from potentially
313 		 * unknown contexts. As such, use a per-cpu batched allocator
314 		 * which doesn't require the per-sb stat_lock unless we are at
315 		 * the batch boundary.
316 		 *
317 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 		 * shmem mounts are not exposed to userspace, so we don't need
319 		 * to worry about things like glibc compatibility.
320 		 */
321 		ino_t *next_ino;
322 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 		ino = *next_ino;
324 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 			spin_lock(&sbinfo->stat_lock);
326 			ino = sbinfo->next_ino;
327 			sbinfo->next_ino += SHMEM_INO_BATCH;
328 			spin_unlock(&sbinfo->stat_lock);
329 			if (unlikely(is_zero_ino(ino)))
330 				ino++;
331 		}
332 		*inop = ino;
333 		*next_ino = ++ino;
334 		put_cpu();
335 	}
336 
337 	return 0;
338 }
339 
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 	if (sbinfo->max_inodes) {
344 		spin_lock(&sbinfo->stat_lock);
345 		sbinfo->free_inodes++;
346 		spin_unlock(&sbinfo->stat_lock);
347 	}
348 }
349 
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 	struct shmem_inode_info *info = SHMEM_I(inode);
365 	long freed;
366 
367 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 	if (freed > 0) {
369 		info->alloced -= freed;
370 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 		shmem_inode_unacct_blocks(inode, freed);
372 	}
373 }
374 
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 	struct shmem_inode_info *info = SHMEM_I(inode);
378 	unsigned long flags;
379 
380 	if (!shmem_inode_acct_block(inode, pages))
381 		return false;
382 
383 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 	inode->i_mapping->nrpages += pages;
385 
386 	spin_lock_irqsave(&info->lock, flags);
387 	info->alloced += pages;
388 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 	shmem_recalc_inode(inode);
390 	spin_unlock_irqrestore(&info->lock, flags);
391 
392 	return true;
393 }
394 
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 	struct shmem_inode_info *info = SHMEM_I(inode);
398 	unsigned long flags;
399 
400 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
401 
402 	spin_lock_irqsave(&info->lock, flags);
403 	info->alloced -= pages;
404 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 	shmem_recalc_inode(inode);
406 	spin_unlock_irqrestore(&info->lock, flags);
407 
408 	shmem_inode_unacct_blocks(inode, pages);
409 }
410 
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415 			pgoff_t index, void *expected, void *replacement)
416 {
417 	XA_STATE(xas, &mapping->i_pages, index);
418 	void *item;
419 
420 	VM_BUG_ON(!expected);
421 	VM_BUG_ON(!replacement);
422 	item = xas_load(&xas);
423 	if (item != expected)
424 		return -ENOENT;
425 	xas_store(&xas, replacement);
426 	return 0;
427 }
428 
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 			       pgoff_t index, swp_entry_t swap)
438 {
439 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441 
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *	disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *	enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *	only allocate huge pages if the page will be fully within i_size,
451  *	also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *	only allocate huge pages if requested with fadvise()/madvise();
454  */
455 
456 #define SHMEM_HUGE_NEVER	0
457 #define SHMEM_HUGE_ALWAYS	1
458 #define SHMEM_HUGE_WITHIN_SIZE	2
459 #define SHMEM_HUGE_ADVISE	3
460 
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *	disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY		(-1)
472 #define SHMEM_HUGE_FORCE	(-2)
473 
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476 
477 static int shmem_huge __read_mostly;
478 
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 	if (!strcmp(str, "never"))
483 		return SHMEM_HUGE_NEVER;
484 	if (!strcmp(str, "always"))
485 		return SHMEM_HUGE_ALWAYS;
486 	if (!strcmp(str, "within_size"))
487 		return SHMEM_HUGE_WITHIN_SIZE;
488 	if (!strcmp(str, "advise"))
489 		return SHMEM_HUGE_ADVISE;
490 	if (!strcmp(str, "deny"))
491 		return SHMEM_HUGE_DENY;
492 	if (!strcmp(str, "force"))
493 		return SHMEM_HUGE_FORCE;
494 	return -EINVAL;
495 }
496 #endif
497 
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 	switch (huge) {
502 	case SHMEM_HUGE_NEVER:
503 		return "never";
504 	case SHMEM_HUGE_ALWAYS:
505 		return "always";
506 	case SHMEM_HUGE_WITHIN_SIZE:
507 		return "within_size";
508 	case SHMEM_HUGE_ADVISE:
509 		return "advise";
510 	case SHMEM_HUGE_DENY:
511 		return "deny";
512 	case SHMEM_HUGE_FORCE:
513 		return "force";
514 	default:
515 		VM_BUG_ON(1);
516 		return "bad_val";
517 	}
518 }
519 #endif
520 
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 		struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 	LIST_HEAD(list), *pos, *next;
525 	LIST_HEAD(to_remove);
526 	struct inode *inode;
527 	struct shmem_inode_info *info;
528 	struct page *page;
529 	unsigned long batch = sc ? sc->nr_to_scan : 128;
530 	int removed = 0, split = 0;
531 
532 	if (list_empty(&sbinfo->shrinklist))
533 		return SHRINK_STOP;
534 
535 	spin_lock(&sbinfo->shrinklist_lock);
536 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
538 
539 		/* pin the inode */
540 		inode = igrab(&info->vfs_inode);
541 
542 		/* inode is about to be evicted */
543 		if (!inode) {
544 			list_del_init(&info->shrinklist);
545 			removed++;
546 			goto next;
547 		}
548 
549 		/* Check if there's anything to gain */
550 		if (round_up(inode->i_size, PAGE_SIZE) ==
551 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 			list_move(&info->shrinklist, &to_remove);
553 			removed++;
554 			goto next;
555 		}
556 
557 		list_move(&info->shrinklist, &list);
558 next:
559 		if (!--batch)
560 			break;
561 	}
562 	spin_unlock(&sbinfo->shrinklist_lock);
563 
564 	list_for_each_safe(pos, next, &to_remove) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 		inode = &info->vfs_inode;
567 		list_del_init(&info->shrinklist);
568 		iput(inode);
569 	}
570 
571 	list_for_each_safe(pos, next, &list) {
572 		int ret;
573 
574 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 		inode = &info->vfs_inode;
576 
577 		if (nr_to_split && split >= nr_to_split)
578 			goto leave;
579 
580 		page = find_get_page(inode->i_mapping,
581 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 		if (!page)
583 			goto drop;
584 
585 		/* No huge page at the end of the file: nothing to split */
586 		if (!PageTransHuge(page)) {
587 			put_page(page);
588 			goto drop;
589 		}
590 
591 		/*
592 		 * Leave the inode on the list if we failed to lock
593 		 * the page at this time.
594 		 *
595 		 * Waiting for the lock may lead to deadlock in the
596 		 * reclaim path.
597 		 */
598 		if (!trylock_page(page)) {
599 			put_page(page);
600 			goto leave;
601 		}
602 
603 		ret = split_huge_page(page);
604 		unlock_page(page);
605 		put_page(page);
606 
607 		/* If split failed leave the inode on the list */
608 		if (ret)
609 			goto leave;
610 
611 		split++;
612 drop:
613 		list_del_init(&info->shrinklist);
614 		removed++;
615 leave:
616 		iput(inode);
617 	}
618 
619 	spin_lock(&sbinfo->shrinklist_lock);
620 	list_splice_tail(&list, &sbinfo->shrinklist);
621 	sbinfo->shrinklist_len -= removed;
622 	spin_unlock(&sbinfo->shrinklist_lock);
623 
624 	return split;
625 }
626 
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 		struct shrink_control *sc)
629 {
630 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631 
632 	if (!READ_ONCE(sbinfo->shrinklist_len))
633 		return SHRINK_STOP;
634 
635 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637 
638 static long shmem_unused_huge_count(struct super_block *sb,
639 		struct shrink_control *sc)
640 {
641 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 	return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645 
646 #define shmem_huge SHMEM_HUGE_DENY
647 
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 		struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654 
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 	    shmem_huge != SHMEM_HUGE_DENY)
660 		return true;
661 	return false;
662 }
663 
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668 				   struct address_space *mapping,
669 				   pgoff_t index, void *expected, gfp_t gfp,
670 				   struct mm_struct *charge_mm)
671 {
672 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 	unsigned long i = 0;
674 	unsigned long nr = compound_nr(page);
675 	int error;
676 
677 	VM_BUG_ON_PAGE(PageTail(page), page);
678 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 	VM_BUG_ON_PAGE(!PageLocked(page), page);
680 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 	VM_BUG_ON(expected && PageTransHuge(page));
682 
683 	page_ref_add(page, nr);
684 	page->mapping = mapping;
685 	page->index = index;
686 
687 	if (!PageSwapCache(page)) {
688 		error = mem_cgroup_charge(page, charge_mm, gfp);
689 		if (error) {
690 			if (PageTransHuge(page)) {
691 				count_vm_event(THP_FILE_FALLBACK);
692 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 			}
694 			goto error;
695 		}
696 	}
697 	cgroup_throttle_swaprate(page, gfp);
698 
699 	do {
700 		void *entry;
701 		xas_lock_irq(&xas);
702 		entry = xas_find_conflict(&xas);
703 		if (entry != expected)
704 			xas_set_err(&xas, -EEXIST);
705 		xas_create_range(&xas);
706 		if (xas_error(&xas))
707 			goto unlock;
708 next:
709 		xas_store(&xas, page);
710 		if (++i < nr) {
711 			xas_next(&xas);
712 			goto next;
713 		}
714 		if (PageTransHuge(page)) {
715 			count_vm_event(THP_FILE_ALLOC);
716 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717 		}
718 		mapping->nrpages += nr;
719 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 		xas_unlock_irq(&xas);
723 	} while (xas_nomem(&xas, gfp));
724 
725 	if (xas_error(&xas)) {
726 		error = xas_error(&xas);
727 		goto error;
728 	}
729 
730 	return 0;
731 error:
732 	page->mapping = NULL;
733 	page_ref_sub(page, nr);
734 	return error;
735 }
736 
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 	struct address_space *mapping = page->mapping;
743 	int error;
744 
745 	VM_BUG_ON_PAGE(PageCompound(page), page);
746 
747 	xa_lock_irq(&mapping->i_pages);
748 	error = shmem_replace_entry(mapping, page->index, page, radswap);
749 	page->mapping = NULL;
750 	mapping->nrpages--;
751 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
752 	__dec_lruvec_page_state(page, NR_SHMEM);
753 	xa_unlock_irq(&mapping->i_pages);
754 	put_page(page);
755 	BUG_ON(error);
756 }
757 
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762 			   pgoff_t index, void *radswap)
763 {
764 	void *old;
765 
766 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 	if (old != radswap)
768 		return -ENOENT;
769 	free_swap_and_cache(radix_to_swp_entry(radswap));
770 	return 0;
771 }
772 
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 						pgoff_t start, pgoff_t end)
782 {
783 	XA_STATE(xas, &mapping->i_pages, start);
784 	struct page *page;
785 	unsigned long swapped = 0;
786 
787 	rcu_read_lock();
788 	xas_for_each(&xas, page, end - 1) {
789 		if (xas_retry(&xas, page))
790 			continue;
791 		if (xa_is_value(page))
792 			swapped++;
793 
794 		if (need_resched()) {
795 			xas_pause(&xas);
796 			cond_resched_rcu();
797 		}
798 	}
799 
800 	rcu_read_unlock();
801 
802 	return swapped << PAGE_SHIFT;
803 }
804 
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 	struct inode *inode = file_inode(vma->vm_file);
815 	struct shmem_inode_info *info = SHMEM_I(inode);
816 	struct address_space *mapping = inode->i_mapping;
817 	unsigned long swapped;
818 
819 	/* Be careful as we don't hold info->lock */
820 	swapped = READ_ONCE(info->swapped);
821 
822 	/*
823 	 * The easier cases are when the shmem object has nothing in swap, or
824 	 * the vma maps it whole. Then we can simply use the stats that we
825 	 * already track.
826 	 */
827 	if (!swapped)
828 		return 0;
829 
830 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 		return swapped << PAGE_SHIFT;
832 
833 	/* Here comes the more involved part */
834 	return shmem_partial_swap_usage(mapping,
835 			linear_page_index(vma, vma->vm_start),
836 			linear_page_index(vma, vma->vm_end));
837 }
838 
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 	struct pagevec pvec;
845 	pgoff_t index = 0;
846 
847 	pagevec_init(&pvec);
848 	/*
849 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 	 */
851 	while (!mapping_unevictable(mapping)) {
852 		if (!pagevec_lookup(&pvec, mapping, &index))
853 			break;
854 		check_move_unevictable_pages(&pvec);
855 		pagevec_release(&pvec);
856 		cond_resched();
857 	}
858 }
859 
860 /*
861  * Check whether a hole-punch or truncation needs to split a huge page,
862  * returning true if no split was required, or the split has been successful.
863  *
864  * Eviction (or truncation to 0 size) should never need to split a huge page;
865  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866  * head, and then succeeded to trylock on tail.
867  *
868  * A split can only succeed when there are no additional references on the
869  * huge page: so the split below relies upon find_get_entries() having stopped
870  * when it found a subpage of the huge page, without getting further references.
871  */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874 	if (!PageTransCompound(page))
875 		return true;
876 
877 	/* Just proceed to delete a huge page wholly within the range punched */
878 	if (PageHead(page) &&
879 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 		return true;
881 
882 	/* Try to split huge page, so we can truly punch the hole or truncate */
883 	return split_huge_page(page) >= 0;
884 }
885 
886 /*
887  * Remove range of pages and swap entries from page cache, and free them.
888  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889  */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 								 bool unfalloc)
892 {
893 	struct address_space *mapping = inode->i_mapping;
894 	struct shmem_inode_info *info = SHMEM_I(inode);
895 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899 	struct pagevec pvec;
900 	pgoff_t indices[PAGEVEC_SIZE];
901 	long nr_swaps_freed = 0;
902 	pgoff_t index;
903 	int i;
904 
905 	if (lend == -1)
906 		end = -1;	/* unsigned, so actually very big */
907 
908 	pagevec_init(&pvec);
909 	index = start;
910 	while (index < end && find_lock_entries(mapping, index, end - 1,
911 			&pvec, indices)) {
912 		for (i = 0; i < pagevec_count(&pvec); i++) {
913 			struct page *page = pvec.pages[i];
914 
915 			index = indices[i];
916 
917 			if (xa_is_value(page)) {
918 				if (unfalloc)
919 					continue;
920 				nr_swaps_freed += !shmem_free_swap(mapping,
921 								index, page);
922 				continue;
923 			}
924 			index += thp_nr_pages(page) - 1;
925 
926 			if (!unfalloc || !PageUptodate(page))
927 				truncate_inode_page(mapping, page);
928 			unlock_page(page);
929 		}
930 		pagevec_remove_exceptionals(&pvec);
931 		pagevec_release(&pvec);
932 		cond_resched();
933 		index++;
934 	}
935 
936 	if (partial_start) {
937 		struct page *page = NULL;
938 		shmem_getpage(inode, start - 1, &page, SGP_READ);
939 		if (page) {
940 			unsigned int top = PAGE_SIZE;
941 			if (start > end) {
942 				top = partial_end;
943 				partial_end = 0;
944 			}
945 			zero_user_segment(page, partial_start, top);
946 			set_page_dirty(page);
947 			unlock_page(page);
948 			put_page(page);
949 		}
950 	}
951 	if (partial_end) {
952 		struct page *page = NULL;
953 		shmem_getpage(inode, end, &page, SGP_READ);
954 		if (page) {
955 			zero_user_segment(page, 0, partial_end);
956 			set_page_dirty(page);
957 			unlock_page(page);
958 			put_page(page);
959 		}
960 	}
961 	if (start >= end)
962 		return;
963 
964 	index = start;
965 	while (index < end) {
966 		cond_resched();
967 
968 		if (!find_get_entries(mapping, index, end - 1, &pvec,
969 				indices)) {
970 			/* If all gone or hole-punch or unfalloc, we're done */
971 			if (index == start || end != -1)
972 				break;
973 			/* But if truncating, restart to make sure all gone */
974 			index = start;
975 			continue;
976 		}
977 		for (i = 0; i < pagevec_count(&pvec); i++) {
978 			struct page *page = pvec.pages[i];
979 
980 			index = indices[i];
981 			if (xa_is_value(page)) {
982 				if (unfalloc)
983 					continue;
984 				if (shmem_free_swap(mapping, index, page)) {
985 					/* Swap was replaced by page: retry */
986 					index--;
987 					break;
988 				}
989 				nr_swaps_freed++;
990 				continue;
991 			}
992 
993 			lock_page(page);
994 
995 			if (!unfalloc || !PageUptodate(page)) {
996 				if (page_mapping(page) != mapping) {
997 					/* Page was replaced by swap: retry */
998 					unlock_page(page);
999 					index--;
1000 					break;
1001 				}
1002 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 				if (shmem_punch_compound(page, start, end))
1004 					truncate_inode_page(mapping, page);
1005 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006 					/* Wipe the page and don't get stuck */
1007 					clear_highpage(page);
1008 					flush_dcache_page(page);
1009 					set_page_dirty(page);
1010 					if (index <
1011 					    round_up(start, HPAGE_PMD_NR))
1012 						start = index + 1;
1013 				}
1014 			}
1015 			unlock_page(page);
1016 		}
1017 		pagevec_remove_exceptionals(&pvec);
1018 		pagevec_release(&pvec);
1019 		index++;
1020 	}
1021 
1022 	spin_lock_irq(&info->lock);
1023 	info->swapped -= nr_swaps_freed;
1024 	shmem_recalc_inode(inode);
1025 	spin_unlock_irq(&info->lock);
1026 }
1027 
1028 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029 {
1030 	shmem_undo_range(inode, lstart, lend, false);
1031 	inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034 
1035 static int shmem_getattr(struct user_namespace *mnt_userns,
1036 			 const struct path *path, struct kstat *stat,
1037 			 u32 request_mask, unsigned int query_flags)
1038 {
1039 	struct inode *inode = path->dentry->d_inode;
1040 	struct shmem_inode_info *info = SHMEM_I(inode);
1041 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042 
1043 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044 		spin_lock_irq(&info->lock);
1045 		shmem_recalc_inode(inode);
1046 		spin_unlock_irq(&info->lock);
1047 	}
1048 	generic_fillattr(&init_user_ns, inode, stat);
1049 
1050 	if (is_huge_enabled(sb_info))
1051 		stat->blksize = HPAGE_PMD_SIZE;
1052 
1053 	return 0;
1054 }
1055 
1056 static int shmem_setattr(struct user_namespace *mnt_userns,
1057 			 struct dentry *dentry, struct iattr *attr)
1058 {
1059 	struct inode *inode = d_inode(dentry);
1060 	struct shmem_inode_info *info = SHMEM_I(inode);
1061 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062 	int error;
1063 
1064 	error = setattr_prepare(&init_user_ns, dentry, attr);
1065 	if (error)
1066 		return error;
1067 
1068 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 		loff_t oldsize = inode->i_size;
1070 		loff_t newsize = attr->ia_size;
1071 
1072 		/* protected by i_mutex */
1073 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 			return -EPERM;
1076 
1077 		if (newsize != oldsize) {
1078 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 					oldsize, newsize);
1080 			if (error)
1081 				return error;
1082 			i_size_write(inode, newsize);
1083 			inode->i_ctime = inode->i_mtime = current_time(inode);
1084 		}
1085 		if (newsize <= oldsize) {
1086 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087 			if (oldsize > holebegin)
1088 				unmap_mapping_range(inode->i_mapping,
1089 							holebegin, 0, 1);
1090 			if (info->alloced)
1091 				shmem_truncate_range(inode,
1092 							newsize, (loff_t)-1);
1093 			/* unmap again to remove racily COWed private pages */
1094 			if (oldsize > holebegin)
1095 				unmap_mapping_range(inode->i_mapping,
1096 							holebegin, 0, 1);
1097 
1098 			/*
1099 			 * Part of the huge page can be beyond i_size: subject
1100 			 * to shrink under memory pressure.
1101 			 */
1102 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103 				spin_lock(&sbinfo->shrinklist_lock);
1104 				/*
1105 				 * _careful to defend against unlocked access to
1106 				 * ->shrink_list in shmem_unused_huge_shrink()
1107 				 */
1108 				if (list_empty_careful(&info->shrinklist)) {
1109 					list_add_tail(&info->shrinklist,
1110 							&sbinfo->shrinklist);
1111 					sbinfo->shrinklist_len++;
1112 				}
1113 				spin_unlock(&sbinfo->shrinklist_lock);
1114 			}
1115 		}
1116 	}
1117 
1118 	setattr_copy(&init_user_ns, inode, attr);
1119 	if (attr->ia_valid & ATTR_MODE)
1120 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 	return error;
1122 }
1123 
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 	struct shmem_inode_info *info = SHMEM_I(inode);
1127 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128 
1129 	if (shmem_mapping(inode->i_mapping)) {
1130 		shmem_unacct_size(info->flags, inode->i_size);
1131 		inode->i_size = 0;
1132 		shmem_truncate_range(inode, 0, (loff_t)-1);
1133 		if (!list_empty(&info->shrinklist)) {
1134 			spin_lock(&sbinfo->shrinklist_lock);
1135 			if (!list_empty(&info->shrinklist)) {
1136 				list_del_init(&info->shrinklist);
1137 				sbinfo->shrinklist_len--;
1138 			}
1139 			spin_unlock(&sbinfo->shrinklist_lock);
1140 		}
1141 		while (!list_empty(&info->swaplist)) {
1142 			/* Wait while shmem_unuse() is scanning this inode... */
1143 			wait_var_event(&info->stop_eviction,
1144 				       !atomic_read(&info->stop_eviction));
1145 			mutex_lock(&shmem_swaplist_mutex);
1146 			/* ...but beware of the race if we peeked too early */
1147 			if (!atomic_read(&info->stop_eviction))
1148 				list_del_init(&info->swaplist);
1149 			mutex_unlock(&shmem_swaplist_mutex);
1150 		}
1151 	}
1152 
1153 	simple_xattrs_free(&info->xattrs);
1154 	WARN_ON(inode->i_blocks);
1155 	shmem_free_inode(inode->i_sb);
1156 	clear_inode(inode);
1157 }
1158 
1159 extern struct swap_info_struct *swap_info[];
1160 
1161 static int shmem_find_swap_entries(struct address_space *mapping,
1162 				   pgoff_t start, unsigned int nr_entries,
1163 				   struct page **entries, pgoff_t *indices,
1164 				   unsigned int type, bool frontswap)
1165 {
1166 	XA_STATE(xas, &mapping->i_pages, start);
1167 	struct page *page;
1168 	swp_entry_t entry;
1169 	unsigned int ret = 0;
1170 
1171 	if (!nr_entries)
1172 		return 0;
1173 
1174 	rcu_read_lock();
1175 	xas_for_each(&xas, page, ULONG_MAX) {
1176 		if (xas_retry(&xas, page))
1177 			continue;
1178 
1179 		if (!xa_is_value(page))
1180 			continue;
1181 
1182 		entry = radix_to_swp_entry(page);
1183 		if (swp_type(entry) != type)
1184 			continue;
1185 		if (frontswap &&
1186 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1187 			continue;
1188 
1189 		indices[ret] = xas.xa_index;
1190 		entries[ret] = page;
1191 
1192 		if (need_resched()) {
1193 			xas_pause(&xas);
1194 			cond_resched_rcu();
1195 		}
1196 		if (++ret == nr_entries)
1197 			break;
1198 	}
1199 	rcu_read_unlock();
1200 
1201 	return ret;
1202 }
1203 
1204 /*
1205  * Move the swapped pages for an inode to page cache. Returns the count
1206  * of pages swapped in, or the error in case of failure.
1207  */
1208 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 				    pgoff_t *indices)
1210 {
1211 	int i = 0;
1212 	int ret = 0;
1213 	int error = 0;
1214 	struct address_space *mapping = inode->i_mapping;
1215 
1216 	for (i = 0; i < pvec.nr; i++) {
1217 		struct page *page = pvec.pages[i];
1218 
1219 		if (!xa_is_value(page))
1220 			continue;
1221 		error = shmem_swapin_page(inode, indices[i],
1222 					  &page, SGP_CACHE,
1223 					  mapping_gfp_mask(mapping),
1224 					  NULL, NULL);
1225 		if (error == 0) {
1226 			unlock_page(page);
1227 			put_page(page);
1228 			ret++;
1229 		}
1230 		if (error == -ENOMEM)
1231 			break;
1232 		error = 0;
1233 	}
1234 	return error ? error : ret;
1235 }
1236 
1237 /*
1238  * If swap found in inode, free it and move page from swapcache to filecache.
1239  */
1240 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1242 {
1243 	struct address_space *mapping = inode->i_mapping;
1244 	pgoff_t start = 0;
1245 	struct pagevec pvec;
1246 	pgoff_t indices[PAGEVEC_SIZE];
1247 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 	int ret = 0;
1249 
1250 	pagevec_init(&pvec);
1251 	do {
1252 		unsigned int nr_entries = PAGEVEC_SIZE;
1253 
1254 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 			nr_entries = *fs_pages_to_unuse;
1256 
1257 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 						  pvec.pages, indices,
1259 						  type, frontswap);
1260 		if (pvec.nr == 0) {
1261 			ret = 0;
1262 			break;
1263 		}
1264 
1265 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 		if (ret < 0)
1267 			break;
1268 
1269 		if (frontswap_partial) {
1270 			*fs_pages_to_unuse -= ret;
1271 			if (*fs_pages_to_unuse == 0) {
1272 				ret = FRONTSWAP_PAGES_UNUSED;
1273 				break;
1274 			}
1275 		}
1276 
1277 		start = indices[pvec.nr - 1];
1278 	} while (true);
1279 
1280 	return ret;
1281 }
1282 
1283 /*
1284  * Read all the shared memory data that resides in the swap
1285  * device 'type' back into memory, so the swap device can be
1286  * unused.
1287  */
1288 int shmem_unuse(unsigned int type, bool frontswap,
1289 		unsigned long *fs_pages_to_unuse)
1290 {
1291 	struct shmem_inode_info *info, *next;
1292 	int error = 0;
1293 
1294 	if (list_empty(&shmem_swaplist))
1295 		return 0;
1296 
1297 	mutex_lock(&shmem_swaplist_mutex);
1298 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 		if (!info->swapped) {
1300 			list_del_init(&info->swaplist);
1301 			continue;
1302 		}
1303 		/*
1304 		 * Drop the swaplist mutex while searching the inode for swap;
1305 		 * but before doing so, make sure shmem_evict_inode() will not
1306 		 * remove placeholder inode from swaplist, nor let it be freed
1307 		 * (igrab() would protect from unlink, but not from unmount).
1308 		 */
1309 		atomic_inc(&info->stop_eviction);
1310 		mutex_unlock(&shmem_swaplist_mutex);
1311 
1312 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313 					  fs_pages_to_unuse);
1314 		cond_resched();
1315 
1316 		mutex_lock(&shmem_swaplist_mutex);
1317 		next = list_next_entry(info, swaplist);
1318 		if (!info->swapped)
1319 			list_del_init(&info->swaplist);
1320 		if (atomic_dec_and_test(&info->stop_eviction))
1321 			wake_up_var(&info->stop_eviction);
1322 		if (error)
1323 			break;
1324 	}
1325 	mutex_unlock(&shmem_swaplist_mutex);
1326 
1327 	return error;
1328 }
1329 
1330 /*
1331  * Move the page from the page cache to the swap cache.
1332  */
1333 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334 {
1335 	struct shmem_inode_info *info;
1336 	struct address_space *mapping;
1337 	struct inode *inode;
1338 	swp_entry_t swap;
1339 	pgoff_t index;
1340 
1341 	VM_BUG_ON_PAGE(PageCompound(page), page);
1342 	BUG_ON(!PageLocked(page));
1343 	mapping = page->mapping;
1344 	index = page->index;
1345 	inode = mapping->host;
1346 	info = SHMEM_I(inode);
1347 	if (info->flags & VM_LOCKED)
1348 		goto redirty;
1349 	if (!total_swap_pages)
1350 		goto redirty;
1351 
1352 	/*
1353 	 * Our capabilities prevent regular writeback or sync from ever calling
1354 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 	 * its underlying filesystem, in which case tmpfs should write out to
1356 	 * swap only in response to memory pressure, and not for the writeback
1357 	 * threads or sync.
1358 	 */
1359 	if (!wbc->for_reclaim) {
1360 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1361 		goto redirty;
1362 	}
1363 
1364 	/*
1365 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 	 * value into swapfile.c, the only way we can correctly account for a
1367 	 * fallocated page arriving here is now to initialize it and write it.
1368 	 *
1369 	 * That's okay for a page already fallocated earlier, but if we have
1370 	 * not yet completed the fallocation, then (a) we want to keep track
1371 	 * of this page in case we have to undo it, and (b) it may not be a
1372 	 * good idea to continue anyway, once we're pushing into swap.  So
1373 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1374 	 */
1375 	if (!PageUptodate(page)) {
1376 		if (inode->i_private) {
1377 			struct shmem_falloc *shmem_falloc;
1378 			spin_lock(&inode->i_lock);
1379 			shmem_falloc = inode->i_private;
1380 			if (shmem_falloc &&
1381 			    !shmem_falloc->waitq &&
1382 			    index >= shmem_falloc->start &&
1383 			    index < shmem_falloc->next)
1384 				shmem_falloc->nr_unswapped++;
1385 			else
1386 				shmem_falloc = NULL;
1387 			spin_unlock(&inode->i_lock);
1388 			if (shmem_falloc)
1389 				goto redirty;
1390 		}
1391 		clear_highpage(page);
1392 		flush_dcache_page(page);
1393 		SetPageUptodate(page);
1394 	}
1395 
1396 	swap = get_swap_page(page);
1397 	if (!swap.val)
1398 		goto redirty;
1399 
1400 	/*
1401 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402 	 * if it's not already there.  Do it now before the page is
1403 	 * moved to swap cache, when its pagelock no longer protects
1404 	 * the inode from eviction.  But don't unlock the mutex until
1405 	 * we've incremented swapped, because shmem_unuse_inode() will
1406 	 * prune a !swapped inode from the swaplist under this mutex.
1407 	 */
1408 	mutex_lock(&shmem_swaplist_mutex);
1409 	if (list_empty(&info->swaplist))
1410 		list_add(&info->swaplist, &shmem_swaplist);
1411 
1412 	if (add_to_swap_cache(page, swap,
1413 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 			NULL) == 0) {
1415 		spin_lock_irq(&info->lock);
1416 		shmem_recalc_inode(inode);
1417 		info->swapped++;
1418 		spin_unlock_irq(&info->lock);
1419 
1420 		swap_shmem_alloc(swap);
1421 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422 
1423 		mutex_unlock(&shmem_swaplist_mutex);
1424 		BUG_ON(page_mapped(page));
1425 		swap_writepage(page, wbc);
1426 		return 0;
1427 	}
1428 
1429 	mutex_unlock(&shmem_swaplist_mutex);
1430 	put_swap_page(page, swap);
1431 redirty:
1432 	set_page_dirty(page);
1433 	if (wbc->for_reclaim)
1434 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1435 	unlock_page(page);
1436 	return 0;
1437 }
1438 
1439 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1440 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441 {
1442 	char buffer[64];
1443 
1444 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1445 		return;		/* show nothing */
1446 
1447 	mpol_to_str(buffer, sizeof(buffer), mpol);
1448 
1449 	seq_printf(seq, ",mpol=%s", buffer);
1450 }
1451 
1452 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453 {
1454 	struct mempolicy *mpol = NULL;
1455 	if (sbinfo->mpol) {
1456 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1457 		mpol = sbinfo->mpol;
1458 		mpol_get(mpol);
1459 		spin_unlock(&sbinfo->stat_lock);
1460 	}
1461 	return mpol;
1462 }
1463 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 }
1467 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468 {
1469 	return NULL;
1470 }
1471 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472 #ifndef CONFIG_NUMA
1473 #define vm_policy vm_private_data
1474 #endif
1475 
1476 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 		struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 	/* Create a pseudo vma that just contains the policy */
1480 	vma_init(vma, NULL);
1481 	/* Bias interleave by inode number to distribute better across nodes */
1482 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484 }
1485 
1486 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487 {
1488 	/* Drop reference taken by mpol_shared_policy_lookup() */
1489 	mpol_cond_put(vma->vm_policy);
1490 }
1491 
1492 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 			struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 	struct vm_area_struct pvma;
1496 	struct page *page;
1497 	struct vm_fault vmf = {
1498 		.vma = &pvma,
1499 	};
1500 
1501 	shmem_pseudo_vma_init(&pvma, info, index);
1502 	page = swap_cluster_readahead(swap, gfp, &vmf);
1503 	shmem_pseudo_vma_destroy(&pvma);
1504 
1505 	return page;
1506 }
1507 
1508 /*
1509  * Make sure huge_gfp is always more limited than limit_gfp.
1510  * Some of the flags set permissions, while others set limitations.
1511  */
1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513 {
1514 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518 
1519 	/* Allow allocations only from the originally specified zones. */
1520 	result |= zoneflags;
1521 
1522 	/*
1523 	 * Minimize the result gfp by taking the union with the deny flags,
1524 	 * and the intersection of the allow flags.
1525 	 */
1526 	result |= (limit_gfp & denyflags);
1527 	result |= (huge_gfp & limit_gfp) & allowflags;
1528 
1529 	return result;
1530 }
1531 
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 		struct shmem_inode_info *info, pgoff_t index)
1534 {
1535 	struct vm_area_struct pvma;
1536 	struct address_space *mapping = info->vfs_inode.i_mapping;
1537 	pgoff_t hindex;
1538 	struct page *page;
1539 
1540 	hindex = round_down(index, HPAGE_PMD_NR);
1541 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 								XA_PRESENT))
1543 		return NULL;
1544 
1545 	shmem_pseudo_vma_init(&pvma, info, hindex);
1546 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 			       true);
1548 	shmem_pseudo_vma_destroy(&pvma);
1549 	if (page)
1550 		prep_transhuge_page(page);
1551 	else
1552 		count_vm_event(THP_FILE_FALLBACK);
1553 	return page;
1554 }
1555 
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557 			struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 	struct vm_area_struct pvma;
1560 	struct page *page;
1561 
1562 	shmem_pseudo_vma_init(&pvma, info, index);
1563 	page = alloc_page_vma(gfp, &pvma, 0);
1564 	shmem_pseudo_vma_destroy(&pvma);
1565 
1566 	return page;
1567 }
1568 
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570 		struct inode *inode,
1571 		pgoff_t index, bool huge)
1572 {
1573 	struct shmem_inode_info *info = SHMEM_I(inode);
1574 	struct page *page;
1575 	int nr;
1576 	int err = -ENOSPC;
1577 
1578 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 		huge = false;
1580 	nr = huge ? HPAGE_PMD_NR : 1;
1581 
1582 	if (!shmem_inode_acct_block(inode, nr))
1583 		goto failed;
1584 
1585 	if (huge)
1586 		page = shmem_alloc_hugepage(gfp, info, index);
1587 	else
1588 		page = shmem_alloc_page(gfp, info, index);
1589 	if (page) {
1590 		__SetPageLocked(page);
1591 		__SetPageSwapBacked(page);
1592 		return page;
1593 	}
1594 
1595 	err = -ENOMEM;
1596 	shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 	return ERR_PTR(err);
1599 }
1600 
1601 /*
1602  * When a page is moved from swapcache to shmem filecache (either by the
1603  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605  * ignorance of the mapping it belongs to.  If that mapping has special
1606  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607  * we may need to copy to a suitable page before moving to filecache.
1608  *
1609  * In a future release, this may well be extended to respect cpuset and
1610  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611  * but for now it is a simple matter of zone.
1612  */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615 	return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617 
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 				struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 	struct page *oldpage, *newpage;
1622 	struct address_space *swap_mapping;
1623 	swp_entry_t entry;
1624 	pgoff_t swap_index;
1625 	int error;
1626 
1627 	oldpage = *pagep;
1628 	entry.val = page_private(oldpage);
1629 	swap_index = swp_offset(entry);
1630 	swap_mapping = page_mapping(oldpage);
1631 
1632 	/*
1633 	 * We have arrived here because our zones are constrained, so don't
1634 	 * limit chance of success by further cpuset and node constraints.
1635 	 */
1636 	gfp &= ~GFP_CONSTRAINT_MASK;
1637 	newpage = shmem_alloc_page(gfp, info, index);
1638 	if (!newpage)
1639 		return -ENOMEM;
1640 
1641 	get_page(newpage);
1642 	copy_highpage(newpage, oldpage);
1643 	flush_dcache_page(newpage);
1644 
1645 	__SetPageLocked(newpage);
1646 	__SetPageSwapBacked(newpage);
1647 	SetPageUptodate(newpage);
1648 	set_page_private(newpage, entry.val);
1649 	SetPageSwapCache(newpage);
1650 
1651 	/*
1652 	 * Our caller will very soon move newpage out of swapcache, but it's
1653 	 * a nice clean interface for us to replace oldpage by newpage there.
1654 	 */
1655 	xa_lock_irq(&swap_mapping->i_pages);
1656 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 	if (!error) {
1658 		mem_cgroup_migrate(oldpage, newpage);
1659 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661 	}
1662 	xa_unlock_irq(&swap_mapping->i_pages);
1663 
1664 	if (unlikely(error)) {
1665 		/*
1666 		 * Is this possible?  I think not, now that our callers check
1667 		 * both PageSwapCache and page_private after getting page lock;
1668 		 * but be defensive.  Reverse old to newpage for clear and free.
1669 		 */
1670 		oldpage = newpage;
1671 	} else {
1672 		lru_cache_add(newpage);
1673 		*pagep = newpage;
1674 	}
1675 
1676 	ClearPageSwapCache(oldpage);
1677 	set_page_private(oldpage, 0);
1678 
1679 	unlock_page(oldpage);
1680 	put_page(oldpage);
1681 	put_page(oldpage);
1682 	return error;
1683 }
1684 
1685 /*
1686  * Swap in the page pointed to by *pagep.
1687  * Caller has to make sure that *pagep contains a valid swapped page.
1688  * Returns 0 and the page in pagep if success. On failure, returns the
1689  * error code and NULL in *pagep.
1690  */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 			     struct page **pagep, enum sgp_type sgp,
1693 			     gfp_t gfp, struct vm_area_struct *vma,
1694 			     vm_fault_t *fault_type)
1695 {
1696 	struct address_space *mapping = inode->i_mapping;
1697 	struct shmem_inode_info *info = SHMEM_I(inode);
1698 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1699 	struct swap_info_struct *si;
1700 	struct page *page = NULL;
1701 	swp_entry_t swap;
1702 	int error;
1703 
1704 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705 	swap = radix_to_swp_entry(*pagep);
1706 	*pagep = NULL;
1707 
1708 	/* Prevent swapoff from happening to us. */
1709 	si = get_swap_device(swap);
1710 	if (!si) {
1711 		error = EINVAL;
1712 		goto failed;
1713 	}
1714 	/* Look it up and read it in.. */
1715 	page = lookup_swap_cache(swap, NULL, 0);
1716 	if (!page) {
1717 		/* Or update major stats only when swapin succeeds?? */
1718 		if (fault_type) {
1719 			*fault_type |= VM_FAULT_MAJOR;
1720 			count_vm_event(PGMAJFAULT);
1721 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1722 		}
1723 		/* Here we actually start the io */
1724 		page = shmem_swapin(swap, gfp, info, index);
1725 		if (!page) {
1726 			error = -ENOMEM;
1727 			goto failed;
1728 		}
1729 	}
1730 
1731 	/* We have to do this with page locked to prevent races */
1732 	lock_page(page);
1733 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1734 	    !shmem_confirm_swap(mapping, index, swap)) {
1735 		error = -EEXIST;
1736 		goto unlock;
1737 	}
1738 	if (!PageUptodate(page)) {
1739 		error = -EIO;
1740 		goto failed;
1741 	}
1742 	wait_on_page_writeback(page);
1743 
1744 	/*
1745 	 * Some architectures may have to restore extra metadata to the
1746 	 * physical page after reading from swap.
1747 	 */
1748 	arch_swap_restore(swap, page);
1749 
1750 	if (shmem_should_replace_page(page, gfp)) {
1751 		error = shmem_replace_page(&page, gfp, info, index);
1752 		if (error)
1753 			goto failed;
1754 	}
1755 
1756 	error = shmem_add_to_page_cache(page, mapping, index,
1757 					swp_to_radix_entry(swap), gfp,
1758 					charge_mm);
1759 	if (error)
1760 		goto failed;
1761 
1762 	spin_lock_irq(&info->lock);
1763 	info->swapped--;
1764 	shmem_recalc_inode(inode);
1765 	spin_unlock_irq(&info->lock);
1766 
1767 	if (sgp == SGP_WRITE)
1768 		mark_page_accessed(page);
1769 
1770 	delete_from_swap_cache(page);
1771 	set_page_dirty(page);
1772 	swap_free(swap);
1773 
1774 	*pagep = page;
1775 	if (si)
1776 		put_swap_device(si);
1777 	return 0;
1778 failed:
1779 	if (!shmem_confirm_swap(mapping, index, swap))
1780 		error = -EEXIST;
1781 unlock:
1782 	if (page) {
1783 		unlock_page(page);
1784 		put_page(page);
1785 	}
1786 
1787 	if (si)
1788 		put_swap_device(si);
1789 
1790 	return error;
1791 }
1792 
1793 /*
1794  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1795  *
1796  * If we allocate a new one we do not mark it dirty. That's up to the
1797  * vm. If we swap it in we mark it dirty since we also free the swap
1798  * entry since a page cannot live in both the swap and page cache.
1799  *
1800  * vma, vmf, and fault_type are only supplied by shmem_fault:
1801  * otherwise they are NULL.
1802  */
1803 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1804 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1805 	struct vm_area_struct *vma, struct vm_fault *vmf,
1806 			vm_fault_t *fault_type)
1807 {
1808 	struct address_space *mapping = inode->i_mapping;
1809 	struct shmem_inode_info *info = SHMEM_I(inode);
1810 	struct shmem_sb_info *sbinfo;
1811 	struct mm_struct *charge_mm;
1812 	struct page *page;
1813 	enum sgp_type sgp_huge = sgp;
1814 	pgoff_t hindex = index;
1815 	gfp_t huge_gfp;
1816 	int error;
1817 	int once = 0;
1818 	int alloced = 0;
1819 
1820 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1821 		return -EFBIG;
1822 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1823 		sgp = SGP_CACHE;
1824 repeat:
1825 	if (sgp <= SGP_CACHE &&
1826 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1827 		return -EINVAL;
1828 	}
1829 
1830 	sbinfo = SHMEM_SB(inode->i_sb);
1831 	charge_mm = vma ? vma->vm_mm : NULL;
1832 
1833 	page = pagecache_get_page(mapping, index,
1834 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1835 
1836 	if (page && vma && userfaultfd_minor(vma)) {
1837 		if (!xa_is_value(page)) {
1838 			unlock_page(page);
1839 			put_page(page);
1840 		}
1841 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1842 		return 0;
1843 	}
1844 
1845 	if (xa_is_value(page)) {
1846 		error = shmem_swapin_page(inode, index, &page,
1847 					  sgp, gfp, vma, fault_type);
1848 		if (error == -EEXIST)
1849 			goto repeat;
1850 
1851 		*pagep = page;
1852 		return error;
1853 	}
1854 
1855 	if (page)
1856 		hindex = page->index;
1857 	if (page && sgp == SGP_WRITE)
1858 		mark_page_accessed(page);
1859 
1860 	/* fallocated page? */
1861 	if (page && !PageUptodate(page)) {
1862 		if (sgp != SGP_READ)
1863 			goto clear;
1864 		unlock_page(page);
1865 		put_page(page);
1866 		page = NULL;
1867 		hindex = index;
1868 	}
1869 	if (page || sgp == SGP_READ)
1870 		goto out;
1871 
1872 	/*
1873 	 * Fast cache lookup did not find it:
1874 	 * bring it back from swap or allocate.
1875 	 */
1876 
1877 	if (vma && userfaultfd_missing(vma)) {
1878 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1879 		return 0;
1880 	}
1881 
1882 	/* shmem_symlink() */
1883 	if (!shmem_mapping(mapping))
1884 		goto alloc_nohuge;
1885 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1886 		goto alloc_nohuge;
1887 	if (shmem_huge == SHMEM_HUGE_FORCE)
1888 		goto alloc_huge;
1889 	switch (sbinfo->huge) {
1890 	case SHMEM_HUGE_NEVER:
1891 		goto alloc_nohuge;
1892 	case SHMEM_HUGE_WITHIN_SIZE: {
1893 		loff_t i_size;
1894 		pgoff_t off;
1895 
1896 		off = round_up(index, HPAGE_PMD_NR);
1897 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1898 		if (i_size >= HPAGE_PMD_SIZE &&
1899 		    i_size >> PAGE_SHIFT >= off)
1900 			goto alloc_huge;
1901 
1902 		fallthrough;
1903 	}
1904 	case SHMEM_HUGE_ADVISE:
1905 		if (sgp_huge == SGP_HUGE)
1906 			goto alloc_huge;
1907 		/* TODO: implement fadvise() hints */
1908 		goto alloc_nohuge;
1909 	}
1910 
1911 alloc_huge:
1912 	huge_gfp = vma_thp_gfp_mask(vma);
1913 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1914 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1915 	if (IS_ERR(page)) {
1916 alloc_nohuge:
1917 		page = shmem_alloc_and_acct_page(gfp, inode,
1918 						 index, false);
1919 	}
1920 	if (IS_ERR(page)) {
1921 		int retry = 5;
1922 
1923 		error = PTR_ERR(page);
1924 		page = NULL;
1925 		if (error != -ENOSPC)
1926 			goto unlock;
1927 		/*
1928 		 * Try to reclaim some space by splitting a huge page
1929 		 * beyond i_size on the filesystem.
1930 		 */
1931 		while (retry--) {
1932 			int ret;
1933 
1934 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1935 			if (ret == SHRINK_STOP)
1936 				break;
1937 			if (ret)
1938 				goto alloc_nohuge;
1939 		}
1940 		goto unlock;
1941 	}
1942 
1943 	if (PageTransHuge(page))
1944 		hindex = round_down(index, HPAGE_PMD_NR);
1945 	else
1946 		hindex = index;
1947 
1948 	if (sgp == SGP_WRITE)
1949 		__SetPageReferenced(page);
1950 
1951 	error = shmem_add_to_page_cache(page, mapping, hindex,
1952 					NULL, gfp & GFP_RECLAIM_MASK,
1953 					charge_mm);
1954 	if (error)
1955 		goto unacct;
1956 	lru_cache_add(page);
1957 
1958 	spin_lock_irq(&info->lock);
1959 	info->alloced += compound_nr(page);
1960 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1961 	shmem_recalc_inode(inode);
1962 	spin_unlock_irq(&info->lock);
1963 	alloced = true;
1964 
1965 	if (PageTransHuge(page) &&
1966 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1967 			hindex + HPAGE_PMD_NR - 1) {
1968 		/*
1969 		 * Part of the huge page is beyond i_size: subject
1970 		 * to shrink under memory pressure.
1971 		 */
1972 		spin_lock(&sbinfo->shrinklist_lock);
1973 		/*
1974 		 * _careful to defend against unlocked access to
1975 		 * ->shrink_list in shmem_unused_huge_shrink()
1976 		 */
1977 		if (list_empty_careful(&info->shrinklist)) {
1978 			list_add_tail(&info->shrinklist,
1979 				      &sbinfo->shrinklist);
1980 			sbinfo->shrinklist_len++;
1981 		}
1982 		spin_unlock(&sbinfo->shrinklist_lock);
1983 	}
1984 
1985 	/*
1986 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1987 	 */
1988 	if (sgp == SGP_FALLOC)
1989 		sgp = SGP_WRITE;
1990 clear:
1991 	/*
1992 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1993 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1994 	 * it now, lest undo on failure cancel our earlier guarantee.
1995 	 */
1996 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1997 		int i;
1998 
1999 		for (i = 0; i < compound_nr(page); i++) {
2000 			clear_highpage(page + i);
2001 			flush_dcache_page(page + i);
2002 		}
2003 		SetPageUptodate(page);
2004 	}
2005 
2006 	/* Perhaps the file has been truncated since we checked */
2007 	if (sgp <= SGP_CACHE &&
2008 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2009 		if (alloced) {
2010 			ClearPageDirty(page);
2011 			delete_from_page_cache(page);
2012 			spin_lock_irq(&info->lock);
2013 			shmem_recalc_inode(inode);
2014 			spin_unlock_irq(&info->lock);
2015 		}
2016 		error = -EINVAL;
2017 		goto unlock;
2018 	}
2019 out:
2020 	*pagep = page + index - hindex;
2021 	return 0;
2022 
2023 	/*
2024 	 * Error recovery.
2025 	 */
2026 unacct:
2027 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2028 
2029 	if (PageTransHuge(page)) {
2030 		unlock_page(page);
2031 		put_page(page);
2032 		goto alloc_nohuge;
2033 	}
2034 unlock:
2035 	if (page) {
2036 		unlock_page(page);
2037 		put_page(page);
2038 	}
2039 	if (error == -ENOSPC && !once++) {
2040 		spin_lock_irq(&info->lock);
2041 		shmem_recalc_inode(inode);
2042 		spin_unlock_irq(&info->lock);
2043 		goto repeat;
2044 	}
2045 	if (error == -EEXIST)
2046 		goto repeat;
2047 	return error;
2048 }
2049 
2050 /*
2051  * This is like autoremove_wake_function, but it removes the wait queue
2052  * entry unconditionally - even if something else had already woken the
2053  * target.
2054  */
2055 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2056 {
2057 	int ret = default_wake_function(wait, mode, sync, key);
2058 	list_del_init(&wait->entry);
2059 	return ret;
2060 }
2061 
2062 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2063 {
2064 	struct vm_area_struct *vma = vmf->vma;
2065 	struct inode *inode = file_inode(vma->vm_file);
2066 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2067 	enum sgp_type sgp;
2068 	int err;
2069 	vm_fault_t ret = VM_FAULT_LOCKED;
2070 
2071 	/*
2072 	 * Trinity finds that probing a hole which tmpfs is punching can
2073 	 * prevent the hole-punch from ever completing: which in turn
2074 	 * locks writers out with its hold on i_mutex.  So refrain from
2075 	 * faulting pages into the hole while it's being punched.  Although
2076 	 * shmem_undo_range() does remove the additions, it may be unable to
2077 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2078 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2079 	 *
2080 	 * It does not matter if we sometimes reach this check just before the
2081 	 * hole-punch begins, so that one fault then races with the punch:
2082 	 * we just need to make racing faults a rare case.
2083 	 *
2084 	 * The implementation below would be much simpler if we just used a
2085 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2086 	 * and bloating every shmem inode for this unlikely case would be sad.
2087 	 */
2088 	if (unlikely(inode->i_private)) {
2089 		struct shmem_falloc *shmem_falloc;
2090 
2091 		spin_lock(&inode->i_lock);
2092 		shmem_falloc = inode->i_private;
2093 		if (shmem_falloc &&
2094 		    shmem_falloc->waitq &&
2095 		    vmf->pgoff >= shmem_falloc->start &&
2096 		    vmf->pgoff < shmem_falloc->next) {
2097 			struct file *fpin;
2098 			wait_queue_head_t *shmem_falloc_waitq;
2099 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2100 
2101 			ret = VM_FAULT_NOPAGE;
2102 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2103 			if (fpin)
2104 				ret = VM_FAULT_RETRY;
2105 
2106 			shmem_falloc_waitq = shmem_falloc->waitq;
2107 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2108 					TASK_UNINTERRUPTIBLE);
2109 			spin_unlock(&inode->i_lock);
2110 			schedule();
2111 
2112 			/*
2113 			 * shmem_falloc_waitq points into the shmem_fallocate()
2114 			 * stack of the hole-punching task: shmem_falloc_waitq
2115 			 * is usually invalid by the time we reach here, but
2116 			 * finish_wait() does not dereference it in that case;
2117 			 * though i_lock needed lest racing with wake_up_all().
2118 			 */
2119 			spin_lock(&inode->i_lock);
2120 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2121 			spin_unlock(&inode->i_lock);
2122 
2123 			if (fpin)
2124 				fput(fpin);
2125 			return ret;
2126 		}
2127 		spin_unlock(&inode->i_lock);
2128 	}
2129 
2130 	sgp = SGP_CACHE;
2131 
2132 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2133 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2134 		sgp = SGP_NOHUGE;
2135 	else if (vma->vm_flags & VM_HUGEPAGE)
2136 		sgp = SGP_HUGE;
2137 
2138 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2139 				  gfp, vma, vmf, &ret);
2140 	if (err)
2141 		return vmf_error(err);
2142 	return ret;
2143 }
2144 
2145 unsigned long shmem_get_unmapped_area(struct file *file,
2146 				      unsigned long uaddr, unsigned long len,
2147 				      unsigned long pgoff, unsigned long flags)
2148 {
2149 	unsigned long (*get_area)(struct file *,
2150 		unsigned long, unsigned long, unsigned long, unsigned long);
2151 	unsigned long addr;
2152 	unsigned long offset;
2153 	unsigned long inflated_len;
2154 	unsigned long inflated_addr;
2155 	unsigned long inflated_offset;
2156 
2157 	if (len > TASK_SIZE)
2158 		return -ENOMEM;
2159 
2160 	get_area = current->mm->get_unmapped_area;
2161 	addr = get_area(file, uaddr, len, pgoff, flags);
2162 
2163 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2164 		return addr;
2165 	if (IS_ERR_VALUE(addr))
2166 		return addr;
2167 	if (addr & ~PAGE_MASK)
2168 		return addr;
2169 	if (addr > TASK_SIZE - len)
2170 		return addr;
2171 
2172 	if (shmem_huge == SHMEM_HUGE_DENY)
2173 		return addr;
2174 	if (len < HPAGE_PMD_SIZE)
2175 		return addr;
2176 	if (flags & MAP_FIXED)
2177 		return addr;
2178 	/*
2179 	 * Our priority is to support MAP_SHARED mapped hugely;
2180 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2181 	 * But if caller specified an address hint and we allocated area there
2182 	 * successfully, respect that as before.
2183 	 */
2184 	if (uaddr == addr)
2185 		return addr;
2186 
2187 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2188 		struct super_block *sb;
2189 
2190 		if (file) {
2191 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2192 			sb = file_inode(file)->i_sb;
2193 		} else {
2194 			/*
2195 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2196 			 * for "/dev/zero", to create a shared anonymous object.
2197 			 */
2198 			if (IS_ERR(shm_mnt))
2199 				return addr;
2200 			sb = shm_mnt->mnt_sb;
2201 		}
2202 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2203 			return addr;
2204 	}
2205 
2206 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2207 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2208 		return addr;
2209 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2210 		return addr;
2211 
2212 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2213 	if (inflated_len > TASK_SIZE)
2214 		return addr;
2215 	if (inflated_len < len)
2216 		return addr;
2217 
2218 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2219 	if (IS_ERR_VALUE(inflated_addr))
2220 		return addr;
2221 	if (inflated_addr & ~PAGE_MASK)
2222 		return addr;
2223 
2224 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2225 	inflated_addr += offset - inflated_offset;
2226 	if (inflated_offset > offset)
2227 		inflated_addr += HPAGE_PMD_SIZE;
2228 
2229 	if (inflated_addr > TASK_SIZE - len)
2230 		return addr;
2231 	return inflated_addr;
2232 }
2233 
2234 #ifdef CONFIG_NUMA
2235 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2236 {
2237 	struct inode *inode = file_inode(vma->vm_file);
2238 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2239 }
2240 
2241 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2242 					  unsigned long addr)
2243 {
2244 	struct inode *inode = file_inode(vma->vm_file);
2245 	pgoff_t index;
2246 
2247 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2248 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2249 }
2250 #endif
2251 
2252 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2253 {
2254 	struct inode *inode = file_inode(file);
2255 	struct shmem_inode_info *info = SHMEM_I(inode);
2256 	int retval = -ENOMEM;
2257 
2258 	/*
2259 	 * What serializes the accesses to info->flags?
2260 	 * ipc_lock_object() when called from shmctl_do_lock(),
2261 	 * no serialization needed when called from shm_destroy().
2262 	 */
2263 	if (lock && !(info->flags & VM_LOCKED)) {
2264 		if (!user_shm_lock(inode->i_size, ucounts))
2265 			goto out_nomem;
2266 		info->flags |= VM_LOCKED;
2267 		mapping_set_unevictable(file->f_mapping);
2268 	}
2269 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2270 		user_shm_unlock(inode->i_size, ucounts);
2271 		info->flags &= ~VM_LOCKED;
2272 		mapping_clear_unevictable(file->f_mapping);
2273 	}
2274 	retval = 0;
2275 
2276 out_nomem:
2277 	return retval;
2278 }
2279 
2280 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2281 {
2282 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2283 	int ret;
2284 
2285 	ret = seal_check_future_write(info->seals, vma);
2286 	if (ret)
2287 		return ret;
2288 
2289 	/* arm64 - allow memory tagging on RAM-based files */
2290 	vma->vm_flags |= VM_MTE_ALLOWED;
2291 
2292 	file_accessed(file);
2293 	vma->vm_ops = &shmem_vm_ops;
2294 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2295 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2296 			(vma->vm_end & HPAGE_PMD_MASK)) {
2297 		khugepaged_enter(vma, vma->vm_flags);
2298 	}
2299 	return 0;
2300 }
2301 
2302 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2303 				     umode_t mode, dev_t dev, unsigned long flags)
2304 {
2305 	struct inode *inode;
2306 	struct shmem_inode_info *info;
2307 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2308 	ino_t ino;
2309 
2310 	if (shmem_reserve_inode(sb, &ino))
2311 		return NULL;
2312 
2313 	inode = new_inode(sb);
2314 	if (inode) {
2315 		inode->i_ino = ino;
2316 		inode_init_owner(&init_user_ns, inode, dir, mode);
2317 		inode->i_blocks = 0;
2318 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2319 		inode->i_generation = prandom_u32();
2320 		info = SHMEM_I(inode);
2321 		memset(info, 0, (char *)inode - (char *)info);
2322 		spin_lock_init(&info->lock);
2323 		atomic_set(&info->stop_eviction, 0);
2324 		info->seals = F_SEAL_SEAL;
2325 		info->flags = flags & VM_NORESERVE;
2326 		INIT_LIST_HEAD(&info->shrinklist);
2327 		INIT_LIST_HEAD(&info->swaplist);
2328 		simple_xattrs_init(&info->xattrs);
2329 		cache_no_acl(inode);
2330 
2331 		switch (mode & S_IFMT) {
2332 		default:
2333 			inode->i_op = &shmem_special_inode_operations;
2334 			init_special_inode(inode, mode, dev);
2335 			break;
2336 		case S_IFREG:
2337 			inode->i_mapping->a_ops = &shmem_aops;
2338 			inode->i_op = &shmem_inode_operations;
2339 			inode->i_fop = &shmem_file_operations;
2340 			mpol_shared_policy_init(&info->policy,
2341 						 shmem_get_sbmpol(sbinfo));
2342 			break;
2343 		case S_IFDIR:
2344 			inc_nlink(inode);
2345 			/* Some things misbehave if size == 0 on a directory */
2346 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2347 			inode->i_op = &shmem_dir_inode_operations;
2348 			inode->i_fop = &simple_dir_operations;
2349 			break;
2350 		case S_IFLNK:
2351 			/*
2352 			 * Must not load anything in the rbtree,
2353 			 * mpol_free_shared_policy will not be called.
2354 			 */
2355 			mpol_shared_policy_init(&info->policy, NULL);
2356 			break;
2357 		}
2358 
2359 		lockdep_annotate_inode_mutex_key(inode);
2360 	} else
2361 		shmem_free_inode(sb);
2362 	return inode;
2363 }
2364 
2365 #ifdef CONFIG_USERFAULTFD
2366 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2367 			   pmd_t *dst_pmd,
2368 			   struct vm_area_struct *dst_vma,
2369 			   unsigned long dst_addr,
2370 			   unsigned long src_addr,
2371 			   bool zeropage,
2372 			   struct page **pagep)
2373 {
2374 	struct inode *inode = file_inode(dst_vma->vm_file);
2375 	struct shmem_inode_info *info = SHMEM_I(inode);
2376 	struct address_space *mapping = inode->i_mapping;
2377 	gfp_t gfp = mapping_gfp_mask(mapping);
2378 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2379 	void *page_kaddr;
2380 	struct page *page;
2381 	int ret;
2382 	pgoff_t max_off;
2383 
2384 	if (!shmem_inode_acct_block(inode, 1)) {
2385 		/*
2386 		 * We may have got a page, returned -ENOENT triggering a retry,
2387 		 * and now we find ourselves with -ENOMEM. Release the page, to
2388 		 * avoid a BUG_ON in our caller.
2389 		 */
2390 		if (unlikely(*pagep)) {
2391 			put_page(*pagep);
2392 			*pagep = NULL;
2393 		}
2394 		return -ENOMEM;
2395 	}
2396 
2397 	if (!*pagep) {
2398 		ret = -ENOMEM;
2399 		page = shmem_alloc_page(gfp, info, pgoff);
2400 		if (!page)
2401 			goto out_unacct_blocks;
2402 
2403 		if (!zeropage) {	/* COPY */
2404 			page_kaddr = kmap_atomic(page);
2405 			ret = copy_from_user(page_kaddr,
2406 					     (const void __user *)src_addr,
2407 					     PAGE_SIZE);
2408 			kunmap_atomic(page_kaddr);
2409 
2410 			/* fallback to copy_from_user outside mmap_lock */
2411 			if (unlikely(ret)) {
2412 				*pagep = page;
2413 				ret = -ENOENT;
2414 				/* don't free the page */
2415 				goto out_unacct_blocks;
2416 			}
2417 		} else {		/* ZEROPAGE */
2418 			clear_highpage(page);
2419 		}
2420 	} else {
2421 		page = *pagep;
2422 		*pagep = NULL;
2423 	}
2424 
2425 	VM_BUG_ON(PageLocked(page));
2426 	VM_BUG_ON(PageSwapBacked(page));
2427 	__SetPageLocked(page);
2428 	__SetPageSwapBacked(page);
2429 	__SetPageUptodate(page);
2430 
2431 	ret = -EFAULT;
2432 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2433 	if (unlikely(pgoff >= max_off))
2434 		goto out_release;
2435 
2436 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2437 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2438 	if (ret)
2439 		goto out_release;
2440 
2441 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2442 				       page, true, false);
2443 	if (ret)
2444 		goto out_delete_from_cache;
2445 
2446 	spin_lock_irq(&info->lock);
2447 	info->alloced++;
2448 	inode->i_blocks += BLOCKS_PER_PAGE;
2449 	shmem_recalc_inode(inode);
2450 	spin_unlock_irq(&info->lock);
2451 
2452 	SetPageDirty(page);
2453 	unlock_page(page);
2454 	return 0;
2455 out_delete_from_cache:
2456 	delete_from_page_cache(page);
2457 out_release:
2458 	unlock_page(page);
2459 	put_page(page);
2460 out_unacct_blocks:
2461 	shmem_inode_unacct_blocks(inode, 1);
2462 	return ret;
2463 }
2464 #endif /* CONFIG_USERFAULTFD */
2465 
2466 #ifdef CONFIG_TMPFS
2467 static const struct inode_operations shmem_symlink_inode_operations;
2468 static const struct inode_operations shmem_short_symlink_operations;
2469 
2470 #ifdef CONFIG_TMPFS_XATTR
2471 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2472 #else
2473 #define shmem_initxattrs NULL
2474 #endif
2475 
2476 static int
2477 shmem_write_begin(struct file *file, struct address_space *mapping,
2478 			loff_t pos, unsigned len, unsigned flags,
2479 			struct page **pagep, void **fsdata)
2480 {
2481 	struct inode *inode = mapping->host;
2482 	struct shmem_inode_info *info = SHMEM_I(inode);
2483 	pgoff_t index = pos >> PAGE_SHIFT;
2484 
2485 	/* i_mutex is held by caller */
2486 	if (unlikely(info->seals & (F_SEAL_GROW |
2487 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2488 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2489 			return -EPERM;
2490 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2491 			return -EPERM;
2492 	}
2493 
2494 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2495 }
2496 
2497 static int
2498 shmem_write_end(struct file *file, struct address_space *mapping,
2499 			loff_t pos, unsigned len, unsigned copied,
2500 			struct page *page, void *fsdata)
2501 {
2502 	struct inode *inode = mapping->host;
2503 
2504 	if (pos + copied > inode->i_size)
2505 		i_size_write(inode, pos + copied);
2506 
2507 	if (!PageUptodate(page)) {
2508 		struct page *head = compound_head(page);
2509 		if (PageTransCompound(page)) {
2510 			int i;
2511 
2512 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2513 				if (head + i == page)
2514 					continue;
2515 				clear_highpage(head + i);
2516 				flush_dcache_page(head + i);
2517 			}
2518 		}
2519 		if (copied < PAGE_SIZE) {
2520 			unsigned from = pos & (PAGE_SIZE - 1);
2521 			zero_user_segments(page, 0, from,
2522 					from + copied, PAGE_SIZE);
2523 		}
2524 		SetPageUptodate(head);
2525 	}
2526 	set_page_dirty(page);
2527 	unlock_page(page);
2528 	put_page(page);
2529 
2530 	return copied;
2531 }
2532 
2533 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2534 {
2535 	struct file *file = iocb->ki_filp;
2536 	struct inode *inode = file_inode(file);
2537 	struct address_space *mapping = inode->i_mapping;
2538 	pgoff_t index;
2539 	unsigned long offset;
2540 	enum sgp_type sgp = SGP_READ;
2541 	int error = 0;
2542 	ssize_t retval = 0;
2543 	loff_t *ppos = &iocb->ki_pos;
2544 
2545 	/*
2546 	 * Might this read be for a stacking filesystem?  Then when reading
2547 	 * holes of a sparse file, we actually need to allocate those pages,
2548 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2549 	 */
2550 	if (!iter_is_iovec(to))
2551 		sgp = SGP_CACHE;
2552 
2553 	index = *ppos >> PAGE_SHIFT;
2554 	offset = *ppos & ~PAGE_MASK;
2555 
2556 	for (;;) {
2557 		struct page *page = NULL;
2558 		pgoff_t end_index;
2559 		unsigned long nr, ret;
2560 		loff_t i_size = i_size_read(inode);
2561 
2562 		end_index = i_size >> PAGE_SHIFT;
2563 		if (index > end_index)
2564 			break;
2565 		if (index == end_index) {
2566 			nr = i_size & ~PAGE_MASK;
2567 			if (nr <= offset)
2568 				break;
2569 		}
2570 
2571 		error = shmem_getpage(inode, index, &page, sgp);
2572 		if (error) {
2573 			if (error == -EINVAL)
2574 				error = 0;
2575 			break;
2576 		}
2577 		if (page) {
2578 			if (sgp == SGP_CACHE)
2579 				set_page_dirty(page);
2580 			unlock_page(page);
2581 		}
2582 
2583 		/*
2584 		 * We must evaluate after, since reads (unlike writes)
2585 		 * are called without i_mutex protection against truncate
2586 		 */
2587 		nr = PAGE_SIZE;
2588 		i_size = i_size_read(inode);
2589 		end_index = i_size >> PAGE_SHIFT;
2590 		if (index == end_index) {
2591 			nr = i_size & ~PAGE_MASK;
2592 			if (nr <= offset) {
2593 				if (page)
2594 					put_page(page);
2595 				break;
2596 			}
2597 		}
2598 		nr -= offset;
2599 
2600 		if (page) {
2601 			/*
2602 			 * If users can be writing to this page using arbitrary
2603 			 * virtual addresses, take care about potential aliasing
2604 			 * before reading the page on the kernel side.
2605 			 */
2606 			if (mapping_writably_mapped(mapping))
2607 				flush_dcache_page(page);
2608 			/*
2609 			 * Mark the page accessed if we read the beginning.
2610 			 */
2611 			if (!offset)
2612 				mark_page_accessed(page);
2613 		} else {
2614 			page = ZERO_PAGE(0);
2615 			get_page(page);
2616 		}
2617 
2618 		/*
2619 		 * Ok, we have the page, and it's up-to-date, so
2620 		 * now we can copy it to user space...
2621 		 */
2622 		ret = copy_page_to_iter(page, offset, nr, to);
2623 		retval += ret;
2624 		offset += ret;
2625 		index += offset >> PAGE_SHIFT;
2626 		offset &= ~PAGE_MASK;
2627 
2628 		put_page(page);
2629 		if (!iov_iter_count(to))
2630 			break;
2631 		if (ret < nr) {
2632 			error = -EFAULT;
2633 			break;
2634 		}
2635 		cond_resched();
2636 	}
2637 
2638 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2639 	file_accessed(file);
2640 	return retval ? retval : error;
2641 }
2642 
2643 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2644 {
2645 	struct address_space *mapping = file->f_mapping;
2646 	struct inode *inode = mapping->host;
2647 
2648 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2649 		return generic_file_llseek_size(file, offset, whence,
2650 					MAX_LFS_FILESIZE, i_size_read(inode));
2651 	if (offset < 0)
2652 		return -ENXIO;
2653 
2654 	inode_lock(inode);
2655 	/* We're holding i_mutex so we can access i_size directly */
2656 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2657 	if (offset >= 0)
2658 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2659 	inode_unlock(inode);
2660 	return offset;
2661 }
2662 
2663 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2664 							 loff_t len)
2665 {
2666 	struct inode *inode = file_inode(file);
2667 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2668 	struct shmem_inode_info *info = SHMEM_I(inode);
2669 	struct shmem_falloc shmem_falloc;
2670 	pgoff_t start, index, end;
2671 	int error;
2672 
2673 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2674 		return -EOPNOTSUPP;
2675 
2676 	inode_lock(inode);
2677 
2678 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2679 		struct address_space *mapping = file->f_mapping;
2680 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2681 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2682 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2683 
2684 		/* protected by i_mutex */
2685 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2686 			error = -EPERM;
2687 			goto out;
2688 		}
2689 
2690 		shmem_falloc.waitq = &shmem_falloc_waitq;
2691 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2692 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2693 		spin_lock(&inode->i_lock);
2694 		inode->i_private = &shmem_falloc;
2695 		spin_unlock(&inode->i_lock);
2696 
2697 		if ((u64)unmap_end > (u64)unmap_start)
2698 			unmap_mapping_range(mapping, unmap_start,
2699 					    1 + unmap_end - unmap_start, 0);
2700 		shmem_truncate_range(inode, offset, offset + len - 1);
2701 		/* No need to unmap again: hole-punching leaves COWed pages */
2702 
2703 		spin_lock(&inode->i_lock);
2704 		inode->i_private = NULL;
2705 		wake_up_all(&shmem_falloc_waitq);
2706 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2707 		spin_unlock(&inode->i_lock);
2708 		error = 0;
2709 		goto out;
2710 	}
2711 
2712 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2713 	error = inode_newsize_ok(inode, offset + len);
2714 	if (error)
2715 		goto out;
2716 
2717 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2718 		error = -EPERM;
2719 		goto out;
2720 	}
2721 
2722 	start = offset >> PAGE_SHIFT;
2723 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2724 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2725 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2726 		error = -ENOSPC;
2727 		goto out;
2728 	}
2729 
2730 	shmem_falloc.waitq = NULL;
2731 	shmem_falloc.start = start;
2732 	shmem_falloc.next  = start;
2733 	shmem_falloc.nr_falloced = 0;
2734 	shmem_falloc.nr_unswapped = 0;
2735 	spin_lock(&inode->i_lock);
2736 	inode->i_private = &shmem_falloc;
2737 	spin_unlock(&inode->i_lock);
2738 
2739 	for (index = start; index < end; index++) {
2740 		struct page *page;
2741 
2742 		/*
2743 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2744 		 * been interrupted because we are using up too much memory.
2745 		 */
2746 		if (signal_pending(current))
2747 			error = -EINTR;
2748 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2749 			error = -ENOMEM;
2750 		else
2751 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2752 		if (error) {
2753 			/* Remove the !PageUptodate pages we added */
2754 			if (index > start) {
2755 				shmem_undo_range(inode,
2756 				    (loff_t)start << PAGE_SHIFT,
2757 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2758 			}
2759 			goto undone;
2760 		}
2761 
2762 		/*
2763 		 * Inform shmem_writepage() how far we have reached.
2764 		 * No need for lock or barrier: we have the page lock.
2765 		 */
2766 		shmem_falloc.next++;
2767 		if (!PageUptodate(page))
2768 			shmem_falloc.nr_falloced++;
2769 
2770 		/*
2771 		 * If !PageUptodate, leave it that way so that freeable pages
2772 		 * can be recognized if we need to rollback on error later.
2773 		 * But set_page_dirty so that memory pressure will swap rather
2774 		 * than free the pages we are allocating (and SGP_CACHE pages
2775 		 * might still be clean: we now need to mark those dirty too).
2776 		 */
2777 		set_page_dirty(page);
2778 		unlock_page(page);
2779 		put_page(page);
2780 		cond_resched();
2781 	}
2782 
2783 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2784 		i_size_write(inode, offset + len);
2785 	inode->i_ctime = current_time(inode);
2786 undone:
2787 	spin_lock(&inode->i_lock);
2788 	inode->i_private = NULL;
2789 	spin_unlock(&inode->i_lock);
2790 out:
2791 	inode_unlock(inode);
2792 	return error;
2793 }
2794 
2795 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2796 {
2797 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2798 
2799 	buf->f_type = TMPFS_MAGIC;
2800 	buf->f_bsize = PAGE_SIZE;
2801 	buf->f_namelen = NAME_MAX;
2802 	if (sbinfo->max_blocks) {
2803 		buf->f_blocks = sbinfo->max_blocks;
2804 		buf->f_bavail =
2805 		buf->f_bfree  = sbinfo->max_blocks -
2806 				percpu_counter_sum(&sbinfo->used_blocks);
2807 	}
2808 	if (sbinfo->max_inodes) {
2809 		buf->f_files = sbinfo->max_inodes;
2810 		buf->f_ffree = sbinfo->free_inodes;
2811 	}
2812 	/* else leave those fields 0 like simple_statfs */
2813 
2814 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2815 
2816 	return 0;
2817 }
2818 
2819 /*
2820  * File creation. Allocate an inode, and we're done..
2821  */
2822 static int
2823 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2824 	    struct dentry *dentry, umode_t mode, dev_t dev)
2825 {
2826 	struct inode *inode;
2827 	int error = -ENOSPC;
2828 
2829 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2830 	if (inode) {
2831 		error = simple_acl_create(dir, inode);
2832 		if (error)
2833 			goto out_iput;
2834 		error = security_inode_init_security(inode, dir,
2835 						     &dentry->d_name,
2836 						     shmem_initxattrs, NULL);
2837 		if (error && error != -EOPNOTSUPP)
2838 			goto out_iput;
2839 
2840 		error = 0;
2841 		dir->i_size += BOGO_DIRENT_SIZE;
2842 		dir->i_ctime = dir->i_mtime = current_time(dir);
2843 		d_instantiate(dentry, inode);
2844 		dget(dentry); /* Extra count - pin the dentry in core */
2845 	}
2846 	return error;
2847 out_iput:
2848 	iput(inode);
2849 	return error;
2850 }
2851 
2852 static int
2853 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2854 	      struct dentry *dentry, umode_t mode)
2855 {
2856 	struct inode *inode;
2857 	int error = -ENOSPC;
2858 
2859 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2860 	if (inode) {
2861 		error = security_inode_init_security(inode, dir,
2862 						     NULL,
2863 						     shmem_initxattrs, NULL);
2864 		if (error && error != -EOPNOTSUPP)
2865 			goto out_iput;
2866 		error = simple_acl_create(dir, inode);
2867 		if (error)
2868 			goto out_iput;
2869 		d_tmpfile(dentry, inode);
2870 	}
2871 	return error;
2872 out_iput:
2873 	iput(inode);
2874 	return error;
2875 }
2876 
2877 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2878 		       struct dentry *dentry, umode_t mode)
2879 {
2880 	int error;
2881 
2882 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2883 				 mode | S_IFDIR, 0)))
2884 		return error;
2885 	inc_nlink(dir);
2886 	return 0;
2887 }
2888 
2889 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2890 			struct dentry *dentry, umode_t mode, bool excl)
2891 {
2892 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2893 }
2894 
2895 /*
2896  * Link a file..
2897  */
2898 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2899 {
2900 	struct inode *inode = d_inode(old_dentry);
2901 	int ret = 0;
2902 
2903 	/*
2904 	 * No ordinary (disk based) filesystem counts links as inodes;
2905 	 * but each new link needs a new dentry, pinning lowmem, and
2906 	 * tmpfs dentries cannot be pruned until they are unlinked.
2907 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2908 	 * first link must skip that, to get the accounting right.
2909 	 */
2910 	if (inode->i_nlink) {
2911 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2912 		if (ret)
2913 			goto out;
2914 	}
2915 
2916 	dir->i_size += BOGO_DIRENT_SIZE;
2917 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2918 	inc_nlink(inode);
2919 	ihold(inode);	/* New dentry reference */
2920 	dget(dentry);		/* Extra pinning count for the created dentry */
2921 	d_instantiate(dentry, inode);
2922 out:
2923 	return ret;
2924 }
2925 
2926 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2927 {
2928 	struct inode *inode = d_inode(dentry);
2929 
2930 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2931 		shmem_free_inode(inode->i_sb);
2932 
2933 	dir->i_size -= BOGO_DIRENT_SIZE;
2934 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2935 	drop_nlink(inode);
2936 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2937 	return 0;
2938 }
2939 
2940 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2941 {
2942 	if (!simple_empty(dentry))
2943 		return -ENOTEMPTY;
2944 
2945 	drop_nlink(d_inode(dentry));
2946 	drop_nlink(dir);
2947 	return shmem_unlink(dir, dentry);
2948 }
2949 
2950 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2951 {
2952 	bool old_is_dir = d_is_dir(old_dentry);
2953 	bool new_is_dir = d_is_dir(new_dentry);
2954 
2955 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2956 		if (old_is_dir) {
2957 			drop_nlink(old_dir);
2958 			inc_nlink(new_dir);
2959 		} else {
2960 			drop_nlink(new_dir);
2961 			inc_nlink(old_dir);
2962 		}
2963 	}
2964 	old_dir->i_ctime = old_dir->i_mtime =
2965 	new_dir->i_ctime = new_dir->i_mtime =
2966 	d_inode(old_dentry)->i_ctime =
2967 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2968 
2969 	return 0;
2970 }
2971 
2972 static int shmem_whiteout(struct user_namespace *mnt_userns,
2973 			  struct inode *old_dir, struct dentry *old_dentry)
2974 {
2975 	struct dentry *whiteout;
2976 	int error;
2977 
2978 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979 	if (!whiteout)
2980 		return -ENOMEM;
2981 
2982 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2983 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984 	dput(whiteout);
2985 	if (error)
2986 		return error;
2987 
2988 	/*
2989 	 * Cheat and hash the whiteout while the old dentry is still in
2990 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 	 *
2992 	 * d_lookup() will consistently find one of them at this point,
2993 	 * not sure which one, but that isn't even important.
2994 	 */
2995 	d_rehash(whiteout);
2996 	return 0;
2997 }
2998 
2999 /*
3000  * The VFS layer already does all the dentry stuff for rename,
3001  * we just have to decrement the usage count for the target if
3002  * it exists so that the VFS layer correctly free's it when it
3003  * gets overwritten.
3004  */
3005 static int shmem_rename2(struct user_namespace *mnt_userns,
3006 			 struct inode *old_dir, struct dentry *old_dentry,
3007 			 struct inode *new_dir, struct dentry *new_dentry,
3008 			 unsigned int flags)
3009 {
3010 	struct inode *inode = d_inode(old_dentry);
3011 	int they_are_dirs = S_ISDIR(inode->i_mode);
3012 
3013 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3014 		return -EINVAL;
3015 
3016 	if (flags & RENAME_EXCHANGE)
3017 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018 
3019 	if (!simple_empty(new_dentry))
3020 		return -ENOTEMPTY;
3021 
3022 	if (flags & RENAME_WHITEOUT) {
3023 		int error;
3024 
3025 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3026 		if (error)
3027 			return error;
3028 	}
3029 
3030 	if (d_really_is_positive(new_dentry)) {
3031 		(void) shmem_unlink(new_dir, new_dentry);
3032 		if (they_are_dirs) {
3033 			drop_nlink(d_inode(new_dentry));
3034 			drop_nlink(old_dir);
3035 		}
3036 	} else if (they_are_dirs) {
3037 		drop_nlink(old_dir);
3038 		inc_nlink(new_dir);
3039 	}
3040 
3041 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3042 	new_dir->i_size += BOGO_DIRENT_SIZE;
3043 	old_dir->i_ctime = old_dir->i_mtime =
3044 	new_dir->i_ctime = new_dir->i_mtime =
3045 	inode->i_ctime = current_time(old_dir);
3046 	return 0;
3047 }
3048 
3049 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050 			 struct dentry *dentry, const char *symname)
3051 {
3052 	int error;
3053 	int len;
3054 	struct inode *inode;
3055 	struct page *page;
3056 
3057 	len = strlen(symname) + 1;
3058 	if (len > PAGE_SIZE)
3059 		return -ENAMETOOLONG;
3060 
3061 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062 				VM_NORESERVE);
3063 	if (!inode)
3064 		return -ENOSPC;
3065 
3066 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3067 					     shmem_initxattrs, NULL);
3068 	if (error && error != -EOPNOTSUPP) {
3069 		iput(inode);
3070 		return error;
3071 	}
3072 
3073 	inode->i_size = len-1;
3074 	if (len <= SHORT_SYMLINK_LEN) {
3075 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076 		if (!inode->i_link) {
3077 			iput(inode);
3078 			return -ENOMEM;
3079 		}
3080 		inode->i_op = &shmem_short_symlink_operations;
3081 	} else {
3082 		inode_nohighmem(inode);
3083 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3084 		if (error) {
3085 			iput(inode);
3086 			return error;
3087 		}
3088 		inode->i_mapping->a_ops = &shmem_aops;
3089 		inode->i_op = &shmem_symlink_inode_operations;
3090 		memcpy(page_address(page), symname, len);
3091 		SetPageUptodate(page);
3092 		set_page_dirty(page);
3093 		unlock_page(page);
3094 		put_page(page);
3095 	}
3096 	dir->i_size += BOGO_DIRENT_SIZE;
3097 	dir->i_ctime = dir->i_mtime = current_time(dir);
3098 	d_instantiate(dentry, inode);
3099 	dget(dentry);
3100 	return 0;
3101 }
3102 
3103 static void shmem_put_link(void *arg)
3104 {
3105 	mark_page_accessed(arg);
3106 	put_page(arg);
3107 }
3108 
3109 static const char *shmem_get_link(struct dentry *dentry,
3110 				  struct inode *inode,
3111 				  struct delayed_call *done)
3112 {
3113 	struct page *page = NULL;
3114 	int error;
3115 	if (!dentry) {
3116 		page = find_get_page(inode->i_mapping, 0);
3117 		if (!page)
3118 			return ERR_PTR(-ECHILD);
3119 		if (!PageUptodate(page)) {
3120 			put_page(page);
3121 			return ERR_PTR(-ECHILD);
3122 		}
3123 	} else {
3124 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3125 		if (error)
3126 			return ERR_PTR(error);
3127 		unlock_page(page);
3128 	}
3129 	set_delayed_call(done, shmem_put_link, page);
3130 	return page_address(page);
3131 }
3132 
3133 #ifdef CONFIG_TMPFS_XATTR
3134 /*
3135  * Superblocks without xattr inode operations may get some security.* xattr
3136  * support from the LSM "for free". As soon as we have any other xattrs
3137  * like ACLs, we also need to implement the security.* handlers at
3138  * filesystem level, though.
3139  */
3140 
3141 /*
3142  * Callback for security_inode_init_security() for acquiring xattrs.
3143  */
3144 static int shmem_initxattrs(struct inode *inode,
3145 			    const struct xattr *xattr_array,
3146 			    void *fs_info)
3147 {
3148 	struct shmem_inode_info *info = SHMEM_I(inode);
3149 	const struct xattr *xattr;
3150 	struct simple_xattr *new_xattr;
3151 	size_t len;
3152 
3153 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3154 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3155 		if (!new_xattr)
3156 			return -ENOMEM;
3157 
3158 		len = strlen(xattr->name) + 1;
3159 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3160 					  GFP_KERNEL);
3161 		if (!new_xattr->name) {
3162 			kvfree(new_xattr);
3163 			return -ENOMEM;
3164 		}
3165 
3166 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3167 		       XATTR_SECURITY_PREFIX_LEN);
3168 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3169 		       xattr->name, len);
3170 
3171 		simple_xattr_list_add(&info->xattrs, new_xattr);
3172 	}
3173 
3174 	return 0;
3175 }
3176 
3177 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3178 				   struct dentry *unused, struct inode *inode,
3179 				   const char *name, void *buffer, size_t size)
3180 {
3181 	struct shmem_inode_info *info = SHMEM_I(inode);
3182 
3183 	name = xattr_full_name(handler, name);
3184 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3185 }
3186 
3187 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3188 				   struct user_namespace *mnt_userns,
3189 				   struct dentry *unused, struct inode *inode,
3190 				   const char *name, const void *value,
3191 				   size_t size, int flags)
3192 {
3193 	struct shmem_inode_info *info = SHMEM_I(inode);
3194 
3195 	name = xattr_full_name(handler, name);
3196 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3197 }
3198 
3199 static const struct xattr_handler shmem_security_xattr_handler = {
3200 	.prefix = XATTR_SECURITY_PREFIX,
3201 	.get = shmem_xattr_handler_get,
3202 	.set = shmem_xattr_handler_set,
3203 };
3204 
3205 static const struct xattr_handler shmem_trusted_xattr_handler = {
3206 	.prefix = XATTR_TRUSTED_PREFIX,
3207 	.get = shmem_xattr_handler_get,
3208 	.set = shmem_xattr_handler_set,
3209 };
3210 
3211 static const struct xattr_handler *shmem_xattr_handlers[] = {
3212 #ifdef CONFIG_TMPFS_POSIX_ACL
3213 	&posix_acl_access_xattr_handler,
3214 	&posix_acl_default_xattr_handler,
3215 #endif
3216 	&shmem_security_xattr_handler,
3217 	&shmem_trusted_xattr_handler,
3218 	NULL
3219 };
3220 
3221 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3222 {
3223 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3225 }
3226 #endif /* CONFIG_TMPFS_XATTR */
3227 
3228 static const struct inode_operations shmem_short_symlink_operations = {
3229 	.get_link	= simple_get_link,
3230 #ifdef CONFIG_TMPFS_XATTR
3231 	.listxattr	= shmem_listxattr,
3232 #endif
3233 };
3234 
3235 static const struct inode_operations shmem_symlink_inode_operations = {
3236 	.get_link	= shmem_get_link,
3237 #ifdef CONFIG_TMPFS_XATTR
3238 	.listxattr	= shmem_listxattr,
3239 #endif
3240 };
3241 
3242 static struct dentry *shmem_get_parent(struct dentry *child)
3243 {
3244 	return ERR_PTR(-ESTALE);
3245 }
3246 
3247 static int shmem_match(struct inode *ino, void *vfh)
3248 {
3249 	__u32 *fh = vfh;
3250 	__u64 inum = fh[2];
3251 	inum = (inum << 32) | fh[1];
3252 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3253 }
3254 
3255 /* Find any alias of inode, but prefer a hashed alias */
3256 static struct dentry *shmem_find_alias(struct inode *inode)
3257 {
3258 	struct dentry *alias = d_find_alias(inode);
3259 
3260 	return alias ?: d_find_any_alias(inode);
3261 }
3262 
3263 
3264 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3265 		struct fid *fid, int fh_len, int fh_type)
3266 {
3267 	struct inode *inode;
3268 	struct dentry *dentry = NULL;
3269 	u64 inum;
3270 
3271 	if (fh_len < 3)
3272 		return NULL;
3273 
3274 	inum = fid->raw[2];
3275 	inum = (inum << 32) | fid->raw[1];
3276 
3277 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3278 			shmem_match, fid->raw);
3279 	if (inode) {
3280 		dentry = shmem_find_alias(inode);
3281 		iput(inode);
3282 	}
3283 
3284 	return dentry;
3285 }
3286 
3287 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3288 				struct inode *parent)
3289 {
3290 	if (*len < 3) {
3291 		*len = 3;
3292 		return FILEID_INVALID;
3293 	}
3294 
3295 	if (inode_unhashed(inode)) {
3296 		/* Unfortunately insert_inode_hash is not idempotent,
3297 		 * so as we hash inodes here rather than at creation
3298 		 * time, we need a lock to ensure we only try
3299 		 * to do it once
3300 		 */
3301 		static DEFINE_SPINLOCK(lock);
3302 		spin_lock(&lock);
3303 		if (inode_unhashed(inode))
3304 			__insert_inode_hash(inode,
3305 					    inode->i_ino + inode->i_generation);
3306 		spin_unlock(&lock);
3307 	}
3308 
3309 	fh[0] = inode->i_generation;
3310 	fh[1] = inode->i_ino;
3311 	fh[2] = ((__u64)inode->i_ino) >> 32;
3312 
3313 	*len = 3;
3314 	return 1;
3315 }
3316 
3317 static const struct export_operations shmem_export_ops = {
3318 	.get_parent     = shmem_get_parent,
3319 	.encode_fh      = shmem_encode_fh,
3320 	.fh_to_dentry	= shmem_fh_to_dentry,
3321 };
3322 
3323 enum shmem_param {
3324 	Opt_gid,
3325 	Opt_huge,
3326 	Opt_mode,
3327 	Opt_mpol,
3328 	Opt_nr_blocks,
3329 	Opt_nr_inodes,
3330 	Opt_size,
3331 	Opt_uid,
3332 	Opt_inode32,
3333 	Opt_inode64,
3334 };
3335 
3336 static const struct constant_table shmem_param_enums_huge[] = {
3337 	{"never",	SHMEM_HUGE_NEVER },
3338 	{"always",	SHMEM_HUGE_ALWAYS },
3339 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3340 	{"advise",	SHMEM_HUGE_ADVISE },
3341 	{}
3342 };
3343 
3344 const struct fs_parameter_spec shmem_fs_parameters[] = {
3345 	fsparam_u32   ("gid",		Opt_gid),
3346 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3347 	fsparam_u32oct("mode",		Opt_mode),
3348 	fsparam_string("mpol",		Opt_mpol),
3349 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3350 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3351 	fsparam_string("size",		Opt_size),
3352 	fsparam_u32   ("uid",		Opt_uid),
3353 	fsparam_flag  ("inode32",	Opt_inode32),
3354 	fsparam_flag  ("inode64",	Opt_inode64),
3355 	{}
3356 };
3357 
3358 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3359 {
3360 	struct shmem_options *ctx = fc->fs_private;
3361 	struct fs_parse_result result;
3362 	unsigned long long size;
3363 	char *rest;
3364 	int opt;
3365 
3366 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3367 	if (opt < 0)
3368 		return opt;
3369 
3370 	switch (opt) {
3371 	case Opt_size:
3372 		size = memparse(param->string, &rest);
3373 		if (*rest == '%') {
3374 			size <<= PAGE_SHIFT;
3375 			size *= totalram_pages();
3376 			do_div(size, 100);
3377 			rest++;
3378 		}
3379 		if (*rest)
3380 			goto bad_value;
3381 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3382 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3383 		break;
3384 	case Opt_nr_blocks:
3385 		ctx->blocks = memparse(param->string, &rest);
3386 		if (*rest)
3387 			goto bad_value;
3388 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3389 		break;
3390 	case Opt_nr_inodes:
3391 		ctx->inodes = memparse(param->string, &rest);
3392 		if (*rest)
3393 			goto bad_value;
3394 		ctx->seen |= SHMEM_SEEN_INODES;
3395 		break;
3396 	case Opt_mode:
3397 		ctx->mode = result.uint_32 & 07777;
3398 		break;
3399 	case Opt_uid:
3400 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3401 		if (!uid_valid(ctx->uid))
3402 			goto bad_value;
3403 		break;
3404 	case Opt_gid:
3405 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3406 		if (!gid_valid(ctx->gid))
3407 			goto bad_value;
3408 		break;
3409 	case Opt_huge:
3410 		ctx->huge = result.uint_32;
3411 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3412 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3413 		      has_transparent_hugepage()))
3414 			goto unsupported_parameter;
3415 		ctx->seen |= SHMEM_SEEN_HUGE;
3416 		break;
3417 	case Opt_mpol:
3418 		if (IS_ENABLED(CONFIG_NUMA)) {
3419 			mpol_put(ctx->mpol);
3420 			ctx->mpol = NULL;
3421 			if (mpol_parse_str(param->string, &ctx->mpol))
3422 				goto bad_value;
3423 			break;
3424 		}
3425 		goto unsupported_parameter;
3426 	case Opt_inode32:
3427 		ctx->full_inums = false;
3428 		ctx->seen |= SHMEM_SEEN_INUMS;
3429 		break;
3430 	case Opt_inode64:
3431 		if (sizeof(ino_t) < 8) {
3432 			return invalfc(fc,
3433 				       "Cannot use inode64 with <64bit inums in kernel\n");
3434 		}
3435 		ctx->full_inums = true;
3436 		ctx->seen |= SHMEM_SEEN_INUMS;
3437 		break;
3438 	}
3439 	return 0;
3440 
3441 unsupported_parameter:
3442 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3443 bad_value:
3444 	return invalfc(fc, "Bad value for '%s'", param->key);
3445 }
3446 
3447 static int shmem_parse_options(struct fs_context *fc, void *data)
3448 {
3449 	char *options = data;
3450 
3451 	if (options) {
3452 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3453 		if (err)
3454 			return err;
3455 	}
3456 
3457 	while (options != NULL) {
3458 		char *this_char = options;
3459 		for (;;) {
3460 			/*
3461 			 * NUL-terminate this option: unfortunately,
3462 			 * mount options form a comma-separated list,
3463 			 * but mpol's nodelist may also contain commas.
3464 			 */
3465 			options = strchr(options, ',');
3466 			if (options == NULL)
3467 				break;
3468 			options++;
3469 			if (!isdigit(*options)) {
3470 				options[-1] = '\0';
3471 				break;
3472 			}
3473 		}
3474 		if (*this_char) {
3475 			char *value = strchr(this_char, '=');
3476 			size_t len = 0;
3477 			int err;
3478 
3479 			if (value) {
3480 				*value++ = '\0';
3481 				len = strlen(value);
3482 			}
3483 			err = vfs_parse_fs_string(fc, this_char, value, len);
3484 			if (err < 0)
3485 				return err;
3486 		}
3487 	}
3488 	return 0;
3489 }
3490 
3491 /*
3492  * Reconfigure a shmem filesystem.
3493  *
3494  * Note that we disallow change from limited->unlimited blocks/inodes while any
3495  * are in use; but we must separately disallow unlimited->limited, because in
3496  * that case we have no record of how much is already in use.
3497  */
3498 static int shmem_reconfigure(struct fs_context *fc)
3499 {
3500 	struct shmem_options *ctx = fc->fs_private;
3501 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3502 	unsigned long inodes;
3503 	const char *err;
3504 
3505 	spin_lock(&sbinfo->stat_lock);
3506 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3507 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3508 		if (!sbinfo->max_blocks) {
3509 			err = "Cannot retroactively limit size";
3510 			goto out;
3511 		}
3512 		if (percpu_counter_compare(&sbinfo->used_blocks,
3513 					   ctx->blocks) > 0) {
3514 			err = "Too small a size for current use";
3515 			goto out;
3516 		}
3517 	}
3518 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3519 		if (!sbinfo->max_inodes) {
3520 			err = "Cannot retroactively limit inodes";
3521 			goto out;
3522 		}
3523 		if (ctx->inodes < inodes) {
3524 			err = "Too few inodes for current use";
3525 			goto out;
3526 		}
3527 	}
3528 
3529 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3530 	    sbinfo->next_ino > UINT_MAX) {
3531 		err = "Current inum too high to switch to 32-bit inums";
3532 		goto out;
3533 	}
3534 
3535 	if (ctx->seen & SHMEM_SEEN_HUGE)
3536 		sbinfo->huge = ctx->huge;
3537 	if (ctx->seen & SHMEM_SEEN_INUMS)
3538 		sbinfo->full_inums = ctx->full_inums;
3539 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3540 		sbinfo->max_blocks  = ctx->blocks;
3541 	if (ctx->seen & SHMEM_SEEN_INODES) {
3542 		sbinfo->max_inodes  = ctx->inodes;
3543 		sbinfo->free_inodes = ctx->inodes - inodes;
3544 	}
3545 
3546 	/*
3547 	 * Preserve previous mempolicy unless mpol remount option was specified.
3548 	 */
3549 	if (ctx->mpol) {
3550 		mpol_put(sbinfo->mpol);
3551 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3552 		ctx->mpol = NULL;
3553 	}
3554 	spin_unlock(&sbinfo->stat_lock);
3555 	return 0;
3556 out:
3557 	spin_unlock(&sbinfo->stat_lock);
3558 	return invalfc(fc, "%s", err);
3559 }
3560 
3561 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3562 {
3563 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3564 
3565 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3566 		seq_printf(seq, ",size=%luk",
3567 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3568 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3569 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3570 	if (sbinfo->mode != (0777 | S_ISVTX))
3571 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3572 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3573 		seq_printf(seq, ",uid=%u",
3574 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3575 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3576 		seq_printf(seq, ",gid=%u",
3577 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3578 
3579 	/*
3580 	 * Showing inode{64,32} might be useful even if it's the system default,
3581 	 * since then people don't have to resort to checking both here and
3582 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3583 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3584 	 *
3585 	 * We hide it when inode64 isn't the default and we are using 32-bit
3586 	 * inodes, since that probably just means the feature isn't even under
3587 	 * consideration.
3588 	 *
3589 	 * As such:
3590 	 *
3591 	 *                     +-----------------+-----------------+
3592 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3593 	 *  +------------------+-----------------+-----------------+
3594 	 *  | full_inums=true  | show            | show            |
3595 	 *  | full_inums=false | show            | hide            |
3596 	 *  +------------------+-----------------+-----------------+
3597 	 *
3598 	 */
3599 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3600 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3602 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3603 	if (sbinfo->huge)
3604 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3605 #endif
3606 	shmem_show_mpol(seq, sbinfo->mpol);
3607 	return 0;
3608 }
3609 
3610 #endif /* CONFIG_TMPFS */
3611 
3612 static void shmem_put_super(struct super_block *sb)
3613 {
3614 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3615 
3616 	free_percpu(sbinfo->ino_batch);
3617 	percpu_counter_destroy(&sbinfo->used_blocks);
3618 	mpol_put(sbinfo->mpol);
3619 	kfree(sbinfo);
3620 	sb->s_fs_info = NULL;
3621 }
3622 
3623 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3624 {
3625 	struct shmem_options *ctx = fc->fs_private;
3626 	struct inode *inode;
3627 	struct shmem_sb_info *sbinfo;
3628 	int err = -ENOMEM;
3629 
3630 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3631 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3632 				L1_CACHE_BYTES), GFP_KERNEL);
3633 	if (!sbinfo)
3634 		return -ENOMEM;
3635 
3636 	sb->s_fs_info = sbinfo;
3637 
3638 #ifdef CONFIG_TMPFS
3639 	/*
3640 	 * Per default we only allow half of the physical ram per
3641 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3642 	 * but the internal instance is left unlimited.
3643 	 */
3644 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3645 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3646 			ctx->blocks = shmem_default_max_blocks();
3647 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3648 			ctx->inodes = shmem_default_max_inodes();
3649 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3650 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3651 	} else {
3652 		sb->s_flags |= SB_NOUSER;
3653 	}
3654 	sb->s_export_op = &shmem_export_ops;
3655 	sb->s_flags |= SB_NOSEC;
3656 #else
3657 	sb->s_flags |= SB_NOUSER;
3658 #endif
3659 	sbinfo->max_blocks = ctx->blocks;
3660 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3661 	if (sb->s_flags & SB_KERNMOUNT) {
3662 		sbinfo->ino_batch = alloc_percpu(ino_t);
3663 		if (!sbinfo->ino_batch)
3664 			goto failed;
3665 	}
3666 	sbinfo->uid = ctx->uid;
3667 	sbinfo->gid = ctx->gid;
3668 	sbinfo->full_inums = ctx->full_inums;
3669 	sbinfo->mode = ctx->mode;
3670 	sbinfo->huge = ctx->huge;
3671 	sbinfo->mpol = ctx->mpol;
3672 	ctx->mpol = NULL;
3673 
3674 	spin_lock_init(&sbinfo->stat_lock);
3675 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3676 		goto failed;
3677 	spin_lock_init(&sbinfo->shrinklist_lock);
3678 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3679 
3680 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3681 	sb->s_blocksize = PAGE_SIZE;
3682 	sb->s_blocksize_bits = PAGE_SHIFT;
3683 	sb->s_magic = TMPFS_MAGIC;
3684 	sb->s_op = &shmem_ops;
3685 	sb->s_time_gran = 1;
3686 #ifdef CONFIG_TMPFS_XATTR
3687 	sb->s_xattr = shmem_xattr_handlers;
3688 #endif
3689 #ifdef CONFIG_TMPFS_POSIX_ACL
3690 	sb->s_flags |= SB_POSIXACL;
3691 #endif
3692 	uuid_gen(&sb->s_uuid);
3693 
3694 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3695 	if (!inode)
3696 		goto failed;
3697 	inode->i_uid = sbinfo->uid;
3698 	inode->i_gid = sbinfo->gid;
3699 	sb->s_root = d_make_root(inode);
3700 	if (!sb->s_root)
3701 		goto failed;
3702 	return 0;
3703 
3704 failed:
3705 	shmem_put_super(sb);
3706 	return err;
3707 }
3708 
3709 static int shmem_get_tree(struct fs_context *fc)
3710 {
3711 	return get_tree_nodev(fc, shmem_fill_super);
3712 }
3713 
3714 static void shmem_free_fc(struct fs_context *fc)
3715 {
3716 	struct shmem_options *ctx = fc->fs_private;
3717 
3718 	if (ctx) {
3719 		mpol_put(ctx->mpol);
3720 		kfree(ctx);
3721 	}
3722 }
3723 
3724 static const struct fs_context_operations shmem_fs_context_ops = {
3725 	.free			= shmem_free_fc,
3726 	.get_tree		= shmem_get_tree,
3727 #ifdef CONFIG_TMPFS
3728 	.parse_monolithic	= shmem_parse_options,
3729 	.parse_param		= shmem_parse_one,
3730 	.reconfigure		= shmem_reconfigure,
3731 #endif
3732 };
3733 
3734 static struct kmem_cache *shmem_inode_cachep;
3735 
3736 static struct inode *shmem_alloc_inode(struct super_block *sb)
3737 {
3738 	struct shmem_inode_info *info;
3739 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3740 	if (!info)
3741 		return NULL;
3742 	return &info->vfs_inode;
3743 }
3744 
3745 static void shmem_free_in_core_inode(struct inode *inode)
3746 {
3747 	if (S_ISLNK(inode->i_mode))
3748 		kfree(inode->i_link);
3749 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3750 }
3751 
3752 static void shmem_destroy_inode(struct inode *inode)
3753 {
3754 	if (S_ISREG(inode->i_mode))
3755 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3756 }
3757 
3758 static void shmem_init_inode(void *foo)
3759 {
3760 	struct shmem_inode_info *info = foo;
3761 	inode_init_once(&info->vfs_inode);
3762 }
3763 
3764 static void shmem_init_inodecache(void)
3765 {
3766 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3767 				sizeof(struct shmem_inode_info),
3768 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3769 }
3770 
3771 static void shmem_destroy_inodecache(void)
3772 {
3773 	kmem_cache_destroy(shmem_inode_cachep);
3774 }
3775 
3776 const struct address_space_operations shmem_aops = {
3777 	.writepage	= shmem_writepage,
3778 	.set_page_dirty	= __set_page_dirty_no_writeback,
3779 #ifdef CONFIG_TMPFS
3780 	.write_begin	= shmem_write_begin,
3781 	.write_end	= shmem_write_end,
3782 #endif
3783 #ifdef CONFIG_MIGRATION
3784 	.migratepage	= migrate_page,
3785 #endif
3786 	.error_remove_page = generic_error_remove_page,
3787 };
3788 EXPORT_SYMBOL(shmem_aops);
3789 
3790 static const struct file_operations shmem_file_operations = {
3791 	.mmap		= shmem_mmap,
3792 	.get_unmapped_area = shmem_get_unmapped_area,
3793 #ifdef CONFIG_TMPFS
3794 	.llseek		= shmem_file_llseek,
3795 	.read_iter	= shmem_file_read_iter,
3796 	.write_iter	= generic_file_write_iter,
3797 	.fsync		= noop_fsync,
3798 	.splice_read	= generic_file_splice_read,
3799 	.splice_write	= iter_file_splice_write,
3800 	.fallocate	= shmem_fallocate,
3801 #endif
3802 };
3803 
3804 static const struct inode_operations shmem_inode_operations = {
3805 	.getattr	= shmem_getattr,
3806 	.setattr	= shmem_setattr,
3807 #ifdef CONFIG_TMPFS_XATTR
3808 	.listxattr	= shmem_listxattr,
3809 	.set_acl	= simple_set_acl,
3810 #endif
3811 };
3812 
3813 static const struct inode_operations shmem_dir_inode_operations = {
3814 #ifdef CONFIG_TMPFS
3815 	.create		= shmem_create,
3816 	.lookup		= simple_lookup,
3817 	.link		= shmem_link,
3818 	.unlink		= shmem_unlink,
3819 	.symlink	= shmem_symlink,
3820 	.mkdir		= shmem_mkdir,
3821 	.rmdir		= shmem_rmdir,
3822 	.mknod		= shmem_mknod,
3823 	.rename		= shmem_rename2,
3824 	.tmpfile	= shmem_tmpfile,
3825 #endif
3826 #ifdef CONFIG_TMPFS_XATTR
3827 	.listxattr	= shmem_listxattr,
3828 #endif
3829 #ifdef CONFIG_TMPFS_POSIX_ACL
3830 	.setattr	= shmem_setattr,
3831 	.set_acl	= simple_set_acl,
3832 #endif
3833 };
3834 
3835 static const struct inode_operations shmem_special_inode_operations = {
3836 #ifdef CONFIG_TMPFS_XATTR
3837 	.listxattr	= shmem_listxattr,
3838 #endif
3839 #ifdef CONFIG_TMPFS_POSIX_ACL
3840 	.setattr	= shmem_setattr,
3841 	.set_acl	= simple_set_acl,
3842 #endif
3843 };
3844 
3845 static const struct super_operations shmem_ops = {
3846 	.alloc_inode	= shmem_alloc_inode,
3847 	.free_inode	= shmem_free_in_core_inode,
3848 	.destroy_inode	= shmem_destroy_inode,
3849 #ifdef CONFIG_TMPFS
3850 	.statfs		= shmem_statfs,
3851 	.show_options	= shmem_show_options,
3852 #endif
3853 	.evict_inode	= shmem_evict_inode,
3854 	.drop_inode	= generic_delete_inode,
3855 	.put_super	= shmem_put_super,
3856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3857 	.nr_cached_objects	= shmem_unused_huge_count,
3858 	.free_cached_objects	= shmem_unused_huge_scan,
3859 #endif
3860 };
3861 
3862 static const struct vm_operations_struct shmem_vm_ops = {
3863 	.fault		= shmem_fault,
3864 	.map_pages	= filemap_map_pages,
3865 #ifdef CONFIG_NUMA
3866 	.set_policy     = shmem_set_policy,
3867 	.get_policy     = shmem_get_policy,
3868 #endif
3869 };
3870 
3871 int shmem_init_fs_context(struct fs_context *fc)
3872 {
3873 	struct shmem_options *ctx;
3874 
3875 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3876 	if (!ctx)
3877 		return -ENOMEM;
3878 
3879 	ctx->mode = 0777 | S_ISVTX;
3880 	ctx->uid = current_fsuid();
3881 	ctx->gid = current_fsgid();
3882 
3883 	fc->fs_private = ctx;
3884 	fc->ops = &shmem_fs_context_ops;
3885 	return 0;
3886 }
3887 
3888 static struct file_system_type shmem_fs_type = {
3889 	.owner		= THIS_MODULE,
3890 	.name		= "tmpfs",
3891 	.init_fs_context = shmem_init_fs_context,
3892 #ifdef CONFIG_TMPFS
3893 	.parameters	= shmem_fs_parameters,
3894 #endif
3895 	.kill_sb	= kill_litter_super,
3896 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3897 };
3898 
3899 int __init shmem_init(void)
3900 {
3901 	int error;
3902 
3903 	shmem_init_inodecache();
3904 
3905 	error = register_filesystem(&shmem_fs_type);
3906 	if (error) {
3907 		pr_err("Could not register tmpfs\n");
3908 		goto out2;
3909 	}
3910 
3911 	shm_mnt = kern_mount(&shmem_fs_type);
3912 	if (IS_ERR(shm_mnt)) {
3913 		error = PTR_ERR(shm_mnt);
3914 		pr_err("Could not kern_mount tmpfs\n");
3915 		goto out1;
3916 	}
3917 
3918 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3919 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3920 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3921 	else
3922 		shmem_huge = 0; /* just in case it was patched */
3923 #endif
3924 	return 0;
3925 
3926 out1:
3927 	unregister_filesystem(&shmem_fs_type);
3928 out2:
3929 	shmem_destroy_inodecache();
3930 	shm_mnt = ERR_PTR(error);
3931 	return error;
3932 }
3933 
3934 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3935 static ssize_t shmem_enabled_show(struct kobject *kobj,
3936 				  struct kobj_attribute *attr, char *buf)
3937 {
3938 	static const int values[] = {
3939 		SHMEM_HUGE_ALWAYS,
3940 		SHMEM_HUGE_WITHIN_SIZE,
3941 		SHMEM_HUGE_ADVISE,
3942 		SHMEM_HUGE_NEVER,
3943 		SHMEM_HUGE_DENY,
3944 		SHMEM_HUGE_FORCE,
3945 	};
3946 	int len = 0;
3947 	int i;
3948 
3949 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3950 		len += sysfs_emit_at(buf, len,
3951 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3952 				     i ? " " : "",
3953 				     shmem_format_huge(values[i]));
3954 	}
3955 
3956 	len += sysfs_emit_at(buf, len, "\n");
3957 
3958 	return len;
3959 }
3960 
3961 static ssize_t shmem_enabled_store(struct kobject *kobj,
3962 		struct kobj_attribute *attr, const char *buf, size_t count)
3963 {
3964 	char tmp[16];
3965 	int huge;
3966 
3967 	if (count + 1 > sizeof(tmp))
3968 		return -EINVAL;
3969 	memcpy(tmp, buf, count);
3970 	tmp[count] = '\0';
3971 	if (count && tmp[count - 1] == '\n')
3972 		tmp[count - 1] = '\0';
3973 
3974 	huge = shmem_parse_huge(tmp);
3975 	if (huge == -EINVAL)
3976 		return -EINVAL;
3977 	if (!has_transparent_hugepage() &&
3978 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3979 		return -EINVAL;
3980 
3981 	shmem_huge = huge;
3982 	if (shmem_huge > SHMEM_HUGE_DENY)
3983 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3984 	return count;
3985 }
3986 
3987 struct kobj_attribute shmem_enabled_attr =
3988 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3990 
3991 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3992 bool shmem_huge_enabled(struct vm_area_struct *vma)
3993 {
3994 	struct inode *inode = file_inode(vma->vm_file);
3995 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3996 	loff_t i_size;
3997 	pgoff_t off;
3998 
3999 	if (!transhuge_vma_enabled(vma, vma->vm_flags))
4000 		return false;
4001 	if (shmem_huge == SHMEM_HUGE_FORCE)
4002 		return true;
4003 	if (shmem_huge == SHMEM_HUGE_DENY)
4004 		return false;
4005 	switch (sbinfo->huge) {
4006 		case SHMEM_HUGE_NEVER:
4007 			return false;
4008 		case SHMEM_HUGE_ALWAYS:
4009 			return true;
4010 		case SHMEM_HUGE_WITHIN_SIZE:
4011 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4012 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4013 			if (i_size >= HPAGE_PMD_SIZE &&
4014 					i_size >> PAGE_SHIFT >= off)
4015 				return true;
4016 			fallthrough;
4017 		case SHMEM_HUGE_ADVISE:
4018 			/* TODO: implement fadvise() hints */
4019 			return (vma->vm_flags & VM_HUGEPAGE);
4020 		default:
4021 			VM_BUG_ON(1);
4022 			return false;
4023 	}
4024 }
4025 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4026 
4027 #else /* !CONFIG_SHMEM */
4028 
4029 /*
4030  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4031  *
4032  * This is intended for small system where the benefits of the full
4033  * shmem code (swap-backed and resource-limited) are outweighed by
4034  * their complexity. On systems without swap this code should be
4035  * effectively equivalent, but much lighter weight.
4036  */
4037 
4038 static struct file_system_type shmem_fs_type = {
4039 	.name		= "tmpfs",
4040 	.init_fs_context = ramfs_init_fs_context,
4041 	.parameters	= ramfs_fs_parameters,
4042 	.kill_sb	= kill_litter_super,
4043 	.fs_flags	= FS_USERNS_MOUNT,
4044 };
4045 
4046 int __init shmem_init(void)
4047 {
4048 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4049 
4050 	shm_mnt = kern_mount(&shmem_fs_type);
4051 	BUG_ON(IS_ERR(shm_mnt));
4052 
4053 	return 0;
4054 }
4055 
4056 int shmem_unuse(unsigned int type, bool frontswap,
4057 		unsigned long *fs_pages_to_unuse)
4058 {
4059 	return 0;
4060 }
4061 
4062 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4063 {
4064 	return 0;
4065 }
4066 
4067 void shmem_unlock_mapping(struct address_space *mapping)
4068 {
4069 }
4070 
4071 #ifdef CONFIG_MMU
4072 unsigned long shmem_get_unmapped_area(struct file *file,
4073 				      unsigned long addr, unsigned long len,
4074 				      unsigned long pgoff, unsigned long flags)
4075 {
4076 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4077 }
4078 #endif
4079 
4080 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4081 {
4082 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4083 }
4084 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4085 
4086 #define shmem_vm_ops				generic_file_vm_ops
4087 #define shmem_file_operations			ramfs_file_operations
4088 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4089 #define shmem_acct_size(flags, size)		0
4090 #define shmem_unacct_size(flags, size)		do {} while (0)
4091 
4092 #endif /* CONFIG_SHMEM */
4093 
4094 /* common code */
4095 
4096 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4097 				       unsigned long flags, unsigned int i_flags)
4098 {
4099 	struct inode *inode;
4100 	struct file *res;
4101 
4102 	if (IS_ERR(mnt))
4103 		return ERR_CAST(mnt);
4104 
4105 	if (size < 0 || size > MAX_LFS_FILESIZE)
4106 		return ERR_PTR(-EINVAL);
4107 
4108 	if (shmem_acct_size(flags, size))
4109 		return ERR_PTR(-ENOMEM);
4110 
4111 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4112 				flags);
4113 	if (unlikely(!inode)) {
4114 		shmem_unacct_size(flags, size);
4115 		return ERR_PTR(-ENOSPC);
4116 	}
4117 	inode->i_flags |= i_flags;
4118 	inode->i_size = size;
4119 	clear_nlink(inode);	/* It is unlinked */
4120 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4121 	if (!IS_ERR(res))
4122 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4123 				&shmem_file_operations);
4124 	if (IS_ERR(res))
4125 		iput(inode);
4126 	return res;
4127 }
4128 
4129 /**
4130  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4131  * 	kernel internal.  There will be NO LSM permission checks against the
4132  * 	underlying inode.  So users of this interface must do LSM checks at a
4133  *	higher layer.  The users are the big_key and shm implementations.  LSM
4134  *	checks are provided at the key or shm level rather than the inode.
4135  * @name: name for dentry (to be seen in /proc/<pid>/maps
4136  * @size: size to be set for the file
4137  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4138  */
4139 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4140 {
4141 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4142 }
4143 
4144 /**
4145  * shmem_file_setup - get an unlinked file living in tmpfs
4146  * @name: name for dentry (to be seen in /proc/<pid>/maps
4147  * @size: size to be set for the file
4148  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4149  */
4150 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4151 {
4152 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4153 }
4154 EXPORT_SYMBOL_GPL(shmem_file_setup);
4155 
4156 /**
4157  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4158  * @mnt: the tmpfs mount where the file will be created
4159  * @name: name for dentry (to be seen in /proc/<pid>/maps
4160  * @size: size to be set for the file
4161  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4162  */
4163 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4164 				       loff_t size, unsigned long flags)
4165 {
4166 	return __shmem_file_setup(mnt, name, size, flags, 0);
4167 }
4168 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4169 
4170 /**
4171  * shmem_zero_setup - setup a shared anonymous mapping
4172  * @vma: the vma to be mmapped is prepared by do_mmap
4173  */
4174 int shmem_zero_setup(struct vm_area_struct *vma)
4175 {
4176 	struct file *file;
4177 	loff_t size = vma->vm_end - vma->vm_start;
4178 
4179 	/*
4180 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4181 	 * between XFS directory reading and selinux: since this file is only
4182 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4183 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4184 	 */
4185 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4186 	if (IS_ERR(file))
4187 		return PTR_ERR(file);
4188 
4189 	if (vma->vm_file)
4190 		fput(vma->vm_file);
4191 	vma->vm_file = file;
4192 	vma->vm_ops = &shmem_vm_ops;
4193 
4194 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4195 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4196 			(vma->vm_end & HPAGE_PMD_MASK)) {
4197 		khugepaged_enter(vma, vma->vm_flags);
4198 	}
4199 
4200 	return 0;
4201 }
4202 
4203 /**
4204  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4205  * @mapping:	the page's address_space
4206  * @index:	the page index
4207  * @gfp:	the page allocator flags to use if allocating
4208  *
4209  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4210  * with any new page allocations done using the specified allocation flags.
4211  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4212  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4213  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4214  *
4215  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4216  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4217  */
4218 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4219 					 pgoff_t index, gfp_t gfp)
4220 {
4221 #ifdef CONFIG_SHMEM
4222 	struct inode *inode = mapping->host;
4223 	struct page *page;
4224 	int error;
4225 
4226 	BUG_ON(!shmem_mapping(mapping));
4227 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4228 				  gfp, NULL, NULL, NULL);
4229 	if (error)
4230 		page = ERR_PTR(error);
4231 	else
4232 		unlock_page(page);
4233 	return page;
4234 #else
4235 	/*
4236 	 * The tiny !SHMEM case uses ramfs without swap
4237 	 */
4238 	return read_cache_page_gfp(mapping, index, gfp);
4239 #endif
4240 }
4241 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4242