1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/hugetlb.h> 38 #include <linux/fs_parser.h> 39 #include <linux/swapfile.h> 40 #include "swap.h" 41 42 static struct vfsmount *shm_mnt; 43 44 #ifdef CONFIG_SHMEM 45 /* 46 * This virtual memory filesystem is heavily based on the ramfs. It 47 * extends ramfs by the ability to use swap and honor resource limits 48 * which makes it a completely usable filesystem. 49 */ 50 51 #include <linux/xattr.h> 52 #include <linux/exportfs.h> 53 #include <linux/posix_acl.h> 54 #include <linux/posix_acl_xattr.h> 55 #include <linux/mman.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/backing-dev.h> 59 #include <linux/shmem_fs.h> 60 #include <linux/writeback.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 83 #include "internal.h" 84 85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 87 88 /* Pretend that each entry is of this size in directory's i_size */ 89 #define BOGO_DIRENT_SIZE 20 90 91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 92 #define SHORT_SYMLINK_LEN 128 93 94 /* 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 96 * inode->i_private (with i_rwsem making sure that it has only one user at 97 * a time): we would prefer not to enlarge the shmem inode just for that. 98 */ 99 struct shmem_falloc { 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 101 pgoff_t start; /* start of range currently being fallocated */ 102 pgoff_t next; /* the next page offset to be fallocated */ 103 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 105 }; 106 107 struct shmem_options { 108 unsigned long long blocks; 109 unsigned long long inodes; 110 struct mempolicy *mpol; 111 kuid_t uid; 112 kgid_t gid; 113 umode_t mode; 114 bool full_inums; 115 int huge; 116 int seen; 117 #define SHMEM_SEEN_BLOCKS 1 118 #define SHMEM_SEEN_INODES 2 119 #define SHMEM_SEEN_HUGE 4 120 #define SHMEM_SEEN_INUMS 8 121 }; 122 123 #ifdef CONFIG_TMPFS 124 static unsigned long shmem_default_max_blocks(void) 125 { 126 return totalram_pages() / 2; 127 } 128 129 static unsigned long shmem_default_max_inodes(void) 130 { 131 unsigned long nr_pages = totalram_pages(); 132 133 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 134 } 135 #endif 136 137 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 138 struct folio **foliop, enum sgp_type sgp, 139 gfp_t gfp, struct vm_area_struct *vma, 140 vm_fault_t *fault_type); 141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 142 struct page **pagep, enum sgp_type sgp, 143 gfp_t gfp, struct vm_area_struct *vma, 144 struct vm_fault *vmf, vm_fault_t *fault_type); 145 146 int shmem_getpage(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp) 148 { 149 return shmem_getpage_gfp(inode, index, pagep, sgp, 150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 151 } 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 215 if (shmem_acct_block(info->flags, pages)) 216 return false; 217 218 if (sbinfo->max_blocks) { 219 if (percpu_counter_compare(&sbinfo->used_blocks, 220 sbinfo->max_blocks - pages) > 0) 221 goto unacct; 222 percpu_counter_add(&sbinfo->used_blocks, pages); 223 } 224 225 return true; 226 227 unacct: 228 shmem_unacct_blocks(info->flags, pages); 229 return false; 230 } 231 232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 233 { 234 struct shmem_inode_info *info = SHMEM_I(inode); 235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 236 237 if (sbinfo->max_blocks) 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 shmem_unacct_blocks(info->flags, pages); 240 } 241 242 static const struct super_operations shmem_ops; 243 const struct address_space_operations shmem_aops; 244 static const struct file_operations shmem_file_operations; 245 static const struct inode_operations shmem_inode_operations; 246 static const struct inode_operations shmem_dir_inode_operations; 247 static const struct inode_operations shmem_special_inode_operations; 248 static const struct vm_operations_struct shmem_vm_ops; 249 static struct file_system_type shmem_fs_type; 250 251 bool vma_is_shmem(struct vm_area_struct *vma) 252 { 253 return vma->vm_ops == &shmem_vm_ops; 254 } 255 256 static LIST_HEAD(shmem_swaplist); 257 static DEFINE_MUTEX(shmem_swaplist_mutex); 258 259 /* 260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 261 * produces a novel ino for the newly allocated inode. 262 * 263 * It may also be called when making a hard link to permit the space needed by 264 * each dentry. However, in that case, no new inode number is needed since that 265 * internally draws from another pool of inode numbers (currently global 266 * get_next_ino()). This case is indicated by passing NULL as inop. 267 */ 268 #define SHMEM_INO_BATCH 1024 269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 270 { 271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 272 ino_t ino; 273 274 if (!(sb->s_flags & SB_KERNMOUNT)) { 275 raw_spin_lock(&sbinfo->stat_lock); 276 if (sbinfo->max_inodes) { 277 if (!sbinfo->free_inodes) { 278 raw_spin_unlock(&sbinfo->stat_lock); 279 return -ENOSPC; 280 } 281 sbinfo->free_inodes--; 282 } 283 if (inop) { 284 ino = sbinfo->next_ino++; 285 if (unlikely(is_zero_ino(ino))) 286 ino = sbinfo->next_ino++; 287 if (unlikely(!sbinfo->full_inums && 288 ino > UINT_MAX)) { 289 /* 290 * Emulate get_next_ino uint wraparound for 291 * compatibility 292 */ 293 if (IS_ENABLED(CONFIG_64BIT)) 294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 295 __func__, MINOR(sb->s_dev)); 296 sbinfo->next_ino = 1; 297 ino = sbinfo->next_ino++; 298 } 299 *inop = ino; 300 } 301 raw_spin_unlock(&sbinfo->stat_lock); 302 } else if (inop) { 303 /* 304 * __shmem_file_setup, one of our callers, is lock-free: it 305 * doesn't hold stat_lock in shmem_reserve_inode since 306 * max_inodes is always 0, and is called from potentially 307 * unknown contexts. As such, use a per-cpu batched allocator 308 * which doesn't require the per-sb stat_lock unless we are at 309 * the batch boundary. 310 * 311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 312 * shmem mounts are not exposed to userspace, so we don't need 313 * to worry about things like glibc compatibility. 314 */ 315 ino_t *next_ino; 316 317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 318 ino = *next_ino; 319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 320 raw_spin_lock(&sbinfo->stat_lock); 321 ino = sbinfo->next_ino; 322 sbinfo->next_ino += SHMEM_INO_BATCH; 323 raw_spin_unlock(&sbinfo->stat_lock); 324 if (unlikely(is_zero_ino(ino))) 325 ino++; 326 } 327 *inop = ino; 328 *next_ino = ++ino; 329 put_cpu(); 330 } 331 332 return 0; 333 } 334 335 static void shmem_free_inode(struct super_block *sb) 336 { 337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 338 if (sbinfo->max_inodes) { 339 raw_spin_lock(&sbinfo->stat_lock); 340 sbinfo->free_inodes++; 341 raw_spin_unlock(&sbinfo->stat_lock); 342 } 343 } 344 345 /** 346 * shmem_recalc_inode - recalculate the block usage of an inode 347 * @inode: inode to recalc 348 * 349 * We have to calculate the free blocks since the mm can drop 350 * undirtied hole pages behind our back. 351 * 352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 354 * 355 * It has to be called with the spinlock held. 356 */ 357 static void shmem_recalc_inode(struct inode *inode) 358 { 359 struct shmem_inode_info *info = SHMEM_I(inode); 360 long freed; 361 362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 363 if (freed > 0) { 364 info->alloced -= freed; 365 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 366 shmem_inode_unacct_blocks(inode, freed); 367 } 368 } 369 370 bool shmem_charge(struct inode *inode, long pages) 371 { 372 struct shmem_inode_info *info = SHMEM_I(inode); 373 unsigned long flags; 374 375 if (!shmem_inode_acct_block(inode, pages)) 376 return false; 377 378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 379 inode->i_mapping->nrpages += pages; 380 381 spin_lock_irqsave(&info->lock, flags); 382 info->alloced += pages; 383 inode->i_blocks += pages * BLOCKS_PER_PAGE; 384 shmem_recalc_inode(inode); 385 spin_unlock_irqrestore(&info->lock, flags); 386 387 return true; 388 } 389 390 void shmem_uncharge(struct inode *inode, long pages) 391 { 392 struct shmem_inode_info *info = SHMEM_I(inode); 393 unsigned long flags; 394 395 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 396 397 spin_lock_irqsave(&info->lock, flags); 398 info->alloced -= pages; 399 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 400 shmem_recalc_inode(inode); 401 spin_unlock_irqrestore(&info->lock, flags); 402 403 shmem_inode_unacct_blocks(inode, pages); 404 } 405 406 /* 407 * Replace item expected in xarray by a new item, while holding xa_lock. 408 */ 409 static int shmem_replace_entry(struct address_space *mapping, 410 pgoff_t index, void *expected, void *replacement) 411 { 412 XA_STATE(xas, &mapping->i_pages, index); 413 void *item; 414 415 VM_BUG_ON(!expected); 416 VM_BUG_ON(!replacement); 417 item = xas_load(&xas); 418 if (item != expected) 419 return -ENOENT; 420 xas_store(&xas, replacement); 421 return 0; 422 } 423 424 /* 425 * Sometimes, before we decide whether to proceed or to fail, we must check 426 * that an entry was not already brought back from swap by a racing thread. 427 * 428 * Checking page is not enough: by the time a SwapCache page is locked, it 429 * might be reused, and again be SwapCache, using the same swap as before. 430 */ 431 static bool shmem_confirm_swap(struct address_space *mapping, 432 pgoff_t index, swp_entry_t swap) 433 { 434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 435 } 436 437 /* 438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 439 * 440 * SHMEM_HUGE_NEVER: 441 * disables huge pages for the mount; 442 * SHMEM_HUGE_ALWAYS: 443 * enables huge pages for the mount; 444 * SHMEM_HUGE_WITHIN_SIZE: 445 * only allocate huge pages if the page will be fully within i_size, 446 * also respect fadvise()/madvise() hints; 447 * SHMEM_HUGE_ADVISE: 448 * only allocate huge pages if requested with fadvise()/madvise(); 449 */ 450 451 #define SHMEM_HUGE_NEVER 0 452 #define SHMEM_HUGE_ALWAYS 1 453 #define SHMEM_HUGE_WITHIN_SIZE 2 454 #define SHMEM_HUGE_ADVISE 3 455 456 /* 457 * Special values. 458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 459 * 460 * SHMEM_HUGE_DENY: 461 * disables huge on shm_mnt and all mounts, for emergency use; 462 * SHMEM_HUGE_FORCE: 463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 464 * 465 */ 466 #define SHMEM_HUGE_DENY (-1) 467 #define SHMEM_HUGE_FORCE (-2) 468 469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 470 /* ifdef here to avoid bloating shmem.o when not necessary */ 471 472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 473 474 bool shmem_is_huge(struct vm_area_struct *vma, 475 struct inode *inode, pgoff_t index) 476 { 477 loff_t i_size; 478 479 if (!S_ISREG(inode->i_mode)) 480 return false; 481 if (shmem_huge == SHMEM_HUGE_DENY) 482 return false; 483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 485 return false; 486 if (shmem_huge == SHMEM_HUGE_FORCE) 487 return true; 488 489 switch (SHMEM_SB(inode->i_sb)->huge) { 490 case SHMEM_HUGE_ALWAYS: 491 return true; 492 case SHMEM_HUGE_WITHIN_SIZE: 493 index = round_up(index + 1, HPAGE_PMD_NR); 494 i_size = round_up(i_size_read(inode), PAGE_SIZE); 495 if (i_size >> PAGE_SHIFT >= index) 496 return true; 497 fallthrough; 498 case SHMEM_HUGE_ADVISE: 499 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 500 return true; 501 fallthrough; 502 default: 503 return false; 504 } 505 } 506 507 #if defined(CONFIG_SYSFS) 508 static int shmem_parse_huge(const char *str) 509 { 510 if (!strcmp(str, "never")) 511 return SHMEM_HUGE_NEVER; 512 if (!strcmp(str, "always")) 513 return SHMEM_HUGE_ALWAYS; 514 if (!strcmp(str, "within_size")) 515 return SHMEM_HUGE_WITHIN_SIZE; 516 if (!strcmp(str, "advise")) 517 return SHMEM_HUGE_ADVISE; 518 if (!strcmp(str, "deny")) 519 return SHMEM_HUGE_DENY; 520 if (!strcmp(str, "force")) 521 return SHMEM_HUGE_FORCE; 522 return -EINVAL; 523 } 524 #endif 525 526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 527 static const char *shmem_format_huge(int huge) 528 { 529 switch (huge) { 530 case SHMEM_HUGE_NEVER: 531 return "never"; 532 case SHMEM_HUGE_ALWAYS: 533 return "always"; 534 case SHMEM_HUGE_WITHIN_SIZE: 535 return "within_size"; 536 case SHMEM_HUGE_ADVISE: 537 return "advise"; 538 case SHMEM_HUGE_DENY: 539 return "deny"; 540 case SHMEM_HUGE_FORCE: 541 return "force"; 542 default: 543 VM_BUG_ON(1); 544 return "bad_val"; 545 } 546 } 547 #endif 548 549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 550 struct shrink_control *sc, unsigned long nr_to_split) 551 { 552 LIST_HEAD(list), *pos, *next; 553 LIST_HEAD(to_remove); 554 struct inode *inode; 555 struct shmem_inode_info *info; 556 struct folio *folio; 557 unsigned long batch = sc ? sc->nr_to_scan : 128; 558 int split = 0; 559 560 if (list_empty(&sbinfo->shrinklist)) 561 return SHRINK_STOP; 562 563 spin_lock(&sbinfo->shrinklist_lock); 564 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 565 info = list_entry(pos, struct shmem_inode_info, shrinklist); 566 567 /* pin the inode */ 568 inode = igrab(&info->vfs_inode); 569 570 /* inode is about to be evicted */ 571 if (!inode) { 572 list_del_init(&info->shrinklist); 573 goto next; 574 } 575 576 /* Check if there's anything to gain */ 577 if (round_up(inode->i_size, PAGE_SIZE) == 578 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 579 list_move(&info->shrinklist, &to_remove); 580 goto next; 581 } 582 583 list_move(&info->shrinklist, &list); 584 next: 585 sbinfo->shrinklist_len--; 586 if (!--batch) 587 break; 588 } 589 spin_unlock(&sbinfo->shrinklist_lock); 590 591 list_for_each_safe(pos, next, &to_remove) { 592 info = list_entry(pos, struct shmem_inode_info, shrinklist); 593 inode = &info->vfs_inode; 594 list_del_init(&info->shrinklist); 595 iput(inode); 596 } 597 598 list_for_each_safe(pos, next, &list) { 599 int ret; 600 pgoff_t index; 601 602 info = list_entry(pos, struct shmem_inode_info, shrinklist); 603 inode = &info->vfs_inode; 604 605 if (nr_to_split && split >= nr_to_split) 606 goto move_back; 607 608 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 609 folio = filemap_get_folio(inode->i_mapping, index); 610 if (!folio) 611 goto drop; 612 613 /* No huge page at the end of the file: nothing to split */ 614 if (!folio_test_large(folio)) { 615 folio_put(folio); 616 goto drop; 617 } 618 619 /* 620 * Move the inode on the list back to shrinklist if we failed 621 * to lock the page at this time. 622 * 623 * Waiting for the lock may lead to deadlock in the 624 * reclaim path. 625 */ 626 if (!folio_trylock(folio)) { 627 folio_put(folio); 628 goto move_back; 629 } 630 631 ret = split_huge_page(&folio->page); 632 folio_unlock(folio); 633 folio_put(folio); 634 635 /* If split failed move the inode on the list back to shrinklist */ 636 if (ret) 637 goto move_back; 638 639 split++; 640 drop: 641 list_del_init(&info->shrinklist); 642 goto put; 643 move_back: 644 /* 645 * Make sure the inode is either on the global list or deleted 646 * from any local list before iput() since it could be deleted 647 * in another thread once we put the inode (then the local list 648 * is corrupted). 649 */ 650 spin_lock(&sbinfo->shrinklist_lock); 651 list_move(&info->shrinklist, &sbinfo->shrinklist); 652 sbinfo->shrinklist_len++; 653 spin_unlock(&sbinfo->shrinklist_lock); 654 put: 655 iput(inode); 656 } 657 658 return split; 659 } 660 661 static long shmem_unused_huge_scan(struct super_block *sb, 662 struct shrink_control *sc) 663 { 664 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 665 666 if (!READ_ONCE(sbinfo->shrinklist_len)) 667 return SHRINK_STOP; 668 669 return shmem_unused_huge_shrink(sbinfo, sc, 0); 670 } 671 672 static long shmem_unused_huge_count(struct super_block *sb, 673 struct shrink_control *sc) 674 { 675 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 676 return READ_ONCE(sbinfo->shrinklist_len); 677 } 678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 679 680 #define shmem_huge SHMEM_HUGE_DENY 681 682 bool shmem_is_huge(struct vm_area_struct *vma, 683 struct inode *inode, pgoff_t index) 684 { 685 return false; 686 } 687 688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 689 struct shrink_control *sc, unsigned long nr_to_split) 690 { 691 return 0; 692 } 693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 694 695 /* 696 * Like add_to_page_cache_locked, but error if expected item has gone. 697 */ 698 static int shmem_add_to_page_cache(struct folio *folio, 699 struct address_space *mapping, 700 pgoff_t index, void *expected, gfp_t gfp, 701 struct mm_struct *charge_mm) 702 { 703 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 704 long nr = folio_nr_pages(folio); 705 int error; 706 707 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 708 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 709 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 710 VM_BUG_ON(expected && folio_test_large(folio)); 711 712 folio_ref_add(folio, nr); 713 folio->mapping = mapping; 714 folio->index = index; 715 716 if (!folio_test_swapcache(folio)) { 717 error = mem_cgroup_charge(folio, charge_mm, gfp); 718 if (error) { 719 if (folio_test_pmd_mappable(folio)) { 720 count_vm_event(THP_FILE_FALLBACK); 721 count_vm_event(THP_FILE_FALLBACK_CHARGE); 722 } 723 goto error; 724 } 725 } 726 folio_throttle_swaprate(folio, gfp); 727 728 do { 729 xas_lock_irq(&xas); 730 if (expected != xas_find_conflict(&xas)) { 731 xas_set_err(&xas, -EEXIST); 732 goto unlock; 733 } 734 if (expected && xas_find_conflict(&xas)) { 735 xas_set_err(&xas, -EEXIST); 736 goto unlock; 737 } 738 xas_store(&xas, folio); 739 if (xas_error(&xas)) 740 goto unlock; 741 if (folio_test_pmd_mappable(folio)) { 742 count_vm_event(THP_FILE_ALLOC); 743 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 744 } 745 mapping->nrpages += nr; 746 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 747 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 748 unlock: 749 xas_unlock_irq(&xas); 750 } while (xas_nomem(&xas, gfp)); 751 752 if (xas_error(&xas)) { 753 error = xas_error(&xas); 754 goto error; 755 } 756 757 return 0; 758 error: 759 folio->mapping = NULL; 760 folio_ref_sub(folio, nr); 761 return error; 762 } 763 764 /* 765 * Like delete_from_page_cache, but substitutes swap for page. 766 */ 767 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 768 { 769 struct address_space *mapping = page->mapping; 770 int error; 771 772 VM_BUG_ON_PAGE(PageCompound(page), page); 773 774 xa_lock_irq(&mapping->i_pages); 775 error = shmem_replace_entry(mapping, page->index, page, radswap); 776 page->mapping = NULL; 777 mapping->nrpages--; 778 __dec_lruvec_page_state(page, NR_FILE_PAGES); 779 __dec_lruvec_page_state(page, NR_SHMEM); 780 xa_unlock_irq(&mapping->i_pages); 781 put_page(page); 782 BUG_ON(error); 783 } 784 785 /* 786 * Remove swap entry from page cache, free the swap and its page cache. 787 */ 788 static int shmem_free_swap(struct address_space *mapping, 789 pgoff_t index, void *radswap) 790 { 791 void *old; 792 793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 794 if (old != radswap) 795 return -ENOENT; 796 free_swap_and_cache(radix_to_swp_entry(radswap)); 797 return 0; 798 } 799 800 /* 801 * Determine (in bytes) how many of the shmem object's pages mapped by the 802 * given offsets are swapped out. 803 * 804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 805 * as long as the inode doesn't go away and racy results are not a problem. 806 */ 807 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 808 pgoff_t start, pgoff_t end) 809 { 810 XA_STATE(xas, &mapping->i_pages, start); 811 struct page *page; 812 unsigned long swapped = 0; 813 814 rcu_read_lock(); 815 xas_for_each(&xas, page, end - 1) { 816 if (xas_retry(&xas, page)) 817 continue; 818 if (xa_is_value(page)) 819 swapped++; 820 821 if (need_resched()) { 822 xas_pause(&xas); 823 cond_resched_rcu(); 824 } 825 } 826 827 rcu_read_unlock(); 828 829 return swapped << PAGE_SHIFT; 830 } 831 832 /* 833 * Determine (in bytes) how many of the shmem object's pages mapped by the 834 * given vma is swapped out. 835 * 836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 837 * as long as the inode doesn't go away and racy results are not a problem. 838 */ 839 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 840 { 841 struct inode *inode = file_inode(vma->vm_file); 842 struct shmem_inode_info *info = SHMEM_I(inode); 843 struct address_space *mapping = inode->i_mapping; 844 unsigned long swapped; 845 846 /* Be careful as we don't hold info->lock */ 847 swapped = READ_ONCE(info->swapped); 848 849 /* 850 * The easier cases are when the shmem object has nothing in swap, or 851 * the vma maps it whole. Then we can simply use the stats that we 852 * already track. 853 */ 854 if (!swapped) 855 return 0; 856 857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 858 return swapped << PAGE_SHIFT; 859 860 /* Here comes the more involved part */ 861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 862 vma->vm_pgoff + vma_pages(vma)); 863 } 864 865 /* 866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 867 */ 868 void shmem_unlock_mapping(struct address_space *mapping) 869 { 870 struct pagevec pvec; 871 pgoff_t index = 0; 872 873 pagevec_init(&pvec); 874 /* 875 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 876 */ 877 while (!mapping_unevictable(mapping)) { 878 if (!pagevec_lookup(&pvec, mapping, &index)) 879 break; 880 check_move_unevictable_pages(&pvec); 881 pagevec_release(&pvec); 882 cond_resched(); 883 } 884 } 885 886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 887 { 888 struct folio *folio; 889 struct page *page; 890 891 /* 892 * At first avoid shmem_getpage(,,,SGP_READ): that fails 893 * beyond i_size, and reports fallocated pages as holes. 894 */ 895 folio = __filemap_get_folio(inode->i_mapping, index, 896 FGP_ENTRY | FGP_LOCK, 0); 897 if (!xa_is_value(folio)) 898 return folio; 899 /* 900 * But read a page back from swap if any of it is within i_size 901 * (although in some cases this is just a waste of time). 902 */ 903 page = NULL; 904 shmem_getpage(inode, index, &page, SGP_READ); 905 return page ? page_folio(page) : NULL; 906 } 907 908 /* 909 * Remove range of pages and swap entries from page cache, and free them. 910 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 911 */ 912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 913 bool unfalloc) 914 { 915 struct address_space *mapping = inode->i_mapping; 916 struct shmem_inode_info *info = SHMEM_I(inode); 917 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 918 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 919 struct folio_batch fbatch; 920 pgoff_t indices[PAGEVEC_SIZE]; 921 struct folio *folio; 922 bool same_folio; 923 long nr_swaps_freed = 0; 924 pgoff_t index; 925 int i; 926 927 if (lend == -1) 928 end = -1; /* unsigned, so actually very big */ 929 930 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 931 info->fallocend = start; 932 933 folio_batch_init(&fbatch); 934 index = start; 935 while (index < end && find_lock_entries(mapping, index, end - 1, 936 &fbatch, indices)) { 937 for (i = 0; i < folio_batch_count(&fbatch); i++) { 938 folio = fbatch.folios[i]; 939 940 index = indices[i]; 941 942 if (xa_is_value(folio)) { 943 if (unfalloc) 944 continue; 945 nr_swaps_freed += !shmem_free_swap(mapping, 946 index, folio); 947 continue; 948 } 949 index += folio_nr_pages(folio) - 1; 950 951 if (!unfalloc || !folio_test_uptodate(folio)) 952 truncate_inode_folio(mapping, folio); 953 folio_unlock(folio); 954 } 955 folio_batch_remove_exceptionals(&fbatch); 956 folio_batch_release(&fbatch); 957 cond_resched(); 958 index++; 959 } 960 961 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 962 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 963 if (folio) { 964 same_folio = lend < folio_pos(folio) + folio_size(folio); 965 folio_mark_dirty(folio); 966 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 967 start = folio->index + folio_nr_pages(folio); 968 if (same_folio) 969 end = folio->index; 970 } 971 folio_unlock(folio); 972 folio_put(folio); 973 folio = NULL; 974 } 975 976 if (!same_folio) 977 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 978 if (folio) { 979 folio_mark_dirty(folio); 980 if (!truncate_inode_partial_folio(folio, lstart, lend)) 981 end = folio->index; 982 folio_unlock(folio); 983 folio_put(folio); 984 } 985 986 index = start; 987 while (index < end) { 988 cond_resched(); 989 990 if (!find_get_entries(mapping, index, end - 1, &fbatch, 991 indices)) { 992 /* If all gone or hole-punch or unfalloc, we're done */ 993 if (index == start || end != -1) 994 break; 995 /* But if truncating, restart to make sure all gone */ 996 index = start; 997 continue; 998 } 999 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1000 folio = fbatch.folios[i]; 1001 1002 index = indices[i]; 1003 if (xa_is_value(folio)) { 1004 if (unfalloc) 1005 continue; 1006 if (shmem_free_swap(mapping, index, folio)) { 1007 /* Swap was replaced by page: retry */ 1008 index--; 1009 break; 1010 } 1011 nr_swaps_freed++; 1012 continue; 1013 } 1014 1015 folio_lock(folio); 1016 1017 if (!unfalloc || !folio_test_uptodate(folio)) { 1018 if (folio_mapping(folio) != mapping) { 1019 /* Page was replaced by swap: retry */ 1020 folio_unlock(folio); 1021 index--; 1022 break; 1023 } 1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1025 folio); 1026 truncate_inode_folio(mapping, folio); 1027 } 1028 index = folio->index + folio_nr_pages(folio) - 1; 1029 folio_unlock(folio); 1030 } 1031 folio_batch_remove_exceptionals(&fbatch); 1032 folio_batch_release(&fbatch); 1033 index++; 1034 } 1035 1036 spin_lock_irq(&info->lock); 1037 info->swapped -= nr_swaps_freed; 1038 shmem_recalc_inode(inode); 1039 spin_unlock_irq(&info->lock); 1040 } 1041 1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1043 { 1044 shmem_undo_range(inode, lstart, lend, false); 1045 inode->i_ctime = inode->i_mtime = current_time(inode); 1046 } 1047 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1048 1049 static int shmem_getattr(struct user_namespace *mnt_userns, 1050 const struct path *path, struct kstat *stat, 1051 u32 request_mask, unsigned int query_flags) 1052 { 1053 struct inode *inode = path->dentry->d_inode; 1054 struct shmem_inode_info *info = SHMEM_I(inode); 1055 1056 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1057 spin_lock_irq(&info->lock); 1058 shmem_recalc_inode(inode); 1059 spin_unlock_irq(&info->lock); 1060 } 1061 generic_fillattr(&init_user_ns, inode, stat); 1062 1063 if (shmem_is_huge(NULL, inode, 0)) 1064 stat->blksize = HPAGE_PMD_SIZE; 1065 1066 if (request_mask & STATX_BTIME) { 1067 stat->result_mask |= STATX_BTIME; 1068 stat->btime.tv_sec = info->i_crtime.tv_sec; 1069 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int shmem_setattr(struct user_namespace *mnt_userns, 1076 struct dentry *dentry, struct iattr *attr) 1077 { 1078 struct inode *inode = d_inode(dentry); 1079 struct shmem_inode_info *info = SHMEM_I(inode); 1080 int error; 1081 1082 error = setattr_prepare(&init_user_ns, dentry, attr); 1083 if (error) 1084 return error; 1085 1086 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1087 loff_t oldsize = inode->i_size; 1088 loff_t newsize = attr->ia_size; 1089 1090 /* protected by i_rwsem */ 1091 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1092 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1093 return -EPERM; 1094 1095 if (newsize != oldsize) { 1096 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1097 oldsize, newsize); 1098 if (error) 1099 return error; 1100 i_size_write(inode, newsize); 1101 inode->i_ctime = inode->i_mtime = current_time(inode); 1102 } 1103 if (newsize <= oldsize) { 1104 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1105 if (oldsize > holebegin) 1106 unmap_mapping_range(inode->i_mapping, 1107 holebegin, 0, 1); 1108 if (info->alloced) 1109 shmem_truncate_range(inode, 1110 newsize, (loff_t)-1); 1111 /* unmap again to remove racily COWed private pages */ 1112 if (oldsize > holebegin) 1113 unmap_mapping_range(inode->i_mapping, 1114 holebegin, 0, 1); 1115 } 1116 } 1117 1118 setattr_copy(&init_user_ns, inode, attr); 1119 if (attr->ia_valid & ATTR_MODE) 1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1121 return error; 1122 } 1123 1124 static void shmem_evict_inode(struct inode *inode) 1125 { 1126 struct shmem_inode_info *info = SHMEM_I(inode); 1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1128 1129 if (shmem_mapping(inode->i_mapping)) { 1130 shmem_unacct_size(info->flags, inode->i_size); 1131 inode->i_size = 0; 1132 mapping_set_exiting(inode->i_mapping); 1133 shmem_truncate_range(inode, 0, (loff_t)-1); 1134 if (!list_empty(&info->shrinklist)) { 1135 spin_lock(&sbinfo->shrinklist_lock); 1136 if (!list_empty(&info->shrinklist)) { 1137 list_del_init(&info->shrinklist); 1138 sbinfo->shrinklist_len--; 1139 } 1140 spin_unlock(&sbinfo->shrinklist_lock); 1141 } 1142 while (!list_empty(&info->swaplist)) { 1143 /* Wait while shmem_unuse() is scanning this inode... */ 1144 wait_var_event(&info->stop_eviction, 1145 !atomic_read(&info->stop_eviction)); 1146 mutex_lock(&shmem_swaplist_mutex); 1147 /* ...but beware of the race if we peeked too early */ 1148 if (!atomic_read(&info->stop_eviction)) 1149 list_del_init(&info->swaplist); 1150 mutex_unlock(&shmem_swaplist_mutex); 1151 } 1152 } 1153 1154 simple_xattrs_free(&info->xattrs); 1155 WARN_ON(inode->i_blocks); 1156 shmem_free_inode(inode->i_sb); 1157 clear_inode(inode); 1158 } 1159 1160 static int shmem_find_swap_entries(struct address_space *mapping, 1161 pgoff_t start, struct folio_batch *fbatch, 1162 pgoff_t *indices, unsigned int type) 1163 { 1164 XA_STATE(xas, &mapping->i_pages, start); 1165 struct folio *folio; 1166 swp_entry_t entry; 1167 1168 rcu_read_lock(); 1169 xas_for_each(&xas, folio, ULONG_MAX) { 1170 if (xas_retry(&xas, folio)) 1171 continue; 1172 1173 if (!xa_is_value(folio)) 1174 continue; 1175 1176 entry = radix_to_swp_entry(folio); 1177 if (swp_type(entry) != type) 1178 continue; 1179 1180 indices[folio_batch_count(fbatch)] = xas.xa_index; 1181 if (!folio_batch_add(fbatch, folio)) 1182 break; 1183 1184 if (need_resched()) { 1185 xas_pause(&xas); 1186 cond_resched_rcu(); 1187 } 1188 } 1189 rcu_read_unlock(); 1190 1191 return xas.xa_index; 1192 } 1193 1194 /* 1195 * Move the swapped pages for an inode to page cache. Returns the count 1196 * of pages swapped in, or the error in case of failure. 1197 */ 1198 static int shmem_unuse_swap_entries(struct inode *inode, 1199 struct folio_batch *fbatch, pgoff_t *indices) 1200 { 1201 int i = 0; 1202 int ret = 0; 1203 int error = 0; 1204 struct address_space *mapping = inode->i_mapping; 1205 1206 for (i = 0; i < folio_batch_count(fbatch); i++) { 1207 struct folio *folio = fbatch->folios[i]; 1208 1209 if (!xa_is_value(folio)) 1210 continue; 1211 error = shmem_swapin_folio(inode, indices[i], 1212 &folio, SGP_CACHE, 1213 mapping_gfp_mask(mapping), 1214 NULL, NULL); 1215 if (error == 0) { 1216 folio_unlock(folio); 1217 folio_put(folio); 1218 ret++; 1219 } 1220 if (error == -ENOMEM) 1221 break; 1222 error = 0; 1223 } 1224 return error ? error : ret; 1225 } 1226 1227 /* 1228 * If swap found in inode, free it and move page from swapcache to filecache. 1229 */ 1230 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1231 { 1232 struct address_space *mapping = inode->i_mapping; 1233 pgoff_t start = 0; 1234 struct folio_batch fbatch; 1235 pgoff_t indices[PAGEVEC_SIZE]; 1236 int ret = 0; 1237 1238 do { 1239 folio_batch_init(&fbatch); 1240 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1241 if (folio_batch_count(&fbatch) == 0) { 1242 ret = 0; 1243 break; 1244 } 1245 1246 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1247 if (ret < 0) 1248 break; 1249 1250 start = indices[folio_batch_count(&fbatch) - 1]; 1251 } while (true); 1252 1253 return ret; 1254 } 1255 1256 /* 1257 * Read all the shared memory data that resides in the swap 1258 * device 'type' back into memory, so the swap device can be 1259 * unused. 1260 */ 1261 int shmem_unuse(unsigned int type) 1262 { 1263 struct shmem_inode_info *info, *next; 1264 int error = 0; 1265 1266 if (list_empty(&shmem_swaplist)) 1267 return 0; 1268 1269 mutex_lock(&shmem_swaplist_mutex); 1270 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1271 if (!info->swapped) { 1272 list_del_init(&info->swaplist); 1273 continue; 1274 } 1275 /* 1276 * Drop the swaplist mutex while searching the inode for swap; 1277 * but before doing so, make sure shmem_evict_inode() will not 1278 * remove placeholder inode from swaplist, nor let it be freed 1279 * (igrab() would protect from unlink, but not from unmount). 1280 */ 1281 atomic_inc(&info->stop_eviction); 1282 mutex_unlock(&shmem_swaplist_mutex); 1283 1284 error = shmem_unuse_inode(&info->vfs_inode, type); 1285 cond_resched(); 1286 1287 mutex_lock(&shmem_swaplist_mutex); 1288 next = list_next_entry(info, swaplist); 1289 if (!info->swapped) 1290 list_del_init(&info->swaplist); 1291 if (atomic_dec_and_test(&info->stop_eviction)) 1292 wake_up_var(&info->stop_eviction); 1293 if (error) 1294 break; 1295 } 1296 mutex_unlock(&shmem_swaplist_mutex); 1297 1298 return error; 1299 } 1300 1301 /* 1302 * Move the page from the page cache to the swap cache. 1303 */ 1304 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1305 { 1306 struct folio *folio = page_folio(page); 1307 struct shmem_inode_info *info; 1308 struct address_space *mapping; 1309 struct inode *inode; 1310 swp_entry_t swap; 1311 pgoff_t index; 1312 1313 /* 1314 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1315 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1316 * and its shmem_writeback() needs them to be split when swapping. 1317 */ 1318 if (PageTransCompound(page)) { 1319 /* Ensure the subpages are still dirty */ 1320 SetPageDirty(page); 1321 if (split_huge_page(page) < 0) 1322 goto redirty; 1323 ClearPageDirty(page); 1324 } 1325 1326 BUG_ON(!PageLocked(page)); 1327 mapping = page->mapping; 1328 index = page->index; 1329 inode = mapping->host; 1330 info = SHMEM_I(inode); 1331 if (info->flags & VM_LOCKED) 1332 goto redirty; 1333 if (!total_swap_pages) 1334 goto redirty; 1335 1336 /* 1337 * Our capabilities prevent regular writeback or sync from ever calling 1338 * shmem_writepage; but a stacking filesystem might use ->writepage of 1339 * its underlying filesystem, in which case tmpfs should write out to 1340 * swap only in response to memory pressure, and not for the writeback 1341 * threads or sync. 1342 */ 1343 if (!wbc->for_reclaim) { 1344 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1345 goto redirty; 1346 } 1347 1348 /* 1349 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1350 * value into swapfile.c, the only way we can correctly account for a 1351 * fallocated page arriving here is now to initialize it and write it. 1352 * 1353 * That's okay for a page already fallocated earlier, but if we have 1354 * not yet completed the fallocation, then (a) we want to keep track 1355 * of this page in case we have to undo it, and (b) it may not be a 1356 * good idea to continue anyway, once we're pushing into swap. So 1357 * reactivate the page, and let shmem_fallocate() quit when too many. 1358 */ 1359 if (!PageUptodate(page)) { 1360 if (inode->i_private) { 1361 struct shmem_falloc *shmem_falloc; 1362 spin_lock(&inode->i_lock); 1363 shmem_falloc = inode->i_private; 1364 if (shmem_falloc && 1365 !shmem_falloc->waitq && 1366 index >= shmem_falloc->start && 1367 index < shmem_falloc->next) 1368 shmem_falloc->nr_unswapped++; 1369 else 1370 shmem_falloc = NULL; 1371 spin_unlock(&inode->i_lock); 1372 if (shmem_falloc) 1373 goto redirty; 1374 } 1375 clear_highpage(page); 1376 flush_dcache_page(page); 1377 SetPageUptodate(page); 1378 } 1379 1380 swap = folio_alloc_swap(folio); 1381 if (!swap.val) 1382 goto redirty; 1383 1384 /* 1385 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1386 * if it's not already there. Do it now before the page is 1387 * moved to swap cache, when its pagelock no longer protects 1388 * the inode from eviction. But don't unlock the mutex until 1389 * we've incremented swapped, because shmem_unuse_inode() will 1390 * prune a !swapped inode from the swaplist under this mutex. 1391 */ 1392 mutex_lock(&shmem_swaplist_mutex); 1393 if (list_empty(&info->swaplist)) 1394 list_add(&info->swaplist, &shmem_swaplist); 1395 1396 if (add_to_swap_cache(page, swap, 1397 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1398 NULL) == 0) { 1399 spin_lock_irq(&info->lock); 1400 shmem_recalc_inode(inode); 1401 info->swapped++; 1402 spin_unlock_irq(&info->lock); 1403 1404 swap_shmem_alloc(swap); 1405 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1406 1407 mutex_unlock(&shmem_swaplist_mutex); 1408 BUG_ON(page_mapped(page)); 1409 swap_writepage(page, wbc); 1410 return 0; 1411 } 1412 1413 mutex_unlock(&shmem_swaplist_mutex); 1414 put_swap_page(page, swap); 1415 redirty: 1416 set_page_dirty(page); 1417 if (wbc->for_reclaim) 1418 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1419 unlock_page(page); 1420 return 0; 1421 } 1422 1423 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1424 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1425 { 1426 char buffer[64]; 1427 1428 if (!mpol || mpol->mode == MPOL_DEFAULT) 1429 return; /* show nothing */ 1430 1431 mpol_to_str(buffer, sizeof(buffer), mpol); 1432 1433 seq_printf(seq, ",mpol=%s", buffer); 1434 } 1435 1436 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1437 { 1438 struct mempolicy *mpol = NULL; 1439 if (sbinfo->mpol) { 1440 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1441 mpol = sbinfo->mpol; 1442 mpol_get(mpol); 1443 raw_spin_unlock(&sbinfo->stat_lock); 1444 } 1445 return mpol; 1446 } 1447 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1448 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1449 { 1450 } 1451 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1452 { 1453 return NULL; 1454 } 1455 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1456 #ifndef CONFIG_NUMA 1457 #define vm_policy vm_private_data 1458 #endif 1459 1460 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1461 struct shmem_inode_info *info, pgoff_t index) 1462 { 1463 /* Create a pseudo vma that just contains the policy */ 1464 vma_init(vma, NULL); 1465 /* Bias interleave by inode number to distribute better across nodes */ 1466 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1467 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1468 } 1469 1470 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1471 { 1472 /* Drop reference taken by mpol_shared_policy_lookup() */ 1473 mpol_cond_put(vma->vm_policy); 1474 } 1475 1476 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1477 struct shmem_inode_info *info, pgoff_t index) 1478 { 1479 struct vm_area_struct pvma; 1480 struct page *page; 1481 struct vm_fault vmf = { 1482 .vma = &pvma, 1483 }; 1484 1485 shmem_pseudo_vma_init(&pvma, info, index); 1486 page = swap_cluster_readahead(swap, gfp, &vmf); 1487 shmem_pseudo_vma_destroy(&pvma); 1488 1489 return page; 1490 } 1491 1492 /* 1493 * Make sure huge_gfp is always more limited than limit_gfp. 1494 * Some of the flags set permissions, while others set limitations. 1495 */ 1496 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1497 { 1498 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1499 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1500 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1501 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1502 1503 /* Allow allocations only from the originally specified zones. */ 1504 result |= zoneflags; 1505 1506 /* 1507 * Minimize the result gfp by taking the union with the deny flags, 1508 * and the intersection of the allow flags. 1509 */ 1510 result |= (limit_gfp & denyflags); 1511 result |= (huge_gfp & limit_gfp) & allowflags; 1512 1513 return result; 1514 } 1515 1516 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1517 struct shmem_inode_info *info, pgoff_t index) 1518 { 1519 struct vm_area_struct pvma; 1520 struct address_space *mapping = info->vfs_inode.i_mapping; 1521 pgoff_t hindex; 1522 struct folio *folio; 1523 1524 hindex = round_down(index, HPAGE_PMD_NR); 1525 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1526 XA_PRESENT)) 1527 return NULL; 1528 1529 shmem_pseudo_vma_init(&pvma, info, hindex); 1530 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1531 shmem_pseudo_vma_destroy(&pvma); 1532 if (!folio) 1533 count_vm_event(THP_FILE_FALLBACK); 1534 return folio; 1535 } 1536 1537 static struct folio *shmem_alloc_folio(gfp_t gfp, 1538 struct shmem_inode_info *info, pgoff_t index) 1539 { 1540 struct vm_area_struct pvma; 1541 struct folio *folio; 1542 1543 shmem_pseudo_vma_init(&pvma, info, index); 1544 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1545 shmem_pseudo_vma_destroy(&pvma); 1546 1547 return folio; 1548 } 1549 1550 static struct page *shmem_alloc_page(gfp_t gfp, 1551 struct shmem_inode_info *info, pgoff_t index) 1552 { 1553 return &shmem_alloc_folio(gfp, info, index)->page; 1554 } 1555 1556 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1557 pgoff_t index, bool huge) 1558 { 1559 struct shmem_inode_info *info = SHMEM_I(inode); 1560 struct folio *folio; 1561 int nr; 1562 int err = -ENOSPC; 1563 1564 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1565 huge = false; 1566 nr = huge ? HPAGE_PMD_NR : 1; 1567 1568 if (!shmem_inode_acct_block(inode, nr)) 1569 goto failed; 1570 1571 if (huge) 1572 folio = shmem_alloc_hugefolio(gfp, info, index); 1573 else 1574 folio = shmem_alloc_folio(gfp, info, index); 1575 if (folio) { 1576 __folio_set_locked(folio); 1577 __folio_set_swapbacked(folio); 1578 return folio; 1579 } 1580 1581 err = -ENOMEM; 1582 shmem_inode_unacct_blocks(inode, nr); 1583 failed: 1584 return ERR_PTR(err); 1585 } 1586 1587 /* 1588 * When a page is moved from swapcache to shmem filecache (either by the 1589 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1590 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1591 * ignorance of the mapping it belongs to. If that mapping has special 1592 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1593 * we may need to copy to a suitable page before moving to filecache. 1594 * 1595 * In a future release, this may well be extended to respect cpuset and 1596 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1597 * but for now it is a simple matter of zone. 1598 */ 1599 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1600 { 1601 return folio_zonenum(folio) > gfp_zone(gfp); 1602 } 1603 1604 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1605 struct shmem_inode_info *info, pgoff_t index) 1606 { 1607 struct page *oldpage, *newpage; 1608 struct folio *old, *new; 1609 struct address_space *swap_mapping; 1610 swp_entry_t entry; 1611 pgoff_t swap_index; 1612 int error; 1613 1614 oldpage = *pagep; 1615 entry.val = page_private(oldpage); 1616 swap_index = swp_offset(entry); 1617 swap_mapping = page_mapping(oldpage); 1618 1619 /* 1620 * We have arrived here because our zones are constrained, so don't 1621 * limit chance of success by further cpuset and node constraints. 1622 */ 1623 gfp &= ~GFP_CONSTRAINT_MASK; 1624 newpage = shmem_alloc_page(gfp, info, index); 1625 if (!newpage) 1626 return -ENOMEM; 1627 1628 get_page(newpage); 1629 copy_highpage(newpage, oldpage); 1630 flush_dcache_page(newpage); 1631 1632 __SetPageLocked(newpage); 1633 __SetPageSwapBacked(newpage); 1634 SetPageUptodate(newpage); 1635 set_page_private(newpage, entry.val); 1636 SetPageSwapCache(newpage); 1637 1638 /* 1639 * Our caller will very soon move newpage out of swapcache, but it's 1640 * a nice clean interface for us to replace oldpage by newpage there. 1641 */ 1642 xa_lock_irq(&swap_mapping->i_pages); 1643 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1644 if (!error) { 1645 old = page_folio(oldpage); 1646 new = page_folio(newpage); 1647 mem_cgroup_migrate(old, new); 1648 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1649 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1650 } 1651 xa_unlock_irq(&swap_mapping->i_pages); 1652 1653 if (unlikely(error)) { 1654 /* 1655 * Is this possible? I think not, now that our callers check 1656 * both PageSwapCache and page_private after getting page lock; 1657 * but be defensive. Reverse old to newpage for clear and free. 1658 */ 1659 oldpage = newpage; 1660 } else { 1661 lru_cache_add(newpage); 1662 *pagep = newpage; 1663 } 1664 1665 ClearPageSwapCache(oldpage); 1666 set_page_private(oldpage, 0); 1667 1668 unlock_page(oldpage); 1669 put_page(oldpage); 1670 put_page(oldpage); 1671 return error; 1672 } 1673 1674 /* 1675 * Swap in the page pointed to by *pagep. 1676 * Caller has to make sure that *pagep contains a valid swapped page. 1677 * Returns 0 and the page in pagep if success. On failure, returns the 1678 * error code and NULL in *pagep. 1679 */ 1680 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1681 struct folio **foliop, enum sgp_type sgp, 1682 gfp_t gfp, struct vm_area_struct *vma, 1683 vm_fault_t *fault_type) 1684 { 1685 struct address_space *mapping = inode->i_mapping; 1686 struct shmem_inode_info *info = SHMEM_I(inode); 1687 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1688 struct page *page; 1689 struct folio *folio = NULL; 1690 swp_entry_t swap; 1691 int error; 1692 1693 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1694 swap = radix_to_swp_entry(*foliop); 1695 *foliop = NULL; 1696 1697 /* Look it up and read it in.. */ 1698 page = lookup_swap_cache(swap, NULL, 0); 1699 if (!page) { 1700 /* Or update major stats only when swapin succeeds?? */ 1701 if (fault_type) { 1702 *fault_type |= VM_FAULT_MAJOR; 1703 count_vm_event(PGMAJFAULT); 1704 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1705 } 1706 /* Here we actually start the io */ 1707 page = shmem_swapin(swap, gfp, info, index); 1708 if (!page) { 1709 error = -ENOMEM; 1710 goto failed; 1711 } 1712 } 1713 folio = page_folio(page); 1714 1715 /* We have to do this with page locked to prevent races */ 1716 folio_lock(folio); 1717 if (!folio_test_swapcache(folio) || 1718 folio_swap_entry(folio).val != swap.val || 1719 !shmem_confirm_swap(mapping, index, swap)) { 1720 error = -EEXIST; 1721 goto unlock; 1722 } 1723 if (!folio_test_uptodate(folio)) { 1724 error = -EIO; 1725 goto failed; 1726 } 1727 folio_wait_writeback(folio); 1728 1729 /* 1730 * Some architectures may have to restore extra metadata to the 1731 * folio after reading from swap. 1732 */ 1733 arch_swap_restore(swap, folio); 1734 1735 if (shmem_should_replace_folio(folio, gfp)) { 1736 error = shmem_replace_page(&page, gfp, info, index); 1737 if (error) 1738 goto failed; 1739 } 1740 1741 error = shmem_add_to_page_cache(folio, mapping, index, 1742 swp_to_radix_entry(swap), gfp, 1743 charge_mm); 1744 if (error) 1745 goto failed; 1746 1747 spin_lock_irq(&info->lock); 1748 info->swapped--; 1749 shmem_recalc_inode(inode); 1750 spin_unlock_irq(&info->lock); 1751 1752 if (sgp == SGP_WRITE) 1753 folio_mark_accessed(folio); 1754 1755 delete_from_swap_cache(&folio->page); 1756 folio_mark_dirty(folio); 1757 swap_free(swap); 1758 1759 *foliop = folio; 1760 return 0; 1761 failed: 1762 if (!shmem_confirm_swap(mapping, index, swap)) 1763 error = -EEXIST; 1764 unlock: 1765 if (folio) { 1766 folio_unlock(folio); 1767 folio_put(folio); 1768 } 1769 1770 return error; 1771 } 1772 1773 /* 1774 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1775 * 1776 * If we allocate a new one we do not mark it dirty. That's up to the 1777 * vm. If we swap it in we mark it dirty since we also free the swap 1778 * entry since a page cannot live in both the swap and page cache. 1779 * 1780 * vma, vmf, and fault_type are only supplied by shmem_fault: 1781 * otherwise they are NULL. 1782 */ 1783 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1784 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1785 struct vm_area_struct *vma, struct vm_fault *vmf, 1786 vm_fault_t *fault_type) 1787 { 1788 struct address_space *mapping = inode->i_mapping; 1789 struct shmem_inode_info *info = SHMEM_I(inode); 1790 struct shmem_sb_info *sbinfo; 1791 struct mm_struct *charge_mm; 1792 struct folio *folio; 1793 pgoff_t hindex = index; 1794 gfp_t huge_gfp; 1795 int error; 1796 int once = 0; 1797 int alloced = 0; 1798 1799 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1800 return -EFBIG; 1801 repeat: 1802 if (sgp <= SGP_CACHE && 1803 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1804 return -EINVAL; 1805 } 1806 1807 sbinfo = SHMEM_SB(inode->i_sb); 1808 charge_mm = vma ? vma->vm_mm : NULL; 1809 1810 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1811 if (folio && vma && userfaultfd_minor(vma)) { 1812 if (!xa_is_value(folio)) { 1813 folio_unlock(folio); 1814 folio_put(folio); 1815 } 1816 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1817 return 0; 1818 } 1819 1820 if (xa_is_value(folio)) { 1821 error = shmem_swapin_folio(inode, index, &folio, 1822 sgp, gfp, vma, fault_type); 1823 if (error == -EEXIST) 1824 goto repeat; 1825 1826 *pagep = &folio->page; 1827 return error; 1828 } 1829 1830 if (folio) { 1831 hindex = folio->index; 1832 if (sgp == SGP_WRITE) 1833 folio_mark_accessed(folio); 1834 if (folio_test_uptodate(folio)) 1835 goto out; 1836 /* fallocated page */ 1837 if (sgp != SGP_READ) 1838 goto clear; 1839 folio_unlock(folio); 1840 folio_put(folio); 1841 } 1842 1843 /* 1844 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1845 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1846 */ 1847 *pagep = NULL; 1848 if (sgp == SGP_READ) 1849 return 0; 1850 if (sgp == SGP_NOALLOC) 1851 return -ENOENT; 1852 1853 /* 1854 * Fast cache lookup and swap lookup did not find it: allocate. 1855 */ 1856 1857 if (vma && userfaultfd_missing(vma)) { 1858 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1859 return 0; 1860 } 1861 1862 if (!shmem_is_huge(vma, inode, index)) 1863 goto alloc_nohuge; 1864 1865 huge_gfp = vma_thp_gfp_mask(vma); 1866 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1867 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1868 if (IS_ERR(folio)) { 1869 alloc_nohuge: 1870 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1871 } 1872 if (IS_ERR(folio)) { 1873 int retry = 5; 1874 1875 error = PTR_ERR(folio); 1876 folio = NULL; 1877 if (error != -ENOSPC) 1878 goto unlock; 1879 /* 1880 * Try to reclaim some space by splitting a huge page 1881 * beyond i_size on the filesystem. 1882 */ 1883 while (retry--) { 1884 int ret; 1885 1886 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1887 if (ret == SHRINK_STOP) 1888 break; 1889 if (ret) 1890 goto alloc_nohuge; 1891 } 1892 goto unlock; 1893 } 1894 1895 hindex = round_down(index, folio_nr_pages(folio)); 1896 1897 if (sgp == SGP_WRITE) 1898 __folio_set_referenced(folio); 1899 1900 error = shmem_add_to_page_cache(folio, mapping, hindex, 1901 NULL, gfp & GFP_RECLAIM_MASK, 1902 charge_mm); 1903 if (error) 1904 goto unacct; 1905 folio_add_lru(folio); 1906 1907 spin_lock_irq(&info->lock); 1908 info->alloced += folio_nr_pages(folio); 1909 inode->i_blocks += BLOCKS_PER_PAGE << folio_order(folio); 1910 shmem_recalc_inode(inode); 1911 spin_unlock_irq(&info->lock); 1912 alloced = true; 1913 1914 if (folio_test_pmd_mappable(folio) && 1915 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1916 hindex + HPAGE_PMD_NR - 1) { 1917 /* 1918 * Part of the huge page is beyond i_size: subject 1919 * to shrink under memory pressure. 1920 */ 1921 spin_lock(&sbinfo->shrinklist_lock); 1922 /* 1923 * _careful to defend against unlocked access to 1924 * ->shrink_list in shmem_unused_huge_shrink() 1925 */ 1926 if (list_empty_careful(&info->shrinklist)) { 1927 list_add_tail(&info->shrinklist, 1928 &sbinfo->shrinklist); 1929 sbinfo->shrinklist_len++; 1930 } 1931 spin_unlock(&sbinfo->shrinklist_lock); 1932 } 1933 1934 /* 1935 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1936 */ 1937 if (sgp == SGP_FALLOC) 1938 sgp = SGP_WRITE; 1939 clear: 1940 /* 1941 * Let SGP_WRITE caller clear ends if write does not fill page; 1942 * but SGP_FALLOC on a page fallocated earlier must initialize 1943 * it now, lest undo on failure cancel our earlier guarantee. 1944 */ 1945 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 1946 long i, n = folio_nr_pages(folio); 1947 1948 for (i = 0; i < n; i++) 1949 clear_highpage(folio_page(folio, i)); 1950 flush_dcache_folio(folio); 1951 folio_mark_uptodate(folio); 1952 } 1953 1954 /* Perhaps the file has been truncated since we checked */ 1955 if (sgp <= SGP_CACHE && 1956 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1957 if (alloced) { 1958 folio_clear_dirty(folio); 1959 filemap_remove_folio(folio); 1960 spin_lock_irq(&info->lock); 1961 shmem_recalc_inode(inode); 1962 spin_unlock_irq(&info->lock); 1963 } 1964 error = -EINVAL; 1965 goto unlock; 1966 } 1967 out: 1968 *pagep = folio_page(folio, index - hindex); 1969 return 0; 1970 1971 /* 1972 * Error recovery. 1973 */ 1974 unacct: 1975 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 1976 1977 if (folio_test_large(folio)) { 1978 folio_unlock(folio); 1979 folio_put(folio); 1980 goto alloc_nohuge; 1981 } 1982 unlock: 1983 if (folio) { 1984 folio_unlock(folio); 1985 folio_put(folio); 1986 } 1987 if (error == -ENOSPC && !once++) { 1988 spin_lock_irq(&info->lock); 1989 shmem_recalc_inode(inode); 1990 spin_unlock_irq(&info->lock); 1991 goto repeat; 1992 } 1993 if (error == -EEXIST) 1994 goto repeat; 1995 return error; 1996 } 1997 1998 /* 1999 * This is like autoremove_wake_function, but it removes the wait queue 2000 * entry unconditionally - even if something else had already woken the 2001 * target. 2002 */ 2003 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2004 { 2005 int ret = default_wake_function(wait, mode, sync, key); 2006 list_del_init(&wait->entry); 2007 return ret; 2008 } 2009 2010 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2011 { 2012 struct vm_area_struct *vma = vmf->vma; 2013 struct inode *inode = file_inode(vma->vm_file); 2014 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2015 int err; 2016 vm_fault_t ret = VM_FAULT_LOCKED; 2017 2018 /* 2019 * Trinity finds that probing a hole which tmpfs is punching can 2020 * prevent the hole-punch from ever completing: which in turn 2021 * locks writers out with its hold on i_rwsem. So refrain from 2022 * faulting pages into the hole while it's being punched. Although 2023 * shmem_undo_range() does remove the additions, it may be unable to 2024 * keep up, as each new page needs its own unmap_mapping_range() call, 2025 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2026 * 2027 * It does not matter if we sometimes reach this check just before the 2028 * hole-punch begins, so that one fault then races with the punch: 2029 * we just need to make racing faults a rare case. 2030 * 2031 * The implementation below would be much simpler if we just used a 2032 * standard mutex or completion: but we cannot take i_rwsem in fault, 2033 * and bloating every shmem inode for this unlikely case would be sad. 2034 */ 2035 if (unlikely(inode->i_private)) { 2036 struct shmem_falloc *shmem_falloc; 2037 2038 spin_lock(&inode->i_lock); 2039 shmem_falloc = inode->i_private; 2040 if (shmem_falloc && 2041 shmem_falloc->waitq && 2042 vmf->pgoff >= shmem_falloc->start && 2043 vmf->pgoff < shmem_falloc->next) { 2044 struct file *fpin; 2045 wait_queue_head_t *shmem_falloc_waitq; 2046 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2047 2048 ret = VM_FAULT_NOPAGE; 2049 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2050 if (fpin) 2051 ret = VM_FAULT_RETRY; 2052 2053 shmem_falloc_waitq = shmem_falloc->waitq; 2054 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2055 TASK_UNINTERRUPTIBLE); 2056 spin_unlock(&inode->i_lock); 2057 schedule(); 2058 2059 /* 2060 * shmem_falloc_waitq points into the shmem_fallocate() 2061 * stack of the hole-punching task: shmem_falloc_waitq 2062 * is usually invalid by the time we reach here, but 2063 * finish_wait() does not dereference it in that case; 2064 * though i_lock needed lest racing with wake_up_all(). 2065 */ 2066 spin_lock(&inode->i_lock); 2067 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2068 spin_unlock(&inode->i_lock); 2069 2070 if (fpin) 2071 fput(fpin); 2072 return ret; 2073 } 2074 spin_unlock(&inode->i_lock); 2075 } 2076 2077 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2078 gfp, vma, vmf, &ret); 2079 if (err) 2080 return vmf_error(err); 2081 return ret; 2082 } 2083 2084 unsigned long shmem_get_unmapped_area(struct file *file, 2085 unsigned long uaddr, unsigned long len, 2086 unsigned long pgoff, unsigned long flags) 2087 { 2088 unsigned long (*get_area)(struct file *, 2089 unsigned long, unsigned long, unsigned long, unsigned long); 2090 unsigned long addr; 2091 unsigned long offset; 2092 unsigned long inflated_len; 2093 unsigned long inflated_addr; 2094 unsigned long inflated_offset; 2095 2096 if (len > TASK_SIZE) 2097 return -ENOMEM; 2098 2099 get_area = current->mm->get_unmapped_area; 2100 addr = get_area(file, uaddr, len, pgoff, flags); 2101 2102 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2103 return addr; 2104 if (IS_ERR_VALUE(addr)) 2105 return addr; 2106 if (addr & ~PAGE_MASK) 2107 return addr; 2108 if (addr > TASK_SIZE - len) 2109 return addr; 2110 2111 if (shmem_huge == SHMEM_HUGE_DENY) 2112 return addr; 2113 if (len < HPAGE_PMD_SIZE) 2114 return addr; 2115 if (flags & MAP_FIXED) 2116 return addr; 2117 /* 2118 * Our priority is to support MAP_SHARED mapped hugely; 2119 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2120 * But if caller specified an address hint and we allocated area there 2121 * successfully, respect that as before. 2122 */ 2123 if (uaddr == addr) 2124 return addr; 2125 2126 if (shmem_huge != SHMEM_HUGE_FORCE) { 2127 struct super_block *sb; 2128 2129 if (file) { 2130 VM_BUG_ON(file->f_op != &shmem_file_operations); 2131 sb = file_inode(file)->i_sb; 2132 } else { 2133 /* 2134 * Called directly from mm/mmap.c, or drivers/char/mem.c 2135 * for "/dev/zero", to create a shared anonymous object. 2136 */ 2137 if (IS_ERR(shm_mnt)) 2138 return addr; 2139 sb = shm_mnt->mnt_sb; 2140 } 2141 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2142 return addr; 2143 } 2144 2145 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2146 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2147 return addr; 2148 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2149 return addr; 2150 2151 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2152 if (inflated_len > TASK_SIZE) 2153 return addr; 2154 if (inflated_len < len) 2155 return addr; 2156 2157 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2158 if (IS_ERR_VALUE(inflated_addr)) 2159 return addr; 2160 if (inflated_addr & ~PAGE_MASK) 2161 return addr; 2162 2163 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2164 inflated_addr += offset - inflated_offset; 2165 if (inflated_offset > offset) 2166 inflated_addr += HPAGE_PMD_SIZE; 2167 2168 if (inflated_addr > TASK_SIZE - len) 2169 return addr; 2170 return inflated_addr; 2171 } 2172 2173 #ifdef CONFIG_NUMA 2174 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2175 { 2176 struct inode *inode = file_inode(vma->vm_file); 2177 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2178 } 2179 2180 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2181 unsigned long addr) 2182 { 2183 struct inode *inode = file_inode(vma->vm_file); 2184 pgoff_t index; 2185 2186 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2187 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2188 } 2189 #endif 2190 2191 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2192 { 2193 struct inode *inode = file_inode(file); 2194 struct shmem_inode_info *info = SHMEM_I(inode); 2195 int retval = -ENOMEM; 2196 2197 /* 2198 * What serializes the accesses to info->flags? 2199 * ipc_lock_object() when called from shmctl_do_lock(), 2200 * no serialization needed when called from shm_destroy(). 2201 */ 2202 if (lock && !(info->flags & VM_LOCKED)) { 2203 if (!user_shm_lock(inode->i_size, ucounts)) 2204 goto out_nomem; 2205 info->flags |= VM_LOCKED; 2206 mapping_set_unevictable(file->f_mapping); 2207 } 2208 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2209 user_shm_unlock(inode->i_size, ucounts); 2210 info->flags &= ~VM_LOCKED; 2211 mapping_clear_unevictable(file->f_mapping); 2212 } 2213 retval = 0; 2214 2215 out_nomem: 2216 return retval; 2217 } 2218 2219 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2220 { 2221 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2222 int ret; 2223 2224 ret = seal_check_future_write(info->seals, vma); 2225 if (ret) 2226 return ret; 2227 2228 /* arm64 - allow memory tagging on RAM-based files */ 2229 vma->vm_flags |= VM_MTE_ALLOWED; 2230 2231 file_accessed(file); 2232 vma->vm_ops = &shmem_vm_ops; 2233 return 0; 2234 } 2235 2236 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2237 umode_t mode, dev_t dev, unsigned long flags) 2238 { 2239 struct inode *inode; 2240 struct shmem_inode_info *info; 2241 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2242 ino_t ino; 2243 2244 if (shmem_reserve_inode(sb, &ino)) 2245 return NULL; 2246 2247 inode = new_inode(sb); 2248 if (inode) { 2249 inode->i_ino = ino; 2250 inode_init_owner(&init_user_ns, inode, dir, mode); 2251 inode->i_blocks = 0; 2252 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2253 inode->i_generation = prandom_u32(); 2254 info = SHMEM_I(inode); 2255 memset(info, 0, (char *)inode - (char *)info); 2256 spin_lock_init(&info->lock); 2257 atomic_set(&info->stop_eviction, 0); 2258 info->seals = F_SEAL_SEAL; 2259 info->flags = flags & VM_NORESERVE; 2260 info->i_crtime = inode->i_mtime; 2261 INIT_LIST_HEAD(&info->shrinklist); 2262 INIT_LIST_HEAD(&info->swaplist); 2263 simple_xattrs_init(&info->xattrs); 2264 cache_no_acl(inode); 2265 mapping_set_large_folios(inode->i_mapping); 2266 2267 switch (mode & S_IFMT) { 2268 default: 2269 inode->i_op = &shmem_special_inode_operations; 2270 init_special_inode(inode, mode, dev); 2271 break; 2272 case S_IFREG: 2273 inode->i_mapping->a_ops = &shmem_aops; 2274 inode->i_op = &shmem_inode_operations; 2275 inode->i_fop = &shmem_file_operations; 2276 mpol_shared_policy_init(&info->policy, 2277 shmem_get_sbmpol(sbinfo)); 2278 break; 2279 case S_IFDIR: 2280 inc_nlink(inode); 2281 /* Some things misbehave if size == 0 on a directory */ 2282 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2283 inode->i_op = &shmem_dir_inode_operations; 2284 inode->i_fop = &simple_dir_operations; 2285 break; 2286 case S_IFLNK: 2287 /* 2288 * Must not load anything in the rbtree, 2289 * mpol_free_shared_policy will not be called. 2290 */ 2291 mpol_shared_policy_init(&info->policy, NULL); 2292 break; 2293 } 2294 2295 lockdep_annotate_inode_mutex_key(inode); 2296 } else 2297 shmem_free_inode(sb); 2298 return inode; 2299 } 2300 2301 #ifdef CONFIG_USERFAULTFD 2302 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2303 pmd_t *dst_pmd, 2304 struct vm_area_struct *dst_vma, 2305 unsigned long dst_addr, 2306 unsigned long src_addr, 2307 bool zeropage, bool wp_copy, 2308 struct page **pagep) 2309 { 2310 struct inode *inode = file_inode(dst_vma->vm_file); 2311 struct shmem_inode_info *info = SHMEM_I(inode); 2312 struct address_space *mapping = inode->i_mapping; 2313 gfp_t gfp = mapping_gfp_mask(mapping); 2314 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2315 void *page_kaddr; 2316 struct folio *folio; 2317 struct page *page; 2318 int ret; 2319 pgoff_t max_off; 2320 2321 if (!shmem_inode_acct_block(inode, 1)) { 2322 /* 2323 * We may have got a page, returned -ENOENT triggering a retry, 2324 * and now we find ourselves with -ENOMEM. Release the page, to 2325 * avoid a BUG_ON in our caller. 2326 */ 2327 if (unlikely(*pagep)) { 2328 put_page(*pagep); 2329 *pagep = NULL; 2330 } 2331 return -ENOMEM; 2332 } 2333 2334 if (!*pagep) { 2335 ret = -ENOMEM; 2336 page = shmem_alloc_page(gfp, info, pgoff); 2337 if (!page) 2338 goto out_unacct_blocks; 2339 2340 if (!zeropage) { /* COPY */ 2341 page_kaddr = kmap_atomic(page); 2342 ret = copy_from_user(page_kaddr, 2343 (const void __user *)src_addr, 2344 PAGE_SIZE); 2345 kunmap_atomic(page_kaddr); 2346 2347 /* fallback to copy_from_user outside mmap_lock */ 2348 if (unlikely(ret)) { 2349 *pagep = page; 2350 ret = -ENOENT; 2351 /* don't free the page */ 2352 goto out_unacct_blocks; 2353 } 2354 2355 flush_dcache_page(page); 2356 } else { /* ZEROPAGE */ 2357 clear_user_highpage(page, dst_addr); 2358 } 2359 } else { 2360 page = *pagep; 2361 *pagep = NULL; 2362 } 2363 2364 VM_BUG_ON(PageLocked(page)); 2365 VM_BUG_ON(PageSwapBacked(page)); 2366 __SetPageLocked(page); 2367 __SetPageSwapBacked(page); 2368 __SetPageUptodate(page); 2369 2370 ret = -EFAULT; 2371 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2372 if (unlikely(pgoff >= max_off)) 2373 goto out_release; 2374 2375 folio = page_folio(page); 2376 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2377 gfp & GFP_RECLAIM_MASK, dst_mm); 2378 if (ret) 2379 goto out_release; 2380 2381 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2382 page, true, wp_copy); 2383 if (ret) 2384 goto out_delete_from_cache; 2385 2386 spin_lock_irq(&info->lock); 2387 info->alloced++; 2388 inode->i_blocks += BLOCKS_PER_PAGE; 2389 shmem_recalc_inode(inode); 2390 spin_unlock_irq(&info->lock); 2391 2392 unlock_page(page); 2393 return 0; 2394 out_delete_from_cache: 2395 delete_from_page_cache(page); 2396 out_release: 2397 unlock_page(page); 2398 put_page(page); 2399 out_unacct_blocks: 2400 shmem_inode_unacct_blocks(inode, 1); 2401 return ret; 2402 } 2403 #endif /* CONFIG_USERFAULTFD */ 2404 2405 #ifdef CONFIG_TMPFS 2406 static const struct inode_operations shmem_symlink_inode_operations; 2407 static const struct inode_operations shmem_short_symlink_operations; 2408 2409 #ifdef CONFIG_TMPFS_XATTR 2410 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2411 #else 2412 #define shmem_initxattrs NULL 2413 #endif 2414 2415 static int 2416 shmem_write_begin(struct file *file, struct address_space *mapping, 2417 loff_t pos, unsigned len, 2418 struct page **pagep, void **fsdata) 2419 { 2420 struct inode *inode = mapping->host; 2421 struct shmem_inode_info *info = SHMEM_I(inode); 2422 pgoff_t index = pos >> PAGE_SHIFT; 2423 int ret = 0; 2424 2425 /* i_rwsem is held by caller */ 2426 if (unlikely(info->seals & (F_SEAL_GROW | 2427 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2428 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2429 return -EPERM; 2430 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2431 return -EPERM; 2432 } 2433 2434 ret = shmem_getpage(inode, index, pagep, SGP_WRITE); 2435 2436 if (ret) 2437 return ret; 2438 2439 if (PageHWPoison(*pagep)) { 2440 unlock_page(*pagep); 2441 put_page(*pagep); 2442 *pagep = NULL; 2443 return -EIO; 2444 } 2445 2446 return 0; 2447 } 2448 2449 static int 2450 shmem_write_end(struct file *file, struct address_space *mapping, 2451 loff_t pos, unsigned len, unsigned copied, 2452 struct page *page, void *fsdata) 2453 { 2454 struct inode *inode = mapping->host; 2455 2456 if (pos + copied > inode->i_size) 2457 i_size_write(inode, pos + copied); 2458 2459 if (!PageUptodate(page)) { 2460 struct page *head = compound_head(page); 2461 if (PageTransCompound(page)) { 2462 int i; 2463 2464 for (i = 0; i < HPAGE_PMD_NR; i++) { 2465 if (head + i == page) 2466 continue; 2467 clear_highpage(head + i); 2468 flush_dcache_page(head + i); 2469 } 2470 } 2471 if (copied < PAGE_SIZE) { 2472 unsigned from = pos & (PAGE_SIZE - 1); 2473 zero_user_segments(page, 0, from, 2474 from + copied, PAGE_SIZE); 2475 } 2476 SetPageUptodate(head); 2477 } 2478 set_page_dirty(page); 2479 unlock_page(page); 2480 put_page(page); 2481 2482 return copied; 2483 } 2484 2485 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2486 { 2487 struct file *file = iocb->ki_filp; 2488 struct inode *inode = file_inode(file); 2489 struct address_space *mapping = inode->i_mapping; 2490 pgoff_t index; 2491 unsigned long offset; 2492 int error = 0; 2493 ssize_t retval = 0; 2494 loff_t *ppos = &iocb->ki_pos; 2495 2496 index = *ppos >> PAGE_SHIFT; 2497 offset = *ppos & ~PAGE_MASK; 2498 2499 for (;;) { 2500 struct page *page = NULL; 2501 pgoff_t end_index; 2502 unsigned long nr, ret; 2503 loff_t i_size = i_size_read(inode); 2504 2505 end_index = i_size >> PAGE_SHIFT; 2506 if (index > end_index) 2507 break; 2508 if (index == end_index) { 2509 nr = i_size & ~PAGE_MASK; 2510 if (nr <= offset) 2511 break; 2512 } 2513 2514 error = shmem_getpage(inode, index, &page, SGP_READ); 2515 if (error) { 2516 if (error == -EINVAL) 2517 error = 0; 2518 break; 2519 } 2520 if (page) { 2521 unlock_page(page); 2522 2523 if (PageHWPoison(page)) { 2524 put_page(page); 2525 error = -EIO; 2526 break; 2527 } 2528 } 2529 2530 /* 2531 * We must evaluate after, since reads (unlike writes) 2532 * are called without i_rwsem protection against truncate 2533 */ 2534 nr = PAGE_SIZE; 2535 i_size = i_size_read(inode); 2536 end_index = i_size >> PAGE_SHIFT; 2537 if (index == end_index) { 2538 nr = i_size & ~PAGE_MASK; 2539 if (nr <= offset) { 2540 if (page) 2541 put_page(page); 2542 break; 2543 } 2544 } 2545 nr -= offset; 2546 2547 if (page) { 2548 /* 2549 * If users can be writing to this page using arbitrary 2550 * virtual addresses, take care about potential aliasing 2551 * before reading the page on the kernel side. 2552 */ 2553 if (mapping_writably_mapped(mapping)) 2554 flush_dcache_page(page); 2555 /* 2556 * Mark the page accessed if we read the beginning. 2557 */ 2558 if (!offset) 2559 mark_page_accessed(page); 2560 /* 2561 * Ok, we have the page, and it's up-to-date, so 2562 * now we can copy it to user space... 2563 */ 2564 ret = copy_page_to_iter(page, offset, nr, to); 2565 put_page(page); 2566 2567 } else if (iter_is_iovec(to)) { 2568 /* 2569 * Copy to user tends to be so well optimized, but 2570 * clear_user() not so much, that it is noticeably 2571 * faster to copy the zero page instead of clearing. 2572 */ 2573 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2574 } else { 2575 /* 2576 * But submitting the same page twice in a row to 2577 * splice() - or others? - can result in confusion: 2578 * so don't attempt that optimization on pipes etc. 2579 */ 2580 ret = iov_iter_zero(nr, to); 2581 } 2582 2583 retval += ret; 2584 offset += ret; 2585 index += offset >> PAGE_SHIFT; 2586 offset &= ~PAGE_MASK; 2587 2588 if (!iov_iter_count(to)) 2589 break; 2590 if (ret < nr) { 2591 error = -EFAULT; 2592 break; 2593 } 2594 cond_resched(); 2595 } 2596 2597 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2598 file_accessed(file); 2599 return retval ? retval : error; 2600 } 2601 2602 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2603 { 2604 struct address_space *mapping = file->f_mapping; 2605 struct inode *inode = mapping->host; 2606 2607 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2608 return generic_file_llseek_size(file, offset, whence, 2609 MAX_LFS_FILESIZE, i_size_read(inode)); 2610 if (offset < 0) 2611 return -ENXIO; 2612 2613 inode_lock(inode); 2614 /* We're holding i_rwsem so we can access i_size directly */ 2615 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2616 if (offset >= 0) 2617 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2618 inode_unlock(inode); 2619 return offset; 2620 } 2621 2622 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2623 loff_t len) 2624 { 2625 struct inode *inode = file_inode(file); 2626 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2627 struct shmem_inode_info *info = SHMEM_I(inode); 2628 struct shmem_falloc shmem_falloc; 2629 pgoff_t start, index, end, undo_fallocend; 2630 int error; 2631 2632 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2633 return -EOPNOTSUPP; 2634 2635 inode_lock(inode); 2636 2637 if (mode & FALLOC_FL_PUNCH_HOLE) { 2638 struct address_space *mapping = file->f_mapping; 2639 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2640 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2641 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2642 2643 /* protected by i_rwsem */ 2644 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2645 error = -EPERM; 2646 goto out; 2647 } 2648 2649 shmem_falloc.waitq = &shmem_falloc_waitq; 2650 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2651 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2652 spin_lock(&inode->i_lock); 2653 inode->i_private = &shmem_falloc; 2654 spin_unlock(&inode->i_lock); 2655 2656 if ((u64)unmap_end > (u64)unmap_start) 2657 unmap_mapping_range(mapping, unmap_start, 2658 1 + unmap_end - unmap_start, 0); 2659 shmem_truncate_range(inode, offset, offset + len - 1); 2660 /* No need to unmap again: hole-punching leaves COWed pages */ 2661 2662 spin_lock(&inode->i_lock); 2663 inode->i_private = NULL; 2664 wake_up_all(&shmem_falloc_waitq); 2665 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2666 spin_unlock(&inode->i_lock); 2667 error = 0; 2668 goto out; 2669 } 2670 2671 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2672 error = inode_newsize_ok(inode, offset + len); 2673 if (error) 2674 goto out; 2675 2676 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2677 error = -EPERM; 2678 goto out; 2679 } 2680 2681 start = offset >> PAGE_SHIFT; 2682 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2683 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2684 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2685 error = -ENOSPC; 2686 goto out; 2687 } 2688 2689 shmem_falloc.waitq = NULL; 2690 shmem_falloc.start = start; 2691 shmem_falloc.next = start; 2692 shmem_falloc.nr_falloced = 0; 2693 shmem_falloc.nr_unswapped = 0; 2694 spin_lock(&inode->i_lock); 2695 inode->i_private = &shmem_falloc; 2696 spin_unlock(&inode->i_lock); 2697 2698 /* 2699 * info->fallocend is only relevant when huge pages might be 2700 * involved: to prevent split_huge_page() freeing fallocated 2701 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2702 */ 2703 undo_fallocend = info->fallocend; 2704 if (info->fallocend < end) 2705 info->fallocend = end; 2706 2707 for (index = start; index < end; ) { 2708 struct page *page; 2709 2710 /* 2711 * Good, the fallocate(2) manpage permits EINTR: we may have 2712 * been interrupted because we are using up too much memory. 2713 */ 2714 if (signal_pending(current)) 2715 error = -EINTR; 2716 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2717 error = -ENOMEM; 2718 else 2719 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2720 if (error) { 2721 info->fallocend = undo_fallocend; 2722 /* Remove the !PageUptodate pages we added */ 2723 if (index > start) { 2724 shmem_undo_range(inode, 2725 (loff_t)start << PAGE_SHIFT, 2726 ((loff_t)index << PAGE_SHIFT) - 1, true); 2727 } 2728 goto undone; 2729 } 2730 2731 index++; 2732 /* 2733 * Here is a more important optimization than it appears: 2734 * a second SGP_FALLOC on the same huge page will clear it, 2735 * making it PageUptodate and un-undoable if we fail later. 2736 */ 2737 if (PageTransCompound(page)) { 2738 index = round_up(index, HPAGE_PMD_NR); 2739 /* Beware 32-bit wraparound */ 2740 if (!index) 2741 index--; 2742 } 2743 2744 /* 2745 * Inform shmem_writepage() how far we have reached. 2746 * No need for lock or barrier: we have the page lock. 2747 */ 2748 if (!PageUptodate(page)) 2749 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2750 shmem_falloc.next = index; 2751 2752 /* 2753 * If !PageUptodate, leave it that way so that freeable pages 2754 * can be recognized if we need to rollback on error later. 2755 * But set_page_dirty so that memory pressure will swap rather 2756 * than free the pages we are allocating (and SGP_CACHE pages 2757 * might still be clean: we now need to mark those dirty too). 2758 */ 2759 set_page_dirty(page); 2760 unlock_page(page); 2761 put_page(page); 2762 cond_resched(); 2763 } 2764 2765 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2766 i_size_write(inode, offset + len); 2767 inode->i_ctime = current_time(inode); 2768 undone: 2769 spin_lock(&inode->i_lock); 2770 inode->i_private = NULL; 2771 spin_unlock(&inode->i_lock); 2772 out: 2773 inode_unlock(inode); 2774 return error; 2775 } 2776 2777 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2778 { 2779 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2780 2781 buf->f_type = TMPFS_MAGIC; 2782 buf->f_bsize = PAGE_SIZE; 2783 buf->f_namelen = NAME_MAX; 2784 if (sbinfo->max_blocks) { 2785 buf->f_blocks = sbinfo->max_blocks; 2786 buf->f_bavail = 2787 buf->f_bfree = sbinfo->max_blocks - 2788 percpu_counter_sum(&sbinfo->used_blocks); 2789 } 2790 if (sbinfo->max_inodes) { 2791 buf->f_files = sbinfo->max_inodes; 2792 buf->f_ffree = sbinfo->free_inodes; 2793 } 2794 /* else leave those fields 0 like simple_statfs */ 2795 2796 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2797 2798 return 0; 2799 } 2800 2801 /* 2802 * File creation. Allocate an inode, and we're done.. 2803 */ 2804 static int 2805 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2806 struct dentry *dentry, umode_t mode, dev_t dev) 2807 { 2808 struct inode *inode; 2809 int error = -ENOSPC; 2810 2811 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2812 if (inode) { 2813 error = simple_acl_create(dir, inode); 2814 if (error) 2815 goto out_iput; 2816 error = security_inode_init_security(inode, dir, 2817 &dentry->d_name, 2818 shmem_initxattrs, NULL); 2819 if (error && error != -EOPNOTSUPP) 2820 goto out_iput; 2821 2822 error = 0; 2823 dir->i_size += BOGO_DIRENT_SIZE; 2824 dir->i_ctime = dir->i_mtime = current_time(dir); 2825 d_instantiate(dentry, inode); 2826 dget(dentry); /* Extra count - pin the dentry in core */ 2827 } 2828 return error; 2829 out_iput: 2830 iput(inode); 2831 return error; 2832 } 2833 2834 static int 2835 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2836 struct dentry *dentry, umode_t mode) 2837 { 2838 struct inode *inode; 2839 int error = -ENOSPC; 2840 2841 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2842 if (inode) { 2843 error = security_inode_init_security(inode, dir, 2844 NULL, 2845 shmem_initxattrs, NULL); 2846 if (error && error != -EOPNOTSUPP) 2847 goto out_iput; 2848 error = simple_acl_create(dir, inode); 2849 if (error) 2850 goto out_iput; 2851 d_tmpfile(dentry, inode); 2852 } 2853 return error; 2854 out_iput: 2855 iput(inode); 2856 return error; 2857 } 2858 2859 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2860 struct dentry *dentry, umode_t mode) 2861 { 2862 int error; 2863 2864 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2865 mode | S_IFDIR, 0))) 2866 return error; 2867 inc_nlink(dir); 2868 return 0; 2869 } 2870 2871 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2872 struct dentry *dentry, umode_t mode, bool excl) 2873 { 2874 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2875 } 2876 2877 /* 2878 * Link a file.. 2879 */ 2880 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2881 { 2882 struct inode *inode = d_inode(old_dentry); 2883 int ret = 0; 2884 2885 /* 2886 * No ordinary (disk based) filesystem counts links as inodes; 2887 * but each new link needs a new dentry, pinning lowmem, and 2888 * tmpfs dentries cannot be pruned until they are unlinked. 2889 * But if an O_TMPFILE file is linked into the tmpfs, the 2890 * first link must skip that, to get the accounting right. 2891 */ 2892 if (inode->i_nlink) { 2893 ret = shmem_reserve_inode(inode->i_sb, NULL); 2894 if (ret) 2895 goto out; 2896 } 2897 2898 dir->i_size += BOGO_DIRENT_SIZE; 2899 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2900 inc_nlink(inode); 2901 ihold(inode); /* New dentry reference */ 2902 dget(dentry); /* Extra pinning count for the created dentry */ 2903 d_instantiate(dentry, inode); 2904 out: 2905 return ret; 2906 } 2907 2908 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2909 { 2910 struct inode *inode = d_inode(dentry); 2911 2912 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2913 shmem_free_inode(inode->i_sb); 2914 2915 dir->i_size -= BOGO_DIRENT_SIZE; 2916 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2917 drop_nlink(inode); 2918 dput(dentry); /* Undo the count from "create" - this does all the work */ 2919 return 0; 2920 } 2921 2922 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2923 { 2924 if (!simple_empty(dentry)) 2925 return -ENOTEMPTY; 2926 2927 drop_nlink(d_inode(dentry)); 2928 drop_nlink(dir); 2929 return shmem_unlink(dir, dentry); 2930 } 2931 2932 static int shmem_whiteout(struct user_namespace *mnt_userns, 2933 struct inode *old_dir, struct dentry *old_dentry) 2934 { 2935 struct dentry *whiteout; 2936 int error; 2937 2938 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2939 if (!whiteout) 2940 return -ENOMEM; 2941 2942 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2943 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2944 dput(whiteout); 2945 if (error) 2946 return error; 2947 2948 /* 2949 * Cheat and hash the whiteout while the old dentry is still in 2950 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2951 * 2952 * d_lookup() will consistently find one of them at this point, 2953 * not sure which one, but that isn't even important. 2954 */ 2955 d_rehash(whiteout); 2956 return 0; 2957 } 2958 2959 /* 2960 * The VFS layer already does all the dentry stuff for rename, 2961 * we just have to decrement the usage count for the target if 2962 * it exists so that the VFS layer correctly free's it when it 2963 * gets overwritten. 2964 */ 2965 static int shmem_rename2(struct user_namespace *mnt_userns, 2966 struct inode *old_dir, struct dentry *old_dentry, 2967 struct inode *new_dir, struct dentry *new_dentry, 2968 unsigned int flags) 2969 { 2970 struct inode *inode = d_inode(old_dentry); 2971 int they_are_dirs = S_ISDIR(inode->i_mode); 2972 2973 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2974 return -EINVAL; 2975 2976 if (flags & RENAME_EXCHANGE) 2977 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 2978 2979 if (!simple_empty(new_dentry)) 2980 return -ENOTEMPTY; 2981 2982 if (flags & RENAME_WHITEOUT) { 2983 int error; 2984 2985 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 2986 if (error) 2987 return error; 2988 } 2989 2990 if (d_really_is_positive(new_dentry)) { 2991 (void) shmem_unlink(new_dir, new_dentry); 2992 if (they_are_dirs) { 2993 drop_nlink(d_inode(new_dentry)); 2994 drop_nlink(old_dir); 2995 } 2996 } else if (they_are_dirs) { 2997 drop_nlink(old_dir); 2998 inc_nlink(new_dir); 2999 } 3000 3001 old_dir->i_size -= BOGO_DIRENT_SIZE; 3002 new_dir->i_size += BOGO_DIRENT_SIZE; 3003 old_dir->i_ctime = old_dir->i_mtime = 3004 new_dir->i_ctime = new_dir->i_mtime = 3005 inode->i_ctime = current_time(old_dir); 3006 return 0; 3007 } 3008 3009 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3010 struct dentry *dentry, const char *symname) 3011 { 3012 int error; 3013 int len; 3014 struct inode *inode; 3015 struct page *page; 3016 3017 len = strlen(symname) + 1; 3018 if (len > PAGE_SIZE) 3019 return -ENAMETOOLONG; 3020 3021 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3022 VM_NORESERVE); 3023 if (!inode) 3024 return -ENOSPC; 3025 3026 error = security_inode_init_security(inode, dir, &dentry->d_name, 3027 shmem_initxattrs, NULL); 3028 if (error && error != -EOPNOTSUPP) { 3029 iput(inode); 3030 return error; 3031 } 3032 3033 inode->i_size = len-1; 3034 if (len <= SHORT_SYMLINK_LEN) { 3035 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3036 if (!inode->i_link) { 3037 iput(inode); 3038 return -ENOMEM; 3039 } 3040 inode->i_op = &shmem_short_symlink_operations; 3041 } else { 3042 inode_nohighmem(inode); 3043 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3044 if (error) { 3045 iput(inode); 3046 return error; 3047 } 3048 inode->i_mapping->a_ops = &shmem_aops; 3049 inode->i_op = &shmem_symlink_inode_operations; 3050 memcpy(page_address(page), symname, len); 3051 SetPageUptodate(page); 3052 set_page_dirty(page); 3053 unlock_page(page); 3054 put_page(page); 3055 } 3056 dir->i_size += BOGO_DIRENT_SIZE; 3057 dir->i_ctime = dir->i_mtime = current_time(dir); 3058 d_instantiate(dentry, inode); 3059 dget(dentry); 3060 return 0; 3061 } 3062 3063 static void shmem_put_link(void *arg) 3064 { 3065 mark_page_accessed(arg); 3066 put_page(arg); 3067 } 3068 3069 static const char *shmem_get_link(struct dentry *dentry, 3070 struct inode *inode, 3071 struct delayed_call *done) 3072 { 3073 struct page *page = NULL; 3074 int error; 3075 if (!dentry) { 3076 page = find_get_page(inode->i_mapping, 0); 3077 if (!page) 3078 return ERR_PTR(-ECHILD); 3079 if (PageHWPoison(page) || 3080 !PageUptodate(page)) { 3081 put_page(page); 3082 return ERR_PTR(-ECHILD); 3083 } 3084 } else { 3085 error = shmem_getpage(inode, 0, &page, SGP_READ); 3086 if (error) 3087 return ERR_PTR(error); 3088 if (!page) 3089 return ERR_PTR(-ECHILD); 3090 if (PageHWPoison(page)) { 3091 unlock_page(page); 3092 put_page(page); 3093 return ERR_PTR(-ECHILD); 3094 } 3095 unlock_page(page); 3096 } 3097 set_delayed_call(done, shmem_put_link, page); 3098 return page_address(page); 3099 } 3100 3101 #ifdef CONFIG_TMPFS_XATTR 3102 /* 3103 * Superblocks without xattr inode operations may get some security.* xattr 3104 * support from the LSM "for free". As soon as we have any other xattrs 3105 * like ACLs, we also need to implement the security.* handlers at 3106 * filesystem level, though. 3107 */ 3108 3109 /* 3110 * Callback for security_inode_init_security() for acquiring xattrs. 3111 */ 3112 static int shmem_initxattrs(struct inode *inode, 3113 const struct xattr *xattr_array, 3114 void *fs_info) 3115 { 3116 struct shmem_inode_info *info = SHMEM_I(inode); 3117 const struct xattr *xattr; 3118 struct simple_xattr *new_xattr; 3119 size_t len; 3120 3121 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3122 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3123 if (!new_xattr) 3124 return -ENOMEM; 3125 3126 len = strlen(xattr->name) + 1; 3127 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3128 GFP_KERNEL); 3129 if (!new_xattr->name) { 3130 kvfree(new_xattr); 3131 return -ENOMEM; 3132 } 3133 3134 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3135 XATTR_SECURITY_PREFIX_LEN); 3136 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3137 xattr->name, len); 3138 3139 simple_xattr_list_add(&info->xattrs, new_xattr); 3140 } 3141 3142 return 0; 3143 } 3144 3145 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3146 struct dentry *unused, struct inode *inode, 3147 const char *name, void *buffer, size_t size) 3148 { 3149 struct shmem_inode_info *info = SHMEM_I(inode); 3150 3151 name = xattr_full_name(handler, name); 3152 return simple_xattr_get(&info->xattrs, name, buffer, size); 3153 } 3154 3155 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3156 struct user_namespace *mnt_userns, 3157 struct dentry *unused, struct inode *inode, 3158 const char *name, const void *value, 3159 size_t size, int flags) 3160 { 3161 struct shmem_inode_info *info = SHMEM_I(inode); 3162 3163 name = xattr_full_name(handler, name); 3164 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3165 } 3166 3167 static const struct xattr_handler shmem_security_xattr_handler = { 3168 .prefix = XATTR_SECURITY_PREFIX, 3169 .get = shmem_xattr_handler_get, 3170 .set = shmem_xattr_handler_set, 3171 }; 3172 3173 static const struct xattr_handler shmem_trusted_xattr_handler = { 3174 .prefix = XATTR_TRUSTED_PREFIX, 3175 .get = shmem_xattr_handler_get, 3176 .set = shmem_xattr_handler_set, 3177 }; 3178 3179 static const struct xattr_handler *shmem_xattr_handlers[] = { 3180 #ifdef CONFIG_TMPFS_POSIX_ACL 3181 &posix_acl_access_xattr_handler, 3182 &posix_acl_default_xattr_handler, 3183 #endif 3184 &shmem_security_xattr_handler, 3185 &shmem_trusted_xattr_handler, 3186 NULL 3187 }; 3188 3189 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3190 { 3191 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3192 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3193 } 3194 #endif /* CONFIG_TMPFS_XATTR */ 3195 3196 static const struct inode_operations shmem_short_symlink_operations = { 3197 .getattr = shmem_getattr, 3198 .get_link = simple_get_link, 3199 #ifdef CONFIG_TMPFS_XATTR 3200 .listxattr = shmem_listxattr, 3201 #endif 3202 }; 3203 3204 static const struct inode_operations shmem_symlink_inode_operations = { 3205 .getattr = shmem_getattr, 3206 .get_link = shmem_get_link, 3207 #ifdef CONFIG_TMPFS_XATTR 3208 .listxattr = shmem_listxattr, 3209 #endif 3210 }; 3211 3212 static struct dentry *shmem_get_parent(struct dentry *child) 3213 { 3214 return ERR_PTR(-ESTALE); 3215 } 3216 3217 static int shmem_match(struct inode *ino, void *vfh) 3218 { 3219 __u32 *fh = vfh; 3220 __u64 inum = fh[2]; 3221 inum = (inum << 32) | fh[1]; 3222 return ino->i_ino == inum && fh[0] == ino->i_generation; 3223 } 3224 3225 /* Find any alias of inode, but prefer a hashed alias */ 3226 static struct dentry *shmem_find_alias(struct inode *inode) 3227 { 3228 struct dentry *alias = d_find_alias(inode); 3229 3230 return alias ?: d_find_any_alias(inode); 3231 } 3232 3233 3234 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3235 struct fid *fid, int fh_len, int fh_type) 3236 { 3237 struct inode *inode; 3238 struct dentry *dentry = NULL; 3239 u64 inum; 3240 3241 if (fh_len < 3) 3242 return NULL; 3243 3244 inum = fid->raw[2]; 3245 inum = (inum << 32) | fid->raw[1]; 3246 3247 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3248 shmem_match, fid->raw); 3249 if (inode) { 3250 dentry = shmem_find_alias(inode); 3251 iput(inode); 3252 } 3253 3254 return dentry; 3255 } 3256 3257 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3258 struct inode *parent) 3259 { 3260 if (*len < 3) { 3261 *len = 3; 3262 return FILEID_INVALID; 3263 } 3264 3265 if (inode_unhashed(inode)) { 3266 /* Unfortunately insert_inode_hash is not idempotent, 3267 * so as we hash inodes here rather than at creation 3268 * time, we need a lock to ensure we only try 3269 * to do it once 3270 */ 3271 static DEFINE_SPINLOCK(lock); 3272 spin_lock(&lock); 3273 if (inode_unhashed(inode)) 3274 __insert_inode_hash(inode, 3275 inode->i_ino + inode->i_generation); 3276 spin_unlock(&lock); 3277 } 3278 3279 fh[0] = inode->i_generation; 3280 fh[1] = inode->i_ino; 3281 fh[2] = ((__u64)inode->i_ino) >> 32; 3282 3283 *len = 3; 3284 return 1; 3285 } 3286 3287 static const struct export_operations shmem_export_ops = { 3288 .get_parent = shmem_get_parent, 3289 .encode_fh = shmem_encode_fh, 3290 .fh_to_dentry = shmem_fh_to_dentry, 3291 }; 3292 3293 enum shmem_param { 3294 Opt_gid, 3295 Opt_huge, 3296 Opt_mode, 3297 Opt_mpol, 3298 Opt_nr_blocks, 3299 Opt_nr_inodes, 3300 Opt_size, 3301 Opt_uid, 3302 Opt_inode32, 3303 Opt_inode64, 3304 }; 3305 3306 static const struct constant_table shmem_param_enums_huge[] = { 3307 {"never", SHMEM_HUGE_NEVER }, 3308 {"always", SHMEM_HUGE_ALWAYS }, 3309 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3310 {"advise", SHMEM_HUGE_ADVISE }, 3311 {} 3312 }; 3313 3314 const struct fs_parameter_spec shmem_fs_parameters[] = { 3315 fsparam_u32 ("gid", Opt_gid), 3316 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3317 fsparam_u32oct("mode", Opt_mode), 3318 fsparam_string("mpol", Opt_mpol), 3319 fsparam_string("nr_blocks", Opt_nr_blocks), 3320 fsparam_string("nr_inodes", Opt_nr_inodes), 3321 fsparam_string("size", Opt_size), 3322 fsparam_u32 ("uid", Opt_uid), 3323 fsparam_flag ("inode32", Opt_inode32), 3324 fsparam_flag ("inode64", Opt_inode64), 3325 {} 3326 }; 3327 3328 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3329 { 3330 struct shmem_options *ctx = fc->fs_private; 3331 struct fs_parse_result result; 3332 unsigned long long size; 3333 char *rest; 3334 int opt; 3335 3336 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3337 if (opt < 0) 3338 return opt; 3339 3340 switch (opt) { 3341 case Opt_size: 3342 size = memparse(param->string, &rest); 3343 if (*rest == '%') { 3344 size <<= PAGE_SHIFT; 3345 size *= totalram_pages(); 3346 do_div(size, 100); 3347 rest++; 3348 } 3349 if (*rest) 3350 goto bad_value; 3351 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3352 ctx->seen |= SHMEM_SEEN_BLOCKS; 3353 break; 3354 case Opt_nr_blocks: 3355 ctx->blocks = memparse(param->string, &rest); 3356 if (*rest) 3357 goto bad_value; 3358 ctx->seen |= SHMEM_SEEN_BLOCKS; 3359 break; 3360 case Opt_nr_inodes: 3361 ctx->inodes = memparse(param->string, &rest); 3362 if (*rest) 3363 goto bad_value; 3364 ctx->seen |= SHMEM_SEEN_INODES; 3365 break; 3366 case Opt_mode: 3367 ctx->mode = result.uint_32 & 07777; 3368 break; 3369 case Opt_uid: 3370 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3371 if (!uid_valid(ctx->uid)) 3372 goto bad_value; 3373 break; 3374 case Opt_gid: 3375 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3376 if (!gid_valid(ctx->gid)) 3377 goto bad_value; 3378 break; 3379 case Opt_huge: 3380 ctx->huge = result.uint_32; 3381 if (ctx->huge != SHMEM_HUGE_NEVER && 3382 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3383 has_transparent_hugepage())) 3384 goto unsupported_parameter; 3385 ctx->seen |= SHMEM_SEEN_HUGE; 3386 break; 3387 case Opt_mpol: 3388 if (IS_ENABLED(CONFIG_NUMA)) { 3389 mpol_put(ctx->mpol); 3390 ctx->mpol = NULL; 3391 if (mpol_parse_str(param->string, &ctx->mpol)) 3392 goto bad_value; 3393 break; 3394 } 3395 goto unsupported_parameter; 3396 case Opt_inode32: 3397 ctx->full_inums = false; 3398 ctx->seen |= SHMEM_SEEN_INUMS; 3399 break; 3400 case Opt_inode64: 3401 if (sizeof(ino_t) < 8) { 3402 return invalfc(fc, 3403 "Cannot use inode64 with <64bit inums in kernel\n"); 3404 } 3405 ctx->full_inums = true; 3406 ctx->seen |= SHMEM_SEEN_INUMS; 3407 break; 3408 } 3409 return 0; 3410 3411 unsupported_parameter: 3412 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3413 bad_value: 3414 return invalfc(fc, "Bad value for '%s'", param->key); 3415 } 3416 3417 static int shmem_parse_options(struct fs_context *fc, void *data) 3418 { 3419 char *options = data; 3420 3421 if (options) { 3422 int err = security_sb_eat_lsm_opts(options, &fc->security); 3423 if (err) 3424 return err; 3425 } 3426 3427 while (options != NULL) { 3428 char *this_char = options; 3429 for (;;) { 3430 /* 3431 * NUL-terminate this option: unfortunately, 3432 * mount options form a comma-separated list, 3433 * but mpol's nodelist may also contain commas. 3434 */ 3435 options = strchr(options, ','); 3436 if (options == NULL) 3437 break; 3438 options++; 3439 if (!isdigit(*options)) { 3440 options[-1] = '\0'; 3441 break; 3442 } 3443 } 3444 if (*this_char) { 3445 char *value = strchr(this_char, '='); 3446 size_t len = 0; 3447 int err; 3448 3449 if (value) { 3450 *value++ = '\0'; 3451 len = strlen(value); 3452 } 3453 err = vfs_parse_fs_string(fc, this_char, value, len); 3454 if (err < 0) 3455 return err; 3456 } 3457 } 3458 return 0; 3459 } 3460 3461 /* 3462 * Reconfigure a shmem filesystem. 3463 * 3464 * Note that we disallow change from limited->unlimited blocks/inodes while any 3465 * are in use; but we must separately disallow unlimited->limited, because in 3466 * that case we have no record of how much is already in use. 3467 */ 3468 static int shmem_reconfigure(struct fs_context *fc) 3469 { 3470 struct shmem_options *ctx = fc->fs_private; 3471 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3472 unsigned long inodes; 3473 struct mempolicy *mpol = NULL; 3474 const char *err; 3475 3476 raw_spin_lock(&sbinfo->stat_lock); 3477 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3478 if (ctx->blocks > S64_MAX) { 3479 err = "Number of blocks too large"; 3480 goto out; 3481 } 3482 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3483 if (!sbinfo->max_blocks) { 3484 err = "Cannot retroactively limit size"; 3485 goto out; 3486 } 3487 if (percpu_counter_compare(&sbinfo->used_blocks, 3488 ctx->blocks) > 0) { 3489 err = "Too small a size for current use"; 3490 goto out; 3491 } 3492 } 3493 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3494 if (!sbinfo->max_inodes) { 3495 err = "Cannot retroactively limit inodes"; 3496 goto out; 3497 } 3498 if (ctx->inodes < inodes) { 3499 err = "Too few inodes for current use"; 3500 goto out; 3501 } 3502 } 3503 3504 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3505 sbinfo->next_ino > UINT_MAX) { 3506 err = "Current inum too high to switch to 32-bit inums"; 3507 goto out; 3508 } 3509 3510 if (ctx->seen & SHMEM_SEEN_HUGE) 3511 sbinfo->huge = ctx->huge; 3512 if (ctx->seen & SHMEM_SEEN_INUMS) 3513 sbinfo->full_inums = ctx->full_inums; 3514 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3515 sbinfo->max_blocks = ctx->blocks; 3516 if (ctx->seen & SHMEM_SEEN_INODES) { 3517 sbinfo->max_inodes = ctx->inodes; 3518 sbinfo->free_inodes = ctx->inodes - inodes; 3519 } 3520 3521 /* 3522 * Preserve previous mempolicy unless mpol remount option was specified. 3523 */ 3524 if (ctx->mpol) { 3525 mpol = sbinfo->mpol; 3526 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3527 ctx->mpol = NULL; 3528 } 3529 raw_spin_unlock(&sbinfo->stat_lock); 3530 mpol_put(mpol); 3531 return 0; 3532 out: 3533 raw_spin_unlock(&sbinfo->stat_lock); 3534 return invalfc(fc, "%s", err); 3535 } 3536 3537 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3538 { 3539 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3540 3541 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3542 seq_printf(seq, ",size=%luk", 3543 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3544 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3545 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3546 if (sbinfo->mode != (0777 | S_ISVTX)) 3547 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3548 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3549 seq_printf(seq, ",uid=%u", 3550 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3551 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3552 seq_printf(seq, ",gid=%u", 3553 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3554 3555 /* 3556 * Showing inode{64,32} might be useful even if it's the system default, 3557 * since then people don't have to resort to checking both here and 3558 * /proc/config.gz to confirm 64-bit inums were successfully applied 3559 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3560 * 3561 * We hide it when inode64 isn't the default and we are using 32-bit 3562 * inodes, since that probably just means the feature isn't even under 3563 * consideration. 3564 * 3565 * As such: 3566 * 3567 * +-----------------+-----------------+ 3568 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3569 * +------------------+-----------------+-----------------+ 3570 * | full_inums=true | show | show | 3571 * | full_inums=false | show | hide | 3572 * +------------------+-----------------+-----------------+ 3573 * 3574 */ 3575 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3576 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3577 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3578 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3579 if (sbinfo->huge) 3580 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3581 #endif 3582 shmem_show_mpol(seq, sbinfo->mpol); 3583 return 0; 3584 } 3585 3586 #endif /* CONFIG_TMPFS */ 3587 3588 static void shmem_put_super(struct super_block *sb) 3589 { 3590 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3591 3592 free_percpu(sbinfo->ino_batch); 3593 percpu_counter_destroy(&sbinfo->used_blocks); 3594 mpol_put(sbinfo->mpol); 3595 kfree(sbinfo); 3596 sb->s_fs_info = NULL; 3597 } 3598 3599 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3600 { 3601 struct shmem_options *ctx = fc->fs_private; 3602 struct inode *inode; 3603 struct shmem_sb_info *sbinfo; 3604 3605 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3606 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3607 L1_CACHE_BYTES), GFP_KERNEL); 3608 if (!sbinfo) 3609 return -ENOMEM; 3610 3611 sb->s_fs_info = sbinfo; 3612 3613 #ifdef CONFIG_TMPFS 3614 /* 3615 * Per default we only allow half of the physical ram per 3616 * tmpfs instance, limiting inodes to one per page of lowmem; 3617 * but the internal instance is left unlimited. 3618 */ 3619 if (!(sb->s_flags & SB_KERNMOUNT)) { 3620 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3621 ctx->blocks = shmem_default_max_blocks(); 3622 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3623 ctx->inodes = shmem_default_max_inodes(); 3624 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3625 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3626 } else { 3627 sb->s_flags |= SB_NOUSER; 3628 } 3629 sb->s_export_op = &shmem_export_ops; 3630 sb->s_flags |= SB_NOSEC; 3631 #else 3632 sb->s_flags |= SB_NOUSER; 3633 #endif 3634 sbinfo->max_blocks = ctx->blocks; 3635 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3636 if (sb->s_flags & SB_KERNMOUNT) { 3637 sbinfo->ino_batch = alloc_percpu(ino_t); 3638 if (!sbinfo->ino_batch) 3639 goto failed; 3640 } 3641 sbinfo->uid = ctx->uid; 3642 sbinfo->gid = ctx->gid; 3643 sbinfo->full_inums = ctx->full_inums; 3644 sbinfo->mode = ctx->mode; 3645 sbinfo->huge = ctx->huge; 3646 sbinfo->mpol = ctx->mpol; 3647 ctx->mpol = NULL; 3648 3649 raw_spin_lock_init(&sbinfo->stat_lock); 3650 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3651 goto failed; 3652 spin_lock_init(&sbinfo->shrinklist_lock); 3653 INIT_LIST_HEAD(&sbinfo->shrinklist); 3654 3655 sb->s_maxbytes = MAX_LFS_FILESIZE; 3656 sb->s_blocksize = PAGE_SIZE; 3657 sb->s_blocksize_bits = PAGE_SHIFT; 3658 sb->s_magic = TMPFS_MAGIC; 3659 sb->s_op = &shmem_ops; 3660 sb->s_time_gran = 1; 3661 #ifdef CONFIG_TMPFS_XATTR 3662 sb->s_xattr = shmem_xattr_handlers; 3663 #endif 3664 #ifdef CONFIG_TMPFS_POSIX_ACL 3665 sb->s_flags |= SB_POSIXACL; 3666 #endif 3667 uuid_gen(&sb->s_uuid); 3668 3669 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3670 if (!inode) 3671 goto failed; 3672 inode->i_uid = sbinfo->uid; 3673 inode->i_gid = sbinfo->gid; 3674 sb->s_root = d_make_root(inode); 3675 if (!sb->s_root) 3676 goto failed; 3677 return 0; 3678 3679 failed: 3680 shmem_put_super(sb); 3681 return -ENOMEM; 3682 } 3683 3684 static int shmem_get_tree(struct fs_context *fc) 3685 { 3686 return get_tree_nodev(fc, shmem_fill_super); 3687 } 3688 3689 static void shmem_free_fc(struct fs_context *fc) 3690 { 3691 struct shmem_options *ctx = fc->fs_private; 3692 3693 if (ctx) { 3694 mpol_put(ctx->mpol); 3695 kfree(ctx); 3696 } 3697 } 3698 3699 static const struct fs_context_operations shmem_fs_context_ops = { 3700 .free = shmem_free_fc, 3701 .get_tree = shmem_get_tree, 3702 #ifdef CONFIG_TMPFS 3703 .parse_monolithic = shmem_parse_options, 3704 .parse_param = shmem_parse_one, 3705 .reconfigure = shmem_reconfigure, 3706 #endif 3707 }; 3708 3709 static struct kmem_cache *shmem_inode_cachep; 3710 3711 static struct inode *shmem_alloc_inode(struct super_block *sb) 3712 { 3713 struct shmem_inode_info *info; 3714 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3715 if (!info) 3716 return NULL; 3717 return &info->vfs_inode; 3718 } 3719 3720 static void shmem_free_in_core_inode(struct inode *inode) 3721 { 3722 if (S_ISLNK(inode->i_mode)) 3723 kfree(inode->i_link); 3724 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3725 } 3726 3727 static void shmem_destroy_inode(struct inode *inode) 3728 { 3729 if (S_ISREG(inode->i_mode)) 3730 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3731 } 3732 3733 static void shmem_init_inode(void *foo) 3734 { 3735 struct shmem_inode_info *info = foo; 3736 inode_init_once(&info->vfs_inode); 3737 } 3738 3739 static void shmem_init_inodecache(void) 3740 { 3741 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3742 sizeof(struct shmem_inode_info), 3743 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3744 } 3745 3746 static void shmem_destroy_inodecache(void) 3747 { 3748 kmem_cache_destroy(shmem_inode_cachep); 3749 } 3750 3751 /* Keep the page in page cache instead of truncating it */ 3752 static int shmem_error_remove_page(struct address_space *mapping, 3753 struct page *page) 3754 { 3755 return 0; 3756 } 3757 3758 const struct address_space_operations shmem_aops = { 3759 .writepage = shmem_writepage, 3760 .dirty_folio = noop_dirty_folio, 3761 #ifdef CONFIG_TMPFS 3762 .write_begin = shmem_write_begin, 3763 .write_end = shmem_write_end, 3764 #endif 3765 #ifdef CONFIG_MIGRATION 3766 .migratepage = migrate_page, 3767 #endif 3768 .error_remove_page = shmem_error_remove_page, 3769 }; 3770 EXPORT_SYMBOL(shmem_aops); 3771 3772 static const struct file_operations shmem_file_operations = { 3773 .mmap = shmem_mmap, 3774 .get_unmapped_area = shmem_get_unmapped_area, 3775 #ifdef CONFIG_TMPFS 3776 .llseek = shmem_file_llseek, 3777 .read_iter = shmem_file_read_iter, 3778 .write_iter = generic_file_write_iter, 3779 .fsync = noop_fsync, 3780 .splice_read = generic_file_splice_read, 3781 .splice_write = iter_file_splice_write, 3782 .fallocate = shmem_fallocate, 3783 #endif 3784 }; 3785 3786 static const struct inode_operations shmem_inode_operations = { 3787 .getattr = shmem_getattr, 3788 .setattr = shmem_setattr, 3789 #ifdef CONFIG_TMPFS_XATTR 3790 .listxattr = shmem_listxattr, 3791 .set_acl = simple_set_acl, 3792 #endif 3793 }; 3794 3795 static const struct inode_operations shmem_dir_inode_operations = { 3796 #ifdef CONFIG_TMPFS 3797 .getattr = shmem_getattr, 3798 .create = shmem_create, 3799 .lookup = simple_lookup, 3800 .link = shmem_link, 3801 .unlink = shmem_unlink, 3802 .symlink = shmem_symlink, 3803 .mkdir = shmem_mkdir, 3804 .rmdir = shmem_rmdir, 3805 .mknod = shmem_mknod, 3806 .rename = shmem_rename2, 3807 .tmpfile = shmem_tmpfile, 3808 #endif 3809 #ifdef CONFIG_TMPFS_XATTR 3810 .listxattr = shmem_listxattr, 3811 #endif 3812 #ifdef CONFIG_TMPFS_POSIX_ACL 3813 .setattr = shmem_setattr, 3814 .set_acl = simple_set_acl, 3815 #endif 3816 }; 3817 3818 static const struct inode_operations shmem_special_inode_operations = { 3819 .getattr = shmem_getattr, 3820 #ifdef CONFIG_TMPFS_XATTR 3821 .listxattr = shmem_listxattr, 3822 #endif 3823 #ifdef CONFIG_TMPFS_POSIX_ACL 3824 .setattr = shmem_setattr, 3825 .set_acl = simple_set_acl, 3826 #endif 3827 }; 3828 3829 static const struct super_operations shmem_ops = { 3830 .alloc_inode = shmem_alloc_inode, 3831 .free_inode = shmem_free_in_core_inode, 3832 .destroy_inode = shmem_destroy_inode, 3833 #ifdef CONFIG_TMPFS 3834 .statfs = shmem_statfs, 3835 .show_options = shmem_show_options, 3836 #endif 3837 .evict_inode = shmem_evict_inode, 3838 .drop_inode = generic_delete_inode, 3839 .put_super = shmem_put_super, 3840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3841 .nr_cached_objects = shmem_unused_huge_count, 3842 .free_cached_objects = shmem_unused_huge_scan, 3843 #endif 3844 }; 3845 3846 static const struct vm_operations_struct shmem_vm_ops = { 3847 .fault = shmem_fault, 3848 .map_pages = filemap_map_pages, 3849 #ifdef CONFIG_NUMA 3850 .set_policy = shmem_set_policy, 3851 .get_policy = shmem_get_policy, 3852 #endif 3853 }; 3854 3855 int shmem_init_fs_context(struct fs_context *fc) 3856 { 3857 struct shmem_options *ctx; 3858 3859 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3860 if (!ctx) 3861 return -ENOMEM; 3862 3863 ctx->mode = 0777 | S_ISVTX; 3864 ctx->uid = current_fsuid(); 3865 ctx->gid = current_fsgid(); 3866 3867 fc->fs_private = ctx; 3868 fc->ops = &shmem_fs_context_ops; 3869 return 0; 3870 } 3871 3872 static struct file_system_type shmem_fs_type = { 3873 .owner = THIS_MODULE, 3874 .name = "tmpfs", 3875 .init_fs_context = shmem_init_fs_context, 3876 #ifdef CONFIG_TMPFS 3877 .parameters = shmem_fs_parameters, 3878 #endif 3879 .kill_sb = kill_litter_super, 3880 .fs_flags = FS_USERNS_MOUNT, 3881 }; 3882 3883 void __init shmem_init(void) 3884 { 3885 int error; 3886 3887 shmem_init_inodecache(); 3888 3889 error = register_filesystem(&shmem_fs_type); 3890 if (error) { 3891 pr_err("Could not register tmpfs\n"); 3892 goto out2; 3893 } 3894 3895 shm_mnt = kern_mount(&shmem_fs_type); 3896 if (IS_ERR(shm_mnt)) { 3897 error = PTR_ERR(shm_mnt); 3898 pr_err("Could not kern_mount tmpfs\n"); 3899 goto out1; 3900 } 3901 3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3903 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3904 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3905 else 3906 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 3907 #endif 3908 return; 3909 3910 out1: 3911 unregister_filesystem(&shmem_fs_type); 3912 out2: 3913 shmem_destroy_inodecache(); 3914 shm_mnt = ERR_PTR(error); 3915 } 3916 3917 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3918 static ssize_t shmem_enabled_show(struct kobject *kobj, 3919 struct kobj_attribute *attr, char *buf) 3920 { 3921 static const int values[] = { 3922 SHMEM_HUGE_ALWAYS, 3923 SHMEM_HUGE_WITHIN_SIZE, 3924 SHMEM_HUGE_ADVISE, 3925 SHMEM_HUGE_NEVER, 3926 SHMEM_HUGE_DENY, 3927 SHMEM_HUGE_FORCE, 3928 }; 3929 int len = 0; 3930 int i; 3931 3932 for (i = 0; i < ARRAY_SIZE(values); i++) { 3933 len += sysfs_emit_at(buf, len, 3934 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3935 i ? " " : "", 3936 shmem_format_huge(values[i])); 3937 } 3938 3939 len += sysfs_emit_at(buf, len, "\n"); 3940 3941 return len; 3942 } 3943 3944 static ssize_t shmem_enabled_store(struct kobject *kobj, 3945 struct kobj_attribute *attr, const char *buf, size_t count) 3946 { 3947 char tmp[16]; 3948 int huge; 3949 3950 if (count + 1 > sizeof(tmp)) 3951 return -EINVAL; 3952 memcpy(tmp, buf, count); 3953 tmp[count] = '\0'; 3954 if (count && tmp[count - 1] == '\n') 3955 tmp[count - 1] = '\0'; 3956 3957 huge = shmem_parse_huge(tmp); 3958 if (huge == -EINVAL) 3959 return -EINVAL; 3960 if (!has_transparent_hugepage() && 3961 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3962 return -EINVAL; 3963 3964 shmem_huge = huge; 3965 if (shmem_huge > SHMEM_HUGE_DENY) 3966 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3967 return count; 3968 } 3969 3970 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 3971 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3972 3973 #else /* !CONFIG_SHMEM */ 3974 3975 /* 3976 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3977 * 3978 * This is intended for small system where the benefits of the full 3979 * shmem code (swap-backed and resource-limited) are outweighed by 3980 * their complexity. On systems without swap this code should be 3981 * effectively equivalent, but much lighter weight. 3982 */ 3983 3984 static struct file_system_type shmem_fs_type = { 3985 .name = "tmpfs", 3986 .init_fs_context = ramfs_init_fs_context, 3987 .parameters = ramfs_fs_parameters, 3988 .kill_sb = kill_litter_super, 3989 .fs_flags = FS_USERNS_MOUNT, 3990 }; 3991 3992 void __init shmem_init(void) 3993 { 3994 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3995 3996 shm_mnt = kern_mount(&shmem_fs_type); 3997 BUG_ON(IS_ERR(shm_mnt)); 3998 } 3999 4000 int shmem_unuse(unsigned int type) 4001 { 4002 return 0; 4003 } 4004 4005 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4006 { 4007 return 0; 4008 } 4009 4010 void shmem_unlock_mapping(struct address_space *mapping) 4011 { 4012 } 4013 4014 #ifdef CONFIG_MMU 4015 unsigned long shmem_get_unmapped_area(struct file *file, 4016 unsigned long addr, unsigned long len, 4017 unsigned long pgoff, unsigned long flags) 4018 { 4019 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4020 } 4021 #endif 4022 4023 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4024 { 4025 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4026 } 4027 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4028 4029 #define shmem_vm_ops generic_file_vm_ops 4030 #define shmem_file_operations ramfs_file_operations 4031 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4032 #define shmem_acct_size(flags, size) 0 4033 #define shmem_unacct_size(flags, size) do {} while (0) 4034 4035 #endif /* CONFIG_SHMEM */ 4036 4037 /* common code */ 4038 4039 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4040 unsigned long flags, unsigned int i_flags) 4041 { 4042 struct inode *inode; 4043 struct file *res; 4044 4045 if (IS_ERR(mnt)) 4046 return ERR_CAST(mnt); 4047 4048 if (size < 0 || size > MAX_LFS_FILESIZE) 4049 return ERR_PTR(-EINVAL); 4050 4051 if (shmem_acct_size(flags, size)) 4052 return ERR_PTR(-ENOMEM); 4053 4054 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4055 flags); 4056 if (unlikely(!inode)) { 4057 shmem_unacct_size(flags, size); 4058 return ERR_PTR(-ENOSPC); 4059 } 4060 inode->i_flags |= i_flags; 4061 inode->i_size = size; 4062 clear_nlink(inode); /* It is unlinked */ 4063 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4064 if (!IS_ERR(res)) 4065 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4066 &shmem_file_operations); 4067 if (IS_ERR(res)) 4068 iput(inode); 4069 return res; 4070 } 4071 4072 /** 4073 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4074 * kernel internal. There will be NO LSM permission checks against the 4075 * underlying inode. So users of this interface must do LSM checks at a 4076 * higher layer. The users are the big_key and shm implementations. LSM 4077 * checks are provided at the key or shm level rather than the inode. 4078 * @name: name for dentry (to be seen in /proc/<pid>/maps 4079 * @size: size to be set for the file 4080 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4081 */ 4082 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4083 { 4084 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4085 } 4086 4087 /** 4088 * shmem_file_setup - get an unlinked file living in tmpfs 4089 * @name: name for dentry (to be seen in /proc/<pid>/maps 4090 * @size: size to be set for the file 4091 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4092 */ 4093 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4094 { 4095 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4096 } 4097 EXPORT_SYMBOL_GPL(shmem_file_setup); 4098 4099 /** 4100 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4101 * @mnt: the tmpfs mount where the file will be created 4102 * @name: name for dentry (to be seen in /proc/<pid>/maps 4103 * @size: size to be set for the file 4104 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4105 */ 4106 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4107 loff_t size, unsigned long flags) 4108 { 4109 return __shmem_file_setup(mnt, name, size, flags, 0); 4110 } 4111 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4112 4113 /** 4114 * shmem_zero_setup - setup a shared anonymous mapping 4115 * @vma: the vma to be mmapped is prepared by do_mmap 4116 */ 4117 int shmem_zero_setup(struct vm_area_struct *vma) 4118 { 4119 struct file *file; 4120 loff_t size = vma->vm_end - vma->vm_start; 4121 4122 /* 4123 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4124 * between XFS directory reading and selinux: since this file is only 4125 * accessible to the user through its mapping, use S_PRIVATE flag to 4126 * bypass file security, in the same way as shmem_kernel_file_setup(). 4127 */ 4128 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4129 if (IS_ERR(file)) 4130 return PTR_ERR(file); 4131 4132 if (vma->vm_file) 4133 fput(vma->vm_file); 4134 vma->vm_file = file; 4135 vma->vm_ops = &shmem_vm_ops; 4136 4137 return 0; 4138 } 4139 4140 /** 4141 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4142 * @mapping: the page's address_space 4143 * @index: the page index 4144 * @gfp: the page allocator flags to use if allocating 4145 * 4146 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4147 * with any new page allocations done using the specified allocation flags. 4148 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4149 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4150 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4151 * 4152 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4153 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4154 */ 4155 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4156 pgoff_t index, gfp_t gfp) 4157 { 4158 #ifdef CONFIG_SHMEM 4159 struct inode *inode = mapping->host; 4160 struct page *page; 4161 int error; 4162 4163 BUG_ON(!shmem_mapping(mapping)); 4164 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4165 gfp, NULL, NULL, NULL); 4166 if (error) 4167 return ERR_PTR(error); 4168 4169 unlock_page(page); 4170 if (PageHWPoison(page)) { 4171 put_page(page); 4172 return ERR_PTR(-EIO); 4173 } 4174 4175 return page; 4176 #else 4177 /* 4178 * The tiny !SHMEM case uses ramfs without swap 4179 */ 4180 return read_cache_page_gfp(mapping, index, gfp); 4181 #endif 4182 } 4183 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4184