xref: /openbmc/linux/mm/shmem.c (revision 8bdc2a19)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/hugetlb.h>
38 #include <linux/fs_parser.h>
39 #include <linux/swapfile.h>
40 #include "swap.h"
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 
83 #include "internal.h"
84 
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87 
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90 
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93 
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_rwsem making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 	pgoff_t start;		/* start of range currently being fallocated */
102 	pgoff_t next;		/* the next page offset to be fallocated */
103 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
104 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
105 };
106 
107 struct shmem_options {
108 	unsigned long long blocks;
109 	unsigned long long inodes;
110 	struct mempolicy *mpol;
111 	kuid_t uid;
112 	kgid_t gid;
113 	umode_t mode;
114 	bool full_inums;
115 	int huge;
116 	int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122 
123 #ifdef CONFIG_TMPFS
124 static unsigned long shmem_default_max_blocks(void)
125 {
126 	return totalram_pages() / 2;
127 }
128 
129 static unsigned long shmem_default_max_inodes(void)
130 {
131 	unsigned long nr_pages = totalram_pages();
132 
133 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136 
137 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
138 			     struct folio **foliop, enum sgp_type sgp,
139 			     gfp_t gfp, struct vm_area_struct *vma,
140 			     vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 		struct page **pagep, enum sgp_type sgp,
143 		gfp_t gfp, struct vm_area_struct *vma,
144 		struct vm_fault *vmf, vm_fault_t *fault_type);
145 
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp)
148 {
149 	return shmem_getpage_gfp(inode, index, pagep, sgp,
150 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 
215 	if (shmem_acct_block(info->flags, pages))
216 		return false;
217 
218 	if (sbinfo->max_blocks) {
219 		if (percpu_counter_compare(&sbinfo->used_blocks,
220 					   sbinfo->max_blocks - pages) > 0)
221 			goto unacct;
222 		percpu_counter_add(&sbinfo->used_blocks, pages);
223 	}
224 
225 	return true;
226 
227 unacct:
228 	shmem_unacct_blocks(info->flags, pages);
229 	return false;
230 }
231 
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234 	struct shmem_inode_info *info = SHMEM_I(inode);
235 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236 
237 	if (sbinfo->max_blocks)
238 		percpu_counter_sub(&sbinfo->used_blocks, pages);
239 	shmem_unacct_blocks(info->flags, pages);
240 }
241 
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250 
251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253 	return vma->vm_ops == &shmem_vm_ops;
254 }
255 
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258 
259 /*
260  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261  * produces a novel ino for the newly allocated inode.
262  *
263  * It may also be called when making a hard link to permit the space needed by
264  * each dentry. However, in that case, no new inode number is needed since that
265  * internally draws from another pool of inode numbers (currently global
266  * get_next_ino()). This case is indicated by passing NULL as inop.
267  */
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272 	ino_t ino;
273 
274 	if (!(sb->s_flags & SB_KERNMOUNT)) {
275 		raw_spin_lock(&sbinfo->stat_lock);
276 		if (sbinfo->max_inodes) {
277 			if (!sbinfo->free_inodes) {
278 				raw_spin_unlock(&sbinfo->stat_lock);
279 				return -ENOSPC;
280 			}
281 			sbinfo->free_inodes--;
282 		}
283 		if (inop) {
284 			ino = sbinfo->next_ino++;
285 			if (unlikely(is_zero_ino(ino)))
286 				ino = sbinfo->next_ino++;
287 			if (unlikely(!sbinfo->full_inums &&
288 				     ino > UINT_MAX)) {
289 				/*
290 				 * Emulate get_next_ino uint wraparound for
291 				 * compatibility
292 				 */
293 				if (IS_ENABLED(CONFIG_64BIT))
294 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 						__func__, MINOR(sb->s_dev));
296 				sbinfo->next_ino = 1;
297 				ino = sbinfo->next_ino++;
298 			}
299 			*inop = ino;
300 		}
301 		raw_spin_unlock(&sbinfo->stat_lock);
302 	} else if (inop) {
303 		/*
304 		 * __shmem_file_setup, one of our callers, is lock-free: it
305 		 * doesn't hold stat_lock in shmem_reserve_inode since
306 		 * max_inodes is always 0, and is called from potentially
307 		 * unknown contexts. As such, use a per-cpu batched allocator
308 		 * which doesn't require the per-sb stat_lock unless we are at
309 		 * the batch boundary.
310 		 *
311 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 		 * shmem mounts are not exposed to userspace, so we don't need
313 		 * to worry about things like glibc compatibility.
314 		 */
315 		ino_t *next_ino;
316 
317 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 		ino = *next_ino;
319 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 			raw_spin_lock(&sbinfo->stat_lock);
321 			ino = sbinfo->next_ino;
322 			sbinfo->next_ino += SHMEM_INO_BATCH;
323 			raw_spin_unlock(&sbinfo->stat_lock);
324 			if (unlikely(is_zero_ino(ino)))
325 				ino++;
326 		}
327 		*inop = ino;
328 		*next_ino = ++ino;
329 		put_cpu();
330 	}
331 
332 	return 0;
333 }
334 
335 static void shmem_free_inode(struct super_block *sb)
336 {
337 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 	if (sbinfo->max_inodes) {
339 		raw_spin_lock(&sbinfo->stat_lock);
340 		sbinfo->free_inodes++;
341 		raw_spin_unlock(&sbinfo->stat_lock);
342 	}
343 }
344 
345 /**
346  * shmem_recalc_inode - recalculate the block usage of an inode
347  * @inode: inode to recalc
348  *
349  * We have to calculate the free blocks since the mm can drop
350  * undirtied hole pages behind our back.
351  *
352  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
353  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354  *
355  * It has to be called with the spinlock held.
356  */
357 static void shmem_recalc_inode(struct inode *inode)
358 {
359 	struct shmem_inode_info *info = SHMEM_I(inode);
360 	long freed;
361 
362 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 	if (freed > 0) {
364 		info->alloced -= freed;
365 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 		shmem_inode_unacct_blocks(inode, freed);
367 	}
368 }
369 
370 bool shmem_charge(struct inode *inode, long pages)
371 {
372 	struct shmem_inode_info *info = SHMEM_I(inode);
373 	unsigned long flags;
374 
375 	if (!shmem_inode_acct_block(inode, pages))
376 		return false;
377 
378 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 	inode->i_mapping->nrpages += pages;
380 
381 	spin_lock_irqsave(&info->lock, flags);
382 	info->alloced += pages;
383 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 	shmem_recalc_inode(inode);
385 	spin_unlock_irqrestore(&info->lock, flags);
386 
387 	return true;
388 }
389 
390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392 	struct shmem_inode_info *info = SHMEM_I(inode);
393 	unsigned long flags;
394 
395 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
396 
397 	spin_lock_irqsave(&info->lock, flags);
398 	info->alloced -= pages;
399 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 	shmem_recalc_inode(inode);
401 	spin_unlock_irqrestore(&info->lock, flags);
402 
403 	shmem_inode_unacct_blocks(inode, pages);
404 }
405 
406 /*
407  * Replace item expected in xarray by a new item, while holding xa_lock.
408  */
409 static int shmem_replace_entry(struct address_space *mapping,
410 			pgoff_t index, void *expected, void *replacement)
411 {
412 	XA_STATE(xas, &mapping->i_pages, index);
413 	void *item;
414 
415 	VM_BUG_ON(!expected);
416 	VM_BUG_ON(!replacement);
417 	item = xas_load(&xas);
418 	if (item != expected)
419 		return -ENOENT;
420 	xas_store(&xas, replacement);
421 	return 0;
422 }
423 
424 /*
425  * Sometimes, before we decide whether to proceed or to fail, we must check
426  * that an entry was not already brought back from swap by a racing thread.
427  *
428  * Checking page is not enough: by the time a SwapCache page is locked, it
429  * might be reused, and again be SwapCache, using the same swap as before.
430  */
431 static bool shmem_confirm_swap(struct address_space *mapping,
432 			       pgoff_t index, swp_entry_t swap)
433 {
434 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436 
437 /*
438  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439  *
440  * SHMEM_HUGE_NEVER:
441  *	disables huge pages for the mount;
442  * SHMEM_HUGE_ALWAYS:
443  *	enables huge pages for the mount;
444  * SHMEM_HUGE_WITHIN_SIZE:
445  *	only allocate huge pages if the page will be fully within i_size,
446  *	also respect fadvise()/madvise() hints;
447  * SHMEM_HUGE_ADVISE:
448  *	only allocate huge pages if requested with fadvise()/madvise();
449  */
450 
451 #define SHMEM_HUGE_NEVER	0
452 #define SHMEM_HUGE_ALWAYS	1
453 #define SHMEM_HUGE_WITHIN_SIZE	2
454 #define SHMEM_HUGE_ADVISE	3
455 
456 /*
457  * Special values.
458  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459  *
460  * SHMEM_HUGE_DENY:
461  *	disables huge on shm_mnt and all mounts, for emergency use;
462  * SHMEM_HUGE_FORCE:
463  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464  *
465  */
466 #define SHMEM_HUGE_DENY		(-1)
467 #define SHMEM_HUGE_FORCE	(-2)
468 
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471 
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473 
474 bool shmem_is_huge(struct vm_area_struct *vma,
475 		   struct inode *inode, pgoff_t index)
476 {
477 	loff_t i_size;
478 
479 	if (!S_ISREG(inode->i_mode))
480 		return false;
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 		return false;
486 	if (shmem_huge == SHMEM_HUGE_FORCE)
487 		return true;
488 
489 	switch (SHMEM_SB(inode->i_sb)->huge) {
490 	case SHMEM_HUGE_ALWAYS:
491 		return true;
492 	case SHMEM_HUGE_WITHIN_SIZE:
493 		index = round_up(index + 1, HPAGE_PMD_NR);
494 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 		if (i_size >> PAGE_SHIFT >= index)
496 			return true;
497 		fallthrough;
498 	case SHMEM_HUGE_ADVISE:
499 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 			return true;
501 		fallthrough;
502 	default:
503 		return false;
504 	}
505 }
506 
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510 	if (!strcmp(str, "never"))
511 		return SHMEM_HUGE_NEVER;
512 	if (!strcmp(str, "always"))
513 		return SHMEM_HUGE_ALWAYS;
514 	if (!strcmp(str, "within_size"))
515 		return SHMEM_HUGE_WITHIN_SIZE;
516 	if (!strcmp(str, "advise"))
517 		return SHMEM_HUGE_ADVISE;
518 	if (!strcmp(str, "deny"))
519 		return SHMEM_HUGE_DENY;
520 	if (!strcmp(str, "force"))
521 		return SHMEM_HUGE_FORCE;
522 	return -EINVAL;
523 }
524 #endif
525 
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529 	switch (huge) {
530 	case SHMEM_HUGE_NEVER:
531 		return "never";
532 	case SHMEM_HUGE_ALWAYS:
533 		return "always";
534 	case SHMEM_HUGE_WITHIN_SIZE:
535 		return "within_size";
536 	case SHMEM_HUGE_ADVISE:
537 		return "advise";
538 	case SHMEM_HUGE_DENY:
539 		return "deny";
540 	case SHMEM_HUGE_FORCE:
541 		return "force";
542 	default:
543 		VM_BUG_ON(1);
544 		return "bad_val";
545 	}
546 }
547 #endif
548 
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 		struct shrink_control *sc, unsigned long nr_to_split)
551 {
552 	LIST_HEAD(list), *pos, *next;
553 	LIST_HEAD(to_remove);
554 	struct inode *inode;
555 	struct shmem_inode_info *info;
556 	struct folio *folio;
557 	unsigned long batch = sc ? sc->nr_to_scan : 128;
558 	int split = 0;
559 
560 	if (list_empty(&sbinfo->shrinklist))
561 		return SHRINK_STOP;
562 
563 	spin_lock(&sbinfo->shrinklist_lock);
564 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 
567 		/* pin the inode */
568 		inode = igrab(&info->vfs_inode);
569 
570 		/* inode is about to be evicted */
571 		if (!inode) {
572 			list_del_init(&info->shrinklist);
573 			goto next;
574 		}
575 
576 		/* Check if there's anything to gain */
577 		if (round_up(inode->i_size, PAGE_SIZE) ==
578 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 			list_move(&info->shrinklist, &to_remove);
580 			goto next;
581 		}
582 
583 		list_move(&info->shrinklist, &list);
584 next:
585 		sbinfo->shrinklist_len--;
586 		if (!--batch)
587 			break;
588 	}
589 	spin_unlock(&sbinfo->shrinklist_lock);
590 
591 	list_for_each_safe(pos, next, &to_remove) {
592 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 		inode = &info->vfs_inode;
594 		list_del_init(&info->shrinklist);
595 		iput(inode);
596 	}
597 
598 	list_for_each_safe(pos, next, &list) {
599 		int ret;
600 		pgoff_t index;
601 
602 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 		inode = &info->vfs_inode;
604 
605 		if (nr_to_split && split >= nr_to_split)
606 			goto move_back;
607 
608 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
609 		folio = filemap_get_folio(inode->i_mapping, index);
610 		if (!folio)
611 			goto drop;
612 
613 		/* No huge page at the end of the file: nothing to split */
614 		if (!folio_test_large(folio)) {
615 			folio_put(folio);
616 			goto drop;
617 		}
618 
619 		/*
620 		 * Move the inode on the list back to shrinklist if we failed
621 		 * to lock the page at this time.
622 		 *
623 		 * Waiting for the lock may lead to deadlock in the
624 		 * reclaim path.
625 		 */
626 		if (!folio_trylock(folio)) {
627 			folio_put(folio);
628 			goto move_back;
629 		}
630 
631 		ret = split_huge_page(&folio->page);
632 		folio_unlock(folio);
633 		folio_put(folio);
634 
635 		/* If split failed move the inode on the list back to shrinklist */
636 		if (ret)
637 			goto move_back;
638 
639 		split++;
640 drop:
641 		list_del_init(&info->shrinklist);
642 		goto put;
643 move_back:
644 		/*
645 		 * Make sure the inode is either on the global list or deleted
646 		 * from any local list before iput() since it could be deleted
647 		 * in another thread once we put the inode (then the local list
648 		 * is corrupted).
649 		 */
650 		spin_lock(&sbinfo->shrinklist_lock);
651 		list_move(&info->shrinklist, &sbinfo->shrinklist);
652 		sbinfo->shrinklist_len++;
653 		spin_unlock(&sbinfo->shrinklist_lock);
654 put:
655 		iput(inode);
656 	}
657 
658 	return split;
659 }
660 
661 static long shmem_unused_huge_scan(struct super_block *sb,
662 		struct shrink_control *sc)
663 {
664 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
665 
666 	if (!READ_ONCE(sbinfo->shrinklist_len))
667 		return SHRINK_STOP;
668 
669 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
670 }
671 
672 static long shmem_unused_huge_count(struct super_block *sb,
673 		struct shrink_control *sc)
674 {
675 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
676 	return READ_ONCE(sbinfo->shrinklist_len);
677 }
678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
679 
680 #define shmem_huge SHMEM_HUGE_DENY
681 
682 bool shmem_is_huge(struct vm_area_struct *vma,
683 		   struct inode *inode, pgoff_t index)
684 {
685 	return false;
686 }
687 
688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
689 		struct shrink_control *sc, unsigned long nr_to_split)
690 {
691 	return 0;
692 }
693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
694 
695 /*
696  * Like add_to_page_cache_locked, but error if expected item has gone.
697  */
698 static int shmem_add_to_page_cache(struct folio *folio,
699 				   struct address_space *mapping,
700 				   pgoff_t index, void *expected, gfp_t gfp,
701 				   struct mm_struct *charge_mm)
702 {
703 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
704 	long nr = folio_nr_pages(folio);
705 	int error;
706 
707 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
708 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
709 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
710 	VM_BUG_ON(expected && folio_test_large(folio));
711 
712 	folio_ref_add(folio, nr);
713 	folio->mapping = mapping;
714 	folio->index = index;
715 
716 	if (!folio_test_swapcache(folio)) {
717 		error = mem_cgroup_charge(folio, charge_mm, gfp);
718 		if (error) {
719 			if (folio_test_pmd_mappable(folio)) {
720 				count_vm_event(THP_FILE_FALLBACK);
721 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 			}
723 			goto error;
724 		}
725 	}
726 	folio_throttle_swaprate(folio, gfp);
727 
728 	do {
729 		xas_lock_irq(&xas);
730 		if (expected != xas_find_conflict(&xas)) {
731 			xas_set_err(&xas, -EEXIST);
732 			goto unlock;
733 		}
734 		if (expected && xas_find_conflict(&xas)) {
735 			xas_set_err(&xas, -EEXIST);
736 			goto unlock;
737 		}
738 		xas_store(&xas, folio);
739 		if (xas_error(&xas))
740 			goto unlock;
741 		if (folio_test_pmd_mappable(folio)) {
742 			count_vm_event(THP_FILE_ALLOC);
743 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
744 		}
745 		mapping->nrpages += nr;
746 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
747 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
748 unlock:
749 		xas_unlock_irq(&xas);
750 	} while (xas_nomem(&xas, gfp));
751 
752 	if (xas_error(&xas)) {
753 		error = xas_error(&xas);
754 		goto error;
755 	}
756 
757 	return 0;
758 error:
759 	folio->mapping = NULL;
760 	folio_ref_sub(folio, nr);
761 	return error;
762 }
763 
764 /*
765  * Like delete_from_page_cache, but substitutes swap for page.
766  */
767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768 {
769 	struct address_space *mapping = page->mapping;
770 	int error;
771 
772 	VM_BUG_ON_PAGE(PageCompound(page), page);
773 
774 	xa_lock_irq(&mapping->i_pages);
775 	error = shmem_replace_entry(mapping, page->index, page, radswap);
776 	page->mapping = NULL;
777 	mapping->nrpages--;
778 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
779 	__dec_lruvec_page_state(page, NR_SHMEM);
780 	xa_unlock_irq(&mapping->i_pages);
781 	put_page(page);
782 	BUG_ON(error);
783 }
784 
785 /*
786  * Remove swap entry from page cache, free the swap and its page cache.
787  */
788 static int shmem_free_swap(struct address_space *mapping,
789 			   pgoff_t index, void *radswap)
790 {
791 	void *old;
792 
793 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 	if (old != radswap)
795 		return -ENOENT;
796 	free_swap_and_cache(radix_to_swp_entry(radswap));
797 	return 0;
798 }
799 
800 /*
801  * Determine (in bytes) how many of the shmem object's pages mapped by the
802  * given offsets are swapped out.
803  *
804  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805  * as long as the inode doesn't go away and racy results are not a problem.
806  */
807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 						pgoff_t start, pgoff_t end)
809 {
810 	XA_STATE(xas, &mapping->i_pages, start);
811 	struct page *page;
812 	unsigned long swapped = 0;
813 
814 	rcu_read_lock();
815 	xas_for_each(&xas, page, end - 1) {
816 		if (xas_retry(&xas, page))
817 			continue;
818 		if (xa_is_value(page))
819 			swapped++;
820 
821 		if (need_resched()) {
822 			xas_pause(&xas);
823 			cond_resched_rcu();
824 		}
825 	}
826 
827 	rcu_read_unlock();
828 
829 	return swapped << PAGE_SHIFT;
830 }
831 
832 /*
833  * Determine (in bytes) how many of the shmem object's pages mapped by the
834  * given vma is swapped out.
835  *
836  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837  * as long as the inode doesn't go away and racy results are not a problem.
838  */
839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841 	struct inode *inode = file_inode(vma->vm_file);
842 	struct shmem_inode_info *info = SHMEM_I(inode);
843 	struct address_space *mapping = inode->i_mapping;
844 	unsigned long swapped;
845 
846 	/* Be careful as we don't hold info->lock */
847 	swapped = READ_ONCE(info->swapped);
848 
849 	/*
850 	 * The easier cases are when the shmem object has nothing in swap, or
851 	 * the vma maps it whole. Then we can simply use the stats that we
852 	 * already track.
853 	 */
854 	if (!swapped)
855 		return 0;
856 
857 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 		return swapped << PAGE_SHIFT;
859 
860 	/* Here comes the more involved part */
861 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 					vma->vm_pgoff + vma_pages(vma));
863 }
864 
865 /*
866  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867  */
868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870 	struct pagevec pvec;
871 	pgoff_t index = 0;
872 
873 	pagevec_init(&pvec);
874 	/*
875 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 	 */
877 	while (!mapping_unevictable(mapping)) {
878 		if (!pagevec_lookup(&pvec, mapping, &index))
879 			break;
880 		check_move_unevictable_pages(&pvec);
881 		pagevec_release(&pvec);
882 		cond_resched();
883 	}
884 }
885 
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888 	struct folio *folio;
889 	struct page *page;
890 
891 	/*
892 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 	 * beyond i_size, and reports fallocated pages as holes.
894 	 */
895 	folio = __filemap_get_folio(inode->i_mapping, index,
896 					FGP_ENTRY | FGP_LOCK, 0);
897 	if (!xa_is_value(folio))
898 		return folio;
899 	/*
900 	 * But read a page back from swap if any of it is within i_size
901 	 * (although in some cases this is just a waste of time).
902 	 */
903 	page = NULL;
904 	shmem_getpage(inode, index, &page, SGP_READ);
905 	return page ? page_folio(page) : NULL;
906 }
907 
908 /*
909  * Remove range of pages and swap entries from page cache, and free them.
910  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911  */
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 								 bool unfalloc)
914 {
915 	struct address_space *mapping = inode->i_mapping;
916 	struct shmem_inode_info *info = SHMEM_I(inode);
917 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919 	struct folio_batch fbatch;
920 	pgoff_t indices[PAGEVEC_SIZE];
921 	struct folio *folio;
922 	bool same_folio;
923 	long nr_swaps_freed = 0;
924 	pgoff_t index;
925 	int i;
926 
927 	if (lend == -1)
928 		end = -1;	/* unsigned, so actually very big */
929 
930 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 		info->fallocend = start;
932 
933 	folio_batch_init(&fbatch);
934 	index = start;
935 	while (index < end && find_lock_entries(mapping, index, end - 1,
936 			&fbatch, indices)) {
937 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
938 			folio = fbatch.folios[i];
939 
940 			index = indices[i];
941 
942 			if (xa_is_value(folio)) {
943 				if (unfalloc)
944 					continue;
945 				nr_swaps_freed += !shmem_free_swap(mapping,
946 								index, folio);
947 				continue;
948 			}
949 			index += folio_nr_pages(folio) - 1;
950 
951 			if (!unfalloc || !folio_test_uptodate(folio))
952 				truncate_inode_folio(mapping, folio);
953 			folio_unlock(folio);
954 		}
955 		folio_batch_remove_exceptionals(&fbatch);
956 		folio_batch_release(&fbatch);
957 		cond_resched();
958 		index++;
959 	}
960 
961 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 	if (folio) {
964 		same_folio = lend < folio_pos(folio) + folio_size(folio);
965 		folio_mark_dirty(folio);
966 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 			start = folio->index + folio_nr_pages(folio);
968 			if (same_folio)
969 				end = folio->index;
970 		}
971 		folio_unlock(folio);
972 		folio_put(folio);
973 		folio = NULL;
974 	}
975 
976 	if (!same_folio)
977 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 	if (folio) {
979 		folio_mark_dirty(folio);
980 		if (!truncate_inode_partial_folio(folio, lstart, lend))
981 			end = folio->index;
982 		folio_unlock(folio);
983 		folio_put(folio);
984 	}
985 
986 	index = start;
987 	while (index < end) {
988 		cond_resched();
989 
990 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
991 				indices)) {
992 			/* If all gone or hole-punch or unfalloc, we're done */
993 			if (index == start || end != -1)
994 				break;
995 			/* But if truncating, restart to make sure all gone */
996 			index = start;
997 			continue;
998 		}
999 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 			folio = fbatch.folios[i];
1001 
1002 			index = indices[i];
1003 			if (xa_is_value(folio)) {
1004 				if (unfalloc)
1005 					continue;
1006 				if (shmem_free_swap(mapping, index, folio)) {
1007 					/* Swap was replaced by page: retry */
1008 					index--;
1009 					break;
1010 				}
1011 				nr_swaps_freed++;
1012 				continue;
1013 			}
1014 
1015 			folio_lock(folio);
1016 
1017 			if (!unfalloc || !folio_test_uptodate(folio)) {
1018 				if (folio_mapping(folio) != mapping) {
1019 					/* Page was replaced by swap: retry */
1020 					folio_unlock(folio);
1021 					index--;
1022 					break;
1023 				}
1024 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 						folio);
1026 				truncate_inode_folio(mapping, folio);
1027 			}
1028 			index = folio->index + folio_nr_pages(folio) - 1;
1029 			folio_unlock(folio);
1030 		}
1031 		folio_batch_remove_exceptionals(&fbatch);
1032 		folio_batch_release(&fbatch);
1033 		index++;
1034 	}
1035 
1036 	spin_lock_irq(&info->lock);
1037 	info->swapped -= nr_swaps_freed;
1038 	shmem_recalc_inode(inode);
1039 	spin_unlock_irq(&info->lock);
1040 }
1041 
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044 	shmem_undo_range(inode, lstart, lend, false);
1045 	inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048 
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050 			 const struct path *path, struct kstat *stat,
1051 			 u32 request_mask, unsigned int query_flags)
1052 {
1053 	struct inode *inode = path->dentry->d_inode;
1054 	struct shmem_inode_info *info = SHMEM_I(inode);
1055 
1056 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057 		spin_lock_irq(&info->lock);
1058 		shmem_recalc_inode(inode);
1059 		spin_unlock_irq(&info->lock);
1060 	}
1061 	generic_fillattr(&init_user_ns, inode, stat);
1062 
1063 	if (shmem_is_huge(NULL, inode, 0))
1064 		stat->blksize = HPAGE_PMD_SIZE;
1065 
1066 	if (request_mask & STATX_BTIME) {
1067 		stat->result_mask |= STATX_BTIME;
1068 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076 			 struct dentry *dentry, struct iattr *attr)
1077 {
1078 	struct inode *inode = d_inode(dentry);
1079 	struct shmem_inode_info *info = SHMEM_I(inode);
1080 	int error;
1081 
1082 	error = setattr_prepare(&init_user_ns, dentry, attr);
1083 	if (error)
1084 		return error;
1085 
1086 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087 		loff_t oldsize = inode->i_size;
1088 		loff_t newsize = attr->ia_size;
1089 
1090 		/* protected by i_rwsem */
1091 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093 			return -EPERM;
1094 
1095 		if (newsize != oldsize) {
1096 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097 					oldsize, newsize);
1098 			if (error)
1099 				return error;
1100 			i_size_write(inode, newsize);
1101 			inode->i_ctime = inode->i_mtime = current_time(inode);
1102 		}
1103 		if (newsize <= oldsize) {
1104 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1105 			if (oldsize > holebegin)
1106 				unmap_mapping_range(inode->i_mapping,
1107 							holebegin, 0, 1);
1108 			if (info->alloced)
1109 				shmem_truncate_range(inode,
1110 							newsize, (loff_t)-1);
1111 			/* unmap again to remove racily COWed private pages */
1112 			if (oldsize > holebegin)
1113 				unmap_mapping_range(inode->i_mapping,
1114 							holebegin, 0, 1);
1115 		}
1116 	}
1117 
1118 	setattr_copy(&init_user_ns, inode, attr);
1119 	if (attr->ia_valid & ATTR_MODE)
1120 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 	return error;
1122 }
1123 
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 	struct shmem_inode_info *info = SHMEM_I(inode);
1127 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128 
1129 	if (shmem_mapping(inode->i_mapping)) {
1130 		shmem_unacct_size(info->flags, inode->i_size);
1131 		inode->i_size = 0;
1132 		mapping_set_exiting(inode->i_mapping);
1133 		shmem_truncate_range(inode, 0, (loff_t)-1);
1134 		if (!list_empty(&info->shrinklist)) {
1135 			spin_lock(&sbinfo->shrinklist_lock);
1136 			if (!list_empty(&info->shrinklist)) {
1137 				list_del_init(&info->shrinklist);
1138 				sbinfo->shrinklist_len--;
1139 			}
1140 			spin_unlock(&sbinfo->shrinklist_lock);
1141 		}
1142 		while (!list_empty(&info->swaplist)) {
1143 			/* Wait while shmem_unuse() is scanning this inode... */
1144 			wait_var_event(&info->stop_eviction,
1145 				       !atomic_read(&info->stop_eviction));
1146 			mutex_lock(&shmem_swaplist_mutex);
1147 			/* ...but beware of the race if we peeked too early */
1148 			if (!atomic_read(&info->stop_eviction))
1149 				list_del_init(&info->swaplist);
1150 			mutex_unlock(&shmem_swaplist_mutex);
1151 		}
1152 	}
1153 
1154 	simple_xattrs_free(&info->xattrs);
1155 	WARN_ON(inode->i_blocks);
1156 	shmem_free_inode(inode->i_sb);
1157 	clear_inode(inode);
1158 }
1159 
1160 static int shmem_find_swap_entries(struct address_space *mapping,
1161 				   pgoff_t start, struct folio_batch *fbatch,
1162 				   pgoff_t *indices, unsigned int type)
1163 {
1164 	XA_STATE(xas, &mapping->i_pages, start);
1165 	struct folio *folio;
1166 	swp_entry_t entry;
1167 
1168 	rcu_read_lock();
1169 	xas_for_each(&xas, folio, ULONG_MAX) {
1170 		if (xas_retry(&xas, folio))
1171 			continue;
1172 
1173 		if (!xa_is_value(folio))
1174 			continue;
1175 
1176 		entry = radix_to_swp_entry(folio);
1177 		if (swp_type(entry) != type)
1178 			continue;
1179 
1180 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1181 		if (!folio_batch_add(fbatch, folio))
1182 			break;
1183 
1184 		if (need_resched()) {
1185 			xas_pause(&xas);
1186 			cond_resched_rcu();
1187 		}
1188 	}
1189 	rcu_read_unlock();
1190 
1191 	return xas.xa_index;
1192 }
1193 
1194 /*
1195  * Move the swapped pages for an inode to page cache. Returns the count
1196  * of pages swapped in, or the error in case of failure.
1197  */
1198 static int shmem_unuse_swap_entries(struct inode *inode,
1199 		struct folio_batch *fbatch, pgoff_t *indices)
1200 {
1201 	int i = 0;
1202 	int ret = 0;
1203 	int error = 0;
1204 	struct address_space *mapping = inode->i_mapping;
1205 
1206 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1207 		struct folio *folio = fbatch->folios[i];
1208 
1209 		if (!xa_is_value(folio))
1210 			continue;
1211 		error = shmem_swapin_folio(inode, indices[i],
1212 					  &folio, SGP_CACHE,
1213 					  mapping_gfp_mask(mapping),
1214 					  NULL, NULL);
1215 		if (error == 0) {
1216 			folio_unlock(folio);
1217 			folio_put(folio);
1218 			ret++;
1219 		}
1220 		if (error == -ENOMEM)
1221 			break;
1222 		error = 0;
1223 	}
1224 	return error ? error : ret;
1225 }
1226 
1227 /*
1228  * If swap found in inode, free it and move page from swapcache to filecache.
1229  */
1230 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1231 {
1232 	struct address_space *mapping = inode->i_mapping;
1233 	pgoff_t start = 0;
1234 	struct folio_batch fbatch;
1235 	pgoff_t indices[PAGEVEC_SIZE];
1236 	int ret = 0;
1237 
1238 	do {
1239 		folio_batch_init(&fbatch);
1240 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1241 		if (folio_batch_count(&fbatch) == 0) {
1242 			ret = 0;
1243 			break;
1244 		}
1245 
1246 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1247 		if (ret < 0)
1248 			break;
1249 
1250 		start = indices[folio_batch_count(&fbatch) - 1];
1251 	} while (true);
1252 
1253 	return ret;
1254 }
1255 
1256 /*
1257  * Read all the shared memory data that resides in the swap
1258  * device 'type' back into memory, so the swap device can be
1259  * unused.
1260  */
1261 int shmem_unuse(unsigned int type)
1262 {
1263 	struct shmem_inode_info *info, *next;
1264 	int error = 0;
1265 
1266 	if (list_empty(&shmem_swaplist))
1267 		return 0;
1268 
1269 	mutex_lock(&shmem_swaplist_mutex);
1270 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1271 		if (!info->swapped) {
1272 			list_del_init(&info->swaplist);
1273 			continue;
1274 		}
1275 		/*
1276 		 * Drop the swaplist mutex while searching the inode for swap;
1277 		 * but before doing so, make sure shmem_evict_inode() will not
1278 		 * remove placeholder inode from swaplist, nor let it be freed
1279 		 * (igrab() would protect from unlink, but not from unmount).
1280 		 */
1281 		atomic_inc(&info->stop_eviction);
1282 		mutex_unlock(&shmem_swaplist_mutex);
1283 
1284 		error = shmem_unuse_inode(&info->vfs_inode, type);
1285 		cond_resched();
1286 
1287 		mutex_lock(&shmem_swaplist_mutex);
1288 		next = list_next_entry(info, swaplist);
1289 		if (!info->swapped)
1290 			list_del_init(&info->swaplist);
1291 		if (atomic_dec_and_test(&info->stop_eviction))
1292 			wake_up_var(&info->stop_eviction);
1293 		if (error)
1294 			break;
1295 	}
1296 	mutex_unlock(&shmem_swaplist_mutex);
1297 
1298 	return error;
1299 }
1300 
1301 /*
1302  * Move the page from the page cache to the swap cache.
1303  */
1304 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1305 {
1306 	struct folio *folio = page_folio(page);
1307 	struct shmem_inode_info *info;
1308 	struct address_space *mapping;
1309 	struct inode *inode;
1310 	swp_entry_t swap;
1311 	pgoff_t index;
1312 
1313 	/*
1314 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1315 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1316 	 * and its shmem_writeback() needs them to be split when swapping.
1317 	 */
1318 	if (PageTransCompound(page)) {
1319 		/* Ensure the subpages are still dirty */
1320 		SetPageDirty(page);
1321 		if (split_huge_page(page) < 0)
1322 			goto redirty;
1323 		ClearPageDirty(page);
1324 	}
1325 
1326 	BUG_ON(!PageLocked(page));
1327 	mapping = page->mapping;
1328 	index = page->index;
1329 	inode = mapping->host;
1330 	info = SHMEM_I(inode);
1331 	if (info->flags & VM_LOCKED)
1332 		goto redirty;
1333 	if (!total_swap_pages)
1334 		goto redirty;
1335 
1336 	/*
1337 	 * Our capabilities prevent regular writeback or sync from ever calling
1338 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1339 	 * its underlying filesystem, in which case tmpfs should write out to
1340 	 * swap only in response to memory pressure, and not for the writeback
1341 	 * threads or sync.
1342 	 */
1343 	if (!wbc->for_reclaim) {
1344 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1345 		goto redirty;
1346 	}
1347 
1348 	/*
1349 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1350 	 * value into swapfile.c, the only way we can correctly account for a
1351 	 * fallocated page arriving here is now to initialize it and write it.
1352 	 *
1353 	 * That's okay for a page already fallocated earlier, but if we have
1354 	 * not yet completed the fallocation, then (a) we want to keep track
1355 	 * of this page in case we have to undo it, and (b) it may not be a
1356 	 * good idea to continue anyway, once we're pushing into swap.  So
1357 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1358 	 */
1359 	if (!PageUptodate(page)) {
1360 		if (inode->i_private) {
1361 			struct shmem_falloc *shmem_falloc;
1362 			spin_lock(&inode->i_lock);
1363 			shmem_falloc = inode->i_private;
1364 			if (shmem_falloc &&
1365 			    !shmem_falloc->waitq &&
1366 			    index >= shmem_falloc->start &&
1367 			    index < shmem_falloc->next)
1368 				shmem_falloc->nr_unswapped++;
1369 			else
1370 				shmem_falloc = NULL;
1371 			spin_unlock(&inode->i_lock);
1372 			if (shmem_falloc)
1373 				goto redirty;
1374 		}
1375 		clear_highpage(page);
1376 		flush_dcache_page(page);
1377 		SetPageUptodate(page);
1378 	}
1379 
1380 	swap = folio_alloc_swap(folio);
1381 	if (!swap.val)
1382 		goto redirty;
1383 
1384 	/*
1385 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1386 	 * if it's not already there.  Do it now before the page is
1387 	 * moved to swap cache, when its pagelock no longer protects
1388 	 * the inode from eviction.  But don't unlock the mutex until
1389 	 * we've incremented swapped, because shmem_unuse_inode() will
1390 	 * prune a !swapped inode from the swaplist under this mutex.
1391 	 */
1392 	mutex_lock(&shmem_swaplist_mutex);
1393 	if (list_empty(&info->swaplist))
1394 		list_add(&info->swaplist, &shmem_swaplist);
1395 
1396 	if (add_to_swap_cache(page, swap,
1397 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1398 			NULL) == 0) {
1399 		spin_lock_irq(&info->lock);
1400 		shmem_recalc_inode(inode);
1401 		info->swapped++;
1402 		spin_unlock_irq(&info->lock);
1403 
1404 		swap_shmem_alloc(swap);
1405 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1406 
1407 		mutex_unlock(&shmem_swaplist_mutex);
1408 		BUG_ON(page_mapped(page));
1409 		swap_writepage(page, wbc);
1410 		return 0;
1411 	}
1412 
1413 	mutex_unlock(&shmem_swaplist_mutex);
1414 	put_swap_page(page, swap);
1415 redirty:
1416 	set_page_dirty(page);
1417 	if (wbc->for_reclaim)
1418 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1419 	unlock_page(page);
1420 	return 0;
1421 }
1422 
1423 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1424 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1425 {
1426 	char buffer[64];
1427 
1428 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1429 		return;		/* show nothing */
1430 
1431 	mpol_to_str(buffer, sizeof(buffer), mpol);
1432 
1433 	seq_printf(seq, ",mpol=%s", buffer);
1434 }
1435 
1436 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1437 {
1438 	struct mempolicy *mpol = NULL;
1439 	if (sbinfo->mpol) {
1440 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1441 		mpol = sbinfo->mpol;
1442 		mpol_get(mpol);
1443 		raw_spin_unlock(&sbinfo->stat_lock);
1444 	}
1445 	return mpol;
1446 }
1447 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1448 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1449 {
1450 }
1451 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1452 {
1453 	return NULL;
1454 }
1455 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1456 #ifndef CONFIG_NUMA
1457 #define vm_policy vm_private_data
1458 #endif
1459 
1460 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1461 		struct shmem_inode_info *info, pgoff_t index)
1462 {
1463 	/* Create a pseudo vma that just contains the policy */
1464 	vma_init(vma, NULL);
1465 	/* Bias interleave by inode number to distribute better across nodes */
1466 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1467 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1468 }
1469 
1470 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1471 {
1472 	/* Drop reference taken by mpol_shared_policy_lookup() */
1473 	mpol_cond_put(vma->vm_policy);
1474 }
1475 
1476 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1477 			struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 	struct vm_area_struct pvma;
1480 	struct page *page;
1481 	struct vm_fault vmf = {
1482 		.vma = &pvma,
1483 	};
1484 
1485 	shmem_pseudo_vma_init(&pvma, info, index);
1486 	page = swap_cluster_readahead(swap, gfp, &vmf);
1487 	shmem_pseudo_vma_destroy(&pvma);
1488 
1489 	return page;
1490 }
1491 
1492 /*
1493  * Make sure huge_gfp is always more limited than limit_gfp.
1494  * Some of the flags set permissions, while others set limitations.
1495  */
1496 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1497 {
1498 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1499 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1500 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1501 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1502 
1503 	/* Allow allocations only from the originally specified zones. */
1504 	result |= zoneflags;
1505 
1506 	/*
1507 	 * Minimize the result gfp by taking the union with the deny flags,
1508 	 * and the intersection of the allow flags.
1509 	 */
1510 	result |= (limit_gfp & denyflags);
1511 	result |= (huge_gfp & limit_gfp) & allowflags;
1512 
1513 	return result;
1514 }
1515 
1516 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1517 		struct shmem_inode_info *info, pgoff_t index)
1518 {
1519 	struct vm_area_struct pvma;
1520 	struct address_space *mapping = info->vfs_inode.i_mapping;
1521 	pgoff_t hindex;
1522 	struct folio *folio;
1523 
1524 	hindex = round_down(index, HPAGE_PMD_NR);
1525 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1526 								XA_PRESENT))
1527 		return NULL;
1528 
1529 	shmem_pseudo_vma_init(&pvma, info, hindex);
1530 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1531 	shmem_pseudo_vma_destroy(&pvma);
1532 	if (!folio)
1533 		count_vm_event(THP_FILE_FALLBACK);
1534 	return folio;
1535 }
1536 
1537 static struct folio *shmem_alloc_folio(gfp_t gfp,
1538 			struct shmem_inode_info *info, pgoff_t index)
1539 {
1540 	struct vm_area_struct pvma;
1541 	struct folio *folio;
1542 
1543 	shmem_pseudo_vma_init(&pvma, info, index);
1544 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1545 	shmem_pseudo_vma_destroy(&pvma);
1546 
1547 	return folio;
1548 }
1549 
1550 static struct page *shmem_alloc_page(gfp_t gfp,
1551 			struct shmem_inode_info *info, pgoff_t index)
1552 {
1553 	return &shmem_alloc_folio(gfp, info, index)->page;
1554 }
1555 
1556 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1557 		pgoff_t index, bool huge)
1558 {
1559 	struct shmem_inode_info *info = SHMEM_I(inode);
1560 	struct folio *folio;
1561 	int nr;
1562 	int err = -ENOSPC;
1563 
1564 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1565 		huge = false;
1566 	nr = huge ? HPAGE_PMD_NR : 1;
1567 
1568 	if (!shmem_inode_acct_block(inode, nr))
1569 		goto failed;
1570 
1571 	if (huge)
1572 		folio = shmem_alloc_hugefolio(gfp, info, index);
1573 	else
1574 		folio = shmem_alloc_folio(gfp, info, index);
1575 	if (folio) {
1576 		__folio_set_locked(folio);
1577 		__folio_set_swapbacked(folio);
1578 		return folio;
1579 	}
1580 
1581 	err = -ENOMEM;
1582 	shmem_inode_unacct_blocks(inode, nr);
1583 failed:
1584 	return ERR_PTR(err);
1585 }
1586 
1587 /*
1588  * When a page is moved from swapcache to shmem filecache (either by the
1589  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1590  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1591  * ignorance of the mapping it belongs to.  If that mapping has special
1592  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1593  * we may need to copy to a suitable page before moving to filecache.
1594  *
1595  * In a future release, this may well be extended to respect cpuset and
1596  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1597  * but for now it is a simple matter of zone.
1598  */
1599 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1600 {
1601 	return folio_zonenum(folio) > gfp_zone(gfp);
1602 }
1603 
1604 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1605 				struct shmem_inode_info *info, pgoff_t index)
1606 {
1607 	struct page *oldpage, *newpage;
1608 	struct folio *old, *new;
1609 	struct address_space *swap_mapping;
1610 	swp_entry_t entry;
1611 	pgoff_t swap_index;
1612 	int error;
1613 
1614 	oldpage = *pagep;
1615 	entry.val = page_private(oldpage);
1616 	swap_index = swp_offset(entry);
1617 	swap_mapping = page_mapping(oldpage);
1618 
1619 	/*
1620 	 * We have arrived here because our zones are constrained, so don't
1621 	 * limit chance of success by further cpuset and node constraints.
1622 	 */
1623 	gfp &= ~GFP_CONSTRAINT_MASK;
1624 	newpage = shmem_alloc_page(gfp, info, index);
1625 	if (!newpage)
1626 		return -ENOMEM;
1627 
1628 	get_page(newpage);
1629 	copy_highpage(newpage, oldpage);
1630 	flush_dcache_page(newpage);
1631 
1632 	__SetPageLocked(newpage);
1633 	__SetPageSwapBacked(newpage);
1634 	SetPageUptodate(newpage);
1635 	set_page_private(newpage, entry.val);
1636 	SetPageSwapCache(newpage);
1637 
1638 	/*
1639 	 * Our caller will very soon move newpage out of swapcache, but it's
1640 	 * a nice clean interface for us to replace oldpage by newpage there.
1641 	 */
1642 	xa_lock_irq(&swap_mapping->i_pages);
1643 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1644 	if (!error) {
1645 		old = page_folio(oldpage);
1646 		new = page_folio(newpage);
1647 		mem_cgroup_migrate(old, new);
1648 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1649 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1650 	}
1651 	xa_unlock_irq(&swap_mapping->i_pages);
1652 
1653 	if (unlikely(error)) {
1654 		/*
1655 		 * Is this possible?  I think not, now that our callers check
1656 		 * both PageSwapCache and page_private after getting page lock;
1657 		 * but be defensive.  Reverse old to newpage for clear and free.
1658 		 */
1659 		oldpage = newpage;
1660 	} else {
1661 		lru_cache_add(newpage);
1662 		*pagep = newpage;
1663 	}
1664 
1665 	ClearPageSwapCache(oldpage);
1666 	set_page_private(oldpage, 0);
1667 
1668 	unlock_page(oldpage);
1669 	put_page(oldpage);
1670 	put_page(oldpage);
1671 	return error;
1672 }
1673 
1674 /*
1675  * Swap in the page pointed to by *pagep.
1676  * Caller has to make sure that *pagep contains a valid swapped page.
1677  * Returns 0 and the page in pagep if success. On failure, returns the
1678  * error code and NULL in *pagep.
1679  */
1680 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1681 			     struct folio **foliop, enum sgp_type sgp,
1682 			     gfp_t gfp, struct vm_area_struct *vma,
1683 			     vm_fault_t *fault_type)
1684 {
1685 	struct address_space *mapping = inode->i_mapping;
1686 	struct shmem_inode_info *info = SHMEM_I(inode);
1687 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1688 	struct page *page;
1689 	struct folio *folio = NULL;
1690 	swp_entry_t swap;
1691 	int error;
1692 
1693 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1694 	swap = radix_to_swp_entry(*foliop);
1695 	*foliop = NULL;
1696 
1697 	/* Look it up and read it in.. */
1698 	page = lookup_swap_cache(swap, NULL, 0);
1699 	if (!page) {
1700 		/* Or update major stats only when swapin succeeds?? */
1701 		if (fault_type) {
1702 			*fault_type |= VM_FAULT_MAJOR;
1703 			count_vm_event(PGMAJFAULT);
1704 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1705 		}
1706 		/* Here we actually start the io */
1707 		page = shmem_swapin(swap, gfp, info, index);
1708 		if (!page) {
1709 			error = -ENOMEM;
1710 			goto failed;
1711 		}
1712 	}
1713 	folio = page_folio(page);
1714 
1715 	/* We have to do this with page locked to prevent races */
1716 	folio_lock(folio);
1717 	if (!folio_test_swapcache(folio) ||
1718 	    folio_swap_entry(folio).val != swap.val ||
1719 	    !shmem_confirm_swap(mapping, index, swap)) {
1720 		error = -EEXIST;
1721 		goto unlock;
1722 	}
1723 	if (!folio_test_uptodate(folio)) {
1724 		error = -EIO;
1725 		goto failed;
1726 	}
1727 	folio_wait_writeback(folio);
1728 
1729 	/*
1730 	 * Some architectures may have to restore extra metadata to the
1731 	 * folio after reading from swap.
1732 	 */
1733 	arch_swap_restore(swap, folio);
1734 
1735 	if (shmem_should_replace_folio(folio, gfp)) {
1736 		error = shmem_replace_page(&page, gfp, info, index);
1737 		if (error)
1738 			goto failed;
1739 	}
1740 
1741 	error = shmem_add_to_page_cache(folio, mapping, index,
1742 					swp_to_radix_entry(swap), gfp,
1743 					charge_mm);
1744 	if (error)
1745 		goto failed;
1746 
1747 	spin_lock_irq(&info->lock);
1748 	info->swapped--;
1749 	shmem_recalc_inode(inode);
1750 	spin_unlock_irq(&info->lock);
1751 
1752 	if (sgp == SGP_WRITE)
1753 		folio_mark_accessed(folio);
1754 
1755 	delete_from_swap_cache(&folio->page);
1756 	folio_mark_dirty(folio);
1757 	swap_free(swap);
1758 
1759 	*foliop = folio;
1760 	return 0;
1761 failed:
1762 	if (!shmem_confirm_swap(mapping, index, swap))
1763 		error = -EEXIST;
1764 unlock:
1765 	if (folio) {
1766 		folio_unlock(folio);
1767 		folio_put(folio);
1768 	}
1769 
1770 	return error;
1771 }
1772 
1773 /*
1774  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1775  *
1776  * If we allocate a new one we do not mark it dirty. That's up to the
1777  * vm. If we swap it in we mark it dirty since we also free the swap
1778  * entry since a page cannot live in both the swap and page cache.
1779  *
1780  * vma, vmf, and fault_type are only supplied by shmem_fault:
1781  * otherwise they are NULL.
1782  */
1783 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1784 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1785 	struct vm_area_struct *vma, struct vm_fault *vmf,
1786 			vm_fault_t *fault_type)
1787 {
1788 	struct address_space *mapping = inode->i_mapping;
1789 	struct shmem_inode_info *info = SHMEM_I(inode);
1790 	struct shmem_sb_info *sbinfo;
1791 	struct mm_struct *charge_mm;
1792 	struct folio *folio;
1793 	pgoff_t hindex = index;
1794 	gfp_t huge_gfp;
1795 	int error;
1796 	int once = 0;
1797 	int alloced = 0;
1798 
1799 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1800 		return -EFBIG;
1801 repeat:
1802 	if (sgp <= SGP_CACHE &&
1803 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1804 		return -EINVAL;
1805 	}
1806 
1807 	sbinfo = SHMEM_SB(inode->i_sb);
1808 	charge_mm = vma ? vma->vm_mm : NULL;
1809 
1810 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1811 	if (folio && vma && userfaultfd_minor(vma)) {
1812 		if (!xa_is_value(folio)) {
1813 			folio_unlock(folio);
1814 			folio_put(folio);
1815 		}
1816 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1817 		return 0;
1818 	}
1819 
1820 	if (xa_is_value(folio)) {
1821 		error = shmem_swapin_folio(inode, index, &folio,
1822 					  sgp, gfp, vma, fault_type);
1823 		if (error == -EEXIST)
1824 			goto repeat;
1825 
1826 		*pagep = &folio->page;
1827 		return error;
1828 	}
1829 
1830 	if (folio) {
1831 		hindex = folio->index;
1832 		if (sgp == SGP_WRITE)
1833 			folio_mark_accessed(folio);
1834 		if (folio_test_uptodate(folio))
1835 			goto out;
1836 		/* fallocated page */
1837 		if (sgp != SGP_READ)
1838 			goto clear;
1839 		folio_unlock(folio);
1840 		folio_put(folio);
1841 	}
1842 
1843 	/*
1844 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1845 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1846 	 */
1847 	*pagep = NULL;
1848 	if (sgp == SGP_READ)
1849 		return 0;
1850 	if (sgp == SGP_NOALLOC)
1851 		return -ENOENT;
1852 
1853 	/*
1854 	 * Fast cache lookup and swap lookup did not find it: allocate.
1855 	 */
1856 
1857 	if (vma && userfaultfd_missing(vma)) {
1858 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1859 		return 0;
1860 	}
1861 
1862 	if (!shmem_is_huge(vma, inode, index))
1863 		goto alloc_nohuge;
1864 
1865 	huge_gfp = vma_thp_gfp_mask(vma);
1866 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1867 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1868 	if (IS_ERR(folio)) {
1869 alloc_nohuge:
1870 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1871 	}
1872 	if (IS_ERR(folio)) {
1873 		int retry = 5;
1874 
1875 		error = PTR_ERR(folio);
1876 		folio = NULL;
1877 		if (error != -ENOSPC)
1878 			goto unlock;
1879 		/*
1880 		 * Try to reclaim some space by splitting a huge page
1881 		 * beyond i_size on the filesystem.
1882 		 */
1883 		while (retry--) {
1884 			int ret;
1885 
1886 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1887 			if (ret == SHRINK_STOP)
1888 				break;
1889 			if (ret)
1890 				goto alloc_nohuge;
1891 		}
1892 		goto unlock;
1893 	}
1894 
1895 	hindex = round_down(index, folio_nr_pages(folio));
1896 
1897 	if (sgp == SGP_WRITE)
1898 		__folio_set_referenced(folio);
1899 
1900 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1901 					NULL, gfp & GFP_RECLAIM_MASK,
1902 					charge_mm);
1903 	if (error)
1904 		goto unacct;
1905 	folio_add_lru(folio);
1906 
1907 	spin_lock_irq(&info->lock);
1908 	info->alloced += folio_nr_pages(folio);
1909 	inode->i_blocks += BLOCKS_PER_PAGE << folio_order(folio);
1910 	shmem_recalc_inode(inode);
1911 	spin_unlock_irq(&info->lock);
1912 	alloced = true;
1913 
1914 	if (folio_test_pmd_mappable(folio) &&
1915 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1916 			hindex + HPAGE_PMD_NR - 1) {
1917 		/*
1918 		 * Part of the huge page is beyond i_size: subject
1919 		 * to shrink under memory pressure.
1920 		 */
1921 		spin_lock(&sbinfo->shrinklist_lock);
1922 		/*
1923 		 * _careful to defend against unlocked access to
1924 		 * ->shrink_list in shmem_unused_huge_shrink()
1925 		 */
1926 		if (list_empty_careful(&info->shrinklist)) {
1927 			list_add_tail(&info->shrinklist,
1928 				      &sbinfo->shrinklist);
1929 			sbinfo->shrinklist_len++;
1930 		}
1931 		spin_unlock(&sbinfo->shrinklist_lock);
1932 	}
1933 
1934 	/*
1935 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1936 	 */
1937 	if (sgp == SGP_FALLOC)
1938 		sgp = SGP_WRITE;
1939 clear:
1940 	/*
1941 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1942 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1943 	 * it now, lest undo on failure cancel our earlier guarantee.
1944 	 */
1945 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1946 		long i, n = folio_nr_pages(folio);
1947 
1948 		for (i = 0; i < n; i++)
1949 			clear_highpage(folio_page(folio, i));
1950 		flush_dcache_folio(folio);
1951 		folio_mark_uptodate(folio);
1952 	}
1953 
1954 	/* Perhaps the file has been truncated since we checked */
1955 	if (sgp <= SGP_CACHE &&
1956 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1957 		if (alloced) {
1958 			folio_clear_dirty(folio);
1959 			filemap_remove_folio(folio);
1960 			spin_lock_irq(&info->lock);
1961 			shmem_recalc_inode(inode);
1962 			spin_unlock_irq(&info->lock);
1963 		}
1964 		error = -EINVAL;
1965 		goto unlock;
1966 	}
1967 out:
1968 	*pagep = folio_page(folio, index - hindex);
1969 	return 0;
1970 
1971 	/*
1972 	 * Error recovery.
1973 	 */
1974 unacct:
1975 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
1976 
1977 	if (folio_test_large(folio)) {
1978 		folio_unlock(folio);
1979 		folio_put(folio);
1980 		goto alloc_nohuge;
1981 	}
1982 unlock:
1983 	if (folio) {
1984 		folio_unlock(folio);
1985 		folio_put(folio);
1986 	}
1987 	if (error == -ENOSPC && !once++) {
1988 		spin_lock_irq(&info->lock);
1989 		shmem_recalc_inode(inode);
1990 		spin_unlock_irq(&info->lock);
1991 		goto repeat;
1992 	}
1993 	if (error == -EEXIST)
1994 		goto repeat;
1995 	return error;
1996 }
1997 
1998 /*
1999  * This is like autoremove_wake_function, but it removes the wait queue
2000  * entry unconditionally - even if something else had already woken the
2001  * target.
2002  */
2003 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2004 {
2005 	int ret = default_wake_function(wait, mode, sync, key);
2006 	list_del_init(&wait->entry);
2007 	return ret;
2008 }
2009 
2010 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2011 {
2012 	struct vm_area_struct *vma = vmf->vma;
2013 	struct inode *inode = file_inode(vma->vm_file);
2014 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2015 	int err;
2016 	vm_fault_t ret = VM_FAULT_LOCKED;
2017 
2018 	/*
2019 	 * Trinity finds that probing a hole which tmpfs is punching can
2020 	 * prevent the hole-punch from ever completing: which in turn
2021 	 * locks writers out with its hold on i_rwsem.  So refrain from
2022 	 * faulting pages into the hole while it's being punched.  Although
2023 	 * shmem_undo_range() does remove the additions, it may be unable to
2024 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2025 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2026 	 *
2027 	 * It does not matter if we sometimes reach this check just before the
2028 	 * hole-punch begins, so that one fault then races with the punch:
2029 	 * we just need to make racing faults a rare case.
2030 	 *
2031 	 * The implementation below would be much simpler if we just used a
2032 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2033 	 * and bloating every shmem inode for this unlikely case would be sad.
2034 	 */
2035 	if (unlikely(inode->i_private)) {
2036 		struct shmem_falloc *shmem_falloc;
2037 
2038 		spin_lock(&inode->i_lock);
2039 		shmem_falloc = inode->i_private;
2040 		if (shmem_falloc &&
2041 		    shmem_falloc->waitq &&
2042 		    vmf->pgoff >= shmem_falloc->start &&
2043 		    vmf->pgoff < shmem_falloc->next) {
2044 			struct file *fpin;
2045 			wait_queue_head_t *shmem_falloc_waitq;
2046 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2047 
2048 			ret = VM_FAULT_NOPAGE;
2049 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2050 			if (fpin)
2051 				ret = VM_FAULT_RETRY;
2052 
2053 			shmem_falloc_waitq = shmem_falloc->waitq;
2054 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2055 					TASK_UNINTERRUPTIBLE);
2056 			spin_unlock(&inode->i_lock);
2057 			schedule();
2058 
2059 			/*
2060 			 * shmem_falloc_waitq points into the shmem_fallocate()
2061 			 * stack of the hole-punching task: shmem_falloc_waitq
2062 			 * is usually invalid by the time we reach here, but
2063 			 * finish_wait() does not dereference it in that case;
2064 			 * though i_lock needed lest racing with wake_up_all().
2065 			 */
2066 			spin_lock(&inode->i_lock);
2067 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2068 			spin_unlock(&inode->i_lock);
2069 
2070 			if (fpin)
2071 				fput(fpin);
2072 			return ret;
2073 		}
2074 		spin_unlock(&inode->i_lock);
2075 	}
2076 
2077 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2078 				  gfp, vma, vmf, &ret);
2079 	if (err)
2080 		return vmf_error(err);
2081 	return ret;
2082 }
2083 
2084 unsigned long shmem_get_unmapped_area(struct file *file,
2085 				      unsigned long uaddr, unsigned long len,
2086 				      unsigned long pgoff, unsigned long flags)
2087 {
2088 	unsigned long (*get_area)(struct file *,
2089 		unsigned long, unsigned long, unsigned long, unsigned long);
2090 	unsigned long addr;
2091 	unsigned long offset;
2092 	unsigned long inflated_len;
2093 	unsigned long inflated_addr;
2094 	unsigned long inflated_offset;
2095 
2096 	if (len > TASK_SIZE)
2097 		return -ENOMEM;
2098 
2099 	get_area = current->mm->get_unmapped_area;
2100 	addr = get_area(file, uaddr, len, pgoff, flags);
2101 
2102 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2103 		return addr;
2104 	if (IS_ERR_VALUE(addr))
2105 		return addr;
2106 	if (addr & ~PAGE_MASK)
2107 		return addr;
2108 	if (addr > TASK_SIZE - len)
2109 		return addr;
2110 
2111 	if (shmem_huge == SHMEM_HUGE_DENY)
2112 		return addr;
2113 	if (len < HPAGE_PMD_SIZE)
2114 		return addr;
2115 	if (flags & MAP_FIXED)
2116 		return addr;
2117 	/*
2118 	 * Our priority is to support MAP_SHARED mapped hugely;
2119 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2120 	 * But if caller specified an address hint and we allocated area there
2121 	 * successfully, respect that as before.
2122 	 */
2123 	if (uaddr == addr)
2124 		return addr;
2125 
2126 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2127 		struct super_block *sb;
2128 
2129 		if (file) {
2130 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2131 			sb = file_inode(file)->i_sb;
2132 		} else {
2133 			/*
2134 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2135 			 * for "/dev/zero", to create a shared anonymous object.
2136 			 */
2137 			if (IS_ERR(shm_mnt))
2138 				return addr;
2139 			sb = shm_mnt->mnt_sb;
2140 		}
2141 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2142 			return addr;
2143 	}
2144 
2145 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2146 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2147 		return addr;
2148 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2149 		return addr;
2150 
2151 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2152 	if (inflated_len > TASK_SIZE)
2153 		return addr;
2154 	if (inflated_len < len)
2155 		return addr;
2156 
2157 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2158 	if (IS_ERR_VALUE(inflated_addr))
2159 		return addr;
2160 	if (inflated_addr & ~PAGE_MASK)
2161 		return addr;
2162 
2163 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2164 	inflated_addr += offset - inflated_offset;
2165 	if (inflated_offset > offset)
2166 		inflated_addr += HPAGE_PMD_SIZE;
2167 
2168 	if (inflated_addr > TASK_SIZE - len)
2169 		return addr;
2170 	return inflated_addr;
2171 }
2172 
2173 #ifdef CONFIG_NUMA
2174 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2175 {
2176 	struct inode *inode = file_inode(vma->vm_file);
2177 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2178 }
2179 
2180 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2181 					  unsigned long addr)
2182 {
2183 	struct inode *inode = file_inode(vma->vm_file);
2184 	pgoff_t index;
2185 
2186 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2187 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2188 }
2189 #endif
2190 
2191 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2192 {
2193 	struct inode *inode = file_inode(file);
2194 	struct shmem_inode_info *info = SHMEM_I(inode);
2195 	int retval = -ENOMEM;
2196 
2197 	/*
2198 	 * What serializes the accesses to info->flags?
2199 	 * ipc_lock_object() when called from shmctl_do_lock(),
2200 	 * no serialization needed when called from shm_destroy().
2201 	 */
2202 	if (lock && !(info->flags & VM_LOCKED)) {
2203 		if (!user_shm_lock(inode->i_size, ucounts))
2204 			goto out_nomem;
2205 		info->flags |= VM_LOCKED;
2206 		mapping_set_unevictable(file->f_mapping);
2207 	}
2208 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2209 		user_shm_unlock(inode->i_size, ucounts);
2210 		info->flags &= ~VM_LOCKED;
2211 		mapping_clear_unevictable(file->f_mapping);
2212 	}
2213 	retval = 0;
2214 
2215 out_nomem:
2216 	return retval;
2217 }
2218 
2219 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2220 {
2221 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2222 	int ret;
2223 
2224 	ret = seal_check_future_write(info->seals, vma);
2225 	if (ret)
2226 		return ret;
2227 
2228 	/* arm64 - allow memory tagging on RAM-based files */
2229 	vma->vm_flags |= VM_MTE_ALLOWED;
2230 
2231 	file_accessed(file);
2232 	vma->vm_ops = &shmem_vm_ops;
2233 	return 0;
2234 }
2235 
2236 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2237 				     umode_t mode, dev_t dev, unsigned long flags)
2238 {
2239 	struct inode *inode;
2240 	struct shmem_inode_info *info;
2241 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2242 	ino_t ino;
2243 
2244 	if (shmem_reserve_inode(sb, &ino))
2245 		return NULL;
2246 
2247 	inode = new_inode(sb);
2248 	if (inode) {
2249 		inode->i_ino = ino;
2250 		inode_init_owner(&init_user_ns, inode, dir, mode);
2251 		inode->i_blocks = 0;
2252 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2253 		inode->i_generation = prandom_u32();
2254 		info = SHMEM_I(inode);
2255 		memset(info, 0, (char *)inode - (char *)info);
2256 		spin_lock_init(&info->lock);
2257 		atomic_set(&info->stop_eviction, 0);
2258 		info->seals = F_SEAL_SEAL;
2259 		info->flags = flags & VM_NORESERVE;
2260 		info->i_crtime = inode->i_mtime;
2261 		INIT_LIST_HEAD(&info->shrinklist);
2262 		INIT_LIST_HEAD(&info->swaplist);
2263 		simple_xattrs_init(&info->xattrs);
2264 		cache_no_acl(inode);
2265 		mapping_set_large_folios(inode->i_mapping);
2266 
2267 		switch (mode & S_IFMT) {
2268 		default:
2269 			inode->i_op = &shmem_special_inode_operations;
2270 			init_special_inode(inode, mode, dev);
2271 			break;
2272 		case S_IFREG:
2273 			inode->i_mapping->a_ops = &shmem_aops;
2274 			inode->i_op = &shmem_inode_operations;
2275 			inode->i_fop = &shmem_file_operations;
2276 			mpol_shared_policy_init(&info->policy,
2277 						 shmem_get_sbmpol(sbinfo));
2278 			break;
2279 		case S_IFDIR:
2280 			inc_nlink(inode);
2281 			/* Some things misbehave if size == 0 on a directory */
2282 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2283 			inode->i_op = &shmem_dir_inode_operations;
2284 			inode->i_fop = &simple_dir_operations;
2285 			break;
2286 		case S_IFLNK:
2287 			/*
2288 			 * Must not load anything in the rbtree,
2289 			 * mpol_free_shared_policy will not be called.
2290 			 */
2291 			mpol_shared_policy_init(&info->policy, NULL);
2292 			break;
2293 		}
2294 
2295 		lockdep_annotate_inode_mutex_key(inode);
2296 	} else
2297 		shmem_free_inode(sb);
2298 	return inode;
2299 }
2300 
2301 #ifdef CONFIG_USERFAULTFD
2302 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2303 			   pmd_t *dst_pmd,
2304 			   struct vm_area_struct *dst_vma,
2305 			   unsigned long dst_addr,
2306 			   unsigned long src_addr,
2307 			   bool zeropage, bool wp_copy,
2308 			   struct page **pagep)
2309 {
2310 	struct inode *inode = file_inode(dst_vma->vm_file);
2311 	struct shmem_inode_info *info = SHMEM_I(inode);
2312 	struct address_space *mapping = inode->i_mapping;
2313 	gfp_t gfp = mapping_gfp_mask(mapping);
2314 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2315 	void *page_kaddr;
2316 	struct folio *folio;
2317 	struct page *page;
2318 	int ret;
2319 	pgoff_t max_off;
2320 
2321 	if (!shmem_inode_acct_block(inode, 1)) {
2322 		/*
2323 		 * We may have got a page, returned -ENOENT triggering a retry,
2324 		 * and now we find ourselves with -ENOMEM. Release the page, to
2325 		 * avoid a BUG_ON in our caller.
2326 		 */
2327 		if (unlikely(*pagep)) {
2328 			put_page(*pagep);
2329 			*pagep = NULL;
2330 		}
2331 		return -ENOMEM;
2332 	}
2333 
2334 	if (!*pagep) {
2335 		ret = -ENOMEM;
2336 		page = shmem_alloc_page(gfp, info, pgoff);
2337 		if (!page)
2338 			goto out_unacct_blocks;
2339 
2340 		if (!zeropage) {	/* COPY */
2341 			page_kaddr = kmap_atomic(page);
2342 			ret = copy_from_user(page_kaddr,
2343 					     (const void __user *)src_addr,
2344 					     PAGE_SIZE);
2345 			kunmap_atomic(page_kaddr);
2346 
2347 			/* fallback to copy_from_user outside mmap_lock */
2348 			if (unlikely(ret)) {
2349 				*pagep = page;
2350 				ret = -ENOENT;
2351 				/* don't free the page */
2352 				goto out_unacct_blocks;
2353 			}
2354 
2355 			flush_dcache_page(page);
2356 		} else {		/* ZEROPAGE */
2357 			clear_user_highpage(page, dst_addr);
2358 		}
2359 	} else {
2360 		page = *pagep;
2361 		*pagep = NULL;
2362 	}
2363 
2364 	VM_BUG_ON(PageLocked(page));
2365 	VM_BUG_ON(PageSwapBacked(page));
2366 	__SetPageLocked(page);
2367 	__SetPageSwapBacked(page);
2368 	__SetPageUptodate(page);
2369 
2370 	ret = -EFAULT;
2371 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2372 	if (unlikely(pgoff >= max_off))
2373 		goto out_release;
2374 
2375 	folio = page_folio(page);
2376 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2377 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2378 	if (ret)
2379 		goto out_release;
2380 
2381 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2382 				       page, true, wp_copy);
2383 	if (ret)
2384 		goto out_delete_from_cache;
2385 
2386 	spin_lock_irq(&info->lock);
2387 	info->alloced++;
2388 	inode->i_blocks += BLOCKS_PER_PAGE;
2389 	shmem_recalc_inode(inode);
2390 	spin_unlock_irq(&info->lock);
2391 
2392 	unlock_page(page);
2393 	return 0;
2394 out_delete_from_cache:
2395 	delete_from_page_cache(page);
2396 out_release:
2397 	unlock_page(page);
2398 	put_page(page);
2399 out_unacct_blocks:
2400 	shmem_inode_unacct_blocks(inode, 1);
2401 	return ret;
2402 }
2403 #endif /* CONFIG_USERFAULTFD */
2404 
2405 #ifdef CONFIG_TMPFS
2406 static const struct inode_operations shmem_symlink_inode_operations;
2407 static const struct inode_operations shmem_short_symlink_operations;
2408 
2409 #ifdef CONFIG_TMPFS_XATTR
2410 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2411 #else
2412 #define shmem_initxattrs NULL
2413 #endif
2414 
2415 static int
2416 shmem_write_begin(struct file *file, struct address_space *mapping,
2417 			loff_t pos, unsigned len,
2418 			struct page **pagep, void **fsdata)
2419 {
2420 	struct inode *inode = mapping->host;
2421 	struct shmem_inode_info *info = SHMEM_I(inode);
2422 	pgoff_t index = pos >> PAGE_SHIFT;
2423 	int ret = 0;
2424 
2425 	/* i_rwsem is held by caller */
2426 	if (unlikely(info->seals & (F_SEAL_GROW |
2427 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2428 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2429 			return -EPERM;
2430 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2431 			return -EPERM;
2432 	}
2433 
2434 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2435 
2436 	if (ret)
2437 		return ret;
2438 
2439 	if (PageHWPoison(*pagep)) {
2440 		unlock_page(*pagep);
2441 		put_page(*pagep);
2442 		*pagep = NULL;
2443 		return -EIO;
2444 	}
2445 
2446 	return 0;
2447 }
2448 
2449 static int
2450 shmem_write_end(struct file *file, struct address_space *mapping,
2451 			loff_t pos, unsigned len, unsigned copied,
2452 			struct page *page, void *fsdata)
2453 {
2454 	struct inode *inode = mapping->host;
2455 
2456 	if (pos + copied > inode->i_size)
2457 		i_size_write(inode, pos + copied);
2458 
2459 	if (!PageUptodate(page)) {
2460 		struct page *head = compound_head(page);
2461 		if (PageTransCompound(page)) {
2462 			int i;
2463 
2464 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2465 				if (head + i == page)
2466 					continue;
2467 				clear_highpage(head + i);
2468 				flush_dcache_page(head + i);
2469 			}
2470 		}
2471 		if (copied < PAGE_SIZE) {
2472 			unsigned from = pos & (PAGE_SIZE - 1);
2473 			zero_user_segments(page, 0, from,
2474 					from + copied, PAGE_SIZE);
2475 		}
2476 		SetPageUptodate(head);
2477 	}
2478 	set_page_dirty(page);
2479 	unlock_page(page);
2480 	put_page(page);
2481 
2482 	return copied;
2483 }
2484 
2485 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2486 {
2487 	struct file *file = iocb->ki_filp;
2488 	struct inode *inode = file_inode(file);
2489 	struct address_space *mapping = inode->i_mapping;
2490 	pgoff_t index;
2491 	unsigned long offset;
2492 	int error = 0;
2493 	ssize_t retval = 0;
2494 	loff_t *ppos = &iocb->ki_pos;
2495 
2496 	index = *ppos >> PAGE_SHIFT;
2497 	offset = *ppos & ~PAGE_MASK;
2498 
2499 	for (;;) {
2500 		struct page *page = NULL;
2501 		pgoff_t end_index;
2502 		unsigned long nr, ret;
2503 		loff_t i_size = i_size_read(inode);
2504 
2505 		end_index = i_size >> PAGE_SHIFT;
2506 		if (index > end_index)
2507 			break;
2508 		if (index == end_index) {
2509 			nr = i_size & ~PAGE_MASK;
2510 			if (nr <= offset)
2511 				break;
2512 		}
2513 
2514 		error = shmem_getpage(inode, index, &page, SGP_READ);
2515 		if (error) {
2516 			if (error == -EINVAL)
2517 				error = 0;
2518 			break;
2519 		}
2520 		if (page) {
2521 			unlock_page(page);
2522 
2523 			if (PageHWPoison(page)) {
2524 				put_page(page);
2525 				error = -EIO;
2526 				break;
2527 			}
2528 		}
2529 
2530 		/*
2531 		 * We must evaluate after, since reads (unlike writes)
2532 		 * are called without i_rwsem protection against truncate
2533 		 */
2534 		nr = PAGE_SIZE;
2535 		i_size = i_size_read(inode);
2536 		end_index = i_size >> PAGE_SHIFT;
2537 		if (index == end_index) {
2538 			nr = i_size & ~PAGE_MASK;
2539 			if (nr <= offset) {
2540 				if (page)
2541 					put_page(page);
2542 				break;
2543 			}
2544 		}
2545 		nr -= offset;
2546 
2547 		if (page) {
2548 			/*
2549 			 * If users can be writing to this page using arbitrary
2550 			 * virtual addresses, take care about potential aliasing
2551 			 * before reading the page on the kernel side.
2552 			 */
2553 			if (mapping_writably_mapped(mapping))
2554 				flush_dcache_page(page);
2555 			/*
2556 			 * Mark the page accessed if we read the beginning.
2557 			 */
2558 			if (!offset)
2559 				mark_page_accessed(page);
2560 			/*
2561 			 * Ok, we have the page, and it's up-to-date, so
2562 			 * now we can copy it to user space...
2563 			 */
2564 			ret = copy_page_to_iter(page, offset, nr, to);
2565 			put_page(page);
2566 
2567 		} else if (iter_is_iovec(to)) {
2568 			/*
2569 			 * Copy to user tends to be so well optimized, but
2570 			 * clear_user() not so much, that it is noticeably
2571 			 * faster to copy the zero page instead of clearing.
2572 			 */
2573 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2574 		} else {
2575 			/*
2576 			 * But submitting the same page twice in a row to
2577 			 * splice() - or others? - can result in confusion:
2578 			 * so don't attempt that optimization on pipes etc.
2579 			 */
2580 			ret = iov_iter_zero(nr, to);
2581 		}
2582 
2583 		retval += ret;
2584 		offset += ret;
2585 		index += offset >> PAGE_SHIFT;
2586 		offset &= ~PAGE_MASK;
2587 
2588 		if (!iov_iter_count(to))
2589 			break;
2590 		if (ret < nr) {
2591 			error = -EFAULT;
2592 			break;
2593 		}
2594 		cond_resched();
2595 	}
2596 
2597 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2598 	file_accessed(file);
2599 	return retval ? retval : error;
2600 }
2601 
2602 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2603 {
2604 	struct address_space *mapping = file->f_mapping;
2605 	struct inode *inode = mapping->host;
2606 
2607 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2608 		return generic_file_llseek_size(file, offset, whence,
2609 					MAX_LFS_FILESIZE, i_size_read(inode));
2610 	if (offset < 0)
2611 		return -ENXIO;
2612 
2613 	inode_lock(inode);
2614 	/* We're holding i_rwsem so we can access i_size directly */
2615 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2616 	if (offset >= 0)
2617 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2618 	inode_unlock(inode);
2619 	return offset;
2620 }
2621 
2622 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2623 							 loff_t len)
2624 {
2625 	struct inode *inode = file_inode(file);
2626 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2627 	struct shmem_inode_info *info = SHMEM_I(inode);
2628 	struct shmem_falloc shmem_falloc;
2629 	pgoff_t start, index, end, undo_fallocend;
2630 	int error;
2631 
2632 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2633 		return -EOPNOTSUPP;
2634 
2635 	inode_lock(inode);
2636 
2637 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2638 		struct address_space *mapping = file->f_mapping;
2639 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2640 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2641 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2642 
2643 		/* protected by i_rwsem */
2644 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2645 			error = -EPERM;
2646 			goto out;
2647 		}
2648 
2649 		shmem_falloc.waitq = &shmem_falloc_waitq;
2650 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2651 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2652 		spin_lock(&inode->i_lock);
2653 		inode->i_private = &shmem_falloc;
2654 		spin_unlock(&inode->i_lock);
2655 
2656 		if ((u64)unmap_end > (u64)unmap_start)
2657 			unmap_mapping_range(mapping, unmap_start,
2658 					    1 + unmap_end - unmap_start, 0);
2659 		shmem_truncate_range(inode, offset, offset + len - 1);
2660 		/* No need to unmap again: hole-punching leaves COWed pages */
2661 
2662 		spin_lock(&inode->i_lock);
2663 		inode->i_private = NULL;
2664 		wake_up_all(&shmem_falloc_waitq);
2665 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2666 		spin_unlock(&inode->i_lock);
2667 		error = 0;
2668 		goto out;
2669 	}
2670 
2671 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2672 	error = inode_newsize_ok(inode, offset + len);
2673 	if (error)
2674 		goto out;
2675 
2676 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2677 		error = -EPERM;
2678 		goto out;
2679 	}
2680 
2681 	start = offset >> PAGE_SHIFT;
2682 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2683 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2684 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2685 		error = -ENOSPC;
2686 		goto out;
2687 	}
2688 
2689 	shmem_falloc.waitq = NULL;
2690 	shmem_falloc.start = start;
2691 	shmem_falloc.next  = start;
2692 	shmem_falloc.nr_falloced = 0;
2693 	shmem_falloc.nr_unswapped = 0;
2694 	spin_lock(&inode->i_lock);
2695 	inode->i_private = &shmem_falloc;
2696 	spin_unlock(&inode->i_lock);
2697 
2698 	/*
2699 	 * info->fallocend is only relevant when huge pages might be
2700 	 * involved: to prevent split_huge_page() freeing fallocated
2701 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2702 	 */
2703 	undo_fallocend = info->fallocend;
2704 	if (info->fallocend < end)
2705 		info->fallocend = end;
2706 
2707 	for (index = start; index < end; ) {
2708 		struct page *page;
2709 
2710 		/*
2711 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2712 		 * been interrupted because we are using up too much memory.
2713 		 */
2714 		if (signal_pending(current))
2715 			error = -EINTR;
2716 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2717 			error = -ENOMEM;
2718 		else
2719 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2720 		if (error) {
2721 			info->fallocend = undo_fallocend;
2722 			/* Remove the !PageUptodate pages we added */
2723 			if (index > start) {
2724 				shmem_undo_range(inode,
2725 				    (loff_t)start << PAGE_SHIFT,
2726 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2727 			}
2728 			goto undone;
2729 		}
2730 
2731 		index++;
2732 		/*
2733 		 * Here is a more important optimization than it appears:
2734 		 * a second SGP_FALLOC on the same huge page will clear it,
2735 		 * making it PageUptodate and un-undoable if we fail later.
2736 		 */
2737 		if (PageTransCompound(page)) {
2738 			index = round_up(index, HPAGE_PMD_NR);
2739 			/* Beware 32-bit wraparound */
2740 			if (!index)
2741 				index--;
2742 		}
2743 
2744 		/*
2745 		 * Inform shmem_writepage() how far we have reached.
2746 		 * No need for lock or barrier: we have the page lock.
2747 		 */
2748 		if (!PageUptodate(page))
2749 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2750 		shmem_falloc.next = index;
2751 
2752 		/*
2753 		 * If !PageUptodate, leave it that way so that freeable pages
2754 		 * can be recognized if we need to rollback on error later.
2755 		 * But set_page_dirty so that memory pressure will swap rather
2756 		 * than free the pages we are allocating (and SGP_CACHE pages
2757 		 * might still be clean: we now need to mark those dirty too).
2758 		 */
2759 		set_page_dirty(page);
2760 		unlock_page(page);
2761 		put_page(page);
2762 		cond_resched();
2763 	}
2764 
2765 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2766 		i_size_write(inode, offset + len);
2767 	inode->i_ctime = current_time(inode);
2768 undone:
2769 	spin_lock(&inode->i_lock);
2770 	inode->i_private = NULL;
2771 	spin_unlock(&inode->i_lock);
2772 out:
2773 	inode_unlock(inode);
2774 	return error;
2775 }
2776 
2777 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2778 {
2779 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2780 
2781 	buf->f_type = TMPFS_MAGIC;
2782 	buf->f_bsize = PAGE_SIZE;
2783 	buf->f_namelen = NAME_MAX;
2784 	if (sbinfo->max_blocks) {
2785 		buf->f_blocks = sbinfo->max_blocks;
2786 		buf->f_bavail =
2787 		buf->f_bfree  = sbinfo->max_blocks -
2788 				percpu_counter_sum(&sbinfo->used_blocks);
2789 	}
2790 	if (sbinfo->max_inodes) {
2791 		buf->f_files = sbinfo->max_inodes;
2792 		buf->f_ffree = sbinfo->free_inodes;
2793 	}
2794 	/* else leave those fields 0 like simple_statfs */
2795 
2796 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2797 
2798 	return 0;
2799 }
2800 
2801 /*
2802  * File creation. Allocate an inode, and we're done..
2803  */
2804 static int
2805 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2806 	    struct dentry *dentry, umode_t mode, dev_t dev)
2807 {
2808 	struct inode *inode;
2809 	int error = -ENOSPC;
2810 
2811 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2812 	if (inode) {
2813 		error = simple_acl_create(dir, inode);
2814 		if (error)
2815 			goto out_iput;
2816 		error = security_inode_init_security(inode, dir,
2817 						     &dentry->d_name,
2818 						     shmem_initxattrs, NULL);
2819 		if (error && error != -EOPNOTSUPP)
2820 			goto out_iput;
2821 
2822 		error = 0;
2823 		dir->i_size += BOGO_DIRENT_SIZE;
2824 		dir->i_ctime = dir->i_mtime = current_time(dir);
2825 		d_instantiate(dentry, inode);
2826 		dget(dentry); /* Extra count - pin the dentry in core */
2827 	}
2828 	return error;
2829 out_iput:
2830 	iput(inode);
2831 	return error;
2832 }
2833 
2834 static int
2835 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2836 	      struct dentry *dentry, umode_t mode)
2837 {
2838 	struct inode *inode;
2839 	int error = -ENOSPC;
2840 
2841 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2842 	if (inode) {
2843 		error = security_inode_init_security(inode, dir,
2844 						     NULL,
2845 						     shmem_initxattrs, NULL);
2846 		if (error && error != -EOPNOTSUPP)
2847 			goto out_iput;
2848 		error = simple_acl_create(dir, inode);
2849 		if (error)
2850 			goto out_iput;
2851 		d_tmpfile(dentry, inode);
2852 	}
2853 	return error;
2854 out_iput:
2855 	iput(inode);
2856 	return error;
2857 }
2858 
2859 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2860 		       struct dentry *dentry, umode_t mode)
2861 {
2862 	int error;
2863 
2864 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2865 				 mode | S_IFDIR, 0)))
2866 		return error;
2867 	inc_nlink(dir);
2868 	return 0;
2869 }
2870 
2871 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2872 			struct dentry *dentry, umode_t mode, bool excl)
2873 {
2874 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2875 }
2876 
2877 /*
2878  * Link a file..
2879  */
2880 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2881 {
2882 	struct inode *inode = d_inode(old_dentry);
2883 	int ret = 0;
2884 
2885 	/*
2886 	 * No ordinary (disk based) filesystem counts links as inodes;
2887 	 * but each new link needs a new dentry, pinning lowmem, and
2888 	 * tmpfs dentries cannot be pruned until they are unlinked.
2889 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2890 	 * first link must skip that, to get the accounting right.
2891 	 */
2892 	if (inode->i_nlink) {
2893 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2894 		if (ret)
2895 			goto out;
2896 	}
2897 
2898 	dir->i_size += BOGO_DIRENT_SIZE;
2899 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2900 	inc_nlink(inode);
2901 	ihold(inode);	/* New dentry reference */
2902 	dget(dentry);		/* Extra pinning count for the created dentry */
2903 	d_instantiate(dentry, inode);
2904 out:
2905 	return ret;
2906 }
2907 
2908 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2909 {
2910 	struct inode *inode = d_inode(dentry);
2911 
2912 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2913 		shmem_free_inode(inode->i_sb);
2914 
2915 	dir->i_size -= BOGO_DIRENT_SIZE;
2916 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2917 	drop_nlink(inode);
2918 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2919 	return 0;
2920 }
2921 
2922 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2923 {
2924 	if (!simple_empty(dentry))
2925 		return -ENOTEMPTY;
2926 
2927 	drop_nlink(d_inode(dentry));
2928 	drop_nlink(dir);
2929 	return shmem_unlink(dir, dentry);
2930 }
2931 
2932 static int shmem_whiteout(struct user_namespace *mnt_userns,
2933 			  struct inode *old_dir, struct dentry *old_dentry)
2934 {
2935 	struct dentry *whiteout;
2936 	int error;
2937 
2938 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2939 	if (!whiteout)
2940 		return -ENOMEM;
2941 
2942 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2943 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2944 	dput(whiteout);
2945 	if (error)
2946 		return error;
2947 
2948 	/*
2949 	 * Cheat and hash the whiteout while the old dentry is still in
2950 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2951 	 *
2952 	 * d_lookup() will consistently find one of them at this point,
2953 	 * not sure which one, but that isn't even important.
2954 	 */
2955 	d_rehash(whiteout);
2956 	return 0;
2957 }
2958 
2959 /*
2960  * The VFS layer already does all the dentry stuff for rename,
2961  * we just have to decrement the usage count for the target if
2962  * it exists so that the VFS layer correctly free's it when it
2963  * gets overwritten.
2964  */
2965 static int shmem_rename2(struct user_namespace *mnt_userns,
2966 			 struct inode *old_dir, struct dentry *old_dentry,
2967 			 struct inode *new_dir, struct dentry *new_dentry,
2968 			 unsigned int flags)
2969 {
2970 	struct inode *inode = d_inode(old_dentry);
2971 	int they_are_dirs = S_ISDIR(inode->i_mode);
2972 
2973 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2974 		return -EINVAL;
2975 
2976 	if (flags & RENAME_EXCHANGE)
2977 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2978 
2979 	if (!simple_empty(new_dentry))
2980 		return -ENOTEMPTY;
2981 
2982 	if (flags & RENAME_WHITEOUT) {
2983 		int error;
2984 
2985 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
2986 		if (error)
2987 			return error;
2988 	}
2989 
2990 	if (d_really_is_positive(new_dentry)) {
2991 		(void) shmem_unlink(new_dir, new_dentry);
2992 		if (they_are_dirs) {
2993 			drop_nlink(d_inode(new_dentry));
2994 			drop_nlink(old_dir);
2995 		}
2996 	} else if (they_are_dirs) {
2997 		drop_nlink(old_dir);
2998 		inc_nlink(new_dir);
2999 	}
3000 
3001 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3002 	new_dir->i_size += BOGO_DIRENT_SIZE;
3003 	old_dir->i_ctime = old_dir->i_mtime =
3004 	new_dir->i_ctime = new_dir->i_mtime =
3005 	inode->i_ctime = current_time(old_dir);
3006 	return 0;
3007 }
3008 
3009 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3010 			 struct dentry *dentry, const char *symname)
3011 {
3012 	int error;
3013 	int len;
3014 	struct inode *inode;
3015 	struct page *page;
3016 
3017 	len = strlen(symname) + 1;
3018 	if (len > PAGE_SIZE)
3019 		return -ENAMETOOLONG;
3020 
3021 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3022 				VM_NORESERVE);
3023 	if (!inode)
3024 		return -ENOSPC;
3025 
3026 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3027 					     shmem_initxattrs, NULL);
3028 	if (error && error != -EOPNOTSUPP) {
3029 		iput(inode);
3030 		return error;
3031 	}
3032 
3033 	inode->i_size = len-1;
3034 	if (len <= SHORT_SYMLINK_LEN) {
3035 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3036 		if (!inode->i_link) {
3037 			iput(inode);
3038 			return -ENOMEM;
3039 		}
3040 		inode->i_op = &shmem_short_symlink_operations;
3041 	} else {
3042 		inode_nohighmem(inode);
3043 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3044 		if (error) {
3045 			iput(inode);
3046 			return error;
3047 		}
3048 		inode->i_mapping->a_ops = &shmem_aops;
3049 		inode->i_op = &shmem_symlink_inode_operations;
3050 		memcpy(page_address(page), symname, len);
3051 		SetPageUptodate(page);
3052 		set_page_dirty(page);
3053 		unlock_page(page);
3054 		put_page(page);
3055 	}
3056 	dir->i_size += BOGO_DIRENT_SIZE;
3057 	dir->i_ctime = dir->i_mtime = current_time(dir);
3058 	d_instantiate(dentry, inode);
3059 	dget(dentry);
3060 	return 0;
3061 }
3062 
3063 static void shmem_put_link(void *arg)
3064 {
3065 	mark_page_accessed(arg);
3066 	put_page(arg);
3067 }
3068 
3069 static const char *shmem_get_link(struct dentry *dentry,
3070 				  struct inode *inode,
3071 				  struct delayed_call *done)
3072 {
3073 	struct page *page = NULL;
3074 	int error;
3075 	if (!dentry) {
3076 		page = find_get_page(inode->i_mapping, 0);
3077 		if (!page)
3078 			return ERR_PTR(-ECHILD);
3079 		if (PageHWPoison(page) ||
3080 		    !PageUptodate(page)) {
3081 			put_page(page);
3082 			return ERR_PTR(-ECHILD);
3083 		}
3084 	} else {
3085 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3086 		if (error)
3087 			return ERR_PTR(error);
3088 		if (!page)
3089 			return ERR_PTR(-ECHILD);
3090 		if (PageHWPoison(page)) {
3091 			unlock_page(page);
3092 			put_page(page);
3093 			return ERR_PTR(-ECHILD);
3094 		}
3095 		unlock_page(page);
3096 	}
3097 	set_delayed_call(done, shmem_put_link, page);
3098 	return page_address(page);
3099 }
3100 
3101 #ifdef CONFIG_TMPFS_XATTR
3102 /*
3103  * Superblocks without xattr inode operations may get some security.* xattr
3104  * support from the LSM "for free". As soon as we have any other xattrs
3105  * like ACLs, we also need to implement the security.* handlers at
3106  * filesystem level, though.
3107  */
3108 
3109 /*
3110  * Callback for security_inode_init_security() for acquiring xattrs.
3111  */
3112 static int shmem_initxattrs(struct inode *inode,
3113 			    const struct xattr *xattr_array,
3114 			    void *fs_info)
3115 {
3116 	struct shmem_inode_info *info = SHMEM_I(inode);
3117 	const struct xattr *xattr;
3118 	struct simple_xattr *new_xattr;
3119 	size_t len;
3120 
3121 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3122 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3123 		if (!new_xattr)
3124 			return -ENOMEM;
3125 
3126 		len = strlen(xattr->name) + 1;
3127 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3128 					  GFP_KERNEL);
3129 		if (!new_xattr->name) {
3130 			kvfree(new_xattr);
3131 			return -ENOMEM;
3132 		}
3133 
3134 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3135 		       XATTR_SECURITY_PREFIX_LEN);
3136 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3137 		       xattr->name, len);
3138 
3139 		simple_xattr_list_add(&info->xattrs, new_xattr);
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3146 				   struct dentry *unused, struct inode *inode,
3147 				   const char *name, void *buffer, size_t size)
3148 {
3149 	struct shmem_inode_info *info = SHMEM_I(inode);
3150 
3151 	name = xattr_full_name(handler, name);
3152 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3153 }
3154 
3155 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3156 				   struct user_namespace *mnt_userns,
3157 				   struct dentry *unused, struct inode *inode,
3158 				   const char *name, const void *value,
3159 				   size_t size, int flags)
3160 {
3161 	struct shmem_inode_info *info = SHMEM_I(inode);
3162 
3163 	name = xattr_full_name(handler, name);
3164 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3165 }
3166 
3167 static const struct xattr_handler shmem_security_xattr_handler = {
3168 	.prefix = XATTR_SECURITY_PREFIX,
3169 	.get = shmem_xattr_handler_get,
3170 	.set = shmem_xattr_handler_set,
3171 };
3172 
3173 static const struct xattr_handler shmem_trusted_xattr_handler = {
3174 	.prefix = XATTR_TRUSTED_PREFIX,
3175 	.get = shmem_xattr_handler_get,
3176 	.set = shmem_xattr_handler_set,
3177 };
3178 
3179 static const struct xattr_handler *shmem_xattr_handlers[] = {
3180 #ifdef CONFIG_TMPFS_POSIX_ACL
3181 	&posix_acl_access_xattr_handler,
3182 	&posix_acl_default_xattr_handler,
3183 #endif
3184 	&shmem_security_xattr_handler,
3185 	&shmem_trusted_xattr_handler,
3186 	NULL
3187 };
3188 
3189 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3190 {
3191 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3192 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3193 }
3194 #endif /* CONFIG_TMPFS_XATTR */
3195 
3196 static const struct inode_operations shmem_short_symlink_operations = {
3197 	.getattr	= shmem_getattr,
3198 	.get_link	= simple_get_link,
3199 #ifdef CONFIG_TMPFS_XATTR
3200 	.listxattr	= shmem_listxattr,
3201 #endif
3202 };
3203 
3204 static const struct inode_operations shmem_symlink_inode_operations = {
3205 	.getattr	= shmem_getattr,
3206 	.get_link	= shmem_get_link,
3207 #ifdef CONFIG_TMPFS_XATTR
3208 	.listxattr	= shmem_listxattr,
3209 #endif
3210 };
3211 
3212 static struct dentry *shmem_get_parent(struct dentry *child)
3213 {
3214 	return ERR_PTR(-ESTALE);
3215 }
3216 
3217 static int shmem_match(struct inode *ino, void *vfh)
3218 {
3219 	__u32 *fh = vfh;
3220 	__u64 inum = fh[2];
3221 	inum = (inum << 32) | fh[1];
3222 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3223 }
3224 
3225 /* Find any alias of inode, but prefer a hashed alias */
3226 static struct dentry *shmem_find_alias(struct inode *inode)
3227 {
3228 	struct dentry *alias = d_find_alias(inode);
3229 
3230 	return alias ?: d_find_any_alias(inode);
3231 }
3232 
3233 
3234 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3235 		struct fid *fid, int fh_len, int fh_type)
3236 {
3237 	struct inode *inode;
3238 	struct dentry *dentry = NULL;
3239 	u64 inum;
3240 
3241 	if (fh_len < 3)
3242 		return NULL;
3243 
3244 	inum = fid->raw[2];
3245 	inum = (inum << 32) | fid->raw[1];
3246 
3247 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3248 			shmem_match, fid->raw);
3249 	if (inode) {
3250 		dentry = shmem_find_alias(inode);
3251 		iput(inode);
3252 	}
3253 
3254 	return dentry;
3255 }
3256 
3257 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3258 				struct inode *parent)
3259 {
3260 	if (*len < 3) {
3261 		*len = 3;
3262 		return FILEID_INVALID;
3263 	}
3264 
3265 	if (inode_unhashed(inode)) {
3266 		/* Unfortunately insert_inode_hash is not idempotent,
3267 		 * so as we hash inodes here rather than at creation
3268 		 * time, we need a lock to ensure we only try
3269 		 * to do it once
3270 		 */
3271 		static DEFINE_SPINLOCK(lock);
3272 		spin_lock(&lock);
3273 		if (inode_unhashed(inode))
3274 			__insert_inode_hash(inode,
3275 					    inode->i_ino + inode->i_generation);
3276 		spin_unlock(&lock);
3277 	}
3278 
3279 	fh[0] = inode->i_generation;
3280 	fh[1] = inode->i_ino;
3281 	fh[2] = ((__u64)inode->i_ino) >> 32;
3282 
3283 	*len = 3;
3284 	return 1;
3285 }
3286 
3287 static const struct export_operations shmem_export_ops = {
3288 	.get_parent     = shmem_get_parent,
3289 	.encode_fh      = shmem_encode_fh,
3290 	.fh_to_dentry	= shmem_fh_to_dentry,
3291 };
3292 
3293 enum shmem_param {
3294 	Opt_gid,
3295 	Opt_huge,
3296 	Opt_mode,
3297 	Opt_mpol,
3298 	Opt_nr_blocks,
3299 	Opt_nr_inodes,
3300 	Opt_size,
3301 	Opt_uid,
3302 	Opt_inode32,
3303 	Opt_inode64,
3304 };
3305 
3306 static const struct constant_table shmem_param_enums_huge[] = {
3307 	{"never",	SHMEM_HUGE_NEVER },
3308 	{"always",	SHMEM_HUGE_ALWAYS },
3309 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3310 	{"advise",	SHMEM_HUGE_ADVISE },
3311 	{}
3312 };
3313 
3314 const struct fs_parameter_spec shmem_fs_parameters[] = {
3315 	fsparam_u32   ("gid",		Opt_gid),
3316 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3317 	fsparam_u32oct("mode",		Opt_mode),
3318 	fsparam_string("mpol",		Opt_mpol),
3319 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3320 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3321 	fsparam_string("size",		Opt_size),
3322 	fsparam_u32   ("uid",		Opt_uid),
3323 	fsparam_flag  ("inode32",	Opt_inode32),
3324 	fsparam_flag  ("inode64",	Opt_inode64),
3325 	{}
3326 };
3327 
3328 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3329 {
3330 	struct shmem_options *ctx = fc->fs_private;
3331 	struct fs_parse_result result;
3332 	unsigned long long size;
3333 	char *rest;
3334 	int opt;
3335 
3336 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3337 	if (opt < 0)
3338 		return opt;
3339 
3340 	switch (opt) {
3341 	case Opt_size:
3342 		size = memparse(param->string, &rest);
3343 		if (*rest == '%') {
3344 			size <<= PAGE_SHIFT;
3345 			size *= totalram_pages();
3346 			do_div(size, 100);
3347 			rest++;
3348 		}
3349 		if (*rest)
3350 			goto bad_value;
3351 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3352 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3353 		break;
3354 	case Opt_nr_blocks:
3355 		ctx->blocks = memparse(param->string, &rest);
3356 		if (*rest)
3357 			goto bad_value;
3358 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3359 		break;
3360 	case Opt_nr_inodes:
3361 		ctx->inodes = memparse(param->string, &rest);
3362 		if (*rest)
3363 			goto bad_value;
3364 		ctx->seen |= SHMEM_SEEN_INODES;
3365 		break;
3366 	case Opt_mode:
3367 		ctx->mode = result.uint_32 & 07777;
3368 		break;
3369 	case Opt_uid:
3370 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3371 		if (!uid_valid(ctx->uid))
3372 			goto bad_value;
3373 		break;
3374 	case Opt_gid:
3375 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3376 		if (!gid_valid(ctx->gid))
3377 			goto bad_value;
3378 		break;
3379 	case Opt_huge:
3380 		ctx->huge = result.uint_32;
3381 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3382 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3383 		      has_transparent_hugepage()))
3384 			goto unsupported_parameter;
3385 		ctx->seen |= SHMEM_SEEN_HUGE;
3386 		break;
3387 	case Opt_mpol:
3388 		if (IS_ENABLED(CONFIG_NUMA)) {
3389 			mpol_put(ctx->mpol);
3390 			ctx->mpol = NULL;
3391 			if (mpol_parse_str(param->string, &ctx->mpol))
3392 				goto bad_value;
3393 			break;
3394 		}
3395 		goto unsupported_parameter;
3396 	case Opt_inode32:
3397 		ctx->full_inums = false;
3398 		ctx->seen |= SHMEM_SEEN_INUMS;
3399 		break;
3400 	case Opt_inode64:
3401 		if (sizeof(ino_t) < 8) {
3402 			return invalfc(fc,
3403 				       "Cannot use inode64 with <64bit inums in kernel\n");
3404 		}
3405 		ctx->full_inums = true;
3406 		ctx->seen |= SHMEM_SEEN_INUMS;
3407 		break;
3408 	}
3409 	return 0;
3410 
3411 unsupported_parameter:
3412 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3413 bad_value:
3414 	return invalfc(fc, "Bad value for '%s'", param->key);
3415 }
3416 
3417 static int shmem_parse_options(struct fs_context *fc, void *data)
3418 {
3419 	char *options = data;
3420 
3421 	if (options) {
3422 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3423 		if (err)
3424 			return err;
3425 	}
3426 
3427 	while (options != NULL) {
3428 		char *this_char = options;
3429 		for (;;) {
3430 			/*
3431 			 * NUL-terminate this option: unfortunately,
3432 			 * mount options form a comma-separated list,
3433 			 * but mpol's nodelist may also contain commas.
3434 			 */
3435 			options = strchr(options, ',');
3436 			if (options == NULL)
3437 				break;
3438 			options++;
3439 			if (!isdigit(*options)) {
3440 				options[-1] = '\0';
3441 				break;
3442 			}
3443 		}
3444 		if (*this_char) {
3445 			char *value = strchr(this_char, '=');
3446 			size_t len = 0;
3447 			int err;
3448 
3449 			if (value) {
3450 				*value++ = '\0';
3451 				len = strlen(value);
3452 			}
3453 			err = vfs_parse_fs_string(fc, this_char, value, len);
3454 			if (err < 0)
3455 				return err;
3456 		}
3457 	}
3458 	return 0;
3459 }
3460 
3461 /*
3462  * Reconfigure a shmem filesystem.
3463  *
3464  * Note that we disallow change from limited->unlimited blocks/inodes while any
3465  * are in use; but we must separately disallow unlimited->limited, because in
3466  * that case we have no record of how much is already in use.
3467  */
3468 static int shmem_reconfigure(struct fs_context *fc)
3469 {
3470 	struct shmem_options *ctx = fc->fs_private;
3471 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3472 	unsigned long inodes;
3473 	struct mempolicy *mpol = NULL;
3474 	const char *err;
3475 
3476 	raw_spin_lock(&sbinfo->stat_lock);
3477 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3478 	if (ctx->blocks > S64_MAX) {
3479 		err = "Number of blocks too large";
3480 		goto out;
3481 	}
3482 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3483 		if (!sbinfo->max_blocks) {
3484 			err = "Cannot retroactively limit size";
3485 			goto out;
3486 		}
3487 		if (percpu_counter_compare(&sbinfo->used_blocks,
3488 					   ctx->blocks) > 0) {
3489 			err = "Too small a size for current use";
3490 			goto out;
3491 		}
3492 	}
3493 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3494 		if (!sbinfo->max_inodes) {
3495 			err = "Cannot retroactively limit inodes";
3496 			goto out;
3497 		}
3498 		if (ctx->inodes < inodes) {
3499 			err = "Too few inodes for current use";
3500 			goto out;
3501 		}
3502 	}
3503 
3504 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3505 	    sbinfo->next_ino > UINT_MAX) {
3506 		err = "Current inum too high to switch to 32-bit inums";
3507 		goto out;
3508 	}
3509 
3510 	if (ctx->seen & SHMEM_SEEN_HUGE)
3511 		sbinfo->huge = ctx->huge;
3512 	if (ctx->seen & SHMEM_SEEN_INUMS)
3513 		sbinfo->full_inums = ctx->full_inums;
3514 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3515 		sbinfo->max_blocks  = ctx->blocks;
3516 	if (ctx->seen & SHMEM_SEEN_INODES) {
3517 		sbinfo->max_inodes  = ctx->inodes;
3518 		sbinfo->free_inodes = ctx->inodes - inodes;
3519 	}
3520 
3521 	/*
3522 	 * Preserve previous mempolicy unless mpol remount option was specified.
3523 	 */
3524 	if (ctx->mpol) {
3525 		mpol = sbinfo->mpol;
3526 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3527 		ctx->mpol = NULL;
3528 	}
3529 	raw_spin_unlock(&sbinfo->stat_lock);
3530 	mpol_put(mpol);
3531 	return 0;
3532 out:
3533 	raw_spin_unlock(&sbinfo->stat_lock);
3534 	return invalfc(fc, "%s", err);
3535 }
3536 
3537 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3538 {
3539 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3540 
3541 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3542 		seq_printf(seq, ",size=%luk",
3543 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3544 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3545 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3546 	if (sbinfo->mode != (0777 | S_ISVTX))
3547 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3548 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3549 		seq_printf(seq, ",uid=%u",
3550 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3551 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3552 		seq_printf(seq, ",gid=%u",
3553 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3554 
3555 	/*
3556 	 * Showing inode{64,32} might be useful even if it's the system default,
3557 	 * since then people don't have to resort to checking both here and
3558 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3559 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3560 	 *
3561 	 * We hide it when inode64 isn't the default and we are using 32-bit
3562 	 * inodes, since that probably just means the feature isn't even under
3563 	 * consideration.
3564 	 *
3565 	 * As such:
3566 	 *
3567 	 *                     +-----------------+-----------------+
3568 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3569 	 *  +------------------+-----------------+-----------------+
3570 	 *  | full_inums=true  | show            | show            |
3571 	 *  | full_inums=false | show            | hide            |
3572 	 *  +------------------+-----------------+-----------------+
3573 	 *
3574 	 */
3575 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3576 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3577 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3578 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3579 	if (sbinfo->huge)
3580 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3581 #endif
3582 	shmem_show_mpol(seq, sbinfo->mpol);
3583 	return 0;
3584 }
3585 
3586 #endif /* CONFIG_TMPFS */
3587 
3588 static void shmem_put_super(struct super_block *sb)
3589 {
3590 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3591 
3592 	free_percpu(sbinfo->ino_batch);
3593 	percpu_counter_destroy(&sbinfo->used_blocks);
3594 	mpol_put(sbinfo->mpol);
3595 	kfree(sbinfo);
3596 	sb->s_fs_info = NULL;
3597 }
3598 
3599 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3600 {
3601 	struct shmem_options *ctx = fc->fs_private;
3602 	struct inode *inode;
3603 	struct shmem_sb_info *sbinfo;
3604 
3605 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3606 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3607 				L1_CACHE_BYTES), GFP_KERNEL);
3608 	if (!sbinfo)
3609 		return -ENOMEM;
3610 
3611 	sb->s_fs_info = sbinfo;
3612 
3613 #ifdef CONFIG_TMPFS
3614 	/*
3615 	 * Per default we only allow half of the physical ram per
3616 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3617 	 * but the internal instance is left unlimited.
3618 	 */
3619 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3620 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3621 			ctx->blocks = shmem_default_max_blocks();
3622 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3623 			ctx->inodes = shmem_default_max_inodes();
3624 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3625 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3626 	} else {
3627 		sb->s_flags |= SB_NOUSER;
3628 	}
3629 	sb->s_export_op = &shmem_export_ops;
3630 	sb->s_flags |= SB_NOSEC;
3631 #else
3632 	sb->s_flags |= SB_NOUSER;
3633 #endif
3634 	sbinfo->max_blocks = ctx->blocks;
3635 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3636 	if (sb->s_flags & SB_KERNMOUNT) {
3637 		sbinfo->ino_batch = alloc_percpu(ino_t);
3638 		if (!sbinfo->ino_batch)
3639 			goto failed;
3640 	}
3641 	sbinfo->uid = ctx->uid;
3642 	sbinfo->gid = ctx->gid;
3643 	sbinfo->full_inums = ctx->full_inums;
3644 	sbinfo->mode = ctx->mode;
3645 	sbinfo->huge = ctx->huge;
3646 	sbinfo->mpol = ctx->mpol;
3647 	ctx->mpol = NULL;
3648 
3649 	raw_spin_lock_init(&sbinfo->stat_lock);
3650 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3651 		goto failed;
3652 	spin_lock_init(&sbinfo->shrinklist_lock);
3653 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3654 
3655 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3656 	sb->s_blocksize = PAGE_SIZE;
3657 	sb->s_blocksize_bits = PAGE_SHIFT;
3658 	sb->s_magic = TMPFS_MAGIC;
3659 	sb->s_op = &shmem_ops;
3660 	sb->s_time_gran = 1;
3661 #ifdef CONFIG_TMPFS_XATTR
3662 	sb->s_xattr = shmem_xattr_handlers;
3663 #endif
3664 #ifdef CONFIG_TMPFS_POSIX_ACL
3665 	sb->s_flags |= SB_POSIXACL;
3666 #endif
3667 	uuid_gen(&sb->s_uuid);
3668 
3669 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3670 	if (!inode)
3671 		goto failed;
3672 	inode->i_uid = sbinfo->uid;
3673 	inode->i_gid = sbinfo->gid;
3674 	sb->s_root = d_make_root(inode);
3675 	if (!sb->s_root)
3676 		goto failed;
3677 	return 0;
3678 
3679 failed:
3680 	shmem_put_super(sb);
3681 	return -ENOMEM;
3682 }
3683 
3684 static int shmem_get_tree(struct fs_context *fc)
3685 {
3686 	return get_tree_nodev(fc, shmem_fill_super);
3687 }
3688 
3689 static void shmem_free_fc(struct fs_context *fc)
3690 {
3691 	struct shmem_options *ctx = fc->fs_private;
3692 
3693 	if (ctx) {
3694 		mpol_put(ctx->mpol);
3695 		kfree(ctx);
3696 	}
3697 }
3698 
3699 static const struct fs_context_operations shmem_fs_context_ops = {
3700 	.free			= shmem_free_fc,
3701 	.get_tree		= shmem_get_tree,
3702 #ifdef CONFIG_TMPFS
3703 	.parse_monolithic	= shmem_parse_options,
3704 	.parse_param		= shmem_parse_one,
3705 	.reconfigure		= shmem_reconfigure,
3706 #endif
3707 };
3708 
3709 static struct kmem_cache *shmem_inode_cachep;
3710 
3711 static struct inode *shmem_alloc_inode(struct super_block *sb)
3712 {
3713 	struct shmem_inode_info *info;
3714 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3715 	if (!info)
3716 		return NULL;
3717 	return &info->vfs_inode;
3718 }
3719 
3720 static void shmem_free_in_core_inode(struct inode *inode)
3721 {
3722 	if (S_ISLNK(inode->i_mode))
3723 		kfree(inode->i_link);
3724 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3725 }
3726 
3727 static void shmem_destroy_inode(struct inode *inode)
3728 {
3729 	if (S_ISREG(inode->i_mode))
3730 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3731 }
3732 
3733 static void shmem_init_inode(void *foo)
3734 {
3735 	struct shmem_inode_info *info = foo;
3736 	inode_init_once(&info->vfs_inode);
3737 }
3738 
3739 static void shmem_init_inodecache(void)
3740 {
3741 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3742 				sizeof(struct shmem_inode_info),
3743 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3744 }
3745 
3746 static void shmem_destroy_inodecache(void)
3747 {
3748 	kmem_cache_destroy(shmem_inode_cachep);
3749 }
3750 
3751 /* Keep the page in page cache instead of truncating it */
3752 static int shmem_error_remove_page(struct address_space *mapping,
3753 				   struct page *page)
3754 {
3755 	return 0;
3756 }
3757 
3758 const struct address_space_operations shmem_aops = {
3759 	.writepage	= shmem_writepage,
3760 	.dirty_folio	= noop_dirty_folio,
3761 #ifdef CONFIG_TMPFS
3762 	.write_begin	= shmem_write_begin,
3763 	.write_end	= shmem_write_end,
3764 #endif
3765 #ifdef CONFIG_MIGRATION
3766 	.migratepage	= migrate_page,
3767 #endif
3768 	.error_remove_page = shmem_error_remove_page,
3769 };
3770 EXPORT_SYMBOL(shmem_aops);
3771 
3772 static const struct file_operations shmem_file_operations = {
3773 	.mmap		= shmem_mmap,
3774 	.get_unmapped_area = shmem_get_unmapped_area,
3775 #ifdef CONFIG_TMPFS
3776 	.llseek		= shmem_file_llseek,
3777 	.read_iter	= shmem_file_read_iter,
3778 	.write_iter	= generic_file_write_iter,
3779 	.fsync		= noop_fsync,
3780 	.splice_read	= generic_file_splice_read,
3781 	.splice_write	= iter_file_splice_write,
3782 	.fallocate	= shmem_fallocate,
3783 #endif
3784 };
3785 
3786 static const struct inode_operations shmem_inode_operations = {
3787 	.getattr	= shmem_getattr,
3788 	.setattr	= shmem_setattr,
3789 #ifdef CONFIG_TMPFS_XATTR
3790 	.listxattr	= shmem_listxattr,
3791 	.set_acl	= simple_set_acl,
3792 #endif
3793 };
3794 
3795 static const struct inode_operations shmem_dir_inode_operations = {
3796 #ifdef CONFIG_TMPFS
3797 	.getattr	= shmem_getattr,
3798 	.create		= shmem_create,
3799 	.lookup		= simple_lookup,
3800 	.link		= shmem_link,
3801 	.unlink		= shmem_unlink,
3802 	.symlink	= shmem_symlink,
3803 	.mkdir		= shmem_mkdir,
3804 	.rmdir		= shmem_rmdir,
3805 	.mknod		= shmem_mknod,
3806 	.rename		= shmem_rename2,
3807 	.tmpfile	= shmem_tmpfile,
3808 #endif
3809 #ifdef CONFIG_TMPFS_XATTR
3810 	.listxattr	= shmem_listxattr,
3811 #endif
3812 #ifdef CONFIG_TMPFS_POSIX_ACL
3813 	.setattr	= shmem_setattr,
3814 	.set_acl	= simple_set_acl,
3815 #endif
3816 };
3817 
3818 static const struct inode_operations shmem_special_inode_operations = {
3819 	.getattr	= shmem_getattr,
3820 #ifdef CONFIG_TMPFS_XATTR
3821 	.listxattr	= shmem_listxattr,
3822 #endif
3823 #ifdef CONFIG_TMPFS_POSIX_ACL
3824 	.setattr	= shmem_setattr,
3825 	.set_acl	= simple_set_acl,
3826 #endif
3827 };
3828 
3829 static const struct super_operations shmem_ops = {
3830 	.alloc_inode	= shmem_alloc_inode,
3831 	.free_inode	= shmem_free_in_core_inode,
3832 	.destroy_inode	= shmem_destroy_inode,
3833 #ifdef CONFIG_TMPFS
3834 	.statfs		= shmem_statfs,
3835 	.show_options	= shmem_show_options,
3836 #endif
3837 	.evict_inode	= shmem_evict_inode,
3838 	.drop_inode	= generic_delete_inode,
3839 	.put_super	= shmem_put_super,
3840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3841 	.nr_cached_objects	= shmem_unused_huge_count,
3842 	.free_cached_objects	= shmem_unused_huge_scan,
3843 #endif
3844 };
3845 
3846 static const struct vm_operations_struct shmem_vm_ops = {
3847 	.fault		= shmem_fault,
3848 	.map_pages	= filemap_map_pages,
3849 #ifdef CONFIG_NUMA
3850 	.set_policy     = shmem_set_policy,
3851 	.get_policy     = shmem_get_policy,
3852 #endif
3853 };
3854 
3855 int shmem_init_fs_context(struct fs_context *fc)
3856 {
3857 	struct shmem_options *ctx;
3858 
3859 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3860 	if (!ctx)
3861 		return -ENOMEM;
3862 
3863 	ctx->mode = 0777 | S_ISVTX;
3864 	ctx->uid = current_fsuid();
3865 	ctx->gid = current_fsgid();
3866 
3867 	fc->fs_private = ctx;
3868 	fc->ops = &shmem_fs_context_ops;
3869 	return 0;
3870 }
3871 
3872 static struct file_system_type shmem_fs_type = {
3873 	.owner		= THIS_MODULE,
3874 	.name		= "tmpfs",
3875 	.init_fs_context = shmem_init_fs_context,
3876 #ifdef CONFIG_TMPFS
3877 	.parameters	= shmem_fs_parameters,
3878 #endif
3879 	.kill_sb	= kill_litter_super,
3880 	.fs_flags	= FS_USERNS_MOUNT,
3881 };
3882 
3883 void __init shmem_init(void)
3884 {
3885 	int error;
3886 
3887 	shmem_init_inodecache();
3888 
3889 	error = register_filesystem(&shmem_fs_type);
3890 	if (error) {
3891 		pr_err("Could not register tmpfs\n");
3892 		goto out2;
3893 	}
3894 
3895 	shm_mnt = kern_mount(&shmem_fs_type);
3896 	if (IS_ERR(shm_mnt)) {
3897 		error = PTR_ERR(shm_mnt);
3898 		pr_err("Could not kern_mount tmpfs\n");
3899 		goto out1;
3900 	}
3901 
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3904 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3905 	else
3906 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3907 #endif
3908 	return;
3909 
3910 out1:
3911 	unregister_filesystem(&shmem_fs_type);
3912 out2:
3913 	shmem_destroy_inodecache();
3914 	shm_mnt = ERR_PTR(error);
3915 }
3916 
3917 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3918 static ssize_t shmem_enabled_show(struct kobject *kobj,
3919 				  struct kobj_attribute *attr, char *buf)
3920 {
3921 	static const int values[] = {
3922 		SHMEM_HUGE_ALWAYS,
3923 		SHMEM_HUGE_WITHIN_SIZE,
3924 		SHMEM_HUGE_ADVISE,
3925 		SHMEM_HUGE_NEVER,
3926 		SHMEM_HUGE_DENY,
3927 		SHMEM_HUGE_FORCE,
3928 	};
3929 	int len = 0;
3930 	int i;
3931 
3932 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3933 		len += sysfs_emit_at(buf, len,
3934 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3935 				     i ? " " : "",
3936 				     shmem_format_huge(values[i]));
3937 	}
3938 
3939 	len += sysfs_emit_at(buf, len, "\n");
3940 
3941 	return len;
3942 }
3943 
3944 static ssize_t shmem_enabled_store(struct kobject *kobj,
3945 		struct kobj_attribute *attr, const char *buf, size_t count)
3946 {
3947 	char tmp[16];
3948 	int huge;
3949 
3950 	if (count + 1 > sizeof(tmp))
3951 		return -EINVAL;
3952 	memcpy(tmp, buf, count);
3953 	tmp[count] = '\0';
3954 	if (count && tmp[count - 1] == '\n')
3955 		tmp[count - 1] = '\0';
3956 
3957 	huge = shmem_parse_huge(tmp);
3958 	if (huge == -EINVAL)
3959 		return -EINVAL;
3960 	if (!has_transparent_hugepage() &&
3961 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3962 		return -EINVAL;
3963 
3964 	shmem_huge = huge;
3965 	if (shmem_huge > SHMEM_HUGE_DENY)
3966 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3967 	return count;
3968 }
3969 
3970 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
3971 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3972 
3973 #else /* !CONFIG_SHMEM */
3974 
3975 /*
3976  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3977  *
3978  * This is intended for small system where the benefits of the full
3979  * shmem code (swap-backed and resource-limited) are outweighed by
3980  * their complexity. On systems without swap this code should be
3981  * effectively equivalent, but much lighter weight.
3982  */
3983 
3984 static struct file_system_type shmem_fs_type = {
3985 	.name		= "tmpfs",
3986 	.init_fs_context = ramfs_init_fs_context,
3987 	.parameters	= ramfs_fs_parameters,
3988 	.kill_sb	= kill_litter_super,
3989 	.fs_flags	= FS_USERNS_MOUNT,
3990 };
3991 
3992 void __init shmem_init(void)
3993 {
3994 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3995 
3996 	shm_mnt = kern_mount(&shmem_fs_type);
3997 	BUG_ON(IS_ERR(shm_mnt));
3998 }
3999 
4000 int shmem_unuse(unsigned int type)
4001 {
4002 	return 0;
4003 }
4004 
4005 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4006 {
4007 	return 0;
4008 }
4009 
4010 void shmem_unlock_mapping(struct address_space *mapping)
4011 {
4012 }
4013 
4014 #ifdef CONFIG_MMU
4015 unsigned long shmem_get_unmapped_area(struct file *file,
4016 				      unsigned long addr, unsigned long len,
4017 				      unsigned long pgoff, unsigned long flags)
4018 {
4019 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4020 }
4021 #endif
4022 
4023 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4024 {
4025 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4026 }
4027 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4028 
4029 #define shmem_vm_ops				generic_file_vm_ops
4030 #define shmem_file_operations			ramfs_file_operations
4031 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4032 #define shmem_acct_size(flags, size)		0
4033 #define shmem_unacct_size(flags, size)		do {} while (0)
4034 
4035 #endif /* CONFIG_SHMEM */
4036 
4037 /* common code */
4038 
4039 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4040 				       unsigned long flags, unsigned int i_flags)
4041 {
4042 	struct inode *inode;
4043 	struct file *res;
4044 
4045 	if (IS_ERR(mnt))
4046 		return ERR_CAST(mnt);
4047 
4048 	if (size < 0 || size > MAX_LFS_FILESIZE)
4049 		return ERR_PTR(-EINVAL);
4050 
4051 	if (shmem_acct_size(flags, size))
4052 		return ERR_PTR(-ENOMEM);
4053 
4054 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4055 				flags);
4056 	if (unlikely(!inode)) {
4057 		shmem_unacct_size(flags, size);
4058 		return ERR_PTR(-ENOSPC);
4059 	}
4060 	inode->i_flags |= i_flags;
4061 	inode->i_size = size;
4062 	clear_nlink(inode);	/* It is unlinked */
4063 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4064 	if (!IS_ERR(res))
4065 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4066 				&shmem_file_operations);
4067 	if (IS_ERR(res))
4068 		iput(inode);
4069 	return res;
4070 }
4071 
4072 /**
4073  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4074  * 	kernel internal.  There will be NO LSM permission checks against the
4075  * 	underlying inode.  So users of this interface must do LSM checks at a
4076  *	higher layer.  The users are the big_key and shm implementations.  LSM
4077  *	checks are provided at the key or shm level rather than the inode.
4078  * @name: name for dentry (to be seen in /proc/<pid>/maps
4079  * @size: size to be set for the file
4080  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4081  */
4082 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4083 {
4084 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4085 }
4086 
4087 /**
4088  * shmem_file_setup - get an unlinked file living in tmpfs
4089  * @name: name for dentry (to be seen in /proc/<pid>/maps
4090  * @size: size to be set for the file
4091  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4092  */
4093 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4094 {
4095 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4096 }
4097 EXPORT_SYMBOL_GPL(shmem_file_setup);
4098 
4099 /**
4100  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4101  * @mnt: the tmpfs mount where the file will be created
4102  * @name: name for dentry (to be seen in /proc/<pid>/maps
4103  * @size: size to be set for the file
4104  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4105  */
4106 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4107 				       loff_t size, unsigned long flags)
4108 {
4109 	return __shmem_file_setup(mnt, name, size, flags, 0);
4110 }
4111 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4112 
4113 /**
4114  * shmem_zero_setup - setup a shared anonymous mapping
4115  * @vma: the vma to be mmapped is prepared by do_mmap
4116  */
4117 int shmem_zero_setup(struct vm_area_struct *vma)
4118 {
4119 	struct file *file;
4120 	loff_t size = vma->vm_end - vma->vm_start;
4121 
4122 	/*
4123 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4124 	 * between XFS directory reading and selinux: since this file is only
4125 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4126 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4127 	 */
4128 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4129 	if (IS_ERR(file))
4130 		return PTR_ERR(file);
4131 
4132 	if (vma->vm_file)
4133 		fput(vma->vm_file);
4134 	vma->vm_file = file;
4135 	vma->vm_ops = &shmem_vm_ops;
4136 
4137 	return 0;
4138 }
4139 
4140 /**
4141  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4142  * @mapping:	the page's address_space
4143  * @index:	the page index
4144  * @gfp:	the page allocator flags to use if allocating
4145  *
4146  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4147  * with any new page allocations done using the specified allocation flags.
4148  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4149  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4150  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4151  *
4152  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4153  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4154  */
4155 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4156 					 pgoff_t index, gfp_t gfp)
4157 {
4158 #ifdef CONFIG_SHMEM
4159 	struct inode *inode = mapping->host;
4160 	struct page *page;
4161 	int error;
4162 
4163 	BUG_ON(!shmem_mapping(mapping));
4164 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4165 				  gfp, NULL, NULL, NULL);
4166 	if (error)
4167 		return ERR_PTR(error);
4168 
4169 	unlock_page(page);
4170 	if (PageHWPoison(page)) {
4171 		put_page(page);
4172 		return ERR_PTR(-EIO);
4173 	}
4174 
4175 	return page;
4176 #else
4177 	/*
4178 	 * The tiny !SHMEM case uses ramfs without swap
4179 	 */
4180 	return read_cache_page_gfp(mapping, index, gfp);
4181 #endif
4182 }
4183 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4184