xref: /openbmc/linux/mm/shmem.c (revision 87c2ce3b)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/config.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/devfs_fs_kernel.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <asm/uaccess.h>
49 #include <asm/div64.h>
50 #include <asm/pgtable.h>
51 
52 /* This magic number is used in glibc for posix shared memory */
53 #define TMPFS_MAGIC	0x01021994
54 
55 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
56 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
57 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
58 
59 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
60 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
61 
62 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
63 
64 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
65 #define SHMEM_PAGEIN	 VM_READ
66 #define SHMEM_TRUNCATE	 VM_WRITE
67 
68 /* Definition to limit shmem_truncate's steps between cond_rescheds */
69 #define LATENCY_LIMIT	 64
70 
71 /* Pretend that each entry is of this size in directory's i_size */
72 #define BOGO_DIRENT_SIZE 20
73 
74 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
75 enum sgp_type {
76 	SGP_QUICK,	/* don't try more than file page cache lookup */
77 	SGP_READ,	/* don't exceed i_size, don't allocate page */
78 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
79 	SGP_WRITE,	/* may exceed i_size, may allocate page */
80 };
81 
82 static int shmem_getpage(struct inode *inode, unsigned long idx,
83 			 struct page **pagep, enum sgp_type sgp, int *type);
84 
85 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
86 {
87 	/*
88 	 * The above definition of ENTRIES_PER_PAGE, and the use of
89 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
90 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
91 	 */
92 	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
93 }
94 
95 static inline void shmem_dir_free(struct page *page)
96 {
97 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
98 }
99 
100 static struct page **shmem_dir_map(struct page *page)
101 {
102 	return (struct page **)kmap_atomic(page, KM_USER0);
103 }
104 
105 static inline void shmem_dir_unmap(struct page **dir)
106 {
107 	kunmap_atomic(dir, KM_USER0);
108 }
109 
110 static swp_entry_t *shmem_swp_map(struct page *page)
111 {
112 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
113 }
114 
115 static inline void shmem_swp_balance_unmap(void)
116 {
117 	/*
118 	 * When passing a pointer to an i_direct entry, to code which
119 	 * also handles indirect entries and so will shmem_swp_unmap,
120 	 * we must arrange for the preempt count to remain in balance.
121 	 * What kmap_atomic of a lowmem page does depends on config
122 	 * and architecture, so pretend to kmap_atomic some lowmem page.
123 	 */
124 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
125 }
126 
127 static inline void shmem_swp_unmap(swp_entry_t *entry)
128 {
129 	kunmap_atomic(entry, KM_USER1);
130 }
131 
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134 	return sb->s_fs_info;
135 }
136 
137 /*
138  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139  * for shared memory and for shared anonymous (/dev/zero) mappings
140  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141  * consistent with the pre-accounting of private mappings ...
142  */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145 	return (flags & VM_ACCOUNT)?
146 		security_vm_enough_memory(VM_ACCT(size)): 0;
147 }
148 
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151 	if (flags & VM_ACCOUNT)
152 		vm_unacct_memory(VM_ACCT(size));
153 }
154 
155 /*
156  * ... whereas tmpfs objects are accounted incrementally as
157  * pages are allocated, in order to allow huge sparse files.
158  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
159  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
160  */
161 static inline int shmem_acct_block(unsigned long flags)
162 {
163 	return (flags & VM_ACCOUNT)?
164 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
165 }
166 
167 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
168 {
169 	if (!(flags & VM_ACCOUNT))
170 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
171 }
172 
173 static struct super_operations shmem_ops;
174 static struct address_space_operations shmem_aops;
175 static struct file_operations shmem_file_operations;
176 static struct inode_operations shmem_inode_operations;
177 static struct inode_operations shmem_dir_inode_operations;
178 static struct vm_operations_struct shmem_vm_ops;
179 
180 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
181 	.ra_pages	= 0,	/* No readahead */
182 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
183 	.unplug_io_fn	= default_unplug_io_fn,
184 };
185 
186 static LIST_HEAD(shmem_swaplist);
187 static DEFINE_SPINLOCK(shmem_swaplist_lock);
188 
189 static void shmem_free_blocks(struct inode *inode, long pages)
190 {
191 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
192 	if (sbinfo->max_blocks) {
193 		spin_lock(&sbinfo->stat_lock);
194 		sbinfo->free_blocks += pages;
195 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
196 		spin_unlock(&sbinfo->stat_lock);
197 	}
198 }
199 
200 /*
201  * shmem_recalc_inode - recalculate the size of an inode
202  *
203  * @inode: inode to recalc
204  *
205  * We have to calculate the free blocks since the mm can drop
206  * undirtied hole pages behind our back.
207  *
208  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
209  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
210  *
211  * It has to be called with the spinlock held.
212  */
213 static void shmem_recalc_inode(struct inode *inode)
214 {
215 	struct shmem_inode_info *info = SHMEM_I(inode);
216 	long freed;
217 
218 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
219 	if (freed > 0) {
220 		info->alloced -= freed;
221 		shmem_unacct_blocks(info->flags, freed);
222 		shmem_free_blocks(inode, freed);
223 	}
224 }
225 
226 /*
227  * shmem_swp_entry - find the swap vector position in the info structure
228  *
229  * @info:  info structure for the inode
230  * @index: index of the page to find
231  * @page:  optional page to add to the structure. Has to be preset to
232  *         all zeros
233  *
234  * If there is no space allocated yet it will return NULL when
235  * page is NULL, else it will use the page for the needed block,
236  * setting it to NULL on return to indicate that it has been used.
237  *
238  * The swap vector is organized the following way:
239  *
240  * There are SHMEM_NR_DIRECT entries directly stored in the
241  * shmem_inode_info structure. So small files do not need an addional
242  * allocation.
243  *
244  * For pages with index > SHMEM_NR_DIRECT there is the pointer
245  * i_indirect which points to a page which holds in the first half
246  * doubly indirect blocks, in the second half triple indirect blocks:
247  *
248  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
249  * following layout (for SHMEM_NR_DIRECT == 16):
250  *
251  * i_indirect -> dir --> 16-19
252  * 	      |	     +-> 20-23
253  * 	      |
254  * 	      +-->dir2 --> 24-27
255  * 	      |	       +-> 28-31
256  * 	      |	       +-> 32-35
257  * 	      |	       +-> 36-39
258  * 	      |
259  * 	      +-->dir3 --> 40-43
260  * 	       	       +-> 44-47
261  * 	      	       +-> 48-51
262  * 	      	       +-> 52-55
263  */
264 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
265 {
266 	unsigned long offset;
267 	struct page **dir;
268 	struct page *subdir;
269 
270 	if (index < SHMEM_NR_DIRECT) {
271 		shmem_swp_balance_unmap();
272 		return info->i_direct+index;
273 	}
274 	if (!info->i_indirect) {
275 		if (page) {
276 			info->i_indirect = *page;
277 			*page = NULL;
278 		}
279 		return NULL;			/* need another page */
280 	}
281 
282 	index -= SHMEM_NR_DIRECT;
283 	offset = index % ENTRIES_PER_PAGE;
284 	index /= ENTRIES_PER_PAGE;
285 	dir = shmem_dir_map(info->i_indirect);
286 
287 	if (index >= ENTRIES_PER_PAGE/2) {
288 		index -= ENTRIES_PER_PAGE/2;
289 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
290 		index %= ENTRIES_PER_PAGE;
291 		subdir = *dir;
292 		if (!subdir) {
293 			if (page) {
294 				*dir = *page;
295 				*page = NULL;
296 			}
297 			shmem_dir_unmap(dir);
298 			return NULL;		/* need another page */
299 		}
300 		shmem_dir_unmap(dir);
301 		dir = shmem_dir_map(subdir);
302 	}
303 
304 	dir += index;
305 	subdir = *dir;
306 	if (!subdir) {
307 		if (!page || !(subdir = *page)) {
308 			shmem_dir_unmap(dir);
309 			return NULL;		/* need a page */
310 		}
311 		*dir = subdir;
312 		*page = NULL;
313 	}
314 	shmem_dir_unmap(dir);
315 	return shmem_swp_map(subdir) + offset;
316 }
317 
318 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
319 {
320 	long incdec = value? 1: -1;
321 
322 	entry->val = value;
323 	info->swapped += incdec;
324 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
325 		struct page *page = kmap_atomic_to_page(entry);
326 		set_page_private(page, page_private(page) + incdec);
327 	}
328 }
329 
330 /*
331  * shmem_swp_alloc - get the position of the swap entry for the page.
332  *                   If it does not exist allocate the entry.
333  *
334  * @info:	info structure for the inode
335  * @index:	index of the page to find
336  * @sgp:	check and recheck i_size? skip allocation?
337  */
338 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
339 {
340 	struct inode *inode = &info->vfs_inode;
341 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
342 	struct page *page = NULL;
343 	swp_entry_t *entry;
344 
345 	if (sgp != SGP_WRITE &&
346 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
347 		return ERR_PTR(-EINVAL);
348 
349 	while (!(entry = shmem_swp_entry(info, index, &page))) {
350 		if (sgp == SGP_READ)
351 			return shmem_swp_map(ZERO_PAGE(0));
352 		/*
353 		 * Test free_blocks against 1 not 0, since we have 1 data
354 		 * page (and perhaps indirect index pages) yet to allocate:
355 		 * a waste to allocate index if we cannot allocate data.
356 		 */
357 		if (sbinfo->max_blocks) {
358 			spin_lock(&sbinfo->stat_lock);
359 			if (sbinfo->free_blocks <= 1) {
360 				spin_unlock(&sbinfo->stat_lock);
361 				return ERR_PTR(-ENOSPC);
362 			}
363 			sbinfo->free_blocks--;
364 			inode->i_blocks += BLOCKS_PER_PAGE;
365 			spin_unlock(&sbinfo->stat_lock);
366 		}
367 
368 		spin_unlock(&info->lock);
369 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
370 		if (page)
371 			set_page_private(page, 0);
372 		spin_lock(&info->lock);
373 
374 		if (!page) {
375 			shmem_free_blocks(inode, 1);
376 			return ERR_PTR(-ENOMEM);
377 		}
378 		if (sgp != SGP_WRITE &&
379 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
380 			entry = ERR_PTR(-EINVAL);
381 			break;
382 		}
383 		if (info->next_index <= index)
384 			info->next_index = index + 1;
385 	}
386 	if (page) {
387 		/* another task gave its page, or truncated the file */
388 		shmem_free_blocks(inode, 1);
389 		shmem_dir_free(page);
390 	}
391 	if (info->next_index <= index && !IS_ERR(entry))
392 		info->next_index = index + 1;
393 	return entry;
394 }
395 
396 /*
397  * shmem_free_swp - free some swap entries in a directory
398  *
399  * @dir:   pointer to the directory
400  * @edir:  pointer after last entry of the directory
401  */
402 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
403 {
404 	swp_entry_t *ptr;
405 	int freed = 0;
406 
407 	for (ptr = dir; ptr < edir; ptr++) {
408 		if (ptr->val) {
409 			free_swap_and_cache(*ptr);
410 			*ptr = (swp_entry_t){0};
411 			freed++;
412 		}
413 	}
414 	return freed;
415 }
416 
417 static int shmem_map_and_free_swp(struct page *subdir,
418 		int offset, int limit, struct page ***dir)
419 {
420 	swp_entry_t *ptr;
421 	int freed = 0;
422 
423 	ptr = shmem_swp_map(subdir);
424 	for (; offset < limit; offset += LATENCY_LIMIT) {
425 		int size = limit - offset;
426 		if (size > LATENCY_LIMIT)
427 			size = LATENCY_LIMIT;
428 		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
429 		if (need_resched()) {
430 			shmem_swp_unmap(ptr);
431 			if (*dir) {
432 				shmem_dir_unmap(*dir);
433 				*dir = NULL;
434 			}
435 			cond_resched();
436 			ptr = shmem_swp_map(subdir);
437 		}
438 	}
439 	shmem_swp_unmap(ptr);
440 	return freed;
441 }
442 
443 static void shmem_free_pages(struct list_head *next)
444 {
445 	struct page *page;
446 	int freed = 0;
447 
448 	do {
449 		page = container_of(next, struct page, lru);
450 		next = next->next;
451 		shmem_dir_free(page);
452 		freed++;
453 		if (freed >= LATENCY_LIMIT) {
454 			cond_resched();
455 			freed = 0;
456 		}
457 	} while (next);
458 }
459 
460 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
461 {
462 	struct shmem_inode_info *info = SHMEM_I(inode);
463 	unsigned long idx;
464 	unsigned long size;
465 	unsigned long limit;
466 	unsigned long stage;
467 	unsigned long diroff;
468 	struct page **dir;
469 	struct page *topdir;
470 	struct page *middir;
471 	struct page *subdir;
472 	swp_entry_t *ptr;
473 	LIST_HEAD(pages_to_free);
474 	long nr_pages_to_free = 0;
475 	long nr_swaps_freed = 0;
476 	int offset;
477 	int freed;
478 	int punch_hole = 0;
479 
480 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
481 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
482 	if (idx >= info->next_index)
483 		return;
484 
485 	spin_lock(&info->lock);
486 	info->flags |= SHMEM_TRUNCATE;
487 	if (likely(end == (loff_t) -1)) {
488 		limit = info->next_index;
489 		info->next_index = idx;
490 	} else {
491 		limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
492 		if (limit > info->next_index)
493 			limit = info->next_index;
494 		punch_hole = 1;
495 	}
496 
497 	topdir = info->i_indirect;
498 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
499 		info->i_indirect = NULL;
500 		nr_pages_to_free++;
501 		list_add(&topdir->lru, &pages_to_free);
502 	}
503 	spin_unlock(&info->lock);
504 
505 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
506 		ptr = info->i_direct;
507 		size = limit;
508 		if (size > SHMEM_NR_DIRECT)
509 			size = SHMEM_NR_DIRECT;
510 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
511 	}
512 	if (!topdir)
513 		goto done2;
514 
515 	BUG_ON(limit <= SHMEM_NR_DIRECT);
516 	limit -= SHMEM_NR_DIRECT;
517 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
518 	offset = idx % ENTRIES_PER_PAGE;
519 	idx -= offset;
520 
521 	dir = shmem_dir_map(topdir);
522 	stage = ENTRIES_PER_PAGEPAGE/2;
523 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
524 		middir = topdir;
525 		diroff = idx/ENTRIES_PER_PAGE;
526 	} else {
527 		dir += ENTRIES_PER_PAGE/2;
528 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
529 		while (stage <= idx)
530 			stage += ENTRIES_PER_PAGEPAGE;
531 		middir = *dir;
532 		if (*dir) {
533 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
534 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
535 			if (!diroff && !offset) {
536 				*dir = NULL;
537 				nr_pages_to_free++;
538 				list_add(&middir->lru, &pages_to_free);
539 			}
540 			shmem_dir_unmap(dir);
541 			dir = shmem_dir_map(middir);
542 		} else {
543 			diroff = 0;
544 			offset = 0;
545 			idx = stage;
546 		}
547 	}
548 
549 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
550 		if (unlikely(idx == stage)) {
551 			shmem_dir_unmap(dir);
552 			dir = shmem_dir_map(topdir) +
553 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
554 			while (!*dir) {
555 				dir++;
556 				idx += ENTRIES_PER_PAGEPAGE;
557 				if (idx >= limit)
558 					goto done1;
559 			}
560 			stage = idx + ENTRIES_PER_PAGEPAGE;
561 			middir = *dir;
562 			*dir = NULL;
563 			nr_pages_to_free++;
564 			list_add(&middir->lru, &pages_to_free);
565 			shmem_dir_unmap(dir);
566 			cond_resched();
567 			dir = shmem_dir_map(middir);
568 			diroff = 0;
569 		}
570 		subdir = dir[diroff];
571 		if (subdir && page_private(subdir)) {
572 			size = limit - idx;
573 			if (size > ENTRIES_PER_PAGE)
574 				size = ENTRIES_PER_PAGE;
575 			freed = shmem_map_and_free_swp(subdir,
576 						offset, size, &dir);
577 			if (!dir)
578 				dir = shmem_dir_map(middir);
579 			nr_swaps_freed += freed;
580 			if (offset)
581 				spin_lock(&info->lock);
582 			set_page_private(subdir, page_private(subdir) - freed);
583 			if (offset)
584 				spin_unlock(&info->lock);
585 			if (!punch_hole)
586 				BUG_ON(page_private(subdir) > offset);
587 		}
588 		if (offset)
589 			offset = 0;
590 		else if (subdir && !page_private(subdir)) {
591 			dir[diroff] = NULL;
592 			nr_pages_to_free++;
593 			list_add(&subdir->lru, &pages_to_free);
594 		}
595 	}
596 done1:
597 	shmem_dir_unmap(dir);
598 done2:
599 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
600 		/*
601 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
602 		 * may have swizzled a page in from swap since vmtruncate or
603 		 * generic_delete_inode did it, before we lowered next_index.
604 		 * Also, though shmem_getpage checks i_size before adding to
605 		 * cache, no recheck after: so fix the narrow window there too.
606 		 */
607 		truncate_inode_pages_range(inode->i_mapping, start, end);
608 	}
609 
610 	spin_lock(&info->lock);
611 	info->flags &= ~SHMEM_TRUNCATE;
612 	info->swapped -= nr_swaps_freed;
613 	if (nr_pages_to_free)
614 		shmem_free_blocks(inode, nr_pages_to_free);
615 	shmem_recalc_inode(inode);
616 	spin_unlock(&info->lock);
617 
618 	/*
619 	 * Empty swap vector directory pages to be freed?
620 	 */
621 	if (!list_empty(&pages_to_free)) {
622 		pages_to_free.prev->next = NULL;
623 		shmem_free_pages(pages_to_free.next);
624 	}
625 }
626 
627 static void shmem_truncate(struct inode *inode)
628 {
629 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
630 }
631 
632 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
633 {
634 	struct inode *inode = dentry->d_inode;
635 	struct page *page = NULL;
636 	int error;
637 
638 	if (attr->ia_valid & ATTR_SIZE) {
639 		if (attr->ia_size < inode->i_size) {
640 			/*
641 			 * If truncating down to a partial page, then
642 			 * if that page is already allocated, hold it
643 			 * in memory until the truncation is over, so
644 			 * truncate_partial_page cannnot miss it were
645 			 * it assigned to swap.
646 			 */
647 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
648 				(void) shmem_getpage(inode,
649 					attr->ia_size>>PAGE_CACHE_SHIFT,
650 						&page, SGP_READ, NULL);
651 			}
652 			/*
653 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
654 			 * detect if any pages might have been added to cache
655 			 * after truncate_inode_pages.  But we needn't bother
656 			 * if it's being fully truncated to zero-length: the
657 			 * nrpages check is efficient enough in that case.
658 			 */
659 			if (attr->ia_size) {
660 				struct shmem_inode_info *info = SHMEM_I(inode);
661 				spin_lock(&info->lock);
662 				info->flags &= ~SHMEM_PAGEIN;
663 				spin_unlock(&info->lock);
664 			}
665 		}
666 	}
667 
668 	error = inode_change_ok(inode, attr);
669 	if (!error)
670 		error = inode_setattr(inode, attr);
671 	if (page)
672 		page_cache_release(page);
673 	return error;
674 }
675 
676 static void shmem_delete_inode(struct inode *inode)
677 {
678 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
679 	struct shmem_inode_info *info = SHMEM_I(inode);
680 
681 	if (inode->i_op->truncate == shmem_truncate) {
682 		truncate_inode_pages(inode->i_mapping, 0);
683 		shmem_unacct_size(info->flags, inode->i_size);
684 		inode->i_size = 0;
685 		shmem_truncate(inode);
686 		if (!list_empty(&info->swaplist)) {
687 			spin_lock(&shmem_swaplist_lock);
688 			list_del_init(&info->swaplist);
689 			spin_unlock(&shmem_swaplist_lock);
690 		}
691 	}
692 	BUG_ON(inode->i_blocks);
693 	if (sbinfo->max_inodes) {
694 		spin_lock(&sbinfo->stat_lock);
695 		sbinfo->free_inodes++;
696 		spin_unlock(&sbinfo->stat_lock);
697 	}
698 	clear_inode(inode);
699 }
700 
701 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
702 {
703 	swp_entry_t *ptr;
704 
705 	for (ptr = dir; ptr < edir; ptr++) {
706 		if (ptr->val == entry.val)
707 			return ptr - dir;
708 	}
709 	return -1;
710 }
711 
712 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
713 {
714 	struct inode *inode;
715 	unsigned long idx;
716 	unsigned long size;
717 	unsigned long limit;
718 	unsigned long stage;
719 	struct page **dir;
720 	struct page *subdir;
721 	swp_entry_t *ptr;
722 	int offset;
723 
724 	idx = 0;
725 	ptr = info->i_direct;
726 	spin_lock(&info->lock);
727 	limit = info->next_index;
728 	size = limit;
729 	if (size > SHMEM_NR_DIRECT)
730 		size = SHMEM_NR_DIRECT;
731 	offset = shmem_find_swp(entry, ptr, ptr+size);
732 	if (offset >= 0) {
733 		shmem_swp_balance_unmap();
734 		goto found;
735 	}
736 	if (!info->i_indirect)
737 		goto lost2;
738 
739 	dir = shmem_dir_map(info->i_indirect);
740 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
741 
742 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
743 		if (unlikely(idx == stage)) {
744 			shmem_dir_unmap(dir-1);
745 			dir = shmem_dir_map(info->i_indirect) +
746 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
747 			while (!*dir) {
748 				dir++;
749 				idx += ENTRIES_PER_PAGEPAGE;
750 				if (idx >= limit)
751 					goto lost1;
752 			}
753 			stage = idx + ENTRIES_PER_PAGEPAGE;
754 			subdir = *dir;
755 			shmem_dir_unmap(dir);
756 			dir = shmem_dir_map(subdir);
757 		}
758 		subdir = *dir;
759 		if (subdir && page_private(subdir)) {
760 			ptr = shmem_swp_map(subdir);
761 			size = limit - idx;
762 			if (size > ENTRIES_PER_PAGE)
763 				size = ENTRIES_PER_PAGE;
764 			offset = shmem_find_swp(entry, ptr, ptr+size);
765 			if (offset >= 0) {
766 				shmem_dir_unmap(dir);
767 				goto found;
768 			}
769 			shmem_swp_unmap(ptr);
770 		}
771 	}
772 lost1:
773 	shmem_dir_unmap(dir-1);
774 lost2:
775 	spin_unlock(&info->lock);
776 	return 0;
777 found:
778 	idx += offset;
779 	inode = &info->vfs_inode;
780 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
781 		info->flags |= SHMEM_PAGEIN;
782 		shmem_swp_set(info, ptr + offset, 0);
783 	}
784 	shmem_swp_unmap(ptr);
785 	spin_unlock(&info->lock);
786 	/*
787 	 * Decrement swap count even when the entry is left behind:
788 	 * try_to_unuse will skip over mms, then reincrement count.
789 	 */
790 	swap_free(entry);
791 	return 1;
792 }
793 
794 /*
795  * shmem_unuse() search for an eventually swapped out shmem page.
796  */
797 int shmem_unuse(swp_entry_t entry, struct page *page)
798 {
799 	struct list_head *p, *next;
800 	struct shmem_inode_info *info;
801 	int found = 0;
802 
803 	spin_lock(&shmem_swaplist_lock);
804 	list_for_each_safe(p, next, &shmem_swaplist) {
805 		info = list_entry(p, struct shmem_inode_info, swaplist);
806 		if (!info->swapped)
807 			list_del_init(&info->swaplist);
808 		else if (shmem_unuse_inode(info, entry, page)) {
809 			/* move head to start search for next from here */
810 			list_move_tail(&shmem_swaplist, &info->swaplist);
811 			found = 1;
812 			break;
813 		}
814 	}
815 	spin_unlock(&shmem_swaplist_lock);
816 	return found;
817 }
818 
819 /*
820  * Move the page from the page cache to the swap cache.
821  */
822 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
823 {
824 	struct shmem_inode_info *info;
825 	swp_entry_t *entry, swap;
826 	struct address_space *mapping;
827 	unsigned long index;
828 	struct inode *inode;
829 
830 	BUG_ON(!PageLocked(page));
831 	BUG_ON(page_mapped(page));
832 
833 	mapping = page->mapping;
834 	index = page->index;
835 	inode = mapping->host;
836 	info = SHMEM_I(inode);
837 	if (info->flags & VM_LOCKED)
838 		goto redirty;
839 	swap = get_swap_page();
840 	if (!swap.val)
841 		goto redirty;
842 
843 	spin_lock(&info->lock);
844 	shmem_recalc_inode(inode);
845 	if (index >= info->next_index) {
846 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
847 		goto unlock;
848 	}
849 	entry = shmem_swp_entry(info, index, NULL);
850 	BUG_ON(!entry);
851 	BUG_ON(entry->val);
852 
853 	if (move_to_swap_cache(page, swap) == 0) {
854 		shmem_swp_set(info, entry, swap.val);
855 		shmem_swp_unmap(entry);
856 		spin_unlock(&info->lock);
857 		if (list_empty(&info->swaplist)) {
858 			spin_lock(&shmem_swaplist_lock);
859 			/* move instead of add in case we're racing */
860 			list_move_tail(&info->swaplist, &shmem_swaplist);
861 			spin_unlock(&shmem_swaplist_lock);
862 		}
863 		unlock_page(page);
864 		return 0;
865 	}
866 
867 	shmem_swp_unmap(entry);
868 unlock:
869 	spin_unlock(&info->lock);
870 	swap_free(swap);
871 redirty:
872 	set_page_dirty(page);
873 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
874 }
875 
876 #ifdef CONFIG_NUMA
877 static struct page *shmem_swapin_async(struct shared_policy *p,
878 				       swp_entry_t entry, unsigned long idx)
879 {
880 	struct page *page;
881 	struct vm_area_struct pvma;
882 
883 	/* Create a pseudo vma that just contains the policy */
884 	memset(&pvma, 0, sizeof(struct vm_area_struct));
885 	pvma.vm_end = PAGE_SIZE;
886 	pvma.vm_pgoff = idx;
887 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
888 	page = read_swap_cache_async(entry, &pvma, 0);
889 	mpol_free(pvma.vm_policy);
890 	return page;
891 }
892 
893 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
894 			  unsigned long idx)
895 {
896 	struct shared_policy *p = &info->policy;
897 	int i, num;
898 	struct page *page;
899 	unsigned long offset;
900 
901 	num = valid_swaphandles(entry, &offset);
902 	for (i = 0; i < num; offset++, i++) {
903 		page = shmem_swapin_async(p,
904 				swp_entry(swp_type(entry), offset), idx);
905 		if (!page)
906 			break;
907 		page_cache_release(page);
908 	}
909 	lru_add_drain();	/* Push any new pages onto the LRU now */
910 	return shmem_swapin_async(p, entry, idx);
911 }
912 
913 static struct page *
914 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
915 		 unsigned long idx)
916 {
917 	struct vm_area_struct pvma;
918 	struct page *page;
919 
920 	memset(&pvma, 0, sizeof(struct vm_area_struct));
921 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
922 	pvma.vm_pgoff = idx;
923 	pvma.vm_end = PAGE_SIZE;
924 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
925 	mpol_free(pvma.vm_policy);
926 	return page;
927 }
928 #else
929 static inline struct page *
930 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
931 {
932 	swapin_readahead(entry, 0, NULL);
933 	return read_swap_cache_async(entry, NULL, 0);
934 }
935 
936 static inline struct page *
937 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
938 {
939 	return alloc_page(gfp | __GFP_ZERO);
940 }
941 #endif
942 
943 /*
944  * shmem_getpage - either get the page from swap or allocate a new one
945  *
946  * If we allocate a new one we do not mark it dirty. That's up to the
947  * vm. If we swap it in we mark it dirty since we also free the swap
948  * entry since a page cannot live in both the swap and page cache
949  */
950 static int shmem_getpage(struct inode *inode, unsigned long idx,
951 			struct page **pagep, enum sgp_type sgp, int *type)
952 {
953 	struct address_space *mapping = inode->i_mapping;
954 	struct shmem_inode_info *info = SHMEM_I(inode);
955 	struct shmem_sb_info *sbinfo;
956 	struct page *filepage = *pagep;
957 	struct page *swappage;
958 	swp_entry_t *entry;
959 	swp_entry_t swap;
960 	int error;
961 
962 	if (idx >= SHMEM_MAX_INDEX)
963 		return -EFBIG;
964 	/*
965 	 * Normally, filepage is NULL on entry, and either found
966 	 * uptodate immediately, or allocated and zeroed, or read
967 	 * in under swappage, which is then assigned to filepage.
968 	 * But shmem_prepare_write passes in a locked filepage,
969 	 * which may be found not uptodate by other callers too,
970 	 * and may need to be copied from the swappage read in.
971 	 */
972 repeat:
973 	if (!filepage)
974 		filepage = find_lock_page(mapping, idx);
975 	if (filepage && PageUptodate(filepage))
976 		goto done;
977 	error = 0;
978 	if (sgp == SGP_QUICK)
979 		goto failed;
980 
981 	spin_lock(&info->lock);
982 	shmem_recalc_inode(inode);
983 	entry = shmem_swp_alloc(info, idx, sgp);
984 	if (IS_ERR(entry)) {
985 		spin_unlock(&info->lock);
986 		error = PTR_ERR(entry);
987 		goto failed;
988 	}
989 	swap = *entry;
990 
991 	if (swap.val) {
992 		/* Look it up and read it in.. */
993 		swappage = lookup_swap_cache(swap);
994 		if (!swappage) {
995 			shmem_swp_unmap(entry);
996 			spin_unlock(&info->lock);
997 			/* here we actually do the io */
998 			if (type && *type == VM_FAULT_MINOR) {
999 				inc_page_state(pgmajfault);
1000 				*type = VM_FAULT_MAJOR;
1001 			}
1002 			swappage = shmem_swapin(info, swap, idx);
1003 			if (!swappage) {
1004 				spin_lock(&info->lock);
1005 				entry = shmem_swp_alloc(info, idx, sgp);
1006 				if (IS_ERR(entry))
1007 					error = PTR_ERR(entry);
1008 				else {
1009 					if (entry->val == swap.val)
1010 						error = -ENOMEM;
1011 					shmem_swp_unmap(entry);
1012 				}
1013 				spin_unlock(&info->lock);
1014 				if (error)
1015 					goto failed;
1016 				goto repeat;
1017 			}
1018 			wait_on_page_locked(swappage);
1019 			page_cache_release(swappage);
1020 			goto repeat;
1021 		}
1022 
1023 		/* We have to do this with page locked to prevent races */
1024 		if (TestSetPageLocked(swappage)) {
1025 			shmem_swp_unmap(entry);
1026 			spin_unlock(&info->lock);
1027 			wait_on_page_locked(swappage);
1028 			page_cache_release(swappage);
1029 			goto repeat;
1030 		}
1031 		if (PageWriteback(swappage)) {
1032 			shmem_swp_unmap(entry);
1033 			spin_unlock(&info->lock);
1034 			wait_on_page_writeback(swappage);
1035 			unlock_page(swappage);
1036 			page_cache_release(swappage);
1037 			goto repeat;
1038 		}
1039 		if (!PageUptodate(swappage)) {
1040 			shmem_swp_unmap(entry);
1041 			spin_unlock(&info->lock);
1042 			unlock_page(swappage);
1043 			page_cache_release(swappage);
1044 			error = -EIO;
1045 			goto failed;
1046 		}
1047 
1048 		if (filepage) {
1049 			shmem_swp_set(info, entry, 0);
1050 			shmem_swp_unmap(entry);
1051 			delete_from_swap_cache(swappage);
1052 			spin_unlock(&info->lock);
1053 			copy_highpage(filepage, swappage);
1054 			unlock_page(swappage);
1055 			page_cache_release(swappage);
1056 			flush_dcache_page(filepage);
1057 			SetPageUptodate(filepage);
1058 			set_page_dirty(filepage);
1059 			swap_free(swap);
1060 		} else if (!(error = move_from_swap_cache(
1061 				swappage, idx, mapping))) {
1062 			info->flags |= SHMEM_PAGEIN;
1063 			shmem_swp_set(info, entry, 0);
1064 			shmem_swp_unmap(entry);
1065 			spin_unlock(&info->lock);
1066 			filepage = swappage;
1067 			swap_free(swap);
1068 		} else {
1069 			shmem_swp_unmap(entry);
1070 			spin_unlock(&info->lock);
1071 			unlock_page(swappage);
1072 			page_cache_release(swappage);
1073 			if (error == -ENOMEM) {
1074 				/* let kswapd refresh zone for GFP_ATOMICs */
1075 				blk_congestion_wait(WRITE, HZ/50);
1076 			}
1077 			goto repeat;
1078 		}
1079 	} else if (sgp == SGP_READ && !filepage) {
1080 		shmem_swp_unmap(entry);
1081 		filepage = find_get_page(mapping, idx);
1082 		if (filepage &&
1083 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1084 			spin_unlock(&info->lock);
1085 			wait_on_page_locked(filepage);
1086 			page_cache_release(filepage);
1087 			filepage = NULL;
1088 			goto repeat;
1089 		}
1090 		spin_unlock(&info->lock);
1091 	} else {
1092 		shmem_swp_unmap(entry);
1093 		sbinfo = SHMEM_SB(inode->i_sb);
1094 		if (sbinfo->max_blocks) {
1095 			spin_lock(&sbinfo->stat_lock);
1096 			if (sbinfo->free_blocks == 0 ||
1097 			    shmem_acct_block(info->flags)) {
1098 				spin_unlock(&sbinfo->stat_lock);
1099 				spin_unlock(&info->lock);
1100 				error = -ENOSPC;
1101 				goto failed;
1102 			}
1103 			sbinfo->free_blocks--;
1104 			inode->i_blocks += BLOCKS_PER_PAGE;
1105 			spin_unlock(&sbinfo->stat_lock);
1106 		} else if (shmem_acct_block(info->flags)) {
1107 			spin_unlock(&info->lock);
1108 			error = -ENOSPC;
1109 			goto failed;
1110 		}
1111 
1112 		if (!filepage) {
1113 			spin_unlock(&info->lock);
1114 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1115 						    info,
1116 						    idx);
1117 			if (!filepage) {
1118 				shmem_unacct_blocks(info->flags, 1);
1119 				shmem_free_blocks(inode, 1);
1120 				error = -ENOMEM;
1121 				goto failed;
1122 			}
1123 
1124 			spin_lock(&info->lock);
1125 			entry = shmem_swp_alloc(info, idx, sgp);
1126 			if (IS_ERR(entry))
1127 				error = PTR_ERR(entry);
1128 			else {
1129 				swap = *entry;
1130 				shmem_swp_unmap(entry);
1131 			}
1132 			if (error || swap.val || 0 != add_to_page_cache_lru(
1133 					filepage, mapping, idx, GFP_ATOMIC)) {
1134 				spin_unlock(&info->lock);
1135 				page_cache_release(filepage);
1136 				shmem_unacct_blocks(info->flags, 1);
1137 				shmem_free_blocks(inode, 1);
1138 				filepage = NULL;
1139 				if (error)
1140 					goto failed;
1141 				goto repeat;
1142 			}
1143 			info->flags |= SHMEM_PAGEIN;
1144 		}
1145 
1146 		info->alloced++;
1147 		spin_unlock(&info->lock);
1148 		flush_dcache_page(filepage);
1149 		SetPageUptodate(filepage);
1150 	}
1151 done:
1152 	if (*pagep != filepage) {
1153 		unlock_page(filepage);
1154 		*pagep = filepage;
1155 	}
1156 	return 0;
1157 
1158 failed:
1159 	if (*pagep != filepage) {
1160 		unlock_page(filepage);
1161 		page_cache_release(filepage);
1162 	}
1163 	return error;
1164 }
1165 
1166 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1167 {
1168 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1169 	struct page *page = NULL;
1170 	unsigned long idx;
1171 	int error;
1172 
1173 	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1174 	idx += vma->vm_pgoff;
1175 	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1176 	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1177 		return NOPAGE_SIGBUS;
1178 
1179 	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1180 	if (error)
1181 		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1182 
1183 	mark_page_accessed(page);
1184 	return page;
1185 }
1186 
1187 static int shmem_populate(struct vm_area_struct *vma,
1188 	unsigned long addr, unsigned long len,
1189 	pgprot_t prot, unsigned long pgoff, int nonblock)
1190 {
1191 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1192 	struct mm_struct *mm = vma->vm_mm;
1193 	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1194 	unsigned long size;
1195 
1196 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1197 	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1198 		return -EINVAL;
1199 
1200 	while ((long) len > 0) {
1201 		struct page *page = NULL;
1202 		int err;
1203 		/*
1204 		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1205 		 */
1206 		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1207 		if (err)
1208 			return err;
1209 		/* Page may still be null, but only if nonblock was set. */
1210 		if (page) {
1211 			mark_page_accessed(page);
1212 			err = install_page(mm, vma, addr, page, prot);
1213 			if (err) {
1214 				page_cache_release(page);
1215 				return err;
1216 			}
1217 		} else if (vma->vm_flags & VM_NONLINEAR) {
1218 			/* No page was found just because we can't read it in
1219 			 * now (being here implies nonblock != 0), but the page
1220 			 * may exist, so set the PTE to fault it in later. */
1221     			err = install_file_pte(mm, vma, addr, pgoff, prot);
1222 			if (err)
1223 	    			return err;
1224 		}
1225 
1226 		len -= PAGE_SIZE;
1227 		addr += PAGE_SIZE;
1228 		pgoff++;
1229 	}
1230 	return 0;
1231 }
1232 
1233 #ifdef CONFIG_NUMA
1234 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1235 {
1236 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1237 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1238 }
1239 
1240 struct mempolicy *
1241 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1242 {
1243 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1244 	unsigned long idx;
1245 
1246 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1247 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1248 }
1249 #endif
1250 
1251 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1252 {
1253 	struct inode *inode = file->f_dentry->d_inode;
1254 	struct shmem_inode_info *info = SHMEM_I(inode);
1255 	int retval = -ENOMEM;
1256 
1257 	spin_lock(&info->lock);
1258 	if (lock && !(info->flags & VM_LOCKED)) {
1259 		if (!user_shm_lock(inode->i_size, user))
1260 			goto out_nomem;
1261 		info->flags |= VM_LOCKED;
1262 	}
1263 	if (!lock && (info->flags & VM_LOCKED) && user) {
1264 		user_shm_unlock(inode->i_size, user);
1265 		info->flags &= ~VM_LOCKED;
1266 	}
1267 	retval = 0;
1268 out_nomem:
1269 	spin_unlock(&info->lock);
1270 	return retval;
1271 }
1272 
1273 int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1274 {
1275 	file_accessed(file);
1276 	vma->vm_ops = &shmem_vm_ops;
1277 	return 0;
1278 }
1279 
1280 static struct inode *
1281 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1282 {
1283 	struct inode *inode;
1284 	struct shmem_inode_info *info;
1285 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1286 
1287 	if (sbinfo->max_inodes) {
1288 		spin_lock(&sbinfo->stat_lock);
1289 		if (!sbinfo->free_inodes) {
1290 			spin_unlock(&sbinfo->stat_lock);
1291 			return NULL;
1292 		}
1293 		sbinfo->free_inodes--;
1294 		spin_unlock(&sbinfo->stat_lock);
1295 	}
1296 
1297 	inode = new_inode(sb);
1298 	if (inode) {
1299 		inode->i_mode = mode;
1300 		inode->i_uid = current->fsuid;
1301 		inode->i_gid = current->fsgid;
1302 		inode->i_blksize = PAGE_CACHE_SIZE;
1303 		inode->i_blocks = 0;
1304 		inode->i_mapping->a_ops = &shmem_aops;
1305 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1306 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1307 		info = SHMEM_I(inode);
1308 		memset(info, 0, (char *)inode - (char *)info);
1309 		spin_lock_init(&info->lock);
1310 		INIT_LIST_HEAD(&info->swaplist);
1311 
1312 		switch (mode & S_IFMT) {
1313 		default:
1314 			init_special_inode(inode, mode, dev);
1315 			break;
1316 		case S_IFREG:
1317 			inode->i_op = &shmem_inode_operations;
1318 			inode->i_fop = &shmem_file_operations;
1319 			mpol_shared_policy_init(&info->policy);
1320 			break;
1321 		case S_IFDIR:
1322 			inode->i_nlink++;
1323 			/* Some things misbehave if size == 0 on a directory */
1324 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1325 			inode->i_op = &shmem_dir_inode_operations;
1326 			inode->i_fop = &simple_dir_operations;
1327 			break;
1328 		case S_IFLNK:
1329 			/*
1330 			 * Must not load anything in the rbtree,
1331 			 * mpol_free_shared_policy will not be called.
1332 			 */
1333 			mpol_shared_policy_init(&info->policy);
1334 			break;
1335 		}
1336 	} else if (sbinfo->max_inodes) {
1337 		spin_lock(&sbinfo->stat_lock);
1338 		sbinfo->free_inodes++;
1339 		spin_unlock(&sbinfo->stat_lock);
1340 	}
1341 	return inode;
1342 }
1343 
1344 #ifdef CONFIG_TMPFS
1345 static struct inode_operations shmem_symlink_inode_operations;
1346 static struct inode_operations shmem_symlink_inline_operations;
1347 
1348 /*
1349  * Normally tmpfs makes no use of shmem_prepare_write, but it
1350  * lets a tmpfs file be used read-write below the loop driver.
1351  */
1352 static int
1353 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1354 {
1355 	struct inode *inode = page->mapping->host;
1356 	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1357 }
1358 
1359 static ssize_t
1360 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1361 {
1362 	struct inode	*inode = file->f_dentry->d_inode;
1363 	loff_t		pos;
1364 	unsigned long	written;
1365 	ssize_t		err;
1366 
1367 	if ((ssize_t) count < 0)
1368 		return -EINVAL;
1369 
1370 	if (!access_ok(VERIFY_READ, buf, count))
1371 		return -EFAULT;
1372 
1373 	mutex_lock(&inode->i_mutex);
1374 
1375 	pos = *ppos;
1376 	written = 0;
1377 
1378 	err = generic_write_checks(file, &pos, &count, 0);
1379 	if (err || !count)
1380 		goto out;
1381 
1382 	err = remove_suid(file->f_dentry);
1383 	if (err)
1384 		goto out;
1385 
1386 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1387 
1388 	do {
1389 		struct page *page = NULL;
1390 		unsigned long bytes, index, offset;
1391 		char *kaddr;
1392 		int left;
1393 
1394 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1395 		index = pos >> PAGE_CACHE_SHIFT;
1396 		bytes = PAGE_CACHE_SIZE - offset;
1397 		if (bytes > count)
1398 			bytes = count;
1399 
1400 		/*
1401 		 * We don't hold page lock across copy from user -
1402 		 * what would it guard against? - so no deadlock here.
1403 		 * But it still may be a good idea to prefault below.
1404 		 */
1405 
1406 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1407 		if (err)
1408 			break;
1409 
1410 		left = bytes;
1411 		if (PageHighMem(page)) {
1412 			volatile unsigned char dummy;
1413 			__get_user(dummy, buf);
1414 			__get_user(dummy, buf + bytes - 1);
1415 
1416 			kaddr = kmap_atomic(page, KM_USER0);
1417 			left = __copy_from_user_inatomic(kaddr + offset,
1418 							buf, bytes);
1419 			kunmap_atomic(kaddr, KM_USER0);
1420 		}
1421 		if (left) {
1422 			kaddr = kmap(page);
1423 			left = __copy_from_user(kaddr + offset, buf, bytes);
1424 			kunmap(page);
1425 		}
1426 
1427 		written += bytes;
1428 		count -= bytes;
1429 		pos += bytes;
1430 		buf += bytes;
1431 		if (pos > inode->i_size)
1432 			i_size_write(inode, pos);
1433 
1434 		flush_dcache_page(page);
1435 		set_page_dirty(page);
1436 		mark_page_accessed(page);
1437 		page_cache_release(page);
1438 
1439 		if (left) {
1440 			pos -= left;
1441 			written -= left;
1442 			err = -EFAULT;
1443 			break;
1444 		}
1445 
1446 		/*
1447 		 * Our dirty pages are not counted in nr_dirty,
1448 		 * and we do not attempt to balance dirty pages.
1449 		 */
1450 
1451 		cond_resched();
1452 	} while (count);
1453 
1454 	*ppos = pos;
1455 	if (written)
1456 		err = written;
1457 out:
1458 	mutex_unlock(&inode->i_mutex);
1459 	return err;
1460 }
1461 
1462 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1463 {
1464 	struct inode *inode = filp->f_dentry->d_inode;
1465 	struct address_space *mapping = inode->i_mapping;
1466 	unsigned long index, offset;
1467 
1468 	index = *ppos >> PAGE_CACHE_SHIFT;
1469 	offset = *ppos & ~PAGE_CACHE_MASK;
1470 
1471 	for (;;) {
1472 		struct page *page = NULL;
1473 		unsigned long end_index, nr, ret;
1474 		loff_t i_size = i_size_read(inode);
1475 
1476 		end_index = i_size >> PAGE_CACHE_SHIFT;
1477 		if (index > end_index)
1478 			break;
1479 		if (index == end_index) {
1480 			nr = i_size & ~PAGE_CACHE_MASK;
1481 			if (nr <= offset)
1482 				break;
1483 		}
1484 
1485 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1486 		if (desc->error) {
1487 			if (desc->error == -EINVAL)
1488 				desc->error = 0;
1489 			break;
1490 		}
1491 
1492 		/*
1493 		 * We must evaluate after, since reads (unlike writes)
1494 		 * are called without i_mutex protection against truncate
1495 		 */
1496 		nr = PAGE_CACHE_SIZE;
1497 		i_size = i_size_read(inode);
1498 		end_index = i_size >> PAGE_CACHE_SHIFT;
1499 		if (index == end_index) {
1500 			nr = i_size & ~PAGE_CACHE_MASK;
1501 			if (nr <= offset) {
1502 				if (page)
1503 					page_cache_release(page);
1504 				break;
1505 			}
1506 		}
1507 		nr -= offset;
1508 
1509 		if (page) {
1510 			/*
1511 			 * If users can be writing to this page using arbitrary
1512 			 * virtual addresses, take care about potential aliasing
1513 			 * before reading the page on the kernel side.
1514 			 */
1515 			if (mapping_writably_mapped(mapping))
1516 				flush_dcache_page(page);
1517 			/*
1518 			 * Mark the page accessed if we read the beginning.
1519 			 */
1520 			if (!offset)
1521 				mark_page_accessed(page);
1522 		} else {
1523 			page = ZERO_PAGE(0);
1524 			page_cache_get(page);
1525 		}
1526 
1527 		/*
1528 		 * Ok, we have the page, and it's up-to-date, so
1529 		 * now we can copy it to user space...
1530 		 *
1531 		 * The actor routine returns how many bytes were actually used..
1532 		 * NOTE! This may not be the same as how much of a user buffer
1533 		 * we filled up (we may be padding etc), so we can only update
1534 		 * "pos" here (the actor routine has to update the user buffer
1535 		 * pointers and the remaining count).
1536 		 */
1537 		ret = actor(desc, page, offset, nr);
1538 		offset += ret;
1539 		index += offset >> PAGE_CACHE_SHIFT;
1540 		offset &= ~PAGE_CACHE_MASK;
1541 
1542 		page_cache_release(page);
1543 		if (ret != nr || !desc->count)
1544 			break;
1545 
1546 		cond_resched();
1547 	}
1548 
1549 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1550 	file_accessed(filp);
1551 }
1552 
1553 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1554 {
1555 	read_descriptor_t desc;
1556 
1557 	if ((ssize_t) count < 0)
1558 		return -EINVAL;
1559 	if (!access_ok(VERIFY_WRITE, buf, count))
1560 		return -EFAULT;
1561 	if (!count)
1562 		return 0;
1563 
1564 	desc.written = 0;
1565 	desc.count = count;
1566 	desc.arg.buf = buf;
1567 	desc.error = 0;
1568 
1569 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1570 	if (desc.written)
1571 		return desc.written;
1572 	return desc.error;
1573 }
1574 
1575 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1576 			 size_t count, read_actor_t actor, void *target)
1577 {
1578 	read_descriptor_t desc;
1579 
1580 	if (!count)
1581 		return 0;
1582 
1583 	desc.written = 0;
1584 	desc.count = count;
1585 	desc.arg.data = target;
1586 	desc.error = 0;
1587 
1588 	do_shmem_file_read(in_file, ppos, &desc, actor);
1589 	if (desc.written)
1590 		return desc.written;
1591 	return desc.error;
1592 }
1593 
1594 static int shmem_statfs(struct super_block *sb, struct kstatfs *buf)
1595 {
1596 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1597 
1598 	buf->f_type = TMPFS_MAGIC;
1599 	buf->f_bsize = PAGE_CACHE_SIZE;
1600 	buf->f_namelen = NAME_MAX;
1601 	spin_lock(&sbinfo->stat_lock);
1602 	if (sbinfo->max_blocks) {
1603 		buf->f_blocks = sbinfo->max_blocks;
1604 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1605 	}
1606 	if (sbinfo->max_inodes) {
1607 		buf->f_files = sbinfo->max_inodes;
1608 		buf->f_ffree = sbinfo->free_inodes;
1609 	}
1610 	/* else leave those fields 0 like simple_statfs */
1611 	spin_unlock(&sbinfo->stat_lock);
1612 	return 0;
1613 }
1614 
1615 /*
1616  * File creation. Allocate an inode, and we're done..
1617  */
1618 static int
1619 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1620 {
1621 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1622 	int error = -ENOSPC;
1623 
1624 	if (inode) {
1625 		error = security_inode_init_security(inode, dir, NULL, NULL,
1626 						     NULL);
1627 		if (error) {
1628 			if (error != -EOPNOTSUPP) {
1629 				iput(inode);
1630 				return error;
1631 			}
1632 			error = 0;
1633 		}
1634 		if (dir->i_mode & S_ISGID) {
1635 			inode->i_gid = dir->i_gid;
1636 			if (S_ISDIR(mode))
1637 				inode->i_mode |= S_ISGID;
1638 		}
1639 		dir->i_size += BOGO_DIRENT_SIZE;
1640 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1641 		d_instantiate(dentry, inode);
1642 		dget(dentry); /* Extra count - pin the dentry in core */
1643 	}
1644 	return error;
1645 }
1646 
1647 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1648 {
1649 	int error;
1650 
1651 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1652 		return error;
1653 	dir->i_nlink++;
1654 	return 0;
1655 }
1656 
1657 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1658 		struct nameidata *nd)
1659 {
1660 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1661 }
1662 
1663 /*
1664  * Link a file..
1665  */
1666 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1667 {
1668 	struct inode *inode = old_dentry->d_inode;
1669 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1670 
1671 	/*
1672 	 * No ordinary (disk based) filesystem counts links as inodes;
1673 	 * but each new link needs a new dentry, pinning lowmem, and
1674 	 * tmpfs dentries cannot be pruned until they are unlinked.
1675 	 */
1676 	if (sbinfo->max_inodes) {
1677 		spin_lock(&sbinfo->stat_lock);
1678 		if (!sbinfo->free_inodes) {
1679 			spin_unlock(&sbinfo->stat_lock);
1680 			return -ENOSPC;
1681 		}
1682 		sbinfo->free_inodes--;
1683 		spin_unlock(&sbinfo->stat_lock);
1684 	}
1685 
1686 	dir->i_size += BOGO_DIRENT_SIZE;
1687 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1688 	inode->i_nlink++;
1689 	atomic_inc(&inode->i_count);	/* New dentry reference */
1690 	dget(dentry);		/* Extra pinning count for the created dentry */
1691 	d_instantiate(dentry, inode);
1692 	return 0;
1693 }
1694 
1695 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1696 {
1697 	struct inode *inode = dentry->d_inode;
1698 
1699 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1700 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1701 		if (sbinfo->max_inodes) {
1702 			spin_lock(&sbinfo->stat_lock);
1703 			sbinfo->free_inodes++;
1704 			spin_unlock(&sbinfo->stat_lock);
1705 		}
1706 	}
1707 
1708 	dir->i_size -= BOGO_DIRENT_SIZE;
1709 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1710 	inode->i_nlink--;
1711 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1712 	return 0;
1713 }
1714 
1715 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1716 {
1717 	if (!simple_empty(dentry))
1718 		return -ENOTEMPTY;
1719 
1720 	dir->i_nlink--;
1721 	return shmem_unlink(dir, dentry);
1722 }
1723 
1724 /*
1725  * The VFS layer already does all the dentry stuff for rename,
1726  * we just have to decrement the usage count for the target if
1727  * it exists so that the VFS layer correctly free's it when it
1728  * gets overwritten.
1729  */
1730 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1731 {
1732 	struct inode *inode = old_dentry->d_inode;
1733 	int they_are_dirs = S_ISDIR(inode->i_mode);
1734 
1735 	if (!simple_empty(new_dentry))
1736 		return -ENOTEMPTY;
1737 
1738 	if (new_dentry->d_inode) {
1739 		(void) shmem_unlink(new_dir, new_dentry);
1740 		if (they_are_dirs)
1741 			old_dir->i_nlink--;
1742 	} else if (they_are_dirs) {
1743 		old_dir->i_nlink--;
1744 		new_dir->i_nlink++;
1745 	}
1746 
1747 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1748 	new_dir->i_size += BOGO_DIRENT_SIZE;
1749 	old_dir->i_ctime = old_dir->i_mtime =
1750 	new_dir->i_ctime = new_dir->i_mtime =
1751 	inode->i_ctime = CURRENT_TIME;
1752 	return 0;
1753 }
1754 
1755 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1756 {
1757 	int error;
1758 	int len;
1759 	struct inode *inode;
1760 	struct page *page = NULL;
1761 	char *kaddr;
1762 	struct shmem_inode_info *info;
1763 
1764 	len = strlen(symname) + 1;
1765 	if (len > PAGE_CACHE_SIZE)
1766 		return -ENAMETOOLONG;
1767 
1768 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1769 	if (!inode)
1770 		return -ENOSPC;
1771 
1772 	error = security_inode_init_security(inode, dir, NULL, NULL,
1773 					     NULL);
1774 	if (error) {
1775 		if (error != -EOPNOTSUPP) {
1776 			iput(inode);
1777 			return error;
1778 		}
1779 		error = 0;
1780 	}
1781 
1782 	info = SHMEM_I(inode);
1783 	inode->i_size = len-1;
1784 	if (len <= (char *)inode - (char *)info) {
1785 		/* do it inline */
1786 		memcpy(info, symname, len);
1787 		inode->i_op = &shmem_symlink_inline_operations;
1788 	} else {
1789 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1790 		if (error) {
1791 			iput(inode);
1792 			return error;
1793 		}
1794 		inode->i_op = &shmem_symlink_inode_operations;
1795 		kaddr = kmap_atomic(page, KM_USER0);
1796 		memcpy(kaddr, symname, len);
1797 		kunmap_atomic(kaddr, KM_USER0);
1798 		set_page_dirty(page);
1799 		page_cache_release(page);
1800 	}
1801 	if (dir->i_mode & S_ISGID)
1802 		inode->i_gid = dir->i_gid;
1803 	dir->i_size += BOGO_DIRENT_SIZE;
1804 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1805 	d_instantiate(dentry, inode);
1806 	dget(dentry);
1807 	return 0;
1808 }
1809 
1810 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1811 {
1812 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1813 	return NULL;
1814 }
1815 
1816 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1817 {
1818 	struct page *page = NULL;
1819 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1820 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1821 	return page;
1822 }
1823 
1824 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1825 {
1826 	if (!IS_ERR(nd_get_link(nd))) {
1827 		struct page *page = cookie;
1828 		kunmap(page);
1829 		mark_page_accessed(page);
1830 		page_cache_release(page);
1831 	}
1832 }
1833 
1834 static struct inode_operations shmem_symlink_inline_operations = {
1835 	.readlink	= generic_readlink,
1836 	.follow_link	= shmem_follow_link_inline,
1837 };
1838 
1839 static struct inode_operations shmem_symlink_inode_operations = {
1840 	.truncate	= shmem_truncate,
1841 	.readlink	= generic_readlink,
1842 	.follow_link	= shmem_follow_link,
1843 	.put_link	= shmem_put_link,
1844 };
1845 
1846 static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, unsigned long *blocks, unsigned long *inodes)
1847 {
1848 	char *this_char, *value, *rest;
1849 
1850 	while ((this_char = strsep(&options, ",")) != NULL) {
1851 		if (!*this_char)
1852 			continue;
1853 		if ((value = strchr(this_char,'=')) != NULL) {
1854 			*value++ = 0;
1855 		} else {
1856 			printk(KERN_ERR
1857 			    "tmpfs: No value for mount option '%s'\n",
1858 			    this_char);
1859 			return 1;
1860 		}
1861 
1862 		if (!strcmp(this_char,"size")) {
1863 			unsigned long long size;
1864 			size = memparse(value,&rest);
1865 			if (*rest == '%') {
1866 				size <<= PAGE_SHIFT;
1867 				size *= totalram_pages;
1868 				do_div(size, 100);
1869 				rest++;
1870 			}
1871 			if (*rest)
1872 				goto bad_val;
1873 			*blocks = size >> PAGE_CACHE_SHIFT;
1874 		} else if (!strcmp(this_char,"nr_blocks")) {
1875 			*blocks = memparse(value,&rest);
1876 			if (*rest)
1877 				goto bad_val;
1878 		} else if (!strcmp(this_char,"nr_inodes")) {
1879 			*inodes = memparse(value,&rest);
1880 			if (*rest)
1881 				goto bad_val;
1882 		} else if (!strcmp(this_char,"mode")) {
1883 			if (!mode)
1884 				continue;
1885 			*mode = simple_strtoul(value,&rest,8);
1886 			if (*rest)
1887 				goto bad_val;
1888 		} else if (!strcmp(this_char,"uid")) {
1889 			if (!uid)
1890 				continue;
1891 			*uid = simple_strtoul(value,&rest,0);
1892 			if (*rest)
1893 				goto bad_val;
1894 		} else if (!strcmp(this_char,"gid")) {
1895 			if (!gid)
1896 				continue;
1897 			*gid = simple_strtoul(value,&rest,0);
1898 			if (*rest)
1899 				goto bad_val;
1900 		} else {
1901 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1902 			       this_char);
1903 			return 1;
1904 		}
1905 	}
1906 	return 0;
1907 
1908 bad_val:
1909 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1910 	       value, this_char);
1911 	return 1;
1912 
1913 }
1914 
1915 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1916 {
1917 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1918 	unsigned long max_blocks = sbinfo->max_blocks;
1919 	unsigned long max_inodes = sbinfo->max_inodes;
1920 	unsigned long blocks;
1921 	unsigned long inodes;
1922 	int error = -EINVAL;
1923 
1924 	if (shmem_parse_options(data, NULL, NULL, NULL,
1925 				&max_blocks, &max_inodes))
1926 		return error;
1927 
1928 	spin_lock(&sbinfo->stat_lock);
1929 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
1930 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
1931 	if (max_blocks < blocks)
1932 		goto out;
1933 	if (max_inodes < inodes)
1934 		goto out;
1935 	/*
1936 	 * Those tests also disallow limited->unlimited while any are in
1937 	 * use, so i_blocks will always be zero when max_blocks is zero;
1938 	 * but we must separately disallow unlimited->limited, because
1939 	 * in that case we have no record of how much is already in use.
1940 	 */
1941 	if (max_blocks && !sbinfo->max_blocks)
1942 		goto out;
1943 	if (max_inodes && !sbinfo->max_inodes)
1944 		goto out;
1945 
1946 	error = 0;
1947 	sbinfo->max_blocks  = max_blocks;
1948 	sbinfo->free_blocks = max_blocks - blocks;
1949 	sbinfo->max_inodes  = max_inodes;
1950 	sbinfo->free_inodes = max_inodes - inodes;
1951 out:
1952 	spin_unlock(&sbinfo->stat_lock);
1953 	return error;
1954 }
1955 #endif
1956 
1957 static void shmem_put_super(struct super_block *sb)
1958 {
1959 	kfree(sb->s_fs_info);
1960 	sb->s_fs_info = NULL;
1961 }
1962 
1963 static int shmem_fill_super(struct super_block *sb,
1964 			    void *data, int silent)
1965 {
1966 	struct inode *inode;
1967 	struct dentry *root;
1968 	int mode   = S_IRWXUGO | S_ISVTX;
1969 	uid_t uid = current->fsuid;
1970 	gid_t gid = current->fsgid;
1971 	int err = -ENOMEM;
1972 	struct shmem_sb_info *sbinfo;
1973 	unsigned long blocks = 0;
1974 	unsigned long inodes = 0;
1975 
1976 #ifdef CONFIG_TMPFS
1977 	/*
1978 	 * Per default we only allow half of the physical ram per
1979 	 * tmpfs instance, limiting inodes to one per page of lowmem;
1980 	 * but the internal instance is left unlimited.
1981 	 */
1982 	if (!(sb->s_flags & MS_NOUSER)) {
1983 		blocks = totalram_pages / 2;
1984 		inodes = totalram_pages - totalhigh_pages;
1985 		if (inodes > blocks)
1986 			inodes = blocks;
1987 		if (shmem_parse_options(data, &mode, &uid, &gid,
1988 					&blocks, &inodes))
1989 			return -EINVAL;
1990 	}
1991 #else
1992 	sb->s_flags |= MS_NOUSER;
1993 #endif
1994 
1995 	/* Round up to L1_CACHE_BYTES to resist false sharing */
1996 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
1997 				L1_CACHE_BYTES), GFP_KERNEL);
1998 	if (!sbinfo)
1999 		return -ENOMEM;
2000 
2001 	spin_lock_init(&sbinfo->stat_lock);
2002 	sbinfo->max_blocks = blocks;
2003 	sbinfo->free_blocks = blocks;
2004 	sbinfo->max_inodes = inodes;
2005 	sbinfo->free_inodes = inodes;
2006 
2007 	sb->s_fs_info = sbinfo;
2008 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2009 	sb->s_blocksize = PAGE_CACHE_SIZE;
2010 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2011 	sb->s_magic = TMPFS_MAGIC;
2012 	sb->s_op = &shmem_ops;
2013 
2014 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2015 	if (!inode)
2016 		goto failed;
2017 	inode->i_uid = uid;
2018 	inode->i_gid = gid;
2019 	root = d_alloc_root(inode);
2020 	if (!root)
2021 		goto failed_iput;
2022 	sb->s_root = root;
2023 	return 0;
2024 
2025 failed_iput:
2026 	iput(inode);
2027 failed:
2028 	shmem_put_super(sb);
2029 	return err;
2030 }
2031 
2032 static kmem_cache_t *shmem_inode_cachep;
2033 
2034 static struct inode *shmem_alloc_inode(struct super_block *sb)
2035 {
2036 	struct shmem_inode_info *p;
2037 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2038 	if (!p)
2039 		return NULL;
2040 	return &p->vfs_inode;
2041 }
2042 
2043 static void shmem_destroy_inode(struct inode *inode)
2044 {
2045 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2046 		/* only struct inode is valid if it's an inline symlink */
2047 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2048 	}
2049 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2050 }
2051 
2052 static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
2053 {
2054 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2055 
2056 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2057 	    SLAB_CTOR_CONSTRUCTOR) {
2058 		inode_init_once(&p->vfs_inode);
2059 	}
2060 }
2061 
2062 static int init_inodecache(void)
2063 {
2064 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2065 				sizeof(struct shmem_inode_info),
2066 				0, 0, init_once, NULL);
2067 	if (shmem_inode_cachep == NULL)
2068 		return -ENOMEM;
2069 	return 0;
2070 }
2071 
2072 static void destroy_inodecache(void)
2073 {
2074 	if (kmem_cache_destroy(shmem_inode_cachep))
2075 		printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2076 }
2077 
2078 static struct address_space_operations shmem_aops = {
2079 	.writepage	= shmem_writepage,
2080 	.set_page_dirty	= __set_page_dirty_nobuffers,
2081 #ifdef CONFIG_TMPFS
2082 	.prepare_write	= shmem_prepare_write,
2083 	.commit_write	= simple_commit_write,
2084 #endif
2085 };
2086 
2087 static struct file_operations shmem_file_operations = {
2088 	.mmap		= shmem_mmap,
2089 #ifdef CONFIG_TMPFS
2090 	.llseek		= generic_file_llseek,
2091 	.read		= shmem_file_read,
2092 	.write		= shmem_file_write,
2093 	.fsync		= simple_sync_file,
2094 	.sendfile	= shmem_file_sendfile,
2095 #endif
2096 };
2097 
2098 static struct inode_operations shmem_inode_operations = {
2099 	.truncate	= shmem_truncate,
2100 	.setattr	= shmem_notify_change,
2101 	.truncate_range	= shmem_truncate_range,
2102 };
2103 
2104 static struct inode_operations shmem_dir_inode_operations = {
2105 #ifdef CONFIG_TMPFS
2106 	.create		= shmem_create,
2107 	.lookup		= simple_lookup,
2108 	.link		= shmem_link,
2109 	.unlink		= shmem_unlink,
2110 	.symlink	= shmem_symlink,
2111 	.mkdir		= shmem_mkdir,
2112 	.rmdir		= shmem_rmdir,
2113 	.mknod		= shmem_mknod,
2114 	.rename		= shmem_rename,
2115 #endif
2116 };
2117 
2118 static struct super_operations shmem_ops = {
2119 	.alloc_inode	= shmem_alloc_inode,
2120 	.destroy_inode	= shmem_destroy_inode,
2121 #ifdef CONFIG_TMPFS
2122 	.statfs		= shmem_statfs,
2123 	.remount_fs	= shmem_remount_fs,
2124 #endif
2125 	.delete_inode	= shmem_delete_inode,
2126 	.drop_inode	= generic_delete_inode,
2127 	.put_super	= shmem_put_super,
2128 };
2129 
2130 static struct vm_operations_struct shmem_vm_ops = {
2131 	.nopage		= shmem_nopage,
2132 	.populate	= shmem_populate,
2133 #ifdef CONFIG_NUMA
2134 	.set_policy     = shmem_set_policy,
2135 	.get_policy     = shmem_get_policy,
2136 #endif
2137 };
2138 
2139 
2140 static struct super_block *shmem_get_sb(struct file_system_type *fs_type,
2141 	int flags, const char *dev_name, void *data)
2142 {
2143 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super);
2144 }
2145 
2146 static struct file_system_type tmpfs_fs_type = {
2147 	.owner		= THIS_MODULE,
2148 	.name		= "tmpfs",
2149 	.get_sb		= shmem_get_sb,
2150 	.kill_sb	= kill_litter_super,
2151 };
2152 static struct vfsmount *shm_mnt;
2153 
2154 static int __init init_tmpfs(void)
2155 {
2156 	int error;
2157 
2158 	error = init_inodecache();
2159 	if (error)
2160 		goto out3;
2161 
2162 	error = register_filesystem(&tmpfs_fs_type);
2163 	if (error) {
2164 		printk(KERN_ERR "Could not register tmpfs\n");
2165 		goto out2;
2166 	}
2167 #ifdef CONFIG_TMPFS
2168 	devfs_mk_dir("shm");
2169 #endif
2170 	shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER,
2171 				tmpfs_fs_type.name, NULL);
2172 	if (IS_ERR(shm_mnt)) {
2173 		error = PTR_ERR(shm_mnt);
2174 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2175 		goto out1;
2176 	}
2177 	return 0;
2178 
2179 out1:
2180 	unregister_filesystem(&tmpfs_fs_type);
2181 out2:
2182 	destroy_inodecache();
2183 out3:
2184 	shm_mnt = ERR_PTR(error);
2185 	return error;
2186 }
2187 module_init(init_tmpfs)
2188 
2189 /*
2190  * shmem_file_setup - get an unlinked file living in tmpfs
2191  *
2192  * @name: name for dentry (to be seen in /proc/<pid>/maps
2193  * @size: size to be set for the file
2194  *
2195  */
2196 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2197 {
2198 	int error;
2199 	struct file *file;
2200 	struct inode *inode;
2201 	struct dentry *dentry, *root;
2202 	struct qstr this;
2203 
2204 	if (IS_ERR(shm_mnt))
2205 		return (void *)shm_mnt;
2206 
2207 	if (size < 0 || size > SHMEM_MAX_BYTES)
2208 		return ERR_PTR(-EINVAL);
2209 
2210 	if (shmem_acct_size(flags, size))
2211 		return ERR_PTR(-ENOMEM);
2212 
2213 	error = -ENOMEM;
2214 	this.name = name;
2215 	this.len = strlen(name);
2216 	this.hash = 0; /* will go */
2217 	root = shm_mnt->mnt_root;
2218 	dentry = d_alloc(root, &this);
2219 	if (!dentry)
2220 		goto put_memory;
2221 
2222 	error = -ENFILE;
2223 	file = get_empty_filp();
2224 	if (!file)
2225 		goto put_dentry;
2226 
2227 	error = -ENOSPC;
2228 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2229 	if (!inode)
2230 		goto close_file;
2231 
2232 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2233 	d_instantiate(dentry, inode);
2234 	inode->i_size = size;
2235 	inode->i_nlink = 0;	/* It is unlinked */
2236 	file->f_vfsmnt = mntget(shm_mnt);
2237 	file->f_dentry = dentry;
2238 	file->f_mapping = inode->i_mapping;
2239 	file->f_op = &shmem_file_operations;
2240 	file->f_mode = FMODE_WRITE | FMODE_READ;
2241 	return file;
2242 
2243 close_file:
2244 	put_filp(file);
2245 put_dentry:
2246 	dput(dentry);
2247 put_memory:
2248 	shmem_unacct_size(flags, size);
2249 	return ERR_PTR(error);
2250 }
2251 
2252 /*
2253  * shmem_zero_setup - setup a shared anonymous mapping
2254  *
2255  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2256  */
2257 int shmem_zero_setup(struct vm_area_struct *vma)
2258 {
2259 	struct file *file;
2260 	loff_t size = vma->vm_end - vma->vm_start;
2261 
2262 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2263 	if (IS_ERR(file))
2264 		return PTR_ERR(file);
2265 
2266 	if (vma->vm_file)
2267 		fput(vma->vm_file);
2268 	vma->vm_file = file;
2269 	vma->vm_ops = &shmem_vm_ops;
2270 	return 0;
2271 }
2272