1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2005 Hugh Dickins. 10 * Copyright (C) 2002-2005 VERITAS Software Corporation. 11 * Copyright (C) 2004 Andi Kleen, SuSE Labs 12 * 13 * Extended attribute support for tmpfs: 14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 16 * 17 * This file is released under the GPL. 18 */ 19 20 /* 21 * This virtual memory filesystem is heavily based on the ramfs. It 22 * extends ramfs by the ability to use swap and honor resource limits 23 * which makes it a completely usable filesystem. 24 */ 25 26 #include <linux/config.h> 27 #include <linux/module.h> 28 #include <linux/init.h> 29 #include <linux/devfs_fs_kernel.h> 30 #include <linux/fs.h> 31 #include <linux/mm.h> 32 #include <linux/mman.h> 33 #include <linux/file.h> 34 #include <linux/swap.h> 35 #include <linux/pagemap.h> 36 #include <linux/string.h> 37 #include <linux/slab.h> 38 #include <linux/backing-dev.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/mount.h> 41 #include <linux/writeback.h> 42 #include <linux/vfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/security.h> 45 #include <linux/swapops.h> 46 #include <linux/mempolicy.h> 47 #include <linux/namei.h> 48 #include <asm/uaccess.h> 49 #include <asm/div64.h> 50 #include <asm/pgtable.h> 51 52 /* This magic number is used in glibc for posix shared memory */ 53 #define TMPFS_MAGIC 0x01021994 54 55 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) 56 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) 57 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 58 59 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) 60 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT) 61 62 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 63 64 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ 65 #define SHMEM_PAGEIN VM_READ 66 #define SHMEM_TRUNCATE VM_WRITE 67 68 /* Definition to limit shmem_truncate's steps between cond_rescheds */ 69 #define LATENCY_LIMIT 64 70 71 /* Pretend that each entry is of this size in directory's i_size */ 72 #define BOGO_DIRENT_SIZE 20 73 74 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ 75 enum sgp_type { 76 SGP_QUICK, /* don't try more than file page cache lookup */ 77 SGP_READ, /* don't exceed i_size, don't allocate page */ 78 SGP_CACHE, /* don't exceed i_size, may allocate page */ 79 SGP_WRITE, /* may exceed i_size, may allocate page */ 80 }; 81 82 static int shmem_getpage(struct inode *inode, unsigned long idx, 83 struct page **pagep, enum sgp_type sgp, int *type); 84 85 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) 86 { 87 /* 88 * The above definition of ENTRIES_PER_PAGE, and the use of 89 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: 90 * might be reconsidered if it ever diverges from PAGE_SIZE. 91 */ 92 return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT); 93 } 94 95 static inline void shmem_dir_free(struct page *page) 96 { 97 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); 98 } 99 100 static struct page **shmem_dir_map(struct page *page) 101 { 102 return (struct page **)kmap_atomic(page, KM_USER0); 103 } 104 105 static inline void shmem_dir_unmap(struct page **dir) 106 { 107 kunmap_atomic(dir, KM_USER0); 108 } 109 110 static swp_entry_t *shmem_swp_map(struct page *page) 111 { 112 return (swp_entry_t *)kmap_atomic(page, KM_USER1); 113 } 114 115 static inline void shmem_swp_balance_unmap(void) 116 { 117 /* 118 * When passing a pointer to an i_direct entry, to code which 119 * also handles indirect entries and so will shmem_swp_unmap, 120 * we must arrange for the preempt count to remain in balance. 121 * What kmap_atomic of a lowmem page does depends on config 122 * and architecture, so pretend to kmap_atomic some lowmem page. 123 */ 124 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); 125 } 126 127 static inline void shmem_swp_unmap(swp_entry_t *entry) 128 { 129 kunmap_atomic(entry, KM_USER1); 130 } 131 132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 133 { 134 return sb->s_fs_info; 135 } 136 137 /* 138 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 139 * for shared memory and for shared anonymous (/dev/zero) mappings 140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 141 * consistent with the pre-accounting of private mappings ... 142 */ 143 static inline int shmem_acct_size(unsigned long flags, loff_t size) 144 { 145 return (flags & VM_ACCOUNT)? 146 security_vm_enough_memory(VM_ACCT(size)): 0; 147 } 148 149 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 150 { 151 if (flags & VM_ACCOUNT) 152 vm_unacct_memory(VM_ACCT(size)); 153 } 154 155 /* 156 * ... whereas tmpfs objects are accounted incrementally as 157 * pages are allocated, in order to allow huge sparse files. 158 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 159 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 160 */ 161 static inline int shmem_acct_block(unsigned long flags) 162 { 163 return (flags & VM_ACCOUNT)? 164 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE)); 165 } 166 167 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 168 { 169 if (!(flags & VM_ACCOUNT)) 170 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 171 } 172 173 static struct super_operations shmem_ops; 174 static struct address_space_operations shmem_aops; 175 static struct file_operations shmem_file_operations; 176 static struct inode_operations shmem_inode_operations; 177 static struct inode_operations shmem_dir_inode_operations; 178 static struct vm_operations_struct shmem_vm_ops; 179 180 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 181 .ra_pages = 0, /* No readahead */ 182 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK, 183 .unplug_io_fn = default_unplug_io_fn, 184 }; 185 186 static LIST_HEAD(shmem_swaplist); 187 static DEFINE_SPINLOCK(shmem_swaplist_lock); 188 189 static void shmem_free_blocks(struct inode *inode, long pages) 190 { 191 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 192 if (sbinfo->max_blocks) { 193 spin_lock(&sbinfo->stat_lock); 194 sbinfo->free_blocks += pages; 195 inode->i_blocks -= pages*BLOCKS_PER_PAGE; 196 spin_unlock(&sbinfo->stat_lock); 197 } 198 } 199 200 /* 201 * shmem_recalc_inode - recalculate the size of an inode 202 * 203 * @inode: inode to recalc 204 * 205 * We have to calculate the free blocks since the mm can drop 206 * undirtied hole pages behind our back. 207 * 208 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 209 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 210 * 211 * It has to be called with the spinlock held. 212 */ 213 static void shmem_recalc_inode(struct inode *inode) 214 { 215 struct shmem_inode_info *info = SHMEM_I(inode); 216 long freed; 217 218 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 219 if (freed > 0) { 220 info->alloced -= freed; 221 shmem_unacct_blocks(info->flags, freed); 222 shmem_free_blocks(inode, freed); 223 } 224 } 225 226 /* 227 * shmem_swp_entry - find the swap vector position in the info structure 228 * 229 * @info: info structure for the inode 230 * @index: index of the page to find 231 * @page: optional page to add to the structure. Has to be preset to 232 * all zeros 233 * 234 * If there is no space allocated yet it will return NULL when 235 * page is NULL, else it will use the page for the needed block, 236 * setting it to NULL on return to indicate that it has been used. 237 * 238 * The swap vector is organized the following way: 239 * 240 * There are SHMEM_NR_DIRECT entries directly stored in the 241 * shmem_inode_info structure. So small files do not need an addional 242 * allocation. 243 * 244 * For pages with index > SHMEM_NR_DIRECT there is the pointer 245 * i_indirect which points to a page which holds in the first half 246 * doubly indirect blocks, in the second half triple indirect blocks: 247 * 248 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the 249 * following layout (for SHMEM_NR_DIRECT == 16): 250 * 251 * i_indirect -> dir --> 16-19 252 * | +-> 20-23 253 * | 254 * +-->dir2 --> 24-27 255 * | +-> 28-31 256 * | +-> 32-35 257 * | +-> 36-39 258 * | 259 * +-->dir3 --> 40-43 260 * +-> 44-47 261 * +-> 48-51 262 * +-> 52-55 263 */ 264 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) 265 { 266 unsigned long offset; 267 struct page **dir; 268 struct page *subdir; 269 270 if (index < SHMEM_NR_DIRECT) { 271 shmem_swp_balance_unmap(); 272 return info->i_direct+index; 273 } 274 if (!info->i_indirect) { 275 if (page) { 276 info->i_indirect = *page; 277 *page = NULL; 278 } 279 return NULL; /* need another page */ 280 } 281 282 index -= SHMEM_NR_DIRECT; 283 offset = index % ENTRIES_PER_PAGE; 284 index /= ENTRIES_PER_PAGE; 285 dir = shmem_dir_map(info->i_indirect); 286 287 if (index >= ENTRIES_PER_PAGE/2) { 288 index -= ENTRIES_PER_PAGE/2; 289 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; 290 index %= ENTRIES_PER_PAGE; 291 subdir = *dir; 292 if (!subdir) { 293 if (page) { 294 *dir = *page; 295 *page = NULL; 296 } 297 shmem_dir_unmap(dir); 298 return NULL; /* need another page */ 299 } 300 shmem_dir_unmap(dir); 301 dir = shmem_dir_map(subdir); 302 } 303 304 dir += index; 305 subdir = *dir; 306 if (!subdir) { 307 if (!page || !(subdir = *page)) { 308 shmem_dir_unmap(dir); 309 return NULL; /* need a page */ 310 } 311 *dir = subdir; 312 *page = NULL; 313 } 314 shmem_dir_unmap(dir); 315 return shmem_swp_map(subdir) + offset; 316 } 317 318 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) 319 { 320 long incdec = value? 1: -1; 321 322 entry->val = value; 323 info->swapped += incdec; 324 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { 325 struct page *page = kmap_atomic_to_page(entry); 326 set_page_private(page, page_private(page) + incdec); 327 } 328 } 329 330 /* 331 * shmem_swp_alloc - get the position of the swap entry for the page. 332 * If it does not exist allocate the entry. 333 * 334 * @info: info structure for the inode 335 * @index: index of the page to find 336 * @sgp: check and recheck i_size? skip allocation? 337 */ 338 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) 339 { 340 struct inode *inode = &info->vfs_inode; 341 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 342 struct page *page = NULL; 343 swp_entry_t *entry; 344 345 if (sgp != SGP_WRITE && 346 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 347 return ERR_PTR(-EINVAL); 348 349 while (!(entry = shmem_swp_entry(info, index, &page))) { 350 if (sgp == SGP_READ) 351 return shmem_swp_map(ZERO_PAGE(0)); 352 /* 353 * Test free_blocks against 1 not 0, since we have 1 data 354 * page (and perhaps indirect index pages) yet to allocate: 355 * a waste to allocate index if we cannot allocate data. 356 */ 357 if (sbinfo->max_blocks) { 358 spin_lock(&sbinfo->stat_lock); 359 if (sbinfo->free_blocks <= 1) { 360 spin_unlock(&sbinfo->stat_lock); 361 return ERR_PTR(-ENOSPC); 362 } 363 sbinfo->free_blocks--; 364 inode->i_blocks += BLOCKS_PER_PAGE; 365 spin_unlock(&sbinfo->stat_lock); 366 } 367 368 spin_unlock(&info->lock); 369 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO); 370 if (page) 371 set_page_private(page, 0); 372 spin_lock(&info->lock); 373 374 if (!page) { 375 shmem_free_blocks(inode, 1); 376 return ERR_PTR(-ENOMEM); 377 } 378 if (sgp != SGP_WRITE && 379 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 380 entry = ERR_PTR(-EINVAL); 381 break; 382 } 383 if (info->next_index <= index) 384 info->next_index = index + 1; 385 } 386 if (page) { 387 /* another task gave its page, or truncated the file */ 388 shmem_free_blocks(inode, 1); 389 shmem_dir_free(page); 390 } 391 if (info->next_index <= index && !IS_ERR(entry)) 392 info->next_index = index + 1; 393 return entry; 394 } 395 396 /* 397 * shmem_free_swp - free some swap entries in a directory 398 * 399 * @dir: pointer to the directory 400 * @edir: pointer after last entry of the directory 401 */ 402 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir) 403 { 404 swp_entry_t *ptr; 405 int freed = 0; 406 407 for (ptr = dir; ptr < edir; ptr++) { 408 if (ptr->val) { 409 free_swap_and_cache(*ptr); 410 *ptr = (swp_entry_t){0}; 411 freed++; 412 } 413 } 414 return freed; 415 } 416 417 static int shmem_map_and_free_swp(struct page *subdir, 418 int offset, int limit, struct page ***dir) 419 { 420 swp_entry_t *ptr; 421 int freed = 0; 422 423 ptr = shmem_swp_map(subdir); 424 for (; offset < limit; offset += LATENCY_LIMIT) { 425 int size = limit - offset; 426 if (size > LATENCY_LIMIT) 427 size = LATENCY_LIMIT; 428 freed += shmem_free_swp(ptr+offset, ptr+offset+size); 429 if (need_resched()) { 430 shmem_swp_unmap(ptr); 431 if (*dir) { 432 shmem_dir_unmap(*dir); 433 *dir = NULL; 434 } 435 cond_resched(); 436 ptr = shmem_swp_map(subdir); 437 } 438 } 439 shmem_swp_unmap(ptr); 440 return freed; 441 } 442 443 static void shmem_free_pages(struct list_head *next) 444 { 445 struct page *page; 446 int freed = 0; 447 448 do { 449 page = container_of(next, struct page, lru); 450 next = next->next; 451 shmem_dir_free(page); 452 freed++; 453 if (freed >= LATENCY_LIMIT) { 454 cond_resched(); 455 freed = 0; 456 } 457 } while (next); 458 } 459 460 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) 461 { 462 struct shmem_inode_info *info = SHMEM_I(inode); 463 unsigned long idx; 464 unsigned long size; 465 unsigned long limit; 466 unsigned long stage; 467 unsigned long diroff; 468 struct page **dir; 469 struct page *topdir; 470 struct page *middir; 471 struct page *subdir; 472 swp_entry_t *ptr; 473 LIST_HEAD(pages_to_free); 474 long nr_pages_to_free = 0; 475 long nr_swaps_freed = 0; 476 int offset; 477 int freed; 478 int punch_hole = 0; 479 480 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 481 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 482 if (idx >= info->next_index) 483 return; 484 485 spin_lock(&info->lock); 486 info->flags |= SHMEM_TRUNCATE; 487 if (likely(end == (loff_t) -1)) { 488 limit = info->next_index; 489 info->next_index = idx; 490 } else { 491 limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 492 if (limit > info->next_index) 493 limit = info->next_index; 494 punch_hole = 1; 495 } 496 497 topdir = info->i_indirect; 498 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { 499 info->i_indirect = NULL; 500 nr_pages_to_free++; 501 list_add(&topdir->lru, &pages_to_free); 502 } 503 spin_unlock(&info->lock); 504 505 if (info->swapped && idx < SHMEM_NR_DIRECT) { 506 ptr = info->i_direct; 507 size = limit; 508 if (size > SHMEM_NR_DIRECT) 509 size = SHMEM_NR_DIRECT; 510 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size); 511 } 512 if (!topdir) 513 goto done2; 514 515 BUG_ON(limit <= SHMEM_NR_DIRECT); 516 limit -= SHMEM_NR_DIRECT; 517 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; 518 offset = idx % ENTRIES_PER_PAGE; 519 idx -= offset; 520 521 dir = shmem_dir_map(topdir); 522 stage = ENTRIES_PER_PAGEPAGE/2; 523 if (idx < ENTRIES_PER_PAGEPAGE/2) { 524 middir = topdir; 525 diroff = idx/ENTRIES_PER_PAGE; 526 } else { 527 dir += ENTRIES_PER_PAGE/2; 528 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; 529 while (stage <= idx) 530 stage += ENTRIES_PER_PAGEPAGE; 531 middir = *dir; 532 if (*dir) { 533 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % 534 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; 535 if (!diroff && !offset) { 536 *dir = NULL; 537 nr_pages_to_free++; 538 list_add(&middir->lru, &pages_to_free); 539 } 540 shmem_dir_unmap(dir); 541 dir = shmem_dir_map(middir); 542 } else { 543 diroff = 0; 544 offset = 0; 545 idx = stage; 546 } 547 } 548 549 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { 550 if (unlikely(idx == stage)) { 551 shmem_dir_unmap(dir); 552 dir = shmem_dir_map(topdir) + 553 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 554 while (!*dir) { 555 dir++; 556 idx += ENTRIES_PER_PAGEPAGE; 557 if (idx >= limit) 558 goto done1; 559 } 560 stage = idx + ENTRIES_PER_PAGEPAGE; 561 middir = *dir; 562 *dir = NULL; 563 nr_pages_to_free++; 564 list_add(&middir->lru, &pages_to_free); 565 shmem_dir_unmap(dir); 566 cond_resched(); 567 dir = shmem_dir_map(middir); 568 diroff = 0; 569 } 570 subdir = dir[diroff]; 571 if (subdir && page_private(subdir)) { 572 size = limit - idx; 573 if (size > ENTRIES_PER_PAGE) 574 size = ENTRIES_PER_PAGE; 575 freed = shmem_map_and_free_swp(subdir, 576 offset, size, &dir); 577 if (!dir) 578 dir = shmem_dir_map(middir); 579 nr_swaps_freed += freed; 580 if (offset) 581 spin_lock(&info->lock); 582 set_page_private(subdir, page_private(subdir) - freed); 583 if (offset) 584 spin_unlock(&info->lock); 585 if (!punch_hole) 586 BUG_ON(page_private(subdir) > offset); 587 } 588 if (offset) 589 offset = 0; 590 else if (subdir && !page_private(subdir)) { 591 dir[diroff] = NULL; 592 nr_pages_to_free++; 593 list_add(&subdir->lru, &pages_to_free); 594 } 595 } 596 done1: 597 shmem_dir_unmap(dir); 598 done2: 599 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { 600 /* 601 * Call truncate_inode_pages again: racing shmem_unuse_inode 602 * may have swizzled a page in from swap since vmtruncate or 603 * generic_delete_inode did it, before we lowered next_index. 604 * Also, though shmem_getpage checks i_size before adding to 605 * cache, no recheck after: so fix the narrow window there too. 606 */ 607 truncate_inode_pages_range(inode->i_mapping, start, end); 608 } 609 610 spin_lock(&info->lock); 611 info->flags &= ~SHMEM_TRUNCATE; 612 info->swapped -= nr_swaps_freed; 613 if (nr_pages_to_free) 614 shmem_free_blocks(inode, nr_pages_to_free); 615 shmem_recalc_inode(inode); 616 spin_unlock(&info->lock); 617 618 /* 619 * Empty swap vector directory pages to be freed? 620 */ 621 if (!list_empty(&pages_to_free)) { 622 pages_to_free.prev->next = NULL; 623 shmem_free_pages(pages_to_free.next); 624 } 625 } 626 627 static void shmem_truncate(struct inode *inode) 628 { 629 shmem_truncate_range(inode, inode->i_size, (loff_t)-1); 630 } 631 632 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) 633 { 634 struct inode *inode = dentry->d_inode; 635 struct page *page = NULL; 636 int error; 637 638 if (attr->ia_valid & ATTR_SIZE) { 639 if (attr->ia_size < inode->i_size) { 640 /* 641 * If truncating down to a partial page, then 642 * if that page is already allocated, hold it 643 * in memory until the truncation is over, so 644 * truncate_partial_page cannnot miss it were 645 * it assigned to swap. 646 */ 647 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) { 648 (void) shmem_getpage(inode, 649 attr->ia_size>>PAGE_CACHE_SHIFT, 650 &page, SGP_READ, NULL); 651 } 652 /* 653 * Reset SHMEM_PAGEIN flag so that shmem_truncate can 654 * detect if any pages might have been added to cache 655 * after truncate_inode_pages. But we needn't bother 656 * if it's being fully truncated to zero-length: the 657 * nrpages check is efficient enough in that case. 658 */ 659 if (attr->ia_size) { 660 struct shmem_inode_info *info = SHMEM_I(inode); 661 spin_lock(&info->lock); 662 info->flags &= ~SHMEM_PAGEIN; 663 spin_unlock(&info->lock); 664 } 665 } 666 } 667 668 error = inode_change_ok(inode, attr); 669 if (!error) 670 error = inode_setattr(inode, attr); 671 if (page) 672 page_cache_release(page); 673 return error; 674 } 675 676 static void shmem_delete_inode(struct inode *inode) 677 { 678 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 679 struct shmem_inode_info *info = SHMEM_I(inode); 680 681 if (inode->i_op->truncate == shmem_truncate) { 682 truncate_inode_pages(inode->i_mapping, 0); 683 shmem_unacct_size(info->flags, inode->i_size); 684 inode->i_size = 0; 685 shmem_truncate(inode); 686 if (!list_empty(&info->swaplist)) { 687 spin_lock(&shmem_swaplist_lock); 688 list_del_init(&info->swaplist); 689 spin_unlock(&shmem_swaplist_lock); 690 } 691 } 692 BUG_ON(inode->i_blocks); 693 if (sbinfo->max_inodes) { 694 spin_lock(&sbinfo->stat_lock); 695 sbinfo->free_inodes++; 696 spin_unlock(&sbinfo->stat_lock); 697 } 698 clear_inode(inode); 699 } 700 701 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) 702 { 703 swp_entry_t *ptr; 704 705 for (ptr = dir; ptr < edir; ptr++) { 706 if (ptr->val == entry.val) 707 return ptr - dir; 708 } 709 return -1; 710 } 711 712 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) 713 { 714 struct inode *inode; 715 unsigned long idx; 716 unsigned long size; 717 unsigned long limit; 718 unsigned long stage; 719 struct page **dir; 720 struct page *subdir; 721 swp_entry_t *ptr; 722 int offset; 723 724 idx = 0; 725 ptr = info->i_direct; 726 spin_lock(&info->lock); 727 limit = info->next_index; 728 size = limit; 729 if (size > SHMEM_NR_DIRECT) 730 size = SHMEM_NR_DIRECT; 731 offset = shmem_find_swp(entry, ptr, ptr+size); 732 if (offset >= 0) { 733 shmem_swp_balance_unmap(); 734 goto found; 735 } 736 if (!info->i_indirect) 737 goto lost2; 738 739 dir = shmem_dir_map(info->i_indirect); 740 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; 741 742 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { 743 if (unlikely(idx == stage)) { 744 shmem_dir_unmap(dir-1); 745 dir = shmem_dir_map(info->i_indirect) + 746 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 747 while (!*dir) { 748 dir++; 749 idx += ENTRIES_PER_PAGEPAGE; 750 if (idx >= limit) 751 goto lost1; 752 } 753 stage = idx + ENTRIES_PER_PAGEPAGE; 754 subdir = *dir; 755 shmem_dir_unmap(dir); 756 dir = shmem_dir_map(subdir); 757 } 758 subdir = *dir; 759 if (subdir && page_private(subdir)) { 760 ptr = shmem_swp_map(subdir); 761 size = limit - idx; 762 if (size > ENTRIES_PER_PAGE) 763 size = ENTRIES_PER_PAGE; 764 offset = shmem_find_swp(entry, ptr, ptr+size); 765 if (offset >= 0) { 766 shmem_dir_unmap(dir); 767 goto found; 768 } 769 shmem_swp_unmap(ptr); 770 } 771 } 772 lost1: 773 shmem_dir_unmap(dir-1); 774 lost2: 775 spin_unlock(&info->lock); 776 return 0; 777 found: 778 idx += offset; 779 inode = &info->vfs_inode; 780 if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) { 781 info->flags |= SHMEM_PAGEIN; 782 shmem_swp_set(info, ptr + offset, 0); 783 } 784 shmem_swp_unmap(ptr); 785 spin_unlock(&info->lock); 786 /* 787 * Decrement swap count even when the entry is left behind: 788 * try_to_unuse will skip over mms, then reincrement count. 789 */ 790 swap_free(entry); 791 return 1; 792 } 793 794 /* 795 * shmem_unuse() search for an eventually swapped out shmem page. 796 */ 797 int shmem_unuse(swp_entry_t entry, struct page *page) 798 { 799 struct list_head *p, *next; 800 struct shmem_inode_info *info; 801 int found = 0; 802 803 spin_lock(&shmem_swaplist_lock); 804 list_for_each_safe(p, next, &shmem_swaplist) { 805 info = list_entry(p, struct shmem_inode_info, swaplist); 806 if (!info->swapped) 807 list_del_init(&info->swaplist); 808 else if (shmem_unuse_inode(info, entry, page)) { 809 /* move head to start search for next from here */ 810 list_move_tail(&shmem_swaplist, &info->swaplist); 811 found = 1; 812 break; 813 } 814 } 815 spin_unlock(&shmem_swaplist_lock); 816 return found; 817 } 818 819 /* 820 * Move the page from the page cache to the swap cache. 821 */ 822 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 823 { 824 struct shmem_inode_info *info; 825 swp_entry_t *entry, swap; 826 struct address_space *mapping; 827 unsigned long index; 828 struct inode *inode; 829 830 BUG_ON(!PageLocked(page)); 831 BUG_ON(page_mapped(page)); 832 833 mapping = page->mapping; 834 index = page->index; 835 inode = mapping->host; 836 info = SHMEM_I(inode); 837 if (info->flags & VM_LOCKED) 838 goto redirty; 839 swap = get_swap_page(); 840 if (!swap.val) 841 goto redirty; 842 843 spin_lock(&info->lock); 844 shmem_recalc_inode(inode); 845 if (index >= info->next_index) { 846 BUG_ON(!(info->flags & SHMEM_TRUNCATE)); 847 goto unlock; 848 } 849 entry = shmem_swp_entry(info, index, NULL); 850 BUG_ON(!entry); 851 BUG_ON(entry->val); 852 853 if (move_to_swap_cache(page, swap) == 0) { 854 shmem_swp_set(info, entry, swap.val); 855 shmem_swp_unmap(entry); 856 spin_unlock(&info->lock); 857 if (list_empty(&info->swaplist)) { 858 spin_lock(&shmem_swaplist_lock); 859 /* move instead of add in case we're racing */ 860 list_move_tail(&info->swaplist, &shmem_swaplist); 861 spin_unlock(&shmem_swaplist_lock); 862 } 863 unlock_page(page); 864 return 0; 865 } 866 867 shmem_swp_unmap(entry); 868 unlock: 869 spin_unlock(&info->lock); 870 swap_free(swap); 871 redirty: 872 set_page_dirty(page); 873 return AOP_WRITEPAGE_ACTIVATE; /* Return with the page locked */ 874 } 875 876 #ifdef CONFIG_NUMA 877 static struct page *shmem_swapin_async(struct shared_policy *p, 878 swp_entry_t entry, unsigned long idx) 879 { 880 struct page *page; 881 struct vm_area_struct pvma; 882 883 /* Create a pseudo vma that just contains the policy */ 884 memset(&pvma, 0, sizeof(struct vm_area_struct)); 885 pvma.vm_end = PAGE_SIZE; 886 pvma.vm_pgoff = idx; 887 pvma.vm_policy = mpol_shared_policy_lookup(p, idx); 888 page = read_swap_cache_async(entry, &pvma, 0); 889 mpol_free(pvma.vm_policy); 890 return page; 891 } 892 893 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry, 894 unsigned long idx) 895 { 896 struct shared_policy *p = &info->policy; 897 int i, num; 898 struct page *page; 899 unsigned long offset; 900 901 num = valid_swaphandles(entry, &offset); 902 for (i = 0; i < num; offset++, i++) { 903 page = shmem_swapin_async(p, 904 swp_entry(swp_type(entry), offset), idx); 905 if (!page) 906 break; 907 page_cache_release(page); 908 } 909 lru_add_drain(); /* Push any new pages onto the LRU now */ 910 return shmem_swapin_async(p, entry, idx); 911 } 912 913 static struct page * 914 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info, 915 unsigned long idx) 916 { 917 struct vm_area_struct pvma; 918 struct page *page; 919 920 memset(&pvma, 0, sizeof(struct vm_area_struct)); 921 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); 922 pvma.vm_pgoff = idx; 923 pvma.vm_end = PAGE_SIZE; 924 page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0); 925 mpol_free(pvma.vm_policy); 926 return page; 927 } 928 #else 929 static inline struct page * 930 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx) 931 { 932 swapin_readahead(entry, 0, NULL); 933 return read_swap_cache_async(entry, NULL, 0); 934 } 935 936 static inline struct page * 937 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx) 938 { 939 return alloc_page(gfp | __GFP_ZERO); 940 } 941 #endif 942 943 /* 944 * shmem_getpage - either get the page from swap or allocate a new one 945 * 946 * If we allocate a new one we do not mark it dirty. That's up to the 947 * vm. If we swap it in we mark it dirty since we also free the swap 948 * entry since a page cannot live in both the swap and page cache 949 */ 950 static int shmem_getpage(struct inode *inode, unsigned long idx, 951 struct page **pagep, enum sgp_type sgp, int *type) 952 { 953 struct address_space *mapping = inode->i_mapping; 954 struct shmem_inode_info *info = SHMEM_I(inode); 955 struct shmem_sb_info *sbinfo; 956 struct page *filepage = *pagep; 957 struct page *swappage; 958 swp_entry_t *entry; 959 swp_entry_t swap; 960 int error; 961 962 if (idx >= SHMEM_MAX_INDEX) 963 return -EFBIG; 964 /* 965 * Normally, filepage is NULL on entry, and either found 966 * uptodate immediately, or allocated and zeroed, or read 967 * in under swappage, which is then assigned to filepage. 968 * But shmem_prepare_write passes in a locked filepage, 969 * which may be found not uptodate by other callers too, 970 * and may need to be copied from the swappage read in. 971 */ 972 repeat: 973 if (!filepage) 974 filepage = find_lock_page(mapping, idx); 975 if (filepage && PageUptodate(filepage)) 976 goto done; 977 error = 0; 978 if (sgp == SGP_QUICK) 979 goto failed; 980 981 spin_lock(&info->lock); 982 shmem_recalc_inode(inode); 983 entry = shmem_swp_alloc(info, idx, sgp); 984 if (IS_ERR(entry)) { 985 spin_unlock(&info->lock); 986 error = PTR_ERR(entry); 987 goto failed; 988 } 989 swap = *entry; 990 991 if (swap.val) { 992 /* Look it up and read it in.. */ 993 swappage = lookup_swap_cache(swap); 994 if (!swappage) { 995 shmem_swp_unmap(entry); 996 spin_unlock(&info->lock); 997 /* here we actually do the io */ 998 if (type && *type == VM_FAULT_MINOR) { 999 inc_page_state(pgmajfault); 1000 *type = VM_FAULT_MAJOR; 1001 } 1002 swappage = shmem_swapin(info, swap, idx); 1003 if (!swappage) { 1004 spin_lock(&info->lock); 1005 entry = shmem_swp_alloc(info, idx, sgp); 1006 if (IS_ERR(entry)) 1007 error = PTR_ERR(entry); 1008 else { 1009 if (entry->val == swap.val) 1010 error = -ENOMEM; 1011 shmem_swp_unmap(entry); 1012 } 1013 spin_unlock(&info->lock); 1014 if (error) 1015 goto failed; 1016 goto repeat; 1017 } 1018 wait_on_page_locked(swappage); 1019 page_cache_release(swappage); 1020 goto repeat; 1021 } 1022 1023 /* We have to do this with page locked to prevent races */ 1024 if (TestSetPageLocked(swappage)) { 1025 shmem_swp_unmap(entry); 1026 spin_unlock(&info->lock); 1027 wait_on_page_locked(swappage); 1028 page_cache_release(swappage); 1029 goto repeat; 1030 } 1031 if (PageWriteback(swappage)) { 1032 shmem_swp_unmap(entry); 1033 spin_unlock(&info->lock); 1034 wait_on_page_writeback(swappage); 1035 unlock_page(swappage); 1036 page_cache_release(swappage); 1037 goto repeat; 1038 } 1039 if (!PageUptodate(swappage)) { 1040 shmem_swp_unmap(entry); 1041 spin_unlock(&info->lock); 1042 unlock_page(swappage); 1043 page_cache_release(swappage); 1044 error = -EIO; 1045 goto failed; 1046 } 1047 1048 if (filepage) { 1049 shmem_swp_set(info, entry, 0); 1050 shmem_swp_unmap(entry); 1051 delete_from_swap_cache(swappage); 1052 spin_unlock(&info->lock); 1053 copy_highpage(filepage, swappage); 1054 unlock_page(swappage); 1055 page_cache_release(swappage); 1056 flush_dcache_page(filepage); 1057 SetPageUptodate(filepage); 1058 set_page_dirty(filepage); 1059 swap_free(swap); 1060 } else if (!(error = move_from_swap_cache( 1061 swappage, idx, mapping))) { 1062 info->flags |= SHMEM_PAGEIN; 1063 shmem_swp_set(info, entry, 0); 1064 shmem_swp_unmap(entry); 1065 spin_unlock(&info->lock); 1066 filepage = swappage; 1067 swap_free(swap); 1068 } else { 1069 shmem_swp_unmap(entry); 1070 spin_unlock(&info->lock); 1071 unlock_page(swappage); 1072 page_cache_release(swappage); 1073 if (error == -ENOMEM) { 1074 /* let kswapd refresh zone for GFP_ATOMICs */ 1075 blk_congestion_wait(WRITE, HZ/50); 1076 } 1077 goto repeat; 1078 } 1079 } else if (sgp == SGP_READ && !filepage) { 1080 shmem_swp_unmap(entry); 1081 filepage = find_get_page(mapping, idx); 1082 if (filepage && 1083 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) { 1084 spin_unlock(&info->lock); 1085 wait_on_page_locked(filepage); 1086 page_cache_release(filepage); 1087 filepage = NULL; 1088 goto repeat; 1089 } 1090 spin_unlock(&info->lock); 1091 } else { 1092 shmem_swp_unmap(entry); 1093 sbinfo = SHMEM_SB(inode->i_sb); 1094 if (sbinfo->max_blocks) { 1095 spin_lock(&sbinfo->stat_lock); 1096 if (sbinfo->free_blocks == 0 || 1097 shmem_acct_block(info->flags)) { 1098 spin_unlock(&sbinfo->stat_lock); 1099 spin_unlock(&info->lock); 1100 error = -ENOSPC; 1101 goto failed; 1102 } 1103 sbinfo->free_blocks--; 1104 inode->i_blocks += BLOCKS_PER_PAGE; 1105 spin_unlock(&sbinfo->stat_lock); 1106 } else if (shmem_acct_block(info->flags)) { 1107 spin_unlock(&info->lock); 1108 error = -ENOSPC; 1109 goto failed; 1110 } 1111 1112 if (!filepage) { 1113 spin_unlock(&info->lock); 1114 filepage = shmem_alloc_page(mapping_gfp_mask(mapping), 1115 info, 1116 idx); 1117 if (!filepage) { 1118 shmem_unacct_blocks(info->flags, 1); 1119 shmem_free_blocks(inode, 1); 1120 error = -ENOMEM; 1121 goto failed; 1122 } 1123 1124 spin_lock(&info->lock); 1125 entry = shmem_swp_alloc(info, idx, sgp); 1126 if (IS_ERR(entry)) 1127 error = PTR_ERR(entry); 1128 else { 1129 swap = *entry; 1130 shmem_swp_unmap(entry); 1131 } 1132 if (error || swap.val || 0 != add_to_page_cache_lru( 1133 filepage, mapping, idx, GFP_ATOMIC)) { 1134 spin_unlock(&info->lock); 1135 page_cache_release(filepage); 1136 shmem_unacct_blocks(info->flags, 1); 1137 shmem_free_blocks(inode, 1); 1138 filepage = NULL; 1139 if (error) 1140 goto failed; 1141 goto repeat; 1142 } 1143 info->flags |= SHMEM_PAGEIN; 1144 } 1145 1146 info->alloced++; 1147 spin_unlock(&info->lock); 1148 flush_dcache_page(filepage); 1149 SetPageUptodate(filepage); 1150 } 1151 done: 1152 if (*pagep != filepage) { 1153 unlock_page(filepage); 1154 *pagep = filepage; 1155 } 1156 return 0; 1157 1158 failed: 1159 if (*pagep != filepage) { 1160 unlock_page(filepage); 1161 page_cache_release(filepage); 1162 } 1163 return error; 1164 } 1165 1166 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type) 1167 { 1168 struct inode *inode = vma->vm_file->f_dentry->d_inode; 1169 struct page *page = NULL; 1170 unsigned long idx; 1171 int error; 1172 1173 idx = (address - vma->vm_start) >> PAGE_SHIFT; 1174 idx += vma->vm_pgoff; 1175 idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT; 1176 if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 1177 return NOPAGE_SIGBUS; 1178 1179 error = shmem_getpage(inode, idx, &page, SGP_CACHE, type); 1180 if (error) 1181 return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS; 1182 1183 mark_page_accessed(page); 1184 return page; 1185 } 1186 1187 static int shmem_populate(struct vm_area_struct *vma, 1188 unsigned long addr, unsigned long len, 1189 pgprot_t prot, unsigned long pgoff, int nonblock) 1190 { 1191 struct inode *inode = vma->vm_file->f_dentry->d_inode; 1192 struct mm_struct *mm = vma->vm_mm; 1193 enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE; 1194 unsigned long size; 1195 1196 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1197 if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size) 1198 return -EINVAL; 1199 1200 while ((long) len > 0) { 1201 struct page *page = NULL; 1202 int err; 1203 /* 1204 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE 1205 */ 1206 err = shmem_getpage(inode, pgoff, &page, sgp, NULL); 1207 if (err) 1208 return err; 1209 /* Page may still be null, but only if nonblock was set. */ 1210 if (page) { 1211 mark_page_accessed(page); 1212 err = install_page(mm, vma, addr, page, prot); 1213 if (err) { 1214 page_cache_release(page); 1215 return err; 1216 } 1217 } else if (vma->vm_flags & VM_NONLINEAR) { 1218 /* No page was found just because we can't read it in 1219 * now (being here implies nonblock != 0), but the page 1220 * may exist, so set the PTE to fault it in later. */ 1221 err = install_file_pte(mm, vma, addr, pgoff, prot); 1222 if (err) 1223 return err; 1224 } 1225 1226 len -= PAGE_SIZE; 1227 addr += PAGE_SIZE; 1228 pgoff++; 1229 } 1230 return 0; 1231 } 1232 1233 #ifdef CONFIG_NUMA 1234 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) 1235 { 1236 struct inode *i = vma->vm_file->f_dentry->d_inode; 1237 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); 1238 } 1239 1240 struct mempolicy * 1241 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr) 1242 { 1243 struct inode *i = vma->vm_file->f_dentry->d_inode; 1244 unsigned long idx; 1245 1246 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1247 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); 1248 } 1249 #endif 1250 1251 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1252 { 1253 struct inode *inode = file->f_dentry->d_inode; 1254 struct shmem_inode_info *info = SHMEM_I(inode); 1255 int retval = -ENOMEM; 1256 1257 spin_lock(&info->lock); 1258 if (lock && !(info->flags & VM_LOCKED)) { 1259 if (!user_shm_lock(inode->i_size, user)) 1260 goto out_nomem; 1261 info->flags |= VM_LOCKED; 1262 } 1263 if (!lock && (info->flags & VM_LOCKED) && user) { 1264 user_shm_unlock(inode->i_size, user); 1265 info->flags &= ~VM_LOCKED; 1266 } 1267 retval = 0; 1268 out_nomem: 1269 spin_unlock(&info->lock); 1270 return retval; 1271 } 1272 1273 int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1274 { 1275 file_accessed(file); 1276 vma->vm_ops = &shmem_vm_ops; 1277 return 0; 1278 } 1279 1280 static struct inode * 1281 shmem_get_inode(struct super_block *sb, int mode, dev_t dev) 1282 { 1283 struct inode *inode; 1284 struct shmem_inode_info *info; 1285 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1286 1287 if (sbinfo->max_inodes) { 1288 spin_lock(&sbinfo->stat_lock); 1289 if (!sbinfo->free_inodes) { 1290 spin_unlock(&sbinfo->stat_lock); 1291 return NULL; 1292 } 1293 sbinfo->free_inodes--; 1294 spin_unlock(&sbinfo->stat_lock); 1295 } 1296 1297 inode = new_inode(sb); 1298 if (inode) { 1299 inode->i_mode = mode; 1300 inode->i_uid = current->fsuid; 1301 inode->i_gid = current->fsgid; 1302 inode->i_blksize = PAGE_CACHE_SIZE; 1303 inode->i_blocks = 0; 1304 inode->i_mapping->a_ops = &shmem_aops; 1305 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1306 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1307 info = SHMEM_I(inode); 1308 memset(info, 0, (char *)inode - (char *)info); 1309 spin_lock_init(&info->lock); 1310 INIT_LIST_HEAD(&info->swaplist); 1311 1312 switch (mode & S_IFMT) { 1313 default: 1314 init_special_inode(inode, mode, dev); 1315 break; 1316 case S_IFREG: 1317 inode->i_op = &shmem_inode_operations; 1318 inode->i_fop = &shmem_file_operations; 1319 mpol_shared_policy_init(&info->policy); 1320 break; 1321 case S_IFDIR: 1322 inode->i_nlink++; 1323 /* Some things misbehave if size == 0 on a directory */ 1324 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1325 inode->i_op = &shmem_dir_inode_operations; 1326 inode->i_fop = &simple_dir_operations; 1327 break; 1328 case S_IFLNK: 1329 /* 1330 * Must not load anything in the rbtree, 1331 * mpol_free_shared_policy will not be called. 1332 */ 1333 mpol_shared_policy_init(&info->policy); 1334 break; 1335 } 1336 } else if (sbinfo->max_inodes) { 1337 spin_lock(&sbinfo->stat_lock); 1338 sbinfo->free_inodes++; 1339 spin_unlock(&sbinfo->stat_lock); 1340 } 1341 return inode; 1342 } 1343 1344 #ifdef CONFIG_TMPFS 1345 static struct inode_operations shmem_symlink_inode_operations; 1346 static struct inode_operations shmem_symlink_inline_operations; 1347 1348 /* 1349 * Normally tmpfs makes no use of shmem_prepare_write, but it 1350 * lets a tmpfs file be used read-write below the loop driver. 1351 */ 1352 static int 1353 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to) 1354 { 1355 struct inode *inode = page->mapping->host; 1356 return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL); 1357 } 1358 1359 static ssize_t 1360 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) 1361 { 1362 struct inode *inode = file->f_dentry->d_inode; 1363 loff_t pos; 1364 unsigned long written; 1365 ssize_t err; 1366 1367 if ((ssize_t) count < 0) 1368 return -EINVAL; 1369 1370 if (!access_ok(VERIFY_READ, buf, count)) 1371 return -EFAULT; 1372 1373 mutex_lock(&inode->i_mutex); 1374 1375 pos = *ppos; 1376 written = 0; 1377 1378 err = generic_write_checks(file, &pos, &count, 0); 1379 if (err || !count) 1380 goto out; 1381 1382 err = remove_suid(file->f_dentry); 1383 if (err) 1384 goto out; 1385 1386 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1387 1388 do { 1389 struct page *page = NULL; 1390 unsigned long bytes, index, offset; 1391 char *kaddr; 1392 int left; 1393 1394 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 1395 index = pos >> PAGE_CACHE_SHIFT; 1396 bytes = PAGE_CACHE_SIZE - offset; 1397 if (bytes > count) 1398 bytes = count; 1399 1400 /* 1401 * We don't hold page lock across copy from user - 1402 * what would it guard against? - so no deadlock here. 1403 * But it still may be a good idea to prefault below. 1404 */ 1405 1406 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL); 1407 if (err) 1408 break; 1409 1410 left = bytes; 1411 if (PageHighMem(page)) { 1412 volatile unsigned char dummy; 1413 __get_user(dummy, buf); 1414 __get_user(dummy, buf + bytes - 1); 1415 1416 kaddr = kmap_atomic(page, KM_USER0); 1417 left = __copy_from_user_inatomic(kaddr + offset, 1418 buf, bytes); 1419 kunmap_atomic(kaddr, KM_USER0); 1420 } 1421 if (left) { 1422 kaddr = kmap(page); 1423 left = __copy_from_user(kaddr + offset, buf, bytes); 1424 kunmap(page); 1425 } 1426 1427 written += bytes; 1428 count -= bytes; 1429 pos += bytes; 1430 buf += bytes; 1431 if (pos > inode->i_size) 1432 i_size_write(inode, pos); 1433 1434 flush_dcache_page(page); 1435 set_page_dirty(page); 1436 mark_page_accessed(page); 1437 page_cache_release(page); 1438 1439 if (left) { 1440 pos -= left; 1441 written -= left; 1442 err = -EFAULT; 1443 break; 1444 } 1445 1446 /* 1447 * Our dirty pages are not counted in nr_dirty, 1448 * and we do not attempt to balance dirty pages. 1449 */ 1450 1451 cond_resched(); 1452 } while (count); 1453 1454 *ppos = pos; 1455 if (written) 1456 err = written; 1457 out: 1458 mutex_unlock(&inode->i_mutex); 1459 return err; 1460 } 1461 1462 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1463 { 1464 struct inode *inode = filp->f_dentry->d_inode; 1465 struct address_space *mapping = inode->i_mapping; 1466 unsigned long index, offset; 1467 1468 index = *ppos >> PAGE_CACHE_SHIFT; 1469 offset = *ppos & ~PAGE_CACHE_MASK; 1470 1471 for (;;) { 1472 struct page *page = NULL; 1473 unsigned long end_index, nr, ret; 1474 loff_t i_size = i_size_read(inode); 1475 1476 end_index = i_size >> PAGE_CACHE_SHIFT; 1477 if (index > end_index) 1478 break; 1479 if (index == end_index) { 1480 nr = i_size & ~PAGE_CACHE_MASK; 1481 if (nr <= offset) 1482 break; 1483 } 1484 1485 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL); 1486 if (desc->error) { 1487 if (desc->error == -EINVAL) 1488 desc->error = 0; 1489 break; 1490 } 1491 1492 /* 1493 * We must evaluate after, since reads (unlike writes) 1494 * are called without i_mutex protection against truncate 1495 */ 1496 nr = PAGE_CACHE_SIZE; 1497 i_size = i_size_read(inode); 1498 end_index = i_size >> PAGE_CACHE_SHIFT; 1499 if (index == end_index) { 1500 nr = i_size & ~PAGE_CACHE_MASK; 1501 if (nr <= offset) { 1502 if (page) 1503 page_cache_release(page); 1504 break; 1505 } 1506 } 1507 nr -= offset; 1508 1509 if (page) { 1510 /* 1511 * If users can be writing to this page using arbitrary 1512 * virtual addresses, take care about potential aliasing 1513 * before reading the page on the kernel side. 1514 */ 1515 if (mapping_writably_mapped(mapping)) 1516 flush_dcache_page(page); 1517 /* 1518 * Mark the page accessed if we read the beginning. 1519 */ 1520 if (!offset) 1521 mark_page_accessed(page); 1522 } else { 1523 page = ZERO_PAGE(0); 1524 page_cache_get(page); 1525 } 1526 1527 /* 1528 * Ok, we have the page, and it's up-to-date, so 1529 * now we can copy it to user space... 1530 * 1531 * The actor routine returns how many bytes were actually used.. 1532 * NOTE! This may not be the same as how much of a user buffer 1533 * we filled up (we may be padding etc), so we can only update 1534 * "pos" here (the actor routine has to update the user buffer 1535 * pointers and the remaining count). 1536 */ 1537 ret = actor(desc, page, offset, nr); 1538 offset += ret; 1539 index += offset >> PAGE_CACHE_SHIFT; 1540 offset &= ~PAGE_CACHE_MASK; 1541 1542 page_cache_release(page); 1543 if (ret != nr || !desc->count) 1544 break; 1545 1546 cond_resched(); 1547 } 1548 1549 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1550 file_accessed(filp); 1551 } 1552 1553 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 1554 { 1555 read_descriptor_t desc; 1556 1557 if ((ssize_t) count < 0) 1558 return -EINVAL; 1559 if (!access_ok(VERIFY_WRITE, buf, count)) 1560 return -EFAULT; 1561 if (!count) 1562 return 0; 1563 1564 desc.written = 0; 1565 desc.count = count; 1566 desc.arg.buf = buf; 1567 desc.error = 0; 1568 1569 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1570 if (desc.written) 1571 return desc.written; 1572 return desc.error; 1573 } 1574 1575 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos, 1576 size_t count, read_actor_t actor, void *target) 1577 { 1578 read_descriptor_t desc; 1579 1580 if (!count) 1581 return 0; 1582 1583 desc.written = 0; 1584 desc.count = count; 1585 desc.arg.data = target; 1586 desc.error = 0; 1587 1588 do_shmem_file_read(in_file, ppos, &desc, actor); 1589 if (desc.written) 1590 return desc.written; 1591 return desc.error; 1592 } 1593 1594 static int shmem_statfs(struct super_block *sb, struct kstatfs *buf) 1595 { 1596 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1597 1598 buf->f_type = TMPFS_MAGIC; 1599 buf->f_bsize = PAGE_CACHE_SIZE; 1600 buf->f_namelen = NAME_MAX; 1601 spin_lock(&sbinfo->stat_lock); 1602 if (sbinfo->max_blocks) { 1603 buf->f_blocks = sbinfo->max_blocks; 1604 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks; 1605 } 1606 if (sbinfo->max_inodes) { 1607 buf->f_files = sbinfo->max_inodes; 1608 buf->f_ffree = sbinfo->free_inodes; 1609 } 1610 /* else leave those fields 0 like simple_statfs */ 1611 spin_unlock(&sbinfo->stat_lock); 1612 return 0; 1613 } 1614 1615 /* 1616 * File creation. Allocate an inode, and we're done.. 1617 */ 1618 static int 1619 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1620 { 1621 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev); 1622 int error = -ENOSPC; 1623 1624 if (inode) { 1625 error = security_inode_init_security(inode, dir, NULL, NULL, 1626 NULL); 1627 if (error) { 1628 if (error != -EOPNOTSUPP) { 1629 iput(inode); 1630 return error; 1631 } 1632 error = 0; 1633 } 1634 if (dir->i_mode & S_ISGID) { 1635 inode->i_gid = dir->i_gid; 1636 if (S_ISDIR(mode)) 1637 inode->i_mode |= S_ISGID; 1638 } 1639 dir->i_size += BOGO_DIRENT_SIZE; 1640 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1641 d_instantiate(dentry, inode); 1642 dget(dentry); /* Extra count - pin the dentry in core */ 1643 } 1644 return error; 1645 } 1646 1647 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1648 { 1649 int error; 1650 1651 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1652 return error; 1653 dir->i_nlink++; 1654 return 0; 1655 } 1656 1657 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, 1658 struct nameidata *nd) 1659 { 1660 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1661 } 1662 1663 /* 1664 * Link a file.. 1665 */ 1666 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1667 { 1668 struct inode *inode = old_dentry->d_inode; 1669 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1670 1671 /* 1672 * No ordinary (disk based) filesystem counts links as inodes; 1673 * but each new link needs a new dentry, pinning lowmem, and 1674 * tmpfs dentries cannot be pruned until they are unlinked. 1675 */ 1676 if (sbinfo->max_inodes) { 1677 spin_lock(&sbinfo->stat_lock); 1678 if (!sbinfo->free_inodes) { 1679 spin_unlock(&sbinfo->stat_lock); 1680 return -ENOSPC; 1681 } 1682 sbinfo->free_inodes--; 1683 spin_unlock(&sbinfo->stat_lock); 1684 } 1685 1686 dir->i_size += BOGO_DIRENT_SIZE; 1687 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1688 inode->i_nlink++; 1689 atomic_inc(&inode->i_count); /* New dentry reference */ 1690 dget(dentry); /* Extra pinning count for the created dentry */ 1691 d_instantiate(dentry, inode); 1692 return 0; 1693 } 1694 1695 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1696 { 1697 struct inode *inode = dentry->d_inode; 1698 1699 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) { 1700 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1701 if (sbinfo->max_inodes) { 1702 spin_lock(&sbinfo->stat_lock); 1703 sbinfo->free_inodes++; 1704 spin_unlock(&sbinfo->stat_lock); 1705 } 1706 } 1707 1708 dir->i_size -= BOGO_DIRENT_SIZE; 1709 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1710 inode->i_nlink--; 1711 dput(dentry); /* Undo the count from "create" - this does all the work */ 1712 return 0; 1713 } 1714 1715 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1716 { 1717 if (!simple_empty(dentry)) 1718 return -ENOTEMPTY; 1719 1720 dir->i_nlink--; 1721 return shmem_unlink(dir, dentry); 1722 } 1723 1724 /* 1725 * The VFS layer already does all the dentry stuff for rename, 1726 * we just have to decrement the usage count for the target if 1727 * it exists so that the VFS layer correctly free's it when it 1728 * gets overwritten. 1729 */ 1730 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1731 { 1732 struct inode *inode = old_dentry->d_inode; 1733 int they_are_dirs = S_ISDIR(inode->i_mode); 1734 1735 if (!simple_empty(new_dentry)) 1736 return -ENOTEMPTY; 1737 1738 if (new_dentry->d_inode) { 1739 (void) shmem_unlink(new_dir, new_dentry); 1740 if (they_are_dirs) 1741 old_dir->i_nlink--; 1742 } else if (they_are_dirs) { 1743 old_dir->i_nlink--; 1744 new_dir->i_nlink++; 1745 } 1746 1747 old_dir->i_size -= BOGO_DIRENT_SIZE; 1748 new_dir->i_size += BOGO_DIRENT_SIZE; 1749 old_dir->i_ctime = old_dir->i_mtime = 1750 new_dir->i_ctime = new_dir->i_mtime = 1751 inode->i_ctime = CURRENT_TIME; 1752 return 0; 1753 } 1754 1755 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1756 { 1757 int error; 1758 int len; 1759 struct inode *inode; 1760 struct page *page = NULL; 1761 char *kaddr; 1762 struct shmem_inode_info *info; 1763 1764 len = strlen(symname) + 1; 1765 if (len > PAGE_CACHE_SIZE) 1766 return -ENAMETOOLONG; 1767 1768 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0); 1769 if (!inode) 1770 return -ENOSPC; 1771 1772 error = security_inode_init_security(inode, dir, NULL, NULL, 1773 NULL); 1774 if (error) { 1775 if (error != -EOPNOTSUPP) { 1776 iput(inode); 1777 return error; 1778 } 1779 error = 0; 1780 } 1781 1782 info = SHMEM_I(inode); 1783 inode->i_size = len-1; 1784 if (len <= (char *)inode - (char *)info) { 1785 /* do it inline */ 1786 memcpy(info, symname, len); 1787 inode->i_op = &shmem_symlink_inline_operations; 1788 } else { 1789 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1790 if (error) { 1791 iput(inode); 1792 return error; 1793 } 1794 inode->i_op = &shmem_symlink_inode_operations; 1795 kaddr = kmap_atomic(page, KM_USER0); 1796 memcpy(kaddr, symname, len); 1797 kunmap_atomic(kaddr, KM_USER0); 1798 set_page_dirty(page); 1799 page_cache_release(page); 1800 } 1801 if (dir->i_mode & S_ISGID) 1802 inode->i_gid = dir->i_gid; 1803 dir->i_size += BOGO_DIRENT_SIZE; 1804 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1805 d_instantiate(dentry, inode); 1806 dget(dentry); 1807 return 0; 1808 } 1809 1810 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) 1811 { 1812 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); 1813 return NULL; 1814 } 1815 1816 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 1817 { 1818 struct page *page = NULL; 1819 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 1820 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); 1821 return page; 1822 } 1823 1824 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 1825 { 1826 if (!IS_ERR(nd_get_link(nd))) { 1827 struct page *page = cookie; 1828 kunmap(page); 1829 mark_page_accessed(page); 1830 page_cache_release(page); 1831 } 1832 } 1833 1834 static struct inode_operations shmem_symlink_inline_operations = { 1835 .readlink = generic_readlink, 1836 .follow_link = shmem_follow_link_inline, 1837 }; 1838 1839 static struct inode_operations shmem_symlink_inode_operations = { 1840 .truncate = shmem_truncate, 1841 .readlink = generic_readlink, 1842 .follow_link = shmem_follow_link, 1843 .put_link = shmem_put_link, 1844 }; 1845 1846 static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, unsigned long *blocks, unsigned long *inodes) 1847 { 1848 char *this_char, *value, *rest; 1849 1850 while ((this_char = strsep(&options, ",")) != NULL) { 1851 if (!*this_char) 1852 continue; 1853 if ((value = strchr(this_char,'=')) != NULL) { 1854 *value++ = 0; 1855 } else { 1856 printk(KERN_ERR 1857 "tmpfs: No value for mount option '%s'\n", 1858 this_char); 1859 return 1; 1860 } 1861 1862 if (!strcmp(this_char,"size")) { 1863 unsigned long long size; 1864 size = memparse(value,&rest); 1865 if (*rest == '%') { 1866 size <<= PAGE_SHIFT; 1867 size *= totalram_pages; 1868 do_div(size, 100); 1869 rest++; 1870 } 1871 if (*rest) 1872 goto bad_val; 1873 *blocks = size >> PAGE_CACHE_SHIFT; 1874 } else if (!strcmp(this_char,"nr_blocks")) { 1875 *blocks = memparse(value,&rest); 1876 if (*rest) 1877 goto bad_val; 1878 } else if (!strcmp(this_char,"nr_inodes")) { 1879 *inodes = memparse(value,&rest); 1880 if (*rest) 1881 goto bad_val; 1882 } else if (!strcmp(this_char,"mode")) { 1883 if (!mode) 1884 continue; 1885 *mode = simple_strtoul(value,&rest,8); 1886 if (*rest) 1887 goto bad_val; 1888 } else if (!strcmp(this_char,"uid")) { 1889 if (!uid) 1890 continue; 1891 *uid = simple_strtoul(value,&rest,0); 1892 if (*rest) 1893 goto bad_val; 1894 } else if (!strcmp(this_char,"gid")) { 1895 if (!gid) 1896 continue; 1897 *gid = simple_strtoul(value,&rest,0); 1898 if (*rest) 1899 goto bad_val; 1900 } else { 1901 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 1902 this_char); 1903 return 1; 1904 } 1905 } 1906 return 0; 1907 1908 bad_val: 1909 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 1910 value, this_char); 1911 return 1; 1912 1913 } 1914 1915 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 1916 { 1917 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1918 unsigned long max_blocks = sbinfo->max_blocks; 1919 unsigned long max_inodes = sbinfo->max_inodes; 1920 unsigned long blocks; 1921 unsigned long inodes; 1922 int error = -EINVAL; 1923 1924 if (shmem_parse_options(data, NULL, NULL, NULL, 1925 &max_blocks, &max_inodes)) 1926 return error; 1927 1928 spin_lock(&sbinfo->stat_lock); 1929 blocks = sbinfo->max_blocks - sbinfo->free_blocks; 1930 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 1931 if (max_blocks < blocks) 1932 goto out; 1933 if (max_inodes < inodes) 1934 goto out; 1935 /* 1936 * Those tests also disallow limited->unlimited while any are in 1937 * use, so i_blocks will always be zero when max_blocks is zero; 1938 * but we must separately disallow unlimited->limited, because 1939 * in that case we have no record of how much is already in use. 1940 */ 1941 if (max_blocks && !sbinfo->max_blocks) 1942 goto out; 1943 if (max_inodes && !sbinfo->max_inodes) 1944 goto out; 1945 1946 error = 0; 1947 sbinfo->max_blocks = max_blocks; 1948 sbinfo->free_blocks = max_blocks - blocks; 1949 sbinfo->max_inodes = max_inodes; 1950 sbinfo->free_inodes = max_inodes - inodes; 1951 out: 1952 spin_unlock(&sbinfo->stat_lock); 1953 return error; 1954 } 1955 #endif 1956 1957 static void shmem_put_super(struct super_block *sb) 1958 { 1959 kfree(sb->s_fs_info); 1960 sb->s_fs_info = NULL; 1961 } 1962 1963 static int shmem_fill_super(struct super_block *sb, 1964 void *data, int silent) 1965 { 1966 struct inode *inode; 1967 struct dentry *root; 1968 int mode = S_IRWXUGO | S_ISVTX; 1969 uid_t uid = current->fsuid; 1970 gid_t gid = current->fsgid; 1971 int err = -ENOMEM; 1972 struct shmem_sb_info *sbinfo; 1973 unsigned long blocks = 0; 1974 unsigned long inodes = 0; 1975 1976 #ifdef CONFIG_TMPFS 1977 /* 1978 * Per default we only allow half of the physical ram per 1979 * tmpfs instance, limiting inodes to one per page of lowmem; 1980 * but the internal instance is left unlimited. 1981 */ 1982 if (!(sb->s_flags & MS_NOUSER)) { 1983 blocks = totalram_pages / 2; 1984 inodes = totalram_pages - totalhigh_pages; 1985 if (inodes > blocks) 1986 inodes = blocks; 1987 if (shmem_parse_options(data, &mode, &uid, &gid, 1988 &blocks, &inodes)) 1989 return -EINVAL; 1990 } 1991 #else 1992 sb->s_flags |= MS_NOUSER; 1993 #endif 1994 1995 /* Round up to L1_CACHE_BYTES to resist false sharing */ 1996 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info), 1997 L1_CACHE_BYTES), GFP_KERNEL); 1998 if (!sbinfo) 1999 return -ENOMEM; 2000 2001 spin_lock_init(&sbinfo->stat_lock); 2002 sbinfo->max_blocks = blocks; 2003 sbinfo->free_blocks = blocks; 2004 sbinfo->max_inodes = inodes; 2005 sbinfo->free_inodes = inodes; 2006 2007 sb->s_fs_info = sbinfo; 2008 sb->s_maxbytes = SHMEM_MAX_BYTES; 2009 sb->s_blocksize = PAGE_CACHE_SIZE; 2010 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2011 sb->s_magic = TMPFS_MAGIC; 2012 sb->s_op = &shmem_ops; 2013 2014 inode = shmem_get_inode(sb, S_IFDIR | mode, 0); 2015 if (!inode) 2016 goto failed; 2017 inode->i_uid = uid; 2018 inode->i_gid = gid; 2019 root = d_alloc_root(inode); 2020 if (!root) 2021 goto failed_iput; 2022 sb->s_root = root; 2023 return 0; 2024 2025 failed_iput: 2026 iput(inode); 2027 failed: 2028 shmem_put_super(sb); 2029 return err; 2030 } 2031 2032 static kmem_cache_t *shmem_inode_cachep; 2033 2034 static struct inode *shmem_alloc_inode(struct super_block *sb) 2035 { 2036 struct shmem_inode_info *p; 2037 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL); 2038 if (!p) 2039 return NULL; 2040 return &p->vfs_inode; 2041 } 2042 2043 static void shmem_destroy_inode(struct inode *inode) 2044 { 2045 if ((inode->i_mode & S_IFMT) == S_IFREG) { 2046 /* only struct inode is valid if it's an inline symlink */ 2047 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2048 } 2049 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2050 } 2051 2052 static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags) 2053 { 2054 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2055 2056 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 2057 SLAB_CTOR_CONSTRUCTOR) { 2058 inode_init_once(&p->vfs_inode); 2059 } 2060 } 2061 2062 static int init_inodecache(void) 2063 { 2064 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2065 sizeof(struct shmem_inode_info), 2066 0, 0, init_once, NULL); 2067 if (shmem_inode_cachep == NULL) 2068 return -ENOMEM; 2069 return 0; 2070 } 2071 2072 static void destroy_inodecache(void) 2073 { 2074 if (kmem_cache_destroy(shmem_inode_cachep)) 2075 printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n"); 2076 } 2077 2078 static struct address_space_operations shmem_aops = { 2079 .writepage = shmem_writepage, 2080 .set_page_dirty = __set_page_dirty_nobuffers, 2081 #ifdef CONFIG_TMPFS 2082 .prepare_write = shmem_prepare_write, 2083 .commit_write = simple_commit_write, 2084 #endif 2085 }; 2086 2087 static struct file_operations shmem_file_operations = { 2088 .mmap = shmem_mmap, 2089 #ifdef CONFIG_TMPFS 2090 .llseek = generic_file_llseek, 2091 .read = shmem_file_read, 2092 .write = shmem_file_write, 2093 .fsync = simple_sync_file, 2094 .sendfile = shmem_file_sendfile, 2095 #endif 2096 }; 2097 2098 static struct inode_operations shmem_inode_operations = { 2099 .truncate = shmem_truncate, 2100 .setattr = shmem_notify_change, 2101 .truncate_range = shmem_truncate_range, 2102 }; 2103 2104 static struct inode_operations shmem_dir_inode_operations = { 2105 #ifdef CONFIG_TMPFS 2106 .create = shmem_create, 2107 .lookup = simple_lookup, 2108 .link = shmem_link, 2109 .unlink = shmem_unlink, 2110 .symlink = shmem_symlink, 2111 .mkdir = shmem_mkdir, 2112 .rmdir = shmem_rmdir, 2113 .mknod = shmem_mknod, 2114 .rename = shmem_rename, 2115 #endif 2116 }; 2117 2118 static struct super_operations shmem_ops = { 2119 .alloc_inode = shmem_alloc_inode, 2120 .destroy_inode = shmem_destroy_inode, 2121 #ifdef CONFIG_TMPFS 2122 .statfs = shmem_statfs, 2123 .remount_fs = shmem_remount_fs, 2124 #endif 2125 .delete_inode = shmem_delete_inode, 2126 .drop_inode = generic_delete_inode, 2127 .put_super = shmem_put_super, 2128 }; 2129 2130 static struct vm_operations_struct shmem_vm_ops = { 2131 .nopage = shmem_nopage, 2132 .populate = shmem_populate, 2133 #ifdef CONFIG_NUMA 2134 .set_policy = shmem_set_policy, 2135 .get_policy = shmem_get_policy, 2136 #endif 2137 }; 2138 2139 2140 static struct super_block *shmem_get_sb(struct file_system_type *fs_type, 2141 int flags, const char *dev_name, void *data) 2142 { 2143 return get_sb_nodev(fs_type, flags, data, shmem_fill_super); 2144 } 2145 2146 static struct file_system_type tmpfs_fs_type = { 2147 .owner = THIS_MODULE, 2148 .name = "tmpfs", 2149 .get_sb = shmem_get_sb, 2150 .kill_sb = kill_litter_super, 2151 }; 2152 static struct vfsmount *shm_mnt; 2153 2154 static int __init init_tmpfs(void) 2155 { 2156 int error; 2157 2158 error = init_inodecache(); 2159 if (error) 2160 goto out3; 2161 2162 error = register_filesystem(&tmpfs_fs_type); 2163 if (error) { 2164 printk(KERN_ERR "Could not register tmpfs\n"); 2165 goto out2; 2166 } 2167 #ifdef CONFIG_TMPFS 2168 devfs_mk_dir("shm"); 2169 #endif 2170 shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER, 2171 tmpfs_fs_type.name, NULL); 2172 if (IS_ERR(shm_mnt)) { 2173 error = PTR_ERR(shm_mnt); 2174 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2175 goto out1; 2176 } 2177 return 0; 2178 2179 out1: 2180 unregister_filesystem(&tmpfs_fs_type); 2181 out2: 2182 destroy_inodecache(); 2183 out3: 2184 shm_mnt = ERR_PTR(error); 2185 return error; 2186 } 2187 module_init(init_tmpfs) 2188 2189 /* 2190 * shmem_file_setup - get an unlinked file living in tmpfs 2191 * 2192 * @name: name for dentry (to be seen in /proc/<pid>/maps 2193 * @size: size to be set for the file 2194 * 2195 */ 2196 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags) 2197 { 2198 int error; 2199 struct file *file; 2200 struct inode *inode; 2201 struct dentry *dentry, *root; 2202 struct qstr this; 2203 2204 if (IS_ERR(shm_mnt)) 2205 return (void *)shm_mnt; 2206 2207 if (size < 0 || size > SHMEM_MAX_BYTES) 2208 return ERR_PTR(-EINVAL); 2209 2210 if (shmem_acct_size(flags, size)) 2211 return ERR_PTR(-ENOMEM); 2212 2213 error = -ENOMEM; 2214 this.name = name; 2215 this.len = strlen(name); 2216 this.hash = 0; /* will go */ 2217 root = shm_mnt->mnt_root; 2218 dentry = d_alloc(root, &this); 2219 if (!dentry) 2220 goto put_memory; 2221 2222 error = -ENFILE; 2223 file = get_empty_filp(); 2224 if (!file) 2225 goto put_dentry; 2226 2227 error = -ENOSPC; 2228 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0); 2229 if (!inode) 2230 goto close_file; 2231 2232 SHMEM_I(inode)->flags = flags & VM_ACCOUNT; 2233 d_instantiate(dentry, inode); 2234 inode->i_size = size; 2235 inode->i_nlink = 0; /* It is unlinked */ 2236 file->f_vfsmnt = mntget(shm_mnt); 2237 file->f_dentry = dentry; 2238 file->f_mapping = inode->i_mapping; 2239 file->f_op = &shmem_file_operations; 2240 file->f_mode = FMODE_WRITE | FMODE_READ; 2241 return file; 2242 2243 close_file: 2244 put_filp(file); 2245 put_dentry: 2246 dput(dentry); 2247 put_memory: 2248 shmem_unacct_size(flags, size); 2249 return ERR_PTR(error); 2250 } 2251 2252 /* 2253 * shmem_zero_setup - setup a shared anonymous mapping 2254 * 2255 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2256 */ 2257 int shmem_zero_setup(struct vm_area_struct *vma) 2258 { 2259 struct file *file; 2260 loff_t size = vma->vm_end - vma->vm_start; 2261 2262 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2263 if (IS_ERR(file)) 2264 return PTR_ERR(file); 2265 2266 if (vma->vm_file) 2267 fput(vma->vm_file); 2268 vma->vm_file = file; 2269 vma->vm_ops = &shmem_vm_ops; 2270 return 0; 2271 } 2272