1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/uio.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 #include <linux/iversion.h> 42 #include "swap.h" 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_rwsem making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 struct shmem_options { 110 unsigned long long blocks; 111 unsigned long long inodes; 112 struct mempolicy *mpol; 113 kuid_t uid; 114 kgid_t gid; 115 umode_t mode; 116 bool full_inums; 117 int huge; 118 int seen; 119 #define SHMEM_SEEN_BLOCKS 1 120 #define SHMEM_SEEN_INODES 2 121 #define SHMEM_SEEN_HUGE 4 122 #define SHMEM_SEEN_INUMS 8 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 140 struct folio **foliop, enum sgp_type sgp, 141 gfp_t gfp, struct vm_area_struct *vma, 142 vm_fault_t *fault_type); 143 144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 145 { 146 return sb->s_fs_info; 147 } 148 149 /* 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 151 * for shared memory and for shared anonymous (/dev/zero) mappings 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 153 * consistent with the pre-accounting of private mappings ... 154 */ 155 static inline int shmem_acct_size(unsigned long flags, loff_t size) 156 { 157 return (flags & VM_NORESERVE) ? 158 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 159 } 160 161 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 162 { 163 if (!(flags & VM_NORESERVE)) 164 vm_unacct_memory(VM_ACCT(size)); 165 } 166 167 static inline int shmem_reacct_size(unsigned long flags, 168 loff_t oldsize, loff_t newsize) 169 { 170 if (!(flags & VM_NORESERVE)) { 171 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 172 return security_vm_enough_memory_mm(current->mm, 173 VM_ACCT(newsize) - VM_ACCT(oldsize)); 174 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 175 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 176 } 177 return 0; 178 } 179 180 /* 181 * ... whereas tmpfs objects are accounted incrementally as 182 * pages are allocated, in order to allow large sparse files. 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 185 */ 186 static inline int shmem_acct_block(unsigned long flags, long pages) 187 { 188 if (!(flags & VM_NORESERVE)) 189 return 0; 190 191 return security_vm_enough_memory_mm(current->mm, 192 pages * VM_ACCT(PAGE_SIZE)); 193 } 194 195 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 196 { 197 if (flags & VM_NORESERVE) 198 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 199 } 200 201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 202 { 203 struct shmem_inode_info *info = SHMEM_I(inode); 204 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 205 206 if (shmem_acct_block(info->flags, pages)) 207 return false; 208 209 if (sbinfo->max_blocks) { 210 if (percpu_counter_compare(&sbinfo->used_blocks, 211 sbinfo->max_blocks - pages) > 0) 212 goto unacct; 213 percpu_counter_add(&sbinfo->used_blocks, pages); 214 } 215 216 return true; 217 218 unacct: 219 shmem_unacct_blocks(info->flags, pages); 220 return false; 221 } 222 223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 224 { 225 struct shmem_inode_info *info = SHMEM_I(inode); 226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 227 228 if (sbinfo->max_blocks) 229 percpu_counter_sub(&sbinfo->used_blocks, pages); 230 shmem_unacct_blocks(info->flags, pages); 231 } 232 233 static const struct super_operations shmem_ops; 234 const struct address_space_operations shmem_aops; 235 static const struct file_operations shmem_file_operations; 236 static const struct inode_operations shmem_inode_operations; 237 static const struct inode_operations shmem_dir_inode_operations; 238 static const struct inode_operations shmem_special_inode_operations; 239 static const struct vm_operations_struct shmem_vm_ops; 240 static const struct vm_operations_struct shmem_anon_vm_ops; 241 static struct file_system_type shmem_fs_type; 242 243 bool vma_is_anon_shmem(struct vm_area_struct *vma) 244 { 245 return vma->vm_ops == &shmem_anon_vm_ops; 246 } 247 248 bool vma_is_shmem(struct vm_area_struct *vma) 249 { 250 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 251 } 252 253 static LIST_HEAD(shmem_swaplist); 254 static DEFINE_MUTEX(shmem_swaplist_mutex); 255 256 /* 257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 258 * produces a novel ino for the newly allocated inode. 259 * 260 * It may also be called when making a hard link to permit the space needed by 261 * each dentry. However, in that case, no new inode number is needed since that 262 * internally draws from another pool of inode numbers (currently global 263 * get_next_ino()). This case is indicated by passing NULL as inop. 264 */ 265 #define SHMEM_INO_BATCH 1024 266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 267 { 268 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 269 ino_t ino; 270 271 if (!(sb->s_flags & SB_KERNMOUNT)) { 272 raw_spin_lock(&sbinfo->stat_lock); 273 if (sbinfo->max_inodes) { 274 if (!sbinfo->free_inodes) { 275 raw_spin_unlock(&sbinfo->stat_lock); 276 return -ENOSPC; 277 } 278 sbinfo->free_inodes--; 279 } 280 if (inop) { 281 ino = sbinfo->next_ino++; 282 if (unlikely(is_zero_ino(ino))) 283 ino = sbinfo->next_ino++; 284 if (unlikely(!sbinfo->full_inums && 285 ino > UINT_MAX)) { 286 /* 287 * Emulate get_next_ino uint wraparound for 288 * compatibility 289 */ 290 if (IS_ENABLED(CONFIG_64BIT)) 291 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 292 __func__, MINOR(sb->s_dev)); 293 sbinfo->next_ino = 1; 294 ino = sbinfo->next_ino++; 295 } 296 *inop = ino; 297 } 298 raw_spin_unlock(&sbinfo->stat_lock); 299 } else if (inop) { 300 /* 301 * __shmem_file_setup, one of our callers, is lock-free: it 302 * doesn't hold stat_lock in shmem_reserve_inode since 303 * max_inodes is always 0, and is called from potentially 304 * unknown contexts. As such, use a per-cpu batched allocator 305 * which doesn't require the per-sb stat_lock unless we are at 306 * the batch boundary. 307 * 308 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 309 * shmem mounts are not exposed to userspace, so we don't need 310 * to worry about things like glibc compatibility. 311 */ 312 ino_t *next_ino; 313 314 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 315 ino = *next_ino; 316 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 317 raw_spin_lock(&sbinfo->stat_lock); 318 ino = sbinfo->next_ino; 319 sbinfo->next_ino += SHMEM_INO_BATCH; 320 raw_spin_unlock(&sbinfo->stat_lock); 321 if (unlikely(is_zero_ino(ino))) 322 ino++; 323 } 324 *inop = ino; 325 *next_ino = ++ino; 326 put_cpu(); 327 } 328 329 return 0; 330 } 331 332 static void shmem_free_inode(struct super_block *sb) 333 { 334 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 335 if (sbinfo->max_inodes) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 sbinfo->free_inodes++; 338 raw_spin_unlock(&sbinfo->stat_lock); 339 } 340 } 341 342 /** 343 * shmem_recalc_inode - recalculate the block usage of an inode 344 * @inode: inode to recalc 345 * 346 * We have to calculate the free blocks since the mm can drop 347 * undirtied hole pages behind our back. 348 * 349 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 351 * 352 * It has to be called with the spinlock held. 353 */ 354 static void shmem_recalc_inode(struct inode *inode) 355 { 356 struct shmem_inode_info *info = SHMEM_I(inode); 357 long freed; 358 359 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 360 if (freed > 0) { 361 info->alloced -= freed; 362 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 363 shmem_inode_unacct_blocks(inode, freed); 364 } 365 } 366 367 bool shmem_charge(struct inode *inode, long pages) 368 { 369 struct shmem_inode_info *info = SHMEM_I(inode); 370 unsigned long flags; 371 372 if (!shmem_inode_acct_block(inode, pages)) 373 return false; 374 375 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 376 inode->i_mapping->nrpages += pages; 377 378 spin_lock_irqsave(&info->lock, flags); 379 info->alloced += pages; 380 inode->i_blocks += pages * BLOCKS_PER_PAGE; 381 shmem_recalc_inode(inode); 382 spin_unlock_irqrestore(&info->lock, flags); 383 384 return true; 385 } 386 387 void shmem_uncharge(struct inode *inode, long pages) 388 { 389 struct shmem_inode_info *info = SHMEM_I(inode); 390 unsigned long flags; 391 392 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 393 394 spin_lock_irqsave(&info->lock, flags); 395 info->alloced -= pages; 396 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 397 shmem_recalc_inode(inode); 398 spin_unlock_irqrestore(&info->lock, flags); 399 400 shmem_inode_unacct_blocks(inode, pages); 401 } 402 403 /* 404 * Replace item expected in xarray by a new item, while holding xa_lock. 405 */ 406 static int shmem_replace_entry(struct address_space *mapping, 407 pgoff_t index, void *expected, void *replacement) 408 { 409 XA_STATE(xas, &mapping->i_pages, index); 410 void *item; 411 412 VM_BUG_ON(!expected); 413 VM_BUG_ON(!replacement); 414 item = xas_load(&xas); 415 if (item != expected) 416 return -ENOENT; 417 xas_store(&xas, replacement); 418 return 0; 419 } 420 421 /* 422 * Sometimes, before we decide whether to proceed or to fail, we must check 423 * that an entry was not already brought back from swap by a racing thread. 424 * 425 * Checking page is not enough: by the time a SwapCache page is locked, it 426 * might be reused, and again be SwapCache, using the same swap as before. 427 */ 428 static bool shmem_confirm_swap(struct address_space *mapping, 429 pgoff_t index, swp_entry_t swap) 430 { 431 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 432 } 433 434 /* 435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 436 * 437 * SHMEM_HUGE_NEVER: 438 * disables huge pages for the mount; 439 * SHMEM_HUGE_ALWAYS: 440 * enables huge pages for the mount; 441 * SHMEM_HUGE_WITHIN_SIZE: 442 * only allocate huge pages if the page will be fully within i_size, 443 * also respect fadvise()/madvise() hints; 444 * SHMEM_HUGE_ADVISE: 445 * only allocate huge pages if requested with fadvise()/madvise(); 446 */ 447 448 #define SHMEM_HUGE_NEVER 0 449 #define SHMEM_HUGE_ALWAYS 1 450 #define SHMEM_HUGE_WITHIN_SIZE 2 451 #define SHMEM_HUGE_ADVISE 3 452 453 /* 454 * Special values. 455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 456 * 457 * SHMEM_HUGE_DENY: 458 * disables huge on shm_mnt and all mounts, for emergency use; 459 * SHMEM_HUGE_FORCE: 460 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 461 * 462 */ 463 #define SHMEM_HUGE_DENY (-1) 464 #define SHMEM_HUGE_FORCE (-2) 465 466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 467 /* ifdef here to avoid bloating shmem.o when not necessary */ 468 469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 470 471 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 472 pgoff_t index, bool shmem_huge_force) 473 { 474 loff_t i_size; 475 476 if (!S_ISREG(inode->i_mode)) 477 return false; 478 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 479 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 480 return false; 481 if (shmem_huge_force) 482 return true; 483 if (shmem_huge == SHMEM_HUGE_FORCE) 484 return true; 485 if (shmem_huge == SHMEM_HUGE_DENY) 486 return false; 487 488 switch (SHMEM_SB(inode->i_sb)->huge) { 489 case SHMEM_HUGE_ALWAYS: 490 return true; 491 case SHMEM_HUGE_WITHIN_SIZE: 492 index = round_up(index + 1, HPAGE_PMD_NR); 493 i_size = round_up(i_size_read(inode), PAGE_SIZE); 494 if (i_size >> PAGE_SHIFT >= index) 495 return true; 496 fallthrough; 497 case SHMEM_HUGE_ADVISE: 498 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 499 return true; 500 fallthrough; 501 default: 502 return false; 503 } 504 } 505 506 #if defined(CONFIG_SYSFS) 507 static int shmem_parse_huge(const char *str) 508 { 509 if (!strcmp(str, "never")) 510 return SHMEM_HUGE_NEVER; 511 if (!strcmp(str, "always")) 512 return SHMEM_HUGE_ALWAYS; 513 if (!strcmp(str, "within_size")) 514 return SHMEM_HUGE_WITHIN_SIZE; 515 if (!strcmp(str, "advise")) 516 return SHMEM_HUGE_ADVISE; 517 if (!strcmp(str, "deny")) 518 return SHMEM_HUGE_DENY; 519 if (!strcmp(str, "force")) 520 return SHMEM_HUGE_FORCE; 521 return -EINVAL; 522 } 523 #endif 524 525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 526 static const char *shmem_format_huge(int huge) 527 { 528 switch (huge) { 529 case SHMEM_HUGE_NEVER: 530 return "never"; 531 case SHMEM_HUGE_ALWAYS: 532 return "always"; 533 case SHMEM_HUGE_WITHIN_SIZE: 534 return "within_size"; 535 case SHMEM_HUGE_ADVISE: 536 return "advise"; 537 case SHMEM_HUGE_DENY: 538 return "deny"; 539 case SHMEM_HUGE_FORCE: 540 return "force"; 541 default: 542 VM_BUG_ON(1); 543 return "bad_val"; 544 } 545 } 546 #endif 547 548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 549 struct shrink_control *sc, unsigned long nr_to_split) 550 { 551 LIST_HEAD(list), *pos, *next; 552 LIST_HEAD(to_remove); 553 struct inode *inode; 554 struct shmem_inode_info *info; 555 struct folio *folio; 556 unsigned long batch = sc ? sc->nr_to_scan : 128; 557 int split = 0; 558 559 if (list_empty(&sbinfo->shrinklist)) 560 return SHRINK_STOP; 561 562 spin_lock(&sbinfo->shrinklist_lock); 563 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 564 info = list_entry(pos, struct shmem_inode_info, shrinklist); 565 566 /* pin the inode */ 567 inode = igrab(&info->vfs_inode); 568 569 /* inode is about to be evicted */ 570 if (!inode) { 571 list_del_init(&info->shrinklist); 572 goto next; 573 } 574 575 /* Check if there's anything to gain */ 576 if (round_up(inode->i_size, PAGE_SIZE) == 577 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 578 list_move(&info->shrinklist, &to_remove); 579 goto next; 580 } 581 582 list_move(&info->shrinklist, &list); 583 next: 584 sbinfo->shrinklist_len--; 585 if (!--batch) 586 break; 587 } 588 spin_unlock(&sbinfo->shrinklist_lock); 589 590 list_for_each_safe(pos, next, &to_remove) { 591 info = list_entry(pos, struct shmem_inode_info, shrinklist); 592 inode = &info->vfs_inode; 593 list_del_init(&info->shrinklist); 594 iput(inode); 595 } 596 597 list_for_each_safe(pos, next, &list) { 598 int ret; 599 pgoff_t index; 600 601 info = list_entry(pos, struct shmem_inode_info, shrinklist); 602 inode = &info->vfs_inode; 603 604 if (nr_to_split && split >= nr_to_split) 605 goto move_back; 606 607 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 608 folio = filemap_get_folio(inode->i_mapping, index); 609 if (!folio) 610 goto drop; 611 612 /* No huge page at the end of the file: nothing to split */ 613 if (!folio_test_large(folio)) { 614 folio_put(folio); 615 goto drop; 616 } 617 618 /* 619 * Move the inode on the list back to shrinklist if we failed 620 * to lock the page at this time. 621 * 622 * Waiting for the lock may lead to deadlock in the 623 * reclaim path. 624 */ 625 if (!folio_trylock(folio)) { 626 folio_put(folio); 627 goto move_back; 628 } 629 630 ret = split_folio(folio); 631 folio_unlock(folio); 632 folio_put(folio); 633 634 /* If split failed move the inode on the list back to shrinklist */ 635 if (ret) 636 goto move_back; 637 638 split++; 639 drop: 640 list_del_init(&info->shrinklist); 641 goto put; 642 move_back: 643 /* 644 * Make sure the inode is either on the global list or deleted 645 * from any local list before iput() since it could be deleted 646 * in another thread once we put the inode (then the local list 647 * is corrupted). 648 */ 649 spin_lock(&sbinfo->shrinklist_lock); 650 list_move(&info->shrinklist, &sbinfo->shrinklist); 651 sbinfo->shrinklist_len++; 652 spin_unlock(&sbinfo->shrinklist_lock); 653 put: 654 iput(inode); 655 } 656 657 return split; 658 } 659 660 static long shmem_unused_huge_scan(struct super_block *sb, 661 struct shrink_control *sc) 662 { 663 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 664 665 if (!READ_ONCE(sbinfo->shrinklist_len)) 666 return SHRINK_STOP; 667 668 return shmem_unused_huge_shrink(sbinfo, sc, 0); 669 } 670 671 static long shmem_unused_huge_count(struct super_block *sb, 672 struct shrink_control *sc) 673 { 674 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 675 return READ_ONCE(sbinfo->shrinklist_len); 676 } 677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 678 679 #define shmem_huge SHMEM_HUGE_DENY 680 681 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 682 pgoff_t index, bool shmem_huge_force) 683 { 684 return false; 685 } 686 687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 688 struct shrink_control *sc, unsigned long nr_to_split) 689 { 690 return 0; 691 } 692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 693 694 /* 695 * Like filemap_add_folio, but error if expected item has gone. 696 */ 697 static int shmem_add_to_page_cache(struct folio *folio, 698 struct address_space *mapping, 699 pgoff_t index, void *expected, gfp_t gfp, 700 struct mm_struct *charge_mm) 701 { 702 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 703 long nr = folio_nr_pages(folio); 704 int error; 705 706 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 707 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 708 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 709 VM_BUG_ON(expected && folio_test_large(folio)); 710 711 folio_ref_add(folio, nr); 712 folio->mapping = mapping; 713 folio->index = index; 714 715 if (!folio_test_swapcache(folio)) { 716 error = mem_cgroup_charge(folio, charge_mm, gfp); 717 if (error) { 718 if (folio_test_pmd_mappable(folio)) { 719 count_vm_event(THP_FILE_FALLBACK); 720 count_vm_event(THP_FILE_FALLBACK_CHARGE); 721 } 722 goto error; 723 } 724 } 725 folio_throttle_swaprate(folio, gfp); 726 727 do { 728 xas_lock_irq(&xas); 729 if (expected != xas_find_conflict(&xas)) { 730 xas_set_err(&xas, -EEXIST); 731 goto unlock; 732 } 733 if (expected && xas_find_conflict(&xas)) { 734 xas_set_err(&xas, -EEXIST); 735 goto unlock; 736 } 737 xas_store(&xas, folio); 738 if (xas_error(&xas)) 739 goto unlock; 740 if (folio_test_pmd_mappable(folio)) { 741 count_vm_event(THP_FILE_ALLOC); 742 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 743 } 744 mapping->nrpages += nr; 745 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 746 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 747 unlock: 748 xas_unlock_irq(&xas); 749 } while (xas_nomem(&xas, gfp)); 750 751 if (xas_error(&xas)) { 752 error = xas_error(&xas); 753 goto error; 754 } 755 756 return 0; 757 error: 758 folio->mapping = NULL; 759 folio_ref_sub(folio, nr); 760 return error; 761 } 762 763 /* 764 * Like delete_from_page_cache, but substitutes swap for @folio. 765 */ 766 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 767 { 768 struct address_space *mapping = folio->mapping; 769 long nr = folio_nr_pages(folio); 770 int error; 771 772 xa_lock_irq(&mapping->i_pages); 773 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 774 folio->mapping = NULL; 775 mapping->nrpages -= nr; 776 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 777 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 778 xa_unlock_irq(&mapping->i_pages); 779 folio_put(folio); 780 BUG_ON(error); 781 } 782 783 /* 784 * Remove swap entry from page cache, free the swap and its page cache. 785 */ 786 static int shmem_free_swap(struct address_space *mapping, 787 pgoff_t index, void *radswap) 788 { 789 void *old; 790 791 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 792 if (old != radswap) 793 return -ENOENT; 794 free_swap_and_cache(radix_to_swp_entry(radswap)); 795 return 0; 796 } 797 798 /* 799 * Determine (in bytes) how many of the shmem object's pages mapped by the 800 * given offsets are swapped out. 801 * 802 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 803 * as long as the inode doesn't go away and racy results are not a problem. 804 */ 805 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 806 pgoff_t start, pgoff_t end) 807 { 808 XA_STATE(xas, &mapping->i_pages, start); 809 struct page *page; 810 unsigned long swapped = 0; 811 812 rcu_read_lock(); 813 xas_for_each(&xas, page, end - 1) { 814 if (xas_retry(&xas, page)) 815 continue; 816 if (xa_is_value(page)) 817 swapped++; 818 819 if (need_resched()) { 820 xas_pause(&xas); 821 cond_resched_rcu(); 822 } 823 } 824 825 rcu_read_unlock(); 826 827 return swapped << PAGE_SHIFT; 828 } 829 830 /* 831 * Determine (in bytes) how many of the shmem object's pages mapped by the 832 * given vma is swapped out. 833 * 834 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 835 * as long as the inode doesn't go away and racy results are not a problem. 836 */ 837 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 838 { 839 struct inode *inode = file_inode(vma->vm_file); 840 struct shmem_inode_info *info = SHMEM_I(inode); 841 struct address_space *mapping = inode->i_mapping; 842 unsigned long swapped; 843 844 /* Be careful as we don't hold info->lock */ 845 swapped = READ_ONCE(info->swapped); 846 847 /* 848 * The easier cases are when the shmem object has nothing in swap, or 849 * the vma maps it whole. Then we can simply use the stats that we 850 * already track. 851 */ 852 if (!swapped) 853 return 0; 854 855 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 856 return swapped << PAGE_SHIFT; 857 858 /* Here comes the more involved part */ 859 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 860 vma->vm_pgoff + vma_pages(vma)); 861 } 862 863 /* 864 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 865 */ 866 void shmem_unlock_mapping(struct address_space *mapping) 867 { 868 struct folio_batch fbatch; 869 pgoff_t index = 0; 870 871 folio_batch_init(&fbatch); 872 /* 873 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 874 */ 875 while (!mapping_unevictable(mapping) && 876 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 877 check_move_unevictable_folios(&fbatch); 878 folio_batch_release(&fbatch); 879 cond_resched(); 880 } 881 } 882 883 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 884 { 885 struct folio *folio; 886 887 /* 888 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 889 * beyond i_size, and reports fallocated pages as holes. 890 */ 891 folio = __filemap_get_folio(inode->i_mapping, index, 892 FGP_ENTRY | FGP_LOCK, 0); 893 if (!xa_is_value(folio)) 894 return folio; 895 /* 896 * But read a page back from swap if any of it is within i_size 897 * (although in some cases this is just a waste of time). 898 */ 899 folio = NULL; 900 shmem_get_folio(inode, index, &folio, SGP_READ); 901 return folio; 902 } 903 904 /* 905 * Remove range of pages and swap entries from page cache, and free them. 906 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 907 */ 908 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 909 bool unfalloc) 910 { 911 struct address_space *mapping = inode->i_mapping; 912 struct shmem_inode_info *info = SHMEM_I(inode); 913 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 914 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 915 struct folio_batch fbatch; 916 pgoff_t indices[PAGEVEC_SIZE]; 917 struct folio *folio; 918 bool same_folio; 919 long nr_swaps_freed = 0; 920 pgoff_t index; 921 int i; 922 923 if (lend == -1) 924 end = -1; /* unsigned, so actually very big */ 925 926 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 927 info->fallocend = start; 928 929 folio_batch_init(&fbatch); 930 index = start; 931 while (index < end && find_lock_entries(mapping, &index, end - 1, 932 &fbatch, indices)) { 933 for (i = 0; i < folio_batch_count(&fbatch); i++) { 934 folio = fbatch.folios[i]; 935 936 if (xa_is_value(folio)) { 937 if (unfalloc) 938 continue; 939 nr_swaps_freed += !shmem_free_swap(mapping, 940 indices[i], folio); 941 continue; 942 } 943 944 if (!unfalloc || !folio_test_uptodate(folio)) 945 truncate_inode_folio(mapping, folio); 946 folio_unlock(folio); 947 } 948 folio_batch_remove_exceptionals(&fbatch); 949 folio_batch_release(&fbatch); 950 cond_resched(); 951 } 952 953 /* 954 * When undoing a failed fallocate, we want none of the partial folio 955 * zeroing and splitting below, but shall want to truncate the whole 956 * folio when !uptodate indicates that it was added by this fallocate, 957 * even when [lstart, lend] covers only a part of the folio. 958 */ 959 if (unfalloc) 960 goto whole_folios; 961 962 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 963 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 964 if (folio) { 965 same_folio = lend < folio_pos(folio) + folio_size(folio); 966 folio_mark_dirty(folio); 967 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 968 start = folio->index + folio_nr_pages(folio); 969 if (same_folio) 970 end = folio->index; 971 } 972 folio_unlock(folio); 973 folio_put(folio); 974 folio = NULL; 975 } 976 977 if (!same_folio) 978 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 979 if (folio) { 980 folio_mark_dirty(folio); 981 if (!truncate_inode_partial_folio(folio, lstart, lend)) 982 end = folio->index; 983 folio_unlock(folio); 984 folio_put(folio); 985 } 986 987 whole_folios: 988 989 index = start; 990 while (index < end) { 991 cond_resched(); 992 993 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 994 indices)) { 995 /* If all gone or hole-punch or unfalloc, we're done */ 996 if (index == start || end != -1) 997 break; 998 /* But if truncating, restart to make sure all gone */ 999 index = start; 1000 continue; 1001 } 1002 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1003 folio = fbatch.folios[i]; 1004 1005 if (xa_is_value(folio)) { 1006 if (unfalloc) 1007 continue; 1008 if (shmem_free_swap(mapping, indices[i], folio)) { 1009 /* Swap was replaced by page: retry */ 1010 index = indices[i]; 1011 break; 1012 } 1013 nr_swaps_freed++; 1014 continue; 1015 } 1016 1017 folio_lock(folio); 1018 1019 if (!unfalloc || !folio_test_uptodate(folio)) { 1020 if (folio_mapping(folio) != mapping) { 1021 /* Page was replaced by swap: retry */ 1022 folio_unlock(folio); 1023 index = indices[i]; 1024 break; 1025 } 1026 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1027 folio); 1028 truncate_inode_folio(mapping, folio); 1029 } 1030 folio_unlock(folio); 1031 } 1032 folio_batch_remove_exceptionals(&fbatch); 1033 folio_batch_release(&fbatch); 1034 } 1035 1036 spin_lock_irq(&info->lock); 1037 info->swapped -= nr_swaps_freed; 1038 shmem_recalc_inode(inode); 1039 spin_unlock_irq(&info->lock); 1040 } 1041 1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1043 { 1044 shmem_undo_range(inode, lstart, lend, false); 1045 inode->i_ctime = inode->i_mtime = current_time(inode); 1046 inode_inc_iversion(inode); 1047 } 1048 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1049 1050 static int shmem_getattr(struct user_namespace *mnt_userns, 1051 const struct path *path, struct kstat *stat, 1052 u32 request_mask, unsigned int query_flags) 1053 { 1054 struct inode *inode = path->dentry->d_inode; 1055 struct shmem_inode_info *info = SHMEM_I(inode); 1056 1057 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1058 spin_lock_irq(&info->lock); 1059 shmem_recalc_inode(inode); 1060 spin_unlock_irq(&info->lock); 1061 } 1062 if (info->fsflags & FS_APPEND_FL) 1063 stat->attributes |= STATX_ATTR_APPEND; 1064 if (info->fsflags & FS_IMMUTABLE_FL) 1065 stat->attributes |= STATX_ATTR_IMMUTABLE; 1066 if (info->fsflags & FS_NODUMP_FL) 1067 stat->attributes |= STATX_ATTR_NODUMP; 1068 stat->attributes_mask |= (STATX_ATTR_APPEND | 1069 STATX_ATTR_IMMUTABLE | 1070 STATX_ATTR_NODUMP); 1071 generic_fillattr(&init_user_ns, inode, stat); 1072 1073 if (shmem_is_huge(NULL, inode, 0, false)) 1074 stat->blksize = HPAGE_PMD_SIZE; 1075 1076 if (request_mask & STATX_BTIME) { 1077 stat->result_mask |= STATX_BTIME; 1078 stat->btime.tv_sec = info->i_crtime.tv_sec; 1079 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1080 } 1081 1082 return 0; 1083 } 1084 1085 static int shmem_setattr(struct user_namespace *mnt_userns, 1086 struct dentry *dentry, struct iattr *attr) 1087 { 1088 struct inode *inode = d_inode(dentry); 1089 struct shmem_inode_info *info = SHMEM_I(inode); 1090 int error; 1091 bool update_mtime = false; 1092 bool update_ctime = true; 1093 1094 error = setattr_prepare(&init_user_ns, dentry, attr); 1095 if (error) 1096 return error; 1097 1098 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1099 loff_t oldsize = inode->i_size; 1100 loff_t newsize = attr->ia_size; 1101 1102 /* protected by i_rwsem */ 1103 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1104 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1105 return -EPERM; 1106 1107 if (newsize != oldsize) { 1108 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1109 oldsize, newsize); 1110 if (error) 1111 return error; 1112 i_size_write(inode, newsize); 1113 update_mtime = true; 1114 } else { 1115 update_ctime = false; 1116 } 1117 if (newsize <= oldsize) { 1118 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1119 if (oldsize > holebegin) 1120 unmap_mapping_range(inode->i_mapping, 1121 holebegin, 0, 1); 1122 if (info->alloced) 1123 shmem_truncate_range(inode, 1124 newsize, (loff_t)-1); 1125 /* unmap again to remove racily COWed private pages */ 1126 if (oldsize > holebegin) 1127 unmap_mapping_range(inode->i_mapping, 1128 holebegin, 0, 1); 1129 } 1130 } 1131 1132 setattr_copy(&init_user_ns, inode, attr); 1133 if (attr->ia_valid & ATTR_MODE) 1134 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1135 if (!error && update_ctime) { 1136 inode->i_ctime = current_time(inode); 1137 if (update_mtime) 1138 inode->i_mtime = inode->i_ctime; 1139 inode_inc_iversion(inode); 1140 } 1141 return error; 1142 } 1143 1144 static void shmem_evict_inode(struct inode *inode) 1145 { 1146 struct shmem_inode_info *info = SHMEM_I(inode); 1147 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1148 1149 if (shmem_mapping(inode->i_mapping)) { 1150 shmem_unacct_size(info->flags, inode->i_size); 1151 inode->i_size = 0; 1152 mapping_set_exiting(inode->i_mapping); 1153 shmem_truncate_range(inode, 0, (loff_t)-1); 1154 if (!list_empty(&info->shrinklist)) { 1155 spin_lock(&sbinfo->shrinklist_lock); 1156 if (!list_empty(&info->shrinklist)) { 1157 list_del_init(&info->shrinklist); 1158 sbinfo->shrinklist_len--; 1159 } 1160 spin_unlock(&sbinfo->shrinklist_lock); 1161 } 1162 while (!list_empty(&info->swaplist)) { 1163 /* Wait while shmem_unuse() is scanning this inode... */ 1164 wait_var_event(&info->stop_eviction, 1165 !atomic_read(&info->stop_eviction)); 1166 mutex_lock(&shmem_swaplist_mutex); 1167 /* ...but beware of the race if we peeked too early */ 1168 if (!atomic_read(&info->stop_eviction)) 1169 list_del_init(&info->swaplist); 1170 mutex_unlock(&shmem_swaplist_mutex); 1171 } 1172 } 1173 1174 simple_xattrs_free(&info->xattrs); 1175 WARN_ON(inode->i_blocks); 1176 shmem_free_inode(inode->i_sb); 1177 clear_inode(inode); 1178 } 1179 1180 static int shmem_find_swap_entries(struct address_space *mapping, 1181 pgoff_t start, struct folio_batch *fbatch, 1182 pgoff_t *indices, unsigned int type) 1183 { 1184 XA_STATE(xas, &mapping->i_pages, start); 1185 struct folio *folio; 1186 swp_entry_t entry; 1187 1188 rcu_read_lock(); 1189 xas_for_each(&xas, folio, ULONG_MAX) { 1190 if (xas_retry(&xas, folio)) 1191 continue; 1192 1193 if (!xa_is_value(folio)) 1194 continue; 1195 1196 entry = radix_to_swp_entry(folio); 1197 /* 1198 * swapin error entries can be found in the mapping. But they're 1199 * deliberately ignored here as we've done everything we can do. 1200 */ 1201 if (swp_type(entry) != type) 1202 continue; 1203 1204 indices[folio_batch_count(fbatch)] = xas.xa_index; 1205 if (!folio_batch_add(fbatch, folio)) 1206 break; 1207 1208 if (need_resched()) { 1209 xas_pause(&xas); 1210 cond_resched_rcu(); 1211 } 1212 } 1213 rcu_read_unlock(); 1214 1215 return xas.xa_index; 1216 } 1217 1218 /* 1219 * Move the swapped pages for an inode to page cache. Returns the count 1220 * of pages swapped in, or the error in case of failure. 1221 */ 1222 static int shmem_unuse_swap_entries(struct inode *inode, 1223 struct folio_batch *fbatch, pgoff_t *indices) 1224 { 1225 int i = 0; 1226 int ret = 0; 1227 int error = 0; 1228 struct address_space *mapping = inode->i_mapping; 1229 1230 for (i = 0; i < folio_batch_count(fbatch); i++) { 1231 struct folio *folio = fbatch->folios[i]; 1232 1233 if (!xa_is_value(folio)) 1234 continue; 1235 error = shmem_swapin_folio(inode, indices[i], 1236 &folio, SGP_CACHE, 1237 mapping_gfp_mask(mapping), 1238 NULL, NULL); 1239 if (error == 0) { 1240 folio_unlock(folio); 1241 folio_put(folio); 1242 ret++; 1243 } 1244 if (error == -ENOMEM) 1245 break; 1246 error = 0; 1247 } 1248 return error ? error : ret; 1249 } 1250 1251 /* 1252 * If swap found in inode, free it and move page from swapcache to filecache. 1253 */ 1254 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1255 { 1256 struct address_space *mapping = inode->i_mapping; 1257 pgoff_t start = 0; 1258 struct folio_batch fbatch; 1259 pgoff_t indices[PAGEVEC_SIZE]; 1260 int ret = 0; 1261 1262 do { 1263 folio_batch_init(&fbatch); 1264 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1265 if (folio_batch_count(&fbatch) == 0) { 1266 ret = 0; 1267 break; 1268 } 1269 1270 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1271 if (ret < 0) 1272 break; 1273 1274 start = indices[folio_batch_count(&fbatch) - 1]; 1275 } while (true); 1276 1277 return ret; 1278 } 1279 1280 /* 1281 * Read all the shared memory data that resides in the swap 1282 * device 'type' back into memory, so the swap device can be 1283 * unused. 1284 */ 1285 int shmem_unuse(unsigned int type) 1286 { 1287 struct shmem_inode_info *info, *next; 1288 int error = 0; 1289 1290 if (list_empty(&shmem_swaplist)) 1291 return 0; 1292 1293 mutex_lock(&shmem_swaplist_mutex); 1294 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1295 if (!info->swapped) { 1296 list_del_init(&info->swaplist); 1297 continue; 1298 } 1299 /* 1300 * Drop the swaplist mutex while searching the inode for swap; 1301 * but before doing so, make sure shmem_evict_inode() will not 1302 * remove placeholder inode from swaplist, nor let it be freed 1303 * (igrab() would protect from unlink, but not from unmount). 1304 */ 1305 atomic_inc(&info->stop_eviction); 1306 mutex_unlock(&shmem_swaplist_mutex); 1307 1308 error = shmem_unuse_inode(&info->vfs_inode, type); 1309 cond_resched(); 1310 1311 mutex_lock(&shmem_swaplist_mutex); 1312 next = list_next_entry(info, swaplist); 1313 if (!info->swapped) 1314 list_del_init(&info->swaplist); 1315 if (atomic_dec_and_test(&info->stop_eviction)) 1316 wake_up_var(&info->stop_eviction); 1317 if (error) 1318 break; 1319 } 1320 mutex_unlock(&shmem_swaplist_mutex); 1321 1322 return error; 1323 } 1324 1325 /* 1326 * Move the page from the page cache to the swap cache. 1327 */ 1328 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1329 { 1330 struct folio *folio = page_folio(page); 1331 struct shmem_inode_info *info; 1332 struct address_space *mapping; 1333 struct inode *inode; 1334 swp_entry_t swap; 1335 pgoff_t index; 1336 1337 /* 1338 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1339 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1340 * and its shmem_writeback() needs them to be split when swapping. 1341 */ 1342 if (folio_test_large(folio)) { 1343 /* Ensure the subpages are still dirty */ 1344 folio_test_set_dirty(folio); 1345 if (split_huge_page(page) < 0) 1346 goto redirty; 1347 folio = page_folio(page); 1348 folio_clear_dirty(folio); 1349 } 1350 1351 BUG_ON(!folio_test_locked(folio)); 1352 mapping = folio->mapping; 1353 index = folio->index; 1354 inode = mapping->host; 1355 info = SHMEM_I(inode); 1356 if (info->flags & VM_LOCKED) 1357 goto redirty; 1358 if (!total_swap_pages) 1359 goto redirty; 1360 1361 /* 1362 * Our capabilities prevent regular writeback or sync from ever calling 1363 * shmem_writepage; but a stacking filesystem might use ->writepage of 1364 * its underlying filesystem, in which case tmpfs should write out to 1365 * swap only in response to memory pressure, and not for the writeback 1366 * threads or sync. 1367 */ 1368 if (!wbc->for_reclaim) { 1369 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1370 goto redirty; 1371 } 1372 1373 /* 1374 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1375 * value into swapfile.c, the only way we can correctly account for a 1376 * fallocated folio arriving here is now to initialize it and write it. 1377 * 1378 * That's okay for a folio already fallocated earlier, but if we have 1379 * not yet completed the fallocation, then (a) we want to keep track 1380 * of this folio in case we have to undo it, and (b) it may not be a 1381 * good idea to continue anyway, once we're pushing into swap. So 1382 * reactivate the folio, and let shmem_fallocate() quit when too many. 1383 */ 1384 if (!folio_test_uptodate(folio)) { 1385 if (inode->i_private) { 1386 struct shmem_falloc *shmem_falloc; 1387 spin_lock(&inode->i_lock); 1388 shmem_falloc = inode->i_private; 1389 if (shmem_falloc && 1390 !shmem_falloc->waitq && 1391 index >= shmem_falloc->start && 1392 index < shmem_falloc->next) 1393 shmem_falloc->nr_unswapped++; 1394 else 1395 shmem_falloc = NULL; 1396 spin_unlock(&inode->i_lock); 1397 if (shmem_falloc) 1398 goto redirty; 1399 } 1400 folio_zero_range(folio, 0, folio_size(folio)); 1401 flush_dcache_folio(folio); 1402 folio_mark_uptodate(folio); 1403 } 1404 1405 swap = folio_alloc_swap(folio); 1406 if (!swap.val) 1407 goto redirty; 1408 1409 /* 1410 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1411 * if it's not already there. Do it now before the folio is 1412 * moved to swap cache, when its pagelock no longer protects 1413 * the inode from eviction. But don't unlock the mutex until 1414 * we've incremented swapped, because shmem_unuse_inode() will 1415 * prune a !swapped inode from the swaplist under this mutex. 1416 */ 1417 mutex_lock(&shmem_swaplist_mutex); 1418 if (list_empty(&info->swaplist)) 1419 list_add(&info->swaplist, &shmem_swaplist); 1420 1421 if (add_to_swap_cache(folio, swap, 1422 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1423 NULL) == 0) { 1424 spin_lock_irq(&info->lock); 1425 shmem_recalc_inode(inode); 1426 info->swapped++; 1427 spin_unlock_irq(&info->lock); 1428 1429 swap_shmem_alloc(swap); 1430 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1431 1432 mutex_unlock(&shmem_swaplist_mutex); 1433 BUG_ON(folio_mapped(folio)); 1434 swap_writepage(&folio->page, wbc); 1435 return 0; 1436 } 1437 1438 mutex_unlock(&shmem_swaplist_mutex); 1439 put_swap_folio(folio, swap); 1440 redirty: 1441 folio_mark_dirty(folio); 1442 if (wbc->for_reclaim) 1443 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1444 folio_unlock(folio); 1445 return 0; 1446 } 1447 1448 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1449 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1450 { 1451 char buffer[64]; 1452 1453 if (!mpol || mpol->mode == MPOL_DEFAULT) 1454 return; /* show nothing */ 1455 1456 mpol_to_str(buffer, sizeof(buffer), mpol); 1457 1458 seq_printf(seq, ",mpol=%s", buffer); 1459 } 1460 1461 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1462 { 1463 struct mempolicy *mpol = NULL; 1464 if (sbinfo->mpol) { 1465 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1466 mpol = sbinfo->mpol; 1467 mpol_get(mpol); 1468 raw_spin_unlock(&sbinfo->stat_lock); 1469 } 1470 return mpol; 1471 } 1472 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1473 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1474 { 1475 } 1476 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1477 { 1478 return NULL; 1479 } 1480 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1481 #ifndef CONFIG_NUMA 1482 #define vm_policy vm_private_data 1483 #endif 1484 1485 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1486 struct shmem_inode_info *info, pgoff_t index) 1487 { 1488 /* Create a pseudo vma that just contains the policy */ 1489 vma_init(vma, NULL); 1490 /* Bias interleave by inode number to distribute better across nodes */ 1491 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1492 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1493 } 1494 1495 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1496 { 1497 /* Drop reference taken by mpol_shared_policy_lookup() */ 1498 mpol_cond_put(vma->vm_policy); 1499 } 1500 1501 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1502 struct shmem_inode_info *info, pgoff_t index) 1503 { 1504 struct vm_area_struct pvma; 1505 struct page *page; 1506 struct vm_fault vmf = { 1507 .vma = &pvma, 1508 }; 1509 1510 shmem_pseudo_vma_init(&pvma, info, index); 1511 page = swap_cluster_readahead(swap, gfp, &vmf); 1512 shmem_pseudo_vma_destroy(&pvma); 1513 1514 if (!page) 1515 return NULL; 1516 return page_folio(page); 1517 } 1518 1519 /* 1520 * Make sure huge_gfp is always more limited than limit_gfp. 1521 * Some of the flags set permissions, while others set limitations. 1522 */ 1523 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1524 { 1525 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1526 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1527 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1528 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1529 1530 /* Allow allocations only from the originally specified zones. */ 1531 result |= zoneflags; 1532 1533 /* 1534 * Minimize the result gfp by taking the union with the deny flags, 1535 * and the intersection of the allow flags. 1536 */ 1537 result |= (limit_gfp & denyflags); 1538 result |= (huge_gfp & limit_gfp) & allowflags; 1539 1540 return result; 1541 } 1542 1543 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1544 struct shmem_inode_info *info, pgoff_t index) 1545 { 1546 struct vm_area_struct pvma; 1547 struct address_space *mapping = info->vfs_inode.i_mapping; 1548 pgoff_t hindex; 1549 struct folio *folio; 1550 1551 hindex = round_down(index, HPAGE_PMD_NR); 1552 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1553 XA_PRESENT)) 1554 return NULL; 1555 1556 shmem_pseudo_vma_init(&pvma, info, hindex); 1557 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1558 shmem_pseudo_vma_destroy(&pvma); 1559 if (!folio) 1560 count_vm_event(THP_FILE_FALLBACK); 1561 return folio; 1562 } 1563 1564 static struct folio *shmem_alloc_folio(gfp_t gfp, 1565 struct shmem_inode_info *info, pgoff_t index) 1566 { 1567 struct vm_area_struct pvma; 1568 struct folio *folio; 1569 1570 shmem_pseudo_vma_init(&pvma, info, index); 1571 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1572 shmem_pseudo_vma_destroy(&pvma); 1573 1574 return folio; 1575 } 1576 1577 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1578 pgoff_t index, bool huge) 1579 { 1580 struct shmem_inode_info *info = SHMEM_I(inode); 1581 struct folio *folio; 1582 int nr; 1583 int err = -ENOSPC; 1584 1585 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1586 huge = false; 1587 nr = huge ? HPAGE_PMD_NR : 1; 1588 1589 if (!shmem_inode_acct_block(inode, nr)) 1590 goto failed; 1591 1592 if (huge) 1593 folio = shmem_alloc_hugefolio(gfp, info, index); 1594 else 1595 folio = shmem_alloc_folio(gfp, info, index); 1596 if (folio) { 1597 __folio_set_locked(folio); 1598 __folio_set_swapbacked(folio); 1599 return folio; 1600 } 1601 1602 err = -ENOMEM; 1603 shmem_inode_unacct_blocks(inode, nr); 1604 failed: 1605 return ERR_PTR(err); 1606 } 1607 1608 /* 1609 * When a page is moved from swapcache to shmem filecache (either by the 1610 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1611 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1612 * ignorance of the mapping it belongs to. If that mapping has special 1613 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1614 * we may need to copy to a suitable page before moving to filecache. 1615 * 1616 * In a future release, this may well be extended to respect cpuset and 1617 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1618 * but for now it is a simple matter of zone. 1619 */ 1620 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1621 { 1622 return folio_zonenum(folio) > gfp_zone(gfp); 1623 } 1624 1625 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1626 struct shmem_inode_info *info, pgoff_t index) 1627 { 1628 struct folio *old, *new; 1629 struct address_space *swap_mapping; 1630 swp_entry_t entry; 1631 pgoff_t swap_index; 1632 int error; 1633 1634 old = *foliop; 1635 entry = folio_swap_entry(old); 1636 swap_index = swp_offset(entry); 1637 swap_mapping = swap_address_space(entry); 1638 1639 /* 1640 * We have arrived here because our zones are constrained, so don't 1641 * limit chance of success by further cpuset and node constraints. 1642 */ 1643 gfp &= ~GFP_CONSTRAINT_MASK; 1644 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1645 new = shmem_alloc_folio(gfp, info, index); 1646 if (!new) 1647 return -ENOMEM; 1648 1649 folio_get(new); 1650 folio_copy(new, old); 1651 flush_dcache_folio(new); 1652 1653 __folio_set_locked(new); 1654 __folio_set_swapbacked(new); 1655 folio_mark_uptodate(new); 1656 folio_set_swap_entry(new, entry); 1657 folio_set_swapcache(new); 1658 1659 /* 1660 * Our caller will very soon move newpage out of swapcache, but it's 1661 * a nice clean interface for us to replace oldpage by newpage there. 1662 */ 1663 xa_lock_irq(&swap_mapping->i_pages); 1664 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1665 if (!error) { 1666 mem_cgroup_migrate(old, new); 1667 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1668 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1669 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1670 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1671 } 1672 xa_unlock_irq(&swap_mapping->i_pages); 1673 1674 if (unlikely(error)) { 1675 /* 1676 * Is this possible? I think not, now that our callers check 1677 * both PageSwapCache and page_private after getting page lock; 1678 * but be defensive. Reverse old to newpage for clear and free. 1679 */ 1680 old = new; 1681 } else { 1682 folio_add_lru(new); 1683 *foliop = new; 1684 } 1685 1686 folio_clear_swapcache(old); 1687 old->private = NULL; 1688 1689 folio_unlock(old); 1690 folio_put_refs(old, 2); 1691 return error; 1692 } 1693 1694 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1695 struct folio *folio, swp_entry_t swap) 1696 { 1697 struct address_space *mapping = inode->i_mapping; 1698 struct shmem_inode_info *info = SHMEM_I(inode); 1699 swp_entry_t swapin_error; 1700 void *old; 1701 1702 swapin_error = make_swapin_error_entry(); 1703 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1704 swp_to_radix_entry(swap), 1705 swp_to_radix_entry(swapin_error), 0); 1706 if (old != swp_to_radix_entry(swap)) 1707 return; 1708 1709 folio_wait_writeback(folio); 1710 delete_from_swap_cache(folio); 1711 spin_lock_irq(&info->lock); 1712 /* 1713 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1714 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1715 * shmem_evict_inode. 1716 */ 1717 info->alloced--; 1718 info->swapped--; 1719 shmem_recalc_inode(inode); 1720 spin_unlock_irq(&info->lock); 1721 swap_free(swap); 1722 } 1723 1724 /* 1725 * Swap in the folio pointed to by *foliop. 1726 * Caller has to make sure that *foliop contains a valid swapped folio. 1727 * Returns 0 and the folio in foliop if success. On failure, returns the 1728 * error code and NULL in *foliop. 1729 */ 1730 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1731 struct folio **foliop, enum sgp_type sgp, 1732 gfp_t gfp, struct vm_area_struct *vma, 1733 vm_fault_t *fault_type) 1734 { 1735 struct address_space *mapping = inode->i_mapping; 1736 struct shmem_inode_info *info = SHMEM_I(inode); 1737 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1738 struct folio *folio = NULL; 1739 swp_entry_t swap; 1740 int error; 1741 1742 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1743 swap = radix_to_swp_entry(*foliop); 1744 *foliop = NULL; 1745 1746 if (is_swapin_error_entry(swap)) 1747 return -EIO; 1748 1749 /* Look it up and read it in.. */ 1750 folio = swap_cache_get_folio(swap, NULL, 0); 1751 if (!folio) { 1752 /* Or update major stats only when swapin succeeds?? */ 1753 if (fault_type) { 1754 *fault_type |= VM_FAULT_MAJOR; 1755 count_vm_event(PGMAJFAULT); 1756 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1757 } 1758 /* Here we actually start the io */ 1759 folio = shmem_swapin(swap, gfp, info, index); 1760 if (!folio) { 1761 error = -ENOMEM; 1762 goto failed; 1763 } 1764 } 1765 1766 /* We have to do this with folio locked to prevent races */ 1767 folio_lock(folio); 1768 if (!folio_test_swapcache(folio) || 1769 folio_swap_entry(folio).val != swap.val || 1770 !shmem_confirm_swap(mapping, index, swap)) { 1771 error = -EEXIST; 1772 goto unlock; 1773 } 1774 if (!folio_test_uptodate(folio)) { 1775 error = -EIO; 1776 goto failed; 1777 } 1778 folio_wait_writeback(folio); 1779 1780 /* 1781 * Some architectures may have to restore extra metadata to the 1782 * folio after reading from swap. 1783 */ 1784 arch_swap_restore(swap, folio); 1785 1786 if (shmem_should_replace_folio(folio, gfp)) { 1787 error = shmem_replace_folio(&folio, gfp, info, index); 1788 if (error) 1789 goto failed; 1790 } 1791 1792 error = shmem_add_to_page_cache(folio, mapping, index, 1793 swp_to_radix_entry(swap), gfp, 1794 charge_mm); 1795 if (error) 1796 goto failed; 1797 1798 spin_lock_irq(&info->lock); 1799 info->swapped--; 1800 shmem_recalc_inode(inode); 1801 spin_unlock_irq(&info->lock); 1802 1803 if (sgp == SGP_WRITE) 1804 folio_mark_accessed(folio); 1805 1806 delete_from_swap_cache(folio); 1807 folio_mark_dirty(folio); 1808 swap_free(swap); 1809 1810 *foliop = folio; 1811 return 0; 1812 failed: 1813 if (!shmem_confirm_swap(mapping, index, swap)) 1814 error = -EEXIST; 1815 if (error == -EIO) 1816 shmem_set_folio_swapin_error(inode, index, folio, swap); 1817 unlock: 1818 if (folio) { 1819 folio_unlock(folio); 1820 folio_put(folio); 1821 } 1822 1823 return error; 1824 } 1825 1826 /* 1827 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1828 * 1829 * If we allocate a new one we do not mark it dirty. That's up to the 1830 * vm. If we swap it in we mark it dirty since we also free the swap 1831 * entry since a page cannot live in both the swap and page cache. 1832 * 1833 * vma, vmf, and fault_type are only supplied by shmem_fault: 1834 * otherwise they are NULL. 1835 */ 1836 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1837 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1838 struct vm_area_struct *vma, struct vm_fault *vmf, 1839 vm_fault_t *fault_type) 1840 { 1841 struct address_space *mapping = inode->i_mapping; 1842 struct shmem_inode_info *info = SHMEM_I(inode); 1843 struct shmem_sb_info *sbinfo; 1844 struct mm_struct *charge_mm; 1845 struct folio *folio; 1846 pgoff_t hindex; 1847 gfp_t huge_gfp; 1848 int error; 1849 int once = 0; 1850 int alloced = 0; 1851 1852 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1853 return -EFBIG; 1854 repeat: 1855 if (sgp <= SGP_CACHE && 1856 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1857 return -EINVAL; 1858 } 1859 1860 sbinfo = SHMEM_SB(inode->i_sb); 1861 charge_mm = vma ? vma->vm_mm : NULL; 1862 1863 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1864 if (folio && vma && userfaultfd_minor(vma)) { 1865 if (!xa_is_value(folio)) { 1866 folio_unlock(folio); 1867 folio_put(folio); 1868 } 1869 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1870 return 0; 1871 } 1872 1873 if (xa_is_value(folio)) { 1874 error = shmem_swapin_folio(inode, index, &folio, 1875 sgp, gfp, vma, fault_type); 1876 if (error == -EEXIST) 1877 goto repeat; 1878 1879 *foliop = folio; 1880 return error; 1881 } 1882 1883 if (folio) { 1884 if (sgp == SGP_WRITE) 1885 folio_mark_accessed(folio); 1886 if (folio_test_uptodate(folio)) 1887 goto out; 1888 /* fallocated folio */ 1889 if (sgp != SGP_READ) 1890 goto clear; 1891 folio_unlock(folio); 1892 folio_put(folio); 1893 } 1894 1895 /* 1896 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1897 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1898 */ 1899 *foliop = NULL; 1900 if (sgp == SGP_READ) 1901 return 0; 1902 if (sgp == SGP_NOALLOC) 1903 return -ENOENT; 1904 1905 /* 1906 * Fast cache lookup and swap lookup did not find it: allocate. 1907 */ 1908 1909 if (vma && userfaultfd_missing(vma)) { 1910 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1911 return 0; 1912 } 1913 1914 if (!shmem_is_huge(vma, inode, index, false)) 1915 goto alloc_nohuge; 1916 1917 huge_gfp = vma_thp_gfp_mask(vma); 1918 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1919 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1920 if (IS_ERR(folio)) { 1921 alloc_nohuge: 1922 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1923 } 1924 if (IS_ERR(folio)) { 1925 int retry = 5; 1926 1927 error = PTR_ERR(folio); 1928 folio = NULL; 1929 if (error != -ENOSPC) 1930 goto unlock; 1931 /* 1932 * Try to reclaim some space by splitting a large folio 1933 * beyond i_size on the filesystem. 1934 */ 1935 while (retry--) { 1936 int ret; 1937 1938 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1939 if (ret == SHRINK_STOP) 1940 break; 1941 if (ret) 1942 goto alloc_nohuge; 1943 } 1944 goto unlock; 1945 } 1946 1947 hindex = round_down(index, folio_nr_pages(folio)); 1948 1949 if (sgp == SGP_WRITE) 1950 __folio_set_referenced(folio); 1951 1952 error = shmem_add_to_page_cache(folio, mapping, hindex, 1953 NULL, gfp & GFP_RECLAIM_MASK, 1954 charge_mm); 1955 if (error) 1956 goto unacct; 1957 folio_add_lru(folio); 1958 1959 spin_lock_irq(&info->lock); 1960 info->alloced += folio_nr_pages(folio); 1961 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1962 shmem_recalc_inode(inode); 1963 spin_unlock_irq(&info->lock); 1964 alloced = true; 1965 1966 if (folio_test_pmd_mappable(folio) && 1967 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1968 folio_next_index(folio) - 1) { 1969 /* 1970 * Part of the large folio is beyond i_size: subject 1971 * to shrink under memory pressure. 1972 */ 1973 spin_lock(&sbinfo->shrinklist_lock); 1974 /* 1975 * _careful to defend against unlocked access to 1976 * ->shrink_list in shmem_unused_huge_shrink() 1977 */ 1978 if (list_empty_careful(&info->shrinklist)) { 1979 list_add_tail(&info->shrinklist, 1980 &sbinfo->shrinklist); 1981 sbinfo->shrinklist_len++; 1982 } 1983 spin_unlock(&sbinfo->shrinklist_lock); 1984 } 1985 1986 /* 1987 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 1988 */ 1989 if (sgp == SGP_FALLOC) 1990 sgp = SGP_WRITE; 1991 clear: 1992 /* 1993 * Let SGP_WRITE caller clear ends if write does not fill folio; 1994 * but SGP_FALLOC on a folio fallocated earlier must initialize 1995 * it now, lest undo on failure cancel our earlier guarantee. 1996 */ 1997 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 1998 long i, n = folio_nr_pages(folio); 1999 2000 for (i = 0; i < n; i++) 2001 clear_highpage(folio_page(folio, i)); 2002 flush_dcache_folio(folio); 2003 folio_mark_uptodate(folio); 2004 } 2005 2006 /* Perhaps the file has been truncated since we checked */ 2007 if (sgp <= SGP_CACHE && 2008 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2009 if (alloced) { 2010 folio_clear_dirty(folio); 2011 filemap_remove_folio(folio); 2012 spin_lock_irq(&info->lock); 2013 shmem_recalc_inode(inode); 2014 spin_unlock_irq(&info->lock); 2015 } 2016 error = -EINVAL; 2017 goto unlock; 2018 } 2019 out: 2020 *foliop = folio; 2021 return 0; 2022 2023 /* 2024 * Error recovery. 2025 */ 2026 unacct: 2027 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2028 2029 if (folio_test_large(folio)) { 2030 folio_unlock(folio); 2031 folio_put(folio); 2032 goto alloc_nohuge; 2033 } 2034 unlock: 2035 if (folio) { 2036 folio_unlock(folio); 2037 folio_put(folio); 2038 } 2039 if (error == -ENOSPC && !once++) { 2040 spin_lock_irq(&info->lock); 2041 shmem_recalc_inode(inode); 2042 spin_unlock_irq(&info->lock); 2043 goto repeat; 2044 } 2045 if (error == -EEXIST) 2046 goto repeat; 2047 return error; 2048 } 2049 2050 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2051 enum sgp_type sgp) 2052 { 2053 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2054 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2055 } 2056 2057 /* 2058 * This is like autoremove_wake_function, but it removes the wait queue 2059 * entry unconditionally - even if something else had already woken the 2060 * target. 2061 */ 2062 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2063 { 2064 int ret = default_wake_function(wait, mode, sync, key); 2065 list_del_init(&wait->entry); 2066 return ret; 2067 } 2068 2069 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2070 { 2071 struct vm_area_struct *vma = vmf->vma; 2072 struct inode *inode = file_inode(vma->vm_file); 2073 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2074 struct folio *folio = NULL; 2075 int err; 2076 vm_fault_t ret = VM_FAULT_LOCKED; 2077 2078 /* 2079 * Trinity finds that probing a hole which tmpfs is punching can 2080 * prevent the hole-punch from ever completing: which in turn 2081 * locks writers out with its hold on i_rwsem. So refrain from 2082 * faulting pages into the hole while it's being punched. Although 2083 * shmem_undo_range() does remove the additions, it may be unable to 2084 * keep up, as each new page needs its own unmap_mapping_range() call, 2085 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2086 * 2087 * It does not matter if we sometimes reach this check just before the 2088 * hole-punch begins, so that one fault then races with the punch: 2089 * we just need to make racing faults a rare case. 2090 * 2091 * The implementation below would be much simpler if we just used a 2092 * standard mutex or completion: but we cannot take i_rwsem in fault, 2093 * and bloating every shmem inode for this unlikely case would be sad. 2094 */ 2095 if (unlikely(inode->i_private)) { 2096 struct shmem_falloc *shmem_falloc; 2097 2098 spin_lock(&inode->i_lock); 2099 shmem_falloc = inode->i_private; 2100 if (shmem_falloc && 2101 shmem_falloc->waitq && 2102 vmf->pgoff >= shmem_falloc->start && 2103 vmf->pgoff < shmem_falloc->next) { 2104 struct file *fpin; 2105 wait_queue_head_t *shmem_falloc_waitq; 2106 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2107 2108 ret = VM_FAULT_NOPAGE; 2109 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2110 if (fpin) 2111 ret = VM_FAULT_RETRY; 2112 2113 shmem_falloc_waitq = shmem_falloc->waitq; 2114 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2115 TASK_UNINTERRUPTIBLE); 2116 spin_unlock(&inode->i_lock); 2117 schedule(); 2118 2119 /* 2120 * shmem_falloc_waitq points into the shmem_fallocate() 2121 * stack of the hole-punching task: shmem_falloc_waitq 2122 * is usually invalid by the time we reach here, but 2123 * finish_wait() does not dereference it in that case; 2124 * though i_lock needed lest racing with wake_up_all(). 2125 */ 2126 spin_lock(&inode->i_lock); 2127 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2128 spin_unlock(&inode->i_lock); 2129 2130 if (fpin) 2131 fput(fpin); 2132 return ret; 2133 } 2134 spin_unlock(&inode->i_lock); 2135 } 2136 2137 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2138 gfp, vma, vmf, &ret); 2139 if (err) 2140 return vmf_error(err); 2141 if (folio) 2142 vmf->page = folio_file_page(folio, vmf->pgoff); 2143 return ret; 2144 } 2145 2146 unsigned long shmem_get_unmapped_area(struct file *file, 2147 unsigned long uaddr, unsigned long len, 2148 unsigned long pgoff, unsigned long flags) 2149 { 2150 unsigned long (*get_area)(struct file *, 2151 unsigned long, unsigned long, unsigned long, unsigned long); 2152 unsigned long addr; 2153 unsigned long offset; 2154 unsigned long inflated_len; 2155 unsigned long inflated_addr; 2156 unsigned long inflated_offset; 2157 2158 if (len > TASK_SIZE) 2159 return -ENOMEM; 2160 2161 get_area = current->mm->get_unmapped_area; 2162 addr = get_area(file, uaddr, len, pgoff, flags); 2163 2164 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2165 return addr; 2166 if (IS_ERR_VALUE(addr)) 2167 return addr; 2168 if (addr & ~PAGE_MASK) 2169 return addr; 2170 if (addr > TASK_SIZE - len) 2171 return addr; 2172 2173 if (shmem_huge == SHMEM_HUGE_DENY) 2174 return addr; 2175 if (len < HPAGE_PMD_SIZE) 2176 return addr; 2177 if (flags & MAP_FIXED) 2178 return addr; 2179 /* 2180 * Our priority is to support MAP_SHARED mapped hugely; 2181 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2182 * But if caller specified an address hint and we allocated area there 2183 * successfully, respect that as before. 2184 */ 2185 if (uaddr == addr) 2186 return addr; 2187 2188 if (shmem_huge != SHMEM_HUGE_FORCE) { 2189 struct super_block *sb; 2190 2191 if (file) { 2192 VM_BUG_ON(file->f_op != &shmem_file_operations); 2193 sb = file_inode(file)->i_sb; 2194 } else { 2195 /* 2196 * Called directly from mm/mmap.c, or drivers/char/mem.c 2197 * for "/dev/zero", to create a shared anonymous object. 2198 */ 2199 if (IS_ERR(shm_mnt)) 2200 return addr; 2201 sb = shm_mnt->mnt_sb; 2202 } 2203 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2204 return addr; 2205 } 2206 2207 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2208 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2209 return addr; 2210 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2211 return addr; 2212 2213 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2214 if (inflated_len > TASK_SIZE) 2215 return addr; 2216 if (inflated_len < len) 2217 return addr; 2218 2219 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2220 if (IS_ERR_VALUE(inflated_addr)) 2221 return addr; 2222 if (inflated_addr & ~PAGE_MASK) 2223 return addr; 2224 2225 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2226 inflated_addr += offset - inflated_offset; 2227 if (inflated_offset > offset) 2228 inflated_addr += HPAGE_PMD_SIZE; 2229 2230 if (inflated_addr > TASK_SIZE - len) 2231 return addr; 2232 return inflated_addr; 2233 } 2234 2235 #ifdef CONFIG_NUMA 2236 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2237 { 2238 struct inode *inode = file_inode(vma->vm_file); 2239 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2240 } 2241 2242 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2243 unsigned long addr) 2244 { 2245 struct inode *inode = file_inode(vma->vm_file); 2246 pgoff_t index; 2247 2248 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2249 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2250 } 2251 #endif 2252 2253 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2254 { 2255 struct inode *inode = file_inode(file); 2256 struct shmem_inode_info *info = SHMEM_I(inode); 2257 int retval = -ENOMEM; 2258 2259 /* 2260 * What serializes the accesses to info->flags? 2261 * ipc_lock_object() when called from shmctl_do_lock(), 2262 * no serialization needed when called from shm_destroy(). 2263 */ 2264 if (lock && !(info->flags & VM_LOCKED)) { 2265 if (!user_shm_lock(inode->i_size, ucounts)) 2266 goto out_nomem; 2267 info->flags |= VM_LOCKED; 2268 mapping_set_unevictable(file->f_mapping); 2269 } 2270 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2271 user_shm_unlock(inode->i_size, ucounts); 2272 info->flags &= ~VM_LOCKED; 2273 mapping_clear_unevictable(file->f_mapping); 2274 } 2275 retval = 0; 2276 2277 out_nomem: 2278 return retval; 2279 } 2280 2281 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2282 { 2283 struct inode *inode = file_inode(file); 2284 struct shmem_inode_info *info = SHMEM_I(inode); 2285 int ret; 2286 2287 ret = seal_check_future_write(info->seals, vma); 2288 if (ret) 2289 return ret; 2290 2291 /* arm64 - allow memory tagging on RAM-based files */ 2292 vma->vm_flags |= VM_MTE_ALLOWED; 2293 2294 file_accessed(file); 2295 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2296 if (inode->i_nlink) 2297 vma->vm_ops = &shmem_vm_ops; 2298 else 2299 vma->vm_ops = &shmem_anon_vm_ops; 2300 return 0; 2301 } 2302 2303 #ifdef CONFIG_TMPFS_XATTR 2304 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2305 2306 /* 2307 * chattr's fsflags are unrelated to extended attributes, 2308 * but tmpfs has chosen to enable them under the same config option. 2309 */ 2310 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2311 { 2312 unsigned int i_flags = 0; 2313 2314 if (fsflags & FS_NOATIME_FL) 2315 i_flags |= S_NOATIME; 2316 if (fsflags & FS_APPEND_FL) 2317 i_flags |= S_APPEND; 2318 if (fsflags & FS_IMMUTABLE_FL) 2319 i_flags |= S_IMMUTABLE; 2320 /* 2321 * But FS_NODUMP_FL does not require any action in i_flags. 2322 */ 2323 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2324 } 2325 #else 2326 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2327 { 2328 } 2329 #define shmem_initxattrs NULL 2330 #endif 2331 2332 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir, 2333 umode_t mode, dev_t dev, unsigned long flags) 2334 { 2335 struct inode *inode; 2336 struct shmem_inode_info *info; 2337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2338 ino_t ino; 2339 2340 if (shmem_reserve_inode(sb, &ino)) 2341 return NULL; 2342 2343 inode = new_inode(sb); 2344 if (inode) { 2345 inode->i_ino = ino; 2346 inode_init_owner(&init_user_ns, inode, dir, mode); 2347 inode->i_blocks = 0; 2348 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2349 inode->i_generation = get_random_u32(); 2350 info = SHMEM_I(inode); 2351 memset(info, 0, (char *)inode - (char *)info); 2352 spin_lock_init(&info->lock); 2353 atomic_set(&info->stop_eviction, 0); 2354 info->seals = F_SEAL_SEAL; 2355 info->flags = flags & VM_NORESERVE; 2356 info->i_crtime = inode->i_mtime; 2357 info->fsflags = (dir == NULL) ? 0 : 2358 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2359 if (info->fsflags) 2360 shmem_set_inode_flags(inode, info->fsflags); 2361 INIT_LIST_HEAD(&info->shrinklist); 2362 INIT_LIST_HEAD(&info->swaplist); 2363 simple_xattrs_init(&info->xattrs); 2364 cache_no_acl(inode); 2365 mapping_set_large_folios(inode->i_mapping); 2366 2367 switch (mode & S_IFMT) { 2368 default: 2369 inode->i_op = &shmem_special_inode_operations; 2370 init_special_inode(inode, mode, dev); 2371 break; 2372 case S_IFREG: 2373 inode->i_mapping->a_ops = &shmem_aops; 2374 inode->i_op = &shmem_inode_operations; 2375 inode->i_fop = &shmem_file_operations; 2376 mpol_shared_policy_init(&info->policy, 2377 shmem_get_sbmpol(sbinfo)); 2378 break; 2379 case S_IFDIR: 2380 inc_nlink(inode); 2381 /* Some things misbehave if size == 0 on a directory */ 2382 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2383 inode->i_op = &shmem_dir_inode_operations; 2384 inode->i_fop = &simple_dir_operations; 2385 break; 2386 case S_IFLNK: 2387 /* 2388 * Must not load anything in the rbtree, 2389 * mpol_free_shared_policy will not be called. 2390 */ 2391 mpol_shared_policy_init(&info->policy, NULL); 2392 break; 2393 } 2394 2395 lockdep_annotate_inode_mutex_key(inode); 2396 } else 2397 shmem_free_inode(sb); 2398 return inode; 2399 } 2400 2401 #ifdef CONFIG_USERFAULTFD 2402 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2403 pmd_t *dst_pmd, 2404 struct vm_area_struct *dst_vma, 2405 unsigned long dst_addr, 2406 unsigned long src_addr, 2407 bool zeropage, bool wp_copy, 2408 struct page **pagep) 2409 { 2410 struct inode *inode = file_inode(dst_vma->vm_file); 2411 struct shmem_inode_info *info = SHMEM_I(inode); 2412 struct address_space *mapping = inode->i_mapping; 2413 gfp_t gfp = mapping_gfp_mask(mapping); 2414 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2415 void *page_kaddr; 2416 struct folio *folio; 2417 int ret; 2418 pgoff_t max_off; 2419 2420 if (!shmem_inode_acct_block(inode, 1)) { 2421 /* 2422 * We may have got a page, returned -ENOENT triggering a retry, 2423 * and now we find ourselves with -ENOMEM. Release the page, to 2424 * avoid a BUG_ON in our caller. 2425 */ 2426 if (unlikely(*pagep)) { 2427 put_page(*pagep); 2428 *pagep = NULL; 2429 } 2430 return -ENOMEM; 2431 } 2432 2433 if (!*pagep) { 2434 ret = -ENOMEM; 2435 folio = shmem_alloc_folio(gfp, info, pgoff); 2436 if (!folio) 2437 goto out_unacct_blocks; 2438 2439 if (!zeropage) { /* COPY */ 2440 page_kaddr = kmap_local_folio(folio, 0); 2441 /* 2442 * The read mmap_lock is held here. Despite the 2443 * mmap_lock being read recursive a deadlock is still 2444 * possible if a writer has taken a lock. For example: 2445 * 2446 * process A thread 1 takes read lock on own mmap_lock 2447 * process A thread 2 calls mmap, blocks taking write lock 2448 * process B thread 1 takes page fault, read lock on own mmap lock 2449 * process B thread 2 calls mmap, blocks taking write lock 2450 * process A thread 1 blocks taking read lock on process B 2451 * process B thread 1 blocks taking read lock on process A 2452 * 2453 * Disable page faults to prevent potential deadlock 2454 * and retry the copy outside the mmap_lock. 2455 */ 2456 pagefault_disable(); 2457 ret = copy_from_user(page_kaddr, 2458 (const void __user *)src_addr, 2459 PAGE_SIZE); 2460 pagefault_enable(); 2461 kunmap_local(page_kaddr); 2462 2463 /* fallback to copy_from_user outside mmap_lock */ 2464 if (unlikely(ret)) { 2465 *pagep = &folio->page; 2466 ret = -ENOENT; 2467 /* don't free the page */ 2468 goto out_unacct_blocks; 2469 } 2470 2471 flush_dcache_folio(folio); 2472 } else { /* ZEROPAGE */ 2473 clear_user_highpage(&folio->page, dst_addr); 2474 } 2475 } else { 2476 folio = page_folio(*pagep); 2477 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2478 *pagep = NULL; 2479 } 2480 2481 VM_BUG_ON(folio_test_locked(folio)); 2482 VM_BUG_ON(folio_test_swapbacked(folio)); 2483 __folio_set_locked(folio); 2484 __folio_set_swapbacked(folio); 2485 __folio_mark_uptodate(folio); 2486 2487 ret = -EFAULT; 2488 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2489 if (unlikely(pgoff >= max_off)) 2490 goto out_release; 2491 2492 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2493 gfp & GFP_RECLAIM_MASK, dst_mm); 2494 if (ret) 2495 goto out_release; 2496 2497 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2498 &folio->page, true, wp_copy); 2499 if (ret) 2500 goto out_delete_from_cache; 2501 2502 spin_lock_irq(&info->lock); 2503 info->alloced++; 2504 inode->i_blocks += BLOCKS_PER_PAGE; 2505 shmem_recalc_inode(inode); 2506 spin_unlock_irq(&info->lock); 2507 2508 folio_unlock(folio); 2509 return 0; 2510 out_delete_from_cache: 2511 filemap_remove_folio(folio); 2512 out_release: 2513 folio_unlock(folio); 2514 folio_put(folio); 2515 out_unacct_blocks: 2516 shmem_inode_unacct_blocks(inode, 1); 2517 return ret; 2518 } 2519 #endif /* CONFIG_USERFAULTFD */ 2520 2521 #ifdef CONFIG_TMPFS 2522 static const struct inode_operations shmem_symlink_inode_operations; 2523 static const struct inode_operations shmem_short_symlink_operations; 2524 2525 static int 2526 shmem_write_begin(struct file *file, struct address_space *mapping, 2527 loff_t pos, unsigned len, 2528 struct page **pagep, void **fsdata) 2529 { 2530 struct inode *inode = mapping->host; 2531 struct shmem_inode_info *info = SHMEM_I(inode); 2532 pgoff_t index = pos >> PAGE_SHIFT; 2533 struct folio *folio; 2534 int ret = 0; 2535 2536 /* i_rwsem is held by caller */ 2537 if (unlikely(info->seals & (F_SEAL_GROW | 2538 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2539 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2540 return -EPERM; 2541 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2542 return -EPERM; 2543 } 2544 2545 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2546 2547 if (ret) 2548 return ret; 2549 2550 *pagep = folio_file_page(folio, index); 2551 if (PageHWPoison(*pagep)) { 2552 folio_unlock(folio); 2553 folio_put(folio); 2554 *pagep = NULL; 2555 return -EIO; 2556 } 2557 2558 return 0; 2559 } 2560 2561 static int 2562 shmem_write_end(struct file *file, struct address_space *mapping, 2563 loff_t pos, unsigned len, unsigned copied, 2564 struct page *page, void *fsdata) 2565 { 2566 struct inode *inode = mapping->host; 2567 2568 if (pos + copied > inode->i_size) 2569 i_size_write(inode, pos + copied); 2570 2571 if (!PageUptodate(page)) { 2572 struct page *head = compound_head(page); 2573 if (PageTransCompound(page)) { 2574 int i; 2575 2576 for (i = 0; i < HPAGE_PMD_NR; i++) { 2577 if (head + i == page) 2578 continue; 2579 clear_highpage(head + i); 2580 flush_dcache_page(head + i); 2581 } 2582 } 2583 if (copied < PAGE_SIZE) { 2584 unsigned from = pos & (PAGE_SIZE - 1); 2585 zero_user_segments(page, 0, from, 2586 from + copied, PAGE_SIZE); 2587 } 2588 SetPageUptodate(head); 2589 } 2590 set_page_dirty(page); 2591 unlock_page(page); 2592 put_page(page); 2593 2594 return copied; 2595 } 2596 2597 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2598 { 2599 struct file *file = iocb->ki_filp; 2600 struct inode *inode = file_inode(file); 2601 struct address_space *mapping = inode->i_mapping; 2602 pgoff_t index; 2603 unsigned long offset; 2604 int error = 0; 2605 ssize_t retval = 0; 2606 loff_t *ppos = &iocb->ki_pos; 2607 2608 index = *ppos >> PAGE_SHIFT; 2609 offset = *ppos & ~PAGE_MASK; 2610 2611 for (;;) { 2612 struct folio *folio = NULL; 2613 struct page *page = NULL; 2614 pgoff_t end_index; 2615 unsigned long nr, ret; 2616 loff_t i_size = i_size_read(inode); 2617 2618 end_index = i_size >> PAGE_SHIFT; 2619 if (index > end_index) 2620 break; 2621 if (index == end_index) { 2622 nr = i_size & ~PAGE_MASK; 2623 if (nr <= offset) 2624 break; 2625 } 2626 2627 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2628 if (error) { 2629 if (error == -EINVAL) 2630 error = 0; 2631 break; 2632 } 2633 if (folio) { 2634 folio_unlock(folio); 2635 2636 page = folio_file_page(folio, index); 2637 if (PageHWPoison(page)) { 2638 folio_put(folio); 2639 error = -EIO; 2640 break; 2641 } 2642 } 2643 2644 /* 2645 * We must evaluate after, since reads (unlike writes) 2646 * are called without i_rwsem protection against truncate 2647 */ 2648 nr = PAGE_SIZE; 2649 i_size = i_size_read(inode); 2650 end_index = i_size >> PAGE_SHIFT; 2651 if (index == end_index) { 2652 nr = i_size & ~PAGE_MASK; 2653 if (nr <= offset) { 2654 if (folio) 2655 folio_put(folio); 2656 break; 2657 } 2658 } 2659 nr -= offset; 2660 2661 if (folio) { 2662 /* 2663 * If users can be writing to this page using arbitrary 2664 * virtual addresses, take care about potential aliasing 2665 * before reading the page on the kernel side. 2666 */ 2667 if (mapping_writably_mapped(mapping)) 2668 flush_dcache_page(page); 2669 /* 2670 * Mark the page accessed if we read the beginning. 2671 */ 2672 if (!offset) 2673 folio_mark_accessed(folio); 2674 /* 2675 * Ok, we have the page, and it's up-to-date, so 2676 * now we can copy it to user space... 2677 */ 2678 ret = copy_page_to_iter(page, offset, nr, to); 2679 folio_put(folio); 2680 2681 } else if (user_backed_iter(to)) { 2682 /* 2683 * Copy to user tends to be so well optimized, but 2684 * clear_user() not so much, that it is noticeably 2685 * faster to copy the zero page instead of clearing. 2686 */ 2687 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2688 } else { 2689 /* 2690 * But submitting the same page twice in a row to 2691 * splice() - or others? - can result in confusion: 2692 * so don't attempt that optimization on pipes etc. 2693 */ 2694 ret = iov_iter_zero(nr, to); 2695 } 2696 2697 retval += ret; 2698 offset += ret; 2699 index += offset >> PAGE_SHIFT; 2700 offset &= ~PAGE_MASK; 2701 2702 if (!iov_iter_count(to)) 2703 break; 2704 if (ret < nr) { 2705 error = -EFAULT; 2706 break; 2707 } 2708 cond_resched(); 2709 } 2710 2711 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2712 file_accessed(file); 2713 return retval ? retval : error; 2714 } 2715 2716 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2717 { 2718 struct address_space *mapping = file->f_mapping; 2719 struct inode *inode = mapping->host; 2720 2721 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2722 return generic_file_llseek_size(file, offset, whence, 2723 MAX_LFS_FILESIZE, i_size_read(inode)); 2724 if (offset < 0) 2725 return -ENXIO; 2726 2727 inode_lock(inode); 2728 /* We're holding i_rwsem so we can access i_size directly */ 2729 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2730 if (offset >= 0) 2731 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2732 inode_unlock(inode); 2733 return offset; 2734 } 2735 2736 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2737 loff_t len) 2738 { 2739 struct inode *inode = file_inode(file); 2740 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2741 struct shmem_inode_info *info = SHMEM_I(inode); 2742 struct shmem_falloc shmem_falloc; 2743 pgoff_t start, index, end, undo_fallocend; 2744 int error; 2745 2746 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2747 return -EOPNOTSUPP; 2748 2749 inode_lock(inode); 2750 2751 if (mode & FALLOC_FL_PUNCH_HOLE) { 2752 struct address_space *mapping = file->f_mapping; 2753 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2754 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2755 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2756 2757 /* protected by i_rwsem */ 2758 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2759 error = -EPERM; 2760 goto out; 2761 } 2762 2763 shmem_falloc.waitq = &shmem_falloc_waitq; 2764 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2765 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2766 spin_lock(&inode->i_lock); 2767 inode->i_private = &shmem_falloc; 2768 spin_unlock(&inode->i_lock); 2769 2770 if ((u64)unmap_end > (u64)unmap_start) 2771 unmap_mapping_range(mapping, unmap_start, 2772 1 + unmap_end - unmap_start, 0); 2773 shmem_truncate_range(inode, offset, offset + len - 1); 2774 /* No need to unmap again: hole-punching leaves COWed pages */ 2775 2776 spin_lock(&inode->i_lock); 2777 inode->i_private = NULL; 2778 wake_up_all(&shmem_falloc_waitq); 2779 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2780 spin_unlock(&inode->i_lock); 2781 error = 0; 2782 goto out; 2783 } 2784 2785 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2786 error = inode_newsize_ok(inode, offset + len); 2787 if (error) 2788 goto out; 2789 2790 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2791 error = -EPERM; 2792 goto out; 2793 } 2794 2795 start = offset >> PAGE_SHIFT; 2796 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2797 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2798 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2799 error = -ENOSPC; 2800 goto out; 2801 } 2802 2803 shmem_falloc.waitq = NULL; 2804 shmem_falloc.start = start; 2805 shmem_falloc.next = start; 2806 shmem_falloc.nr_falloced = 0; 2807 shmem_falloc.nr_unswapped = 0; 2808 spin_lock(&inode->i_lock); 2809 inode->i_private = &shmem_falloc; 2810 spin_unlock(&inode->i_lock); 2811 2812 /* 2813 * info->fallocend is only relevant when huge pages might be 2814 * involved: to prevent split_huge_page() freeing fallocated 2815 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2816 */ 2817 undo_fallocend = info->fallocend; 2818 if (info->fallocend < end) 2819 info->fallocend = end; 2820 2821 for (index = start; index < end; ) { 2822 struct folio *folio; 2823 2824 /* 2825 * Good, the fallocate(2) manpage permits EINTR: we may have 2826 * been interrupted because we are using up too much memory. 2827 */ 2828 if (signal_pending(current)) 2829 error = -EINTR; 2830 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2831 error = -ENOMEM; 2832 else 2833 error = shmem_get_folio(inode, index, &folio, 2834 SGP_FALLOC); 2835 if (error) { 2836 info->fallocend = undo_fallocend; 2837 /* Remove the !uptodate folios we added */ 2838 if (index > start) { 2839 shmem_undo_range(inode, 2840 (loff_t)start << PAGE_SHIFT, 2841 ((loff_t)index << PAGE_SHIFT) - 1, true); 2842 } 2843 goto undone; 2844 } 2845 2846 /* 2847 * Here is a more important optimization than it appears: 2848 * a second SGP_FALLOC on the same large folio will clear it, 2849 * making it uptodate and un-undoable if we fail later. 2850 */ 2851 index = folio_next_index(folio); 2852 /* Beware 32-bit wraparound */ 2853 if (!index) 2854 index--; 2855 2856 /* 2857 * Inform shmem_writepage() how far we have reached. 2858 * No need for lock or barrier: we have the page lock. 2859 */ 2860 if (!folio_test_uptodate(folio)) 2861 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2862 shmem_falloc.next = index; 2863 2864 /* 2865 * If !uptodate, leave it that way so that freeable folios 2866 * can be recognized if we need to rollback on error later. 2867 * But mark it dirty so that memory pressure will swap rather 2868 * than free the folios we are allocating (and SGP_CACHE folios 2869 * might still be clean: we now need to mark those dirty too). 2870 */ 2871 folio_mark_dirty(folio); 2872 folio_unlock(folio); 2873 folio_put(folio); 2874 cond_resched(); 2875 } 2876 2877 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2878 i_size_write(inode, offset + len); 2879 undone: 2880 spin_lock(&inode->i_lock); 2881 inode->i_private = NULL; 2882 spin_unlock(&inode->i_lock); 2883 out: 2884 if (!error) 2885 file_modified(file); 2886 inode_unlock(inode); 2887 return error; 2888 } 2889 2890 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2891 { 2892 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2893 2894 buf->f_type = TMPFS_MAGIC; 2895 buf->f_bsize = PAGE_SIZE; 2896 buf->f_namelen = NAME_MAX; 2897 if (sbinfo->max_blocks) { 2898 buf->f_blocks = sbinfo->max_blocks; 2899 buf->f_bavail = 2900 buf->f_bfree = sbinfo->max_blocks - 2901 percpu_counter_sum(&sbinfo->used_blocks); 2902 } 2903 if (sbinfo->max_inodes) { 2904 buf->f_files = sbinfo->max_inodes; 2905 buf->f_ffree = sbinfo->free_inodes; 2906 } 2907 /* else leave those fields 0 like simple_statfs */ 2908 2909 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2910 2911 return 0; 2912 } 2913 2914 /* 2915 * File creation. Allocate an inode, and we're done.. 2916 */ 2917 static int 2918 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2919 struct dentry *dentry, umode_t mode, dev_t dev) 2920 { 2921 struct inode *inode; 2922 int error = -ENOSPC; 2923 2924 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2925 if (inode) { 2926 error = simple_acl_create(dir, inode); 2927 if (error) 2928 goto out_iput; 2929 error = security_inode_init_security(inode, dir, 2930 &dentry->d_name, 2931 shmem_initxattrs, NULL); 2932 if (error && error != -EOPNOTSUPP) 2933 goto out_iput; 2934 2935 error = 0; 2936 dir->i_size += BOGO_DIRENT_SIZE; 2937 dir->i_ctime = dir->i_mtime = current_time(dir); 2938 inode_inc_iversion(dir); 2939 d_instantiate(dentry, inode); 2940 dget(dentry); /* Extra count - pin the dentry in core */ 2941 } 2942 return error; 2943 out_iput: 2944 iput(inode); 2945 return error; 2946 } 2947 2948 static int 2949 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2950 struct file *file, umode_t mode) 2951 { 2952 struct inode *inode; 2953 int error = -ENOSPC; 2954 2955 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2956 if (inode) { 2957 error = security_inode_init_security(inode, dir, 2958 NULL, 2959 shmem_initxattrs, NULL); 2960 if (error && error != -EOPNOTSUPP) 2961 goto out_iput; 2962 error = simple_acl_create(dir, inode); 2963 if (error) 2964 goto out_iput; 2965 d_tmpfile(file, inode); 2966 } 2967 return finish_open_simple(file, error); 2968 out_iput: 2969 iput(inode); 2970 return error; 2971 } 2972 2973 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2974 struct dentry *dentry, umode_t mode) 2975 { 2976 int error; 2977 2978 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2979 mode | S_IFDIR, 0))) 2980 return error; 2981 inc_nlink(dir); 2982 return 0; 2983 } 2984 2985 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2986 struct dentry *dentry, umode_t mode, bool excl) 2987 { 2988 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2989 } 2990 2991 /* 2992 * Link a file.. 2993 */ 2994 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2995 { 2996 struct inode *inode = d_inode(old_dentry); 2997 int ret = 0; 2998 2999 /* 3000 * No ordinary (disk based) filesystem counts links as inodes; 3001 * but each new link needs a new dentry, pinning lowmem, and 3002 * tmpfs dentries cannot be pruned until they are unlinked. 3003 * But if an O_TMPFILE file is linked into the tmpfs, the 3004 * first link must skip that, to get the accounting right. 3005 */ 3006 if (inode->i_nlink) { 3007 ret = shmem_reserve_inode(inode->i_sb, NULL); 3008 if (ret) 3009 goto out; 3010 } 3011 3012 dir->i_size += BOGO_DIRENT_SIZE; 3013 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3014 inode_inc_iversion(dir); 3015 inc_nlink(inode); 3016 ihold(inode); /* New dentry reference */ 3017 dget(dentry); /* Extra pinning count for the created dentry */ 3018 d_instantiate(dentry, inode); 3019 out: 3020 return ret; 3021 } 3022 3023 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3024 { 3025 struct inode *inode = d_inode(dentry); 3026 3027 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3028 shmem_free_inode(inode->i_sb); 3029 3030 dir->i_size -= BOGO_DIRENT_SIZE; 3031 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3032 inode_inc_iversion(dir); 3033 drop_nlink(inode); 3034 dput(dentry); /* Undo the count from "create" - this does all the work */ 3035 return 0; 3036 } 3037 3038 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3039 { 3040 if (!simple_empty(dentry)) 3041 return -ENOTEMPTY; 3042 3043 drop_nlink(d_inode(dentry)); 3044 drop_nlink(dir); 3045 return shmem_unlink(dir, dentry); 3046 } 3047 3048 static int shmem_whiteout(struct user_namespace *mnt_userns, 3049 struct inode *old_dir, struct dentry *old_dentry) 3050 { 3051 struct dentry *whiteout; 3052 int error; 3053 3054 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3055 if (!whiteout) 3056 return -ENOMEM; 3057 3058 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 3059 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3060 dput(whiteout); 3061 if (error) 3062 return error; 3063 3064 /* 3065 * Cheat and hash the whiteout while the old dentry is still in 3066 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3067 * 3068 * d_lookup() will consistently find one of them at this point, 3069 * not sure which one, but that isn't even important. 3070 */ 3071 d_rehash(whiteout); 3072 return 0; 3073 } 3074 3075 /* 3076 * The VFS layer already does all the dentry stuff for rename, 3077 * we just have to decrement the usage count for the target if 3078 * it exists so that the VFS layer correctly free's it when it 3079 * gets overwritten. 3080 */ 3081 static int shmem_rename2(struct user_namespace *mnt_userns, 3082 struct inode *old_dir, struct dentry *old_dentry, 3083 struct inode *new_dir, struct dentry *new_dentry, 3084 unsigned int flags) 3085 { 3086 struct inode *inode = d_inode(old_dentry); 3087 int they_are_dirs = S_ISDIR(inode->i_mode); 3088 3089 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3090 return -EINVAL; 3091 3092 if (flags & RENAME_EXCHANGE) 3093 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3094 3095 if (!simple_empty(new_dentry)) 3096 return -ENOTEMPTY; 3097 3098 if (flags & RENAME_WHITEOUT) { 3099 int error; 3100 3101 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3102 if (error) 3103 return error; 3104 } 3105 3106 if (d_really_is_positive(new_dentry)) { 3107 (void) shmem_unlink(new_dir, new_dentry); 3108 if (they_are_dirs) { 3109 drop_nlink(d_inode(new_dentry)); 3110 drop_nlink(old_dir); 3111 } 3112 } else if (they_are_dirs) { 3113 drop_nlink(old_dir); 3114 inc_nlink(new_dir); 3115 } 3116 3117 old_dir->i_size -= BOGO_DIRENT_SIZE; 3118 new_dir->i_size += BOGO_DIRENT_SIZE; 3119 old_dir->i_ctime = old_dir->i_mtime = 3120 new_dir->i_ctime = new_dir->i_mtime = 3121 inode->i_ctime = current_time(old_dir); 3122 inode_inc_iversion(old_dir); 3123 inode_inc_iversion(new_dir); 3124 return 0; 3125 } 3126 3127 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3128 struct dentry *dentry, const char *symname) 3129 { 3130 int error; 3131 int len; 3132 struct inode *inode; 3133 struct folio *folio; 3134 3135 len = strlen(symname) + 1; 3136 if (len > PAGE_SIZE) 3137 return -ENAMETOOLONG; 3138 3139 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3140 VM_NORESERVE); 3141 if (!inode) 3142 return -ENOSPC; 3143 3144 error = security_inode_init_security(inode, dir, &dentry->d_name, 3145 shmem_initxattrs, NULL); 3146 if (error && error != -EOPNOTSUPP) { 3147 iput(inode); 3148 return error; 3149 } 3150 3151 inode->i_size = len-1; 3152 if (len <= SHORT_SYMLINK_LEN) { 3153 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3154 if (!inode->i_link) { 3155 iput(inode); 3156 return -ENOMEM; 3157 } 3158 inode->i_op = &shmem_short_symlink_operations; 3159 } else { 3160 inode_nohighmem(inode); 3161 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3162 if (error) { 3163 iput(inode); 3164 return error; 3165 } 3166 inode->i_mapping->a_ops = &shmem_aops; 3167 inode->i_op = &shmem_symlink_inode_operations; 3168 memcpy(folio_address(folio), symname, len); 3169 folio_mark_uptodate(folio); 3170 folio_mark_dirty(folio); 3171 folio_unlock(folio); 3172 folio_put(folio); 3173 } 3174 dir->i_size += BOGO_DIRENT_SIZE; 3175 dir->i_ctime = dir->i_mtime = current_time(dir); 3176 inode_inc_iversion(dir); 3177 d_instantiate(dentry, inode); 3178 dget(dentry); 3179 return 0; 3180 } 3181 3182 static void shmem_put_link(void *arg) 3183 { 3184 folio_mark_accessed(arg); 3185 folio_put(arg); 3186 } 3187 3188 static const char *shmem_get_link(struct dentry *dentry, 3189 struct inode *inode, 3190 struct delayed_call *done) 3191 { 3192 struct folio *folio = NULL; 3193 int error; 3194 3195 if (!dentry) { 3196 folio = filemap_get_folio(inode->i_mapping, 0); 3197 if (!folio) 3198 return ERR_PTR(-ECHILD); 3199 if (PageHWPoison(folio_page(folio, 0)) || 3200 !folio_test_uptodate(folio)) { 3201 folio_put(folio); 3202 return ERR_PTR(-ECHILD); 3203 } 3204 } else { 3205 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3206 if (error) 3207 return ERR_PTR(error); 3208 if (!folio) 3209 return ERR_PTR(-ECHILD); 3210 if (PageHWPoison(folio_page(folio, 0))) { 3211 folio_unlock(folio); 3212 folio_put(folio); 3213 return ERR_PTR(-ECHILD); 3214 } 3215 folio_unlock(folio); 3216 } 3217 set_delayed_call(done, shmem_put_link, folio); 3218 return folio_address(folio); 3219 } 3220 3221 #ifdef CONFIG_TMPFS_XATTR 3222 3223 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3224 { 3225 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3226 3227 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3228 3229 return 0; 3230 } 3231 3232 static int shmem_fileattr_set(struct user_namespace *mnt_userns, 3233 struct dentry *dentry, struct fileattr *fa) 3234 { 3235 struct inode *inode = d_inode(dentry); 3236 struct shmem_inode_info *info = SHMEM_I(inode); 3237 3238 if (fileattr_has_fsx(fa)) 3239 return -EOPNOTSUPP; 3240 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3241 return -EOPNOTSUPP; 3242 3243 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3244 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3245 3246 shmem_set_inode_flags(inode, info->fsflags); 3247 inode->i_ctime = current_time(inode); 3248 inode_inc_iversion(inode); 3249 return 0; 3250 } 3251 3252 /* 3253 * Superblocks without xattr inode operations may get some security.* xattr 3254 * support from the LSM "for free". As soon as we have any other xattrs 3255 * like ACLs, we also need to implement the security.* handlers at 3256 * filesystem level, though. 3257 */ 3258 3259 /* 3260 * Callback for security_inode_init_security() for acquiring xattrs. 3261 */ 3262 static int shmem_initxattrs(struct inode *inode, 3263 const struct xattr *xattr_array, 3264 void *fs_info) 3265 { 3266 struct shmem_inode_info *info = SHMEM_I(inode); 3267 const struct xattr *xattr; 3268 struct simple_xattr *new_xattr; 3269 size_t len; 3270 3271 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3272 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3273 if (!new_xattr) 3274 return -ENOMEM; 3275 3276 len = strlen(xattr->name) + 1; 3277 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3278 GFP_KERNEL); 3279 if (!new_xattr->name) { 3280 kvfree(new_xattr); 3281 return -ENOMEM; 3282 } 3283 3284 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3285 XATTR_SECURITY_PREFIX_LEN); 3286 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3287 xattr->name, len); 3288 3289 simple_xattr_list_add(&info->xattrs, new_xattr); 3290 } 3291 3292 return 0; 3293 } 3294 3295 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3296 struct dentry *unused, struct inode *inode, 3297 const char *name, void *buffer, size_t size) 3298 { 3299 struct shmem_inode_info *info = SHMEM_I(inode); 3300 3301 name = xattr_full_name(handler, name); 3302 return simple_xattr_get(&info->xattrs, name, buffer, size); 3303 } 3304 3305 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3306 struct user_namespace *mnt_userns, 3307 struct dentry *unused, struct inode *inode, 3308 const char *name, const void *value, 3309 size_t size, int flags) 3310 { 3311 struct shmem_inode_info *info = SHMEM_I(inode); 3312 int err; 3313 3314 name = xattr_full_name(handler, name); 3315 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3316 if (!err) { 3317 inode->i_ctime = current_time(inode); 3318 inode_inc_iversion(inode); 3319 } 3320 return err; 3321 } 3322 3323 static const struct xattr_handler shmem_security_xattr_handler = { 3324 .prefix = XATTR_SECURITY_PREFIX, 3325 .get = shmem_xattr_handler_get, 3326 .set = shmem_xattr_handler_set, 3327 }; 3328 3329 static const struct xattr_handler shmem_trusted_xattr_handler = { 3330 .prefix = XATTR_TRUSTED_PREFIX, 3331 .get = shmem_xattr_handler_get, 3332 .set = shmem_xattr_handler_set, 3333 }; 3334 3335 static const struct xattr_handler *shmem_xattr_handlers[] = { 3336 #ifdef CONFIG_TMPFS_POSIX_ACL 3337 &posix_acl_access_xattr_handler, 3338 &posix_acl_default_xattr_handler, 3339 #endif 3340 &shmem_security_xattr_handler, 3341 &shmem_trusted_xattr_handler, 3342 NULL 3343 }; 3344 3345 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3346 { 3347 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3348 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3349 } 3350 #endif /* CONFIG_TMPFS_XATTR */ 3351 3352 static const struct inode_operations shmem_short_symlink_operations = { 3353 .getattr = shmem_getattr, 3354 .get_link = simple_get_link, 3355 #ifdef CONFIG_TMPFS_XATTR 3356 .listxattr = shmem_listxattr, 3357 #endif 3358 }; 3359 3360 static const struct inode_operations shmem_symlink_inode_operations = { 3361 .getattr = shmem_getattr, 3362 .get_link = shmem_get_link, 3363 #ifdef CONFIG_TMPFS_XATTR 3364 .listxattr = shmem_listxattr, 3365 #endif 3366 }; 3367 3368 static struct dentry *shmem_get_parent(struct dentry *child) 3369 { 3370 return ERR_PTR(-ESTALE); 3371 } 3372 3373 static int shmem_match(struct inode *ino, void *vfh) 3374 { 3375 __u32 *fh = vfh; 3376 __u64 inum = fh[2]; 3377 inum = (inum << 32) | fh[1]; 3378 return ino->i_ino == inum && fh[0] == ino->i_generation; 3379 } 3380 3381 /* Find any alias of inode, but prefer a hashed alias */ 3382 static struct dentry *shmem_find_alias(struct inode *inode) 3383 { 3384 struct dentry *alias = d_find_alias(inode); 3385 3386 return alias ?: d_find_any_alias(inode); 3387 } 3388 3389 3390 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3391 struct fid *fid, int fh_len, int fh_type) 3392 { 3393 struct inode *inode; 3394 struct dentry *dentry = NULL; 3395 u64 inum; 3396 3397 if (fh_len < 3) 3398 return NULL; 3399 3400 inum = fid->raw[2]; 3401 inum = (inum << 32) | fid->raw[1]; 3402 3403 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3404 shmem_match, fid->raw); 3405 if (inode) { 3406 dentry = shmem_find_alias(inode); 3407 iput(inode); 3408 } 3409 3410 return dentry; 3411 } 3412 3413 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3414 struct inode *parent) 3415 { 3416 if (*len < 3) { 3417 *len = 3; 3418 return FILEID_INVALID; 3419 } 3420 3421 if (inode_unhashed(inode)) { 3422 /* Unfortunately insert_inode_hash is not idempotent, 3423 * so as we hash inodes here rather than at creation 3424 * time, we need a lock to ensure we only try 3425 * to do it once 3426 */ 3427 static DEFINE_SPINLOCK(lock); 3428 spin_lock(&lock); 3429 if (inode_unhashed(inode)) 3430 __insert_inode_hash(inode, 3431 inode->i_ino + inode->i_generation); 3432 spin_unlock(&lock); 3433 } 3434 3435 fh[0] = inode->i_generation; 3436 fh[1] = inode->i_ino; 3437 fh[2] = ((__u64)inode->i_ino) >> 32; 3438 3439 *len = 3; 3440 return 1; 3441 } 3442 3443 static const struct export_operations shmem_export_ops = { 3444 .get_parent = shmem_get_parent, 3445 .encode_fh = shmem_encode_fh, 3446 .fh_to_dentry = shmem_fh_to_dentry, 3447 }; 3448 3449 enum shmem_param { 3450 Opt_gid, 3451 Opt_huge, 3452 Opt_mode, 3453 Opt_mpol, 3454 Opt_nr_blocks, 3455 Opt_nr_inodes, 3456 Opt_size, 3457 Opt_uid, 3458 Opt_inode32, 3459 Opt_inode64, 3460 }; 3461 3462 static const struct constant_table shmem_param_enums_huge[] = { 3463 {"never", SHMEM_HUGE_NEVER }, 3464 {"always", SHMEM_HUGE_ALWAYS }, 3465 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3466 {"advise", SHMEM_HUGE_ADVISE }, 3467 {} 3468 }; 3469 3470 const struct fs_parameter_spec shmem_fs_parameters[] = { 3471 fsparam_u32 ("gid", Opt_gid), 3472 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3473 fsparam_u32oct("mode", Opt_mode), 3474 fsparam_string("mpol", Opt_mpol), 3475 fsparam_string("nr_blocks", Opt_nr_blocks), 3476 fsparam_string("nr_inodes", Opt_nr_inodes), 3477 fsparam_string("size", Opt_size), 3478 fsparam_u32 ("uid", Opt_uid), 3479 fsparam_flag ("inode32", Opt_inode32), 3480 fsparam_flag ("inode64", Opt_inode64), 3481 {} 3482 }; 3483 3484 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3485 { 3486 struct shmem_options *ctx = fc->fs_private; 3487 struct fs_parse_result result; 3488 unsigned long long size; 3489 char *rest; 3490 int opt; 3491 3492 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3493 if (opt < 0) 3494 return opt; 3495 3496 switch (opt) { 3497 case Opt_size: 3498 size = memparse(param->string, &rest); 3499 if (*rest == '%') { 3500 size <<= PAGE_SHIFT; 3501 size *= totalram_pages(); 3502 do_div(size, 100); 3503 rest++; 3504 } 3505 if (*rest) 3506 goto bad_value; 3507 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3508 ctx->seen |= SHMEM_SEEN_BLOCKS; 3509 break; 3510 case Opt_nr_blocks: 3511 ctx->blocks = memparse(param->string, &rest); 3512 if (*rest || ctx->blocks > S64_MAX) 3513 goto bad_value; 3514 ctx->seen |= SHMEM_SEEN_BLOCKS; 3515 break; 3516 case Opt_nr_inodes: 3517 ctx->inodes = memparse(param->string, &rest); 3518 if (*rest) 3519 goto bad_value; 3520 ctx->seen |= SHMEM_SEEN_INODES; 3521 break; 3522 case Opt_mode: 3523 ctx->mode = result.uint_32 & 07777; 3524 break; 3525 case Opt_uid: 3526 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3527 if (!uid_valid(ctx->uid)) 3528 goto bad_value; 3529 break; 3530 case Opt_gid: 3531 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3532 if (!gid_valid(ctx->gid)) 3533 goto bad_value; 3534 break; 3535 case Opt_huge: 3536 ctx->huge = result.uint_32; 3537 if (ctx->huge != SHMEM_HUGE_NEVER && 3538 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3539 has_transparent_hugepage())) 3540 goto unsupported_parameter; 3541 ctx->seen |= SHMEM_SEEN_HUGE; 3542 break; 3543 case Opt_mpol: 3544 if (IS_ENABLED(CONFIG_NUMA)) { 3545 mpol_put(ctx->mpol); 3546 ctx->mpol = NULL; 3547 if (mpol_parse_str(param->string, &ctx->mpol)) 3548 goto bad_value; 3549 break; 3550 } 3551 goto unsupported_parameter; 3552 case Opt_inode32: 3553 ctx->full_inums = false; 3554 ctx->seen |= SHMEM_SEEN_INUMS; 3555 break; 3556 case Opt_inode64: 3557 if (sizeof(ino_t) < 8) { 3558 return invalfc(fc, 3559 "Cannot use inode64 with <64bit inums in kernel\n"); 3560 } 3561 ctx->full_inums = true; 3562 ctx->seen |= SHMEM_SEEN_INUMS; 3563 break; 3564 } 3565 return 0; 3566 3567 unsupported_parameter: 3568 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3569 bad_value: 3570 return invalfc(fc, "Bad value for '%s'", param->key); 3571 } 3572 3573 static int shmem_parse_options(struct fs_context *fc, void *data) 3574 { 3575 char *options = data; 3576 3577 if (options) { 3578 int err = security_sb_eat_lsm_opts(options, &fc->security); 3579 if (err) 3580 return err; 3581 } 3582 3583 while (options != NULL) { 3584 char *this_char = options; 3585 for (;;) { 3586 /* 3587 * NUL-terminate this option: unfortunately, 3588 * mount options form a comma-separated list, 3589 * but mpol's nodelist may also contain commas. 3590 */ 3591 options = strchr(options, ','); 3592 if (options == NULL) 3593 break; 3594 options++; 3595 if (!isdigit(*options)) { 3596 options[-1] = '\0'; 3597 break; 3598 } 3599 } 3600 if (*this_char) { 3601 char *value = strchr(this_char, '='); 3602 size_t len = 0; 3603 int err; 3604 3605 if (value) { 3606 *value++ = '\0'; 3607 len = strlen(value); 3608 } 3609 err = vfs_parse_fs_string(fc, this_char, value, len); 3610 if (err < 0) 3611 return err; 3612 } 3613 } 3614 return 0; 3615 } 3616 3617 /* 3618 * Reconfigure a shmem filesystem. 3619 * 3620 * Note that we disallow change from limited->unlimited blocks/inodes while any 3621 * are in use; but we must separately disallow unlimited->limited, because in 3622 * that case we have no record of how much is already in use. 3623 */ 3624 static int shmem_reconfigure(struct fs_context *fc) 3625 { 3626 struct shmem_options *ctx = fc->fs_private; 3627 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3628 unsigned long inodes; 3629 struct mempolicy *mpol = NULL; 3630 const char *err; 3631 3632 raw_spin_lock(&sbinfo->stat_lock); 3633 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3634 3635 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3636 if (!sbinfo->max_blocks) { 3637 err = "Cannot retroactively limit size"; 3638 goto out; 3639 } 3640 if (percpu_counter_compare(&sbinfo->used_blocks, 3641 ctx->blocks) > 0) { 3642 err = "Too small a size for current use"; 3643 goto out; 3644 } 3645 } 3646 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3647 if (!sbinfo->max_inodes) { 3648 err = "Cannot retroactively limit inodes"; 3649 goto out; 3650 } 3651 if (ctx->inodes < inodes) { 3652 err = "Too few inodes for current use"; 3653 goto out; 3654 } 3655 } 3656 3657 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3658 sbinfo->next_ino > UINT_MAX) { 3659 err = "Current inum too high to switch to 32-bit inums"; 3660 goto out; 3661 } 3662 3663 if (ctx->seen & SHMEM_SEEN_HUGE) 3664 sbinfo->huge = ctx->huge; 3665 if (ctx->seen & SHMEM_SEEN_INUMS) 3666 sbinfo->full_inums = ctx->full_inums; 3667 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3668 sbinfo->max_blocks = ctx->blocks; 3669 if (ctx->seen & SHMEM_SEEN_INODES) { 3670 sbinfo->max_inodes = ctx->inodes; 3671 sbinfo->free_inodes = ctx->inodes - inodes; 3672 } 3673 3674 /* 3675 * Preserve previous mempolicy unless mpol remount option was specified. 3676 */ 3677 if (ctx->mpol) { 3678 mpol = sbinfo->mpol; 3679 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3680 ctx->mpol = NULL; 3681 } 3682 raw_spin_unlock(&sbinfo->stat_lock); 3683 mpol_put(mpol); 3684 return 0; 3685 out: 3686 raw_spin_unlock(&sbinfo->stat_lock); 3687 return invalfc(fc, "%s", err); 3688 } 3689 3690 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3691 { 3692 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3693 3694 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3695 seq_printf(seq, ",size=%luk", 3696 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3697 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3698 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3699 if (sbinfo->mode != (0777 | S_ISVTX)) 3700 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3701 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3702 seq_printf(seq, ",uid=%u", 3703 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3704 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3705 seq_printf(seq, ",gid=%u", 3706 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3707 3708 /* 3709 * Showing inode{64,32} might be useful even if it's the system default, 3710 * since then people don't have to resort to checking both here and 3711 * /proc/config.gz to confirm 64-bit inums were successfully applied 3712 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3713 * 3714 * We hide it when inode64 isn't the default and we are using 32-bit 3715 * inodes, since that probably just means the feature isn't even under 3716 * consideration. 3717 * 3718 * As such: 3719 * 3720 * +-----------------+-----------------+ 3721 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3722 * +------------------+-----------------+-----------------+ 3723 * | full_inums=true | show | show | 3724 * | full_inums=false | show | hide | 3725 * +------------------+-----------------+-----------------+ 3726 * 3727 */ 3728 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3729 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3731 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3732 if (sbinfo->huge) 3733 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3734 #endif 3735 shmem_show_mpol(seq, sbinfo->mpol); 3736 return 0; 3737 } 3738 3739 #endif /* CONFIG_TMPFS */ 3740 3741 static void shmem_put_super(struct super_block *sb) 3742 { 3743 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3744 3745 free_percpu(sbinfo->ino_batch); 3746 percpu_counter_destroy(&sbinfo->used_blocks); 3747 mpol_put(sbinfo->mpol); 3748 kfree(sbinfo); 3749 sb->s_fs_info = NULL; 3750 } 3751 3752 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3753 { 3754 struct shmem_options *ctx = fc->fs_private; 3755 struct inode *inode; 3756 struct shmem_sb_info *sbinfo; 3757 3758 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3759 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3760 L1_CACHE_BYTES), GFP_KERNEL); 3761 if (!sbinfo) 3762 return -ENOMEM; 3763 3764 sb->s_fs_info = sbinfo; 3765 3766 #ifdef CONFIG_TMPFS 3767 /* 3768 * Per default we only allow half of the physical ram per 3769 * tmpfs instance, limiting inodes to one per page of lowmem; 3770 * but the internal instance is left unlimited. 3771 */ 3772 if (!(sb->s_flags & SB_KERNMOUNT)) { 3773 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3774 ctx->blocks = shmem_default_max_blocks(); 3775 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3776 ctx->inodes = shmem_default_max_inodes(); 3777 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3778 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3779 } else { 3780 sb->s_flags |= SB_NOUSER; 3781 } 3782 sb->s_export_op = &shmem_export_ops; 3783 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 3784 #else 3785 sb->s_flags |= SB_NOUSER; 3786 #endif 3787 sbinfo->max_blocks = ctx->blocks; 3788 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3789 if (sb->s_flags & SB_KERNMOUNT) { 3790 sbinfo->ino_batch = alloc_percpu(ino_t); 3791 if (!sbinfo->ino_batch) 3792 goto failed; 3793 } 3794 sbinfo->uid = ctx->uid; 3795 sbinfo->gid = ctx->gid; 3796 sbinfo->full_inums = ctx->full_inums; 3797 sbinfo->mode = ctx->mode; 3798 sbinfo->huge = ctx->huge; 3799 sbinfo->mpol = ctx->mpol; 3800 ctx->mpol = NULL; 3801 3802 raw_spin_lock_init(&sbinfo->stat_lock); 3803 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3804 goto failed; 3805 spin_lock_init(&sbinfo->shrinklist_lock); 3806 INIT_LIST_HEAD(&sbinfo->shrinklist); 3807 3808 sb->s_maxbytes = MAX_LFS_FILESIZE; 3809 sb->s_blocksize = PAGE_SIZE; 3810 sb->s_blocksize_bits = PAGE_SHIFT; 3811 sb->s_magic = TMPFS_MAGIC; 3812 sb->s_op = &shmem_ops; 3813 sb->s_time_gran = 1; 3814 #ifdef CONFIG_TMPFS_XATTR 3815 sb->s_xattr = shmem_xattr_handlers; 3816 #endif 3817 #ifdef CONFIG_TMPFS_POSIX_ACL 3818 sb->s_flags |= SB_POSIXACL; 3819 #endif 3820 uuid_gen(&sb->s_uuid); 3821 3822 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3823 if (!inode) 3824 goto failed; 3825 inode->i_uid = sbinfo->uid; 3826 inode->i_gid = sbinfo->gid; 3827 sb->s_root = d_make_root(inode); 3828 if (!sb->s_root) 3829 goto failed; 3830 return 0; 3831 3832 failed: 3833 shmem_put_super(sb); 3834 return -ENOMEM; 3835 } 3836 3837 static int shmem_get_tree(struct fs_context *fc) 3838 { 3839 return get_tree_nodev(fc, shmem_fill_super); 3840 } 3841 3842 static void shmem_free_fc(struct fs_context *fc) 3843 { 3844 struct shmem_options *ctx = fc->fs_private; 3845 3846 if (ctx) { 3847 mpol_put(ctx->mpol); 3848 kfree(ctx); 3849 } 3850 } 3851 3852 static const struct fs_context_operations shmem_fs_context_ops = { 3853 .free = shmem_free_fc, 3854 .get_tree = shmem_get_tree, 3855 #ifdef CONFIG_TMPFS 3856 .parse_monolithic = shmem_parse_options, 3857 .parse_param = shmem_parse_one, 3858 .reconfigure = shmem_reconfigure, 3859 #endif 3860 }; 3861 3862 static struct kmem_cache *shmem_inode_cachep; 3863 3864 static struct inode *shmem_alloc_inode(struct super_block *sb) 3865 { 3866 struct shmem_inode_info *info; 3867 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3868 if (!info) 3869 return NULL; 3870 return &info->vfs_inode; 3871 } 3872 3873 static void shmem_free_in_core_inode(struct inode *inode) 3874 { 3875 if (S_ISLNK(inode->i_mode)) 3876 kfree(inode->i_link); 3877 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3878 } 3879 3880 static void shmem_destroy_inode(struct inode *inode) 3881 { 3882 if (S_ISREG(inode->i_mode)) 3883 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3884 } 3885 3886 static void shmem_init_inode(void *foo) 3887 { 3888 struct shmem_inode_info *info = foo; 3889 inode_init_once(&info->vfs_inode); 3890 } 3891 3892 static void shmem_init_inodecache(void) 3893 { 3894 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3895 sizeof(struct shmem_inode_info), 3896 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3897 } 3898 3899 static void shmem_destroy_inodecache(void) 3900 { 3901 kmem_cache_destroy(shmem_inode_cachep); 3902 } 3903 3904 /* Keep the page in page cache instead of truncating it */ 3905 static int shmem_error_remove_page(struct address_space *mapping, 3906 struct page *page) 3907 { 3908 return 0; 3909 } 3910 3911 const struct address_space_operations shmem_aops = { 3912 .writepage = shmem_writepage, 3913 .dirty_folio = noop_dirty_folio, 3914 #ifdef CONFIG_TMPFS 3915 .write_begin = shmem_write_begin, 3916 .write_end = shmem_write_end, 3917 #endif 3918 #ifdef CONFIG_MIGRATION 3919 .migrate_folio = migrate_folio, 3920 #endif 3921 .error_remove_page = shmem_error_remove_page, 3922 }; 3923 EXPORT_SYMBOL(shmem_aops); 3924 3925 static const struct file_operations shmem_file_operations = { 3926 .mmap = shmem_mmap, 3927 .open = generic_file_open, 3928 .get_unmapped_area = shmem_get_unmapped_area, 3929 #ifdef CONFIG_TMPFS 3930 .llseek = shmem_file_llseek, 3931 .read_iter = shmem_file_read_iter, 3932 .write_iter = generic_file_write_iter, 3933 .fsync = noop_fsync, 3934 .splice_read = generic_file_splice_read, 3935 .splice_write = iter_file_splice_write, 3936 .fallocate = shmem_fallocate, 3937 #endif 3938 }; 3939 3940 static const struct inode_operations shmem_inode_operations = { 3941 .getattr = shmem_getattr, 3942 .setattr = shmem_setattr, 3943 #ifdef CONFIG_TMPFS_XATTR 3944 .listxattr = shmem_listxattr, 3945 .set_acl = simple_set_acl, 3946 .fileattr_get = shmem_fileattr_get, 3947 .fileattr_set = shmem_fileattr_set, 3948 #endif 3949 }; 3950 3951 static const struct inode_operations shmem_dir_inode_operations = { 3952 #ifdef CONFIG_TMPFS 3953 .getattr = shmem_getattr, 3954 .create = shmem_create, 3955 .lookup = simple_lookup, 3956 .link = shmem_link, 3957 .unlink = shmem_unlink, 3958 .symlink = shmem_symlink, 3959 .mkdir = shmem_mkdir, 3960 .rmdir = shmem_rmdir, 3961 .mknod = shmem_mknod, 3962 .rename = shmem_rename2, 3963 .tmpfile = shmem_tmpfile, 3964 #endif 3965 #ifdef CONFIG_TMPFS_XATTR 3966 .listxattr = shmem_listxattr, 3967 .fileattr_get = shmem_fileattr_get, 3968 .fileattr_set = shmem_fileattr_set, 3969 #endif 3970 #ifdef CONFIG_TMPFS_POSIX_ACL 3971 .setattr = shmem_setattr, 3972 .set_acl = simple_set_acl, 3973 #endif 3974 }; 3975 3976 static const struct inode_operations shmem_special_inode_operations = { 3977 .getattr = shmem_getattr, 3978 #ifdef CONFIG_TMPFS_XATTR 3979 .listxattr = shmem_listxattr, 3980 #endif 3981 #ifdef CONFIG_TMPFS_POSIX_ACL 3982 .setattr = shmem_setattr, 3983 .set_acl = simple_set_acl, 3984 #endif 3985 }; 3986 3987 static const struct super_operations shmem_ops = { 3988 .alloc_inode = shmem_alloc_inode, 3989 .free_inode = shmem_free_in_core_inode, 3990 .destroy_inode = shmem_destroy_inode, 3991 #ifdef CONFIG_TMPFS 3992 .statfs = shmem_statfs, 3993 .show_options = shmem_show_options, 3994 #endif 3995 .evict_inode = shmem_evict_inode, 3996 .drop_inode = generic_delete_inode, 3997 .put_super = shmem_put_super, 3998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3999 .nr_cached_objects = shmem_unused_huge_count, 4000 .free_cached_objects = shmem_unused_huge_scan, 4001 #endif 4002 }; 4003 4004 static const struct vm_operations_struct shmem_vm_ops = { 4005 .fault = shmem_fault, 4006 .map_pages = filemap_map_pages, 4007 #ifdef CONFIG_NUMA 4008 .set_policy = shmem_set_policy, 4009 .get_policy = shmem_get_policy, 4010 #endif 4011 }; 4012 4013 static const struct vm_operations_struct shmem_anon_vm_ops = { 4014 .fault = shmem_fault, 4015 .map_pages = filemap_map_pages, 4016 #ifdef CONFIG_NUMA 4017 .set_policy = shmem_set_policy, 4018 .get_policy = shmem_get_policy, 4019 #endif 4020 }; 4021 4022 int shmem_init_fs_context(struct fs_context *fc) 4023 { 4024 struct shmem_options *ctx; 4025 4026 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4027 if (!ctx) 4028 return -ENOMEM; 4029 4030 ctx->mode = 0777 | S_ISVTX; 4031 ctx->uid = current_fsuid(); 4032 ctx->gid = current_fsgid(); 4033 4034 fc->fs_private = ctx; 4035 fc->ops = &shmem_fs_context_ops; 4036 return 0; 4037 } 4038 4039 static struct file_system_type shmem_fs_type = { 4040 .owner = THIS_MODULE, 4041 .name = "tmpfs", 4042 .init_fs_context = shmem_init_fs_context, 4043 #ifdef CONFIG_TMPFS 4044 .parameters = shmem_fs_parameters, 4045 #endif 4046 .kill_sb = kill_litter_super, 4047 .fs_flags = FS_USERNS_MOUNT, 4048 }; 4049 4050 void __init shmem_init(void) 4051 { 4052 int error; 4053 4054 shmem_init_inodecache(); 4055 4056 error = register_filesystem(&shmem_fs_type); 4057 if (error) { 4058 pr_err("Could not register tmpfs\n"); 4059 goto out2; 4060 } 4061 4062 shm_mnt = kern_mount(&shmem_fs_type); 4063 if (IS_ERR(shm_mnt)) { 4064 error = PTR_ERR(shm_mnt); 4065 pr_err("Could not kern_mount tmpfs\n"); 4066 goto out1; 4067 } 4068 4069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4070 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4071 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4072 else 4073 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4074 #endif 4075 return; 4076 4077 out1: 4078 unregister_filesystem(&shmem_fs_type); 4079 out2: 4080 shmem_destroy_inodecache(); 4081 shm_mnt = ERR_PTR(error); 4082 } 4083 4084 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4085 static ssize_t shmem_enabled_show(struct kobject *kobj, 4086 struct kobj_attribute *attr, char *buf) 4087 { 4088 static const int values[] = { 4089 SHMEM_HUGE_ALWAYS, 4090 SHMEM_HUGE_WITHIN_SIZE, 4091 SHMEM_HUGE_ADVISE, 4092 SHMEM_HUGE_NEVER, 4093 SHMEM_HUGE_DENY, 4094 SHMEM_HUGE_FORCE, 4095 }; 4096 int len = 0; 4097 int i; 4098 4099 for (i = 0; i < ARRAY_SIZE(values); i++) { 4100 len += sysfs_emit_at(buf, len, 4101 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4102 i ? " " : "", 4103 shmem_format_huge(values[i])); 4104 } 4105 4106 len += sysfs_emit_at(buf, len, "\n"); 4107 4108 return len; 4109 } 4110 4111 static ssize_t shmem_enabled_store(struct kobject *kobj, 4112 struct kobj_attribute *attr, const char *buf, size_t count) 4113 { 4114 char tmp[16]; 4115 int huge; 4116 4117 if (count + 1 > sizeof(tmp)) 4118 return -EINVAL; 4119 memcpy(tmp, buf, count); 4120 tmp[count] = '\0'; 4121 if (count && tmp[count - 1] == '\n') 4122 tmp[count - 1] = '\0'; 4123 4124 huge = shmem_parse_huge(tmp); 4125 if (huge == -EINVAL) 4126 return -EINVAL; 4127 if (!has_transparent_hugepage() && 4128 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4129 return -EINVAL; 4130 4131 shmem_huge = huge; 4132 if (shmem_huge > SHMEM_HUGE_DENY) 4133 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4134 return count; 4135 } 4136 4137 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4138 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4139 4140 #else /* !CONFIG_SHMEM */ 4141 4142 /* 4143 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4144 * 4145 * This is intended for small system where the benefits of the full 4146 * shmem code (swap-backed and resource-limited) are outweighed by 4147 * their complexity. On systems without swap this code should be 4148 * effectively equivalent, but much lighter weight. 4149 */ 4150 4151 static struct file_system_type shmem_fs_type = { 4152 .name = "tmpfs", 4153 .init_fs_context = ramfs_init_fs_context, 4154 .parameters = ramfs_fs_parameters, 4155 .kill_sb = kill_litter_super, 4156 .fs_flags = FS_USERNS_MOUNT, 4157 }; 4158 4159 void __init shmem_init(void) 4160 { 4161 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4162 4163 shm_mnt = kern_mount(&shmem_fs_type); 4164 BUG_ON(IS_ERR(shm_mnt)); 4165 } 4166 4167 int shmem_unuse(unsigned int type) 4168 { 4169 return 0; 4170 } 4171 4172 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4173 { 4174 return 0; 4175 } 4176 4177 void shmem_unlock_mapping(struct address_space *mapping) 4178 { 4179 } 4180 4181 #ifdef CONFIG_MMU 4182 unsigned long shmem_get_unmapped_area(struct file *file, 4183 unsigned long addr, unsigned long len, 4184 unsigned long pgoff, unsigned long flags) 4185 { 4186 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4187 } 4188 #endif 4189 4190 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4191 { 4192 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4193 } 4194 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4195 4196 #define shmem_vm_ops generic_file_vm_ops 4197 #define shmem_anon_vm_ops generic_file_vm_ops 4198 #define shmem_file_operations ramfs_file_operations 4199 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4200 #define shmem_acct_size(flags, size) 0 4201 #define shmem_unacct_size(flags, size) do {} while (0) 4202 4203 #endif /* CONFIG_SHMEM */ 4204 4205 /* common code */ 4206 4207 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4208 unsigned long flags, unsigned int i_flags) 4209 { 4210 struct inode *inode; 4211 struct file *res; 4212 4213 if (IS_ERR(mnt)) 4214 return ERR_CAST(mnt); 4215 4216 if (size < 0 || size > MAX_LFS_FILESIZE) 4217 return ERR_PTR(-EINVAL); 4218 4219 if (shmem_acct_size(flags, size)) 4220 return ERR_PTR(-ENOMEM); 4221 4222 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4223 flags); 4224 if (unlikely(!inode)) { 4225 shmem_unacct_size(flags, size); 4226 return ERR_PTR(-ENOSPC); 4227 } 4228 inode->i_flags |= i_flags; 4229 inode->i_size = size; 4230 clear_nlink(inode); /* It is unlinked */ 4231 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4232 if (!IS_ERR(res)) 4233 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4234 &shmem_file_operations); 4235 if (IS_ERR(res)) 4236 iput(inode); 4237 return res; 4238 } 4239 4240 /** 4241 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4242 * kernel internal. There will be NO LSM permission checks against the 4243 * underlying inode. So users of this interface must do LSM checks at a 4244 * higher layer. The users are the big_key and shm implementations. LSM 4245 * checks are provided at the key or shm level rather than the inode. 4246 * @name: name for dentry (to be seen in /proc/<pid>/maps 4247 * @size: size to be set for the file 4248 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4249 */ 4250 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4251 { 4252 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4253 } 4254 4255 /** 4256 * shmem_file_setup - get an unlinked file living in tmpfs 4257 * @name: name for dentry (to be seen in /proc/<pid>/maps 4258 * @size: size to be set for the file 4259 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4260 */ 4261 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4262 { 4263 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4264 } 4265 EXPORT_SYMBOL_GPL(shmem_file_setup); 4266 4267 /** 4268 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4269 * @mnt: the tmpfs mount where the file will be created 4270 * @name: name for dentry (to be seen in /proc/<pid>/maps 4271 * @size: size to be set for the file 4272 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4273 */ 4274 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4275 loff_t size, unsigned long flags) 4276 { 4277 return __shmem_file_setup(mnt, name, size, flags, 0); 4278 } 4279 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4280 4281 /** 4282 * shmem_zero_setup - setup a shared anonymous mapping 4283 * @vma: the vma to be mmapped is prepared by do_mmap 4284 */ 4285 int shmem_zero_setup(struct vm_area_struct *vma) 4286 { 4287 struct file *file; 4288 loff_t size = vma->vm_end - vma->vm_start; 4289 4290 /* 4291 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4292 * between XFS directory reading and selinux: since this file is only 4293 * accessible to the user through its mapping, use S_PRIVATE flag to 4294 * bypass file security, in the same way as shmem_kernel_file_setup(). 4295 */ 4296 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4297 if (IS_ERR(file)) 4298 return PTR_ERR(file); 4299 4300 if (vma->vm_file) 4301 fput(vma->vm_file); 4302 vma->vm_file = file; 4303 vma->vm_ops = &shmem_anon_vm_ops; 4304 4305 return 0; 4306 } 4307 4308 /** 4309 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4310 * @mapping: the page's address_space 4311 * @index: the page index 4312 * @gfp: the page allocator flags to use if allocating 4313 * 4314 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4315 * with any new page allocations done using the specified allocation flags. 4316 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4317 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4318 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4319 * 4320 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4321 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4322 */ 4323 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4324 pgoff_t index, gfp_t gfp) 4325 { 4326 #ifdef CONFIG_SHMEM 4327 struct inode *inode = mapping->host; 4328 struct folio *folio; 4329 struct page *page; 4330 int error; 4331 4332 BUG_ON(!shmem_mapping(mapping)); 4333 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4334 gfp, NULL, NULL, NULL); 4335 if (error) 4336 return ERR_PTR(error); 4337 4338 folio_unlock(folio); 4339 page = folio_file_page(folio, index); 4340 if (PageHWPoison(page)) { 4341 folio_put(folio); 4342 return ERR_PTR(-EIO); 4343 } 4344 4345 return page; 4346 #else 4347 /* 4348 * The tiny !SHMEM case uses ramfs without swap 4349 */ 4350 return read_cache_page_gfp(mapping, index, gfp); 4351 #endif 4352 } 4353 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4354