xref: /openbmc/linux/mm/shmem.c (revision 842b6b16)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #include "internal.h"
77 
78 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80 
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83 
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86 
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 	pgoff_t start;		/* start of range currently being fallocated */
95 	pgoff_t next;		/* the next page offset to be fallocated */
96 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
97 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
98 };
99 
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 	SGP_READ,	/* don't exceed i_size, don't allocate page */
103 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
104 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
105 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
106 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 				struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126 
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 	struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130 	return shmem_getpage_gfp(inode, index, pagep, sgp,
131 			mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133 
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 	return sb->s_fs_info;
137 }
138 
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150 
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 	if (!(flags & VM_NORESERVE))
154 		vm_unacct_memory(VM_ACCT(size));
155 }
156 
157 static inline int shmem_reacct_size(unsigned long flags,
158 		loff_t oldsize, loff_t newsize)
159 {
160 	if (!(flags & VM_NORESERVE)) {
161 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 			return security_vm_enough_memory_mm(current->mm,
163 					VM_ACCT(newsize) - VM_ACCT(oldsize));
164 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 	}
167 	return 0;
168 }
169 
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow huge sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181 
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 	if (flags & VM_NORESERVE)
185 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187 
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 	if (sbinfo->max_inodes) {
203 		spin_lock(&sbinfo->stat_lock);
204 		if (!sbinfo->free_inodes) {
205 			spin_unlock(&sbinfo->stat_lock);
206 			return -ENOSPC;
207 		}
208 		sbinfo->free_inodes--;
209 		spin_unlock(&sbinfo->stat_lock);
210 	}
211 	return 0;
212 }
213 
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 	if (sbinfo->max_inodes) {
218 		spin_lock(&sbinfo->stat_lock);
219 		sbinfo->free_inodes++;
220 		spin_unlock(&sbinfo->stat_lock);
221 	}
222 }
223 
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 	struct shmem_inode_info *info = SHMEM_I(inode);
239 	long freed;
240 
241 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 	if (freed > 0) {
243 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 		if (sbinfo->max_blocks)
245 			percpu_counter_add(&sbinfo->used_blocks, -freed);
246 		info->alloced -= freed;
247 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 		shmem_unacct_blocks(info->flags, freed);
249 	}
250 }
251 
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 			pgoff_t index, void *expected, void *replacement)
257 {
258 	void **pslot;
259 	void *item;
260 
261 	VM_BUG_ON(!expected);
262 	VM_BUG_ON(!replacement);
263 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 	if (!pslot)
265 		return -ENOENT;
266 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 	if (item != expected)
268 		return -ENOENT;
269 	radix_tree_replace_slot(pslot, replacement);
270 	return 0;
271 }
272 
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 			       pgoff_t index, swp_entry_t swap)
282 {
283 	void *item;
284 
285 	rcu_read_lock();
286 	item = radix_tree_lookup(&mapping->page_tree, index);
287 	rcu_read_unlock();
288 	return item == swp_to_radix_entry(swap);
289 }
290 
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295 				   struct address_space *mapping,
296 				   pgoff_t index, void *expected)
297 {
298 	int error;
299 
300 	VM_BUG_ON_PAGE(!PageLocked(page), page);
301 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302 
303 	page_cache_get(page);
304 	page->mapping = mapping;
305 	page->index = index;
306 
307 	spin_lock_irq(&mapping->tree_lock);
308 	if (!expected)
309 		error = radix_tree_insert(&mapping->page_tree, index, page);
310 	else
311 		error = shmem_radix_tree_replace(mapping, index, expected,
312 								 page);
313 	if (!error) {
314 		mapping->nrpages++;
315 		__inc_zone_page_state(page, NR_FILE_PAGES);
316 		__inc_zone_page_state(page, NR_SHMEM);
317 		spin_unlock_irq(&mapping->tree_lock);
318 	} else {
319 		page->mapping = NULL;
320 		spin_unlock_irq(&mapping->tree_lock);
321 		page_cache_release(page);
322 	}
323 	return error;
324 }
325 
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 	struct address_space *mapping = page->mapping;
332 	int error;
333 
334 	spin_lock_irq(&mapping->tree_lock);
335 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 	page->mapping = NULL;
337 	mapping->nrpages--;
338 	__dec_zone_page_state(page, NR_FILE_PAGES);
339 	__dec_zone_page_state(page, NR_SHMEM);
340 	spin_unlock_irq(&mapping->tree_lock);
341 	page_cache_release(page);
342 	BUG_ON(error);
343 }
344 
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349 			   pgoff_t index, void *radswap)
350 {
351 	void *old;
352 
353 	spin_lock_irq(&mapping->tree_lock);
354 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 	spin_unlock_irq(&mapping->tree_lock);
356 	if (old != radswap)
357 		return -ENOENT;
358 	free_swap_and_cache(radix_to_swp_entry(radswap));
359 	return 0;
360 }
361 
362 /*
363  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364  */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367 	struct pagevec pvec;
368 	pgoff_t indices[PAGEVEC_SIZE];
369 	pgoff_t index = 0;
370 
371 	pagevec_init(&pvec, 0);
372 	/*
373 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 	 */
375 	while (!mapping_unevictable(mapping)) {
376 		/*
377 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 		 */
380 		pvec.nr = find_get_entries(mapping, index,
381 					   PAGEVEC_SIZE, pvec.pages, indices);
382 		if (!pvec.nr)
383 			break;
384 		index = indices[pvec.nr - 1] + 1;
385 		pagevec_remove_exceptionals(&pvec);
386 		check_move_unevictable_pages(pvec.pages, pvec.nr);
387 		pagevec_release(&pvec);
388 		cond_resched();
389 	}
390 }
391 
392 /*
393  * Remove range of pages and swap entries from radix tree, and free them.
394  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395  */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 								 bool unfalloc)
398 {
399 	struct address_space *mapping = inode->i_mapping;
400 	struct shmem_inode_info *info = SHMEM_I(inode);
401 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405 	struct pagevec pvec;
406 	pgoff_t indices[PAGEVEC_SIZE];
407 	long nr_swaps_freed = 0;
408 	pgoff_t index;
409 	int i;
410 
411 	if (lend == -1)
412 		end = -1;	/* unsigned, so actually very big */
413 
414 	pagevec_init(&pvec, 0);
415 	index = start;
416 	while (index < end) {
417 		pvec.nr = find_get_entries(mapping, index,
418 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 			pvec.pages, indices);
420 		if (!pvec.nr)
421 			break;
422 		for (i = 0; i < pagevec_count(&pvec); i++) {
423 			struct page *page = pvec.pages[i];
424 
425 			index = indices[i];
426 			if (index >= end)
427 				break;
428 
429 			if (radix_tree_exceptional_entry(page)) {
430 				if (unfalloc)
431 					continue;
432 				nr_swaps_freed += !shmem_free_swap(mapping,
433 								index, page);
434 				continue;
435 			}
436 
437 			if (!trylock_page(page))
438 				continue;
439 			if (!unfalloc || !PageUptodate(page)) {
440 				if (page->mapping == mapping) {
441 					VM_BUG_ON_PAGE(PageWriteback(page), page);
442 					truncate_inode_page(mapping, page);
443 				}
444 			}
445 			unlock_page(page);
446 		}
447 		pagevec_remove_exceptionals(&pvec);
448 		pagevec_release(&pvec);
449 		cond_resched();
450 		index++;
451 	}
452 
453 	if (partial_start) {
454 		struct page *page = NULL;
455 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456 		if (page) {
457 			unsigned int top = PAGE_CACHE_SIZE;
458 			if (start > end) {
459 				top = partial_end;
460 				partial_end = 0;
461 			}
462 			zero_user_segment(page, partial_start, top);
463 			set_page_dirty(page);
464 			unlock_page(page);
465 			page_cache_release(page);
466 		}
467 	}
468 	if (partial_end) {
469 		struct page *page = NULL;
470 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
471 		if (page) {
472 			zero_user_segment(page, 0, partial_end);
473 			set_page_dirty(page);
474 			unlock_page(page);
475 			page_cache_release(page);
476 		}
477 	}
478 	if (start >= end)
479 		return;
480 
481 	index = start;
482 	while (index < end) {
483 		cond_resched();
484 
485 		pvec.nr = find_get_entries(mapping, index,
486 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
487 				pvec.pages, indices);
488 		if (!pvec.nr) {
489 			/* If all gone or hole-punch or unfalloc, we're done */
490 			if (index == start || end != -1)
491 				break;
492 			/* But if truncating, restart to make sure all gone */
493 			index = start;
494 			continue;
495 		}
496 		for (i = 0; i < pagevec_count(&pvec); i++) {
497 			struct page *page = pvec.pages[i];
498 
499 			index = indices[i];
500 			if (index >= end)
501 				break;
502 
503 			if (radix_tree_exceptional_entry(page)) {
504 				if (unfalloc)
505 					continue;
506 				if (shmem_free_swap(mapping, index, page)) {
507 					/* Swap was replaced by page: retry */
508 					index--;
509 					break;
510 				}
511 				nr_swaps_freed++;
512 				continue;
513 			}
514 
515 			lock_page(page);
516 			if (!unfalloc || !PageUptodate(page)) {
517 				if (page->mapping == mapping) {
518 					VM_BUG_ON_PAGE(PageWriteback(page), page);
519 					truncate_inode_page(mapping, page);
520 				} else {
521 					/* Page was replaced by swap: retry */
522 					unlock_page(page);
523 					index--;
524 					break;
525 				}
526 			}
527 			unlock_page(page);
528 		}
529 		pagevec_remove_exceptionals(&pvec);
530 		pagevec_release(&pvec);
531 		index++;
532 	}
533 
534 	spin_lock(&info->lock);
535 	info->swapped -= nr_swaps_freed;
536 	shmem_recalc_inode(inode);
537 	spin_unlock(&info->lock);
538 }
539 
540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541 {
542 	shmem_undo_range(inode, lstart, lend, false);
543 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 }
545 EXPORT_SYMBOL_GPL(shmem_truncate_range);
546 
547 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
548 			 struct kstat *stat)
549 {
550 	struct inode *inode = dentry->d_inode;
551 	struct shmem_inode_info *info = SHMEM_I(inode);
552 
553 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
554 		spin_lock(&info->lock);
555 		shmem_recalc_inode(inode);
556 		spin_unlock(&info->lock);
557 	}
558 	generic_fillattr(inode, stat);
559 	return 0;
560 }
561 
562 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
563 {
564 	struct inode *inode = d_inode(dentry);
565 	struct shmem_inode_info *info = SHMEM_I(inode);
566 	int error;
567 
568 	error = inode_change_ok(inode, attr);
569 	if (error)
570 		return error;
571 
572 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
573 		loff_t oldsize = inode->i_size;
574 		loff_t newsize = attr->ia_size;
575 
576 		/* protected by i_mutex */
577 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
578 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
579 			return -EPERM;
580 
581 		if (newsize != oldsize) {
582 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
583 					oldsize, newsize);
584 			if (error)
585 				return error;
586 			i_size_write(inode, newsize);
587 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
588 		}
589 		if (newsize <= oldsize) {
590 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
591 			if (oldsize > holebegin)
592 				unmap_mapping_range(inode->i_mapping,
593 							holebegin, 0, 1);
594 			if (info->alloced)
595 				shmem_truncate_range(inode,
596 							newsize, (loff_t)-1);
597 			/* unmap again to remove racily COWed private pages */
598 			if (oldsize > holebegin)
599 				unmap_mapping_range(inode->i_mapping,
600 							holebegin, 0, 1);
601 		}
602 	}
603 
604 	setattr_copy(inode, attr);
605 	if (attr->ia_valid & ATTR_MODE)
606 		error = posix_acl_chmod(inode, inode->i_mode);
607 	return error;
608 }
609 
610 static void shmem_evict_inode(struct inode *inode)
611 {
612 	struct shmem_inode_info *info = SHMEM_I(inode);
613 
614 	if (inode->i_mapping->a_ops == &shmem_aops) {
615 		shmem_unacct_size(info->flags, inode->i_size);
616 		inode->i_size = 0;
617 		shmem_truncate_range(inode, 0, (loff_t)-1);
618 		if (!list_empty(&info->swaplist)) {
619 			mutex_lock(&shmem_swaplist_mutex);
620 			list_del_init(&info->swaplist);
621 			mutex_unlock(&shmem_swaplist_mutex);
622 		}
623 	} else
624 		kfree(info->symlink);
625 
626 	simple_xattrs_free(&info->xattrs);
627 	WARN_ON(inode->i_blocks);
628 	shmem_free_inode(inode->i_sb);
629 	clear_inode(inode);
630 }
631 
632 /*
633  * If swap found in inode, free it and move page from swapcache to filecache.
634  */
635 static int shmem_unuse_inode(struct shmem_inode_info *info,
636 			     swp_entry_t swap, struct page **pagep)
637 {
638 	struct address_space *mapping = info->vfs_inode.i_mapping;
639 	void *radswap;
640 	pgoff_t index;
641 	gfp_t gfp;
642 	int error = 0;
643 
644 	radswap = swp_to_radix_entry(swap);
645 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
646 	if (index == -1)
647 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
648 
649 	/*
650 	 * Move _head_ to start search for next from here.
651 	 * But be careful: shmem_evict_inode checks list_empty without taking
652 	 * mutex, and there's an instant in list_move_tail when info->swaplist
653 	 * would appear empty, if it were the only one on shmem_swaplist.
654 	 */
655 	if (shmem_swaplist.next != &info->swaplist)
656 		list_move_tail(&shmem_swaplist, &info->swaplist);
657 
658 	gfp = mapping_gfp_mask(mapping);
659 	if (shmem_should_replace_page(*pagep, gfp)) {
660 		mutex_unlock(&shmem_swaplist_mutex);
661 		error = shmem_replace_page(pagep, gfp, info, index);
662 		mutex_lock(&shmem_swaplist_mutex);
663 		/*
664 		 * We needed to drop mutex to make that restrictive page
665 		 * allocation, but the inode might have been freed while we
666 		 * dropped it: although a racing shmem_evict_inode() cannot
667 		 * complete without emptying the radix_tree, our page lock
668 		 * on this swapcache page is not enough to prevent that -
669 		 * free_swap_and_cache() of our swap entry will only
670 		 * trylock_page(), removing swap from radix_tree whatever.
671 		 *
672 		 * We must not proceed to shmem_add_to_page_cache() if the
673 		 * inode has been freed, but of course we cannot rely on
674 		 * inode or mapping or info to check that.  However, we can
675 		 * safely check if our swap entry is still in use (and here
676 		 * it can't have got reused for another page): if it's still
677 		 * in use, then the inode cannot have been freed yet, and we
678 		 * can safely proceed (if it's no longer in use, that tells
679 		 * nothing about the inode, but we don't need to unuse swap).
680 		 */
681 		if (!page_swapcount(*pagep))
682 			error = -ENOENT;
683 	}
684 
685 	/*
686 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
687 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
688 	 * beneath us (pagelock doesn't help until the page is in pagecache).
689 	 */
690 	if (!error)
691 		error = shmem_add_to_page_cache(*pagep, mapping, index,
692 						radswap);
693 	if (error != -ENOMEM) {
694 		/*
695 		 * Truncation and eviction use free_swap_and_cache(), which
696 		 * only does trylock page: if we raced, best clean up here.
697 		 */
698 		delete_from_swap_cache(*pagep);
699 		set_page_dirty(*pagep);
700 		if (!error) {
701 			spin_lock(&info->lock);
702 			info->swapped--;
703 			spin_unlock(&info->lock);
704 			swap_free(swap);
705 		}
706 	}
707 	return error;
708 }
709 
710 /*
711  * Search through swapped inodes to find and replace swap by page.
712  */
713 int shmem_unuse(swp_entry_t swap, struct page *page)
714 {
715 	struct list_head *this, *next;
716 	struct shmem_inode_info *info;
717 	struct mem_cgroup *memcg;
718 	int error = 0;
719 
720 	/*
721 	 * There's a faint possibility that swap page was replaced before
722 	 * caller locked it: caller will come back later with the right page.
723 	 */
724 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
725 		goto out;
726 
727 	/*
728 	 * Charge page using GFP_KERNEL while we can wait, before taking
729 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
730 	 * Charged back to the user (not to caller) when swap account is used.
731 	 */
732 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
733 	if (error)
734 		goto out;
735 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
736 	error = -EAGAIN;
737 
738 	mutex_lock(&shmem_swaplist_mutex);
739 	list_for_each_safe(this, next, &shmem_swaplist) {
740 		info = list_entry(this, struct shmem_inode_info, swaplist);
741 		if (info->swapped)
742 			error = shmem_unuse_inode(info, swap, &page);
743 		else
744 			list_del_init(&info->swaplist);
745 		cond_resched();
746 		if (error != -EAGAIN)
747 			break;
748 		/* found nothing in this: move on to search the next */
749 	}
750 	mutex_unlock(&shmem_swaplist_mutex);
751 
752 	if (error) {
753 		if (error != -ENOMEM)
754 			error = 0;
755 		mem_cgroup_cancel_charge(page, memcg);
756 	} else
757 		mem_cgroup_commit_charge(page, memcg, true);
758 out:
759 	unlock_page(page);
760 	page_cache_release(page);
761 	return error;
762 }
763 
764 /*
765  * Move the page from the page cache to the swap cache.
766  */
767 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
768 {
769 	struct shmem_inode_info *info;
770 	struct address_space *mapping;
771 	struct inode *inode;
772 	swp_entry_t swap;
773 	pgoff_t index;
774 
775 	BUG_ON(!PageLocked(page));
776 	mapping = page->mapping;
777 	index = page->index;
778 	inode = mapping->host;
779 	info = SHMEM_I(inode);
780 	if (info->flags & VM_LOCKED)
781 		goto redirty;
782 	if (!total_swap_pages)
783 		goto redirty;
784 
785 	/*
786 	 * Our capabilities prevent regular writeback or sync from ever calling
787 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
788 	 * its underlying filesystem, in which case tmpfs should write out to
789 	 * swap only in response to memory pressure, and not for the writeback
790 	 * threads or sync.
791 	 */
792 	if (!wbc->for_reclaim) {
793 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
794 		goto redirty;
795 	}
796 
797 	/*
798 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
799 	 * value into swapfile.c, the only way we can correctly account for a
800 	 * fallocated page arriving here is now to initialize it and write it.
801 	 *
802 	 * That's okay for a page already fallocated earlier, but if we have
803 	 * not yet completed the fallocation, then (a) we want to keep track
804 	 * of this page in case we have to undo it, and (b) it may not be a
805 	 * good idea to continue anyway, once we're pushing into swap.  So
806 	 * reactivate the page, and let shmem_fallocate() quit when too many.
807 	 */
808 	if (!PageUptodate(page)) {
809 		if (inode->i_private) {
810 			struct shmem_falloc *shmem_falloc;
811 			spin_lock(&inode->i_lock);
812 			shmem_falloc = inode->i_private;
813 			if (shmem_falloc &&
814 			    !shmem_falloc->waitq &&
815 			    index >= shmem_falloc->start &&
816 			    index < shmem_falloc->next)
817 				shmem_falloc->nr_unswapped++;
818 			else
819 				shmem_falloc = NULL;
820 			spin_unlock(&inode->i_lock);
821 			if (shmem_falloc)
822 				goto redirty;
823 		}
824 		clear_highpage(page);
825 		flush_dcache_page(page);
826 		SetPageUptodate(page);
827 	}
828 
829 	swap = get_swap_page();
830 	if (!swap.val)
831 		goto redirty;
832 
833 	/*
834 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
835 	 * if it's not already there.  Do it now before the page is
836 	 * moved to swap cache, when its pagelock no longer protects
837 	 * the inode from eviction.  But don't unlock the mutex until
838 	 * we've incremented swapped, because shmem_unuse_inode() will
839 	 * prune a !swapped inode from the swaplist under this mutex.
840 	 */
841 	mutex_lock(&shmem_swaplist_mutex);
842 	if (list_empty(&info->swaplist))
843 		list_add_tail(&info->swaplist, &shmem_swaplist);
844 
845 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
846 		spin_lock(&info->lock);
847 		shmem_recalc_inode(inode);
848 		info->swapped++;
849 		spin_unlock(&info->lock);
850 
851 		swap_shmem_alloc(swap);
852 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
853 
854 		mutex_unlock(&shmem_swaplist_mutex);
855 		BUG_ON(page_mapped(page));
856 		swap_writepage(page, wbc);
857 		return 0;
858 	}
859 
860 	mutex_unlock(&shmem_swaplist_mutex);
861 	swapcache_free(swap);
862 redirty:
863 	set_page_dirty(page);
864 	if (wbc->for_reclaim)
865 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
866 	unlock_page(page);
867 	return 0;
868 }
869 
870 #ifdef CONFIG_NUMA
871 #ifdef CONFIG_TMPFS
872 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
873 {
874 	char buffer[64];
875 
876 	if (!mpol || mpol->mode == MPOL_DEFAULT)
877 		return;		/* show nothing */
878 
879 	mpol_to_str(buffer, sizeof(buffer), mpol);
880 
881 	seq_printf(seq, ",mpol=%s", buffer);
882 }
883 
884 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
885 {
886 	struct mempolicy *mpol = NULL;
887 	if (sbinfo->mpol) {
888 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
889 		mpol = sbinfo->mpol;
890 		mpol_get(mpol);
891 		spin_unlock(&sbinfo->stat_lock);
892 	}
893 	return mpol;
894 }
895 #endif /* CONFIG_TMPFS */
896 
897 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
898 			struct shmem_inode_info *info, pgoff_t index)
899 {
900 	struct vm_area_struct pvma;
901 	struct page *page;
902 
903 	/* Create a pseudo vma that just contains the policy */
904 	pvma.vm_start = 0;
905 	/* Bias interleave by inode number to distribute better across nodes */
906 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
907 	pvma.vm_ops = NULL;
908 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
909 
910 	page = swapin_readahead(swap, gfp, &pvma, 0);
911 
912 	/* Drop reference taken by mpol_shared_policy_lookup() */
913 	mpol_cond_put(pvma.vm_policy);
914 
915 	return page;
916 }
917 
918 static struct page *shmem_alloc_page(gfp_t gfp,
919 			struct shmem_inode_info *info, pgoff_t index)
920 {
921 	struct vm_area_struct pvma;
922 	struct page *page;
923 
924 	/* Create a pseudo vma that just contains the policy */
925 	pvma.vm_start = 0;
926 	/* Bias interleave by inode number to distribute better across nodes */
927 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
928 	pvma.vm_ops = NULL;
929 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
930 
931 	page = alloc_page_vma(gfp, &pvma, 0);
932 
933 	/* Drop reference taken by mpol_shared_policy_lookup() */
934 	mpol_cond_put(pvma.vm_policy);
935 
936 	return page;
937 }
938 #else /* !CONFIG_NUMA */
939 #ifdef CONFIG_TMPFS
940 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
941 {
942 }
943 #endif /* CONFIG_TMPFS */
944 
945 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
946 			struct shmem_inode_info *info, pgoff_t index)
947 {
948 	return swapin_readahead(swap, gfp, NULL, 0);
949 }
950 
951 static inline struct page *shmem_alloc_page(gfp_t gfp,
952 			struct shmem_inode_info *info, pgoff_t index)
953 {
954 	return alloc_page(gfp);
955 }
956 #endif /* CONFIG_NUMA */
957 
958 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
959 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
960 {
961 	return NULL;
962 }
963 #endif
964 
965 /*
966  * When a page is moved from swapcache to shmem filecache (either by the
967  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
968  * shmem_unuse_inode()), it may have been read in earlier from swap, in
969  * ignorance of the mapping it belongs to.  If that mapping has special
970  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
971  * we may need to copy to a suitable page before moving to filecache.
972  *
973  * In a future release, this may well be extended to respect cpuset and
974  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
975  * but for now it is a simple matter of zone.
976  */
977 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
978 {
979 	return page_zonenum(page) > gfp_zone(gfp);
980 }
981 
982 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
983 				struct shmem_inode_info *info, pgoff_t index)
984 {
985 	struct page *oldpage, *newpage;
986 	struct address_space *swap_mapping;
987 	pgoff_t swap_index;
988 	int error;
989 
990 	oldpage = *pagep;
991 	swap_index = page_private(oldpage);
992 	swap_mapping = page_mapping(oldpage);
993 
994 	/*
995 	 * We have arrived here because our zones are constrained, so don't
996 	 * limit chance of success by further cpuset and node constraints.
997 	 */
998 	gfp &= ~GFP_CONSTRAINT_MASK;
999 	newpage = shmem_alloc_page(gfp, info, index);
1000 	if (!newpage)
1001 		return -ENOMEM;
1002 
1003 	page_cache_get(newpage);
1004 	copy_highpage(newpage, oldpage);
1005 	flush_dcache_page(newpage);
1006 
1007 	__set_page_locked(newpage);
1008 	SetPageUptodate(newpage);
1009 	SetPageSwapBacked(newpage);
1010 	set_page_private(newpage, swap_index);
1011 	SetPageSwapCache(newpage);
1012 
1013 	/*
1014 	 * Our caller will very soon move newpage out of swapcache, but it's
1015 	 * a nice clean interface for us to replace oldpage by newpage there.
1016 	 */
1017 	spin_lock_irq(&swap_mapping->tree_lock);
1018 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1019 								   newpage);
1020 	if (!error) {
1021 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1022 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1023 	}
1024 	spin_unlock_irq(&swap_mapping->tree_lock);
1025 
1026 	if (unlikely(error)) {
1027 		/*
1028 		 * Is this possible?  I think not, now that our callers check
1029 		 * both PageSwapCache and page_private after getting page lock;
1030 		 * but be defensive.  Reverse old to newpage for clear and free.
1031 		 */
1032 		oldpage = newpage;
1033 	} else {
1034 		mem_cgroup_replace_page(oldpage, newpage);
1035 		lru_cache_add_anon(newpage);
1036 		*pagep = newpage;
1037 	}
1038 
1039 	ClearPageSwapCache(oldpage);
1040 	set_page_private(oldpage, 0);
1041 
1042 	unlock_page(oldpage);
1043 	page_cache_release(oldpage);
1044 	page_cache_release(oldpage);
1045 	return error;
1046 }
1047 
1048 /*
1049  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1050  *
1051  * If we allocate a new one we do not mark it dirty. That's up to the
1052  * vm. If we swap it in we mark it dirty since we also free the swap
1053  * entry since a page cannot live in both the swap and page cache
1054  */
1055 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1056 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1057 {
1058 	struct address_space *mapping = inode->i_mapping;
1059 	struct shmem_inode_info *info;
1060 	struct shmem_sb_info *sbinfo;
1061 	struct mem_cgroup *memcg;
1062 	struct page *page;
1063 	swp_entry_t swap;
1064 	int error;
1065 	int once = 0;
1066 	int alloced = 0;
1067 
1068 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1069 		return -EFBIG;
1070 repeat:
1071 	swap.val = 0;
1072 	page = find_lock_entry(mapping, index);
1073 	if (radix_tree_exceptional_entry(page)) {
1074 		swap = radix_to_swp_entry(page);
1075 		page = NULL;
1076 	}
1077 
1078 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1079 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1080 		error = -EINVAL;
1081 		goto unlock;
1082 	}
1083 
1084 	if (page && sgp == SGP_WRITE)
1085 		mark_page_accessed(page);
1086 
1087 	/* fallocated page? */
1088 	if (page && !PageUptodate(page)) {
1089 		if (sgp != SGP_READ)
1090 			goto clear;
1091 		unlock_page(page);
1092 		page_cache_release(page);
1093 		page = NULL;
1094 	}
1095 	if (page || (sgp == SGP_READ && !swap.val)) {
1096 		*pagep = page;
1097 		return 0;
1098 	}
1099 
1100 	/*
1101 	 * Fast cache lookup did not find it:
1102 	 * bring it back from swap or allocate.
1103 	 */
1104 	info = SHMEM_I(inode);
1105 	sbinfo = SHMEM_SB(inode->i_sb);
1106 
1107 	if (swap.val) {
1108 		/* Look it up and read it in.. */
1109 		page = lookup_swap_cache(swap);
1110 		if (!page) {
1111 			/* here we actually do the io */
1112 			if (fault_type)
1113 				*fault_type |= VM_FAULT_MAJOR;
1114 			page = shmem_swapin(swap, gfp, info, index);
1115 			if (!page) {
1116 				error = -ENOMEM;
1117 				goto failed;
1118 			}
1119 		}
1120 
1121 		/* We have to do this with page locked to prevent races */
1122 		lock_page(page);
1123 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1124 		    !shmem_confirm_swap(mapping, index, swap)) {
1125 			error = -EEXIST;	/* try again */
1126 			goto unlock;
1127 		}
1128 		if (!PageUptodate(page)) {
1129 			error = -EIO;
1130 			goto failed;
1131 		}
1132 		wait_on_page_writeback(page);
1133 
1134 		if (shmem_should_replace_page(page, gfp)) {
1135 			error = shmem_replace_page(&page, gfp, info, index);
1136 			if (error)
1137 				goto failed;
1138 		}
1139 
1140 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1141 		if (!error) {
1142 			error = shmem_add_to_page_cache(page, mapping, index,
1143 						swp_to_radix_entry(swap));
1144 			/*
1145 			 * We already confirmed swap under page lock, and make
1146 			 * no memory allocation here, so usually no possibility
1147 			 * of error; but free_swap_and_cache() only trylocks a
1148 			 * page, so it is just possible that the entry has been
1149 			 * truncated or holepunched since swap was confirmed.
1150 			 * shmem_undo_range() will have done some of the
1151 			 * unaccounting, now delete_from_swap_cache() will do
1152 			 * the rest.
1153 			 * Reset swap.val? No, leave it so "failed" goes back to
1154 			 * "repeat": reading a hole and writing should succeed.
1155 			 */
1156 			if (error) {
1157 				mem_cgroup_cancel_charge(page, memcg);
1158 				delete_from_swap_cache(page);
1159 			}
1160 		}
1161 		if (error)
1162 			goto failed;
1163 
1164 		mem_cgroup_commit_charge(page, memcg, true);
1165 
1166 		spin_lock(&info->lock);
1167 		info->swapped--;
1168 		shmem_recalc_inode(inode);
1169 		spin_unlock(&info->lock);
1170 
1171 		if (sgp == SGP_WRITE)
1172 			mark_page_accessed(page);
1173 
1174 		delete_from_swap_cache(page);
1175 		set_page_dirty(page);
1176 		swap_free(swap);
1177 
1178 	} else {
1179 		if (shmem_acct_block(info->flags)) {
1180 			error = -ENOSPC;
1181 			goto failed;
1182 		}
1183 		if (sbinfo->max_blocks) {
1184 			if (percpu_counter_compare(&sbinfo->used_blocks,
1185 						sbinfo->max_blocks) >= 0) {
1186 				error = -ENOSPC;
1187 				goto unacct;
1188 			}
1189 			percpu_counter_inc(&sbinfo->used_blocks);
1190 		}
1191 
1192 		page = shmem_alloc_page(gfp, info, index);
1193 		if (!page) {
1194 			error = -ENOMEM;
1195 			goto decused;
1196 		}
1197 
1198 		__SetPageSwapBacked(page);
1199 		__set_page_locked(page);
1200 		if (sgp == SGP_WRITE)
1201 			__SetPageReferenced(page);
1202 
1203 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1204 		if (error)
1205 			goto decused;
1206 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1207 		if (!error) {
1208 			error = shmem_add_to_page_cache(page, mapping, index,
1209 							NULL);
1210 			radix_tree_preload_end();
1211 		}
1212 		if (error) {
1213 			mem_cgroup_cancel_charge(page, memcg);
1214 			goto decused;
1215 		}
1216 		mem_cgroup_commit_charge(page, memcg, false);
1217 		lru_cache_add_anon(page);
1218 
1219 		spin_lock(&info->lock);
1220 		info->alloced++;
1221 		inode->i_blocks += BLOCKS_PER_PAGE;
1222 		shmem_recalc_inode(inode);
1223 		spin_unlock(&info->lock);
1224 		alloced = true;
1225 
1226 		/*
1227 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1228 		 */
1229 		if (sgp == SGP_FALLOC)
1230 			sgp = SGP_WRITE;
1231 clear:
1232 		/*
1233 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1234 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1235 		 * it now, lest undo on failure cancel our earlier guarantee.
1236 		 */
1237 		if (sgp != SGP_WRITE) {
1238 			clear_highpage(page);
1239 			flush_dcache_page(page);
1240 			SetPageUptodate(page);
1241 		}
1242 		if (sgp == SGP_DIRTY)
1243 			set_page_dirty(page);
1244 	}
1245 
1246 	/* Perhaps the file has been truncated since we checked */
1247 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1248 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1249 		if (alloced) {
1250 			ClearPageDirty(page);
1251 			delete_from_page_cache(page);
1252 			spin_lock(&info->lock);
1253 			shmem_recalc_inode(inode);
1254 			spin_unlock(&info->lock);
1255 		}
1256 		error = -EINVAL;
1257 		goto unlock;
1258 	}
1259 	*pagep = page;
1260 	return 0;
1261 
1262 	/*
1263 	 * Error recovery.
1264 	 */
1265 decused:
1266 	if (sbinfo->max_blocks)
1267 		percpu_counter_add(&sbinfo->used_blocks, -1);
1268 unacct:
1269 	shmem_unacct_blocks(info->flags, 1);
1270 failed:
1271 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1272 		error = -EEXIST;
1273 unlock:
1274 	if (page) {
1275 		unlock_page(page);
1276 		page_cache_release(page);
1277 	}
1278 	if (error == -ENOSPC && !once++) {
1279 		info = SHMEM_I(inode);
1280 		spin_lock(&info->lock);
1281 		shmem_recalc_inode(inode);
1282 		spin_unlock(&info->lock);
1283 		goto repeat;
1284 	}
1285 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1286 		goto repeat;
1287 	return error;
1288 }
1289 
1290 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1291 {
1292 	struct inode *inode = file_inode(vma->vm_file);
1293 	int error;
1294 	int ret = VM_FAULT_LOCKED;
1295 
1296 	/*
1297 	 * Trinity finds that probing a hole which tmpfs is punching can
1298 	 * prevent the hole-punch from ever completing: which in turn
1299 	 * locks writers out with its hold on i_mutex.  So refrain from
1300 	 * faulting pages into the hole while it's being punched.  Although
1301 	 * shmem_undo_range() does remove the additions, it may be unable to
1302 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1303 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1304 	 *
1305 	 * It does not matter if we sometimes reach this check just before the
1306 	 * hole-punch begins, so that one fault then races with the punch:
1307 	 * we just need to make racing faults a rare case.
1308 	 *
1309 	 * The implementation below would be much simpler if we just used a
1310 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1311 	 * and bloating every shmem inode for this unlikely case would be sad.
1312 	 */
1313 	if (unlikely(inode->i_private)) {
1314 		struct shmem_falloc *shmem_falloc;
1315 
1316 		spin_lock(&inode->i_lock);
1317 		shmem_falloc = inode->i_private;
1318 		if (shmem_falloc &&
1319 		    shmem_falloc->waitq &&
1320 		    vmf->pgoff >= shmem_falloc->start &&
1321 		    vmf->pgoff < shmem_falloc->next) {
1322 			wait_queue_head_t *shmem_falloc_waitq;
1323 			DEFINE_WAIT(shmem_fault_wait);
1324 
1325 			ret = VM_FAULT_NOPAGE;
1326 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1327 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1328 				/* It's polite to up mmap_sem if we can */
1329 				up_read(&vma->vm_mm->mmap_sem);
1330 				ret = VM_FAULT_RETRY;
1331 			}
1332 
1333 			shmem_falloc_waitq = shmem_falloc->waitq;
1334 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1335 					TASK_UNINTERRUPTIBLE);
1336 			spin_unlock(&inode->i_lock);
1337 			schedule();
1338 
1339 			/*
1340 			 * shmem_falloc_waitq points into the shmem_fallocate()
1341 			 * stack of the hole-punching task: shmem_falloc_waitq
1342 			 * is usually invalid by the time we reach here, but
1343 			 * finish_wait() does not dereference it in that case;
1344 			 * though i_lock needed lest racing with wake_up_all().
1345 			 */
1346 			spin_lock(&inode->i_lock);
1347 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1348 			spin_unlock(&inode->i_lock);
1349 			return ret;
1350 		}
1351 		spin_unlock(&inode->i_lock);
1352 	}
1353 
1354 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1355 	if (error)
1356 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1357 
1358 	if (ret & VM_FAULT_MAJOR) {
1359 		count_vm_event(PGMAJFAULT);
1360 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1361 	}
1362 	return ret;
1363 }
1364 
1365 #ifdef CONFIG_NUMA
1366 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1367 {
1368 	struct inode *inode = file_inode(vma->vm_file);
1369 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1370 }
1371 
1372 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1373 					  unsigned long addr)
1374 {
1375 	struct inode *inode = file_inode(vma->vm_file);
1376 	pgoff_t index;
1377 
1378 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1379 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1380 }
1381 #endif
1382 
1383 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1384 {
1385 	struct inode *inode = file_inode(file);
1386 	struct shmem_inode_info *info = SHMEM_I(inode);
1387 	int retval = -ENOMEM;
1388 
1389 	spin_lock(&info->lock);
1390 	if (lock && !(info->flags & VM_LOCKED)) {
1391 		if (!user_shm_lock(inode->i_size, user))
1392 			goto out_nomem;
1393 		info->flags |= VM_LOCKED;
1394 		mapping_set_unevictable(file->f_mapping);
1395 	}
1396 	if (!lock && (info->flags & VM_LOCKED) && user) {
1397 		user_shm_unlock(inode->i_size, user);
1398 		info->flags &= ~VM_LOCKED;
1399 		mapping_clear_unevictable(file->f_mapping);
1400 	}
1401 	retval = 0;
1402 
1403 out_nomem:
1404 	spin_unlock(&info->lock);
1405 	return retval;
1406 }
1407 
1408 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1409 {
1410 	file_accessed(file);
1411 	vma->vm_ops = &shmem_vm_ops;
1412 	return 0;
1413 }
1414 
1415 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1416 				     umode_t mode, dev_t dev, unsigned long flags)
1417 {
1418 	struct inode *inode;
1419 	struct shmem_inode_info *info;
1420 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1421 
1422 	if (shmem_reserve_inode(sb))
1423 		return NULL;
1424 
1425 	inode = new_inode(sb);
1426 	if (inode) {
1427 		inode->i_ino = get_next_ino();
1428 		inode_init_owner(inode, dir, mode);
1429 		inode->i_blocks = 0;
1430 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1431 		inode->i_generation = get_seconds();
1432 		info = SHMEM_I(inode);
1433 		memset(info, 0, (char *)inode - (char *)info);
1434 		spin_lock_init(&info->lock);
1435 		info->seals = F_SEAL_SEAL;
1436 		info->flags = flags & VM_NORESERVE;
1437 		INIT_LIST_HEAD(&info->swaplist);
1438 		simple_xattrs_init(&info->xattrs);
1439 		cache_no_acl(inode);
1440 
1441 		switch (mode & S_IFMT) {
1442 		default:
1443 			inode->i_op = &shmem_special_inode_operations;
1444 			init_special_inode(inode, mode, dev);
1445 			break;
1446 		case S_IFREG:
1447 			inode->i_mapping->a_ops = &shmem_aops;
1448 			inode->i_op = &shmem_inode_operations;
1449 			inode->i_fop = &shmem_file_operations;
1450 			mpol_shared_policy_init(&info->policy,
1451 						 shmem_get_sbmpol(sbinfo));
1452 			break;
1453 		case S_IFDIR:
1454 			inc_nlink(inode);
1455 			/* Some things misbehave if size == 0 on a directory */
1456 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1457 			inode->i_op = &shmem_dir_inode_operations;
1458 			inode->i_fop = &simple_dir_operations;
1459 			break;
1460 		case S_IFLNK:
1461 			/*
1462 			 * Must not load anything in the rbtree,
1463 			 * mpol_free_shared_policy will not be called.
1464 			 */
1465 			mpol_shared_policy_init(&info->policy, NULL);
1466 			break;
1467 		}
1468 	} else
1469 		shmem_free_inode(sb);
1470 	return inode;
1471 }
1472 
1473 bool shmem_mapping(struct address_space *mapping)
1474 {
1475 	if (!mapping->host)
1476 		return false;
1477 
1478 	return mapping->host->i_sb->s_op == &shmem_ops;
1479 }
1480 
1481 #ifdef CONFIG_TMPFS
1482 static const struct inode_operations shmem_symlink_inode_operations;
1483 static const struct inode_operations shmem_short_symlink_operations;
1484 
1485 #ifdef CONFIG_TMPFS_XATTR
1486 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1487 #else
1488 #define shmem_initxattrs NULL
1489 #endif
1490 
1491 static int
1492 shmem_write_begin(struct file *file, struct address_space *mapping,
1493 			loff_t pos, unsigned len, unsigned flags,
1494 			struct page **pagep, void **fsdata)
1495 {
1496 	struct inode *inode = mapping->host;
1497 	struct shmem_inode_info *info = SHMEM_I(inode);
1498 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1499 
1500 	/* i_mutex is held by caller */
1501 	if (unlikely(info->seals)) {
1502 		if (info->seals & F_SEAL_WRITE)
1503 			return -EPERM;
1504 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1505 			return -EPERM;
1506 	}
1507 
1508 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1509 }
1510 
1511 static int
1512 shmem_write_end(struct file *file, struct address_space *mapping,
1513 			loff_t pos, unsigned len, unsigned copied,
1514 			struct page *page, void *fsdata)
1515 {
1516 	struct inode *inode = mapping->host;
1517 
1518 	if (pos + copied > inode->i_size)
1519 		i_size_write(inode, pos + copied);
1520 
1521 	if (!PageUptodate(page)) {
1522 		if (copied < PAGE_CACHE_SIZE) {
1523 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1524 			zero_user_segments(page, 0, from,
1525 					from + copied, PAGE_CACHE_SIZE);
1526 		}
1527 		SetPageUptodate(page);
1528 	}
1529 	set_page_dirty(page);
1530 	unlock_page(page);
1531 	page_cache_release(page);
1532 
1533 	return copied;
1534 }
1535 
1536 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1537 {
1538 	struct file *file = iocb->ki_filp;
1539 	struct inode *inode = file_inode(file);
1540 	struct address_space *mapping = inode->i_mapping;
1541 	pgoff_t index;
1542 	unsigned long offset;
1543 	enum sgp_type sgp = SGP_READ;
1544 	int error = 0;
1545 	ssize_t retval = 0;
1546 	loff_t *ppos = &iocb->ki_pos;
1547 
1548 	/*
1549 	 * Might this read be for a stacking filesystem?  Then when reading
1550 	 * holes of a sparse file, we actually need to allocate those pages,
1551 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1552 	 */
1553 	if (!iter_is_iovec(to))
1554 		sgp = SGP_DIRTY;
1555 
1556 	index = *ppos >> PAGE_CACHE_SHIFT;
1557 	offset = *ppos & ~PAGE_CACHE_MASK;
1558 
1559 	for (;;) {
1560 		struct page *page = NULL;
1561 		pgoff_t end_index;
1562 		unsigned long nr, ret;
1563 		loff_t i_size = i_size_read(inode);
1564 
1565 		end_index = i_size >> PAGE_CACHE_SHIFT;
1566 		if (index > end_index)
1567 			break;
1568 		if (index == end_index) {
1569 			nr = i_size & ~PAGE_CACHE_MASK;
1570 			if (nr <= offset)
1571 				break;
1572 		}
1573 
1574 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1575 		if (error) {
1576 			if (error == -EINVAL)
1577 				error = 0;
1578 			break;
1579 		}
1580 		if (page)
1581 			unlock_page(page);
1582 
1583 		/*
1584 		 * We must evaluate after, since reads (unlike writes)
1585 		 * are called without i_mutex protection against truncate
1586 		 */
1587 		nr = PAGE_CACHE_SIZE;
1588 		i_size = i_size_read(inode);
1589 		end_index = i_size >> PAGE_CACHE_SHIFT;
1590 		if (index == end_index) {
1591 			nr = i_size & ~PAGE_CACHE_MASK;
1592 			if (nr <= offset) {
1593 				if (page)
1594 					page_cache_release(page);
1595 				break;
1596 			}
1597 		}
1598 		nr -= offset;
1599 
1600 		if (page) {
1601 			/*
1602 			 * If users can be writing to this page using arbitrary
1603 			 * virtual addresses, take care about potential aliasing
1604 			 * before reading the page on the kernel side.
1605 			 */
1606 			if (mapping_writably_mapped(mapping))
1607 				flush_dcache_page(page);
1608 			/*
1609 			 * Mark the page accessed if we read the beginning.
1610 			 */
1611 			if (!offset)
1612 				mark_page_accessed(page);
1613 		} else {
1614 			page = ZERO_PAGE(0);
1615 			page_cache_get(page);
1616 		}
1617 
1618 		/*
1619 		 * Ok, we have the page, and it's up-to-date, so
1620 		 * now we can copy it to user space...
1621 		 */
1622 		ret = copy_page_to_iter(page, offset, nr, to);
1623 		retval += ret;
1624 		offset += ret;
1625 		index += offset >> PAGE_CACHE_SHIFT;
1626 		offset &= ~PAGE_CACHE_MASK;
1627 
1628 		page_cache_release(page);
1629 		if (!iov_iter_count(to))
1630 			break;
1631 		if (ret < nr) {
1632 			error = -EFAULT;
1633 			break;
1634 		}
1635 		cond_resched();
1636 	}
1637 
1638 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1639 	file_accessed(file);
1640 	return retval ? retval : error;
1641 }
1642 
1643 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1644 				struct pipe_inode_info *pipe, size_t len,
1645 				unsigned int flags)
1646 {
1647 	struct address_space *mapping = in->f_mapping;
1648 	struct inode *inode = mapping->host;
1649 	unsigned int loff, nr_pages, req_pages;
1650 	struct page *pages[PIPE_DEF_BUFFERS];
1651 	struct partial_page partial[PIPE_DEF_BUFFERS];
1652 	struct page *page;
1653 	pgoff_t index, end_index;
1654 	loff_t isize, left;
1655 	int error, page_nr;
1656 	struct splice_pipe_desc spd = {
1657 		.pages = pages,
1658 		.partial = partial,
1659 		.nr_pages_max = PIPE_DEF_BUFFERS,
1660 		.flags = flags,
1661 		.ops = &page_cache_pipe_buf_ops,
1662 		.spd_release = spd_release_page,
1663 	};
1664 
1665 	isize = i_size_read(inode);
1666 	if (unlikely(*ppos >= isize))
1667 		return 0;
1668 
1669 	left = isize - *ppos;
1670 	if (unlikely(left < len))
1671 		len = left;
1672 
1673 	if (splice_grow_spd(pipe, &spd))
1674 		return -ENOMEM;
1675 
1676 	index = *ppos >> PAGE_CACHE_SHIFT;
1677 	loff = *ppos & ~PAGE_CACHE_MASK;
1678 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1679 	nr_pages = min(req_pages, spd.nr_pages_max);
1680 
1681 	spd.nr_pages = find_get_pages_contig(mapping, index,
1682 						nr_pages, spd.pages);
1683 	index += spd.nr_pages;
1684 	error = 0;
1685 
1686 	while (spd.nr_pages < nr_pages) {
1687 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1688 		if (error)
1689 			break;
1690 		unlock_page(page);
1691 		spd.pages[spd.nr_pages++] = page;
1692 		index++;
1693 	}
1694 
1695 	index = *ppos >> PAGE_CACHE_SHIFT;
1696 	nr_pages = spd.nr_pages;
1697 	spd.nr_pages = 0;
1698 
1699 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1700 		unsigned int this_len;
1701 
1702 		if (!len)
1703 			break;
1704 
1705 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1706 		page = spd.pages[page_nr];
1707 
1708 		if (!PageUptodate(page) || page->mapping != mapping) {
1709 			error = shmem_getpage(inode, index, &page,
1710 							SGP_CACHE, NULL);
1711 			if (error)
1712 				break;
1713 			unlock_page(page);
1714 			page_cache_release(spd.pages[page_nr]);
1715 			spd.pages[page_nr] = page;
1716 		}
1717 
1718 		isize = i_size_read(inode);
1719 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1720 		if (unlikely(!isize || index > end_index))
1721 			break;
1722 
1723 		if (end_index == index) {
1724 			unsigned int plen;
1725 
1726 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1727 			if (plen <= loff)
1728 				break;
1729 
1730 			this_len = min(this_len, plen - loff);
1731 			len = this_len;
1732 		}
1733 
1734 		spd.partial[page_nr].offset = loff;
1735 		spd.partial[page_nr].len = this_len;
1736 		len -= this_len;
1737 		loff = 0;
1738 		spd.nr_pages++;
1739 		index++;
1740 	}
1741 
1742 	while (page_nr < nr_pages)
1743 		page_cache_release(spd.pages[page_nr++]);
1744 
1745 	if (spd.nr_pages)
1746 		error = splice_to_pipe(pipe, &spd);
1747 
1748 	splice_shrink_spd(&spd);
1749 
1750 	if (error > 0) {
1751 		*ppos += error;
1752 		file_accessed(in);
1753 	}
1754 	return error;
1755 }
1756 
1757 /*
1758  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1759  */
1760 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1761 				    pgoff_t index, pgoff_t end, int whence)
1762 {
1763 	struct page *page;
1764 	struct pagevec pvec;
1765 	pgoff_t indices[PAGEVEC_SIZE];
1766 	bool done = false;
1767 	int i;
1768 
1769 	pagevec_init(&pvec, 0);
1770 	pvec.nr = 1;		/* start small: we may be there already */
1771 	while (!done) {
1772 		pvec.nr = find_get_entries(mapping, index,
1773 					pvec.nr, pvec.pages, indices);
1774 		if (!pvec.nr) {
1775 			if (whence == SEEK_DATA)
1776 				index = end;
1777 			break;
1778 		}
1779 		for (i = 0; i < pvec.nr; i++, index++) {
1780 			if (index < indices[i]) {
1781 				if (whence == SEEK_HOLE) {
1782 					done = true;
1783 					break;
1784 				}
1785 				index = indices[i];
1786 			}
1787 			page = pvec.pages[i];
1788 			if (page && !radix_tree_exceptional_entry(page)) {
1789 				if (!PageUptodate(page))
1790 					page = NULL;
1791 			}
1792 			if (index >= end ||
1793 			    (page && whence == SEEK_DATA) ||
1794 			    (!page && whence == SEEK_HOLE)) {
1795 				done = true;
1796 				break;
1797 			}
1798 		}
1799 		pagevec_remove_exceptionals(&pvec);
1800 		pagevec_release(&pvec);
1801 		pvec.nr = PAGEVEC_SIZE;
1802 		cond_resched();
1803 	}
1804 	return index;
1805 }
1806 
1807 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1808 {
1809 	struct address_space *mapping = file->f_mapping;
1810 	struct inode *inode = mapping->host;
1811 	pgoff_t start, end;
1812 	loff_t new_offset;
1813 
1814 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1815 		return generic_file_llseek_size(file, offset, whence,
1816 					MAX_LFS_FILESIZE, i_size_read(inode));
1817 	mutex_lock(&inode->i_mutex);
1818 	/* We're holding i_mutex so we can access i_size directly */
1819 
1820 	if (offset < 0)
1821 		offset = -EINVAL;
1822 	else if (offset >= inode->i_size)
1823 		offset = -ENXIO;
1824 	else {
1825 		start = offset >> PAGE_CACHE_SHIFT;
1826 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1827 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1828 		new_offset <<= PAGE_CACHE_SHIFT;
1829 		if (new_offset > offset) {
1830 			if (new_offset < inode->i_size)
1831 				offset = new_offset;
1832 			else if (whence == SEEK_DATA)
1833 				offset = -ENXIO;
1834 			else
1835 				offset = inode->i_size;
1836 		}
1837 	}
1838 
1839 	if (offset >= 0)
1840 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1841 	mutex_unlock(&inode->i_mutex);
1842 	return offset;
1843 }
1844 
1845 /*
1846  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1847  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1848  */
1849 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1850 #define LAST_SCAN               4       /* about 150ms max */
1851 
1852 static void shmem_tag_pins(struct address_space *mapping)
1853 {
1854 	struct radix_tree_iter iter;
1855 	void **slot;
1856 	pgoff_t start;
1857 	struct page *page;
1858 
1859 	lru_add_drain();
1860 	start = 0;
1861 	rcu_read_lock();
1862 
1863 restart:
1864 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1865 		page = radix_tree_deref_slot(slot);
1866 		if (!page || radix_tree_exception(page)) {
1867 			if (radix_tree_deref_retry(page))
1868 				goto restart;
1869 		} else if (page_count(page) - page_mapcount(page) > 1) {
1870 			spin_lock_irq(&mapping->tree_lock);
1871 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1872 					   SHMEM_TAG_PINNED);
1873 			spin_unlock_irq(&mapping->tree_lock);
1874 		}
1875 
1876 		if (need_resched()) {
1877 			cond_resched_rcu();
1878 			start = iter.index + 1;
1879 			goto restart;
1880 		}
1881 	}
1882 	rcu_read_unlock();
1883 }
1884 
1885 /*
1886  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1887  * via get_user_pages(), drivers might have some pending I/O without any active
1888  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1889  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1890  * them to be dropped.
1891  * The caller must guarantee that no new user will acquire writable references
1892  * to those pages to avoid races.
1893  */
1894 static int shmem_wait_for_pins(struct address_space *mapping)
1895 {
1896 	struct radix_tree_iter iter;
1897 	void **slot;
1898 	pgoff_t start;
1899 	struct page *page;
1900 	int error, scan;
1901 
1902 	shmem_tag_pins(mapping);
1903 
1904 	error = 0;
1905 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1906 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1907 			break;
1908 
1909 		if (!scan)
1910 			lru_add_drain_all();
1911 		else if (schedule_timeout_killable((HZ << scan) / 200))
1912 			scan = LAST_SCAN;
1913 
1914 		start = 0;
1915 		rcu_read_lock();
1916 restart:
1917 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1918 					   start, SHMEM_TAG_PINNED) {
1919 
1920 			page = radix_tree_deref_slot(slot);
1921 			if (radix_tree_exception(page)) {
1922 				if (radix_tree_deref_retry(page))
1923 					goto restart;
1924 
1925 				page = NULL;
1926 			}
1927 
1928 			if (page &&
1929 			    page_count(page) - page_mapcount(page) != 1) {
1930 				if (scan < LAST_SCAN)
1931 					goto continue_resched;
1932 
1933 				/*
1934 				 * On the last scan, we clean up all those tags
1935 				 * we inserted; but make a note that we still
1936 				 * found pages pinned.
1937 				 */
1938 				error = -EBUSY;
1939 			}
1940 
1941 			spin_lock_irq(&mapping->tree_lock);
1942 			radix_tree_tag_clear(&mapping->page_tree,
1943 					     iter.index, SHMEM_TAG_PINNED);
1944 			spin_unlock_irq(&mapping->tree_lock);
1945 continue_resched:
1946 			if (need_resched()) {
1947 				cond_resched_rcu();
1948 				start = iter.index + 1;
1949 				goto restart;
1950 			}
1951 		}
1952 		rcu_read_unlock();
1953 	}
1954 
1955 	return error;
1956 }
1957 
1958 #define F_ALL_SEALS (F_SEAL_SEAL | \
1959 		     F_SEAL_SHRINK | \
1960 		     F_SEAL_GROW | \
1961 		     F_SEAL_WRITE)
1962 
1963 int shmem_add_seals(struct file *file, unsigned int seals)
1964 {
1965 	struct inode *inode = file_inode(file);
1966 	struct shmem_inode_info *info = SHMEM_I(inode);
1967 	int error;
1968 
1969 	/*
1970 	 * SEALING
1971 	 * Sealing allows multiple parties to share a shmem-file but restrict
1972 	 * access to a specific subset of file operations. Seals can only be
1973 	 * added, but never removed. This way, mutually untrusted parties can
1974 	 * share common memory regions with a well-defined policy. A malicious
1975 	 * peer can thus never perform unwanted operations on a shared object.
1976 	 *
1977 	 * Seals are only supported on special shmem-files and always affect
1978 	 * the whole underlying inode. Once a seal is set, it may prevent some
1979 	 * kinds of access to the file. Currently, the following seals are
1980 	 * defined:
1981 	 *   SEAL_SEAL: Prevent further seals from being set on this file
1982 	 *   SEAL_SHRINK: Prevent the file from shrinking
1983 	 *   SEAL_GROW: Prevent the file from growing
1984 	 *   SEAL_WRITE: Prevent write access to the file
1985 	 *
1986 	 * As we don't require any trust relationship between two parties, we
1987 	 * must prevent seals from being removed. Therefore, sealing a file
1988 	 * only adds a given set of seals to the file, it never touches
1989 	 * existing seals. Furthermore, the "setting seals"-operation can be
1990 	 * sealed itself, which basically prevents any further seal from being
1991 	 * added.
1992 	 *
1993 	 * Semantics of sealing are only defined on volatile files. Only
1994 	 * anonymous shmem files support sealing. More importantly, seals are
1995 	 * never written to disk. Therefore, there's no plan to support it on
1996 	 * other file types.
1997 	 */
1998 
1999 	if (file->f_op != &shmem_file_operations)
2000 		return -EINVAL;
2001 	if (!(file->f_mode & FMODE_WRITE))
2002 		return -EPERM;
2003 	if (seals & ~(unsigned int)F_ALL_SEALS)
2004 		return -EINVAL;
2005 
2006 	mutex_lock(&inode->i_mutex);
2007 
2008 	if (info->seals & F_SEAL_SEAL) {
2009 		error = -EPERM;
2010 		goto unlock;
2011 	}
2012 
2013 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2014 		error = mapping_deny_writable(file->f_mapping);
2015 		if (error)
2016 			goto unlock;
2017 
2018 		error = shmem_wait_for_pins(file->f_mapping);
2019 		if (error) {
2020 			mapping_allow_writable(file->f_mapping);
2021 			goto unlock;
2022 		}
2023 	}
2024 
2025 	info->seals |= seals;
2026 	error = 0;
2027 
2028 unlock:
2029 	mutex_unlock(&inode->i_mutex);
2030 	return error;
2031 }
2032 EXPORT_SYMBOL_GPL(shmem_add_seals);
2033 
2034 int shmem_get_seals(struct file *file)
2035 {
2036 	if (file->f_op != &shmem_file_operations)
2037 		return -EINVAL;
2038 
2039 	return SHMEM_I(file_inode(file))->seals;
2040 }
2041 EXPORT_SYMBOL_GPL(shmem_get_seals);
2042 
2043 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2044 {
2045 	long error;
2046 
2047 	switch (cmd) {
2048 	case F_ADD_SEALS:
2049 		/* disallow upper 32bit */
2050 		if (arg > UINT_MAX)
2051 			return -EINVAL;
2052 
2053 		error = shmem_add_seals(file, arg);
2054 		break;
2055 	case F_GET_SEALS:
2056 		error = shmem_get_seals(file);
2057 		break;
2058 	default:
2059 		error = -EINVAL;
2060 		break;
2061 	}
2062 
2063 	return error;
2064 }
2065 
2066 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2067 							 loff_t len)
2068 {
2069 	struct inode *inode = file_inode(file);
2070 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2071 	struct shmem_inode_info *info = SHMEM_I(inode);
2072 	struct shmem_falloc shmem_falloc;
2073 	pgoff_t start, index, end;
2074 	int error;
2075 
2076 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2077 		return -EOPNOTSUPP;
2078 
2079 	mutex_lock(&inode->i_mutex);
2080 
2081 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2082 		struct address_space *mapping = file->f_mapping;
2083 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2084 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2085 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2086 
2087 		/* protected by i_mutex */
2088 		if (info->seals & F_SEAL_WRITE) {
2089 			error = -EPERM;
2090 			goto out;
2091 		}
2092 
2093 		shmem_falloc.waitq = &shmem_falloc_waitq;
2094 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2095 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2096 		spin_lock(&inode->i_lock);
2097 		inode->i_private = &shmem_falloc;
2098 		spin_unlock(&inode->i_lock);
2099 
2100 		if ((u64)unmap_end > (u64)unmap_start)
2101 			unmap_mapping_range(mapping, unmap_start,
2102 					    1 + unmap_end - unmap_start, 0);
2103 		shmem_truncate_range(inode, offset, offset + len - 1);
2104 		/* No need to unmap again: hole-punching leaves COWed pages */
2105 
2106 		spin_lock(&inode->i_lock);
2107 		inode->i_private = NULL;
2108 		wake_up_all(&shmem_falloc_waitq);
2109 		spin_unlock(&inode->i_lock);
2110 		error = 0;
2111 		goto out;
2112 	}
2113 
2114 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2115 	error = inode_newsize_ok(inode, offset + len);
2116 	if (error)
2117 		goto out;
2118 
2119 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2120 		error = -EPERM;
2121 		goto out;
2122 	}
2123 
2124 	start = offset >> PAGE_CACHE_SHIFT;
2125 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2126 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2127 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2128 		error = -ENOSPC;
2129 		goto out;
2130 	}
2131 
2132 	shmem_falloc.waitq = NULL;
2133 	shmem_falloc.start = start;
2134 	shmem_falloc.next  = start;
2135 	shmem_falloc.nr_falloced = 0;
2136 	shmem_falloc.nr_unswapped = 0;
2137 	spin_lock(&inode->i_lock);
2138 	inode->i_private = &shmem_falloc;
2139 	spin_unlock(&inode->i_lock);
2140 
2141 	for (index = start; index < end; index++) {
2142 		struct page *page;
2143 
2144 		/*
2145 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2146 		 * been interrupted because we are using up too much memory.
2147 		 */
2148 		if (signal_pending(current))
2149 			error = -EINTR;
2150 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2151 			error = -ENOMEM;
2152 		else
2153 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2154 									NULL);
2155 		if (error) {
2156 			/* Remove the !PageUptodate pages we added */
2157 			shmem_undo_range(inode,
2158 				(loff_t)start << PAGE_CACHE_SHIFT,
2159 				(loff_t)index << PAGE_CACHE_SHIFT, true);
2160 			goto undone;
2161 		}
2162 
2163 		/*
2164 		 * Inform shmem_writepage() how far we have reached.
2165 		 * No need for lock or barrier: we have the page lock.
2166 		 */
2167 		shmem_falloc.next++;
2168 		if (!PageUptodate(page))
2169 			shmem_falloc.nr_falloced++;
2170 
2171 		/*
2172 		 * If !PageUptodate, leave it that way so that freeable pages
2173 		 * can be recognized if we need to rollback on error later.
2174 		 * But set_page_dirty so that memory pressure will swap rather
2175 		 * than free the pages we are allocating (and SGP_CACHE pages
2176 		 * might still be clean: we now need to mark those dirty too).
2177 		 */
2178 		set_page_dirty(page);
2179 		unlock_page(page);
2180 		page_cache_release(page);
2181 		cond_resched();
2182 	}
2183 
2184 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2185 		i_size_write(inode, offset + len);
2186 	inode->i_ctime = CURRENT_TIME;
2187 undone:
2188 	spin_lock(&inode->i_lock);
2189 	inode->i_private = NULL;
2190 	spin_unlock(&inode->i_lock);
2191 out:
2192 	mutex_unlock(&inode->i_mutex);
2193 	return error;
2194 }
2195 
2196 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2197 {
2198 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2199 
2200 	buf->f_type = TMPFS_MAGIC;
2201 	buf->f_bsize = PAGE_CACHE_SIZE;
2202 	buf->f_namelen = NAME_MAX;
2203 	if (sbinfo->max_blocks) {
2204 		buf->f_blocks = sbinfo->max_blocks;
2205 		buf->f_bavail =
2206 		buf->f_bfree  = sbinfo->max_blocks -
2207 				percpu_counter_sum(&sbinfo->used_blocks);
2208 	}
2209 	if (sbinfo->max_inodes) {
2210 		buf->f_files = sbinfo->max_inodes;
2211 		buf->f_ffree = sbinfo->free_inodes;
2212 	}
2213 	/* else leave those fields 0 like simple_statfs */
2214 	return 0;
2215 }
2216 
2217 /*
2218  * File creation. Allocate an inode, and we're done..
2219  */
2220 static int
2221 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2222 {
2223 	struct inode *inode;
2224 	int error = -ENOSPC;
2225 
2226 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2227 	if (inode) {
2228 		error = simple_acl_create(dir, inode);
2229 		if (error)
2230 			goto out_iput;
2231 		error = security_inode_init_security(inode, dir,
2232 						     &dentry->d_name,
2233 						     shmem_initxattrs, NULL);
2234 		if (error && error != -EOPNOTSUPP)
2235 			goto out_iput;
2236 
2237 		error = 0;
2238 		dir->i_size += BOGO_DIRENT_SIZE;
2239 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2240 		d_instantiate(dentry, inode);
2241 		dget(dentry); /* Extra count - pin the dentry in core */
2242 	}
2243 	return error;
2244 out_iput:
2245 	iput(inode);
2246 	return error;
2247 }
2248 
2249 static int
2250 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2251 {
2252 	struct inode *inode;
2253 	int error = -ENOSPC;
2254 
2255 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2256 	if (inode) {
2257 		error = security_inode_init_security(inode, dir,
2258 						     NULL,
2259 						     shmem_initxattrs, NULL);
2260 		if (error && error != -EOPNOTSUPP)
2261 			goto out_iput;
2262 		error = simple_acl_create(dir, inode);
2263 		if (error)
2264 			goto out_iput;
2265 		d_tmpfile(dentry, inode);
2266 	}
2267 	return error;
2268 out_iput:
2269 	iput(inode);
2270 	return error;
2271 }
2272 
2273 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2274 {
2275 	int error;
2276 
2277 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2278 		return error;
2279 	inc_nlink(dir);
2280 	return 0;
2281 }
2282 
2283 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2284 		bool excl)
2285 {
2286 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2287 }
2288 
2289 /*
2290  * Link a file..
2291  */
2292 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2293 {
2294 	struct inode *inode = d_inode(old_dentry);
2295 	int ret;
2296 
2297 	/*
2298 	 * No ordinary (disk based) filesystem counts links as inodes;
2299 	 * but each new link needs a new dentry, pinning lowmem, and
2300 	 * tmpfs dentries cannot be pruned until they are unlinked.
2301 	 */
2302 	ret = shmem_reserve_inode(inode->i_sb);
2303 	if (ret)
2304 		goto out;
2305 
2306 	dir->i_size += BOGO_DIRENT_SIZE;
2307 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2308 	inc_nlink(inode);
2309 	ihold(inode);	/* New dentry reference */
2310 	dget(dentry);		/* Extra pinning count for the created dentry */
2311 	d_instantiate(dentry, inode);
2312 out:
2313 	return ret;
2314 }
2315 
2316 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2317 {
2318 	struct inode *inode = d_inode(dentry);
2319 
2320 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2321 		shmem_free_inode(inode->i_sb);
2322 
2323 	dir->i_size -= BOGO_DIRENT_SIZE;
2324 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2325 	drop_nlink(inode);
2326 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2327 	return 0;
2328 }
2329 
2330 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2331 {
2332 	if (!simple_empty(dentry))
2333 		return -ENOTEMPTY;
2334 
2335 	drop_nlink(d_inode(dentry));
2336 	drop_nlink(dir);
2337 	return shmem_unlink(dir, dentry);
2338 }
2339 
2340 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2341 {
2342 	bool old_is_dir = d_is_dir(old_dentry);
2343 	bool new_is_dir = d_is_dir(new_dentry);
2344 
2345 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2346 		if (old_is_dir) {
2347 			drop_nlink(old_dir);
2348 			inc_nlink(new_dir);
2349 		} else {
2350 			drop_nlink(new_dir);
2351 			inc_nlink(old_dir);
2352 		}
2353 	}
2354 	old_dir->i_ctime = old_dir->i_mtime =
2355 	new_dir->i_ctime = new_dir->i_mtime =
2356 	d_inode(old_dentry)->i_ctime =
2357 	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2358 
2359 	return 0;
2360 }
2361 
2362 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2363 {
2364 	struct dentry *whiteout;
2365 	int error;
2366 
2367 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2368 	if (!whiteout)
2369 		return -ENOMEM;
2370 
2371 	error = shmem_mknod(old_dir, whiteout,
2372 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2373 	dput(whiteout);
2374 	if (error)
2375 		return error;
2376 
2377 	/*
2378 	 * Cheat and hash the whiteout while the old dentry is still in
2379 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2380 	 *
2381 	 * d_lookup() will consistently find one of them at this point,
2382 	 * not sure which one, but that isn't even important.
2383 	 */
2384 	d_rehash(whiteout);
2385 	return 0;
2386 }
2387 
2388 /*
2389  * The VFS layer already does all the dentry stuff for rename,
2390  * we just have to decrement the usage count for the target if
2391  * it exists so that the VFS layer correctly free's it when it
2392  * gets overwritten.
2393  */
2394 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2395 {
2396 	struct inode *inode = d_inode(old_dentry);
2397 	int they_are_dirs = S_ISDIR(inode->i_mode);
2398 
2399 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2400 		return -EINVAL;
2401 
2402 	if (flags & RENAME_EXCHANGE)
2403 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2404 
2405 	if (!simple_empty(new_dentry))
2406 		return -ENOTEMPTY;
2407 
2408 	if (flags & RENAME_WHITEOUT) {
2409 		int error;
2410 
2411 		error = shmem_whiteout(old_dir, old_dentry);
2412 		if (error)
2413 			return error;
2414 	}
2415 
2416 	if (d_really_is_positive(new_dentry)) {
2417 		(void) shmem_unlink(new_dir, new_dentry);
2418 		if (they_are_dirs) {
2419 			drop_nlink(d_inode(new_dentry));
2420 			drop_nlink(old_dir);
2421 		}
2422 	} else if (they_are_dirs) {
2423 		drop_nlink(old_dir);
2424 		inc_nlink(new_dir);
2425 	}
2426 
2427 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2428 	new_dir->i_size += BOGO_DIRENT_SIZE;
2429 	old_dir->i_ctime = old_dir->i_mtime =
2430 	new_dir->i_ctime = new_dir->i_mtime =
2431 	inode->i_ctime = CURRENT_TIME;
2432 	return 0;
2433 }
2434 
2435 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2436 {
2437 	int error;
2438 	int len;
2439 	struct inode *inode;
2440 	struct page *page;
2441 	char *kaddr;
2442 	struct shmem_inode_info *info;
2443 
2444 	len = strlen(symname) + 1;
2445 	if (len > PAGE_CACHE_SIZE)
2446 		return -ENAMETOOLONG;
2447 
2448 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2449 	if (!inode)
2450 		return -ENOSPC;
2451 
2452 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2453 					     shmem_initxattrs, NULL);
2454 	if (error) {
2455 		if (error != -EOPNOTSUPP) {
2456 			iput(inode);
2457 			return error;
2458 		}
2459 		error = 0;
2460 	}
2461 
2462 	info = SHMEM_I(inode);
2463 	inode->i_size = len-1;
2464 	if (len <= SHORT_SYMLINK_LEN) {
2465 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2466 		if (!info->symlink) {
2467 			iput(inode);
2468 			return -ENOMEM;
2469 		}
2470 		inode->i_op = &shmem_short_symlink_operations;
2471 		inode->i_link = info->symlink;
2472 	} else {
2473 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2474 		if (error) {
2475 			iput(inode);
2476 			return error;
2477 		}
2478 		inode->i_mapping->a_ops = &shmem_aops;
2479 		inode->i_op = &shmem_symlink_inode_operations;
2480 		kaddr = kmap_atomic(page);
2481 		memcpy(kaddr, symname, len);
2482 		kunmap_atomic(kaddr);
2483 		SetPageUptodate(page);
2484 		set_page_dirty(page);
2485 		unlock_page(page);
2486 		page_cache_release(page);
2487 	}
2488 	dir->i_size += BOGO_DIRENT_SIZE;
2489 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2490 	d_instantiate(dentry, inode);
2491 	dget(dentry);
2492 	return 0;
2493 }
2494 
2495 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2496 {
2497 	struct page *page = NULL;
2498 	int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2499 	if (error)
2500 		return ERR_PTR(error);
2501 	unlock_page(page);
2502 	*cookie = page;
2503 	return kmap(page);
2504 }
2505 
2506 static void shmem_put_link(struct inode *unused, void *cookie)
2507 {
2508 	struct page *page = cookie;
2509 	kunmap(page);
2510 	mark_page_accessed(page);
2511 	page_cache_release(page);
2512 }
2513 
2514 #ifdef CONFIG_TMPFS_XATTR
2515 /*
2516  * Superblocks without xattr inode operations may get some security.* xattr
2517  * support from the LSM "for free". As soon as we have any other xattrs
2518  * like ACLs, we also need to implement the security.* handlers at
2519  * filesystem level, though.
2520  */
2521 
2522 /*
2523  * Callback for security_inode_init_security() for acquiring xattrs.
2524  */
2525 static int shmem_initxattrs(struct inode *inode,
2526 			    const struct xattr *xattr_array,
2527 			    void *fs_info)
2528 {
2529 	struct shmem_inode_info *info = SHMEM_I(inode);
2530 	const struct xattr *xattr;
2531 	struct simple_xattr *new_xattr;
2532 	size_t len;
2533 
2534 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2535 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2536 		if (!new_xattr)
2537 			return -ENOMEM;
2538 
2539 		len = strlen(xattr->name) + 1;
2540 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2541 					  GFP_KERNEL);
2542 		if (!new_xattr->name) {
2543 			kfree(new_xattr);
2544 			return -ENOMEM;
2545 		}
2546 
2547 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2548 		       XATTR_SECURITY_PREFIX_LEN);
2549 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2550 		       xattr->name, len);
2551 
2552 		simple_xattr_list_add(&info->xattrs, new_xattr);
2553 	}
2554 
2555 	return 0;
2556 }
2557 
2558 static const struct xattr_handler *shmem_xattr_handlers[] = {
2559 #ifdef CONFIG_TMPFS_POSIX_ACL
2560 	&posix_acl_access_xattr_handler,
2561 	&posix_acl_default_xattr_handler,
2562 #endif
2563 	NULL
2564 };
2565 
2566 static int shmem_xattr_validate(const char *name)
2567 {
2568 	struct { const char *prefix; size_t len; } arr[] = {
2569 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2570 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2571 	};
2572 	int i;
2573 
2574 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2575 		size_t preflen = arr[i].len;
2576 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2577 			if (!name[preflen])
2578 				return -EINVAL;
2579 			return 0;
2580 		}
2581 	}
2582 	return -EOPNOTSUPP;
2583 }
2584 
2585 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2586 			      void *buffer, size_t size)
2587 {
2588 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2589 	int err;
2590 
2591 	/*
2592 	 * If this is a request for a synthetic attribute in the system.*
2593 	 * namespace use the generic infrastructure to resolve a handler
2594 	 * for it via sb->s_xattr.
2595 	 */
2596 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2597 		return generic_getxattr(dentry, name, buffer, size);
2598 
2599 	err = shmem_xattr_validate(name);
2600 	if (err)
2601 		return err;
2602 
2603 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2604 }
2605 
2606 static int shmem_setxattr(struct dentry *dentry, const char *name,
2607 			  const void *value, size_t size, int flags)
2608 {
2609 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2610 	int err;
2611 
2612 	/*
2613 	 * If this is a request for a synthetic attribute in the system.*
2614 	 * namespace use the generic infrastructure to resolve a handler
2615 	 * for it via sb->s_xattr.
2616 	 */
2617 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2618 		return generic_setxattr(dentry, name, value, size, flags);
2619 
2620 	err = shmem_xattr_validate(name);
2621 	if (err)
2622 		return err;
2623 
2624 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2625 }
2626 
2627 static int shmem_removexattr(struct dentry *dentry, const char *name)
2628 {
2629 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2630 	int err;
2631 
2632 	/*
2633 	 * If this is a request for a synthetic attribute in the system.*
2634 	 * namespace use the generic infrastructure to resolve a handler
2635 	 * for it via sb->s_xattr.
2636 	 */
2637 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2638 		return generic_removexattr(dentry, name);
2639 
2640 	err = shmem_xattr_validate(name);
2641 	if (err)
2642 		return err;
2643 
2644 	return simple_xattr_remove(&info->xattrs, name);
2645 }
2646 
2647 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2648 {
2649 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2650 	return simple_xattr_list(&info->xattrs, buffer, size);
2651 }
2652 #endif /* CONFIG_TMPFS_XATTR */
2653 
2654 static const struct inode_operations shmem_short_symlink_operations = {
2655 	.readlink	= generic_readlink,
2656 	.follow_link	= simple_follow_link,
2657 #ifdef CONFIG_TMPFS_XATTR
2658 	.setxattr	= shmem_setxattr,
2659 	.getxattr	= shmem_getxattr,
2660 	.listxattr	= shmem_listxattr,
2661 	.removexattr	= shmem_removexattr,
2662 #endif
2663 };
2664 
2665 static const struct inode_operations shmem_symlink_inode_operations = {
2666 	.readlink	= generic_readlink,
2667 	.follow_link	= shmem_follow_link,
2668 	.put_link	= shmem_put_link,
2669 #ifdef CONFIG_TMPFS_XATTR
2670 	.setxattr	= shmem_setxattr,
2671 	.getxattr	= shmem_getxattr,
2672 	.listxattr	= shmem_listxattr,
2673 	.removexattr	= shmem_removexattr,
2674 #endif
2675 };
2676 
2677 static struct dentry *shmem_get_parent(struct dentry *child)
2678 {
2679 	return ERR_PTR(-ESTALE);
2680 }
2681 
2682 static int shmem_match(struct inode *ino, void *vfh)
2683 {
2684 	__u32 *fh = vfh;
2685 	__u64 inum = fh[2];
2686 	inum = (inum << 32) | fh[1];
2687 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2688 }
2689 
2690 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2691 		struct fid *fid, int fh_len, int fh_type)
2692 {
2693 	struct inode *inode;
2694 	struct dentry *dentry = NULL;
2695 	u64 inum;
2696 
2697 	if (fh_len < 3)
2698 		return NULL;
2699 
2700 	inum = fid->raw[2];
2701 	inum = (inum << 32) | fid->raw[1];
2702 
2703 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2704 			shmem_match, fid->raw);
2705 	if (inode) {
2706 		dentry = d_find_alias(inode);
2707 		iput(inode);
2708 	}
2709 
2710 	return dentry;
2711 }
2712 
2713 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2714 				struct inode *parent)
2715 {
2716 	if (*len < 3) {
2717 		*len = 3;
2718 		return FILEID_INVALID;
2719 	}
2720 
2721 	if (inode_unhashed(inode)) {
2722 		/* Unfortunately insert_inode_hash is not idempotent,
2723 		 * so as we hash inodes here rather than at creation
2724 		 * time, we need a lock to ensure we only try
2725 		 * to do it once
2726 		 */
2727 		static DEFINE_SPINLOCK(lock);
2728 		spin_lock(&lock);
2729 		if (inode_unhashed(inode))
2730 			__insert_inode_hash(inode,
2731 					    inode->i_ino + inode->i_generation);
2732 		spin_unlock(&lock);
2733 	}
2734 
2735 	fh[0] = inode->i_generation;
2736 	fh[1] = inode->i_ino;
2737 	fh[2] = ((__u64)inode->i_ino) >> 32;
2738 
2739 	*len = 3;
2740 	return 1;
2741 }
2742 
2743 static const struct export_operations shmem_export_ops = {
2744 	.get_parent     = shmem_get_parent,
2745 	.encode_fh      = shmem_encode_fh,
2746 	.fh_to_dentry	= shmem_fh_to_dentry,
2747 };
2748 
2749 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2750 			       bool remount)
2751 {
2752 	char *this_char, *value, *rest;
2753 	struct mempolicy *mpol = NULL;
2754 	uid_t uid;
2755 	gid_t gid;
2756 
2757 	while (options != NULL) {
2758 		this_char = options;
2759 		for (;;) {
2760 			/*
2761 			 * NUL-terminate this option: unfortunately,
2762 			 * mount options form a comma-separated list,
2763 			 * but mpol's nodelist may also contain commas.
2764 			 */
2765 			options = strchr(options, ',');
2766 			if (options == NULL)
2767 				break;
2768 			options++;
2769 			if (!isdigit(*options)) {
2770 				options[-1] = '\0';
2771 				break;
2772 			}
2773 		}
2774 		if (!*this_char)
2775 			continue;
2776 		if ((value = strchr(this_char,'=')) != NULL) {
2777 			*value++ = 0;
2778 		} else {
2779 			printk(KERN_ERR
2780 			    "tmpfs: No value for mount option '%s'\n",
2781 			    this_char);
2782 			goto error;
2783 		}
2784 
2785 		if (!strcmp(this_char,"size")) {
2786 			unsigned long long size;
2787 			size = memparse(value,&rest);
2788 			if (*rest == '%') {
2789 				size <<= PAGE_SHIFT;
2790 				size *= totalram_pages;
2791 				do_div(size, 100);
2792 				rest++;
2793 			}
2794 			if (*rest)
2795 				goto bad_val;
2796 			sbinfo->max_blocks =
2797 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2798 		} else if (!strcmp(this_char,"nr_blocks")) {
2799 			sbinfo->max_blocks = memparse(value, &rest);
2800 			if (*rest)
2801 				goto bad_val;
2802 		} else if (!strcmp(this_char,"nr_inodes")) {
2803 			sbinfo->max_inodes = memparse(value, &rest);
2804 			if (*rest)
2805 				goto bad_val;
2806 		} else if (!strcmp(this_char,"mode")) {
2807 			if (remount)
2808 				continue;
2809 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2810 			if (*rest)
2811 				goto bad_val;
2812 		} else if (!strcmp(this_char,"uid")) {
2813 			if (remount)
2814 				continue;
2815 			uid = simple_strtoul(value, &rest, 0);
2816 			if (*rest)
2817 				goto bad_val;
2818 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2819 			if (!uid_valid(sbinfo->uid))
2820 				goto bad_val;
2821 		} else if (!strcmp(this_char,"gid")) {
2822 			if (remount)
2823 				continue;
2824 			gid = simple_strtoul(value, &rest, 0);
2825 			if (*rest)
2826 				goto bad_val;
2827 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2828 			if (!gid_valid(sbinfo->gid))
2829 				goto bad_val;
2830 		} else if (!strcmp(this_char,"mpol")) {
2831 			mpol_put(mpol);
2832 			mpol = NULL;
2833 			if (mpol_parse_str(value, &mpol))
2834 				goto bad_val;
2835 		} else {
2836 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2837 			       this_char);
2838 			goto error;
2839 		}
2840 	}
2841 	sbinfo->mpol = mpol;
2842 	return 0;
2843 
2844 bad_val:
2845 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2846 	       value, this_char);
2847 error:
2848 	mpol_put(mpol);
2849 	return 1;
2850 
2851 }
2852 
2853 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2854 {
2855 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2856 	struct shmem_sb_info config = *sbinfo;
2857 	unsigned long inodes;
2858 	int error = -EINVAL;
2859 
2860 	config.mpol = NULL;
2861 	if (shmem_parse_options(data, &config, true))
2862 		return error;
2863 
2864 	spin_lock(&sbinfo->stat_lock);
2865 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2866 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2867 		goto out;
2868 	if (config.max_inodes < inodes)
2869 		goto out;
2870 	/*
2871 	 * Those tests disallow limited->unlimited while any are in use;
2872 	 * but we must separately disallow unlimited->limited, because
2873 	 * in that case we have no record of how much is already in use.
2874 	 */
2875 	if (config.max_blocks && !sbinfo->max_blocks)
2876 		goto out;
2877 	if (config.max_inodes && !sbinfo->max_inodes)
2878 		goto out;
2879 
2880 	error = 0;
2881 	sbinfo->max_blocks  = config.max_blocks;
2882 	sbinfo->max_inodes  = config.max_inodes;
2883 	sbinfo->free_inodes = config.max_inodes - inodes;
2884 
2885 	/*
2886 	 * Preserve previous mempolicy unless mpol remount option was specified.
2887 	 */
2888 	if (config.mpol) {
2889 		mpol_put(sbinfo->mpol);
2890 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2891 	}
2892 out:
2893 	spin_unlock(&sbinfo->stat_lock);
2894 	return error;
2895 }
2896 
2897 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2898 {
2899 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2900 
2901 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2902 		seq_printf(seq, ",size=%luk",
2903 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2904 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2905 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2906 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2907 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2908 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2909 		seq_printf(seq, ",uid=%u",
2910 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2911 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2912 		seq_printf(seq, ",gid=%u",
2913 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2914 	shmem_show_mpol(seq, sbinfo->mpol);
2915 	return 0;
2916 }
2917 
2918 #define MFD_NAME_PREFIX "memfd:"
2919 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2920 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2921 
2922 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2923 
2924 SYSCALL_DEFINE2(memfd_create,
2925 		const char __user *, uname,
2926 		unsigned int, flags)
2927 {
2928 	struct shmem_inode_info *info;
2929 	struct file *file;
2930 	int fd, error;
2931 	char *name;
2932 	long len;
2933 
2934 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2935 		return -EINVAL;
2936 
2937 	/* length includes terminating zero */
2938 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2939 	if (len <= 0)
2940 		return -EFAULT;
2941 	if (len > MFD_NAME_MAX_LEN + 1)
2942 		return -EINVAL;
2943 
2944 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2945 	if (!name)
2946 		return -ENOMEM;
2947 
2948 	strcpy(name, MFD_NAME_PREFIX);
2949 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2950 		error = -EFAULT;
2951 		goto err_name;
2952 	}
2953 
2954 	/* terminating-zero may have changed after strnlen_user() returned */
2955 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2956 		error = -EFAULT;
2957 		goto err_name;
2958 	}
2959 
2960 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2961 	if (fd < 0) {
2962 		error = fd;
2963 		goto err_name;
2964 	}
2965 
2966 	file = shmem_file_setup(name, 0, VM_NORESERVE);
2967 	if (IS_ERR(file)) {
2968 		error = PTR_ERR(file);
2969 		goto err_fd;
2970 	}
2971 	info = SHMEM_I(file_inode(file));
2972 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2973 	file->f_flags |= O_RDWR | O_LARGEFILE;
2974 	if (flags & MFD_ALLOW_SEALING)
2975 		info->seals &= ~F_SEAL_SEAL;
2976 
2977 	fd_install(fd, file);
2978 	kfree(name);
2979 	return fd;
2980 
2981 err_fd:
2982 	put_unused_fd(fd);
2983 err_name:
2984 	kfree(name);
2985 	return error;
2986 }
2987 
2988 #endif /* CONFIG_TMPFS */
2989 
2990 static void shmem_put_super(struct super_block *sb)
2991 {
2992 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2993 
2994 	percpu_counter_destroy(&sbinfo->used_blocks);
2995 	mpol_put(sbinfo->mpol);
2996 	kfree(sbinfo);
2997 	sb->s_fs_info = NULL;
2998 }
2999 
3000 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3001 {
3002 	struct inode *inode;
3003 	struct shmem_sb_info *sbinfo;
3004 	int err = -ENOMEM;
3005 
3006 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3007 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3008 				L1_CACHE_BYTES), GFP_KERNEL);
3009 	if (!sbinfo)
3010 		return -ENOMEM;
3011 
3012 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3013 	sbinfo->uid = current_fsuid();
3014 	sbinfo->gid = current_fsgid();
3015 	sb->s_fs_info = sbinfo;
3016 
3017 #ifdef CONFIG_TMPFS
3018 	/*
3019 	 * Per default we only allow half of the physical ram per
3020 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3021 	 * but the internal instance is left unlimited.
3022 	 */
3023 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3024 		sbinfo->max_blocks = shmem_default_max_blocks();
3025 		sbinfo->max_inodes = shmem_default_max_inodes();
3026 		if (shmem_parse_options(data, sbinfo, false)) {
3027 			err = -EINVAL;
3028 			goto failed;
3029 		}
3030 	} else {
3031 		sb->s_flags |= MS_NOUSER;
3032 	}
3033 	sb->s_export_op = &shmem_export_ops;
3034 	sb->s_flags |= MS_NOSEC;
3035 #else
3036 	sb->s_flags |= MS_NOUSER;
3037 #endif
3038 
3039 	spin_lock_init(&sbinfo->stat_lock);
3040 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3041 		goto failed;
3042 	sbinfo->free_inodes = sbinfo->max_inodes;
3043 
3044 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3045 	sb->s_blocksize = PAGE_CACHE_SIZE;
3046 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3047 	sb->s_magic = TMPFS_MAGIC;
3048 	sb->s_op = &shmem_ops;
3049 	sb->s_time_gran = 1;
3050 #ifdef CONFIG_TMPFS_XATTR
3051 	sb->s_xattr = shmem_xattr_handlers;
3052 #endif
3053 #ifdef CONFIG_TMPFS_POSIX_ACL
3054 	sb->s_flags |= MS_POSIXACL;
3055 #endif
3056 
3057 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3058 	if (!inode)
3059 		goto failed;
3060 	inode->i_uid = sbinfo->uid;
3061 	inode->i_gid = sbinfo->gid;
3062 	sb->s_root = d_make_root(inode);
3063 	if (!sb->s_root)
3064 		goto failed;
3065 	return 0;
3066 
3067 failed:
3068 	shmem_put_super(sb);
3069 	return err;
3070 }
3071 
3072 static struct kmem_cache *shmem_inode_cachep;
3073 
3074 static struct inode *shmem_alloc_inode(struct super_block *sb)
3075 {
3076 	struct shmem_inode_info *info;
3077 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3078 	if (!info)
3079 		return NULL;
3080 	return &info->vfs_inode;
3081 }
3082 
3083 static void shmem_destroy_callback(struct rcu_head *head)
3084 {
3085 	struct inode *inode = container_of(head, struct inode, i_rcu);
3086 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3087 }
3088 
3089 static void shmem_destroy_inode(struct inode *inode)
3090 {
3091 	if (S_ISREG(inode->i_mode))
3092 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3093 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3094 }
3095 
3096 static void shmem_init_inode(void *foo)
3097 {
3098 	struct shmem_inode_info *info = foo;
3099 	inode_init_once(&info->vfs_inode);
3100 }
3101 
3102 static int shmem_init_inodecache(void)
3103 {
3104 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3105 				sizeof(struct shmem_inode_info),
3106 				0, SLAB_PANIC, shmem_init_inode);
3107 	return 0;
3108 }
3109 
3110 static void shmem_destroy_inodecache(void)
3111 {
3112 	kmem_cache_destroy(shmem_inode_cachep);
3113 }
3114 
3115 static const struct address_space_operations shmem_aops = {
3116 	.writepage	= shmem_writepage,
3117 	.set_page_dirty	= __set_page_dirty_no_writeback,
3118 #ifdef CONFIG_TMPFS
3119 	.write_begin	= shmem_write_begin,
3120 	.write_end	= shmem_write_end,
3121 #endif
3122 #ifdef CONFIG_MIGRATION
3123 	.migratepage	= migrate_page,
3124 #endif
3125 	.error_remove_page = generic_error_remove_page,
3126 };
3127 
3128 static const struct file_operations shmem_file_operations = {
3129 	.mmap		= shmem_mmap,
3130 #ifdef CONFIG_TMPFS
3131 	.llseek		= shmem_file_llseek,
3132 	.read_iter	= shmem_file_read_iter,
3133 	.write_iter	= generic_file_write_iter,
3134 	.fsync		= noop_fsync,
3135 	.splice_read	= shmem_file_splice_read,
3136 	.splice_write	= iter_file_splice_write,
3137 	.fallocate	= shmem_fallocate,
3138 #endif
3139 };
3140 
3141 static const struct inode_operations shmem_inode_operations = {
3142 	.getattr	= shmem_getattr,
3143 	.setattr	= shmem_setattr,
3144 #ifdef CONFIG_TMPFS_XATTR
3145 	.setxattr	= shmem_setxattr,
3146 	.getxattr	= shmem_getxattr,
3147 	.listxattr	= shmem_listxattr,
3148 	.removexattr	= shmem_removexattr,
3149 	.set_acl	= simple_set_acl,
3150 #endif
3151 };
3152 
3153 static const struct inode_operations shmem_dir_inode_operations = {
3154 #ifdef CONFIG_TMPFS
3155 	.create		= shmem_create,
3156 	.lookup		= simple_lookup,
3157 	.link		= shmem_link,
3158 	.unlink		= shmem_unlink,
3159 	.symlink	= shmem_symlink,
3160 	.mkdir		= shmem_mkdir,
3161 	.rmdir		= shmem_rmdir,
3162 	.mknod		= shmem_mknod,
3163 	.rename2	= shmem_rename2,
3164 	.tmpfile	= shmem_tmpfile,
3165 #endif
3166 #ifdef CONFIG_TMPFS_XATTR
3167 	.setxattr	= shmem_setxattr,
3168 	.getxattr	= shmem_getxattr,
3169 	.listxattr	= shmem_listxattr,
3170 	.removexattr	= shmem_removexattr,
3171 #endif
3172 #ifdef CONFIG_TMPFS_POSIX_ACL
3173 	.setattr	= shmem_setattr,
3174 	.set_acl	= simple_set_acl,
3175 #endif
3176 };
3177 
3178 static const struct inode_operations shmem_special_inode_operations = {
3179 #ifdef CONFIG_TMPFS_XATTR
3180 	.setxattr	= shmem_setxattr,
3181 	.getxattr	= shmem_getxattr,
3182 	.listxattr	= shmem_listxattr,
3183 	.removexattr	= shmem_removexattr,
3184 #endif
3185 #ifdef CONFIG_TMPFS_POSIX_ACL
3186 	.setattr	= shmem_setattr,
3187 	.set_acl	= simple_set_acl,
3188 #endif
3189 };
3190 
3191 static const struct super_operations shmem_ops = {
3192 	.alloc_inode	= shmem_alloc_inode,
3193 	.destroy_inode	= shmem_destroy_inode,
3194 #ifdef CONFIG_TMPFS
3195 	.statfs		= shmem_statfs,
3196 	.remount_fs	= shmem_remount_fs,
3197 	.show_options	= shmem_show_options,
3198 #endif
3199 	.evict_inode	= shmem_evict_inode,
3200 	.drop_inode	= generic_delete_inode,
3201 	.put_super	= shmem_put_super,
3202 };
3203 
3204 static const struct vm_operations_struct shmem_vm_ops = {
3205 	.fault		= shmem_fault,
3206 	.map_pages	= filemap_map_pages,
3207 #ifdef CONFIG_NUMA
3208 	.set_policy     = shmem_set_policy,
3209 	.get_policy     = shmem_get_policy,
3210 #endif
3211 };
3212 
3213 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3214 	int flags, const char *dev_name, void *data)
3215 {
3216 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3217 }
3218 
3219 static struct file_system_type shmem_fs_type = {
3220 	.owner		= THIS_MODULE,
3221 	.name		= "tmpfs",
3222 	.mount		= shmem_mount,
3223 	.kill_sb	= kill_litter_super,
3224 	.fs_flags	= FS_USERNS_MOUNT,
3225 };
3226 
3227 int __init shmem_init(void)
3228 {
3229 	int error;
3230 
3231 	/* If rootfs called this, don't re-init */
3232 	if (shmem_inode_cachep)
3233 		return 0;
3234 
3235 	error = shmem_init_inodecache();
3236 	if (error)
3237 		goto out3;
3238 
3239 	error = register_filesystem(&shmem_fs_type);
3240 	if (error) {
3241 		printk(KERN_ERR "Could not register tmpfs\n");
3242 		goto out2;
3243 	}
3244 
3245 	shm_mnt = kern_mount(&shmem_fs_type);
3246 	if (IS_ERR(shm_mnt)) {
3247 		error = PTR_ERR(shm_mnt);
3248 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3249 		goto out1;
3250 	}
3251 	return 0;
3252 
3253 out1:
3254 	unregister_filesystem(&shmem_fs_type);
3255 out2:
3256 	shmem_destroy_inodecache();
3257 out3:
3258 	shm_mnt = ERR_PTR(error);
3259 	return error;
3260 }
3261 
3262 #else /* !CONFIG_SHMEM */
3263 
3264 /*
3265  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3266  *
3267  * This is intended for small system where the benefits of the full
3268  * shmem code (swap-backed and resource-limited) are outweighed by
3269  * their complexity. On systems without swap this code should be
3270  * effectively equivalent, but much lighter weight.
3271  */
3272 
3273 static struct file_system_type shmem_fs_type = {
3274 	.name		= "tmpfs",
3275 	.mount		= ramfs_mount,
3276 	.kill_sb	= kill_litter_super,
3277 	.fs_flags	= FS_USERNS_MOUNT,
3278 };
3279 
3280 int __init shmem_init(void)
3281 {
3282 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3283 
3284 	shm_mnt = kern_mount(&shmem_fs_type);
3285 	BUG_ON(IS_ERR(shm_mnt));
3286 
3287 	return 0;
3288 }
3289 
3290 int shmem_unuse(swp_entry_t swap, struct page *page)
3291 {
3292 	return 0;
3293 }
3294 
3295 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3296 {
3297 	return 0;
3298 }
3299 
3300 void shmem_unlock_mapping(struct address_space *mapping)
3301 {
3302 }
3303 
3304 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3305 {
3306 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3307 }
3308 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3309 
3310 #define shmem_vm_ops				generic_file_vm_ops
3311 #define shmem_file_operations			ramfs_file_operations
3312 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3313 #define shmem_acct_size(flags, size)		0
3314 #define shmem_unacct_size(flags, size)		do {} while (0)
3315 
3316 #endif /* CONFIG_SHMEM */
3317 
3318 /* common code */
3319 
3320 static struct dentry_operations anon_ops = {
3321 	.d_dname = simple_dname
3322 };
3323 
3324 static struct file *__shmem_file_setup(const char *name, loff_t size,
3325 				       unsigned long flags, unsigned int i_flags)
3326 {
3327 	struct file *res;
3328 	struct inode *inode;
3329 	struct path path;
3330 	struct super_block *sb;
3331 	struct qstr this;
3332 
3333 	if (IS_ERR(shm_mnt))
3334 		return ERR_CAST(shm_mnt);
3335 
3336 	if (size < 0 || size > MAX_LFS_FILESIZE)
3337 		return ERR_PTR(-EINVAL);
3338 
3339 	if (shmem_acct_size(flags, size))
3340 		return ERR_PTR(-ENOMEM);
3341 
3342 	res = ERR_PTR(-ENOMEM);
3343 	this.name = name;
3344 	this.len = strlen(name);
3345 	this.hash = 0; /* will go */
3346 	sb = shm_mnt->mnt_sb;
3347 	path.mnt = mntget(shm_mnt);
3348 	path.dentry = d_alloc_pseudo(sb, &this);
3349 	if (!path.dentry)
3350 		goto put_memory;
3351 	d_set_d_op(path.dentry, &anon_ops);
3352 
3353 	res = ERR_PTR(-ENOSPC);
3354 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3355 	if (!inode)
3356 		goto put_memory;
3357 
3358 	inode->i_flags |= i_flags;
3359 	d_instantiate(path.dentry, inode);
3360 	inode->i_size = size;
3361 	clear_nlink(inode);	/* It is unlinked */
3362 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3363 	if (IS_ERR(res))
3364 		goto put_path;
3365 
3366 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3367 		  &shmem_file_operations);
3368 	if (IS_ERR(res))
3369 		goto put_path;
3370 
3371 	return res;
3372 
3373 put_memory:
3374 	shmem_unacct_size(flags, size);
3375 put_path:
3376 	path_put(&path);
3377 	return res;
3378 }
3379 
3380 /**
3381  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3382  * 	kernel internal.  There will be NO LSM permission checks against the
3383  * 	underlying inode.  So users of this interface must do LSM checks at a
3384  *	higher layer.  The users are the big_key and shm implementations.  LSM
3385  *	checks are provided at the key or shm level rather than the inode.
3386  * @name: name for dentry (to be seen in /proc/<pid>/maps
3387  * @size: size to be set for the file
3388  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3389  */
3390 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3391 {
3392 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3393 }
3394 
3395 /**
3396  * shmem_file_setup - get an unlinked file living in tmpfs
3397  * @name: name for dentry (to be seen in /proc/<pid>/maps
3398  * @size: size to be set for the file
3399  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3400  */
3401 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3402 {
3403 	return __shmem_file_setup(name, size, flags, 0);
3404 }
3405 EXPORT_SYMBOL_GPL(shmem_file_setup);
3406 
3407 /**
3408  * shmem_zero_setup - setup a shared anonymous mapping
3409  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3410  */
3411 int shmem_zero_setup(struct vm_area_struct *vma)
3412 {
3413 	struct file *file;
3414 	loff_t size = vma->vm_end - vma->vm_start;
3415 
3416 	/*
3417 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3418 	 * between XFS directory reading and selinux: since this file is only
3419 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3420 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3421 	 */
3422 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3423 	if (IS_ERR(file))
3424 		return PTR_ERR(file);
3425 
3426 	if (vma->vm_file)
3427 		fput(vma->vm_file);
3428 	vma->vm_file = file;
3429 	vma->vm_ops = &shmem_vm_ops;
3430 	return 0;
3431 }
3432 
3433 /**
3434  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3435  * @mapping:	the page's address_space
3436  * @index:	the page index
3437  * @gfp:	the page allocator flags to use if allocating
3438  *
3439  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3440  * with any new page allocations done using the specified allocation flags.
3441  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3442  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3443  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3444  *
3445  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3446  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3447  */
3448 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3449 					 pgoff_t index, gfp_t gfp)
3450 {
3451 #ifdef CONFIG_SHMEM
3452 	struct inode *inode = mapping->host;
3453 	struct page *page;
3454 	int error;
3455 
3456 	BUG_ON(mapping->a_ops != &shmem_aops);
3457 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3458 	if (error)
3459 		page = ERR_PTR(error);
3460 	else
3461 		unlock_page(page);
3462 	return page;
3463 #else
3464 	/*
3465 	 * The tiny !SHMEM case uses ramfs without swap
3466 	 */
3467 	return read_cache_page_gfp(mapping, index, gfp);
3468 #endif
3469 }
3470 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3471