xref: /openbmc/linux/mm/shmem.c (revision 835fd614)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	bool full_inums;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 				struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 			     struct page **pagep, enum sgp_type sgp,
145 			     gfp_t gfp, struct vm_area_struct *vma,
146 			     vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp,
149 		gfp_t gfp, struct vm_area_struct *vma,
150 		struct vm_fault *vmf, vm_fault_t *fault_type);
151 
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 		struct page **pagep, enum sgp_type sgp)
154 {
155 	return shmem_getpage_gfp(inode, index, pagep, sgp,
156 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158 
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175 
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
182 static inline int shmem_reacct_size(unsigned long flags,
183 		loff_t oldsize, loff_t newsize)
184 {
185 	if (!(flags & VM_NORESERVE)) {
186 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 			return security_vm_enough_memory_mm(current->mm,
188 					VM_ACCT(newsize) - VM_ACCT(oldsize));
189 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 	}
192 	return 0;
193 }
194 
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 	if (!(flags & VM_NORESERVE))
204 		return 0;
205 
206 	return security_vm_enough_memory_mm(current->mm,
207 			pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 
221 	if (shmem_acct_block(info->flags, pages))
222 		return false;
223 
224 	if (sbinfo->max_blocks) {
225 		if (percpu_counter_compare(&sbinfo->used_blocks,
226 					   sbinfo->max_blocks - pages) > 0)
227 			goto unacct;
228 		percpu_counter_add(&sbinfo->used_blocks, pages);
229 	}
230 
231 	return true;
232 
233 unacct:
234 	shmem_unacct_blocks(info->flags, pages);
235 	return false;
236 }
237 
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 	struct shmem_inode_info *info = SHMEM_I(inode);
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 
243 	if (sbinfo->max_blocks)
244 		percpu_counter_sub(&sbinfo->used_blocks, pages);
245 	shmem_unacct_blocks(info->flags, pages);
246 }
247 
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256 
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 	return vma->vm_ops == &shmem_vm_ops;
260 }
261 
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 	ino_t ino;
279 
280 	if (!(sb->s_flags & SB_KERNMOUNT)) {
281 		spin_lock(&sbinfo->stat_lock);
282 		if (sbinfo->max_inodes) {
283 			if (!sbinfo->free_inodes) {
284 				spin_unlock(&sbinfo->stat_lock);
285 				return -ENOSPC;
286 			}
287 			sbinfo->free_inodes--;
288 		}
289 		if (inop) {
290 			ino = sbinfo->next_ino++;
291 			if (unlikely(is_zero_ino(ino)))
292 				ino = sbinfo->next_ino++;
293 			if (unlikely(!sbinfo->full_inums &&
294 				     ino > UINT_MAX)) {
295 				/*
296 				 * Emulate get_next_ino uint wraparound for
297 				 * compatibility
298 				 */
299 				if (IS_ENABLED(CONFIG_64BIT))
300 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 						__func__, MINOR(sb->s_dev));
302 				sbinfo->next_ino = 1;
303 				ino = sbinfo->next_ino++;
304 			}
305 			*inop = ino;
306 		}
307 		spin_unlock(&sbinfo->stat_lock);
308 	} else if (inop) {
309 		/*
310 		 * __shmem_file_setup, one of our callers, is lock-free: it
311 		 * doesn't hold stat_lock in shmem_reserve_inode since
312 		 * max_inodes is always 0, and is called from potentially
313 		 * unknown contexts. As such, use a per-cpu batched allocator
314 		 * which doesn't require the per-sb stat_lock unless we are at
315 		 * the batch boundary.
316 		 *
317 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 		 * shmem mounts are not exposed to userspace, so we don't need
319 		 * to worry about things like glibc compatibility.
320 		 */
321 		ino_t *next_ino;
322 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 		ino = *next_ino;
324 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 			spin_lock(&sbinfo->stat_lock);
326 			ino = sbinfo->next_ino;
327 			sbinfo->next_ino += SHMEM_INO_BATCH;
328 			spin_unlock(&sbinfo->stat_lock);
329 			if (unlikely(is_zero_ino(ino)))
330 				ino++;
331 		}
332 		*inop = ino;
333 		*next_ino = ++ino;
334 		put_cpu();
335 	}
336 
337 	return 0;
338 }
339 
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 	if (sbinfo->max_inodes) {
344 		spin_lock(&sbinfo->stat_lock);
345 		sbinfo->free_inodes++;
346 		spin_unlock(&sbinfo->stat_lock);
347 	}
348 }
349 
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 	struct shmem_inode_info *info = SHMEM_I(inode);
365 	long freed;
366 
367 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 	if (freed > 0) {
369 		info->alloced -= freed;
370 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 		shmem_inode_unacct_blocks(inode, freed);
372 	}
373 }
374 
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 	struct shmem_inode_info *info = SHMEM_I(inode);
378 	unsigned long flags;
379 
380 	if (!shmem_inode_acct_block(inode, pages))
381 		return false;
382 
383 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 	inode->i_mapping->nrpages += pages;
385 
386 	spin_lock_irqsave(&info->lock, flags);
387 	info->alloced += pages;
388 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 	shmem_recalc_inode(inode);
390 	spin_unlock_irqrestore(&info->lock, flags);
391 
392 	return true;
393 }
394 
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 	struct shmem_inode_info *info = SHMEM_I(inode);
398 	unsigned long flags;
399 
400 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
401 
402 	spin_lock_irqsave(&info->lock, flags);
403 	info->alloced -= pages;
404 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 	shmem_recalc_inode(inode);
406 	spin_unlock_irqrestore(&info->lock, flags);
407 
408 	shmem_inode_unacct_blocks(inode, pages);
409 }
410 
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415 			pgoff_t index, void *expected, void *replacement)
416 {
417 	XA_STATE(xas, &mapping->i_pages, index);
418 	void *item;
419 
420 	VM_BUG_ON(!expected);
421 	VM_BUG_ON(!replacement);
422 	item = xas_load(&xas);
423 	if (item != expected)
424 		return -ENOENT;
425 	xas_store(&xas, replacement);
426 	return 0;
427 }
428 
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 			       pgoff_t index, swp_entry_t swap)
438 {
439 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441 
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *	disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *	enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *	only allocate huge pages if the page will be fully within i_size,
451  *	also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *	only allocate huge pages if requested with fadvise()/madvise();
454  */
455 
456 #define SHMEM_HUGE_NEVER	0
457 #define SHMEM_HUGE_ALWAYS	1
458 #define SHMEM_HUGE_WITHIN_SIZE	2
459 #define SHMEM_HUGE_ADVISE	3
460 
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *	disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY		(-1)
472 #define SHMEM_HUGE_FORCE	(-2)
473 
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476 
477 static int shmem_huge __read_mostly;
478 
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 	if (!strcmp(str, "never"))
483 		return SHMEM_HUGE_NEVER;
484 	if (!strcmp(str, "always"))
485 		return SHMEM_HUGE_ALWAYS;
486 	if (!strcmp(str, "within_size"))
487 		return SHMEM_HUGE_WITHIN_SIZE;
488 	if (!strcmp(str, "advise"))
489 		return SHMEM_HUGE_ADVISE;
490 	if (!strcmp(str, "deny"))
491 		return SHMEM_HUGE_DENY;
492 	if (!strcmp(str, "force"))
493 		return SHMEM_HUGE_FORCE;
494 	return -EINVAL;
495 }
496 #endif
497 
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 	switch (huge) {
502 	case SHMEM_HUGE_NEVER:
503 		return "never";
504 	case SHMEM_HUGE_ALWAYS:
505 		return "always";
506 	case SHMEM_HUGE_WITHIN_SIZE:
507 		return "within_size";
508 	case SHMEM_HUGE_ADVISE:
509 		return "advise";
510 	case SHMEM_HUGE_DENY:
511 		return "deny";
512 	case SHMEM_HUGE_FORCE:
513 		return "force";
514 	default:
515 		VM_BUG_ON(1);
516 		return "bad_val";
517 	}
518 }
519 #endif
520 
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 		struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 	LIST_HEAD(list), *pos, *next;
525 	LIST_HEAD(to_remove);
526 	struct inode *inode;
527 	struct shmem_inode_info *info;
528 	struct page *page;
529 	unsigned long batch = sc ? sc->nr_to_scan : 128;
530 	int removed = 0, split = 0;
531 
532 	if (list_empty(&sbinfo->shrinklist))
533 		return SHRINK_STOP;
534 
535 	spin_lock(&sbinfo->shrinklist_lock);
536 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
538 
539 		/* pin the inode */
540 		inode = igrab(&info->vfs_inode);
541 
542 		/* inode is about to be evicted */
543 		if (!inode) {
544 			list_del_init(&info->shrinklist);
545 			removed++;
546 			goto next;
547 		}
548 
549 		/* Check if there's anything to gain */
550 		if (round_up(inode->i_size, PAGE_SIZE) ==
551 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 			list_move(&info->shrinklist, &to_remove);
553 			removed++;
554 			goto next;
555 		}
556 
557 		list_move(&info->shrinklist, &list);
558 next:
559 		if (!--batch)
560 			break;
561 	}
562 	spin_unlock(&sbinfo->shrinklist_lock);
563 
564 	list_for_each_safe(pos, next, &to_remove) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 		inode = &info->vfs_inode;
567 		list_del_init(&info->shrinklist);
568 		iput(inode);
569 	}
570 
571 	list_for_each_safe(pos, next, &list) {
572 		int ret;
573 
574 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 		inode = &info->vfs_inode;
576 
577 		if (nr_to_split && split >= nr_to_split)
578 			goto leave;
579 
580 		page = find_get_page(inode->i_mapping,
581 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 		if (!page)
583 			goto drop;
584 
585 		/* No huge page at the end of the file: nothing to split */
586 		if (!PageTransHuge(page)) {
587 			put_page(page);
588 			goto drop;
589 		}
590 
591 		/*
592 		 * Leave the inode on the list if we failed to lock
593 		 * the page at this time.
594 		 *
595 		 * Waiting for the lock may lead to deadlock in the
596 		 * reclaim path.
597 		 */
598 		if (!trylock_page(page)) {
599 			put_page(page);
600 			goto leave;
601 		}
602 
603 		ret = split_huge_page(page);
604 		unlock_page(page);
605 		put_page(page);
606 
607 		/* If split failed leave the inode on the list */
608 		if (ret)
609 			goto leave;
610 
611 		split++;
612 drop:
613 		list_del_init(&info->shrinklist);
614 		removed++;
615 leave:
616 		iput(inode);
617 	}
618 
619 	spin_lock(&sbinfo->shrinklist_lock);
620 	list_splice_tail(&list, &sbinfo->shrinklist);
621 	sbinfo->shrinklist_len -= removed;
622 	spin_unlock(&sbinfo->shrinklist_lock);
623 
624 	return split;
625 }
626 
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 		struct shrink_control *sc)
629 {
630 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631 
632 	if (!READ_ONCE(sbinfo->shrinklist_len))
633 		return SHRINK_STOP;
634 
635 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637 
638 static long shmem_unused_huge_count(struct super_block *sb,
639 		struct shrink_control *sc)
640 {
641 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 	return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645 
646 #define shmem_huge SHMEM_HUGE_DENY
647 
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 		struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654 
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 	    shmem_huge != SHMEM_HUGE_DENY)
660 		return true;
661 	return false;
662 }
663 
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668 				   struct address_space *mapping,
669 				   pgoff_t index, void *expected, gfp_t gfp,
670 				   struct mm_struct *charge_mm)
671 {
672 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 	unsigned long i = 0;
674 	unsigned long nr = compound_nr(page);
675 	int error;
676 
677 	VM_BUG_ON_PAGE(PageTail(page), page);
678 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 	VM_BUG_ON_PAGE(!PageLocked(page), page);
680 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 	VM_BUG_ON(expected && PageTransHuge(page));
682 
683 	page_ref_add(page, nr);
684 	page->mapping = mapping;
685 	page->index = index;
686 
687 	if (!PageSwapCache(page)) {
688 		error = mem_cgroup_charge(page, charge_mm, gfp);
689 		if (error) {
690 			if (PageTransHuge(page)) {
691 				count_vm_event(THP_FILE_FALLBACK);
692 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 			}
694 			goto error;
695 		}
696 	}
697 	cgroup_throttle_swaprate(page, gfp);
698 
699 	do {
700 		void *entry;
701 		xas_lock_irq(&xas);
702 		entry = xas_find_conflict(&xas);
703 		if (entry != expected)
704 			xas_set_err(&xas, -EEXIST);
705 		xas_create_range(&xas);
706 		if (xas_error(&xas))
707 			goto unlock;
708 next:
709 		xas_store(&xas, page);
710 		if (++i < nr) {
711 			xas_next(&xas);
712 			goto next;
713 		}
714 		if (PageTransHuge(page)) {
715 			count_vm_event(THP_FILE_ALLOC);
716 			__inc_node_page_state(page, NR_SHMEM_THPS);
717 		}
718 		mapping->nrpages += nr;
719 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 		xas_unlock_irq(&xas);
723 	} while (xas_nomem(&xas, gfp));
724 
725 	if (xas_error(&xas)) {
726 		error = xas_error(&xas);
727 		goto error;
728 	}
729 
730 	return 0;
731 error:
732 	page->mapping = NULL;
733 	page_ref_sub(page, nr);
734 	return error;
735 }
736 
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 	struct address_space *mapping = page->mapping;
743 	int error;
744 
745 	VM_BUG_ON_PAGE(PageCompound(page), page);
746 
747 	xa_lock_irq(&mapping->i_pages);
748 	error = shmem_replace_entry(mapping, page->index, page, radswap);
749 	page->mapping = NULL;
750 	mapping->nrpages--;
751 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
752 	__dec_lruvec_page_state(page, NR_SHMEM);
753 	xa_unlock_irq(&mapping->i_pages);
754 	put_page(page);
755 	BUG_ON(error);
756 }
757 
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762 			   pgoff_t index, void *radswap)
763 {
764 	void *old;
765 
766 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 	if (old != radswap)
768 		return -ENOENT;
769 	free_swap_and_cache(radix_to_swp_entry(radswap));
770 	return 0;
771 }
772 
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 						pgoff_t start, pgoff_t end)
782 {
783 	XA_STATE(xas, &mapping->i_pages, start);
784 	struct page *page;
785 	unsigned long swapped = 0;
786 
787 	rcu_read_lock();
788 	xas_for_each(&xas, page, end - 1) {
789 		if (xas_retry(&xas, page))
790 			continue;
791 		if (xa_is_value(page))
792 			swapped++;
793 
794 		if (need_resched()) {
795 			xas_pause(&xas);
796 			cond_resched_rcu();
797 		}
798 	}
799 
800 	rcu_read_unlock();
801 
802 	return swapped << PAGE_SHIFT;
803 }
804 
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 	struct inode *inode = file_inode(vma->vm_file);
815 	struct shmem_inode_info *info = SHMEM_I(inode);
816 	struct address_space *mapping = inode->i_mapping;
817 	unsigned long swapped;
818 
819 	/* Be careful as we don't hold info->lock */
820 	swapped = READ_ONCE(info->swapped);
821 
822 	/*
823 	 * The easier cases are when the shmem object has nothing in swap, or
824 	 * the vma maps it whole. Then we can simply use the stats that we
825 	 * already track.
826 	 */
827 	if (!swapped)
828 		return 0;
829 
830 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 		return swapped << PAGE_SHIFT;
832 
833 	/* Here comes the more involved part */
834 	return shmem_partial_swap_usage(mapping,
835 			linear_page_index(vma, vma->vm_start),
836 			linear_page_index(vma, vma->vm_end));
837 }
838 
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 	struct pagevec pvec;
845 	pgoff_t indices[PAGEVEC_SIZE];
846 	pgoff_t index = 0;
847 
848 	pagevec_init(&pvec);
849 	/*
850 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
851 	 */
852 	while (!mapping_unevictable(mapping)) {
853 		/*
854 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
855 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
856 		 */
857 		pvec.nr = find_get_entries(mapping, index,
858 					   PAGEVEC_SIZE, pvec.pages, indices);
859 		if (!pvec.nr)
860 			break;
861 		index = indices[pvec.nr - 1] + 1;
862 		pagevec_remove_exceptionals(&pvec);
863 		check_move_unevictable_pages(&pvec);
864 		pagevec_release(&pvec);
865 		cond_resched();
866 	}
867 }
868 
869 /*
870  * Check whether a hole-punch or truncation needs to split a huge page,
871  * returning true if no split was required, or the split has been successful.
872  *
873  * Eviction (or truncation to 0 size) should never need to split a huge page;
874  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
875  * head, and then succeeded to trylock on tail.
876  *
877  * A split can only succeed when there are no additional references on the
878  * huge page: so the split below relies upon find_get_entries() having stopped
879  * when it found a subpage of the huge page, without getting further references.
880  */
881 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
882 {
883 	if (!PageTransCompound(page))
884 		return true;
885 
886 	/* Just proceed to delete a huge page wholly within the range punched */
887 	if (PageHead(page) &&
888 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
889 		return true;
890 
891 	/* Try to split huge page, so we can truly punch the hole or truncate */
892 	return split_huge_page(page) >= 0;
893 }
894 
895 /*
896  * Remove range of pages and swap entries from page cache, and free them.
897  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
898  */
899 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
900 								 bool unfalloc)
901 {
902 	struct address_space *mapping = inode->i_mapping;
903 	struct shmem_inode_info *info = SHMEM_I(inode);
904 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
905 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
906 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
907 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
908 	struct pagevec pvec;
909 	pgoff_t indices[PAGEVEC_SIZE];
910 	long nr_swaps_freed = 0;
911 	pgoff_t index;
912 	int i;
913 
914 	if (lend == -1)
915 		end = -1;	/* unsigned, so actually very big */
916 
917 	pagevec_init(&pvec);
918 	index = start;
919 	while (index < end) {
920 		pvec.nr = find_get_entries(mapping, index,
921 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
922 			pvec.pages, indices);
923 		if (!pvec.nr)
924 			break;
925 		for (i = 0; i < pagevec_count(&pvec); i++) {
926 			struct page *page = pvec.pages[i];
927 
928 			index = indices[i];
929 			if (index >= end)
930 				break;
931 
932 			if (xa_is_value(page)) {
933 				if (unfalloc)
934 					continue;
935 				nr_swaps_freed += !shmem_free_swap(mapping,
936 								index, page);
937 				continue;
938 			}
939 
940 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
941 
942 			if (!trylock_page(page))
943 				continue;
944 
945 			if ((!unfalloc || !PageUptodate(page)) &&
946 			    page_mapping(page) == mapping) {
947 				VM_BUG_ON_PAGE(PageWriteback(page), page);
948 				if (shmem_punch_compound(page, start, end))
949 					truncate_inode_page(mapping, page);
950 			}
951 			unlock_page(page);
952 		}
953 		pagevec_remove_exceptionals(&pvec);
954 		pagevec_release(&pvec);
955 		cond_resched();
956 		index++;
957 	}
958 
959 	if (partial_start) {
960 		struct page *page = NULL;
961 		shmem_getpage(inode, start - 1, &page, SGP_READ);
962 		if (page) {
963 			unsigned int top = PAGE_SIZE;
964 			if (start > end) {
965 				top = partial_end;
966 				partial_end = 0;
967 			}
968 			zero_user_segment(page, partial_start, top);
969 			set_page_dirty(page);
970 			unlock_page(page);
971 			put_page(page);
972 		}
973 	}
974 	if (partial_end) {
975 		struct page *page = NULL;
976 		shmem_getpage(inode, end, &page, SGP_READ);
977 		if (page) {
978 			zero_user_segment(page, 0, partial_end);
979 			set_page_dirty(page);
980 			unlock_page(page);
981 			put_page(page);
982 		}
983 	}
984 	if (start >= end)
985 		return;
986 
987 	index = start;
988 	while (index < end) {
989 		cond_resched();
990 
991 		pvec.nr = find_get_entries(mapping, index,
992 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
993 				pvec.pages, indices);
994 		if (!pvec.nr) {
995 			/* If all gone or hole-punch or unfalloc, we're done */
996 			if (index == start || end != -1)
997 				break;
998 			/* But if truncating, restart to make sure all gone */
999 			index = start;
1000 			continue;
1001 		}
1002 		for (i = 0; i < pagevec_count(&pvec); i++) {
1003 			struct page *page = pvec.pages[i];
1004 
1005 			index = indices[i];
1006 			if (index >= end)
1007 				break;
1008 
1009 			if (xa_is_value(page)) {
1010 				if (unfalloc)
1011 					continue;
1012 				if (shmem_free_swap(mapping, index, page)) {
1013 					/* Swap was replaced by page: retry */
1014 					index--;
1015 					break;
1016 				}
1017 				nr_swaps_freed++;
1018 				continue;
1019 			}
1020 
1021 			lock_page(page);
1022 
1023 			if (!unfalloc || !PageUptodate(page)) {
1024 				if (page_mapping(page) != mapping) {
1025 					/* Page was replaced by swap: retry */
1026 					unlock_page(page);
1027 					index--;
1028 					break;
1029 				}
1030 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1031 				if (shmem_punch_compound(page, start, end))
1032 					truncate_inode_page(mapping, page);
1033 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034 					/* Wipe the page and don't get stuck */
1035 					clear_highpage(page);
1036 					flush_dcache_page(page);
1037 					set_page_dirty(page);
1038 					if (index <
1039 					    round_up(start, HPAGE_PMD_NR))
1040 						start = index + 1;
1041 				}
1042 			}
1043 			unlock_page(page);
1044 		}
1045 		pagevec_remove_exceptionals(&pvec);
1046 		pagevec_release(&pvec);
1047 		index++;
1048 	}
1049 
1050 	spin_lock_irq(&info->lock);
1051 	info->swapped -= nr_swaps_freed;
1052 	shmem_recalc_inode(inode);
1053 	spin_unlock_irq(&info->lock);
1054 }
1055 
1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057 {
1058 	shmem_undo_range(inode, lstart, lend, false);
1059 	inode->i_ctime = inode->i_mtime = current_time(inode);
1060 }
1061 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1062 
1063 static int shmem_getattr(const struct path *path, struct kstat *stat,
1064 			 u32 request_mask, unsigned int query_flags)
1065 {
1066 	struct inode *inode = path->dentry->d_inode;
1067 	struct shmem_inode_info *info = SHMEM_I(inode);
1068 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1069 
1070 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071 		spin_lock_irq(&info->lock);
1072 		shmem_recalc_inode(inode);
1073 		spin_unlock_irq(&info->lock);
1074 	}
1075 	generic_fillattr(inode, stat);
1076 
1077 	if (is_huge_enabled(sb_info))
1078 		stat->blksize = HPAGE_PMD_SIZE;
1079 
1080 	return 0;
1081 }
1082 
1083 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1084 {
1085 	struct inode *inode = d_inode(dentry);
1086 	struct shmem_inode_info *info = SHMEM_I(inode);
1087 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088 	int error;
1089 
1090 	error = setattr_prepare(dentry, attr);
1091 	if (error)
1092 		return error;
1093 
1094 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095 		loff_t oldsize = inode->i_size;
1096 		loff_t newsize = attr->ia_size;
1097 
1098 		/* protected by i_mutex */
1099 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101 			return -EPERM;
1102 
1103 		if (newsize != oldsize) {
1104 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105 					oldsize, newsize);
1106 			if (error)
1107 				return error;
1108 			i_size_write(inode, newsize);
1109 			inode->i_ctime = inode->i_mtime = current_time(inode);
1110 		}
1111 		if (newsize <= oldsize) {
1112 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113 			if (oldsize > holebegin)
1114 				unmap_mapping_range(inode->i_mapping,
1115 							holebegin, 0, 1);
1116 			if (info->alloced)
1117 				shmem_truncate_range(inode,
1118 							newsize, (loff_t)-1);
1119 			/* unmap again to remove racily COWed private pages */
1120 			if (oldsize > holebegin)
1121 				unmap_mapping_range(inode->i_mapping,
1122 							holebegin, 0, 1);
1123 
1124 			/*
1125 			 * Part of the huge page can be beyond i_size: subject
1126 			 * to shrink under memory pressure.
1127 			 */
1128 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1129 				spin_lock(&sbinfo->shrinklist_lock);
1130 				/*
1131 				 * _careful to defend against unlocked access to
1132 				 * ->shrink_list in shmem_unused_huge_shrink()
1133 				 */
1134 				if (list_empty_careful(&info->shrinklist)) {
1135 					list_add_tail(&info->shrinklist,
1136 							&sbinfo->shrinklist);
1137 					sbinfo->shrinklist_len++;
1138 				}
1139 				spin_unlock(&sbinfo->shrinklist_lock);
1140 			}
1141 		}
1142 	}
1143 
1144 	setattr_copy(inode, attr);
1145 	if (attr->ia_valid & ATTR_MODE)
1146 		error = posix_acl_chmod(inode, inode->i_mode);
1147 	return error;
1148 }
1149 
1150 static void shmem_evict_inode(struct inode *inode)
1151 {
1152 	struct shmem_inode_info *info = SHMEM_I(inode);
1153 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1154 
1155 	if (inode->i_mapping->a_ops == &shmem_aops) {
1156 		shmem_unacct_size(info->flags, inode->i_size);
1157 		inode->i_size = 0;
1158 		shmem_truncate_range(inode, 0, (loff_t)-1);
1159 		if (!list_empty(&info->shrinklist)) {
1160 			spin_lock(&sbinfo->shrinklist_lock);
1161 			if (!list_empty(&info->shrinklist)) {
1162 				list_del_init(&info->shrinklist);
1163 				sbinfo->shrinklist_len--;
1164 			}
1165 			spin_unlock(&sbinfo->shrinklist_lock);
1166 		}
1167 		while (!list_empty(&info->swaplist)) {
1168 			/* Wait while shmem_unuse() is scanning this inode... */
1169 			wait_var_event(&info->stop_eviction,
1170 				       !atomic_read(&info->stop_eviction));
1171 			mutex_lock(&shmem_swaplist_mutex);
1172 			/* ...but beware of the race if we peeked too early */
1173 			if (!atomic_read(&info->stop_eviction))
1174 				list_del_init(&info->swaplist);
1175 			mutex_unlock(&shmem_swaplist_mutex);
1176 		}
1177 	}
1178 
1179 	simple_xattrs_free(&info->xattrs);
1180 	WARN_ON(inode->i_blocks);
1181 	shmem_free_inode(inode->i_sb);
1182 	clear_inode(inode);
1183 }
1184 
1185 extern struct swap_info_struct *swap_info[];
1186 
1187 static int shmem_find_swap_entries(struct address_space *mapping,
1188 				   pgoff_t start, unsigned int nr_entries,
1189 				   struct page **entries, pgoff_t *indices,
1190 				   unsigned int type, bool frontswap)
1191 {
1192 	XA_STATE(xas, &mapping->i_pages, start);
1193 	struct page *page;
1194 	swp_entry_t entry;
1195 	unsigned int ret = 0;
1196 
1197 	if (!nr_entries)
1198 		return 0;
1199 
1200 	rcu_read_lock();
1201 	xas_for_each(&xas, page, ULONG_MAX) {
1202 		if (xas_retry(&xas, page))
1203 			continue;
1204 
1205 		if (!xa_is_value(page))
1206 			continue;
1207 
1208 		entry = radix_to_swp_entry(page);
1209 		if (swp_type(entry) != type)
1210 			continue;
1211 		if (frontswap &&
1212 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1213 			continue;
1214 
1215 		indices[ret] = xas.xa_index;
1216 		entries[ret] = page;
1217 
1218 		if (need_resched()) {
1219 			xas_pause(&xas);
1220 			cond_resched_rcu();
1221 		}
1222 		if (++ret == nr_entries)
1223 			break;
1224 	}
1225 	rcu_read_unlock();
1226 
1227 	return ret;
1228 }
1229 
1230 /*
1231  * Move the swapped pages for an inode to page cache. Returns the count
1232  * of pages swapped in, or the error in case of failure.
1233  */
1234 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1235 				    pgoff_t *indices)
1236 {
1237 	int i = 0;
1238 	int ret = 0;
1239 	int error = 0;
1240 	struct address_space *mapping = inode->i_mapping;
1241 
1242 	for (i = 0; i < pvec.nr; i++) {
1243 		struct page *page = pvec.pages[i];
1244 
1245 		if (!xa_is_value(page))
1246 			continue;
1247 		error = shmem_swapin_page(inode, indices[i],
1248 					  &page, SGP_CACHE,
1249 					  mapping_gfp_mask(mapping),
1250 					  NULL, NULL);
1251 		if (error == 0) {
1252 			unlock_page(page);
1253 			put_page(page);
1254 			ret++;
1255 		}
1256 		if (error == -ENOMEM)
1257 			break;
1258 		error = 0;
1259 	}
1260 	return error ? error : ret;
1261 }
1262 
1263 /*
1264  * If swap found in inode, free it and move page from swapcache to filecache.
1265  */
1266 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1267 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1268 {
1269 	struct address_space *mapping = inode->i_mapping;
1270 	pgoff_t start = 0;
1271 	struct pagevec pvec;
1272 	pgoff_t indices[PAGEVEC_SIZE];
1273 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1274 	int ret = 0;
1275 
1276 	pagevec_init(&pvec);
1277 	do {
1278 		unsigned int nr_entries = PAGEVEC_SIZE;
1279 
1280 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1281 			nr_entries = *fs_pages_to_unuse;
1282 
1283 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1284 						  pvec.pages, indices,
1285 						  type, frontswap);
1286 		if (pvec.nr == 0) {
1287 			ret = 0;
1288 			break;
1289 		}
1290 
1291 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1292 		if (ret < 0)
1293 			break;
1294 
1295 		if (frontswap_partial) {
1296 			*fs_pages_to_unuse -= ret;
1297 			if (*fs_pages_to_unuse == 0) {
1298 				ret = FRONTSWAP_PAGES_UNUSED;
1299 				break;
1300 			}
1301 		}
1302 
1303 		start = indices[pvec.nr - 1];
1304 	} while (true);
1305 
1306 	return ret;
1307 }
1308 
1309 /*
1310  * Read all the shared memory data that resides in the swap
1311  * device 'type' back into memory, so the swap device can be
1312  * unused.
1313  */
1314 int shmem_unuse(unsigned int type, bool frontswap,
1315 		unsigned long *fs_pages_to_unuse)
1316 {
1317 	struct shmem_inode_info *info, *next;
1318 	int error = 0;
1319 
1320 	if (list_empty(&shmem_swaplist))
1321 		return 0;
1322 
1323 	mutex_lock(&shmem_swaplist_mutex);
1324 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1325 		if (!info->swapped) {
1326 			list_del_init(&info->swaplist);
1327 			continue;
1328 		}
1329 		/*
1330 		 * Drop the swaplist mutex while searching the inode for swap;
1331 		 * but before doing so, make sure shmem_evict_inode() will not
1332 		 * remove placeholder inode from swaplist, nor let it be freed
1333 		 * (igrab() would protect from unlink, but not from unmount).
1334 		 */
1335 		atomic_inc(&info->stop_eviction);
1336 		mutex_unlock(&shmem_swaplist_mutex);
1337 
1338 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1339 					  fs_pages_to_unuse);
1340 		cond_resched();
1341 
1342 		mutex_lock(&shmem_swaplist_mutex);
1343 		next = list_next_entry(info, swaplist);
1344 		if (!info->swapped)
1345 			list_del_init(&info->swaplist);
1346 		if (atomic_dec_and_test(&info->stop_eviction))
1347 			wake_up_var(&info->stop_eviction);
1348 		if (error)
1349 			break;
1350 	}
1351 	mutex_unlock(&shmem_swaplist_mutex);
1352 
1353 	return error;
1354 }
1355 
1356 /*
1357  * Move the page from the page cache to the swap cache.
1358  */
1359 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1360 {
1361 	struct shmem_inode_info *info;
1362 	struct address_space *mapping;
1363 	struct inode *inode;
1364 	swp_entry_t swap;
1365 	pgoff_t index;
1366 
1367 	VM_BUG_ON_PAGE(PageCompound(page), page);
1368 	BUG_ON(!PageLocked(page));
1369 	mapping = page->mapping;
1370 	index = page->index;
1371 	inode = mapping->host;
1372 	info = SHMEM_I(inode);
1373 	if (info->flags & VM_LOCKED)
1374 		goto redirty;
1375 	if (!total_swap_pages)
1376 		goto redirty;
1377 
1378 	/*
1379 	 * Our capabilities prevent regular writeback or sync from ever calling
1380 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1381 	 * its underlying filesystem, in which case tmpfs should write out to
1382 	 * swap only in response to memory pressure, and not for the writeback
1383 	 * threads or sync.
1384 	 */
1385 	if (!wbc->for_reclaim) {
1386 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1387 		goto redirty;
1388 	}
1389 
1390 	/*
1391 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1392 	 * value into swapfile.c, the only way we can correctly account for a
1393 	 * fallocated page arriving here is now to initialize it and write it.
1394 	 *
1395 	 * That's okay for a page already fallocated earlier, but if we have
1396 	 * not yet completed the fallocation, then (a) we want to keep track
1397 	 * of this page in case we have to undo it, and (b) it may not be a
1398 	 * good idea to continue anyway, once we're pushing into swap.  So
1399 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1400 	 */
1401 	if (!PageUptodate(page)) {
1402 		if (inode->i_private) {
1403 			struct shmem_falloc *shmem_falloc;
1404 			spin_lock(&inode->i_lock);
1405 			shmem_falloc = inode->i_private;
1406 			if (shmem_falloc &&
1407 			    !shmem_falloc->waitq &&
1408 			    index >= shmem_falloc->start &&
1409 			    index < shmem_falloc->next)
1410 				shmem_falloc->nr_unswapped++;
1411 			else
1412 				shmem_falloc = NULL;
1413 			spin_unlock(&inode->i_lock);
1414 			if (shmem_falloc)
1415 				goto redirty;
1416 		}
1417 		clear_highpage(page);
1418 		flush_dcache_page(page);
1419 		SetPageUptodate(page);
1420 	}
1421 
1422 	swap = get_swap_page(page);
1423 	if (!swap.val)
1424 		goto redirty;
1425 
1426 	/*
1427 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1428 	 * if it's not already there.  Do it now before the page is
1429 	 * moved to swap cache, when its pagelock no longer protects
1430 	 * the inode from eviction.  But don't unlock the mutex until
1431 	 * we've incremented swapped, because shmem_unuse_inode() will
1432 	 * prune a !swapped inode from the swaplist under this mutex.
1433 	 */
1434 	mutex_lock(&shmem_swaplist_mutex);
1435 	if (list_empty(&info->swaplist))
1436 		list_add(&info->swaplist, &shmem_swaplist);
1437 
1438 	if (add_to_swap_cache(page, swap,
1439 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1440 			NULL) == 0) {
1441 		spin_lock_irq(&info->lock);
1442 		shmem_recalc_inode(inode);
1443 		info->swapped++;
1444 		spin_unlock_irq(&info->lock);
1445 
1446 		swap_shmem_alloc(swap);
1447 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1448 
1449 		mutex_unlock(&shmem_swaplist_mutex);
1450 		BUG_ON(page_mapped(page));
1451 		swap_writepage(page, wbc);
1452 		return 0;
1453 	}
1454 
1455 	mutex_unlock(&shmem_swaplist_mutex);
1456 	put_swap_page(page, swap);
1457 redirty:
1458 	set_page_dirty(page);
1459 	if (wbc->for_reclaim)
1460 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1461 	unlock_page(page);
1462 	return 0;
1463 }
1464 
1465 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1466 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1467 {
1468 	char buffer[64];
1469 
1470 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1471 		return;		/* show nothing */
1472 
1473 	mpol_to_str(buffer, sizeof(buffer), mpol);
1474 
1475 	seq_printf(seq, ",mpol=%s", buffer);
1476 }
1477 
1478 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1479 {
1480 	struct mempolicy *mpol = NULL;
1481 	if (sbinfo->mpol) {
1482 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1483 		mpol = sbinfo->mpol;
1484 		mpol_get(mpol);
1485 		spin_unlock(&sbinfo->stat_lock);
1486 	}
1487 	return mpol;
1488 }
1489 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1490 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1491 {
1492 }
1493 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1494 {
1495 	return NULL;
1496 }
1497 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1498 #ifndef CONFIG_NUMA
1499 #define vm_policy vm_private_data
1500 #endif
1501 
1502 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1503 		struct shmem_inode_info *info, pgoff_t index)
1504 {
1505 	/* Create a pseudo vma that just contains the policy */
1506 	vma_init(vma, NULL);
1507 	/* Bias interleave by inode number to distribute better across nodes */
1508 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1509 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1510 }
1511 
1512 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1513 {
1514 	/* Drop reference taken by mpol_shared_policy_lookup() */
1515 	mpol_cond_put(vma->vm_policy);
1516 }
1517 
1518 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1519 			struct shmem_inode_info *info, pgoff_t index)
1520 {
1521 	struct vm_area_struct pvma;
1522 	struct page *page;
1523 	struct vm_fault vmf;
1524 
1525 	shmem_pseudo_vma_init(&pvma, info, index);
1526 	vmf.vma = &pvma;
1527 	vmf.address = 0;
1528 	page = swap_cluster_readahead(swap, gfp, &vmf);
1529 	shmem_pseudo_vma_destroy(&pvma);
1530 
1531 	return page;
1532 }
1533 
1534 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1535 		struct shmem_inode_info *info, pgoff_t index)
1536 {
1537 	struct vm_area_struct pvma;
1538 	struct address_space *mapping = info->vfs_inode.i_mapping;
1539 	pgoff_t hindex;
1540 	struct page *page;
1541 
1542 	hindex = round_down(index, HPAGE_PMD_NR);
1543 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1544 								XA_PRESENT))
1545 		return NULL;
1546 
1547 	shmem_pseudo_vma_init(&pvma, info, hindex);
1548 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1549 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1550 	shmem_pseudo_vma_destroy(&pvma);
1551 	if (page)
1552 		prep_transhuge_page(page);
1553 	else
1554 		count_vm_event(THP_FILE_FALLBACK);
1555 	return page;
1556 }
1557 
1558 static struct page *shmem_alloc_page(gfp_t gfp,
1559 			struct shmem_inode_info *info, pgoff_t index)
1560 {
1561 	struct vm_area_struct pvma;
1562 	struct page *page;
1563 
1564 	shmem_pseudo_vma_init(&pvma, info, index);
1565 	page = alloc_page_vma(gfp, &pvma, 0);
1566 	shmem_pseudo_vma_destroy(&pvma);
1567 
1568 	return page;
1569 }
1570 
1571 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1572 		struct inode *inode,
1573 		pgoff_t index, bool huge)
1574 {
1575 	struct shmem_inode_info *info = SHMEM_I(inode);
1576 	struct page *page;
1577 	int nr;
1578 	int err = -ENOSPC;
1579 
1580 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1581 		huge = false;
1582 	nr = huge ? HPAGE_PMD_NR : 1;
1583 
1584 	if (!shmem_inode_acct_block(inode, nr))
1585 		goto failed;
1586 
1587 	if (huge)
1588 		page = shmem_alloc_hugepage(gfp, info, index);
1589 	else
1590 		page = shmem_alloc_page(gfp, info, index);
1591 	if (page) {
1592 		__SetPageLocked(page);
1593 		__SetPageSwapBacked(page);
1594 		return page;
1595 	}
1596 
1597 	err = -ENOMEM;
1598 	shmem_inode_unacct_blocks(inode, nr);
1599 failed:
1600 	return ERR_PTR(err);
1601 }
1602 
1603 /*
1604  * When a page is moved from swapcache to shmem filecache (either by the
1605  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607  * ignorance of the mapping it belongs to.  If that mapping has special
1608  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609  * we may need to copy to a suitable page before moving to filecache.
1610  *
1611  * In a future release, this may well be extended to respect cpuset and
1612  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613  * but for now it is a simple matter of zone.
1614  */
1615 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1616 {
1617 	return page_zonenum(page) > gfp_zone(gfp);
1618 }
1619 
1620 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621 				struct shmem_inode_info *info, pgoff_t index)
1622 {
1623 	struct page *oldpage, *newpage;
1624 	struct address_space *swap_mapping;
1625 	swp_entry_t entry;
1626 	pgoff_t swap_index;
1627 	int error;
1628 
1629 	oldpage = *pagep;
1630 	entry.val = page_private(oldpage);
1631 	swap_index = swp_offset(entry);
1632 	swap_mapping = page_mapping(oldpage);
1633 
1634 	/*
1635 	 * We have arrived here because our zones are constrained, so don't
1636 	 * limit chance of success by further cpuset and node constraints.
1637 	 */
1638 	gfp &= ~GFP_CONSTRAINT_MASK;
1639 	newpage = shmem_alloc_page(gfp, info, index);
1640 	if (!newpage)
1641 		return -ENOMEM;
1642 
1643 	get_page(newpage);
1644 	copy_highpage(newpage, oldpage);
1645 	flush_dcache_page(newpage);
1646 
1647 	__SetPageLocked(newpage);
1648 	__SetPageSwapBacked(newpage);
1649 	SetPageUptodate(newpage);
1650 	set_page_private(newpage, entry.val);
1651 	SetPageSwapCache(newpage);
1652 
1653 	/*
1654 	 * Our caller will very soon move newpage out of swapcache, but it's
1655 	 * a nice clean interface for us to replace oldpage by newpage there.
1656 	 */
1657 	xa_lock_irq(&swap_mapping->i_pages);
1658 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1659 	if (!error) {
1660 		mem_cgroup_migrate(oldpage, newpage);
1661 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1663 	}
1664 	xa_unlock_irq(&swap_mapping->i_pages);
1665 
1666 	if (unlikely(error)) {
1667 		/*
1668 		 * Is this possible?  I think not, now that our callers check
1669 		 * both PageSwapCache and page_private after getting page lock;
1670 		 * but be defensive.  Reverse old to newpage for clear and free.
1671 		 */
1672 		oldpage = newpage;
1673 	} else {
1674 		lru_cache_add(newpage);
1675 		*pagep = newpage;
1676 	}
1677 
1678 	ClearPageSwapCache(oldpage);
1679 	set_page_private(oldpage, 0);
1680 
1681 	unlock_page(oldpage);
1682 	put_page(oldpage);
1683 	put_page(oldpage);
1684 	return error;
1685 }
1686 
1687 /*
1688  * Swap in the page pointed to by *pagep.
1689  * Caller has to make sure that *pagep contains a valid swapped page.
1690  * Returns 0 and the page in pagep if success. On failure, returns the
1691  * error code and NULL in *pagep.
1692  */
1693 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1694 			     struct page **pagep, enum sgp_type sgp,
1695 			     gfp_t gfp, struct vm_area_struct *vma,
1696 			     vm_fault_t *fault_type)
1697 {
1698 	struct address_space *mapping = inode->i_mapping;
1699 	struct shmem_inode_info *info = SHMEM_I(inode);
1700 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1701 	struct page *page;
1702 	swp_entry_t swap;
1703 	int error;
1704 
1705 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1706 	swap = radix_to_swp_entry(*pagep);
1707 	*pagep = NULL;
1708 
1709 	/* Look it up and read it in.. */
1710 	page = lookup_swap_cache(swap, NULL, 0);
1711 	if (!page) {
1712 		/* Or update major stats only when swapin succeeds?? */
1713 		if (fault_type) {
1714 			*fault_type |= VM_FAULT_MAJOR;
1715 			count_vm_event(PGMAJFAULT);
1716 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1717 		}
1718 		/* Here we actually start the io */
1719 		page = shmem_swapin(swap, gfp, info, index);
1720 		if (!page) {
1721 			error = -ENOMEM;
1722 			goto failed;
1723 		}
1724 	}
1725 
1726 	/* We have to do this with page locked to prevent races */
1727 	lock_page(page);
1728 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1729 	    !shmem_confirm_swap(mapping, index, swap)) {
1730 		error = -EEXIST;
1731 		goto unlock;
1732 	}
1733 	if (!PageUptodate(page)) {
1734 		error = -EIO;
1735 		goto failed;
1736 	}
1737 	wait_on_page_writeback(page);
1738 
1739 	/*
1740 	 * Some architectures may have to restore extra metadata to the
1741 	 * physical page after reading from swap.
1742 	 */
1743 	arch_swap_restore(swap, page);
1744 
1745 	if (shmem_should_replace_page(page, gfp)) {
1746 		error = shmem_replace_page(&page, gfp, info, index);
1747 		if (error)
1748 			goto failed;
1749 	}
1750 
1751 	error = shmem_add_to_page_cache(page, mapping, index,
1752 					swp_to_radix_entry(swap), gfp,
1753 					charge_mm);
1754 	if (error)
1755 		goto failed;
1756 
1757 	spin_lock_irq(&info->lock);
1758 	info->swapped--;
1759 	shmem_recalc_inode(inode);
1760 	spin_unlock_irq(&info->lock);
1761 
1762 	if (sgp == SGP_WRITE)
1763 		mark_page_accessed(page);
1764 
1765 	delete_from_swap_cache(page);
1766 	set_page_dirty(page);
1767 	swap_free(swap);
1768 
1769 	*pagep = page;
1770 	return 0;
1771 failed:
1772 	if (!shmem_confirm_swap(mapping, index, swap))
1773 		error = -EEXIST;
1774 unlock:
1775 	if (page) {
1776 		unlock_page(page);
1777 		put_page(page);
1778 	}
1779 
1780 	return error;
1781 }
1782 
1783 /*
1784  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1785  *
1786  * If we allocate a new one we do not mark it dirty. That's up to the
1787  * vm. If we swap it in we mark it dirty since we also free the swap
1788  * entry since a page cannot live in both the swap and page cache.
1789  *
1790  * vmf and fault_type are only supplied by shmem_fault:
1791  * otherwise they are NULL.
1792  */
1793 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1794 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1795 	struct vm_area_struct *vma, struct vm_fault *vmf,
1796 			vm_fault_t *fault_type)
1797 {
1798 	struct address_space *mapping = inode->i_mapping;
1799 	struct shmem_inode_info *info = SHMEM_I(inode);
1800 	struct shmem_sb_info *sbinfo;
1801 	struct mm_struct *charge_mm;
1802 	struct page *page;
1803 	enum sgp_type sgp_huge = sgp;
1804 	pgoff_t hindex = index;
1805 	int error;
1806 	int once = 0;
1807 	int alloced = 0;
1808 
1809 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1810 		return -EFBIG;
1811 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1812 		sgp = SGP_CACHE;
1813 repeat:
1814 	if (sgp <= SGP_CACHE &&
1815 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1816 		return -EINVAL;
1817 	}
1818 
1819 	sbinfo = SHMEM_SB(inode->i_sb);
1820 	charge_mm = vma ? vma->vm_mm : current->mm;
1821 
1822 	page = find_lock_entry(mapping, index);
1823 	if (xa_is_value(page)) {
1824 		error = shmem_swapin_page(inode, index, &page,
1825 					  sgp, gfp, vma, fault_type);
1826 		if (error == -EEXIST)
1827 			goto repeat;
1828 
1829 		*pagep = page;
1830 		return error;
1831 	}
1832 
1833 	if (page)
1834 		hindex = page->index;
1835 	if (page && sgp == SGP_WRITE)
1836 		mark_page_accessed(page);
1837 
1838 	/* fallocated page? */
1839 	if (page && !PageUptodate(page)) {
1840 		if (sgp != SGP_READ)
1841 			goto clear;
1842 		unlock_page(page);
1843 		put_page(page);
1844 		page = NULL;
1845 		hindex = index;
1846 	}
1847 	if (page || sgp == SGP_READ)
1848 		goto out;
1849 
1850 	/*
1851 	 * Fast cache lookup did not find it:
1852 	 * bring it back from swap or allocate.
1853 	 */
1854 
1855 	if (vma && userfaultfd_missing(vma)) {
1856 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1857 		return 0;
1858 	}
1859 
1860 	/* shmem_symlink() */
1861 	if (mapping->a_ops != &shmem_aops)
1862 		goto alloc_nohuge;
1863 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1864 		goto alloc_nohuge;
1865 	if (shmem_huge == SHMEM_HUGE_FORCE)
1866 		goto alloc_huge;
1867 	switch (sbinfo->huge) {
1868 	case SHMEM_HUGE_NEVER:
1869 		goto alloc_nohuge;
1870 	case SHMEM_HUGE_WITHIN_SIZE: {
1871 		loff_t i_size;
1872 		pgoff_t off;
1873 
1874 		off = round_up(index, HPAGE_PMD_NR);
1875 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1876 		if (i_size >= HPAGE_PMD_SIZE &&
1877 		    i_size >> PAGE_SHIFT >= off)
1878 			goto alloc_huge;
1879 
1880 		fallthrough;
1881 	}
1882 	case SHMEM_HUGE_ADVISE:
1883 		if (sgp_huge == SGP_HUGE)
1884 			goto alloc_huge;
1885 		/* TODO: implement fadvise() hints */
1886 		goto alloc_nohuge;
1887 	}
1888 
1889 alloc_huge:
1890 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1891 	if (IS_ERR(page)) {
1892 alloc_nohuge:
1893 		page = shmem_alloc_and_acct_page(gfp, inode,
1894 						 index, false);
1895 	}
1896 	if (IS_ERR(page)) {
1897 		int retry = 5;
1898 
1899 		error = PTR_ERR(page);
1900 		page = NULL;
1901 		if (error != -ENOSPC)
1902 			goto unlock;
1903 		/*
1904 		 * Try to reclaim some space by splitting a huge page
1905 		 * beyond i_size on the filesystem.
1906 		 */
1907 		while (retry--) {
1908 			int ret;
1909 
1910 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1911 			if (ret == SHRINK_STOP)
1912 				break;
1913 			if (ret)
1914 				goto alloc_nohuge;
1915 		}
1916 		goto unlock;
1917 	}
1918 
1919 	if (PageTransHuge(page))
1920 		hindex = round_down(index, HPAGE_PMD_NR);
1921 	else
1922 		hindex = index;
1923 
1924 	if (sgp == SGP_WRITE)
1925 		__SetPageReferenced(page);
1926 
1927 	error = shmem_add_to_page_cache(page, mapping, hindex,
1928 					NULL, gfp & GFP_RECLAIM_MASK,
1929 					charge_mm);
1930 	if (error)
1931 		goto unacct;
1932 	lru_cache_add(page);
1933 
1934 	spin_lock_irq(&info->lock);
1935 	info->alloced += compound_nr(page);
1936 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1937 	shmem_recalc_inode(inode);
1938 	spin_unlock_irq(&info->lock);
1939 	alloced = true;
1940 
1941 	if (PageTransHuge(page) &&
1942 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1943 			hindex + HPAGE_PMD_NR - 1) {
1944 		/*
1945 		 * Part of the huge page is beyond i_size: subject
1946 		 * to shrink under memory pressure.
1947 		 */
1948 		spin_lock(&sbinfo->shrinklist_lock);
1949 		/*
1950 		 * _careful to defend against unlocked access to
1951 		 * ->shrink_list in shmem_unused_huge_shrink()
1952 		 */
1953 		if (list_empty_careful(&info->shrinklist)) {
1954 			list_add_tail(&info->shrinklist,
1955 				      &sbinfo->shrinklist);
1956 			sbinfo->shrinklist_len++;
1957 		}
1958 		spin_unlock(&sbinfo->shrinklist_lock);
1959 	}
1960 
1961 	/*
1962 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1963 	 */
1964 	if (sgp == SGP_FALLOC)
1965 		sgp = SGP_WRITE;
1966 clear:
1967 	/*
1968 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1969 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1970 	 * it now, lest undo on failure cancel our earlier guarantee.
1971 	 */
1972 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1973 		int i;
1974 
1975 		for (i = 0; i < compound_nr(page); i++) {
1976 			clear_highpage(page + i);
1977 			flush_dcache_page(page + i);
1978 		}
1979 		SetPageUptodate(page);
1980 	}
1981 
1982 	/* Perhaps the file has been truncated since we checked */
1983 	if (sgp <= SGP_CACHE &&
1984 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1985 		if (alloced) {
1986 			ClearPageDirty(page);
1987 			delete_from_page_cache(page);
1988 			spin_lock_irq(&info->lock);
1989 			shmem_recalc_inode(inode);
1990 			spin_unlock_irq(&info->lock);
1991 		}
1992 		error = -EINVAL;
1993 		goto unlock;
1994 	}
1995 out:
1996 	*pagep = page + index - hindex;
1997 	return 0;
1998 
1999 	/*
2000 	 * Error recovery.
2001 	 */
2002 unacct:
2003 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2004 
2005 	if (PageTransHuge(page)) {
2006 		unlock_page(page);
2007 		put_page(page);
2008 		goto alloc_nohuge;
2009 	}
2010 unlock:
2011 	if (page) {
2012 		unlock_page(page);
2013 		put_page(page);
2014 	}
2015 	if (error == -ENOSPC && !once++) {
2016 		spin_lock_irq(&info->lock);
2017 		shmem_recalc_inode(inode);
2018 		spin_unlock_irq(&info->lock);
2019 		goto repeat;
2020 	}
2021 	if (error == -EEXIST)
2022 		goto repeat;
2023 	return error;
2024 }
2025 
2026 /*
2027  * This is like autoremove_wake_function, but it removes the wait queue
2028  * entry unconditionally - even if something else had already woken the
2029  * target.
2030  */
2031 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2032 {
2033 	int ret = default_wake_function(wait, mode, sync, key);
2034 	list_del_init(&wait->entry);
2035 	return ret;
2036 }
2037 
2038 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2039 {
2040 	struct vm_area_struct *vma = vmf->vma;
2041 	struct inode *inode = file_inode(vma->vm_file);
2042 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2043 	enum sgp_type sgp;
2044 	int err;
2045 	vm_fault_t ret = VM_FAULT_LOCKED;
2046 
2047 	/*
2048 	 * Trinity finds that probing a hole which tmpfs is punching can
2049 	 * prevent the hole-punch from ever completing: which in turn
2050 	 * locks writers out with its hold on i_mutex.  So refrain from
2051 	 * faulting pages into the hole while it's being punched.  Although
2052 	 * shmem_undo_range() does remove the additions, it may be unable to
2053 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2054 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2055 	 *
2056 	 * It does not matter if we sometimes reach this check just before the
2057 	 * hole-punch begins, so that one fault then races with the punch:
2058 	 * we just need to make racing faults a rare case.
2059 	 *
2060 	 * The implementation below would be much simpler if we just used a
2061 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2062 	 * and bloating every shmem inode for this unlikely case would be sad.
2063 	 */
2064 	if (unlikely(inode->i_private)) {
2065 		struct shmem_falloc *shmem_falloc;
2066 
2067 		spin_lock(&inode->i_lock);
2068 		shmem_falloc = inode->i_private;
2069 		if (shmem_falloc &&
2070 		    shmem_falloc->waitq &&
2071 		    vmf->pgoff >= shmem_falloc->start &&
2072 		    vmf->pgoff < shmem_falloc->next) {
2073 			struct file *fpin;
2074 			wait_queue_head_t *shmem_falloc_waitq;
2075 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2076 
2077 			ret = VM_FAULT_NOPAGE;
2078 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2079 			if (fpin)
2080 				ret = VM_FAULT_RETRY;
2081 
2082 			shmem_falloc_waitq = shmem_falloc->waitq;
2083 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2084 					TASK_UNINTERRUPTIBLE);
2085 			spin_unlock(&inode->i_lock);
2086 			schedule();
2087 
2088 			/*
2089 			 * shmem_falloc_waitq points into the shmem_fallocate()
2090 			 * stack of the hole-punching task: shmem_falloc_waitq
2091 			 * is usually invalid by the time we reach here, but
2092 			 * finish_wait() does not dereference it in that case;
2093 			 * though i_lock needed lest racing with wake_up_all().
2094 			 */
2095 			spin_lock(&inode->i_lock);
2096 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2097 			spin_unlock(&inode->i_lock);
2098 
2099 			if (fpin)
2100 				fput(fpin);
2101 			return ret;
2102 		}
2103 		spin_unlock(&inode->i_lock);
2104 	}
2105 
2106 	sgp = SGP_CACHE;
2107 
2108 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2109 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2110 		sgp = SGP_NOHUGE;
2111 	else if (vma->vm_flags & VM_HUGEPAGE)
2112 		sgp = SGP_HUGE;
2113 
2114 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2115 				  gfp, vma, vmf, &ret);
2116 	if (err)
2117 		return vmf_error(err);
2118 	return ret;
2119 }
2120 
2121 unsigned long shmem_get_unmapped_area(struct file *file,
2122 				      unsigned long uaddr, unsigned long len,
2123 				      unsigned long pgoff, unsigned long flags)
2124 {
2125 	unsigned long (*get_area)(struct file *,
2126 		unsigned long, unsigned long, unsigned long, unsigned long);
2127 	unsigned long addr;
2128 	unsigned long offset;
2129 	unsigned long inflated_len;
2130 	unsigned long inflated_addr;
2131 	unsigned long inflated_offset;
2132 
2133 	if (len > TASK_SIZE)
2134 		return -ENOMEM;
2135 
2136 	get_area = current->mm->get_unmapped_area;
2137 	addr = get_area(file, uaddr, len, pgoff, flags);
2138 
2139 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2140 		return addr;
2141 	if (IS_ERR_VALUE(addr))
2142 		return addr;
2143 	if (addr & ~PAGE_MASK)
2144 		return addr;
2145 	if (addr > TASK_SIZE - len)
2146 		return addr;
2147 
2148 	if (shmem_huge == SHMEM_HUGE_DENY)
2149 		return addr;
2150 	if (len < HPAGE_PMD_SIZE)
2151 		return addr;
2152 	if (flags & MAP_FIXED)
2153 		return addr;
2154 	/*
2155 	 * Our priority is to support MAP_SHARED mapped hugely;
2156 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2157 	 * But if caller specified an address hint and we allocated area there
2158 	 * successfully, respect that as before.
2159 	 */
2160 	if (uaddr == addr)
2161 		return addr;
2162 
2163 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2164 		struct super_block *sb;
2165 
2166 		if (file) {
2167 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2168 			sb = file_inode(file)->i_sb;
2169 		} else {
2170 			/*
2171 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2172 			 * for "/dev/zero", to create a shared anonymous object.
2173 			 */
2174 			if (IS_ERR(shm_mnt))
2175 				return addr;
2176 			sb = shm_mnt->mnt_sb;
2177 		}
2178 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2179 			return addr;
2180 	}
2181 
2182 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2183 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2184 		return addr;
2185 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2186 		return addr;
2187 
2188 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2189 	if (inflated_len > TASK_SIZE)
2190 		return addr;
2191 	if (inflated_len < len)
2192 		return addr;
2193 
2194 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2195 	if (IS_ERR_VALUE(inflated_addr))
2196 		return addr;
2197 	if (inflated_addr & ~PAGE_MASK)
2198 		return addr;
2199 
2200 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2201 	inflated_addr += offset - inflated_offset;
2202 	if (inflated_offset > offset)
2203 		inflated_addr += HPAGE_PMD_SIZE;
2204 
2205 	if (inflated_addr > TASK_SIZE - len)
2206 		return addr;
2207 	return inflated_addr;
2208 }
2209 
2210 #ifdef CONFIG_NUMA
2211 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2212 {
2213 	struct inode *inode = file_inode(vma->vm_file);
2214 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2215 }
2216 
2217 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2218 					  unsigned long addr)
2219 {
2220 	struct inode *inode = file_inode(vma->vm_file);
2221 	pgoff_t index;
2222 
2223 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2224 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2225 }
2226 #endif
2227 
2228 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2229 {
2230 	struct inode *inode = file_inode(file);
2231 	struct shmem_inode_info *info = SHMEM_I(inode);
2232 	int retval = -ENOMEM;
2233 
2234 	/*
2235 	 * What serializes the accesses to info->flags?
2236 	 * ipc_lock_object() when called from shmctl_do_lock(),
2237 	 * no serialization needed when called from shm_destroy().
2238 	 */
2239 	if (lock && !(info->flags & VM_LOCKED)) {
2240 		if (!user_shm_lock(inode->i_size, user))
2241 			goto out_nomem;
2242 		info->flags |= VM_LOCKED;
2243 		mapping_set_unevictable(file->f_mapping);
2244 	}
2245 	if (!lock && (info->flags & VM_LOCKED) && user) {
2246 		user_shm_unlock(inode->i_size, user);
2247 		info->flags &= ~VM_LOCKED;
2248 		mapping_clear_unevictable(file->f_mapping);
2249 	}
2250 	retval = 0;
2251 
2252 out_nomem:
2253 	return retval;
2254 }
2255 
2256 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2257 {
2258 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2259 
2260 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2261 		/*
2262 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2263 		 * "future write" seal active.
2264 		 */
2265 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2266 			return -EPERM;
2267 
2268 		/*
2269 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2270 		 * MAP_SHARED and read-only, take care to not allow mprotect to
2271 		 * revert protections on such mappings. Do this only for shared
2272 		 * mappings. For private mappings, don't need to mask
2273 		 * VM_MAYWRITE as we still want them to be COW-writable.
2274 		 */
2275 		if (vma->vm_flags & VM_SHARED)
2276 			vma->vm_flags &= ~(VM_MAYWRITE);
2277 	}
2278 
2279 	/* arm64 - allow memory tagging on RAM-based files */
2280 	vma->vm_flags |= VM_MTE_ALLOWED;
2281 
2282 	file_accessed(file);
2283 	vma->vm_ops = &shmem_vm_ops;
2284 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2285 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2286 			(vma->vm_end & HPAGE_PMD_MASK)) {
2287 		khugepaged_enter(vma, vma->vm_flags);
2288 	}
2289 	return 0;
2290 }
2291 
2292 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2293 				     umode_t mode, dev_t dev, unsigned long flags)
2294 {
2295 	struct inode *inode;
2296 	struct shmem_inode_info *info;
2297 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2298 	ino_t ino;
2299 
2300 	if (shmem_reserve_inode(sb, &ino))
2301 		return NULL;
2302 
2303 	inode = new_inode(sb);
2304 	if (inode) {
2305 		inode->i_ino = ino;
2306 		inode_init_owner(inode, dir, mode);
2307 		inode->i_blocks = 0;
2308 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2309 		inode->i_generation = prandom_u32();
2310 		info = SHMEM_I(inode);
2311 		memset(info, 0, (char *)inode - (char *)info);
2312 		spin_lock_init(&info->lock);
2313 		atomic_set(&info->stop_eviction, 0);
2314 		info->seals = F_SEAL_SEAL;
2315 		info->flags = flags & VM_NORESERVE;
2316 		INIT_LIST_HEAD(&info->shrinklist);
2317 		INIT_LIST_HEAD(&info->swaplist);
2318 		simple_xattrs_init(&info->xattrs);
2319 		cache_no_acl(inode);
2320 
2321 		switch (mode & S_IFMT) {
2322 		default:
2323 			inode->i_op = &shmem_special_inode_operations;
2324 			init_special_inode(inode, mode, dev);
2325 			break;
2326 		case S_IFREG:
2327 			inode->i_mapping->a_ops = &shmem_aops;
2328 			inode->i_op = &shmem_inode_operations;
2329 			inode->i_fop = &shmem_file_operations;
2330 			mpol_shared_policy_init(&info->policy,
2331 						 shmem_get_sbmpol(sbinfo));
2332 			break;
2333 		case S_IFDIR:
2334 			inc_nlink(inode);
2335 			/* Some things misbehave if size == 0 on a directory */
2336 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2337 			inode->i_op = &shmem_dir_inode_operations;
2338 			inode->i_fop = &simple_dir_operations;
2339 			break;
2340 		case S_IFLNK:
2341 			/*
2342 			 * Must not load anything in the rbtree,
2343 			 * mpol_free_shared_policy will not be called.
2344 			 */
2345 			mpol_shared_policy_init(&info->policy, NULL);
2346 			break;
2347 		}
2348 
2349 		lockdep_annotate_inode_mutex_key(inode);
2350 	} else
2351 		shmem_free_inode(sb);
2352 	return inode;
2353 }
2354 
2355 bool shmem_mapping(struct address_space *mapping)
2356 {
2357 	return mapping->a_ops == &shmem_aops;
2358 }
2359 
2360 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2361 				  pmd_t *dst_pmd,
2362 				  struct vm_area_struct *dst_vma,
2363 				  unsigned long dst_addr,
2364 				  unsigned long src_addr,
2365 				  bool zeropage,
2366 				  struct page **pagep)
2367 {
2368 	struct inode *inode = file_inode(dst_vma->vm_file);
2369 	struct shmem_inode_info *info = SHMEM_I(inode);
2370 	struct address_space *mapping = inode->i_mapping;
2371 	gfp_t gfp = mapping_gfp_mask(mapping);
2372 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2373 	spinlock_t *ptl;
2374 	void *page_kaddr;
2375 	struct page *page;
2376 	pte_t _dst_pte, *dst_pte;
2377 	int ret;
2378 	pgoff_t offset, max_off;
2379 
2380 	ret = -ENOMEM;
2381 	if (!shmem_inode_acct_block(inode, 1))
2382 		goto out;
2383 
2384 	if (!*pagep) {
2385 		page = shmem_alloc_page(gfp, info, pgoff);
2386 		if (!page)
2387 			goto out_unacct_blocks;
2388 
2389 		if (!zeropage) {	/* mcopy_atomic */
2390 			page_kaddr = kmap_atomic(page);
2391 			ret = copy_from_user(page_kaddr,
2392 					     (const void __user *)src_addr,
2393 					     PAGE_SIZE);
2394 			kunmap_atomic(page_kaddr);
2395 
2396 			/* fallback to copy_from_user outside mmap_lock */
2397 			if (unlikely(ret)) {
2398 				*pagep = page;
2399 				shmem_inode_unacct_blocks(inode, 1);
2400 				/* don't free the page */
2401 				return -ENOENT;
2402 			}
2403 		} else {		/* mfill_zeropage_atomic */
2404 			clear_highpage(page);
2405 		}
2406 	} else {
2407 		page = *pagep;
2408 		*pagep = NULL;
2409 	}
2410 
2411 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2412 	__SetPageLocked(page);
2413 	__SetPageSwapBacked(page);
2414 	__SetPageUptodate(page);
2415 
2416 	ret = -EFAULT;
2417 	offset = linear_page_index(dst_vma, dst_addr);
2418 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2419 	if (unlikely(offset >= max_off))
2420 		goto out_release;
2421 
2422 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2423 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2424 	if (ret)
2425 		goto out_release;
2426 
2427 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2428 	if (dst_vma->vm_flags & VM_WRITE)
2429 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2430 	else {
2431 		/*
2432 		 * We don't set the pte dirty if the vma has no
2433 		 * VM_WRITE permission, so mark the page dirty or it
2434 		 * could be freed from under us. We could do it
2435 		 * unconditionally before unlock_page(), but doing it
2436 		 * only if VM_WRITE is not set is faster.
2437 		 */
2438 		set_page_dirty(page);
2439 	}
2440 
2441 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2442 
2443 	ret = -EFAULT;
2444 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2445 	if (unlikely(offset >= max_off))
2446 		goto out_release_unlock;
2447 
2448 	ret = -EEXIST;
2449 	if (!pte_none(*dst_pte))
2450 		goto out_release_unlock;
2451 
2452 	lru_cache_add(page);
2453 
2454 	spin_lock_irq(&info->lock);
2455 	info->alloced++;
2456 	inode->i_blocks += BLOCKS_PER_PAGE;
2457 	shmem_recalc_inode(inode);
2458 	spin_unlock_irq(&info->lock);
2459 
2460 	inc_mm_counter(dst_mm, mm_counter_file(page));
2461 	page_add_file_rmap(page, false);
2462 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2463 
2464 	/* No need to invalidate - it was non-present before */
2465 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2466 	pte_unmap_unlock(dst_pte, ptl);
2467 	unlock_page(page);
2468 	ret = 0;
2469 out:
2470 	return ret;
2471 out_release_unlock:
2472 	pte_unmap_unlock(dst_pte, ptl);
2473 	ClearPageDirty(page);
2474 	delete_from_page_cache(page);
2475 out_release:
2476 	unlock_page(page);
2477 	put_page(page);
2478 out_unacct_blocks:
2479 	shmem_inode_unacct_blocks(inode, 1);
2480 	goto out;
2481 }
2482 
2483 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2484 			   pmd_t *dst_pmd,
2485 			   struct vm_area_struct *dst_vma,
2486 			   unsigned long dst_addr,
2487 			   unsigned long src_addr,
2488 			   struct page **pagep)
2489 {
2490 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2491 				      dst_addr, src_addr, false, pagep);
2492 }
2493 
2494 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2495 			     pmd_t *dst_pmd,
2496 			     struct vm_area_struct *dst_vma,
2497 			     unsigned long dst_addr)
2498 {
2499 	struct page *page = NULL;
2500 
2501 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2502 				      dst_addr, 0, true, &page);
2503 }
2504 
2505 #ifdef CONFIG_TMPFS
2506 static const struct inode_operations shmem_symlink_inode_operations;
2507 static const struct inode_operations shmem_short_symlink_operations;
2508 
2509 #ifdef CONFIG_TMPFS_XATTR
2510 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2511 #else
2512 #define shmem_initxattrs NULL
2513 #endif
2514 
2515 static int
2516 shmem_write_begin(struct file *file, struct address_space *mapping,
2517 			loff_t pos, unsigned len, unsigned flags,
2518 			struct page **pagep, void **fsdata)
2519 {
2520 	struct inode *inode = mapping->host;
2521 	struct shmem_inode_info *info = SHMEM_I(inode);
2522 	pgoff_t index = pos >> PAGE_SHIFT;
2523 
2524 	/* i_mutex is held by caller */
2525 	if (unlikely(info->seals & (F_SEAL_GROW |
2526 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2527 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2528 			return -EPERM;
2529 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2530 			return -EPERM;
2531 	}
2532 
2533 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2534 }
2535 
2536 static int
2537 shmem_write_end(struct file *file, struct address_space *mapping,
2538 			loff_t pos, unsigned len, unsigned copied,
2539 			struct page *page, void *fsdata)
2540 {
2541 	struct inode *inode = mapping->host;
2542 
2543 	if (pos + copied > inode->i_size)
2544 		i_size_write(inode, pos + copied);
2545 
2546 	if (!PageUptodate(page)) {
2547 		struct page *head = compound_head(page);
2548 		if (PageTransCompound(page)) {
2549 			int i;
2550 
2551 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2552 				if (head + i == page)
2553 					continue;
2554 				clear_highpage(head + i);
2555 				flush_dcache_page(head + i);
2556 			}
2557 		}
2558 		if (copied < PAGE_SIZE) {
2559 			unsigned from = pos & (PAGE_SIZE - 1);
2560 			zero_user_segments(page, 0, from,
2561 					from + copied, PAGE_SIZE);
2562 		}
2563 		SetPageUptodate(head);
2564 	}
2565 	set_page_dirty(page);
2566 	unlock_page(page);
2567 	put_page(page);
2568 
2569 	return copied;
2570 }
2571 
2572 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2573 {
2574 	struct file *file = iocb->ki_filp;
2575 	struct inode *inode = file_inode(file);
2576 	struct address_space *mapping = inode->i_mapping;
2577 	pgoff_t index;
2578 	unsigned long offset;
2579 	enum sgp_type sgp = SGP_READ;
2580 	int error = 0;
2581 	ssize_t retval = 0;
2582 	loff_t *ppos = &iocb->ki_pos;
2583 
2584 	/*
2585 	 * Might this read be for a stacking filesystem?  Then when reading
2586 	 * holes of a sparse file, we actually need to allocate those pages,
2587 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2588 	 */
2589 	if (!iter_is_iovec(to))
2590 		sgp = SGP_CACHE;
2591 
2592 	index = *ppos >> PAGE_SHIFT;
2593 	offset = *ppos & ~PAGE_MASK;
2594 
2595 	for (;;) {
2596 		struct page *page = NULL;
2597 		pgoff_t end_index;
2598 		unsigned long nr, ret;
2599 		loff_t i_size = i_size_read(inode);
2600 
2601 		end_index = i_size >> PAGE_SHIFT;
2602 		if (index > end_index)
2603 			break;
2604 		if (index == end_index) {
2605 			nr = i_size & ~PAGE_MASK;
2606 			if (nr <= offset)
2607 				break;
2608 		}
2609 
2610 		error = shmem_getpage(inode, index, &page, sgp);
2611 		if (error) {
2612 			if (error == -EINVAL)
2613 				error = 0;
2614 			break;
2615 		}
2616 		if (page) {
2617 			if (sgp == SGP_CACHE)
2618 				set_page_dirty(page);
2619 			unlock_page(page);
2620 		}
2621 
2622 		/*
2623 		 * We must evaluate after, since reads (unlike writes)
2624 		 * are called without i_mutex protection against truncate
2625 		 */
2626 		nr = PAGE_SIZE;
2627 		i_size = i_size_read(inode);
2628 		end_index = i_size >> PAGE_SHIFT;
2629 		if (index == end_index) {
2630 			nr = i_size & ~PAGE_MASK;
2631 			if (nr <= offset) {
2632 				if (page)
2633 					put_page(page);
2634 				break;
2635 			}
2636 		}
2637 		nr -= offset;
2638 
2639 		if (page) {
2640 			/*
2641 			 * If users can be writing to this page using arbitrary
2642 			 * virtual addresses, take care about potential aliasing
2643 			 * before reading the page on the kernel side.
2644 			 */
2645 			if (mapping_writably_mapped(mapping))
2646 				flush_dcache_page(page);
2647 			/*
2648 			 * Mark the page accessed if we read the beginning.
2649 			 */
2650 			if (!offset)
2651 				mark_page_accessed(page);
2652 		} else {
2653 			page = ZERO_PAGE(0);
2654 			get_page(page);
2655 		}
2656 
2657 		/*
2658 		 * Ok, we have the page, and it's up-to-date, so
2659 		 * now we can copy it to user space...
2660 		 */
2661 		ret = copy_page_to_iter(page, offset, nr, to);
2662 		retval += ret;
2663 		offset += ret;
2664 		index += offset >> PAGE_SHIFT;
2665 		offset &= ~PAGE_MASK;
2666 
2667 		put_page(page);
2668 		if (!iov_iter_count(to))
2669 			break;
2670 		if (ret < nr) {
2671 			error = -EFAULT;
2672 			break;
2673 		}
2674 		cond_resched();
2675 	}
2676 
2677 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2678 	file_accessed(file);
2679 	return retval ? retval : error;
2680 }
2681 
2682 /*
2683  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2684  */
2685 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2686 				    pgoff_t index, pgoff_t end, int whence)
2687 {
2688 	struct page *page;
2689 	struct pagevec pvec;
2690 	pgoff_t indices[PAGEVEC_SIZE];
2691 	bool done = false;
2692 	int i;
2693 
2694 	pagevec_init(&pvec);
2695 	pvec.nr = 1;		/* start small: we may be there already */
2696 	while (!done) {
2697 		pvec.nr = find_get_entries(mapping, index,
2698 					pvec.nr, pvec.pages, indices);
2699 		if (!pvec.nr) {
2700 			if (whence == SEEK_DATA)
2701 				index = end;
2702 			break;
2703 		}
2704 		for (i = 0; i < pvec.nr; i++, index++) {
2705 			if (index < indices[i]) {
2706 				if (whence == SEEK_HOLE) {
2707 					done = true;
2708 					break;
2709 				}
2710 				index = indices[i];
2711 			}
2712 			page = pvec.pages[i];
2713 			if (page && !xa_is_value(page)) {
2714 				if (!PageUptodate(page))
2715 					page = NULL;
2716 			}
2717 			if (index >= end ||
2718 			    (page && whence == SEEK_DATA) ||
2719 			    (!page && whence == SEEK_HOLE)) {
2720 				done = true;
2721 				break;
2722 			}
2723 		}
2724 		pagevec_remove_exceptionals(&pvec);
2725 		pagevec_release(&pvec);
2726 		pvec.nr = PAGEVEC_SIZE;
2727 		cond_resched();
2728 	}
2729 	return index;
2730 }
2731 
2732 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2733 {
2734 	struct address_space *mapping = file->f_mapping;
2735 	struct inode *inode = mapping->host;
2736 	pgoff_t start, end;
2737 	loff_t new_offset;
2738 
2739 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2740 		return generic_file_llseek_size(file, offset, whence,
2741 					MAX_LFS_FILESIZE, i_size_read(inode));
2742 	inode_lock(inode);
2743 	/* We're holding i_mutex so we can access i_size directly */
2744 
2745 	if (offset < 0 || offset >= inode->i_size)
2746 		offset = -ENXIO;
2747 	else {
2748 		start = offset >> PAGE_SHIFT;
2749 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2750 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2751 		new_offset <<= PAGE_SHIFT;
2752 		if (new_offset > offset) {
2753 			if (new_offset < inode->i_size)
2754 				offset = new_offset;
2755 			else if (whence == SEEK_DATA)
2756 				offset = -ENXIO;
2757 			else
2758 				offset = inode->i_size;
2759 		}
2760 	}
2761 
2762 	if (offset >= 0)
2763 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2764 	inode_unlock(inode);
2765 	return offset;
2766 }
2767 
2768 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2769 							 loff_t len)
2770 {
2771 	struct inode *inode = file_inode(file);
2772 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2773 	struct shmem_inode_info *info = SHMEM_I(inode);
2774 	struct shmem_falloc shmem_falloc;
2775 	pgoff_t start, index, end;
2776 	int error;
2777 
2778 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2779 		return -EOPNOTSUPP;
2780 
2781 	inode_lock(inode);
2782 
2783 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2784 		struct address_space *mapping = file->f_mapping;
2785 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2786 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2787 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2788 
2789 		/* protected by i_mutex */
2790 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2791 			error = -EPERM;
2792 			goto out;
2793 		}
2794 
2795 		shmem_falloc.waitq = &shmem_falloc_waitq;
2796 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2797 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2798 		spin_lock(&inode->i_lock);
2799 		inode->i_private = &shmem_falloc;
2800 		spin_unlock(&inode->i_lock);
2801 
2802 		if ((u64)unmap_end > (u64)unmap_start)
2803 			unmap_mapping_range(mapping, unmap_start,
2804 					    1 + unmap_end - unmap_start, 0);
2805 		shmem_truncate_range(inode, offset, offset + len - 1);
2806 		/* No need to unmap again: hole-punching leaves COWed pages */
2807 
2808 		spin_lock(&inode->i_lock);
2809 		inode->i_private = NULL;
2810 		wake_up_all(&shmem_falloc_waitq);
2811 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2812 		spin_unlock(&inode->i_lock);
2813 		error = 0;
2814 		goto out;
2815 	}
2816 
2817 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2818 	error = inode_newsize_ok(inode, offset + len);
2819 	if (error)
2820 		goto out;
2821 
2822 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2823 		error = -EPERM;
2824 		goto out;
2825 	}
2826 
2827 	start = offset >> PAGE_SHIFT;
2828 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2829 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2830 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2831 		error = -ENOSPC;
2832 		goto out;
2833 	}
2834 
2835 	shmem_falloc.waitq = NULL;
2836 	shmem_falloc.start = start;
2837 	shmem_falloc.next  = start;
2838 	shmem_falloc.nr_falloced = 0;
2839 	shmem_falloc.nr_unswapped = 0;
2840 	spin_lock(&inode->i_lock);
2841 	inode->i_private = &shmem_falloc;
2842 	spin_unlock(&inode->i_lock);
2843 
2844 	for (index = start; index < end; index++) {
2845 		struct page *page;
2846 
2847 		/*
2848 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2849 		 * been interrupted because we are using up too much memory.
2850 		 */
2851 		if (signal_pending(current))
2852 			error = -EINTR;
2853 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2854 			error = -ENOMEM;
2855 		else
2856 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2857 		if (error) {
2858 			/* Remove the !PageUptodate pages we added */
2859 			if (index > start) {
2860 				shmem_undo_range(inode,
2861 				    (loff_t)start << PAGE_SHIFT,
2862 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2863 			}
2864 			goto undone;
2865 		}
2866 
2867 		/*
2868 		 * Inform shmem_writepage() how far we have reached.
2869 		 * No need for lock or barrier: we have the page lock.
2870 		 */
2871 		shmem_falloc.next++;
2872 		if (!PageUptodate(page))
2873 			shmem_falloc.nr_falloced++;
2874 
2875 		/*
2876 		 * If !PageUptodate, leave it that way so that freeable pages
2877 		 * can be recognized if we need to rollback on error later.
2878 		 * But set_page_dirty so that memory pressure will swap rather
2879 		 * than free the pages we are allocating (and SGP_CACHE pages
2880 		 * might still be clean: we now need to mark those dirty too).
2881 		 */
2882 		set_page_dirty(page);
2883 		unlock_page(page);
2884 		put_page(page);
2885 		cond_resched();
2886 	}
2887 
2888 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2889 		i_size_write(inode, offset + len);
2890 	inode->i_ctime = current_time(inode);
2891 undone:
2892 	spin_lock(&inode->i_lock);
2893 	inode->i_private = NULL;
2894 	spin_unlock(&inode->i_lock);
2895 out:
2896 	inode_unlock(inode);
2897 	return error;
2898 }
2899 
2900 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2901 {
2902 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2903 
2904 	buf->f_type = TMPFS_MAGIC;
2905 	buf->f_bsize = PAGE_SIZE;
2906 	buf->f_namelen = NAME_MAX;
2907 	if (sbinfo->max_blocks) {
2908 		buf->f_blocks = sbinfo->max_blocks;
2909 		buf->f_bavail =
2910 		buf->f_bfree  = sbinfo->max_blocks -
2911 				percpu_counter_sum(&sbinfo->used_blocks);
2912 	}
2913 	if (sbinfo->max_inodes) {
2914 		buf->f_files = sbinfo->max_inodes;
2915 		buf->f_ffree = sbinfo->free_inodes;
2916 	}
2917 	/* else leave those fields 0 like simple_statfs */
2918 	return 0;
2919 }
2920 
2921 /*
2922  * File creation. Allocate an inode, and we're done..
2923  */
2924 static int
2925 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2926 {
2927 	struct inode *inode;
2928 	int error = -ENOSPC;
2929 
2930 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2931 	if (inode) {
2932 		error = simple_acl_create(dir, inode);
2933 		if (error)
2934 			goto out_iput;
2935 		error = security_inode_init_security(inode, dir,
2936 						     &dentry->d_name,
2937 						     shmem_initxattrs, NULL);
2938 		if (error && error != -EOPNOTSUPP)
2939 			goto out_iput;
2940 
2941 		error = 0;
2942 		dir->i_size += BOGO_DIRENT_SIZE;
2943 		dir->i_ctime = dir->i_mtime = current_time(dir);
2944 		d_instantiate(dentry, inode);
2945 		dget(dentry); /* Extra count - pin the dentry in core */
2946 	}
2947 	return error;
2948 out_iput:
2949 	iput(inode);
2950 	return error;
2951 }
2952 
2953 static int
2954 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2955 {
2956 	struct inode *inode;
2957 	int error = -ENOSPC;
2958 
2959 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2960 	if (inode) {
2961 		error = security_inode_init_security(inode, dir,
2962 						     NULL,
2963 						     shmem_initxattrs, NULL);
2964 		if (error && error != -EOPNOTSUPP)
2965 			goto out_iput;
2966 		error = simple_acl_create(dir, inode);
2967 		if (error)
2968 			goto out_iput;
2969 		d_tmpfile(dentry, inode);
2970 	}
2971 	return error;
2972 out_iput:
2973 	iput(inode);
2974 	return error;
2975 }
2976 
2977 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2978 {
2979 	int error;
2980 
2981 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2982 		return error;
2983 	inc_nlink(dir);
2984 	return 0;
2985 }
2986 
2987 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2988 		bool excl)
2989 {
2990 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2991 }
2992 
2993 /*
2994  * Link a file..
2995  */
2996 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2997 {
2998 	struct inode *inode = d_inode(old_dentry);
2999 	int ret = 0;
3000 
3001 	/*
3002 	 * No ordinary (disk based) filesystem counts links as inodes;
3003 	 * but each new link needs a new dentry, pinning lowmem, and
3004 	 * tmpfs dentries cannot be pruned until they are unlinked.
3005 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3006 	 * first link must skip that, to get the accounting right.
3007 	 */
3008 	if (inode->i_nlink) {
3009 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3010 		if (ret)
3011 			goto out;
3012 	}
3013 
3014 	dir->i_size += BOGO_DIRENT_SIZE;
3015 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3016 	inc_nlink(inode);
3017 	ihold(inode);	/* New dentry reference */
3018 	dget(dentry);		/* Extra pinning count for the created dentry */
3019 	d_instantiate(dentry, inode);
3020 out:
3021 	return ret;
3022 }
3023 
3024 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3025 {
3026 	struct inode *inode = d_inode(dentry);
3027 
3028 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3029 		shmem_free_inode(inode->i_sb);
3030 
3031 	dir->i_size -= BOGO_DIRENT_SIZE;
3032 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3033 	drop_nlink(inode);
3034 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3035 	return 0;
3036 }
3037 
3038 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3039 {
3040 	if (!simple_empty(dentry))
3041 		return -ENOTEMPTY;
3042 
3043 	drop_nlink(d_inode(dentry));
3044 	drop_nlink(dir);
3045 	return shmem_unlink(dir, dentry);
3046 }
3047 
3048 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3049 {
3050 	bool old_is_dir = d_is_dir(old_dentry);
3051 	bool new_is_dir = d_is_dir(new_dentry);
3052 
3053 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3054 		if (old_is_dir) {
3055 			drop_nlink(old_dir);
3056 			inc_nlink(new_dir);
3057 		} else {
3058 			drop_nlink(new_dir);
3059 			inc_nlink(old_dir);
3060 		}
3061 	}
3062 	old_dir->i_ctime = old_dir->i_mtime =
3063 	new_dir->i_ctime = new_dir->i_mtime =
3064 	d_inode(old_dentry)->i_ctime =
3065 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3066 
3067 	return 0;
3068 }
3069 
3070 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3071 {
3072 	struct dentry *whiteout;
3073 	int error;
3074 
3075 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3076 	if (!whiteout)
3077 		return -ENOMEM;
3078 
3079 	error = shmem_mknod(old_dir, whiteout,
3080 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3081 	dput(whiteout);
3082 	if (error)
3083 		return error;
3084 
3085 	/*
3086 	 * Cheat and hash the whiteout while the old dentry is still in
3087 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3088 	 *
3089 	 * d_lookup() will consistently find one of them at this point,
3090 	 * not sure which one, but that isn't even important.
3091 	 */
3092 	d_rehash(whiteout);
3093 	return 0;
3094 }
3095 
3096 /*
3097  * The VFS layer already does all the dentry stuff for rename,
3098  * we just have to decrement the usage count for the target if
3099  * it exists so that the VFS layer correctly free's it when it
3100  * gets overwritten.
3101  */
3102 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3103 {
3104 	struct inode *inode = d_inode(old_dentry);
3105 	int they_are_dirs = S_ISDIR(inode->i_mode);
3106 
3107 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3108 		return -EINVAL;
3109 
3110 	if (flags & RENAME_EXCHANGE)
3111 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3112 
3113 	if (!simple_empty(new_dentry))
3114 		return -ENOTEMPTY;
3115 
3116 	if (flags & RENAME_WHITEOUT) {
3117 		int error;
3118 
3119 		error = shmem_whiteout(old_dir, old_dentry);
3120 		if (error)
3121 			return error;
3122 	}
3123 
3124 	if (d_really_is_positive(new_dentry)) {
3125 		(void) shmem_unlink(new_dir, new_dentry);
3126 		if (they_are_dirs) {
3127 			drop_nlink(d_inode(new_dentry));
3128 			drop_nlink(old_dir);
3129 		}
3130 	} else if (they_are_dirs) {
3131 		drop_nlink(old_dir);
3132 		inc_nlink(new_dir);
3133 	}
3134 
3135 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3136 	new_dir->i_size += BOGO_DIRENT_SIZE;
3137 	old_dir->i_ctime = old_dir->i_mtime =
3138 	new_dir->i_ctime = new_dir->i_mtime =
3139 	inode->i_ctime = current_time(old_dir);
3140 	return 0;
3141 }
3142 
3143 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3144 {
3145 	int error;
3146 	int len;
3147 	struct inode *inode;
3148 	struct page *page;
3149 
3150 	len = strlen(symname) + 1;
3151 	if (len > PAGE_SIZE)
3152 		return -ENAMETOOLONG;
3153 
3154 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3155 				VM_NORESERVE);
3156 	if (!inode)
3157 		return -ENOSPC;
3158 
3159 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3160 					     shmem_initxattrs, NULL);
3161 	if (error && error != -EOPNOTSUPP) {
3162 		iput(inode);
3163 		return error;
3164 	}
3165 
3166 	inode->i_size = len-1;
3167 	if (len <= SHORT_SYMLINK_LEN) {
3168 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3169 		if (!inode->i_link) {
3170 			iput(inode);
3171 			return -ENOMEM;
3172 		}
3173 		inode->i_op = &shmem_short_symlink_operations;
3174 	} else {
3175 		inode_nohighmem(inode);
3176 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3177 		if (error) {
3178 			iput(inode);
3179 			return error;
3180 		}
3181 		inode->i_mapping->a_ops = &shmem_aops;
3182 		inode->i_op = &shmem_symlink_inode_operations;
3183 		memcpy(page_address(page), symname, len);
3184 		SetPageUptodate(page);
3185 		set_page_dirty(page);
3186 		unlock_page(page);
3187 		put_page(page);
3188 	}
3189 	dir->i_size += BOGO_DIRENT_SIZE;
3190 	dir->i_ctime = dir->i_mtime = current_time(dir);
3191 	d_instantiate(dentry, inode);
3192 	dget(dentry);
3193 	return 0;
3194 }
3195 
3196 static void shmem_put_link(void *arg)
3197 {
3198 	mark_page_accessed(arg);
3199 	put_page(arg);
3200 }
3201 
3202 static const char *shmem_get_link(struct dentry *dentry,
3203 				  struct inode *inode,
3204 				  struct delayed_call *done)
3205 {
3206 	struct page *page = NULL;
3207 	int error;
3208 	if (!dentry) {
3209 		page = find_get_page(inode->i_mapping, 0);
3210 		if (!page)
3211 			return ERR_PTR(-ECHILD);
3212 		if (!PageUptodate(page)) {
3213 			put_page(page);
3214 			return ERR_PTR(-ECHILD);
3215 		}
3216 	} else {
3217 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3218 		if (error)
3219 			return ERR_PTR(error);
3220 		unlock_page(page);
3221 	}
3222 	set_delayed_call(done, shmem_put_link, page);
3223 	return page_address(page);
3224 }
3225 
3226 #ifdef CONFIG_TMPFS_XATTR
3227 /*
3228  * Superblocks without xattr inode operations may get some security.* xattr
3229  * support from the LSM "for free". As soon as we have any other xattrs
3230  * like ACLs, we also need to implement the security.* handlers at
3231  * filesystem level, though.
3232  */
3233 
3234 /*
3235  * Callback for security_inode_init_security() for acquiring xattrs.
3236  */
3237 static int shmem_initxattrs(struct inode *inode,
3238 			    const struct xattr *xattr_array,
3239 			    void *fs_info)
3240 {
3241 	struct shmem_inode_info *info = SHMEM_I(inode);
3242 	const struct xattr *xattr;
3243 	struct simple_xattr *new_xattr;
3244 	size_t len;
3245 
3246 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3247 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3248 		if (!new_xattr)
3249 			return -ENOMEM;
3250 
3251 		len = strlen(xattr->name) + 1;
3252 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3253 					  GFP_KERNEL);
3254 		if (!new_xattr->name) {
3255 			kvfree(new_xattr);
3256 			return -ENOMEM;
3257 		}
3258 
3259 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3260 		       XATTR_SECURITY_PREFIX_LEN);
3261 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3262 		       xattr->name, len);
3263 
3264 		simple_xattr_list_add(&info->xattrs, new_xattr);
3265 	}
3266 
3267 	return 0;
3268 }
3269 
3270 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3271 				   struct dentry *unused, struct inode *inode,
3272 				   const char *name, void *buffer, size_t size)
3273 {
3274 	struct shmem_inode_info *info = SHMEM_I(inode);
3275 
3276 	name = xattr_full_name(handler, name);
3277 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3278 }
3279 
3280 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3281 				   struct dentry *unused, struct inode *inode,
3282 				   const char *name, const void *value,
3283 				   size_t size, int flags)
3284 {
3285 	struct shmem_inode_info *info = SHMEM_I(inode);
3286 
3287 	name = xattr_full_name(handler, name);
3288 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3289 }
3290 
3291 static const struct xattr_handler shmem_security_xattr_handler = {
3292 	.prefix = XATTR_SECURITY_PREFIX,
3293 	.get = shmem_xattr_handler_get,
3294 	.set = shmem_xattr_handler_set,
3295 };
3296 
3297 static const struct xattr_handler shmem_trusted_xattr_handler = {
3298 	.prefix = XATTR_TRUSTED_PREFIX,
3299 	.get = shmem_xattr_handler_get,
3300 	.set = shmem_xattr_handler_set,
3301 };
3302 
3303 static const struct xattr_handler *shmem_xattr_handlers[] = {
3304 #ifdef CONFIG_TMPFS_POSIX_ACL
3305 	&posix_acl_access_xattr_handler,
3306 	&posix_acl_default_xattr_handler,
3307 #endif
3308 	&shmem_security_xattr_handler,
3309 	&shmem_trusted_xattr_handler,
3310 	NULL
3311 };
3312 
3313 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3314 {
3315 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3316 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3317 }
3318 #endif /* CONFIG_TMPFS_XATTR */
3319 
3320 static const struct inode_operations shmem_short_symlink_operations = {
3321 	.get_link	= simple_get_link,
3322 #ifdef CONFIG_TMPFS_XATTR
3323 	.listxattr	= shmem_listxattr,
3324 #endif
3325 };
3326 
3327 static const struct inode_operations shmem_symlink_inode_operations = {
3328 	.get_link	= shmem_get_link,
3329 #ifdef CONFIG_TMPFS_XATTR
3330 	.listxattr	= shmem_listxattr,
3331 #endif
3332 };
3333 
3334 static struct dentry *shmem_get_parent(struct dentry *child)
3335 {
3336 	return ERR_PTR(-ESTALE);
3337 }
3338 
3339 static int shmem_match(struct inode *ino, void *vfh)
3340 {
3341 	__u32 *fh = vfh;
3342 	__u64 inum = fh[2];
3343 	inum = (inum << 32) | fh[1];
3344 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3345 }
3346 
3347 /* Find any alias of inode, but prefer a hashed alias */
3348 static struct dentry *shmem_find_alias(struct inode *inode)
3349 {
3350 	struct dentry *alias = d_find_alias(inode);
3351 
3352 	return alias ?: d_find_any_alias(inode);
3353 }
3354 
3355 
3356 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3357 		struct fid *fid, int fh_len, int fh_type)
3358 {
3359 	struct inode *inode;
3360 	struct dentry *dentry = NULL;
3361 	u64 inum;
3362 
3363 	if (fh_len < 3)
3364 		return NULL;
3365 
3366 	inum = fid->raw[2];
3367 	inum = (inum << 32) | fid->raw[1];
3368 
3369 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3370 			shmem_match, fid->raw);
3371 	if (inode) {
3372 		dentry = shmem_find_alias(inode);
3373 		iput(inode);
3374 	}
3375 
3376 	return dentry;
3377 }
3378 
3379 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3380 				struct inode *parent)
3381 {
3382 	if (*len < 3) {
3383 		*len = 3;
3384 		return FILEID_INVALID;
3385 	}
3386 
3387 	if (inode_unhashed(inode)) {
3388 		/* Unfortunately insert_inode_hash is not idempotent,
3389 		 * so as we hash inodes here rather than at creation
3390 		 * time, we need a lock to ensure we only try
3391 		 * to do it once
3392 		 */
3393 		static DEFINE_SPINLOCK(lock);
3394 		spin_lock(&lock);
3395 		if (inode_unhashed(inode))
3396 			__insert_inode_hash(inode,
3397 					    inode->i_ino + inode->i_generation);
3398 		spin_unlock(&lock);
3399 	}
3400 
3401 	fh[0] = inode->i_generation;
3402 	fh[1] = inode->i_ino;
3403 	fh[2] = ((__u64)inode->i_ino) >> 32;
3404 
3405 	*len = 3;
3406 	return 1;
3407 }
3408 
3409 static const struct export_operations shmem_export_ops = {
3410 	.get_parent     = shmem_get_parent,
3411 	.encode_fh      = shmem_encode_fh,
3412 	.fh_to_dentry	= shmem_fh_to_dentry,
3413 };
3414 
3415 enum shmem_param {
3416 	Opt_gid,
3417 	Opt_huge,
3418 	Opt_mode,
3419 	Opt_mpol,
3420 	Opt_nr_blocks,
3421 	Opt_nr_inodes,
3422 	Opt_size,
3423 	Opt_uid,
3424 	Opt_inode32,
3425 	Opt_inode64,
3426 };
3427 
3428 static const struct constant_table shmem_param_enums_huge[] = {
3429 	{"never",	SHMEM_HUGE_NEVER },
3430 	{"always",	SHMEM_HUGE_ALWAYS },
3431 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3432 	{"advise",	SHMEM_HUGE_ADVISE },
3433 	{}
3434 };
3435 
3436 const struct fs_parameter_spec shmem_fs_parameters[] = {
3437 	fsparam_u32   ("gid",		Opt_gid),
3438 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3439 	fsparam_u32oct("mode",		Opt_mode),
3440 	fsparam_string("mpol",		Opt_mpol),
3441 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3442 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3443 	fsparam_string("size",		Opt_size),
3444 	fsparam_u32   ("uid",		Opt_uid),
3445 	fsparam_flag  ("inode32",	Opt_inode32),
3446 	fsparam_flag  ("inode64",	Opt_inode64),
3447 	{}
3448 };
3449 
3450 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3451 {
3452 	struct shmem_options *ctx = fc->fs_private;
3453 	struct fs_parse_result result;
3454 	unsigned long long size;
3455 	char *rest;
3456 	int opt;
3457 
3458 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3459 	if (opt < 0)
3460 		return opt;
3461 
3462 	switch (opt) {
3463 	case Opt_size:
3464 		size = memparse(param->string, &rest);
3465 		if (*rest == '%') {
3466 			size <<= PAGE_SHIFT;
3467 			size *= totalram_pages();
3468 			do_div(size, 100);
3469 			rest++;
3470 		}
3471 		if (*rest)
3472 			goto bad_value;
3473 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3474 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3475 		break;
3476 	case Opt_nr_blocks:
3477 		ctx->blocks = memparse(param->string, &rest);
3478 		if (*rest)
3479 			goto bad_value;
3480 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3481 		break;
3482 	case Opt_nr_inodes:
3483 		ctx->inodes = memparse(param->string, &rest);
3484 		if (*rest)
3485 			goto bad_value;
3486 		ctx->seen |= SHMEM_SEEN_INODES;
3487 		break;
3488 	case Opt_mode:
3489 		ctx->mode = result.uint_32 & 07777;
3490 		break;
3491 	case Opt_uid:
3492 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3493 		if (!uid_valid(ctx->uid))
3494 			goto bad_value;
3495 		break;
3496 	case Opt_gid:
3497 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3498 		if (!gid_valid(ctx->gid))
3499 			goto bad_value;
3500 		break;
3501 	case Opt_huge:
3502 		ctx->huge = result.uint_32;
3503 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3504 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3505 		      has_transparent_hugepage()))
3506 			goto unsupported_parameter;
3507 		ctx->seen |= SHMEM_SEEN_HUGE;
3508 		break;
3509 	case Opt_mpol:
3510 		if (IS_ENABLED(CONFIG_NUMA)) {
3511 			mpol_put(ctx->mpol);
3512 			ctx->mpol = NULL;
3513 			if (mpol_parse_str(param->string, &ctx->mpol))
3514 				goto bad_value;
3515 			break;
3516 		}
3517 		goto unsupported_parameter;
3518 	case Opt_inode32:
3519 		ctx->full_inums = false;
3520 		ctx->seen |= SHMEM_SEEN_INUMS;
3521 		break;
3522 	case Opt_inode64:
3523 		if (sizeof(ino_t) < 8) {
3524 			return invalfc(fc,
3525 				       "Cannot use inode64 with <64bit inums in kernel\n");
3526 		}
3527 		ctx->full_inums = true;
3528 		ctx->seen |= SHMEM_SEEN_INUMS;
3529 		break;
3530 	}
3531 	return 0;
3532 
3533 unsupported_parameter:
3534 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3535 bad_value:
3536 	return invalfc(fc, "Bad value for '%s'", param->key);
3537 }
3538 
3539 static int shmem_parse_options(struct fs_context *fc, void *data)
3540 {
3541 	char *options = data;
3542 
3543 	if (options) {
3544 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3545 		if (err)
3546 			return err;
3547 	}
3548 
3549 	while (options != NULL) {
3550 		char *this_char = options;
3551 		for (;;) {
3552 			/*
3553 			 * NUL-terminate this option: unfortunately,
3554 			 * mount options form a comma-separated list,
3555 			 * but mpol's nodelist may also contain commas.
3556 			 */
3557 			options = strchr(options, ',');
3558 			if (options == NULL)
3559 				break;
3560 			options++;
3561 			if (!isdigit(*options)) {
3562 				options[-1] = '\0';
3563 				break;
3564 			}
3565 		}
3566 		if (*this_char) {
3567 			char *value = strchr(this_char,'=');
3568 			size_t len = 0;
3569 			int err;
3570 
3571 			if (value) {
3572 				*value++ = '\0';
3573 				len = strlen(value);
3574 			}
3575 			err = vfs_parse_fs_string(fc, this_char, value, len);
3576 			if (err < 0)
3577 				return err;
3578 		}
3579 	}
3580 	return 0;
3581 }
3582 
3583 /*
3584  * Reconfigure a shmem filesystem.
3585  *
3586  * Note that we disallow change from limited->unlimited blocks/inodes while any
3587  * are in use; but we must separately disallow unlimited->limited, because in
3588  * that case we have no record of how much is already in use.
3589  */
3590 static int shmem_reconfigure(struct fs_context *fc)
3591 {
3592 	struct shmem_options *ctx = fc->fs_private;
3593 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3594 	unsigned long inodes;
3595 	const char *err;
3596 
3597 	spin_lock(&sbinfo->stat_lock);
3598 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3599 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3600 		if (!sbinfo->max_blocks) {
3601 			err = "Cannot retroactively limit size";
3602 			goto out;
3603 		}
3604 		if (percpu_counter_compare(&sbinfo->used_blocks,
3605 					   ctx->blocks) > 0) {
3606 			err = "Too small a size for current use";
3607 			goto out;
3608 		}
3609 	}
3610 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3611 		if (!sbinfo->max_inodes) {
3612 			err = "Cannot retroactively limit inodes";
3613 			goto out;
3614 		}
3615 		if (ctx->inodes < inodes) {
3616 			err = "Too few inodes for current use";
3617 			goto out;
3618 		}
3619 	}
3620 
3621 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3622 	    sbinfo->next_ino > UINT_MAX) {
3623 		err = "Current inum too high to switch to 32-bit inums";
3624 		goto out;
3625 	}
3626 
3627 	if (ctx->seen & SHMEM_SEEN_HUGE)
3628 		sbinfo->huge = ctx->huge;
3629 	if (ctx->seen & SHMEM_SEEN_INUMS)
3630 		sbinfo->full_inums = ctx->full_inums;
3631 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3632 		sbinfo->max_blocks  = ctx->blocks;
3633 	if (ctx->seen & SHMEM_SEEN_INODES) {
3634 		sbinfo->max_inodes  = ctx->inodes;
3635 		sbinfo->free_inodes = ctx->inodes - inodes;
3636 	}
3637 
3638 	/*
3639 	 * Preserve previous mempolicy unless mpol remount option was specified.
3640 	 */
3641 	if (ctx->mpol) {
3642 		mpol_put(sbinfo->mpol);
3643 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3644 		ctx->mpol = NULL;
3645 	}
3646 	spin_unlock(&sbinfo->stat_lock);
3647 	return 0;
3648 out:
3649 	spin_unlock(&sbinfo->stat_lock);
3650 	return invalfc(fc, "%s", err);
3651 }
3652 
3653 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3654 {
3655 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3656 
3657 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3658 		seq_printf(seq, ",size=%luk",
3659 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3660 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3661 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3662 	if (sbinfo->mode != (0777 | S_ISVTX))
3663 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3664 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3665 		seq_printf(seq, ",uid=%u",
3666 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3667 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3668 		seq_printf(seq, ",gid=%u",
3669 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3670 
3671 	/*
3672 	 * Showing inode{64,32} might be useful even if it's the system default,
3673 	 * since then people don't have to resort to checking both here and
3674 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3675 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3676 	 *
3677 	 * We hide it when inode64 isn't the default and we are using 32-bit
3678 	 * inodes, since that probably just means the feature isn't even under
3679 	 * consideration.
3680 	 *
3681 	 * As such:
3682 	 *
3683 	 *                     +-----------------+-----------------+
3684 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3685 	 *  +------------------+-----------------+-----------------+
3686 	 *  | full_inums=true  | show            | show            |
3687 	 *  | full_inums=false | show            | hide            |
3688 	 *  +------------------+-----------------+-----------------+
3689 	 *
3690 	 */
3691 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3692 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3694 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3695 	if (sbinfo->huge)
3696 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3697 #endif
3698 	shmem_show_mpol(seq, sbinfo->mpol);
3699 	return 0;
3700 }
3701 
3702 #endif /* CONFIG_TMPFS */
3703 
3704 static void shmem_put_super(struct super_block *sb)
3705 {
3706 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3707 
3708 	free_percpu(sbinfo->ino_batch);
3709 	percpu_counter_destroy(&sbinfo->used_blocks);
3710 	mpol_put(sbinfo->mpol);
3711 	kfree(sbinfo);
3712 	sb->s_fs_info = NULL;
3713 }
3714 
3715 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3716 {
3717 	struct shmem_options *ctx = fc->fs_private;
3718 	struct inode *inode;
3719 	struct shmem_sb_info *sbinfo;
3720 	int err = -ENOMEM;
3721 
3722 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3723 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3724 				L1_CACHE_BYTES), GFP_KERNEL);
3725 	if (!sbinfo)
3726 		return -ENOMEM;
3727 
3728 	sb->s_fs_info = sbinfo;
3729 
3730 #ifdef CONFIG_TMPFS
3731 	/*
3732 	 * Per default we only allow half of the physical ram per
3733 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3734 	 * but the internal instance is left unlimited.
3735 	 */
3736 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3737 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3738 			ctx->blocks = shmem_default_max_blocks();
3739 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3740 			ctx->inodes = shmem_default_max_inodes();
3741 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3742 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3743 	} else {
3744 		sb->s_flags |= SB_NOUSER;
3745 	}
3746 	sb->s_export_op = &shmem_export_ops;
3747 	sb->s_flags |= SB_NOSEC;
3748 #else
3749 	sb->s_flags |= SB_NOUSER;
3750 #endif
3751 	sbinfo->max_blocks = ctx->blocks;
3752 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3753 	if (sb->s_flags & SB_KERNMOUNT) {
3754 		sbinfo->ino_batch = alloc_percpu(ino_t);
3755 		if (!sbinfo->ino_batch)
3756 			goto failed;
3757 	}
3758 	sbinfo->uid = ctx->uid;
3759 	sbinfo->gid = ctx->gid;
3760 	sbinfo->full_inums = ctx->full_inums;
3761 	sbinfo->mode = ctx->mode;
3762 	sbinfo->huge = ctx->huge;
3763 	sbinfo->mpol = ctx->mpol;
3764 	ctx->mpol = NULL;
3765 
3766 	spin_lock_init(&sbinfo->stat_lock);
3767 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3768 		goto failed;
3769 	spin_lock_init(&sbinfo->shrinklist_lock);
3770 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3771 
3772 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3773 	sb->s_blocksize = PAGE_SIZE;
3774 	sb->s_blocksize_bits = PAGE_SHIFT;
3775 	sb->s_magic = TMPFS_MAGIC;
3776 	sb->s_op = &shmem_ops;
3777 	sb->s_time_gran = 1;
3778 #ifdef CONFIG_TMPFS_XATTR
3779 	sb->s_xattr = shmem_xattr_handlers;
3780 #endif
3781 #ifdef CONFIG_TMPFS_POSIX_ACL
3782 	sb->s_flags |= SB_POSIXACL;
3783 #endif
3784 	uuid_gen(&sb->s_uuid);
3785 
3786 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3787 	if (!inode)
3788 		goto failed;
3789 	inode->i_uid = sbinfo->uid;
3790 	inode->i_gid = sbinfo->gid;
3791 	sb->s_root = d_make_root(inode);
3792 	if (!sb->s_root)
3793 		goto failed;
3794 	return 0;
3795 
3796 failed:
3797 	shmem_put_super(sb);
3798 	return err;
3799 }
3800 
3801 static int shmem_get_tree(struct fs_context *fc)
3802 {
3803 	return get_tree_nodev(fc, shmem_fill_super);
3804 }
3805 
3806 static void shmem_free_fc(struct fs_context *fc)
3807 {
3808 	struct shmem_options *ctx = fc->fs_private;
3809 
3810 	if (ctx) {
3811 		mpol_put(ctx->mpol);
3812 		kfree(ctx);
3813 	}
3814 }
3815 
3816 static const struct fs_context_operations shmem_fs_context_ops = {
3817 	.free			= shmem_free_fc,
3818 	.get_tree		= shmem_get_tree,
3819 #ifdef CONFIG_TMPFS
3820 	.parse_monolithic	= shmem_parse_options,
3821 	.parse_param		= shmem_parse_one,
3822 	.reconfigure		= shmem_reconfigure,
3823 #endif
3824 };
3825 
3826 static struct kmem_cache *shmem_inode_cachep;
3827 
3828 static struct inode *shmem_alloc_inode(struct super_block *sb)
3829 {
3830 	struct shmem_inode_info *info;
3831 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3832 	if (!info)
3833 		return NULL;
3834 	return &info->vfs_inode;
3835 }
3836 
3837 static void shmem_free_in_core_inode(struct inode *inode)
3838 {
3839 	if (S_ISLNK(inode->i_mode))
3840 		kfree(inode->i_link);
3841 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3842 }
3843 
3844 static void shmem_destroy_inode(struct inode *inode)
3845 {
3846 	if (S_ISREG(inode->i_mode))
3847 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3848 }
3849 
3850 static void shmem_init_inode(void *foo)
3851 {
3852 	struct shmem_inode_info *info = foo;
3853 	inode_init_once(&info->vfs_inode);
3854 }
3855 
3856 static void shmem_init_inodecache(void)
3857 {
3858 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3859 				sizeof(struct shmem_inode_info),
3860 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3861 }
3862 
3863 static void shmem_destroy_inodecache(void)
3864 {
3865 	kmem_cache_destroy(shmem_inode_cachep);
3866 }
3867 
3868 static const struct address_space_operations shmem_aops = {
3869 	.writepage	= shmem_writepage,
3870 	.set_page_dirty	= __set_page_dirty_no_writeback,
3871 #ifdef CONFIG_TMPFS
3872 	.write_begin	= shmem_write_begin,
3873 	.write_end	= shmem_write_end,
3874 #endif
3875 #ifdef CONFIG_MIGRATION
3876 	.migratepage	= migrate_page,
3877 #endif
3878 	.error_remove_page = generic_error_remove_page,
3879 };
3880 
3881 static const struct file_operations shmem_file_operations = {
3882 	.mmap		= shmem_mmap,
3883 	.get_unmapped_area = shmem_get_unmapped_area,
3884 #ifdef CONFIG_TMPFS
3885 	.llseek		= shmem_file_llseek,
3886 	.read_iter	= shmem_file_read_iter,
3887 	.write_iter	= generic_file_write_iter,
3888 	.fsync		= noop_fsync,
3889 	.splice_read	= generic_file_splice_read,
3890 	.splice_write	= iter_file_splice_write,
3891 	.fallocate	= shmem_fallocate,
3892 #endif
3893 };
3894 
3895 static const struct inode_operations shmem_inode_operations = {
3896 	.getattr	= shmem_getattr,
3897 	.setattr	= shmem_setattr,
3898 #ifdef CONFIG_TMPFS_XATTR
3899 	.listxattr	= shmem_listxattr,
3900 	.set_acl	= simple_set_acl,
3901 #endif
3902 };
3903 
3904 static const struct inode_operations shmem_dir_inode_operations = {
3905 #ifdef CONFIG_TMPFS
3906 	.create		= shmem_create,
3907 	.lookup		= simple_lookup,
3908 	.link		= shmem_link,
3909 	.unlink		= shmem_unlink,
3910 	.symlink	= shmem_symlink,
3911 	.mkdir		= shmem_mkdir,
3912 	.rmdir		= shmem_rmdir,
3913 	.mknod		= shmem_mknod,
3914 	.rename		= shmem_rename2,
3915 	.tmpfile	= shmem_tmpfile,
3916 #endif
3917 #ifdef CONFIG_TMPFS_XATTR
3918 	.listxattr	= shmem_listxattr,
3919 #endif
3920 #ifdef CONFIG_TMPFS_POSIX_ACL
3921 	.setattr	= shmem_setattr,
3922 	.set_acl	= simple_set_acl,
3923 #endif
3924 };
3925 
3926 static const struct inode_operations shmem_special_inode_operations = {
3927 #ifdef CONFIG_TMPFS_XATTR
3928 	.listxattr	= shmem_listxattr,
3929 #endif
3930 #ifdef CONFIG_TMPFS_POSIX_ACL
3931 	.setattr	= shmem_setattr,
3932 	.set_acl	= simple_set_acl,
3933 #endif
3934 };
3935 
3936 static const struct super_operations shmem_ops = {
3937 	.alloc_inode	= shmem_alloc_inode,
3938 	.free_inode	= shmem_free_in_core_inode,
3939 	.destroy_inode	= shmem_destroy_inode,
3940 #ifdef CONFIG_TMPFS
3941 	.statfs		= shmem_statfs,
3942 	.show_options	= shmem_show_options,
3943 #endif
3944 	.evict_inode	= shmem_evict_inode,
3945 	.drop_inode	= generic_delete_inode,
3946 	.put_super	= shmem_put_super,
3947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3948 	.nr_cached_objects	= shmem_unused_huge_count,
3949 	.free_cached_objects	= shmem_unused_huge_scan,
3950 #endif
3951 };
3952 
3953 static const struct vm_operations_struct shmem_vm_ops = {
3954 	.fault		= shmem_fault,
3955 	.map_pages	= filemap_map_pages,
3956 #ifdef CONFIG_NUMA
3957 	.set_policy     = shmem_set_policy,
3958 	.get_policy     = shmem_get_policy,
3959 #endif
3960 };
3961 
3962 int shmem_init_fs_context(struct fs_context *fc)
3963 {
3964 	struct shmem_options *ctx;
3965 
3966 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3967 	if (!ctx)
3968 		return -ENOMEM;
3969 
3970 	ctx->mode = 0777 | S_ISVTX;
3971 	ctx->uid = current_fsuid();
3972 	ctx->gid = current_fsgid();
3973 
3974 	fc->fs_private = ctx;
3975 	fc->ops = &shmem_fs_context_ops;
3976 	return 0;
3977 }
3978 
3979 static struct file_system_type shmem_fs_type = {
3980 	.owner		= THIS_MODULE,
3981 	.name		= "tmpfs",
3982 	.init_fs_context = shmem_init_fs_context,
3983 #ifdef CONFIG_TMPFS
3984 	.parameters	= shmem_fs_parameters,
3985 #endif
3986 	.kill_sb	= kill_litter_super,
3987 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3988 };
3989 
3990 int __init shmem_init(void)
3991 {
3992 	int error;
3993 
3994 	shmem_init_inodecache();
3995 
3996 	error = register_filesystem(&shmem_fs_type);
3997 	if (error) {
3998 		pr_err("Could not register tmpfs\n");
3999 		goto out2;
4000 	}
4001 
4002 	shm_mnt = kern_mount(&shmem_fs_type);
4003 	if (IS_ERR(shm_mnt)) {
4004 		error = PTR_ERR(shm_mnt);
4005 		pr_err("Could not kern_mount tmpfs\n");
4006 		goto out1;
4007 	}
4008 
4009 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4010 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4011 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4012 	else
4013 		shmem_huge = 0; /* just in case it was patched */
4014 #endif
4015 	return 0;
4016 
4017 out1:
4018 	unregister_filesystem(&shmem_fs_type);
4019 out2:
4020 	shmem_destroy_inodecache();
4021 	shm_mnt = ERR_PTR(error);
4022 	return error;
4023 }
4024 
4025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4026 static ssize_t shmem_enabled_show(struct kobject *kobj,
4027 		struct kobj_attribute *attr, char *buf)
4028 {
4029 	static const int values[] = {
4030 		SHMEM_HUGE_ALWAYS,
4031 		SHMEM_HUGE_WITHIN_SIZE,
4032 		SHMEM_HUGE_ADVISE,
4033 		SHMEM_HUGE_NEVER,
4034 		SHMEM_HUGE_DENY,
4035 		SHMEM_HUGE_FORCE,
4036 	};
4037 	int i, count;
4038 
4039 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4040 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4041 
4042 		count += sprintf(buf + count, fmt,
4043 				shmem_format_huge(values[i]));
4044 	}
4045 	buf[count - 1] = '\n';
4046 	return count;
4047 }
4048 
4049 static ssize_t shmem_enabled_store(struct kobject *kobj,
4050 		struct kobj_attribute *attr, const char *buf, size_t count)
4051 {
4052 	char tmp[16];
4053 	int huge;
4054 
4055 	if (count + 1 > sizeof(tmp))
4056 		return -EINVAL;
4057 	memcpy(tmp, buf, count);
4058 	tmp[count] = '\0';
4059 	if (count && tmp[count - 1] == '\n')
4060 		tmp[count - 1] = '\0';
4061 
4062 	huge = shmem_parse_huge(tmp);
4063 	if (huge == -EINVAL)
4064 		return -EINVAL;
4065 	if (!has_transparent_hugepage() &&
4066 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4067 		return -EINVAL;
4068 
4069 	shmem_huge = huge;
4070 	if (shmem_huge > SHMEM_HUGE_DENY)
4071 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4072 	return count;
4073 }
4074 
4075 struct kobj_attribute shmem_enabled_attr =
4076 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4078 
4079 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4080 bool shmem_huge_enabled(struct vm_area_struct *vma)
4081 {
4082 	struct inode *inode = file_inode(vma->vm_file);
4083 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4084 	loff_t i_size;
4085 	pgoff_t off;
4086 
4087 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4088 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4089 		return false;
4090 	if (shmem_huge == SHMEM_HUGE_FORCE)
4091 		return true;
4092 	if (shmem_huge == SHMEM_HUGE_DENY)
4093 		return false;
4094 	switch (sbinfo->huge) {
4095 		case SHMEM_HUGE_NEVER:
4096 			return false;
4097 		case SHMEM_HUGE_ALWAYS:
4098 			return true;
4099 		case SHMEM_HUGE_WITHIN_SIZE:
4100 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4101 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4102 			if (i_size >= HPAGE_PMD_SIZE &&
4103 					i_size >> PAGE_SHIFT >= off)
4104 				return true;
4105 			fallthrough;
4106 		case SHMEM_HUGE_ADVISE:
4107 			/* TODO: implement fadvise() hints */
4108 			return (vma->vm_flags & VM_HUGEPAGE);
4109 		default:
4110 			VM_BUG_ON(1);
4111 			return false;
4112 	}
4113 }
4114 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4115 
4116 #else /* !CONFIG_SHMEM */
4117 
4118 /*
4119  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4120  *
4121  * This is intended for small system where the benefits of the full
4122  * shmem code (swap-backed and resource-limited) are outweighed by
4123  * their complexity. On systems without swap this code should be
4124  * effectively equivalent, but much lighter weight.
4125  */
4126 
4127 static struct file_system_type shmem_fs_type = {
4128 	.name		= "tmpfs",
4129 	.init_fs_context = ramfs_init_fs_context,
4130 	.parameters	= ramfs_fs_parameters,
4131 	.kill_sb	= kill_litter_super,
4132 	.fs_flags	= FS_USERNS_MOUNT,
4133 };
4134 
4135 int __init shmem_init(void)
4136 {
4137 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4138 
4139 	shm_mnt = kern_mount(&shmem_fs_type);
4140 	BUG_ON(IS_ERR(shm_mnt));
4141 
4142 	return 0;
4143 }
4144 
4145 int shmem_unuse(unsigned int type, bool frontswap,
4146 		unsigned long *fs_pages_to_unuse)
4147 {
4148 	return 0;
4149 }
4150 
4151 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4152 {
4153 	return 0;
4154 }
4155 
4156 void shmem_unlock_mapping(struct address_space *mapping)
4157 {
4158 }
4159 
4160 #ifdef CONFIG_MMU
4161 unsigned long shmem_get_unmapped_area(struct file *file,
4162 				      unsigned long addr, unsigned long len,
4163 				      unsigned long pgoff, unsigned long flags)
4164 {
4165 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4166 }
4167 #endif
4168 
4169 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4170 {
4171 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4172 }
4173 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4174 
4175 #define shmem_vm_ops				generic_file_vm_ops
4176 #define shmem_file_operations			ramfs_file_operations
4177 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4178 #define shmem_acct_size(flags, size)		0
4179 #define shmem_unacct_size(flags, size)		do {} while (0)
4180 
4181 #endif /* CONFIG_SHMEM */
4182 
4183 /* common code */
4184 
4185 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4186 				       unsigned long flags, unsigned int i_flags)
4187 {
4188 	struct inode *inode;
4189 	struct file *res;
4190 
4191 	if (IS_ERR(mnt))
4192 		return ERR_CAST(mnt);
4193 
4194 	if (size < 0 || size > MAX_LFS_FILESIZE)
4195 		return ERR_PTR(-EINVAL);
4196 
4197 	if (shmem_acct_size(flags, size))
4198 		return ERR_PTR(-ENOMEM);
4199 
4200 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4201 				flags);
4202 	if (unlikely(!inode)) {
4203 		shmem_unacct_size(flags, size);
4204 		return ERR_PTR(-ENOSPC);
4205 	}
4206 	inode->i_flags |= i_flags;
4207 	inode->i_size = size;
4208 	clear_nlink(inode);	/* It is unlinked */
4209 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4210 	if (!IS_ERR(res))
4211 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4212 				&shmem_file_operations);
4213 	if (IS_ERR(res))
4214 		iput(inode);
4215 	return res;
4216 }
4217 
4218 /**
4219  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4220  * 	kernel internal.  There will be NO LSM permission checks against the
4221  * 	underlying inode.  So users of this interface must do LSM checks at a
4222  *	higher layer.  The users are the big_key and shm implementations.  LSM
4223  *	checks are provided at the key or shm level rather than the inode.
4224  * @name: name for dentry (to be seen in /proc/<pid>/maps
4225  * @size: size to be set for the file
4226  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4227  */
4228 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4229 {
4230 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4231 }
4232 
4233 /**
4234  * shmem_file_setup - get an unlinked file living in tmpfs
4235  * @name: name for dentry (to be seen in /proc/<pid>/maps
4236  * @size: size to be set for the file
4237  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4238  */
4239 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4240 {
4241 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4242 }
4243 EXPORT_SYMBOL_GPL(shmem_file_setup);
4244 
4245 /**
4246  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4247  * @mnt: the tmpfs mount where the file will be created
4248  * @name: name for dentry (to be seen in /proc/<pid>/maps
4249  * @size: size to be set for the file
4250  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4251  */
4252 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4253 				       loff_t size, unsigned long flags)
4254 {
4255 	return __shmem_file_setup(mnt, name, size, flags, 0);
4256 }
4257 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4258 
4259 /**
4260  * shmem_zero_setup - setup a shared anonymous mapping
4261  * @vma: the vma to be mmapped is prepared by do_mmap
4262  */
4263 int shmem_zero_setup(struct vm_area_struct *vma)
4264 {
4265 	struct file *file;
4266 	loff_t size = vma->vm_end - vma->vm_start;
4267 
4268 	/*
4269 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4270 	 * between XFS directory reading and selinux: since this file is only
4271 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4272 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4273 	 */
4274 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4275 	if (IS_ERR(file))
4276 		return PTR_ERR(file);
4277 
4278 	if (vma->vm_file)
4279 		fput(vma->vm_file);
4280 	vma->vm_file = file;
4281 	vma->vm_ops = &shmem_vm_ops;
4282 
4283 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4284 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4285 			(vma->vm_end & HPAGE_PMD_MASK)) {
4286 		khugepaged_enter(vma, vma->vm_flags);
4287 	}
4288 
4289 	return 0;
4290 }
4291 
4292 /**
4293  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4294  * @mapping:	the page's address_space
4295  * @index:	the page index
4296  * @gfp:	the page allocator flags to use if allocating
4297  *
4298  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4299  * with any new page allocations done using the specified allocation flags.
4300  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4301  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4302  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4303  *
4304  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4305  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4306  */
4307 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4308 					 pgoff_t index, gfp_t gfp)
4309 {
4310 #ifdef CONFIG_SHMEM
4311 	struct inode *inode = mapping->host;
4312 	struct page *page;
4313 	int error;
4314 
4315 	BUG_ON(mapping->a_ops != &shmem_aops);
4316 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4317 				  gfp, NULL, NULL, NULL);
4318 	if (error)
4319 		page = ERR_PTR(error);
4320 	else
4321 		unlock_page(page);
4322 	return page;
4323 #else
4324 	/*
4325 	 * The tiny !SHMEM case uses ramfs without swap
4326 	 */
4327 	return read_cache_page_gfp(mapping, index, gfp);
4328 #endif
4329 }
4330 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4331