1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 struct shmem_options { 111 unsigned long long blocks; 112 unsigned long long inodes; 113 struct mempolicy *mpol; 114 kuid_t uid; 115 kgid_t gid; 116 umode_t mode; 117 bool full_inums; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 #define SHMEM_SEEN_INUMS 8 124 }; 125 126 #ifdef CONFIG_TMPFS 127 static unsigned long shmem_default_max_blocks(void) 128 { 129 return totalram_pages() / 2; 130 } 131 132 static unsigned long shmem_default_max_inodes(void) 133 { 134 unsigned long nr_pages = totalram_pages(); 135 136 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 137 } 138 #endif 139 140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 141 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 142 struct shmem_inode_info *info, pgoff_t index); 143 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 144 struct page **pagep, enum sgp_type sgp, 145 gfp_t gfp, struct vm_area_struct *vma, 146 vm_fault_t *fault_type); 147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp, 149 gfp_t gfp, struct vm_area_struct *vma, 150 struct vm_fault *vmf, vm_fault_t *fault_type); 151 152 int shmem_getpage(struct inode *inode, pgoff_t index, 153 struct page **pagep, enum sgp_type sgp) 154 { 155 return shmem_getpage_gfp(inode, index, pagep, sgp, 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 157 } 158 159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 160 { 161 return sb->s_fs_info; 162 } 163 164 /* 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 166 * for shared memory and for shared anonymous (/dev/zero) mappings 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 168 * consistent with the pre-accounting of private mappings ... 169 */ 170 static inline int shmem_acct_size(unsigned long flags, loff_t size) 171 { 172 return (flags & VM_NORESERVE) ? 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 174 } 175 176 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 177 { 178 if (!(flags & VM_NORESERVE)) 179 vm_unacct_memory(VM_ACCT(size)); 180 } 181 182 static inline int shmem_reacct_size(unsigned long flags, 183 loff_t oldsize, loff_t newsize) 184 { 185 if (!(flags & VM_NORESERVE)) { 186 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 187 return security_vm_enough_memory_mm(current->mm, 188 VM_ACCT(newsize) - VM_ACCT(oldsize)); 189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 191 } 192 return 0; 193 } 194 195 /* 196 * ... whereas tmpfs objects are accounted incrementally as 197 * pages are allocated, in order to allow large sparse files. 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 200 */ 201 static inline int shmem_acct_block(unsigned long flags, long pages) 202 { 203 if (!(flags & VM_NORESERVE)) 204 return 0; 205 206 return security_vm_enough_memory_mm(current->mm, 207 pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 217 { 218 struct shmem_inode_info *info = SHMEM_I(inode); 219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 220 221 if (shmem_acct_block(info->flags, pages)) 222 return false; 223 224 if (sbinfo->max_blocks) { 225 if (percpu_counter_compare(&sbinfo->used_blocks, 226 sbinfo->max_blocks - pages) > 0) 227 goto unacct; 228 percpu_counter_add(&sbinfo->used_blocks, pages); 229 } 230 231 return true; 232 233 unacct: 234 shmem_unacct_blocks(info->flags, pages); 235 return false; 236 } 237 238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 239 { 240 struct shmem_inode_info *info = SHMEM_I(inode); 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 243 if (sbinfo->max_blocks) 244 percpu_counter_sub(&sbinfo->used_blocks, pages); 245 shmem_unacct_blocks(info->flags, pages); 246 } 247 248 static const struct super_operations shmem_ops; 249 static const struct address_space_operations shmem_aops; 250 static const struct file_operations shmem_file_operations; 251 static const struct inode_operations shmem_inode_operations; 252 static const struct inode_operations shmem_dir_inode_operations; 253 static const struct inode_operations shmem_special_inode_operations; 254 static const struct vm_operations_struct shmem_vm_ops; 255 static struct file_system_type shmem_fs_type; 256 257 bool vma_is_shmem(struct vm_area_struct *vma) 258 { 259 return vma->vm_ops == &shmem_vm_ops; 260 } 261 262 static LIST_HEAD(shmem_swaplist); 263 static DEFINE_MUTEX(shmem_swaplist_mutex); 264 265 /* 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 267 * produces a novel ino for the newly allocated inode. 268 * 269 * It may also be called when making a hard link to permit the space needed by 270 * each dentry. However, in that case, no new inode number is needed since that 271 * internally draws from another pool of inode numbers (currently global 272 * get_next_ino()). This case is indicated by passing NULL as inop. 273 */ 274 #define SHMEM_INO_BATCH 1024 275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 276 { 277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 278 ino_t ino; 279 280 if (!(sb->s_flags & SB_KERNMOUNT)) { 281 spin_lock(&sbinfo->stat_lock); 282 if (sbinfo->max_inodes) { 283 if (!sbinfo->free_inodes) { 284 spin_unlock(&sbinfo->stat_lock); 285 return -ENOSPC; 286 } 287 sbinfo->free_inodes--; 288 } 289 if (inop) { 290 ino = sbinfo->next_ino++; 291 if (unlikely(is_zero_ino(ino))) 292 ino = sbinfo->next_ino++; 293 if (unlikely(!sbinfo->full_inums && 294 ino > UINT_MAX)) { 295 /* 296 * Emulate get_next_ino uint wraparound for 297 * compatibility 298 */ 299 if (IS_ENABLED(CONFIG_64BIT)) 300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 301 __func__, MINOR(sb->s_dev)); 302 sbinfo->next_ino = 1; 303 ino = sbinfo->next_ino++; 304 } 305 *inop = ino; 306 } 307 spin_unlock(&sbinfo->stat_lock); 308 } else if (inop) { 309 /* 310 * __shmem_file_setup, one of our callers, is lock-free: it 311 * doesn't hold stat_lock in shmem_reserve_inode since 312 * max_inodes is always 0, and is called from potentially 313 * unknown contexts. As such, use a per-cpu batched allocator 314 * which doesn't require the per-sb stat_lock unless we are at 315 * the batch boundary. 316 * 317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 318 * shmem mounts are not exposed to userspace, so we don't need 319 * to worry about things like glibc compatibility. 320 */ 321 ino_t *next_ino; 322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 323 ino = *next_ino; 324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 325 spin_lock(&sbinfo->stat_lock); 326 ino = sbinfo->next_ino; 327 sbinfo->next_ino += SHMEM_INO_BATCH; 328 spin_unlock(&sbinfo->stat_lock); 329 if (unlikely(is_zero_ino(ino))) 330 ino++; 331 } 332 *inop = ino; 333 *next_ino = ++ino; 334 put_cpu(); 335 } 336 337 return 0; 338 } 339 340 static void shmem_free_inode(struct super_block *sb) 341 { 342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 343 if (sbinfo->max_inodes) { 344 spin_lock(&sbinfo->stat_lock); 345 sbinfo->free_inodes++; 346 spin_unlock(&sbinfo->stat_lock); 347 } 348 } 349 350 /** 351 * shmem_recalc_inode - recalculate the block usage of an inode 352 * @inode: inode to recalc 353 * 354 * We have to calculate the free blocks since the mm can drop 355 * undirtied hole pages behind our back. 356 * 357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 359 * 360 * It has to be called with the spinlock held. 361 */ 362 static void shmem_recalc_inode(struct inode *inode) 363 { 364 struct shmem_inode_info *info = SHMEM_I(inode); 365 long freed; 366 367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 368 if (freed > 0) { 369 info->alloced -= freed; 370 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 371 shmem_inode_unacct_blocks(inode, freed); 372 } 373 } 374 375 bool shmem_charge(struct inode *inode, long pages) 376 { 377 struct shmem_inode_info *info = SHMEM_I(inode); 378 unsigned long flags; 379 380 if (!shmem_inode_acct_block(inode, pages)) 381 return false; 382 383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 384 inode->i_mapping->nrpages += pages; 385 386 spin_lock_irqsave(&info->lock, flags); 387 info->alloced += pages; 388 inode->i_blocks += pages * BLOCKS_PER_PAGE; 389 shmem_recalc_inode(inode); 390 spin_unlock_irqrestore(&info->lock, flags); 391 392 return true; 393 } 394 395 void shmem_uncharge(struct inode *inode, long pages) 396 { 397 struct shmem_inode_info *info = SHMEM_I(inode); 398 unsigned long flags; 399 400 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 401 402 spin_lock_irqsave(&info->lock, flags); 403 info->alloced -= pages; 404 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 405 shmem_recalc_inode(inode); 406 spin_unlock_irqrestore(&info->lock, flags); 407 408 shmem_inode_unacct_blocks(inode, pages); 409 } 410 411 /* 412 * Replace item expected in xarray by a new item, while holding xa_lock. 413 */ 414 static int shmem_replace_entry(struct address_space *mapping, 415 pgoff_t index, void *expected, void *replacement) 416 { 417 XA_STATE(xas, &mapping->i_pages, index); 418 void *item; 419 420 VM_BUG_ON(!expected); 421 VM_BUG_ON(!replacement); 422 item = xas_load(&xas); 423 if (item != expected) 424 return -ENOENT; 425 xas_store(&xas, replacement); 426 return 0; 427 } 428 429 /* 430 * Sometimes, before we decide whether to proceed or to fail, we must check 431 * that an entry was not already brought back from swap by a racing thread. 432 * 433 * Checking page is not enough: by the time a SwapCache page is locked, it 434 * might be reused, and again be SwapCache, using the same swap as before. 435 */ 436 static bool shmem_confirm_swap(struct address_space *mapping, 437 pgoff_t index, swp_entry_t swap) 438 { 439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 440 } 441 442 /* 443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 444 * 445 * SHMEM_HUGE_NEVER: 446 * disables huge pages for the mount; 447 * SHMEM_HUGE_ALWAYS: 448 * enables huge pages for the mount; 449 * SHMEM_HUGE_WITHIN_SIZE: 450 * only allocate huge pages if the page will be fully within i_size, 451 * also respect fadvise()/madvise() hints; 452 * SHMEM_HUGE_ADVISE: 453 * only allocate huge pages if requested with fadvise()/madvise(); 454 */ 455 456 #define SHMEM_HUGE_NEVER 0 457 #define SHMEM_HUGE_ALWAYS 1 458 #define SHMEM_HUGE_WITHIN_SIZE 2 459 #define SHMEM_HUGE_ADVISE 3 460 461 /* 462 * Special values. 463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 464 * 465 * SHMEM_HUGE_DENY: 466 * disables huge on shm_mnt and all mounts, for emergency use; 467 * SHMEM_HUGE_FORCE: 468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 469 * 470 */ 471 #define SHMEM_HUGE_DENY (-1) 472 #define SHMEM_HUGE_FORCE (-2) 473 474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 475 /* ifdef here to avoid bloating shmem.o when not necessary */ 476 477 static int shmem_huge __read_mostly; 478 479 #if defined(CONFIG_SYSFS) 480 static int shmem_parse_huge(const char *str) 481 { 482 if (!strcmp(str, "never")) 483 return SHMEM_HUGE_NEVER; 484 if (!strcmp(str, "always")) 485 return SHMEM_HUGE_ALWAYS; 486 if (!strcmp(str, "within_size")) 487 return SHMEM_HUGE_WITHIN_SIZE; 488 if (!strcmp(str, "advise")) 489 return SHMEM_HUGE_ADVISE; 490 if (!strcmp(str, "deny")) 491 return SHMEM_HUGE_DENY; 492 if (!strcmp(str, "force")) 493 return SHMEM_HUGE_FORCE; 494 return -EINVAL; 495 } 496 #endif 497 498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 499 static const char *shmem_format_huge(int huge) 500 { 501 switch (huge) { 502 case SHMEM_HUGE_NEVER: 503 return "never"; 504 case SHMEM_HUGE_ALWAYS: 505 return "always"; 506 case SHMEM_HUGE_WITHIN_SIZE: 507 return "within_size"; 508 case SHMEM_HUGE_ADVISE: 509 return "advise"; 510 case SHMEM_HUGE_DENY: 511 return "deny"; 512 case SHMEM_HUGE_FORCE: 513 return "force"; 514 default: 515 VM_BUG_ON(1); 516 return "bad_val"; 517 } 518 } 519 #endif 520 521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 522 struct shrink_control *sc, unsigned long nr_to_split) 523 { 524 LIST_HEAD(list), *pos, *next; 525 LIST_HEAD(to_remove); 526 struct inode *inode; 527 struct shmem_inode_info *info; 528 struct page *page; 529 unsigned long batch = sc ? sc->nr_to_scan : 128; 530 int removed = 0, split = 0; 531 532 if (list_empty(&sbinfo->shrinklist)) 533 return SHRINK_STOP; 534 535 spin_lock(&sbinfo->shrinklist_lock); 536 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 537 info = list_entry(pos, struct shmem_inode_info, shrinklist); 538 539 /* pin the inode */ 540 inode = igrab(&info->vfs_inode); 541 542 /* inode is about to be evicted */ 543 if (!inode) { 544 list_del_init(&info->shrinklist); 545 removed++; 546 goto next; 547 } 548 549 /* Check if there's anything to gain */ 550 if (round_up(inode->i_size, PAGE_SIZE) == 551 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 552 list_move(&info->shrinklist, &to_remove); 553 removed++; 554 goto next; 555 } 556 557 list_move(&info->shrinklist, &list); 558 next: 559 if (!--batch) 560 break; 561 } 562 spin_unlock(&sbinfo->shrinklist_lock); 563 564 list_for_each_safe(pos, next, &to_remove) { 565 info = list_entry(pos, struct shmem_inode_info, shrinklist); 566 inode = &info->vfs_inode; 567 list_del_init(&info->shrinklist); 568 iput(inode); 569 } 570 571 list_for_each_safe(pos, next, &list) { 572 int ret; 573 574 info = list_entry(pos, struct shmem_inode_info, shrinklist); 575 inode = &info->vfs_inode; 576 577 if (nr_to_split && split >= nr_to_split) 578 goto leave; 579 580 page = find_get_page(inode->i_mapping, 581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 582 if (!page) 583 goto drop; 584 585 /* No huge page at the end of the file: nothing to split */ 586 if (!PageTransHuge(page)) { 587 put_page(page); 588 goto drop; 589 } 590 591 /* 592 * Leave the inode on the list if we failed to lock 593 * the page at this time. 594 * 595 * Waiting for the lock may lead to deadlock in the 596 * reclaim path. 597 */ 598 if (!trylock_page(page)) { 599 put_page(page); 600 goto leave; 601 } 602 603 ret = split_huge_page(page); 604 unlock_page(page); 605 put_page(page); 606 607 /* If split failed leave the inode on the list */ 608 if (ret) 609 goto leave; 610 611 split++; 612 drop: 613 list_del_init(&info->shrinklist); 614 removed++; 615 leave: 616 iput(inode); 617 } 618 619 spin_lock(&sbinfo->shrinklist_lock); 620 list_splice_tail(&list, &sbinfo->shrinklist); 621 sbinfo->shrinklist_len -= removed; 622 spin_unlock(&sbinfo->shrinklist_lock); 623 624 return split; 625 } 626 627 static long shmem_unused_huge_scan(struct super_block *sb, 628 struct shrink_control *sc) 629 { 630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 631 632 if (!READ_ONCE(sbinfo->shrinklist_len)) 633 return SHRINK_STOP; 634 635 return shmem_unused_huge_shrink(sbinfo, sc, 0); 636 } 637 638 static long shmem_unused_huge_count(struct super_block *sb, 639 struct shrink_control *sc) 640 { 641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 642 return READ_ONCE(sbinfo->shrinklist_len); 643 } 644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 645 646 #define shmem_huge SHMEM_HUGE_DENY 647 648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 649 struct shrink_control *sc, unsigned long nr_to_split) 650 { 651 return 0; 652 } 653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 654 655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 656 { 657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 659 shmem_huge != SHMEM_HUGE_DENY) 660 return true; 661 return false; 662 } 663 664 /* 665 * Like add_to_page_cache_locked, but error if expected item has gone. 666 */ 667 static int shmem_add_to_page_cache(struct page *page, 668 struct address_space *mapping, 669 pgoff_t index, void *expected, gfp_t gfp, 670 struct mm_struct *charge_mm) 671 { 672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 673 unsigned long i = 0; 674 unsigned long nr = compound_nr(page); 675 int error; 676 677 VM_BUG_ON_PAGE(PageTail(page), page); 678 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 679 VM_BUG_ON_PAGE(!PageLocked(page), page); 680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 681 VM_BUG_ON(expected && PageTransHuge(page)); 682 683 page_ref_add(page, nr); 684 page->mapping = mapping; 685 page->index = index; 686 687 if (!PageSwapCache(page)) { 688 error = mem_cgroup_charge(page, charge_mm, gfp); 689 if (error) { 690 if (PageTransHuge(page)) { 691 count_vm_event(THP_FILE_FALLBACK); 692 count_vm_event(THP_FILE_FALLBACK_CHARGE); 693 } 694 goto error; 695 } 696 } 697 cgroup_throttle_swaprate(page, gfp); 698 699 do { 700 void *entry; 701 xas_lock_irq(&xas); 702 entry = xas_find_conflict(&xas); 703 if (entry != expected) 704 xas_set_err(&xas, -EEXIST); 705 xas_create_range(&xas); 706 if (xas_error(&xas)) 707 goto unlock; 708 next: 709 xas_store(&xas, page); 710 if (++i < nr) { 711 xas_next(&xas); 712 goto next; 713 } 714 if (PageTransHuge(page)) { 715 count_vm_event(THP_FILE_ALLOC); 716 __inc_node_page_state(page, NR_SHMEM_THPS); 717 } 718 mapping->nrpages += nr; 719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 720 __mod_lruvec_page_state(page, NR_SHMEM, nr); 721 unlock: 722 xas_unlock_irq(&xas); 723 } while (xas_nomem(&xas, gfp)); 724 725 if (xas_error(&xas)) { 726 error = xas_error(&xas); 727 goto error; 728 } 729 730 return 0; 731 error: 732 page->mapping = NULL; 733 page_ref_sub(page, nr); 734 return error; 735 } 736 737 /* 738 * Like delete_from_page_cache, but substitutes swap for page. 739 */ 740 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 741 { 742 struct address_space *mapping = page->mapping; 743 int error; 744 745 VM_BUG_ON_PAGE(PageCompound(page), page); 746 747 xa_lock_irq(&mapping->i_pages); 748 error = shmem_replace_entry(mapping, page->index, page, radswap); 749 page->mapping = NULL; 750 mapping->nrpages--; 751 __dec_lruvec_page_state(page, NR_FILE_PAGES); 752 __dec_lruvec_page_state(page, NR_SHMEM); 753 xa_unlock_irq(&mapping->i_pages); 754 put_page(page); 755 BUG_ON(error); 756 } 757 758 /* 759 * Remove swap entry from page cache, free the swap and its page cache. 760 */ 761 static int shmem_free_swap(struct address_space *mapping, 762 pgoff_t index, void *radswap) 763 { 764 void *old; 765 766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 767 if (old != radswap) 768 return -ENOENT; 769 free_swap_and_cache(radix_to_swp_entry(radswap)); 770 return 0; 771 } 772 773 /* 774 * Determine (in bytes) how many of the shmem object's pages mapped by the 775 * given offsets are swapped out. 776 * 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 778 * as long as the inode doesn't go away and racy results are not a problem. 779 */ 780 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 781 pgoff_t start, pgoff_t end) 782 { 783 XA_STATE(xas, &mapping->i_pages, start); 784 struct page *page; 785 unsigned long swapped = 0; 786 787 rcu_read_lock(); 788 xas_for_each(&xas, page, end - 1) { 789 if (xas_retry(&xas, page)) 790 continue; 791 if (xa_is_value(page)) 792 swapped++; 793 794 if (need_resched()) { 795 xas_pause(&xas); 796 cond_resched_rcu(); 797 } 798 } 799 800 rcu_read_unlock(); 801 802 return swapped << PAGE_SHIFT; 803 } 804 805 /* 806 * Determine (in bytes) how many of the shmem object's pages mapped by the 807 * given vma is swapped out. 808 * 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 810 * as long as the inode doesn't go away and racy results are not a problem. 811 */ 812 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 813 { 814 struct inode *inode = file_inode(vma->vm_file); 815 struct shmem_inode_info *info = SHMEM_I(inode); 816 struct address_space *mapping = inode->i_mapping; 817 unsigned long swapped; 818 819 /* Be careful as we don't hold info->lock */ 820 swapped = READ_ONCE(info->swapped); 821 822 /* 823 * The easier cases are when the shmem object has nothing in swap, or 824 * the vma maps it whole. Then we can simply use the stats that we 825 * already track. 826 */ 827 if (!swapped) 828 return 0; 829 830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 831 return swapped << PAGE_SHIFT; 832 833 /* Here comes the more involved part */ 834 return shmem_partial_swap_usage(mapping, 835 linear_page_index(vma, vma->vm_start), 836 linear_page_index(vma, vma->vm_end)); 837 } 838 839 /* 840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 841 */ 842 void shmem_unlock_mapping(struct address_space *mapping) 843 { 844 struct pagevec pvec; 845 pgoff_t indices[PAGEVEC_SIZE]; 846 pgoff_t index = 0; 847 848 pagevec_init(&pvec); 849 /* 850 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 851 */ 852 while (!mapping_unevictable(mapping)) { 853 /* 854 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 855 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 856 */ 857 pvec.nr = find_get_entries(mapping, index, 858 PAGEVEC_SIZE, pvec.pages, indices); 859 if (!pvec.nr) 860 break; 861 index = indices[pvec.nr - 1] + 1; 862 pagevec_remove_exceptionals(&pvec); 863 check_move_unevictable_pages(&pvec); 864 pagevec_release(&pvec); 865 cond_resched(); 866 } 867 } 868 869 /* 870 * Check whether a hole-punch or truncation needs to split a huge page, 871 * returning true if no split was required, or the split has been successful. 872 * 873 * Eviction (or truncation to 0 size) should never need to split a huge page; 874 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 875 * head, and then succeeded to trylock on tail. 876 * 877 * A split can only succeed when there are no additional references on the 878 * huge page: so the split below relies upon find_get_entries() having stopped 879 * when it found a subpage of the huge page, without getting further references. 880 */ 881 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 882 { 883 if (!PageTransCompound(page)) 884 return true; 885 886 /* Just proceed to delete a huge page wholly within the range punched */ 887 if (PageHead(page) && 888 page->index >= start && page->index + HPAGE_PMD_NR <= end) 889 return true; 890 891 /* Try to split huge page, so we can truly punch the hole or truncate */ 892 return split_huge_page(page) >= 0; 893 } 894 895 /* 896 * Remove range of pages and swap entries from page cache, and free them. 897 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 898 */ 899 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 900 bool unfalloc) 901 { 902 struct address_space *mapping = inode->i_mapping; 903 struct shmem_inode_info *info = SHMEM_I(inode); 904 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 905 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 906 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 907 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 908 struct pagevec pvec; 909 pgoff_t indices[PAGEVEC_SIZE]; 910 long nr_swaps_freed = 0; 911 pgoff_t index; 912 int i; 913 914 if (lend == -1) 915 end = -1; /* unsigned, so actually very big */ 916 917 pagevec_init(&pvec); 918 index = start; 919 while (index < end) { 920 pvec.nr = find_get_entries(mapping, index, 921 min(end - index, (pgoff_t)PAGEVEC_SIZE), 922 pvec.pages, indices); 923 if (!pvec.nr) 924 break; 925 for (i = 0; i < pagevec_count(&pvec); i++) { 926 struct page *page = pvec.pages[i]; 927 928 index = indices[i]; 929 if (index >= end) 930 break; 931 932 if (xa_is_value(page)) { 933 if (unfalloc) 934 continue; 935 nr_swaps_freed += !shmem_free_swap(mapping, 936 index, page); 937 continue; 938 } 939 940 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 941 942 if (!trylock_page(page)) 943 continue; 944 945 if ((!unfalloc || !PageUptodate(page)) && 946 page_mapping(page) == mapping) { 947 VM_BUG_ON_PAGE(PageWriteback(page), page); 948 if (shmem_punch_compound(page, start, end)) 949 truncate_inode_page(mapping, page); 950 } 951 unlock_page(page); 952 } 953 pagevec_remove_exceptionals(&pvec); 954 pagevec_release(&pvec); 955 cond_resched(); 956 index++; 957 } 958 959 if (partial_start) { 960 struct page *page = NULL; 961 shmem_getpage(inode, start - 1, &page, SGP_READ); 962 if (page) { 963 unsigned int top = PAGE_SIZE; 964 if (start > end) { 965 top = partial_end; 966 partial_end = 0; 967 } 968 zero_user_segment(page, partial_start, top); 969 set_page_dirty(page); 970 unlock_page(page); 971 put_page(page); 972 } 973 } 974 if (partial_end) { 975 struct page *page = NULL; 976 shmem_getpage(inode, end, &page, SGP_READ); 977 if (page) { 978 zero_user_segment(page, 0, partial_end); 979 set_page_dirty(page); 980 unlock_page(page); 981 put_page(page); 982 } 983 } 984 if (start >= end) 985 return; 986 987 index = start; 988 while (index < end) { 989 cond_resched(); 990 991 pvec.nr = find_get_entries(mapping, index, 992 min(end - index, (pgoff_t)PAGEVEC_SIZE), 993 pvec.pages, indices); 994 if (!pvec.nr) { 995 /* If all gone or hole-punch or unfalloc, we're done */ 996 if (index == start || end != -1) 997 break; 998 /* But if truncating, restart to make sure all gone */ 999 index = start; 1000 continue; 1001 } 1002 for (i = 0; i < pagevec_count(&pvec); i++) { 1003 struct page *page = pvec.pages[i]; 1004 1005 index = indices[i]; 1006 if (index >= end) 1007 break; 1008 1009 if (xa_is_value(page)) { 1010 if (unfalloc) 1011 continue; 1012 if (shmem_free_swap(mapping, index, page)) { 1013 /* Swap was replaced by page: retry */ 1014 index--; 1015 break; 1016 } 1017 nr_swaps_freed++; 1018 continue; 1019 } 1020 1021 lock_page(page); 1022 1023 if (!unfalloc || !PageUptodate(page)) { 1024 if (page_mapping(page) != mapping) { 1025 /* Page was replaced by swap: retry */ 1026 unlock_page(page); 1027 index--; 1028 break; 1029 } 1030 VM_BUG_ON_PAGE(PageWriteback(page), page); 1031 if (shmem_punch_compound(page, start, end)) 1032 truncate_inode_page(mapping, page); 1033 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1034 /* Wipe the page and don't get stuck */ 1035 clear_highpage(page); 1036 flush_dcache_page(page); 1037 set_page_dirty(page); 1038 if (index < 1039 round_up(start, HPAGE_PMD_NR)) 1040 start = index + 1; 1041 } 1042 } 1043 unlock_page(page); 1044 } 1045 pagevec_remove_exceptionals(&pvec); 1046 pagevec_release(&pvec); 1047 index++; 1048 } 1049 1050 spin_lock_irq(&info->lock); 1051 info->swapped -= nr_swaps_freed; 1052 shmem_recalc_inode(inode); 1053 spin_unlock_irq(&info->lock); 1054 } 1055 1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1057 { 1058 shmem_undo_range(inode, lstart, lend, false); 1059 inode->i_ctime = inode->i_mtime = current_time(inode); 1060 } 1061 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1062 1063 static int shmem_getattr(const struct path *path, struct kstat *stat, 1064 u32 request_mask, unsigned int query_flags) 1065 { 1066 struct inode *inode = path->dentry->d_inode; 1067 struct shmem_inode_info *info = SHMEM_I(inode); 1068 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1069 1070 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1071 spin_lock_irq(&info->lock); 1072 shmem_recalc_inode(inode); 1073 spin_unlock_irq(&info->lock); 1074 } 1075 generic_fillattr(inode, stat); 1076 1077 if (is_huge_enabled(sb_info)) 1078 stat->blksize = HPAGE_PMD_SIZE; 1079 1080 return 0; 1081 } 1082 1083 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1084 { 1085 struct inode *inode = d_inode(dentry); 1086 struct shmem_inode_info *info = SHMEM_I(inode); 1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1088 int error; 1089 1090 error = setattr_prepare(dentry, attr); 1091 if (error) 1092 return error; 1093 1094 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1095 loff_t oldsize = inode->i_size; 1096 loff_t newsize = attr->ia_size; 1097 1098 /* protected by i_mutex */ 1099 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1100 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1101 return -EPERM; 1102 1103 if (newsize != oldsize) { 1104 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1105 oldsize, newsize); 1106 if (error) 1107 return error; 1108 i_size_write(inode, newsize); 1109 inode->i_ctime = inode->i_mtime = current_time(inode); 1110 } 1111 if (newsize <= oldsize) { 1112 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1113 if (oldsize > holebegin) 1114 unmap_mapping_range(inode->i_mapping, 1115 holebegin, 0, 1); 1116 if (info->alloced) 1117 shmem_truncate_range(inode, 1118 newsize, (loff_t)-1); 1119 /* unmap again to remove racily COWed private pages */ 1120 if (oldsize > holebegin) 1121 unmap_mapping_range(inode->i_mapping, 1122 holebegin, 0, 1); 1123 1124 /* 1125 * Part of the huge page can be beyond i_size: subject 1126 * to shrink under memory pressure. 1127 */ 1128 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1129 spin_lock(&sbinfo->shrinklist_lock); 1130 /* 1131 * _careful to defend against unlocked access to 1132 * ->shrink_list in shmem_unused_huge_shrink() 1133 */ 1134 if (list_empty_careful(&info->shrinklist)) { 1135 list_add_tail(&info->shrinklist, 1136 &sbinfo->shrinklist); 1137 sbinfo->shrinklist_len++; 1138 } 1139 spin_unlock(&sbinfo->shrinklist_lock); 1140 } 1141 } 1142 } 1143 1144 setattr_copy(inode, attr); 1145 if (attr->ia_valid & ATTR_MODE) 1146 error = posix_acl_chmod(inode, inode->i_mode); 1147 return error; 1148 } 1149 1150 static void shmem_evict_inode(struct inode *inode) 1151 { 1152 struct shmem_inode_info *info = SHMEM_I(inode); 1153 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1154 1155 if (inode->i_mapping->a_ops == &shmem_aops) { 1156 shmem_unacct_size(info->flags, inode->i_size); 1157 inode->i_size = 0; 1158 shmem_truncate_range(inode, 0, (loff_t)-1); 1159 if (!list_empty(&info->shrinklist)) { 1160 spin_lock(&sbinfo->shrinklist_lock); 1161 if (!list_empty(&info->shrinklist)) { 1162 list_del_init(&info->shrinklist); 1163 sbinfo->shrinklist_len--; 1164 } 1165 spin_unlock(&sbinfo->shrinklist_lock); 1166 } 1167 while (!list_empty(&info->swaplist)) { 1168 /* Wait while shmem_unuse() is scanning this inode... */ 1169 wait_var_event(&info->stop_eviction, 1170 !atomic_read(&info->stop_eviction)); 1171 mutex_lock(&shmem_swaplist_mutex); 1172 /* ...but beware of the race if we peeked too early */ 1173 if (!atomic_read(&info->stop_eviction)) 1174 list_del_init(&info->swaplist); 1175 mutex_unlock(&shmem_swaplist_mutex); 1176 } 1177 } 1178 1179 simple_xattrs_free(&info->xattrs); 1180 WARN_ON(inode->i_blocks); 1181 shmem_free_inode(inode->i_sb); 1182 clear_inode(inode); 1183 } 1184 1185 extern struct swap_info_struct *swap_info[]; 1186 1187 static int shmem_find_swap_entries(struct address_space *mapping, 1188 pgoff_t start, unsigned int nr_entries, 1189 struct page **entries, pgoff_t *indices, 1190 unsigned int type, bool frontswap) 1191 { 1192 XA_STATE(xas, &mapping->i_pages, start); 1193 struct page *page; 1194 swp_entry_t entry; 1195 unsigned int ret = 0; 1196 1197 if (!nr_entries) 1198 return 0; 1199 1200 rcu_read_lock(); 1201 xas_for_each(&xas, page, ULONG_MAX) { 1202 if (xas_retry(&xas, page)) 1203 continue; 1204 1205 if (!xa_is_value(page)) 1206 continue; 1207 1208 entry = radix_to_swp_entry(page); 1209 if (swp_type(entry) != type) 1210 continue; 1211 if (frontswap && 1212 !frontswap_test(swap_info[type], swp_offset(entry))) 1213 continue; 1214 1215 indices[ret] = xas.xa_index; 1216 entries[ret] = page; 1217 1218 if (need_resched()) { 1219 xas_pause(&xas); 1220 cond_resched_rcu(); 1221 } 1222 if (++ret == nr_entries) 1223 break; 1224 } 1225 rcu_read_unlock(); 1226 1227 return ret; 1228 } 1229 1230 /* 1231 * Move the swapped pages for an inode to page cache. Returns the count 1232 * of pages swapped in, or the error in case of failure. 1233 */ 1234 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1235 pgoff_t *indices) 1236 { 1237 int i = 0; 1238 int ret = 0; 1239 int error = 0; 1240 struct address_space *mapping = inode->i_mapping; 1241 1242 for (i = 0; i < pvec.nr; i++) { 1243 struct page *page = pvec.pages[i]; 1244 1245 if (!xa_is_value(page)) 1246 continue; 1247 error = shmem_swapin_page(inode, indices[i], 1248 &page, SGP_CACHE, 1249 mapping_gfp_mask(mapping), 1250 NULL, NULL); 1251 if (error == 0) { 1252 unlock_page(page); 1253 put_page(page); 1254 ret++; 1255 } 1256 if (error == -ENOMEM) 1257 break; 1258 error = 0; 1259 } 1260 return error ? error : ret; 1261 } 1262 1263 /* 1264 * If swap found in inode, free it and move page from swapcache to filecache. 1265 */ 1266 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1267 bool frontswap, unsigned long *fs_pages_to_unuse) 1268 { 1269 struct address_space *mapping = inode->i_mapping; 1270 pgoff_t start = 0; 1271 struct pagevec pvec; 1272 pgoff_t indices[PAGEVEC_SIZE]; 1273 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1274 int ret = 0; 1275 1276 pagevec_init(&pvec); 1277 do { 1278 unsigned int nr_entries = PAGEVEC_SIZE; 1279 1280 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1281 nr_entries = *fs_pages_to_unuse; 1282 1283 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1284 pvec.pages, indices, 1285 type, frontswap); 1286 if (pvec.nr == 0) { 1287 ret = 0; 1288 break; 1289 } 1290 1291 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1292 if (ret < 0) 1293 break; 1294 1295 if (frontswap_partial) { 1296 *fs_pages_to_unuse -= ret; 1297 if (*fs_pages_to_unuse == 0) { 1298 ret = FRONTSWAP_PAGES_UNUSED; 1299 break; 1300 } 1301 } 1302 1303 start = indices[pvec.nr - 1]; 1304 } while (true); 1305 1306 return ret; 1307 } 1308 1309 /* 1310 * Read all the shared memory data that resides in the swap 1311 * device 'type' back into memory, so the swap device can be 1312 * unused. 1313 */ 1314 int shmem_unuse(unsigned int type, bool frontswap, 1315 unsigned long *fs_pages_to_unuse) 1316 { 1317 struct shmem_inode_info *info, *next; 1318 int error = 0; 1319 1320 if (list_empty(&shmem_swaplist)) 1321 return 0; 1322 1323 mutex_lock(&shmem_swaplist_mutex); 1324 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1325 if (!info->swapped) { 1326 list_del_init(&info->swaplist); 1327 continue; 1328 } 1329 /* 1330 * Drop the swaplist mutex while searching the inode for swap; 1331 * but before doing so, make sure shmem_evict_inode() will not 1332 * remove placeholder inode from swaplist, nor let it be freed 1333 * (igrab() would protect from unlink, but not from unmount). 1334 */ 1335 atomic_inc(&info->stop_eviction); 1336 mutex_unlock(&shmem_swaplist_mutex); 1337 1338 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1339 fs_pages_to_unuse); 1340 cond_resched(); 1341 1342 mutex_lock(&shmem_swaplist_mutex); 1343 next = list_next_entry(info, swaplist); 1344 if (!info->swapped) 1345 list_del_init(&info->swaplist); 1346 if (atomic_dec_and_test(&info->stop_eviction)) 1347 wake_up_var(&info->stop_eviction); 1348 if (error) 1349 break; 1350 } 1351 mutex_unlock(&shmem_swaplist_mutex); 1352 1353 return error; 1354 } 1355 1356 /* 1357 * Move the page from the page cache to the swap cache. 1358 */ 1359 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1360 { 1361 struct shmem_inode_info *info; 1362 struct address_space *mapping; 1363 struct inode *inode; 1364 swp_entry_t swap; 1365 pgoff_t index; 1366 1367 VM_BUG_ON_PAGE(PageCompound(page), page); 1368 BUG_ON(!PageLocked(page)); 1369 mapping = page->mapping; 1370 index = page->index; 1371 inode = mapping->host; 1372 info = SHMEM_I(inode); 1373 if (info->flags & VM_LOCKED) 1374 goto redirty; 1375 if (!total_swap_pages) 1376 goto redirty; 1377 1378 /* 1379 * Our capabilities prevent regular writeback or sync from ever calling 1380 * shmem_writepage; but a stacking filesystem might use ->writepage of 1381 * its underlying filesystem, in which case tmpfs should write out to 1382 * swap only in response to memory pressure, and not for the writeback 1383 * threads or sync. 1384 */ 1385 if (!wbc->for_reclaim) { 1386 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1387 goto redirty; 1388 } 1389 1390 /* 1391 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1392 * value into swapfile.c, the only way we can correctly account for a 1393 * fallocated page arriving here is now to initialize it and write it. 1394 * 1395 * That's okay for a page already fallocated earlier, but if we have 1396 * not yet completed the fallocation, then (a) we want to keep track 1397 * of this page in case we have to undo it, and (b) it may not be a 1398 * good idea to continue anyway, once we're pushing into swap. So 1399 * reactivate the page, and let shmem_fallocate() quit when too many. 1400 */ 1401 if (!PageUptodate(page)) { 1402 if (inode->i_private) { 1403 struct shmem_falloc *shmem_falloc; 1404 spin_lock(&inode->i_lock); 1405 shmem_falloc = inode->i_private; 1406 if (shmem_falloc && 1407 !shmem_falloc->waitq && 1408 index >= shmem_falloc->start && 1409 index < shmem_falloc->next) 1410 shmem_falloc->nr_unswapped++; 1411 else 1412 shmem_falloc = NULL; 1413 spin_unlock(&inode->i_lock); 1414 if (shmem_falloc) 1415 goto redirty; 1416 } 1417 clear_highpage(page); 1418 flush_dcache_page(page); 1419 SetPageUptodate(page); 1420 } 1421 1422 swap = get_swap_page(page); 1423 if (!swap.val) 1424 goto redirty; 1425 1426 /* 1427 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1428 * if it's not already there. Do it now before the page is 1429 * moved to swap cache, when its pagelock no longer protects 1430 * the inode from eviction. But don't unlock the mutex until 1431 * we've incremented swapped, because shmem_unuse_inode() will 1432 * prune a !swapped inode from the swaplist under this mutex. 1433 */ 1434 mutex_lock(&shmem_swaplist_mutex); 1435 if (list_empty(&info->swaplist)) 1436 list_add(&info->swaplist, &shmem_swaplist); 1437 1438 if (add_to_swap_cache(page, swap, 1439 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1440 NULL) == 0) { 1441 spin_lock_irq(&info->lock); 1442 shmem_recalc_inode(inode); 1443 info->swapped++; 1444 spin_unlock_irq(&info->lock); 1445 1446 swap_shmem_alloc(swap); 1447 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1448 1449 mutex_unlock(&shmem_swaplist_mutex); 1450 BUG_ON(page_mapped(page)); 1451 swap_writepage(page, wbc); 1452 return 0; 1453 } 1454 1455 mutex_unlock(&shmem_swaplist_mutex); 1456 put_swap_page(page, swap); 1457 redirty: 1458 set_page_dirty(page); 1459 if (wbc->for_reclaim) 1460 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1461 unlock_page(page); 1462 return 0; 1463 } 1464 1465 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1466 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1467 { 1468 char buffer[64]; 1469 1470 if (!mpol || mpol->mode == MPOL_DEFAULT) 1471 return; /* show nothing */ 1472 1473 mpol_to_str(buffer, sizeof(buffer), mpol); 1474 1475 seq_printf(seq, ",mpol=%s", buffer); 1476 } 1477 1478 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1479 { 1480 struct mempolicy *mpol = NULL; 1481 if (sbinfo->mpol) { 1482 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1483 mpol = sbinfo->mpol; 1484 mpol_get(mpol); 1485 spin_unlock(&sbinfo->stat_lock); 1486 } 1487 return mpol; 1488 } 1489 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1490 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1491 { 1492 } 1493 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1494 { 1495 return NULL; 1496 } 1497 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1498 #ifndef CONFIG_NUMA 1499 #define vm_policy vm_private_data 1500 #endif 1501 1502 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1503 struct shmem_inode_info *info, pgoff_t index) 1504 { 1505 /* Create a pseudo vma that just contains the policy */ 1506 vma_init(vma, NULL); 1507 /* Bias interleave by inode number to distribute better across nodes */ 1508 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1509 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1510 } 1511 1512 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1513 { 1514 /* Drop reference taken by mpol_shared_policy_lookup() */ 1515 mpol_cond_put(vma->vm_policy); 1516 } 1517 1518 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1519 struct shmem_inode_info *info, pgoff_t index) 1520 { 1521 struct vm_area_struct pvma; 1522 struct page *page; 1523 struct vm_fault vmf; 1524 1525 shmem_pseudo_vma_init(&pvma, info, index); 1526 vmf.vma = &pvma; 1527 vmf.address = 0; 1528 page = swap_cluster_readahead(swap, gfp, &vmf); 1529 shmem_pseudo_vma_destroy(&pvma); 1530 1531 return page; 1532 } 1533 1534 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1535 struct shmem_inode_info *info, pgoff_t index) 1536 { 1537 struct vm_area_struct pvma; 1538 struct address_space *mapping = info->vfs_inode.i_mapping; 1539 pgoff_t hindex; 1540 struct page *page; 1541 1542 hindex = round_down(index, HPAGE_PMD_NR); 1543 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1544 XA_PRESENT)) 1545 return NULL; 1546 1547 shmem_pseudo_vma_init(&pvma, info, hindex); 1548 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1549 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1550 shmem_pseudo_vma_destroy(&pvma); 1551 if (page) 1552 prep_transhuge_page(page); 1553 else 1554 count_vm_event(THP_FILE_FALLBACK); 1555 return page; 1556 } 1557 1558 static struct page *shmem_alloc_page(gfp_t gfp, 1559 struct shmem_inode_info *info, pgoff_t index) 1560 { 1561 struct vm_area_struct pvma; 1562 struct page *page; 1563 1564 shmem_pseudo_vma_init(&pvma, info, index); 1565 page = alloc_page_vma(gfp, &pvma, 0); 1566 shmem_pseudo_vma_destroy(&pvma); 1567 1568 return page; 1569 } 1570 1571 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1572 struct inode *inode, 1573 pgoff_t index, bool huge) 1574 { 1575 struct shmem_inode_info *info = SHMEM_I(inode); 1576 struct page *page; 1577 int nr; 1578 int err = -ENOSPC; 1579 1580 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1581 huge = false; 1582 nr = huge ? HPAGE_PMD_NR : 1; 1583 1584 if (!shmem_inode_acct_block(inode, nr)) 1585 goto failed; 1586 1587 if (huge) 1588 page = shmem_alloc_hugepage(gfp, info, index); 1589 else 1590 page = shmem_alloc_page(gfp, info, index); 1591 if (page) { 1592 __SetPageLocked(page); 1593 __SetPageSwapBacked(page); 1594 return page; 1595 } 1596 1597 err = -ENOMEM; 1598 shmem_inode_unacct_blocks(inode, nr); 1599 failed: 1600 return ERR_PTR(err); 1601 } 1602 1603 /* 1604 * When a page is moved from swapcache to shmem filecache (either by the 1605 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1606 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1607 * ignorance of the mapping it belongs to. If that mapping has special 1608 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1609 * we may need to copy to a suitable page before moving to filecache. 1610 * 1611 * In a future release, this may well be extended to respect cpuset and 1612 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1613 * but for now it is a simple matter of zone. 1614 */ 1615 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1616 { 1617 return page_zonenum(page) > gfp_zone(gfp); 1618 } 1619 1620 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1621 struct shmem_inode_info *info, pgoff_t index) 1622 { 1623 struct page *oldpage, *newpage; 1624 struct address_space *swap_mapping; 1625 swp_entry_t entry; 1626 pgoff_t swap_index; 1627 int error; 1628 1629 oldpage = *pagep; 1630 entry.val = page_private(oldpage); 1631 swap_index = swp_offset(entry); 1632 swap_mapping = page_mapping(oldpage); 1633 1634 /* 1635 * We have arrived here because our zones are constrained, so don't 1636 * limit chance of success by further cpuset and node constraints. 1637 */ 1638 gfp &= ~GFP_CONSTRAINT_MASK; 1639 newpage = shmem_alloc_page(gfp, info, index); 1640 if (!newpage) 1641 return -ENOMEM; 1642 1643 get_page(newpage); 1644 copy_highpage(newpage, oldpage); 1645 flush_dcache_page(newpage); 1646 1647 __SetPageLocked(newpage); 1648 __SetPageSwapBacked(newpage); 1649 SetPageUptodate(newpage); 1650 set_page_private(newpage, entry.val); 1651 SetPageSwapCache(newpage); 1652 1653 /* 1654 * Our caller will very soon move newpage out of swapcache, but it's 1655 * a nice clean interface for us to replace oldpage by newpage there. 1656 */ 1657 xa_lock_irq(&swap_mapping->i_pages); 1658 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1659 if (!error) { 1660 mem_cgroup_migrate(oldpage, newpage); 1661 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1662 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1663 } 1664 xa_unlock_irq(&swap_mapping->i_pages); 1665 1666 if (unlikely(error)) { 1667 /* 1668 * Is this possible? I think not, now that our callers check 1669 * both PageSwapCache and page_private after getting page lock; 1670 * but be defensive. Reverse old to newpage for clear and free. 1671 */ 1672 oldpage = newpage; 1673 } else { 1674 lru_cache_add(newpage); 1675 *pagep = newpage; 1676 } 1677 1678 ClearPageSwapCache(oldpage); 1679 set_page_private(oldpage, 0); 1680 1681 unlock_page(oldpage); 1682 put_page(oldpage); 1683 put_page(oldpage); 1684 return error; 1685 } 1686 1687 /* 1688 * Swap in the page pointed to by *pagep. 1689 * Caller has to make sure that *pagep contains a valid swapped page. 1690 * Returns 0 and the page in pagep if success. On failure, returns the 1691 * error code and NULL in *pagep. 1692 */ 1693 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1694 struct page **pagep, enum sgp_type sgp, 1695 gfp_t gfp, struct vm_area_struct *vma, 1696 vm_fault_t *fault_type) 1697 { 1698 struct address_space *mapping = inode->i_mapping; 1699 struct shmem_inode_info *info = SHMEM_I(inode); 1700 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1701 struct page *page; 1702 swp_entry_t swap; 1703 int error; 1704 1705 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1706 swap = radix_to_swp_entry(*pagep); 1707 *pagep = NULL; 1708 1709 /* Look it up and read it in.. */ 1710 page = lookup_swap_cache(swap, NULL, 0); 1711 if (!page) { 1712 /* Or update major stats only when swapin succeeds?? */ 1713 if (fault_type) { 1714 *fault_type |= VM_FAULT_MAJOR; 1715 count_vm_event(PGMAJFAULT); 1716 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1717 } 1718 /* Here we actually start the io */ 1719 page = shmem_swapin(swap, gfp, info, index); 1720 if (!page) { 1721 error = -ENOMEM; 1722 goto failed; 1723 } 1724 } 1725 1726 /* We have to do this with page locked to prevent races */ 1727 lock_page(page); 1728 if (!PageSwapCache(page) || page_private(page) != swap.val || 1729 !shmem_confirm_swap(mapping, index, swap)) { 1730 error = -EEXIST; 1731 goto unlock; 1732 } 1733 if (!PageUptodate(page)) { 1734 error = -EIO; 1735 goto failed; 1736 } 1737 wait_on_page_writeback(page); 1738 1739 /* 1740 * Some architectures may have to restore extra metadata to the 1741 * physical page after reading from swap. 1742 */ 1743 arch_swap_restore(swap, page); 1744 1745 if (shmem_should_replace_page(page, gfp)) { 1746 error = shmem_replace_page(&page, gfp, info, index); 1747 if (error) 1748 goto failed; 1749 } 1750 1751 error = shmem_add_to_page_cache(page, mapping, index, 1752 swp_to_radix_entry(swap), gfp, 1753 charge_mm); 1754 if (error) 1755 goto failed; 1756 1757 spin_lock_irq(&info->lock); 1758 info->swapped--; 1759 shmem_recalc_inode(inode); 1760 spin_unlock_irq(&info->lock); 1761 1762 if (sgp == SGP_WRITE) 1763 mark_page_accessed(page); 1764 1765 delete_from_swap_cache(page); 1766 set_page_dirty(page); 1767 swap_free(swap); 1768 1769 *pagep = page; 1770 return 0; 1771 failed: 1772 if (!shmem_confirm_swap(mapping, index, swap)) 1773 error = -EEXIST; 1774 unlock: 1775 if (page) { 1776 unlock_page(page); 1777 put_page(page); 1778 } 1779 1780 return error; 1781 } 1782 1783 /* 1784 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1785 * 1786 * If we allocate a new one we do not mark it dirty. That's up to the 1787 * vm. If we swap it in we mark it dirty since we also free the swap 1788 * entry since a page cannot live in both the swap and page cache. 1789 * 1790 * vmf and fault_type are only supplied by shmem_fault: 1791 * otherwise they are NULL. 1792 */ 1793 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1794 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1795 struct vm_area_struct *vma, struct vm_fault *vmf, 1796 vm_fault_t *fault_type) 1797 { 1798 struct address_space *mapping = inode->i_mapping; 1799 struct shmem_inode_info *info = SHMEM_I(inode); 1800 struct shmem_sb_info *sbinfo; 1801 struct mm_struct *charge_mm; 1802 struct page *page; 1803 enum sgp_type sgp_huge = sgp; 1804 pgoff_t hindex = index; 1805 int error; 1806 int once = 0; 1807 int alloced = 0; 1808 1809 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1810 return -EFBIG; 1811 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1812 sgp = SGP_CACHE; 1813 repeat: 1814 if (sgp <= SGP_CACHE && 1815 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1816 return -EINVAL; 1817 } 1818 1819 sbinfo = SHMEM_SB(inode->i_sb); 1820 charge_mm = vma ? vma->vm_mm : current->mm; 1821 1822 page = find_lock_entry(mapping, index); 1823 if (xa_is_value(page)) { 1824 error = shmem_swapin_page(inode, index, &page, 1825 sgp, gfp, vma, fault_type); 1826 if (error == -EEXIST) 1827 goto repeat; 1828 1829 *pagep = page; 1830 return error; 1831 } 1832 1833 if (page) 1834 hindex = page->index; 1835 if (page && sgp == SGP_WRITE) 1836 mark_page_accessed(page); 1837 1838 /* fallocated page? */ 1839 if (page && !PageUptodate(page)) { 1840 if (sgp != SGP_READ) 1841 goto clear; 1842 unlock_page(page); 1843 put_page(page); 1844 page = NULL; 1845 hindex = index; 1846 } 1847 if (page || sgp == SGP_READ) 1848 goto out; 1849 1850 /* 1851 * Fast cache lookup did not find it: 1852 * bring it back from swap or allocate. 1853 */ 1854 1855 if (vma && userfaultfd_missing(vma)) { 1856 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1857 return 0; 1858 } 1859 1860 /* shmem_symlink() */ 1861 if (mapping->a_ops != &shmem_aops) 1862 goto alloc_nohuge; 1863 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1864 goto alloc_nohuge; 1865 if (shmem_huge == SHMEM_HUGE_FORCE) 1866 goto alloc_huge; 1867 switch (sbinfo->huge) { 1868 case SHMEM_HUGE_NEVER: 1869 goto alloc_nohuge; 1870 case SHMEM_HUGE_WITHIN_SIZE: { 1871 loff_t i_size; 1872 pgoff_t off; 1873 1874 off = round_up(index, HPAGE_PMD_NR); 1875 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1876 if (i_size >= HPAGE_PMD_SIZE && 1877 i_size >> PAGE_SHIFT >= off) 1878 goto alloc_huge; 1879 1880 fallthrough; 1881 } 1882 case SHMEM_HUGE_ADVISE: 1883 if (sgp_huge == SGP_HUGE) 1884 goto alloc_huge; 1885 /* TODO: implement fadvise() hints */ 1886 goto alloc_nohuge; 1887 } 1888 1889 alloc_huge: 1890 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1891 if (IS_ERR(page)) { 1892 alloc_nohuge: 1893 page = shmem_alloc_and_acct_page(gfp, inode, 1894 index, false); 1895 } 1896 if (IS_ERR(page)) { 1897 int retry = 5; 1898 1899 error = PTR_ERR(page); 1900 page = NULL; 1901 if (error != -ENOSPC) 1902 goto unlock; 1903 /* 1904 * Try to reclaim some space by splitting a huge page 1905 * beyond i_size on the filesystem. 1906 */ 1907 while (retry--) { 1908 int ret; 1909 1910 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1911 if (ret == SHRINK_STOP) 1912 break; 1913 if (ret) 1914 goto alloc_nohuge; 1915 } 1916 goto unlock; 1917 } 1918 1919 if (PageTransHuge(page)) 1920 hindex = round_down(index, HPAGE_PMD_NR); 1921 else 1922 hindex = index; 1923 1924 if (sgp == SGP_WRITE) 1925 __SetPageReferenced(page); 1926 1927 error = shmem_add_to_page_cache(page, mapping, hindex, 1928 NULL, gfp & GFP_RECLAIM_MASK, 1929 charge_mm); 1930 if (error) 1931 goto unacct; 1932 lru_cache_add(page); 1933 1934 spin_lock_irq(&info->lock); 1935 info->alloced += compound_nr(page); 1936 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1937 shmem_recalc_inode(inode); 1938 spin_unlock_irq(&info->lock); 1939 alloced = true; 1940 1941 if (PageTransHuge(page) && 1942 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1943 hindex + HPAGE_PMD_NR - 1) { 1944 /* 1945 * Part of the huge page is beyond i_size: subject 1946 * to shrink under memory pressure. 1947 */ 1948 spin_lock(&sbinfo->shrinklist_lock); 1949 /* 1950 * _careful to defend against unlocked access to 1951 * ->shrink_list in shmem_unused_huge_shrink() 1952 */ 1953 if (list_empty_careful(&info->shrinklist)) { 1954 list_add_tail(&info->shrinklist, 1955 &sbinfo->shrinklist); 1956 sbinfo->shrinklist_len++; 1957 } 1958 spin_unlock(&sbinfo->shrinklist_lock); 1959 } 1960 1961 /* 1962 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1963 */ 1964 if (sgp == SGP_FALLOC) 1965 sgp = SGP_WRITE; 1966 clear: 1967 /* 1968 * Let SGP_WRITE caller clear ends if write does not fill page; 1969 * but SGP_FALLOC on a page fallocated earlier must initialize 1970 * it now, lest undo on failure cancel our earlier guarantee. 1971 */ 1972 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1973 int i; 1974 1975 for (i = 0; i < compound_nr(page); i++) { 1976 clear_highpage(page + i); 1977 flush_dcache_page(page + i); 1978 } 1979 SetPageUptodate(page); 1980 } 1981 1982 /* Perhaps the file has been truncated since we checked */ 1983 if (sgp <= SGP_CACHE && 1984 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1985 if (alloced) { 1986 ClearPageDirty(page); 1987 delete_from_page_cache(page); 1988 spin_lock_irq(&info->lock); 1989 shmem_recalc_inode(inode); 1990 spin_unlock_irq(&info->lock); 1991 } 1992 error = -EINVAL; 1993 goto unlock; 1994 } 1995 out: 1996 *pagep = page + index - hindex; 1997 return 0; 1998 1999 /* 2000 * Error recovery. 2001 */ 2002 unacct: 2003 shmem_inode_unacct_blocks(inode, compound_nr(page)); 2004 2005 if (PageTransHuge(page)) { 2006 unlock_page(page); 2007 put_page(page); 2008 goto alloc_nohuge; 2009 } 2010 unlock: 2011 if (page) { 2012 unlock_page(page); 2013 put_page(page); 2014 } 2015 if (error == -ENOSPC && !once++) { 2016 spin_lock_irq(&info->lock); 2017 shmem_recalc_inode(inode); 2018 spin_unlock_irq(&info->lock); 2019 goto repeat; 2020 } 2021 if (error == -EEXIST) 2022 goto repeat; 2023 return error; 2024 } 2025 2026 /* 2027 * This is like autoremove_wake_function, but it removes the wait queue 2028 * entry unconditionally - even if something else had already woken the 2029 * target. 2030 */ 2031 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2032 { 2033 int ret = default_wake_function(wait, mode, sync, key); 2034 list_del_init(&wait->entry); 2035 return ret; 2036 } 2037 2038 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2039 { 2040 struct vm_area_struct *vma = vmf->vma; 2041 struct inode *inode = file_inode(vma->vm_file); 2042 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2043 enum sgp_type sgp; 2044 int err; 2045 vm_fault_t ret = VM_FAULT_LOCKED; 2046 2047 /* 2048 * Trinity finds that probing a hole which tmpfs is punching can 2049 * prevent the hole-punch from ever completing: which in turn 2050 * locks writers out with its hold on i_mutex. So refrain from 2051 * faulting pages into the hole while it's being punched. Although 2052 * shmem_undo_range() does remove the additions, it may be unable to 2053 * keep up, as each new page needs its own unmap_mapping_range() call, 2054 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2055 * 2056 * It does not matter if we sometimes reach this check just before the 2057 * hole-punch begins, so that one fault then races with the punch: 2058 * we just need to make racing faults a rare case. 2059 * 2060 * The implementation below would be much simpler if we just used a 2061 * standard mutex or completion: but we cannot take i_mutex in fault, 2062 * and bloating every shmem inode for this unlikely case would be sad. 2063 */ 2064 if (unlikely(inode->i_private)) { 2065 struct shmem_falloc *shmem_falloc; 2066 2067 spin_lock(&inode->i_lock); 2068 shmem_falloc = inode->i_private; 2069 if (shmem_falloc && 2070 shmem_falloc->waitq && 2071 vmf->pgoff >= shmem_falloc->start && 2072 vmf->pgoff < shmem_falloc->next) { 2073 struct file *fpin; 2074 wait_queue_head_t *shmem_falloc_waitq; 2075 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2076 2077 ret = VM_FAULT_NOPAGE; 2078 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2079 if (fpin) 2080 ret = VM_FAULT_RETRY; 2081 2082 shmem_falloc_waitq = shmem_falloc->waitq; 2083 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2084 TASK_UNINTERRUPTIBLE); 2085 spin_unlock(&inode->i_lock); 2086 schedule(); 2087 2088 /* 2089 * shmem_falloc_waitq points into the shmem_fallocate() 2090 * stack of the hole-punching task: shmem_falloc_waitq 2091 * is usually invalid by the time we reach here, but 2092 * finish_wait() does not dereference it in that case; 2093 * though i_lock needed lest racing with wake_up_all(). 2094 */ 2095 spin_lock(&inode->i_lock); 2096 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2097 spin_unlock(&inode->i_lock); 2098 2099 if (fpin) 2100 fput(fpin); 2101 return ret; 2102 } 2103 spin_unlock(&inode->i_lock); 2104 } 2105 2106 sgp = SGP_CACHE; 2107 2108 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2109 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2110 sgp = SGP_NOHUGE; 2111 else if (vma->vm_flags & VM_HUGEPAGE) 2112 sgp = SGP_HUGE; 2113 2114 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2115 gfp, vma, vmf, &ret); 2116 if (err) 2117 return vmf_error(err); 2118 return ret; 2119 } 2120 2121 unsigned long shmem_get_unmapped_area(struct file *file, 2122 unsigned long uaddr, unsigned long len, 2123 unsigned long pgoff, unsigned long flags) 2124 { 2125 unsigned long (*get_area)(struct file *, 2126 unsigned long, unsigned long, unsigned long, unsigned long); 2127 unsigned long addr; 2128 unsigned long offset; 2129 unsigned long inflated_len; 2130 unsigned long inflated_addr; 2131 unsigned long inflated_offset; 2132 2133 if (len > TASK_SIZE) 2134 return -ENOMEM; 2135 2136 get_area = current->mm->get_unmapped_area; 2137 addr = get_area(file, uaddr, len, pgoff, flags); 2138 2139 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2140 return addr; 2141 if (IS_ERR_VALUE(addr)) 2142 return addr; 2143 if (addr & ~PAGE_MASK) 2144 return addr; 2145 if (addr > TASK_SIZE - len) 2146 return addr; 2147 2148 if (shmem_huge == SHMEM_HUGE_DENY) 2149 return addr; 2150 if (len < HPAGE_PMD_SIZE) 2151 return addr; 2152 if (flags & MAP_FIXED) 2153 return addr; 2154 /* 2155 * Our priority is to support MAP_SHARED mapped hugely; 2156 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2157 * But if caller specified an address hint and we allocated area there 2158 * successfully, respect that as before. 2159 */ 2160 if (uaddr == addr) 2161 return addr; 2162 2163 if (shmem_huge != SHMEM_HUGE_FORCE) { 2164 struct super_block *sb; 2165 2166 if (file) { 2167 VM_BUG_ON(file->f_op != &shmem_file_operations); 2168 sb = file_inode(file)->i_sb; 2169 } else { 2170 /* 2171 * Called directly from mm/mmap.c, or drivers/char/mem.c 2172 * for "/dev/zero", to create a shared anonymous object. 2173 */ 2174 if (IS_ERR(shm_mnt)) 2175 return addr; 2176 sb = shm_mnt->mnt_sb; 2177 } 2178 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2179 return addr; 2180 } 2181 2182 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2183 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2184 return addr; 2185 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2186 return addr; 2187 2188 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2189 if (inflated_len > TASK_SIZE) 2190 return addr; 2191 if (inflated_len < len) 2192 return addr; 2193 2194 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2195 if (IS_ERR_VALUE(inflated_addr)) 2196 return addr; 2197 if (inflated_addr & ~PAGE_MASK) 2198 return addr; 2199 2200 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2201 inflated_addr += offset - inflated_offset; 2202 if (inflated_offset > offset) 2203 inflated_addr += HPAGE_PMD_SIZE; 2204 2205 if (inflated_addr > TASK_SIZE - len) 2206 return addr; 2207 return inflated_addr; 2208 } 2209 2210 #ifdef CONFIG_NUMA 2211 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2212 { 2213 struct inode *inode = file_inode(vma->vm_file); 2214 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2215 } 2216 2217 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2218 unsigned long addr) 2219 { 2220 struct inode *inode = file_inode(vma->vm_file); 2221 pgoff_t index; 2222 2223 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2224 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2225 } 2226 #endif 2227 2228 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2229 { 2230 struct inode *inode = file_inode(file); 2231 struct shmem_inode_info *info = SHMEM_I(inode); 2232 int retval = -ENOMEM; 2233 2234 /* 2235 * What serializes the accesses to info->flags? 2236 * ipc_lock_object() when called from shmctl_do_lock(), 2237 * no serialization needed when called from shm_destroy(). 2238 */ 2239 if (lock && !(info->flags & VM_LOCKED)) { 2240 if (!user_shm_lock(inode->i_size, user)) 2241 goto out_nomem; 2242 info->flags |= VM_LOCKED; 2243 mapping_set_unevictable(file->f_mapping); 2244 } 2245 if (!lock && (info->flags & VM_LOCKED) && user) { 2246 user_shm_unlock(inode->i_size, user); 2247 info->flags &= ~VM_LOCKED; 2248 mapping_clear_unevictable(file->f_mapping); 2249 } 2250 retval = 0; 2251 2252 out_nomem: 2253 return retval; 2254 } 2255 2256 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2257 { 2258 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2259 2260 if (info->seals & F_SEAL_FUTURE_WRITE) { 2261 /* 2262 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2263 * "future write" seal active. 2264 */ 2265 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2266 return -EPERM; 2267 2268 /* 2269 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2270 * MAP_SHARED and read-only, take care to not allow mprotect to 2271 * revert protections on such mappings. Do this only for shared 2272 * mappings. For private mappings, don't need to mask 2273 * VM_MAYWRITE as we still want them to be COW-writable. 2274 */ 2275 if (vma->vm_flags & VM_SHARED) 2276 vma->vm_flags &= ~(VM_MAYWRITE); 2277 } 2278 2279 /* arm64 - allow memory tagging on RAM-based files */ 2280 vma->vm_flags |= VM_MTE_ALLOWED; 2281 2282 file_accessed(file); 2283 vma->vm_ops = &shmem_vm_ops; 2284 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2285 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2286 (vma->vm_end & HPAGE_PMD_MASK)) { 2287 khugepaged_enter(vma, vma->vm_flags); 2288 } 2289 return 0; 2290 } 2291 2292 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2293 umode_t mode, dev_t dev, unsigned long flags) 2294 { 2295 struct inode *inode; 2296 struct shmem_inode_info *info; 2297 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2298 ino_t ino; 2299 2300 if (shmem_reserve_inode(sb, &ino)) 2301 return NULL; 2302 2303 inode = new_inode(sb); 2304 if (inode) { 2305 inode->i_ino = ino; 2306 inode_init_owner(inode, dir, mode); 2307 inode->i_blocks = 0; 2308 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2309 inode->i_generation = prandom_u32(); 2310 info = SHMEM_I(inode); 2311 memset(info, 0, (char *)inode - (char *)info); 2312 spin_lock_init(&info->lock); 2313 atomic_set(&info->stop_eviction, 0); 2314 info->seals = F_SEAL_SEAL; 2315 info->flags = flags & VM_NORESERVE; 2316 INIT_LIST_HEAD(&info->shrinklist); 2317 INIT_LIST_HEAD(&info->swaplist); 2318 simple_xattrs_init(&info->xattrs); 2319 cache_no_acl(inode); 2320 2321 switch (mode & S_IFMT) { 2322 default: 2323 inode->i_op = &shmem_special_inode_operations; 2324 init_special_inode(inode, mode, dev); 2325 break; 2326 case S_IFREG: 2327 inode->i_mapping->a_ops = &shmem_aops; 2328 inode->i_op = &shmem_inode_operations; 2329 inode->i_fop = &shmem_file_operations; 2330 mpol_shared_policy_init(&info->policy, 2331 shmem_get_sbmpol(sbinfo)); 2332 break; 2333 case S_IFDIR: 2334 inc_nlink(inode); 2335 /* Some things misbehave if size == 0 on a directory */ 2336 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2337 inode->i_op = &shmem_dir_inode_operations; 2338 inode->i_fop = &simple_dir_operations; 2339 break; 2340 case S_IFLNK: 2341 /* 2342 * Must not load anything in the rbtree, 2343 * mpol_free_shared_policy will not be called. 2344 */ 2345 mpol_shared_policy_init(&info->policy, NULL); 2346 break; 2347 } 2348 2349 lockdep_annotate_inode_mutex_key(inode); 2350 } else 2351 shmem_free_inode(sb); 2352 return inode; 2353 } 2354 2355 bool shmem_mapping(struct address_space *mapping) 2356 { 2357 return mapping->a_ops == &shmem_aops; 2358 } 2359 2360 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2361 pmd_t *dst_pmd, 2362 struct vm_area_struct *dst_vma, 2363 unsigned long dst_addr, 2364 unsigned long src_addr, 2365 bool zeropage, 2366 struct page **pagep) 2367 { 2368 struct inode *inode = file_inode(dst_vma->vm_file); 2369 struct shmem_inode_info *info = SHMEM_I(inode); 2370 struct address_space *mapping = inode->i_mapping; 2371 gfp_t gfp = mapping_gfp_mask(mapping); 2372 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2373 spinlock_t *ptl; 2374 void *page_kaddr; 2375 struct page *page; 2376 pte_t _dst_pte, *dst_pte; 2377 int ret; 2378 pgoff_t offset, max_off; 2379 2380 ret = -ENOMEM; 2381 if (!shmem_inode_acct_block(inode, 1)) 2382 goto out; 2383 2384 if (!*pagep) { 2385 page = shmem_alloc_page(gfp, info, pgoff); 2386 if (!page) 2387 goto out_unacct_blocks; 2388 2389 if (!zeropage) { /* mcopy_atomic */ 2390 page_kaddr = kmap_atomic(page); 2391 ret = copy_from_user(page_kaddr, 2392 (const void __user *)src_addr, 2393 PAGE_SIZE); 2394 kunmap_atomic(page_kaddr); 2395 2396 /* fallback to copy_from_user outside mmap_lock */ 2397 if (unlikely(ret)) { 2398 *pagep = page; 2399 shmem_inode_unacct_blocks(inode, 1); 2400 /* don't free the page */ 2401 return -ENOENT; 2402 } 2403 } else { /* mfill_zeropage_atomic */ 2404 clear_highpage(page); 2405 } 2406 } else { 2407 page = *pagep; 2408 *pagep = NULL; 2409 } 2410 2411 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2412 __SetPageLocked(page); 2413 __SetPageSwapBacked(page); 2414 __SetPageUptodate(page); 2415 2416 ret = -EFAULT; 2417 offset = linear_page_index(dst_vma, dst_addr); 2418 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2419 if (unlikely(offset >= max_off)) 2420 goto out_release; 2421 2422 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2423 gfp & GFP_RECLAIM_MASK, dst_mm); 2424 if (ret) 2425 goto out_release; 2426 2427 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2428 if (dst_vma->vm_flags & VM_WRITE) 2429 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2430 else { 2431 /* 2432 * We don't set the pte dirty if the vma has no 2433 * VM_WRITE permission, so mark the page dirty or it 2434 * could be freed from under us. We could do it 2435 * unconditionally before unlock_page(), but doing it 2436 * only if VM_WRITE is not set is faster. 2437 */ 2438 set_page_dirty(page); 2439 } 2440 2441 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2442 2443 ret = -EFAULT; 2444 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2445 if (unlikely(offset >= max_off)) 2446 goto out_release_unlock; 2447 2448 ret = -EEXIST; 2449 if (!pte_none(*dst_pte)) 2450 goto out_release_unlock; 2451 2452 lru_cache_add(page); 2453 2454 spin_lock_irq(&info->lock); 2455 info->alloced++; 2456 inode->i_blocks += BLOCKS_PER_PAGE; 2457 shmem_recalc_inode(inode); 2458 spin_unlock_irq(&info->lock); 2459 2460 inc_mm_counter(dst_mm, mm_counter_file(page)); 2461 page_add_file_rmap(page, false); 2462 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2463 2464 /* No need to invalidate - it was non-present before */ 2465 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2466 pte_unmap_unlock(dst_pte, ptl); 2467 unlock_page(page); 2468 ret = 0; 2469 out: 2470 return ret; 2471 out_release_unlock: 2472 pte_unmap_unlock(dst_pte, ptl); 2473 ClearPageDirty(page); 2474 delete_from_page_cache(page); 2475 out_release: 2476 unlock_page(page); 2477 put_page(page); 2478 out_unacct_blocks: 2479 shmem_inode_unacct_blocks(inode, 1); 2480 goto out; 2481 } 2482 2483 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2484 pmd_t *dst_pmd, 2485 struct vm_area_struct *dst_vma, 2486 unsigned long dst_addr, 2487 unsigned long src_addr, 2488 struct page **pagep) 2489 { 2490 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2491 dst_addr, src_addr, false, pagep); 2492 } 2493 2494 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2495 pmd_t *dst_pmd, 2496 struct vm_area_struct *dst_vma, 2497 unsigned long dst_addr) 2498 { 2499 struct page *page = NULL; 2500 2501 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2502 dst_addr, 0, true, &page); 2503 } 2504 2505 #ifdef CONFIG_TMPFS 2506 static const struct inode_operations shmem_symlink_inode_operations; 2507 static const struct inode_operations shmem_short_symlink_operations; 2508 2509 #ifdef CONFIG_TMPFS_XATTR 2510 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2511 #else 2512 #define shmem_initxattrs NULL 2513 #endif 2514 2515 static int 2516 shmem_write_begin(struct file *file, struct address_space *mapping, 2517 loff_t pos, unsigned len, unsigned flags, 2518 struct page **pagep, void **fsdata) 2519 { 2520 struct inode *inode = mapping->host; 2521 struct shmem_inode_info *info = SHMEM_I(inode); 2522 pgoff_t index = pos >> PAGE_SHIFT; 2523 2524 /* i_mutex is held by caller */ 2525 if (unlikely(info->seals & (F_SEAL_GROW | 2526 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2527 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2528 return -EPERM; 2529 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2530 return -EPERM; 2531 } 2532 2533 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2534 } 2535 2536 static int 2537 shmem_write_end(struct file *file, struct address_space *mapping, 2538 loff_t pos, unsigned len, unsigned copied, 2539 struct page *page, void *fsdata) 2540 { 2541 struct inode *inode = mapping->host; 2542 2543 if (pos + copied > inode->i_size) 2544 i_size_write(inode, pos + copied); 2545 2546 if (!PageUptodate(page)) { 2547 struct page *head = compound_head(page); 2548 if (PageTransCompound(page)) { 2549 int i; 2550 2551 for (i = 0; i < HPAGE_PMD_NR; i++) { 2552 if (head + i == page) 2553 continue; 2554 clear_highpage(head + i); 2555 flush_dcache_page(head + i); 2556 } 2557 } 2558 if (copied < PAGE_SIZE) { 2559 unsigned from = pos & (PAGE_SIZE - 1); 2560 zero_user_segments(page, 0, from, 2561 from + copied, PAGE_SIZE); 2562 } 2563 SetPageUptodate(head); 2564 } 2565 set_page_dirty(page); 2566 unlock_page(page); 2567 put_page(page); 2568 2569 return copied; 2570 } 2571 2572 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2573 { 2574 struct file *file = iocb->ki_filp; 2575 struct inode *inode = file_inode(file); 2576 struct address_space *mapping = inode->i_mapping; 2577 pgoff_t index; 2578 unsigned long offset; 2579 enum sgp_type sgp = SGP_READ; 2580 int error = 0; 2581 ssize_t retval = 0; 2582 loff_t *ppos = &iocb->ki_pos; 2583 2584 /* 2585 * Might this read be for a stacking filesystem? Then when reading 2586 * holes of a sparse file, we actually need to allocate those pages, 2587 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2588 */ 2589 if (!iter_is_iovec(to)) 2590 sgp = SGP_CACHE; 2591 2592 index = *ppos >> PAGE_SHIFT; 2593 offset = *ppos & ~PAGE_MASK; 2594 2595 for (;;) { 2596 struct page *page = NULL; 2597 pgoff_t end_index; 2598 unsigned long nr, ret; 2599 loff_t i_size = i_size_read(inode); 2600 2601 end_index = i_size >> PAGE_SHIFT; 2602 if (index > end_index) 2603 break; 2604 if (index == end_index) { 2605 nr = i_size & ~PAGE_MASK; 2606 if (nr <= offset) 2607 break; 2608 } 2609 2610 error = shmem_getpage(inode, index, &page, sgp); 2611 if (error) { 2612 if (error == -EINVAL) 2613 error = 0; 2614 break; 2615 } 2616 if (page) { 2617 if (sgp == SGP_CACHE) 2618 set_page_dirty(page); 2619 unlock_page(page); 2620 } 2621 2622 /* 2623 * We must evaluate after, since reads (unlike writes) 2624 * are called without i_mutex protection against truncate 2625 */ 2626 nr = PAGE_SIZE; 2627 i_size = i_size_read(inode); 2628 end_index = i_size >> PAGE_SHIFT; 2629 if (index == end_index) { 2630 nr = i_size & ~PAGE_MASK; 2631 if (nr <= offset) { 2632 if (page) 2633 put_page(page); 2634 break; 2635 } 2636 } 2637 nr -= offset; 2638 2639 if (page) { 2640 /* 2641 * If users can be writing to this page using arbitrary 2642 * virtual addresses, take care about potential aliasing 2643 * before reading the page on the kernel side. 2644 */ 2645 if (mapping_writably_mapped(mapping)) 2646 flush_dcache_page(page); 2647 /* 2648 * Mark the page accessed if we read the beginning. 2649 */ 2650 if (!offset) 2651 mark_page_accessed(page); 2652 } else { 2653 page = ZERO_PAGE(0); 2654 get_page(page); 2655 } 2656 2657 /* 2658 * Ok, we have the page, and it's up-to-date, so 2659 * now we can copy it to user space... 2660 */ 2661 ret = copy_page_to_iter(page, offset, nr, to); 2662 retval += ret; 2663 offset += ret; 2664 index += offset >> PAGE_SHIFT; 2665 offset &= ~PAGE_MASK; 2666 2667 put_page(page); 2668 if (!iov_iter_count(to)) 2669 break; 2670 if (ret < nr) { 2671 error = -EFAULT; 2672 break; 2673 } 2674 cond_resched(); 2675 } 2676 2677 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2678 file_accessed(file); 2679 return retval ? retval : error; 2680 } 2681 2682 /* 2683 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2684 */ 2685 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2686 pgoff_t index, pgoff_t end, int whence) 2687 { 2688 struct page *page; 2689 struct pagevec pvec; 2690 pgoff_t indices[PAGEVEC_SIZE]; 2691 bool done = false; 2692 int i; 2693 2694 pagevec_init(&pvec); 2695 pvec.nr = 1; /* start small: we may be there already */ 2696 while (!done) { 2697 pvec.nr = find_get_entries(mapping, index, 2698 pvec.nr, pvec.pages, indices); 2699 if (!pvec.nr) { 2700 if (whence == SEEK_DATA) 2701 index = end; 2702 break; 2703 } 2704 for (i = 0; i < pvec.nr; i++, index++) { 2705 if (index < indices[i]) { 2706 if (whence == SEEK_HOLE) { 2707 done = true; 2708 break; 2709 } 2710 index = indices[i]; 2711 } 2712 page = pvec.pages[i]; 2713 if (page && !xa_is_value(page)) { 2714 if (!PageUptodate(page)) 2715 page = NULL; 2716 } 2717 if (index >= end || 2718 (page && whence == SEEK_DATA) || 2719 (!page && whence == SEEK_HOLE)) { 2720 done = true; 2721 break; 2722 } 2723 } 2724 pagevec_remove_exceptionals(&pvec); 2725 pagevec_release(&pvec); 2726 pvec.nr = PAGEVEC_SIZE; 2727 cond_resched(); 2728 } 2729 return index; 2730 } 2731 2732 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2733 { 2734 struct address_space *mapping = file->f_mapping; 2735 struct inode *inode = mapping->host; 2736 pgoff_t start, end; 2737 loff_t new_offset; 2738 2739 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2740 return generic_file_llseek_size(file, offset, whence, 2741 MAX_LFS_FILESIZE, i_size_read(inode)); 2742 inode_lock(inode); 2743 /* We're holding i_mutex so we can access i_size directly */ 2744 2745 if (offset < 0 || offset >= inode->i_size) 2746 offset = -ENXIO; 2747 else { 2748 start = offset >> PAGE_SHIFT; 2749 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2750 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2751 new_offset <<= PAGE_SHIFT; 2752 if (new_offset > offset) { 2753 if (new_offset < inode->i_size) 2754 offset = new_offset; 2755 else if (whence == SEEK_DATA) 2756 offset = -ENXIO; 2757 else 2758 offset = inode->i_size; 2759 } 2760 } 2761 2762 if (offset >= 0) 2763 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2764 inode_unlock(inode); 2765 return offset; 2766 } 2767 2768 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2769 loff_t len) 2770 { 2771 struct inode *inode = file_inode(file); 2772 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2773 struct shmem_inode_info *info = SHMEM_I(inode); 2774 struct shmem_falloc shmem_falloc; 2775 pgoff_t start, index, end; 2776 int error; 2777 2778 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2779 return -EOPNOTSUPP; 2780 2781 inode_lock(inode); 2782 2783 if (mode & FALLOC_FL_PUNCH_HOLE) { 2784 struct address_space *mapping = file->f_mapping; 2785 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2786 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2787 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2788 2789 /* protected by i_mutex */ 2790 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2791 error = -EPERM; 2792 goto out; 2793 } 2794 2795 shmem_falloc.waitq = &shmem_falloc_waitq; 2796 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2797 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2798 spin_lock(&inode->i_lock); 2799 inode->i_private = &shmem_falloc; 2800 spin_unlock(&inode->i_lock); 2801 2802 if ((u64)unmap_end > (u64)unmap_start) 2803 unmap_mapping_range(mapping, unmap_start, 2804 1 + unmap_end - unmap_start, 0); 2805 shmem_truncate_range(inode, offset, offset + len - 1); 2806 /* No need to unmap again: hole-punching leaves COWed pages */ 2807 2808 spin_lock(&inode->i_lock); 2809 inode->i_private = NULL; 2810 wake_up_all(&shmem_falloc_waitq); 2811 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2812 spin_unlock(&inode->i_lock); 2813 error = 0; 2814 goto out; 2815 } 2816 2817 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2818 error = inode_newsize_ok(inode, offset + len); 2819 if (error) 2820 goto out; 2821 2822 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2823 error = -EPERM; 2824 goto out; 2825 } 2826 2827 start = offset >> PAGE_SHIFT; 2828 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2829 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2830 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2831 error = -ENOSPC; 2832 goto out; 2833 } 2834 2835 shmem_falloc.waitq = NULL; 2836 shmem_falloc.start = start; 2837 shmem_falloc.next = start; 2838 shmem_falloc.nr_falloced = 0; 2839 shmem_falloc.nr_unswapped = 0; 2840 spin_lock(&inode->i_lock); 2841 inode->i_private = &shmem_falloc; 2842 spin_unlock(&inode->i_lock); 2843 2844 for (index = start; index < end; index++) { 2845 struct page *page; 2846 2847 /* 2848 * Good, the fallocate(2) manpage permits EINTR: we may have 2849 * been interrupted because we are using up too much memory. 2850 */ 2851 if (signal_pending(current)) 2852 error = -EINTR; 2853 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2854 error = -ENOMEM; 2855 else 2856 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2857 if (error) { 2858 /* Remove the !PageUptodate pages we added */ 2859 if (index > start) { 2860 shmem_undo_range(inode, 2861 (loff_t)start << PAGE_SHIFT, 2862 ((loff_t)index << PAGE_SHIFT) - 1, true); 2863 } 2864 goto undone; 2865 } 2866 2867 /* 2868 * Inform shmem_writepage() how far we have reached. 2869 * No need for lock or barrier: we have the page lock. 2870 */ 2871 shmem_falloc.next++; 2872 if (!PageUptodate(page)) 2873 shmem_falloc.nr_falloced++; 2874 2875 /* 2876 * If !PageUptodate, leave it that way so that freeable pages 2877 * can be recognized if we need to rollback on error later. 2878 * But set_page_dirty so that memory pressure will swap rather 2879 * than free the pages we are allocating (and SGP_CACHE pages 2880 * might still be clean: we now need to mark those dirty too). 2881 */ 2882 set_page_dirty(page); 2883 unlock_page(page); 2884 put_page(page); 2885 cond_resched(); 2886 } 2887 2888 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2889 i_size_write(inode, offset + len); 2890 inode->i_ctime = current_time(inode); 2891 undone: 2892 spin_lock(&inode->i_lock); 2893 inode->i_private = NULL; 2894 spin_unlock(&inode->i_lock); 2895 out: 2896 inode_unlock(inode); 2897 return error; 2898 } 2899 2900 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2901 { 2902 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2903 2904 buf->f_type = TMPFS_MAGIC; 2905 buf->f_bsize = PAGE_SIZE; 2906 buf->f_namelen = NAME_MAX; 2907 if (sbinfo->max_blocks) { 2908 buf->f_blocks = sbinfo->max_blocks; 2909 buf->f_bavail = 2910 buf->f_bfree = sbinfo->max_blocks - 2911 percpu_counter_sum(&sbinfo->used_blocks); 2912 } 2913 if (sbinfo->max_inodes) { 2914 buf->f_files = sbinfo->max_inodes; 2915 buf->f_ffree = sbinfo->free_inodes; 2916 } 2917 /* else leave those fields 0 like simple_statfs */ 2918 return 0; 2919 } 2920 2921 /* 2922 * File creation. Allocate an inode, and we're done.. 2923 */ 2924 static int 2925 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2926 { 2927 struct inode *inode; 2928 int error = -ENOSPC; 2929 2930 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2931 if (inode) { 2932 error = simple_acl_create(dir, inode); 2933 if (error) 2934 goto out_iput; 2935 error = security_inode_init_security(inode, dir, 2936 &dentry->d_name, 2937 shmem_initxattrs, NULL); 2938 if (error && error != -EOPNOTSUPP) 2939 goto out_iput; 2940 2941 error = 0; 2942 dir->i_size += BOGO_DIRENT_SIZE; 2943 dir->i_ctime = dir->i_mtime = current_time(dir); 2944 d_instantiate(dentry, inode); 2945 dget(dentry); /* Extra count - pin the dentry in core */ 2946 } 2947 return error; 2948 out_iput: 2949 iput(inode); 2950 return error; 2951 } 2952 2953 static int 2954 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2955 { 2956 struct inode *inode; 2957 int error = -ENOSPC; 2958 2959 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2960 if (inode) { 2961 error = security_inode_init_security(inode, dir, 2962 NULL, 2963 shmem_initxattrs, NULL); 2964 if (error && error != -EOPNOTSUPP) 2965 goto out_iput; 2966 error = simple_acl_create(dir, inode); 2967 if (error) 2968 goto out_iput; 2969 d_tmpfile(dentry, inode); 2970 } 2971 return error; 2972 out_iput: 2973 iput(inode); 2974 return error; 2975 } 2976 2977 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2978 { 2979 int error; 2980 2981 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2982 return error; 2983 inc_nlink(dir); 2984 return 0; 2985 } 2986 2987 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2988 bool excl) 2989 { 2990 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2991 } 2992 2993 /* 2994 * Link a file.. 2995 */ 2996 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2997 { 2998 struct inode *inode = d_inode(old_dentry); 2999 int ret = 0; 3000 3001 /* 3002 * No ordinary (disk based) filesystem counts links as inodes; 3003 * but each new link needs a new dentry, pinning lowmem, and 3004 * tmpfs dentries cannot be pruned until they are unlinked. 3005 * But if an O_TMPFILE file is linked into the tmpfs, the 3006 * first link must skip that, to get the accounting right. 3007 */ 3008 if (inode->i_nlink) { 3009 ret = shmem_reserve_inode(inode->i_sb, NULL); 3010 if (ret) 3011 goto out; 3012 } 3013 3014 dir->i_size += BOGO_DIRENT_SIZE; 3015 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3016 inc_nlink(inode); 3017 ihold(inode); /* New dentry reference */ 3018 dget(dentry); /* Extra pinning count for the created dentry */ 3019 d_instantiate(dentry, inode); 3020 out: 3021 return ret; 3022 } 3023 3024 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3025 { 3026 struct inode *inode = d_inode(dentry); 3027 3028 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3029 shmem_free_inode(inode->i_sb); 3030 3031 dir->i_size -= BOGO_DIRENT_SIZE; 3032 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3033 drop_nlink(inode); 3034 dput(dentry); /* Undo the count from "create" - this does all the work */ 3035 return 0; 3036 } 3037 3038 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3039 { 3040 if (!simple_empty(dentry)) 3041 return -ENOTEMPTY; 3042 3043 drop_nlink(d_inode(dentry)); 3044 drop_nlink(dir); 3045 return shmem_unlink(dir, dentry); 3046 } 3047 3048 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3049 { 3050 bool old_is_dir = d_is_dir(old_dentry); 3051 bool new_is_dir = d_is_dir(new_dentry); 3052 3053 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3054 if (old_is_dir) { 3055 drop_nlink(old_dir); 3056 inc_nlink(new_dir); 3057 } else { 3058 drop_nlink(new_dir); 3059 inc_nlink(old_dir); 3060 } 3061 } 3062 old_dir->i_ctime = old_dir->i_mtime = 3063 new_dir->i_ctime = new_dir->i_mtime = 3064 d_inode(old_dentry)->i_ctime = 3065 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3066 3067 return 0; 3068 } 3069 3070 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3071 { 3072 struct dentry *whiteout; 3073 int error; 3074 3075 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3076 if (!whiteout) 3077 return -ENOMEM; 3078 3079 error = shmem_mknod(old_dir, whiteout, 3080 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3081 dput(whiteout); 3082 if (error) 3083 return error; 3084 3085 /* 3086 * Cheat and hash the whiteout while the old dentry is still in 3087 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3088 * 3089 * d_lookup() will consistently find one of them at this point, 3090 * not sure which one, but that isn't even important. 3091 */ 3092 d_rehash(whiteout); 3093 return 0; 3094 } 3095 3096 /* 3097 * The VFS layer already does all the dentry stuff for rename, 3098 * we just have to decrement the usage count for the target if 3099 * it exists so that the VFS layer correctly free's it when it 3100 * gets overwritten. 3101 */ 3102 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3103 { 3104 struct inode *inode = d_inode(old_dentry); 3105 int they_are_dirs = S_ISDIR(inode->i_mode); 3106 3107 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3108 return -EINVAL; 3109 3110 if (flags & RENAME_EXCHANGE) 3111 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3112 3113 if (!simple_empty(new_dentry)) 3114 return -ENOTEMPTY; 3115 3116 if (flags & RENAME_WHITEOUT) { 3117 int error; 3118 3119 error = shmem_whiteout(old_dir, old_dentry); 3120 if (error) 3121 return error; 3122 } 3123 3124 if (d_really_is_positive(new_dentry)) { 3125 (void) shmem_unlink(new_dir, new_dentry); 3126 if (they_are_dirs) { 3127 drop_nlink(d_inode(new_dentry)); 3128 drop_nlink(old_dir); 3129 } 3130 } else if (they_are_dirs) { 3131 drop_nlink(old_dir); 3132 inc_nlink(new_dir); 3133 } 3134 3135 old_dir->i_size -= BOGO_DIRENT_SIZE; 3136 new_dir->i_size += BOGO_DIRENT_SIZE; 3137 old_dir->i_ctime = old_dir->i_mtime = 3138 new_dir->i_ctime = new_dir->i_mtime = 3139 inode->i_ctime = current_time(old_dir); 3140 return 0; 3141 } 3142 3143 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3144 { 3145 int error; 3146 int len; 3147 struct inode *inode; 3148 struct page *page; 3149 3150 len = strlen(symname) + 1; 3151 if (len > PAGE_SIZE) 3152 return -ENAMETOOLONG; 3153 3154 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3155 VM_NORESERVE); 3156 if (!inode) 3157 return -ENOSPC; 3158 3159 error = security_inode_init_security(inode, dir, &dentry->d_name, 3160 shmem_initxattrs, NULL); 3161 if (error && error != -EOPNOTSUPP) { 3162 iput(inode); 3163 return error; 3164 } 3165 3166 inode->i_size = len-1; 3167 if (len <= SHORT_SYMLINK_LEN) { 3168 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3169 if (!inode->i_link) { 3170 iput(inode); 3171 return -ENOMEM; 3172 } 3173 inode->i_op = &shmem_short_symlink_operations; 3174 } else { 3175 inode_nohighmem(inode); 3176 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3177 if (error) { 3178 iput(inode); 3179 return error; 3180 } 3181 inode->i_mapping->a_ops = &shmem_aops; 3182 inode->i_op = &shmem_symlink_inode_operations; 3183 memcpy(page_address(page), symname, len); 3184 SetPageUptodate(page); 3185 set_page_dirty(page); 3186 unlock_page(page); 3187 put_page(page); 3188 } 3189 dir->i_size += BOGO_DIRENT_SIZE; 3190 dir->i_ctime = dir->i_mtime = current_time(dir); 3191 d_instantiate(dentry, inode); 3192 dget(dentry); 3193 return 0; 3194 } 3195 3196 static void shmem_put_link(void *arg) 3197 { 3198 mark_page_accessed(arg); 3199 put_page(arg); 3200 } 3201 3202 static const char *shmem_get_link(struct dentry *dentry, 3203 struct inode *inode, 3204 struct delayed_call *done) 3205 { 3206 struct page *page = NULL; 3207 int error; 3208 if (!dentry) { 3209 page = find_get_page(inode->i_mapping, 0); 3210 if (!page) 3211 return ERR_PTR(-ECHILD); 3212 if (!PageUptodate(page)) { 3213 put_page(page); 3214 return ERR_PTR(-ECHILD); 3215 } 3216 } else { 3217 error = shmem_getpage(inode, 0, &page, SGP_READ); 3218 if (error) 3219 return ERR_PTR(error); 3220 unlock_page(page); 3221 } 3222 set_delayed_call(done, shmem_put_link, page); 3223 return page_address(page); 3224 } 3225 3226 #ifdef CONFIG_TMPFS_XATTR 3227 /* 3228 * Superblocks without xattr inode operations may get some security.* xattr 3229 * support from the LSM "for free". As soon as we have any other xattrs 3230 * like ACLs, we also need to implement the security.* handlers at 3231 * filesystem level, though. 3232 */ 3233 3234 /* 3235 * Callback for security_inode_init_security() for acquiring xattrs. 3236 */ 3237 static int shmem_initxattrs(struct inode *inode, 3238 const struct xattr *xattr_array, 3239 void *fs_info) 3240 { 3241 struct shmem_inode_info *info = SHMEM_I(inode); 3242 const struct xattr *xattr; 3243 struct simple_xattr *new_xattr; 3244 size_t len; 3245 3246 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3247 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3248 if (!new_xattr) 3249 return -ENOMEM; 3250 3251 len = strlen(xattr->name) + 1; 3252 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3253 GFP_KERNEL); 3254 if (!new_xattr->name) { 3255 kvfree(new_xattr); 3256 return -ENOMEM; 3257 } 3258 3259 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3260 XATTR_SECURITY_PREFIX_LEN); 3261 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3262 xattr->name, len); 3263 3264 simple_xattr_list_add(&info->xattrs, new_xattr); 3265 } 3266 3267 return 0; 3268 } 3269 3270 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3271 struct dentry *unused, struct inode *inode, 3272 const char *name, void *buffer, size_t size) 3273 { 3274 struct shmem_inode_info *info = SHMEM_I(inode); 3275 3276 name = xattr_full_name(handler, name); 3277 return simple_xattr_get(&info->xattrs, name, buffer, size); 3278 } 3279 3280 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3281 struct dentry *unused, struct inode *inode, 3282 const char *name, const void *value, 3283 size_t size, int flags) 3284 { 3285 struct shmem_inode_info *info = SHMEM_I(inode); 3286 3287 name = xattr_full_name(handler, name); 3288 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3289 } 3290 3291 static const struct xattr_handler shmem_security_xattr_handler = { 3292 .prefix = XATTR_SECURITY_PREFIX, 3293 .get = shmem_xattr_handler_get, 3294 .set = shmem_xattr_handler_set, 3295 }; 3296 3297 static const struct xattr_handler shmem_trusted_xattr_handler = { 3298 .prefix = XATTR_TRUSTED_PREFIX, 3299 .get = shmem_xattr_handler_get, 3300 .set = shmem_xattr_handler_set, 3301 }; 3302 3303 static const struct xattr_handler *shmem_xattr_handlers[] = { 3304 #ifdef CONFIG_TMPFS_POSIX_ACL 3305 &posix_acl_access_xattr_handler, 3306 &posix_acl_default_xattr_handler, 3307 #endif 3308 &shmem_security_xattr_handler, 3309 &shmem_trusted_xattr_handler, 3310 NULL 3311 }; 3312 3313 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3314 { 3315 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3316 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3317 } 3318 #endif /* CONFIG_TMPFS_XATTR */ 3319 3320 static const struct inode_operations shmem_short_symlink_operations = { 3321 .get_link = simple_get_link, 3322 #ifdef CONFIG_TMPFS_XATTR 3323 .listxattr = shmem_listxattr, 3324 #endif 3325 }; 3326 3327 static const struct inode_operations shmem_symlink_inode_operations = { 3328 .get_link = shmem_get_link, 3329 #ifdef CONFIG_TMPFS_XATTR 3330 .listxattr = shmem_listxattr, 3331 #endif 3332 }; 3333 3334 static struct dentry *shmem_get_parent(struct dentry *child) 3335 { 3336 return ERR_PTR(-ESTALE); 3337 } 3338 3339 static int shmem_match(struct inode *ino, void *vfh) 3340 { 3341 __u32 *fh = vfh; 3342 __u64 inum = fh[2]; 3343 inum = (inum << 32) | fh[1]; 3344 return ino->i_ino == inum && fh[0] == ino->i_generation; 3345 } 3346 3347 /* Find any alias of inode, but prefer a hashed alias */ 3348 static struct dentry *shmem_find_alias(struct inode *inode) 3349 { 3350 struct dentry *alias = d_find_alias(inode); 3351 3352 return alias ?: d_find_any_alias(inode); 3353 } 3354 3355 3356 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3357 struct fid *fid, int fh_len, int fh_type) 3358 { 3359 struct inode *inode; 3360 struct dentry *dentry = NULL; 3361 u64 inum; 3362 3363 if (fh_len < 3) 3364 return NULL; 3365 3366 inum = fid->raw[2]; 3367 inum = (inum << 32) | fid->raw[1]; 3368 3369 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3370 shmem_match, fid->raw); 3371 if (inode) { 3372 dentry = shmem_find_alias(inode); 3373 iput(inode); 3374 } 3375 3376 return dentry; 3377 } 3378 3379 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3380 struct inode *parent) 3381 { 3382 if (*len < 3) { 3383 *len = 3; 3384 return FILEID_INVALID; 3385 } 3386 3387 if (inode_unhashed(inode)) { 3388 /* Unfortunately insert_inode_hash is not idempotent, 3389 * so as we hash inodes here rather than at creation 3390 * time, we need a lock to ensure we only try 3391 * to do it once 3392 */ 3393 static DEFINE_SPINLOCK(lock); 3394 spin_lock(&lock); 3395 if (inode_unhashed(inode)) 3396 __insert_inode_hash(inode, 3397 inode->i_ino + inode->i_generation); 3398 spin_unlock(&lock); 3399 } 3400 3401 fh[0] = inode->i_generation; 3402 fh[1] = inode->i_ino; 3403 fh[2] = ((__u64)inode->i_ino) >> 32; 3404 3405 *len = 3; 3406 return 1; 3407 } 3408 3409 static const struct export_operations shmem_export_ops = { 3410 .get_parent = shmem_get_parent, 3411 .encode_fh = shmem_encode_fh, 3412 .fh_to_dentry = shmem_fh_to_dentry, 3413 }; 3414 3415 enum shmem_param { 3416 Opt_gid, 3417 Opt_huge, 3418 Opt_mode, 3419 Opt_mpol, 3420 Opt_nr_blocks, 3421 Opt_nr_inodes, 3422 Opt_size, 3423 Opt_uid, 3424 Opt_inode32, 3425 Opt_inode64, 3426 }; 3427 3428 static const struct constant_table shmem_param_enums_huge[] = { 3429 {"never", SHMEM_HUGE_NEVER }, 3430 {"always", SHMEM_HUGE_ALWAYS }, 3431 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3432 {"advise", SHMEM_HUGE_ADVISE }, 3433 {} 3434 }; 3435 3436 const struct fs_parameter_spec shmem_fs_parameters[] = { 3437 fsparam_u32 ("gid", Opt_gid), 3438 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3439 fsparam_u32oct("mode", Opt_mode), 3440 fsparam_string("mpol", Opt_mpol), 3441 fsparam_string("nr_blocks", Opt_nr_blocks), 3442 fsparam_string("nr_inodes", Opt_nr_inodes), 3443 fsparam_string("size", Opt_size), 3444 fsparam_u32 ("uid", Opt_uid), 3445 fsparam_flag ("inode32", Opt_inode32), 3446 fsparam_flag ("inode64", Opt_inode64), 3447 {} 3448 }; 3449 3450 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3451 { 3452 struct shmem_options *ctx = fc->fs_private; 3453 struct fs_parse_result result; 3454 unsigned long long size; 3455 char *rest; 3456 int opt; 3457 3458 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3459 if (opt < 0) 3460 return opt; 3461 3462 switch (opt) { 3463 case Opt_size: 3464 size = memparse(param->string, &rest); 3465 if (*rest == '%') { 3466 size <<= PAGE_SHIFT; 3467 size *= totalram_pages(); 3468 do_div(size, 100); 3469 rest++; 3470 } 3471 if (*rest) 3472 goto bad_value; 3473 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3474 ctx->seen |= SHMEM_SEEN_BLOCKS; 3475 break; 3476 case Opt_nr_blocks: 3477 ctx->blocks = memparse(param->string, &rest); 3478 if (*rest) 3479 goto bad_value; 3480 ctx->seen |= SHMEM_SEEN_BLOCKS; 3481 break; 3482 case Opt_nr_inodes: 3483 ctx->inodes = memparse(param->string, &rest); 3484 if (*rest) 3485 goto bad_value; 3486 ctx->seen |= SHMEM_SEEN_INODES; 3487 break; 3488 case Opt_mode: 3489 ctx->mode = result.uint_32 & 07777; 3490 break; 3491 case Opt_uid: 3492 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3493 if (!uid_valid(ctx->uid)) 3494 goto bad_value; 3495 break; 3496 case Opt_gid: 3497 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3498 if (!gid_valid(ctx->gid)) 3499 goto bad_value; 3500 break; 3501 case Opt_huge: 3502 ctx->huge = result.uint_32; 3503 if (ctx->huge != SHMEM_HUGE_NEVER && 3504 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3505 has_transparent_hugepage())) 3506 goto unsupported_parameter; 3507 ctx->seen |= SHMEM_SEEN_HUGE; 3508 break; 3509 case Opt_mpol: 3510 if (IS_ENABLED(CONFIG_NUMA)) { 3511 mpol_put(ctx->mpol); 3512 ctx->mpol = NULL; 3513 if (mpol_parse_str(param->string, &ctx->mpol)) 3514 goto bad_value; 3515 break; 3516 } 3517 goto unsupported_parameter; 3518 case Opt_inode32: 3519 ctx->full_inums = false; 3520 ctx->seen |= SHMEM_SEEN_INUMS; 3521 break; 3522 case Opt_inode64: 3523 if (sizeof(ino_t) < 8) { 3524 return invalfc(fc, 3525 "Cannot use inode64 with <64bit inums in kernel\n"); 3526 } 3527 ctx->full_inums = true; 3528 ctx->seen |= SHMEM_SEEN_INUMS; 3529 break; 3530 } 3531 return 0; 3532 3533 unsupported_parameter: 3534 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3535 bad_value: 3536 return invalfc(fc, "Bad value for '%s'", param->key); 3537 } 3538 3539 static int shmem_parse_options(struct fs_context *fc, void *data) 3540 { 3541 char *options = data; 3542 3543 if (options) { 3544 int err = security_sb_eat_lsm_opts(options, &fc->security); 3545 if (err) 3546 return err; 3547 } 3548 3549 while (options != NULL) { 3550 char *this_char = options; 3551 for (;;) { 3552 /* 3553 * NUL-terminate this option: unfortunately, 3554 * mount options form a comma-separated list, 3555 * but mpol's nodelist may also contain commas. 3556 */ 3557 options = strchr(options, ','); 3558 if (options == NULL) 3559 break; 3560 options++; 3561 if (!isdigit(*options)) { 3562 options[-1] = '\0'; 3563 break; 3564 } 3565 } 3566 if (*this_char) { 3567 char *value = strchr(this_char,'='); 3568 size_t len = 0; 3569 int err; 3570 3571 if (value) { 3572 *value++ = '\0'; 3573 len = strlen(value); 3574 } 3575 err = vfs_parse_fs_string(fc, this_char, value, len); 3576 if (err < 0) 3577 return err; 3578 } 3579 } 3580 return 0; 3581 } 3582 3583 /* 3584 * Reconfigure a shmem filesystem. 3585 * 3586 * Note that we disallow change from limited->unlimited blocks/inodes while any 3587 * are in use; but we must separately disallow unlimited->limited, because in 3588 * that case we have no record of how much is already in use. 3589 */ 3590 static int shmem_reconfigure(struct fs_context *fc) 3591 { 3592 struct shmem_options *ctx = fc->fs_private; 3593 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3594 unsigned long inodes; 3595 const char *err; 3596 3597 spin_lock(&sbinfo->stat_lock); 3598 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3599 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3600 if (!sbinfo->max_blocks) { 3601 err = "Cannot retroactively limit size"; 3602 goto out; 3603 } 3604 if (percpu_counter_compare(&sbinfo->used_blocks, 3605 ctx->blocks) > 0) { 3606 err = "Too small a size for current use"; 3607 goto out; 3608 } 3609 } 3610 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3611 if (!sbinfo->max_inodes) { 3612 err = "Cannot retroactively limit inodes"; 3613 goto out; 3614 } 3615 if (ctx->inodes < inodes) { 3616 err = "Too few inodes for current use"; 3617 goto out; 3618 } 3619 } 3620 3621 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3622 sbinfo->next_ino > UINT_MAX) { 3623 err = "Current inum too high to switch to 32-bit inums"; 3624 goto out; 3625 } 3626 3627 if (ctx->seen & SHMEM_SEEN_HUGE) 3628 sbinfo->huge = ctx->huge; 3629 if (ctx->seen & SHMEM_SEEN_INUMS) 3630 sbinfo->full_inums = ctx->full_inums; 3631 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3632 sbinfo->max_blocks = ctx->blocks; 3633 if (ctx->seen & SHMEM_SEEN_INODES) { 3634 sbinfo->max_inodes = ctx->inodes; 3635 sbinfo->free_inodes = ctx->inodes - inodes; 3636 } 3637 3638 /* 3639 * Preserve previous mempolicy unless mpol remount option was specified. 3640 */ 3641 if (ctx->mpol) { 3642 mpol_put(sbinfo->mpol); 3643 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3644 ctx->mpol = NULL; 3645 } 3646 spin_unlock(&sbinfo->stat_lock); 3647 return 0; 3648 out: 3649 spin_unlock(&sbinfo->stat_lock); 3650 return invalfc(fc, "%s", err); 3651 } 3652 3653 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3654 { 3655 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3656 3657 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3658 seq_printf(seq, ",size=%luk", 3659 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3660 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3661 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3662 if (sbinfo->mode != (0777 | S_ISVTX)) 3663 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3664 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3665 seq_printf(seq, ",uid=%u", 3666 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3667 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3668 seq_printf(seq, ",gid=%u", 3669 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3670 3671 /* 3672 * Showing inode{64,32} might be useful even if it's the system default, 3673 * since then people don't have to resort to checking both here and 3674 * /proc/config.gz to confirm 64-bit inums were successfully applied 3675 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3676 * 3677 * We hide it when inode64 isn't the default and we are using 32-bit 3678 * inodes, since that probably just means the feature isn't even under 3679 * consideration. 3680 * 3681 * As such: 3682 * 3683 * +-----------------+-----------------+ 3684 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3685 * +------------------+-----------------+-----------------+ 3686 * | full_inums=true | show | show | 3687 * | full_inums=false | show | hide | 3688 * +------------------+-----------------+-----------------+ 3689 * 3690 */ 3691 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3692 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3694 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3695 if (sbinfo->huge) 3696 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3697 #endif 3698 shmem_show_mpol(seq, sbinfo->mpol); 3699 return 0; 3700 } 3701 3702 #endif /* CONFIG_TMPFS */ 3703 3704 static void shmem_put_super(struct super_block *sb) 3705 { 3706 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3707 3708 free_percpu(sbinfo->ino_batch); 3709 percpu_counter_destroy(&sbinfo->used_blocks); 3710 mpol_put(sbinfo->mpol); 3711 kfree(sbinfo); 3712 sb->s_fs_info = NULL; 3713 } 3714 3715 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3716 { 3717 struct shmem_options *ctx = fc->fs_private; 3718 struct inode *inode; 3719 struct shmem_sb_info *sbinfo; 3720 int err = -ENOMEM; 3721 3722 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3723 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3724 L1_CACHE_BYTES), GFP_KERNEL); 3725 if (!sbinfo) 3726 return -ENOMEM; 3727 3728 sb->s_fs_info = sbinfo; 3729 3730 #ifdef CONFIG_TMPFS 3731 /* 3732 * Per default we only allow half of the physical ram per 3733 * tmpfs instance, limiting inodes to one per page of lowmem; 3734 * but the internal instance is left unlimited. 3735 */ 3736 if (!(sb->s_flags & SB_KERNMOUNT)) { 3737 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3738 ctx->blocks = shmem_default_max_blocks(); 3739 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3740 ctx->inodes = shmem_default_max_inodes(); 3741 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3742 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3743 } else { 3744 sb->s_flags |= SB_NOUSER; 3745 } 3746 sb->s_export_op = &shmem_export_ops; 3747 sb->s_flags |= SB_NOSEC; 3748 #else 3749 sb->s_flags |= SB_NOUSER; 3750 #endif 3751 sbinfo->max_blocks = ctx->blocks; 3752 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3753 if (sb->s_flags & SB_KERNMOUNT) { 3754 sbinfo->ino_batch = alloc_percpu(ino_t); 3755 if (!sbinfo->ino_batch) 3756 goto failed; 3757 } 3758 sbinfo->uid = ctx->uid; 3759 sbinfo->gid = ctx->gid; 3760 sbinfo->full_inums = ctx->full_inums; 3761 sbinfo->mode = ctx->mode; 3762 sbinfo->huge = ctx->huge; 3763 sbinfo->mpol = ctx->mpol; 3764 ctx->mpol = NULL; 3765 3766 spin_lock_init(&sbinfo->stat_lock); 3767 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3768 goto failed; 3769 spin_lock_init(&sbinfo->shrinklist_lock); 3770 INIT_LIST_HEAD(&sbinfo->shrinklist); 3771 3772 sb->s_maxbytes = MAX_LFS_FILESIZE; 3773 sb->s_blocksize = PAGE_SIZE; 3774 sb->s_blocksize_bits = PAGE_SHIFT; 3775 sb->s_magic = TMPFS_MAGIC; 3776 sb->s_op = &shmem_ops; 3777 sb->s_time_gran = 1; 3778 #ifdef CONFIG_TMPFS_XATTR 3779 sb->s_xattr = shmem_xattr_handlers; 3780 #endif 3781 #ifdef CONFIG_TMPFS_POSIX_ACL 3782 sb->s_flags |= SB_POSIXACL; 3783 #endif 3784 uuid_gen(&sb->s_uuid); 3785 3786 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3787 if (!inode) 3788 goto failed; 3789 inode->i_uid = sbinfo->uid; 3790 inode->i_gid = sbinfo->gid; 3791 sb->s_root = d_make_root(inode); 3792 if (!sb->s_root) 3793 goto failed; 3794 return 0; 3795 3796 failed: 3797 shmem_put_super(sb); 3798 return err; 3799 } 3800 3801 static int shmem_get_tree(struct fs_context *fc) 3802 { 3803 return get_tree_nodev(fc, shmem_fill_super); 3804 } 3805 3806 static void shmem_free_fc(struct fs_context *fc) 3807 { 3808 struct shmem_options *ctx = fc->fs_private; 3809 3810 if (ctx) { 3811 mpol_put(ctx->mpol); 3812 kfree(ctx); 3813 } 3814 } 3815 3816 static const struct fs_context_operations shmem_fs_context_ops = { 3817 .free = shmem_free_fc, 3818 .get_tree = shmem_get_tree, 3819 #ifdef CONFIG_TMPFS 3820 .parse_monolithic = shmem_parse_options, 3821 .parse_param = shmem_parse_one, 3822 .reconfigure = shmem_reconfigure, 3823 #endif 3824 }; 3825 3826 static struct kmem_cache *shmem_inode_cachep; 3827 3828 static struct inode *shmem_alloc_inode(struct super_block *sb) 3829 { 3830 struct shmem_inode_info *info; 3831 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3832 if (!info) 3833 return NULL; 3834 return &info->vfs_inode; 3835 } 3836 3837 static void shmem_free_in_core_inode(struct inode *inode) 3838 { 3839 if (S_ISLNK(inode->i_mode)) 3840 kfree(inode->i_link); 3841 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3842 } 3843 3844 static void shmem_destroy_inode(struct inode *inode) 3845 { 3846 if (S_ISREG(inode->i_mode)) 3847 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3848 } 3849 3850 static void shmem_init_inode(void *foo) 3851 { 3852 struct shmem_inode_info *info = foo; 3853 inode_init_once(&info->vfs_inode); 3854 } 3855 3856 static void shmem_init_inodecache(void) 3857 { 3858 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3859 sizeof(struct shmem_inode_info), 3860 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3861 } 3862 3863 static void shmem_destroy_inodecache(void) 3864 { 3865 kmem_cache_destroy(shmem_inode_cachep); 3866 } 3867 3868 static const struct address_space_operations shmem_aops = { 3869 .writepage = shmem_writepage, 3870 .set_page_dirty = __set_page_dirty_no_writeback, 3871 #ifdef CONFIG_TMPFS 3872 .write_begin = shmem_write_begin, 3873 .write_end = shmem_write_end, 3874 #endif 3875 #ifdef CONFIG_MIGRATION 3876 .migratepage = migrate_page, 3877 #endif 3878 .error_remove_page = generic_error_remove_page, 3879 }; 3880 3881 static const struct file_operations shmem_file_operations = { 3882 .mmap = shmem_mmap, 3883 .get_unmapped_area = shmem_get_unmapped_area, 3884 #ifdef CONFIG_TMPFS 3885 .llseek = shmem_file_llseek, 3886 .read_iter = shmem_file_read_iter, 3887 .write_iter = generic_file_write_iter, 3888 .fsync = noop_fsync, 3889 .splice_read = generic_file_splice_read, 3890 .splice_write = iter_file_splice_write, 3891 .fallocate = shmem_fallocate, 3892 #endif 3893 }; 3894 3895 static const struct inode_operations shmem_inode_operations = { 3896 .getattr = shmem_getattr, 3897 .setattr = shmem_setattr, 3898 #ifdef CONFIG_TMPFS_XATTR 3899 .listxattr = shmem_listxattr, 3900 .set_acl = simple_set_acl, 3901 #endif 3902 }; 3903 3904 static const struct inode_operations shmem_dir_inode_operations = { 3905 #ifdef CONFIG_TMPFS 3906 .create = shmem_create, 3907 .lookup = simple_lookup, 3908 .link = shmem_link, 3909 .unlink = shmem_unlink, 3910 .symlink = shmem_symlink, 3911 .mkdir = shmem_mkdir, 3912 .rmdir = shmem_rmdir, 3913 .mknod = shmem_mknod, 3914 .rename = shmem_rename2, 3915 .tmpfile = shmem_tmpfile, 3916 #endif 3917 #ifdef CONFIG_TMPFS_XATTR 3918 .listxattr = shmem_listxattr, 3919 #endif 3920 #ifdef CONFIG_TMPFS_POSIX_ACL 3921 .setattr = shmem_setattr, 3922 .set_acl = simple_set_acl, 3923 #endif 3924 }; 3925 3926 static const struct inode_operations shmem_special_inode_operations = { 3927 #ifdef CONFIG_TMPFS_XATTR 3928 .listxattr = shmem_listxattr, 3929 #endif 3930 #ifdef CONFIG_TMPFS_POSIX_ACL 3931 .setattr = shmem_setattr, 3932 .set_acl = simple_set_acl, 3933 #endif 3934 }; 3935 3936 static const struct super_operations shmem_ops = { 3937 .alloc_inode = shmem_alloc_inode, 3938 .free_inode = shmem_free_in_core_inode, 3939 .destroy_inode = shmem_destroy_inode, 3940 #ifdef CONFIG_TMPFS 3941 .statfs = shmem_statfs, 3942 .show_options = shmem_show_options, 3943 #endif 3944 .evict_inode = shmem_evict_inode, 3945 .drop_inode = generic_delete_inode, 3946 .put_super = shmem_put_super, 3947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3948 .nr_cached_objects = shmem_unused_huge_count, 3949 .free_cached_objects = shmem_unused_huge_scan, 3950 #endif 3951 }; 3952 3953 static const struct vm_operations_struct shmem_vm_ops = { 3954 .fault = shmem_fault, 3955 .map_pages = filemap_map_pages, 3956 #ifdef CONFIG_NUMA 3957 .set_policy = shmem_set_policy, 3958 .get_policy = shmem_get_policy, 3959 #endif 3960 }; 3961 3962 int shmem_init_fs_context(struct fs_context *fc) 3963 { 3964 struct shmem_options *ctx; 3965 3966 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3967 if (!ctx) 3968 return -ENOMEM; 3969 3970 ctx->mode = 0777 | S_ISVTX; 3971 ctx->uid = current_fsuid(); 3972 ctx->gid = current_fsgid(); 3973 3974 fc->fs_private = ctx; 3975 fc->ops = &shmem_fs_context_ops; 3976 return 0; 3977 } 3978 3979 static struct file_system_type shmem_fs_type = { 3980 .owner = THIS_MODULE, 3981 .name = "tmpfs", 3982 .init_fs_context = shmem_init_fs_context, 3983 #ifdef CONFIG_TMPFS 3984 .parameters = shmem_fs_parameters, 3985 #endif 3986 .kill_sb = kill_litter_super, 3987 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT, 3988 }; 3989 3990 int __init shmem_init(void) 3991 { 3992 int error; 3993 3994 shmem_init_inodecache(); 3995 3996 error = register_filesystem(&shmem_fs_type); 3997 if (error) { 3998 pr_err("Could not register tmpfs\n"); 3999 goto out2; 4000 } 4001 4002 shm_mnt = kern_mount(&shmem_fs_type); 4003 if (IS_ERR(shm_mnt)) { 4004 error = PTR_ERR(shm_mnt); 4005 pr_err("Could not kern_mount tmpfs\n"); 4006 goto out1; 4007 } 4008 4009 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4010 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4011 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4012 else 4013 shmem_huge = 0; /* just in case it was patched */ 4014 #endif 4015 return 0; 4016 4017 out1: 4018 unregister_filesystem(&shmem_fs_type); 4019 out2: 4020 shmem_destroy_inodecache(); 4021 shm_mnt = ERR_PTR(error); 4022 return error; 4023 } 4024 4025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4026 static ssize_t shmem_enabled_show(struct kobject *kobj, 4027 struct kobj_attribute *attr, char *buf) 4028 { 4029 static const int values[] = { 4030 SHMEM_HUGE_ALWAYS, 4031 SHMEM_HUGE_WITHIN_SIZE, 4032 SHMEM_HUGE_ADVISE, 4033 SHMEM_HUGE_NEVER, 4034 SHMEM_HUGE_DENY, 4035 SHMEM_HUGE_FORCE, 4036 }; 4037 int i, count; 4038 4039 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 4040 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 4041 4042 count += sprintf(buf + count, fmt, 4043 shmem_format_huge(values[i])); 4044 } 4045 buf[count - 1] = '\n'; 4046 return count; 4047 } 4048 4049 static ssize_t shmem_enabled_store(struct kobject *kobj, 4050 struct kobj_attribute *attr, const char *buf, size_t count) 4051 { 4052 char tmp[16]; 4053 int huge; 4054 4055 if (count + 1 > sizeof(tmp)) 4056 return -EINVAL; 4057 memcpy(tmp, buf, count); 4058 tmp[count] = '\0'; 4059 if (count && tmp[count - 1] == '\n') 4060 tmp[count - 1] = '\0'; 4061 4062 huge = shmem_parse_huge(tmp); 4063 if (huge == -EINVAL) 4064 return -EINVAL; 4065 if (!has_transparent_hugepage() && 4066 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4067 return -EINVAL; 4068 4069 shmem_huge = huge; 4070 if (shmem_huge > SHMEM_HUGE_DENY) 4071 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4072 return count; 4073 } 4074 4075 struct kobj_attribute shmem_enabled_attr = 4076 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4078 4079 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4080 bool shmem_huge_enabled(struct vm_area_struct *vma) 4081 { 4082 struct inode *inode = file_inode(vma->vm_file); 4083 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4084 loff_t i_size; 4085 pgoff_t off; 4086 4087 if ((vma->vm_flags & VM_NOHUGEPAGE) || 4088 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 4089 return false; 4090 if (shmem_huge == SHMEM_HUGE_FORCE) 4091 return true; 4092 if (shmem_huge == SHMEM_HUGE_DENY) 4093 return false; 4094 switch (sbinfo->huge) { 4095 case SHMEM_HUGE_NEVER: 4096 return false; 4097 case SHMEM_HUGE_ALWAYS: 4098 return true; 4099 case SHMEM_HUGE_WITHIN_SIZE: 4100 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4101 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4102 if (i_size >= HPAGE_PMD_SIZE && 4103 i_size >> PAGE_SHIFT >= off) 4104 return true; 4105 fallthrough; 4106 case SHMEM_HUGE_ADVISE: 4107 /* TODO: implement fadvise() hints */ 4108 return (vma->vm_flags & VM_HUGEPAGE); 4109 default: 4110 VM_BUG_ON(1); 4111 return false; 4112 } 4113 } 4114 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4115 4116 #else /* !CONFIG_SHMEM */ 4117 4118 /* 4119 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4120 * 4121 * This is intended for small system where the benefits of the full 4122 * shmem code (swap-backed and resource-limited) are outweighed by 4123 * their complexity. On systems without swap this code should be 4124 * effectively equivalent, but much lighter weight. 4125 */ 4126 4127 static struct file_system_type shmem_fs_type = { 4128 .name = "tmpfs", 4129 .init_fs_context = ramfs_init_fs_context, 4130 .parameters = ramfs_fs_parameters, 4131 .kill_sb = kill_litter_super, 4132 .fs_flags = FS_USERNS_MOUNT, 4133 }; 4134 4135 int __init shmem_init(void) 4136 { 4137 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4138 4139 shm_mnt = kern_mount(&shmem_fs_type); 4140 BUG_ON(IS_ERR(shm_mnt)); 4141 4142 return 0; 4143 } 4144 4145 int shmem_unuse(unsigned int type, bool frontswap, 4146 unsigned long *fs_pages_to_unuse) 4147 { 4148 return 0; 4149 } 4150 4151 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4152 { 4153 return 0; 4154 } 4155 4156 void shmem_unlock_mapping(struct address_space *mapping) 4157 { 4158 } 4159 4160 #ifdef CONFIG_MMU 4161 unsigned long shmem_get_unmapped_area(struct file *file, 4162 unsigned long addr, unsigned long len, 4163 unsigned long pgoff, unsigned long flags) 4164 { 4165 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4166 } 4167 #endif 4168 4169 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4170 { 4171 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4172 } 4173 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4174 4175 #define shmem_vm_ops generic_file_vm_ops 4176 #define shmem_file_operations ramfs_file_operations 4177 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4178 #define shmem_acct_size(flags, size) 0 4179 #define shmem_unacct_size(flags, size) do {} while (0) 4180 4181 #endif /* CONFIG_SHMEM */ 4182 4183 /* common code */ 4184 4185 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4186 unsigned long flags, unsigned int i_flags) 4187 { 4188 struct inode *inode; 4189 struct file *res; 4190 4191 if (IS_ERR(mnt)) 4192 return ERR_CAST(mnt); 4193 4194 if (size < 0 || size > MAX_LFS_FILESIZE) 4195 return ERR_PTR(-EINVAL); 4196 4197 if (shmem_acct_size(flags, size)) 4198 return ERR_PTR(-ENOMEM); 4199 4200 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4201 flags); 4202 if (unlikely(!inode)) { 4203 shmem_unacct_size(flags, size); 4204 return ERR_PTR(-ENOSPC); 4205 } 4206 inode->i_flags |= i_flags; 4207 inode->i_size = size; 4208 clear_nlink(inode); /* It is unlinked */ 4209 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4210 if (!IS_ERR(res)) 4211 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4212 &shmem_file_operations); 4213 if (IS_ERR(res)) 4214 iput(inode); 4215 return res; 4216 } 4217 4218 /** 4219 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4220 * kernel internal. There will be NO LSM permission checks against the 4221 * underlying inode. So users of this interface must do LSM checks at a 4222 * higher layer. The users are the big_key and shm implementations. LSM 4223 * checks are provided at the key or shm level rather than the inode. 4224 * @name: name for dentry (to be seen in /proc/<pid>/maps 4225 * @size: size to be set for the file 4226 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4227 */ 4228 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4229 { 4230 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4231 } 4232 4233 /** 4234 * shmem_file_setup - get an unlinked file living in tmpfs 4235 * @name: name for dentry (to be seen in /proc/<pid>/maps 4236 * @size: size to be set for the file 4237 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4238 */ 4239 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4240 { 4241 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4242 } 4243 EXPORT_SYMBOL_GPL(shmem_file_setup); 4244 4245 /** 4246 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4247 * @mnt: the tmpfs mount where the file will be created 4248 * @name: name for dentry (to be seen in /proc/<pid>/maps 4249 * @size: size to be set for the file 4250 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4251 */ 4252 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4253 loff_t size, unsigned long flags) 4254 { 4255 return __shmem_file_setup(mnt, name, size, flags, 0); 4256 } 4257 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4258 4259 /** 4260 * shmem_zero_setup - setup a shared anonymous mapping 4261 * @vma: the vma to be mmapped is prepared by do_mmap 4262 */ 4263 int shmem_zero_setup(struct vm_area_struct *vma) 4264 { 4265 struct file *file; 4266 loff_t size = vma->vm_end - vma->vm_start; 4267 4268 /* 4269 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4270 * between XFS directory reading and selinux: since this file is only 4271 * accessible to the user through its mapping, use S_PRIVATE flag to 4272 * bypass file security, in the same way as shmem_kernel_file_setup(). 4273 */ 4274 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4275 if (IS_ERR(file)) 4276 return PTR_ERR(file); 4277 4278 if (vma->vm_file) 4279 fput(vma->vm_file); 4280 vma->vm_file = file; 4281 vma->vm_ops = &shmem_vm_ops; 4282 4283 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4284 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4285 (vma->vm_end & HPAGE_PMD_MASK)) { 4286 khugepaged_enter(vma, vma->vm_flags); 4287 } 4288 4289 return 0; 4290 } 4291 4292 /** 4293 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4294 * @mapping: the page's address_space 4295 * @index: the page index 4296 * @gfp: the page allocator flags to use if allocating 4297 * 4298 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4299 * with any new page allocations done using the specified allocation flags. 4300 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4301 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4302 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4303 * 4304 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4305 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4306 */ 4307 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4308 pgoff_t index, gfp_t gfp) 4309 { 4310 #ifdef CONFIG_SHMEM 4311 struct inode *inode = mapping->host; 4312 struct page *page; 4313 int error; 4314 4315 BUG_ON(mapping->a_ops != &shmem_aops); 4316 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4317 gfp, NULL, NULL, NULL); 4318 if (error) 4319 page = ERR_PTR(error); 4320 else 4321 unlock_page(page); 4322 return page; 4323 #else 4324 /* 4325 * The tiny !SHMEM case uses ramfs without swap 4326 */ 4327 return read_cache_page_gfp(mapping, index, gfp); 4328 #endif 4329 } 4330 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4331