xref: /openbmc/linux/mm/shmem.c (revision 827beb77)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123 
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 	return totalram_pages() / 2;
128 }
129 
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 	unsigned long nr_pages = totalram_pages();
133 
134 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137 
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 			     struct page **pagep, enum sgp_type sgp,
140 			     gfp_t gfp, struct vm_area_struct *vma,
141 			     vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 		struct page **pagep, enum sgp_type sgp,
144 		gfp_t gfp, struct vm_area_struct *vma,
145 		struct vm_fault *vmf, vm_fault_t *fault_type);
146 
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp)
149 {
150 	return shmem_getpage_gfp(inode, index, pagep, sgp,
151 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153 
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156 	return sb->s_fs_info;
157 }
158 
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167 	return (flags & VM_NORESERVE) ?
168 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170 
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173 	if (!(flags & VM_NORESERVE))
174 		vm_unacct_memory(VM_ACCT(size));
175 }
176 
177 static inline int shmem_reacct_size(unsigned long flags,
178 		loff_t oldsize, loff_t newsize)
179 {
180 	if (!(flags & VM_NORESERVE)) {
181 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 			return security_vm_enough_memory_mm(current->mm,
183 					VM_ACCT(newsize) - VM_ACCT(oldsize));
184 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 	}
187 	return 0;
188 }
189 
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198 	if (!(flags & VM_NORESERVE))
199 		return 0;
200 
201 	return security_vm_enough_memory_mm(current->mm,
202 			pages * VM_ACCT(PAGE_SIZE));
203 }
204 
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207 	if (flags & VM_NORESERVE)
208 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213 	struct shmem_inode_info *info = SHMEM_I(inode);
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return false;
218 
219 	if (sbinfo->max_blocks) {
220 		if (percpu_counter_compare(&sbinfo->used_blocks,
221 					   sbinfo->max_blocks - pages) > 0)
222 			goto unacct;
223 		percpu_counter_add(&sbinfo->used_blocks, pages);
224 	}
225 
226 	return true;
227 
228 unacct:
229 	shmem_unacct_blocks(info->flags, pages);
230 	return false;
231 }
232 
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237 
238 	if (sbinfo->max_blocks)
239 		percpu_counter_sub(&sbinfo->used_blocks, pages);
240 	shmem_unacct_blocks(info->flags, pages);
241 }
242 
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251 
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254 	return vma->vm_ops == &shmem_vm_ops;
255 }
256 
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259 
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273 	ino_t ino;
274 
275 	if (!(sb->s_flags & SB_KERNMOUNT)) {
276 		raw_spin_lock(&sbinfo->stat_lock);
277 		if (sbinfo->max_inodes) {
278 			if (!sbinfo->free_inodes) {
279 				raw_spin_unlock(&sbinfo->stat_lock);
280 				return -ENOSPC;
281 			}
282 			sbinfo->free_inodes--;
283 		}
284 		if (inop) {
285 			ino = sbinfo->next_ino++;
286 			if (unlikely(is_zero_ino(ino)))
287 				ino = sbinfo->next_ino++;
288 			if (unlikely(!sbinfo->full_inums &&
289 				     ino > UINT_MAX)) {
290 				/*
291 				 * Emulate get_next_ino uint wraparound for
292 				 * compatibility
293 				 */
294 				if (IS_ENABLED(CONFIG_64BIT))
295 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 						__func__, MINOR(sb->s_dev));
297 				sbinfo->next_ino = 1;
298 				ino = sbinfo->next_ino++;
299 			}
300 			*inop = ino;
301 		}
302 		raw_spin_unlock(&sbinfo->stat_lock);
303 	} else if (inop) {
304 		/*
305 		 * __shmem_file_setup, one of our callers, is lock-free: it
306 		 * doesn't hold stat_lock in shmem_reserve_inode since
307 		 * max_inodes is always 0, and is called from potentially
308 		 * unknown contexts. As such, use a per-cpu batched allocator
309 		 * which doesn't require the per-sb stat_lock unless we are at
310 		 * the batch boundary.
311 		 *
312 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 		 * shmem mounts are not exposed to userspace, so we don't need
314 		 * to worry about things like glibc compatibility.
315 		 */
316 		ino_t *next_ino;
317 
318 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 		ino = *next_ino;
320 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 			raw_spin_lock(&sbinfo->stat_lock);
322 			ino = sbinfo->next_ino;
323 			sbinfo->next_ino += SHMEM_INO_BATCH;
324 			raw_spin_unlock(&sbinfo->stat_lock);
325 			if (unlikely(is_zero_ino(ino)))
326 				ino++;
327 		}
328 		*inop = ino;
329 		*next_ino = ++ino;
330 		put_cpu();
331 	}
332 
333 	return 0;
334 }
335 
336 static void shmem_free_inode(struct super_block *sb)
337 {
338 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 	if (sbinfo->max_inodes) {
340 		raw_spin_lock(&sbinfo->stat_lock);
341 		sbinfo->free_inodes++;
342 		raw_spin_unlock(&sbinfo->stat_lock);
343 	}
344 }
345 
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360 	struct shmem_inode_info *info = SHMEM_I(inode);
361 	long freed;
362 
363 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 	if (freed > 0) {
365 		info->alloced -= freed;
366 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 		shmem_inode_unacct_blocks(inode, freed);
368 	}
369 }
370 
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373 	struct shmem_inode_info *info = SHMEM_I(inode);
374 	unsigned long flags;
375 
376 	if (!shmem_inode_acct_block(inode, pages))
377 		return false;
378 
379 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 	inode->i_mapping->nrpages += pages;
381 
382 	spin_lock_irqsave(&info->lock, flags);
383 	info->alloced += pages;
384 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 	shmem_recalc_inode(inode);
386 	spin_unlock_irqrestore(&info->lock, flags);
387 
388 	return true;
389 }
390 
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393 	struct shmem_inode_info *info = SHMEM_I(inode);
394 	unsigned long flags;
395 
396 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
397 
398 	spin_lock_irqsave(&info->lock, flags);
399 	info->alloced -= pages;
400 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 	shmem_recalc_inode(inode);
402 	spin_unlock_irqrestore(&info->lock, flags);
403 
404 	shmem_inode_unacct_blocks(inode, pages);
405 }
406 
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411 			pgoff_t index, void *expected, void *replacement)
412 {
413 	XA_STATE(xas, &mapping->i_pages, index);
414 	void *item;
415 
416 	VM_BUG_ON(!expected);
417 	VM_BUG_ON(!replacement);
418 	item = xas_load(&xas);
419 	if (item != expected)
420 		return -ENOENT;
421 	xas_store(&xas, replacement);
422 	return 0;
423 }
424 
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433 			       pgoff_t index, swp_entry_t swap)
434 {
435 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437 
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *	disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *	enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *	only allocate huge pages if the page will be fully within i_size,
447  *	also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *	only allocate huge pages if requested with fadvise()/madvise();
450  */
451 
452 #define SHMEM_HUGE_NEVER	0
453 #define SHMEM_HUGE_ALWAYS	1
454 #define SHMEM_HUGE_WITHIN_SIZE	2
455 #define SHMEM_HUGE_ADVISE	3
456 
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *	disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY		(-1)
468 #define SHMEM_HUGE_FORCE	(-2)
469 
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472 
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474 
475 bool shmem_is_huge(struct vm_area_struct *vma,
476 		   struct inode *inode, pgoff_t index)
477 {
478 	loff_t i_size;
479 
480 	if (shmem_huge == SHMEM_HUGE_DENY)
481 		return false;
482 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484 		return false;
485 	if (shmem_huge == SHMEM_HUGE_FORCE)
486 		return true;
487 
488 	switch (SHMEM_SB(inode->i_sb)->huge) {
489 	case SHMEM_HUGE_ALWAYS:
490 		return true;
491 	case SHMEM_HUGE_WITHIN_SIZE:
492 		index = round_up(index + 1, HPAGE_PMD_NR);
493 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
494 		if (i_size >> PAGE_SHIFT >= index)
495 			return true;
496 		fallthrough;
497 	case SHMEM_HUGE_ADVISE:
498 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
499 			return true;
500 		fallthrough;
501 	default:
502 		return false;
503 	}
504 }
505 
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509 	if (!strcmp(str, "never"))
510 		return SHMEM_HUGE_NEVER;
511 	if (!strcmp(str, "always"))
512 		return SHMEM_HUGE_ALWAYS;
513 	if (!strcmp(str, "within_size"))
514 		return SHMEM_HUGE_WITHIN_SIZE;
515 	if (!strcmp(str, "advise"))
516 		return SHMEM_HUGE_ADVISE;
517 	if (!strcmp(str, "deny"))
518 		return SHMEM_HUGE_DENY;
519 	if (!strcmp(str, "force"))
520 		return SHMEM_HUGE_FORCE;
521 	return -EINVAL;
522 }
523 #endif
524 
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528 	switch (huge) {
529 	case SHMEM_HUGE_NEVER:
530 		return "never";
531 	case SHMEM_HUGE_ALWAYS:
532 		return "always";
533 	case SHMEM_HUGE_WITHIN_SIZE:
534 		return "within_size";
535 	case SHMEM_HUGE_ADVISE:
536 		return "advise";
537 	case SHMEM_HUGE_DENY:
538 		return "deny";
539 	case SHMEM_HUGE_FORCE:
540 		return "force";
541 	default:
542 		VM_BUG_ON(1);
543 		return "bad_val";
544 	}
545 }
546 #endif
547 
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 		struct shrink_control *sc, unsigned long nr_to_split)
550 {
551 	LIST_HEAD(list), *pos, *next;
552 	LIST_HEAD(to_remove);
553 	struct inode *inode;
554 	struct shmem_inode_info *info;
555 	struct page *page;
556 	unsigned long batch = sc ? sc->nr_to_scan : 128;
557 	int removed = 0, split = 0;
558 
559 	if (list_empty(&sbinfo->shrinklist))
560 		return SHRINK_STOP;
561 
562 	spin_lock(&sbinfo->shrinklist_lock);
563 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
565 
566 		/* pin the inode */
567 		inode = igrab(&info->vfs_inode);
568 
569 		/* inode is about to be evicted */
570 		if (!inode) {
571 			list_del_init(&info->shrinklist);
572 			removed++;
573 			goto next;
574 		}
575 
576 		/* Check if there's anything to gain */
577 		if (round_up(inode->i_size, PAGE_SIZE) ==
578 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 			list_move(&info->shrinklist, &to_remove);
580 			removed++;
581 			goto next;
582 		}
583 
584 		list_move(&info->shrinklist, &list);
585 next:
586 		if (!--batch)
587 			break;
588 	}
589 	spin_unlock(&sbinfo->shrinklist_lock);
590 
591 	list_for_each_safe(pos, next, &to_remove) {
592 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 		inode = &info->vfs_inode;
594 		list_del_init(&info->shrinklist);
595 		iput(inode);
596 	}
597 
598 	list_for_each_safe(pos, next, &list) {
599 		int ret;
600 
601 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 		inode = &info->vfs_inode;
603 
604 		if (nr_to_split && split >= nr_to_split)
605 			goto leave;
606 
607 		page = find_get_page(inode->i_mapping,
608 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 		if (!page)
610 			goto drop;
611 
612 		/* No huge page at the end of the file: nothing to split */
613 		if (!PageTransHuge(page)) {
614 			put_page(page);
615 			goto drop;
616 		}
617 
618 		/*
619 		 * Leave the inode on the list if we failed to lock
620 		 * the page at this time.
621 		 *
622 		 * Waiting for the lock may lead to deadlock in the
623 		 * reclaim path.
624 		 */
625 		if (!trylock_page(page)) {
626 			put_page(page);
627 			goto leave;
628 		}
629 
630 		ret = split_huge_page(page);
631 		unlock_page(page);
632 		put_page(page);
633 
634 		/* If split failed leave the inode on the list */
635 		if (ret)
636 			goto leave;
637 
638 		split++;
639 drop:
640 		list_del_init(&info->shrinklist);
641 		removed++;
642 leave:
643 		iput(inode);
644 	}
645 
646 	spin_lock(&sbinfo->shrinklist_lock);
647 	list_splice_tail(&list, &sbinfo->shrinklist);
648 	sbinfo->shrinklist_len -= removed;
649 	spin_unlock(&sbinfo->shrinklist_lock);
650 
651 	return split;
652 }
653 
654 static long shmem_unused_huge_scan(struct super_block *sb,
655 		struct shrink_control *sc)
656 {
657 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658 
659 	if (!READ_ONCE(sbinfo->shrinklist_len))
660 		return SHRINK_STOP;
661 
662 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664 
665 static long shmem_unused_huge_count(struct super_block *sb,
666 		struct shrink_control *sc)
667 {
668 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669 	return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672 
673 #define shmem_huge SHMEM_HUGE_DENY
674 
675 bool shmem_is_huge(struct vm_area_struct *vma,
676 		   struct inode *inode, pgoff_t index)
677 {
678 	return false;
679 }
680 
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682 		struct shrink_control *sc, unsigned long nr_to_split)
683 {
684 	return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687 
688 /*
689  * Like add_to_page_cache_locked, but error if expected item has gone.
690  */
691 static int shmem_add_to_page_cache(struct page *page,
692 				   struct address_space *mapping,
693 				   pgoff_t index, void *expected, gfp_t gfp,
694 				   struct mm_struct *charge_mm)
695 {
696 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697 	unsigned long i = 0;
698 	unsigned long nr = compound_nr(page);
699 	int error;
700 
701 	VM_BUG_ON_PAGE(PageTail(page), page);
702 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
703 	VM_BUG_ON_PAGE(!PageLocked(page), page);
704 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
705 	VM_BUG_ON(expected && PageTransHuge(page));
706 
707 	page_ref_add(page, nr);
708 	page->mapping = mapping;
709 	page->index = index;
710 
711 	if (!PageSwapCache(page)) {
712 		error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
713 		if (error) {
714 			if (PageTransHuge(page)) {
715 				count_vm_event(THP_FILE_FALLBACK);
716 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
717 			}
718 			goto error;
719 		}
720 	}
721 	cgroup_throttle_swaprate(page, gfp);
722 
723 	do {
724 		void *entry;
725 		xas_lock_irq(&xas);
726 		entry = xas_find_conflict(&xas);
727 		if (entry != expected)
728 			xas_set_err(&xas, -EEXIST);
729 		xas_create_range(&xas);
730 		if (xas_error(&xas))
731 			goto unlock;
732 next:
733 		xas_store(&xas, page);
734 		if (++i < nr) {
735 			xas_next(&xas);
736 			goto next;
737 		}
738 		if (PageTransHuge(page)) {
739 			count_vm_event(THP_FILE_ALLOC);
740 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
741 		}
742 		mapping->nrpages += nr;
743 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
745 unlock:
746 		xas_unlock_irq(&xas);
747 	} while (xas_nomem(&xas, gfp));
748 
749 	if (xas_error(&xas)) {
750 		error = xas_error(&xas);
751 		goto error;
752 	}
753 
754 	return 0;
755 error:
756 	page->mapping = NULL;
757 	page_ref_sub(page, nr);
758 	return error;
759 }
760 
761 /*
762  * Like delete_from_page_cache, but substitutes swap for page.
763  */
764 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
765 {
766 	struct address_space *mapping = page->mapping;
767 	int error;
768 
769 	VM_BUG_ON_PAGE(PageCompound(page), page);
770 
771 	xa_lock_irq(&mapping->i_pages);
772 	error = shmem_replace_entry(mapping, page->index, page, radswap);
773 	page->mapping = NULL;
774 	mapping->nrpages--;
775 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
776 	__dec_lruvec_page_state(page, NR_SHMEM);
777 	xa_unlock_irq(&mapping->i_pages);
778 	put_page(page);
779 	BUG_ON(error);
780 }
781 
782 /*
783  * Remove swap entry from page cache, free the swap and its page cache.
784  */
785 static int shmem_free_swap(struct address_space *mapping,
786 			   pgoff_t index, void *radswap)
787 {
788 	void *old;
789 
790 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
791 	if (old != radswap)
792 		return -ENOENT;
793 	free_swap_and_cache(radix_to_swp_entry(radswap));
794 	return 0;
795 }
796 
797 /*
798  * Determine (in bytes) how many of the shmem object's pages mapped by the
799  * given offsets are swapped out.
800  *
801  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
802  * as long as the inode doesn't go away and racy results are not a problem.
803  */
804 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805 						pgoff_t start, pgoff_t end)
806 {
807 	XA_STATE(xas, &mapping->i_pages, start);
808 	struct page *page;
809 	unsigned long swapped = 0;
810 
811 	rcu_read_lock();
812 	xas_for_each(&xas, page, end - 1) {
813 		if (xas_retry(&xas, page))
814 			continue;
815 		if (xa_is_value(page))
816 			swapped++;
817 
818 		if (need_resched()) {
819 			xas_pause(&xas);
820 			cond_resched_rcu();
821 		}
822 	}
823 
824 	rcu_read_unlock();
825 
826 	return swapped << PAGE_SHIFT;
827 }
828 
829 /*
830  * Determine (in bytes) how many of the shmem object's pages mapped by the
831  * given vma is swapped out.
832  *
833  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
834  * as long as the inode doesn't go away and racy results are not a problem.
835  */
836 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 {
838 	struct inode *inode = file_inode(vma->vm_file);
839 	struct shmem_inode_info *info = SHMEM_I(inode);
840 	struct address_space *mapping = inode->i_mapping;
841 	unsigned long swapped;
842 
843 	/* Be careful as we don't hold info->lock */
844 	swapped = READ_ONCE(info->swapped);
845 
846 	/*
847 	 * The easier cases are when the shmem object has nothing in swap, or
848 	 * the vma maps it whole. Then we can simply use the stats that we
849 	 * already track.
850 	 */
851 	if (!swapped)
852 		return 0;
853 
854 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855 		return swapped << PAGE_SHIFT;
856 
857 	/* Here comes the more involved part */
858 	return shmem_partial_swap_usage(mapping,
859 			linear_page_index(vma, vma->vm_start),
860 			linear_page_index(vma, vma->vm_end));
861 }
862 
863 /*
864  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865  */
866 void shmem_unlock_mapping(struct address_space *mapping)
867 {
868 	struct pagevec pvec;
869 	pgoff_t index = 0;
870 
871 	pagevec_init(&pvec);
872 	/*
873 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874 	 */
875 	while (!mapping_unevictable(mapping)) {
876 		if (!pagevec_lookup(&pvec, mapping, &index))
877 			break;
878 		check_move_unevictable_pages(&pvec);
879 		pagevec_release(&pvec);
880 		cond_resched();
881 	}
882 }
883 
884 /*
885  * Check whether a hole-punch or truncation needs to split a huge page,
886  * returning true if no split was required, or the split has been successful.
887  *
888  * Eviction (or truncation to 0 size) should never need to split a huge page;
889  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
890  * head, and then succeeded to trylock on tail.
891  *
892  * A split can only succeed when there are no additional references on the
893  * huge page: so the split below relies upon find_get_entries() having stopped
894  * when it found a subpage of the huge page, without getting further references.
895  */
896 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
897 {
898 	if (!PageTransCompound(page))
899 		return true;
900 
901 	/* Just proceed to delete a huge page wholly within the range punched */
902 	if (PageHead(page) &&
903 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
904 		return true;
905 
906 	/* Try to split huge page, so we can truly punch the hole or truncate */
907 	return split_huge_page(page) >= 0;
908 }
909 
910 /*
911  * Remove range of pages and swap entries from page cache, and free them.
912  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
913  */
914 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
915 								 bool unfalloc)
916 {
917 	struct address_space *mapping = inode->i_mapping;
918 	struct shmem_inode_info *info = SHMEM_I(inode);
919 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
920 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
921 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
922 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
923 	struct pagevec pvec;
924 	pgoff_t indices[PAGEVEC_SIZE];
925 	long nr_swaps_freed = 0;
926 	pgoff_t index;
927 	int i;
928 
929 	if (lend == -1)
930 		end = -1;	/* unsigned, so actually very big */
931 
932 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
933 		info->fallocend = start;
934 
935 	pagevec_init(&pvec);
936 	index = start;
937 	while (index < end && find_lock_entries(mapping, index, end - 1,
938 			&pvec, indices)) {
939 		for (i = 0; i < pagevec_count(&pvec); i++) {
940 			struct page *page = pvec.pages[i];
941 
942 			index = indices[i];
943 
944 			if (xa_is_value(page)) {
945 				if (unfalloc)
946 					continue;
947 				nr_swaps_freed += !shmem_free_swap(mapping,
948 								index, page);
949 				continue;
950 			}
951 			index += thp_nr_pages(page) - 1;
952 
953 			if (!unfalloc || !PageUptodate(page))
954 				truncate_inode_page(mapping, page);
955 			unlock_page(page);
956 		}
957 		pagevec_remove_exceptionals(&pvec);
958 		pagevec_release(&pvec);
959 		cond_resched();
960 		index++;
961 	}
962 
963 	if (partial_start) {
964 		struct page *page = NULL;
965 		shmem_getpage(inode, start - 1, &page, SGP_READ);
966 		if (page) {
967 			unsigned int top = PAGE_SIZE;
968 			if (start > end) {
969 				top = partial_end;
970 				partial_end = 0;
971 			}
972 			zero_user_segment(page, partial_start, top);
973 			set_page_dirty(page);
974 			unlock_page(page);
975 			put_page(page);
976 		}
977 	}
978 	if (partial_end) {
979 		struct page *page = NULL;
980 		shmem_getpage(inode, end, &page, SGP_READ);
981 		if (page) {
982 			zero_user_segment(page, 0, partial_end);
983 			set_page_dirty(page);
984 			unlock_page(page);
985 			put_page(page);
986 		}
987 	}
988 	if (start >= end)
989 		return;
990 
991 	index = start;
992 	while (index < end) {
993 		cond_resched();
994 
995 		if (!find_get_entries(mapping, index, end - 1, &pvec,
996 				indices)) {
997 			/* If all gone or hole-punch or unfalloc, we're done */
998 			if (index == start || end != -1)
999 				break;
1000 			/* But if truncating, restart to make sure all gone */
1001 			index = start;
1002 			continue;
1003 		}
1004 		for (i = 0; i < pagevec_count(&pvec); i++) {
1005 			struct page *page = pvec.pages[i];
1006 
1007 			index = indices[i];
1008 			if (xa_is_value(page)) {
1009 				if (unfalloc)
1010 					continue;
1011 				if (shmem_free_swap(mapping, index, page)) {
1012 					/* Swap was replaced by page: retry */
1013 					index--;
1014 					break;
1015 				}
1016 				nr_swaps_freed++;
1017 				continue;
1018 			}
1019 
1020 			lock_page(page);
1021 
1022 			if (!unfalloc || !PageUptodate(page)) {
1023 				if (page_mapping(page) != mapping) {
1024 					/* Page was replaced by swap: retry */
1025 					unlock_page(page);
1026 					index--;
1027 					break;
1028 				}
1029 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1030 				if (shmem_punch_compound(page, start, end))
1031 					truncate_inode_page(mapping, page);
1032 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1033 					/* Wipe the page and don't get stuck */
1034 					clear_highpage(page);
1035 					flush_dcache_page(page);
1036 					set_page_dirty(page);
1037 					if (index <
1038 					    round_up(start, HPAGE_PMD_NR))
1039 						start = index + 1;
1040 				}
1041 			}
1042 			unlock_page(page);
1043 		}
1044 		pagevec_remove_exceptionals(&pvec);
1045 		pagevec_release(&pvec);
1046 		index++;
1047 	}
1048 
1049 	spin_lock_irq(&info->lock);
1050 	info->swapped -= nr_swaps_freed;
1051 	shmem_recalc_inode(inode);
1052 	spin_unlock_irq(&info->lock);
1053 }
1054 
1055 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1056 {
1057 	shmem_undo_range(inode, lstart, lend, false);
1058 	inode->i_ctime = inode->i_mtime = current_time(inode);
1059 }
1060 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1061 
1062 static int shmem_getattr(struct user_namespace *mnt_userns,
1063 			 const struct path *path, struct kstat *stat,
1064 			 u32 request_mask, unsigned int query_flags)
1065 {
1066 	struct inode *inode = path->dentry->d_inode;
1067 	struct shmem_inode_info *info = SHMEM_I(inode);
1068 
1069 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1070 		spin_lock_irq(&info->lock);
1071 		shmem_recalc_inode(inode);
1072 		spin_unlock_irq(&info->lock);
1073 	}
1074 	generic_fillattr(&init_user_ns, inode, stat);
1075 
1076 	if (shmem_is_huge(NULL, inode, 0))
1077 		stat->blksize = HPAGE_PMD_SIZE;
1078 
1079 	return 0;
1080 }
1081 
1082 static int shmem_setattr(struct user_namespace *mnt_userns,
1083 			 struct dentry *dentry, struct iattr *attr)
1084 {
1085 	struct inode *inode = d_inode(dentry);
1086 	struct shmem_inode_info *info = SHMEM_I(inode);
1087 	int error;
1088 
1089 	error = setattr_prepare(&init_user_ns, dentry, attr);
1090 	if (error)
1091 		return error;
1092 
1093 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1094 		loff_t oldsize = inode->i_size;
1095 		loff_t newsize = attr->ia_size;
1096 
1097 		/* protected by i_rwsem */
1098 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1099 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1100 			return -EPERM;
1101 
1102 		if (newsize != oldsize) {
1103 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1104 					oldsize, newsize);
1105 			if (error)
1106 				return error;
1107 			i_size_write(inode, newsize);
1108 			inode->i_ctime = inode->i_mtime = current_time(inode);
1109 		}
1110 		if (newsize <= oldsize) {
1111 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1112 			if (oldsize > holebegin)
1113 				unmap_mapping_range(inode->i_mapping,
1114 							holebegin, 0, 1);
1115 			if (info->alloced)
1116 				shmem_truncate_range(inode,
1117 							newsize, (loff_t)-1);
1118 			/* unmap again to remove racily COWed private pages */
1119 			if (oldsize > holebegin)
1120 				unmap_mapping_range(inode->i_mapping,
1121 							holebegin, 0, 1);
1122 		}
1123 	}
1124 
1125 	setattr_copy(&init_user_ns, inode, attr);
1126 	if (attr->ia_valid & ATTR_MODE)
1127 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1128 	return error;
1129 }
1130 
1131 static void shmem_evict_inode(struct inode *inode)
1132 {
1133 	struct shmem_inode_info *info = SHMEM_I(inode);
1134 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1135 
1136 	if (shmem_mapping(inode->i_mapping)) {
1137 		shmem_unacct_size(info->flags, inode->i_size);
1138 		inode->i_size = 0;
1139 		shmem_truncate_range(inode, 0, (loff_t)-1);
1140 		if (!list_empty(&info->shrinklist)) {
1141 			spin_lock(&sbinfo->shrinklist_lock);
1142 			if (!list_empty(&info->shrinklist)) {
1143 				list_del_init(&info->shrinklist);
1144 				sbinfo->shrinklist_len--;
1145 			}
1146 			spin_unlock(&sbinfo->shrinklist_lock);
1147 		}
1148 		while (!list_empty(&info->swaplist)) {
1149 			/* Wait while shmem_unuse() is scanning this inode... */
1150 			wait_var_event(&info->stop_eviction,
1151 				       !atomic_read(&info->stop_eviction));
1152 			mutex_lock(&shmem_swaplist_mutex);
1153 			/* ...but beware of the race if we peeked too early */
1154 			if (!atomic_read(&info->stop_eviction))
1155 				list_del_init(&info->swaplist);
1156 			mutex_unlock(&shmem_swaplist_mutex);
1157 		}
1158 	}
1159 
1160 	simple_xattrs_free(&info->xattrs);
1161 	WARN_ON(inode->i_blocks);
1162 	shmem_free_inode(inode->i_sb);
1163 	clear_inode(inode);
1164 }
1165 
1166 static int shmem_find_swap_entries(struct address_space *mapping,
1167 				   pgoff_t start, unsigned int nr_entries,
1168 				   struct page **entries, pgoff_t *indices,
1169 				   unsigned int type, bool frontswap)
1170 {
1171 	XA_STATE(xas, &mapping->i_pages, start);
1172 	struct page *page;
1173 	swp_entry_t entry;
1174 	unsigned int ret = 0;
1175 
1176 	if (!nr_entries)
1177 		return 0;
1178 
1179 	rcu_read_lock();
1180 	xas_for_each(&xas, page, ULONG_MAX) {
1181 		if (xas_retry(&xas, page))
1182 			continue;
1183 
1184 		if (!xa_is_value(page))
1185 			continue;
1186 
1187 		entry = radix_to_swp_entry(page);
1188 		if (swp_type(entry) != type)
1189 			continue;
1190 		if (frontswap &&
1191 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1192 			continue;
1193 
1194 		indices[ret] = xas.xa_index;
1195 		entries[ret] = page;
1196 
1197 		if (need_resched()) {
1198 			xas_pause(&xas);
1199 			cond_resched_rcu();
1200 		}
1201 		if (++ret == nr_entries)
1202 			break;
1203 	}
1204 	rcu_read_unlock();
1205 
1206 	return ret;
1207 }
1208 
1209 /*
1210  * Move the swapped pages for an inode to page cache. Returns the count
1211  * of pages swapped in, or the error in case of failure.
1212  */
1213 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1214 				    pgoff_t *indices)
1215 {
1216 	int i = 0;
1217 	int ret = 0;
1218 	int error = 0;
1219 	struct address_space *mapping = inode->i_mapping;
1220 
1221 	for (i = 0; i < pvec.nr; i++) {
1222 		struct page *page = pvec.pages[i];
1223 
1224 		if (!xa_is_value(page))
1225 			continue;
1226 		error = shmem_swapin_page(inode, indices[i],
1227 					  &page, SGP_CACHE,
1228 					  mapping_gfp_mask(mapping),
1229 					  NULL, NULL);
1230 		if (error == 0) {
1231 			unlock_page(page);
1232 			put_page(page);
1233 			ret++;
1234 		}
1235 		if (error == -ENOMEM)
1236 			break;
1237 		error = 0;
1238 	}
1239 	return error ? error : ret;
1240 }
1241 
1242 /*
1243  * If swap found in inode, free it and move page from swapcache to filecache.
1244  */
1245 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1246 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1247 {
1248 	struct address_space *mapping = inode->i_mapping;
1249 	pgoff_t start = 0;
1250 	struct pagevec pvec;
1251 	pgoff_t indices[PAGEVEC_SIZE];
1252 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1253 	int ret = 0;
1254 
1255 	pagevec_init(&pvec);
1256 	do {
1257 		unsigned int nr_entries = PAGEVEC_SIZE;
1258 
1259 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1260 			nr_entries = *fs_pages_to_unuse;
1261 
1262 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1263 						  pvec.pages, indices,
1264 						  type, frontswap);
1265 		if (pvec.nr == 0) {
1266 			ret = 0;
1267 			break;
1268 		}
1269 
1270 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1271 		if (ret < 0)
1272 			break;
1273 
1274 		if (frontswap_partial) {
1275 			*fs_pages_to_unuse -= ret;
1276 			if (*fs_pages_to_unuse == 0) {
1277 				ret = FRONTSWAP_PAGES_UNUSED;
1278 				break;
1279 			}
1280 		}
1281 
1282 		start = indices[pvec.nr - 1];
1283 	} while (true);
1284 
1285 	return ret;
1286 }
1287 
1288 /*
1289  * Read all the shared memory data that resides in the swap
1290  * device 'type' back into memory, so the swap device can be
1291  * unused.
1292  */
1293 int shmem_unuse(unsigned int type, bool frontswap,
1294 		unsigned long *fs_pages_to_unuse)
1295 {
1296 	struct shmem_inode_info *info, *next;
1297 	int error = 0;
1298 
1299 	if (list_empty(&shmem_swaplist))
1300 		return 0;
1301 
1302 	mutex_lock(&shmem_swaplist_mutex);
1303 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1304 		if (!info->swapped) {
1305 			list_del_init(&info->swaplist);
1306 			continue;
1307 		}
1308 		/*
1309 		 * Drop the swaplist mutex while searching the inode for swap;
1310 		 * but before doing so, make sure shmem_evict_inode() will not
1311 		 * remove placeholder inode from swaplist, nor let it be freed
1312 		 * (igrab() would protect from unlink, but not from unmount).
1313 		 */
1314 		atomic_inc(&info->stop_eviction);
1315 		mutex_unlock(&shmem_swaplist_mutex);
1316 
1317 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1318 					  fs_pages_to_unuse);
1319 		cond_resched();
1320 
1321 		mutex_lock(&shmem_swaplist_mutex);
1322 		next = list_next_entry(info, swaplist);
1323 		if (!info->swapped)
1324 			list_del_init(&info->swaplist);
1325 		if (atomic_dec_and_test(&info->stop_eviction))
1326 			wake_up_var(&info->stop_eviction);
1327 		if (error)
1328 			break;
1329 	}
1330 	mutex_unlock(&shmem_swaplist_mutex);
1331 
1332 	return error;
1333 }
1334 
1335 /*
1336  * Move the page from the page cache to the swap cache.
1337  */
1338 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1339 {
1340 	struct shmem_inode_info *info;
1341 	struct address_space *mapping;
1342 	struct inode *inode;
1343 	swp_entry_t swap;
1344 	pgoff_t index;
1345 
1346 	/*
1347 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1348 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1349 	 * and its shmem_writeback() needs them to be split when swapping.
1350 	 */
1351 	if (PageTransCompound(page)) {
1352 		/* Ensure the subpages are still dirty */
1353 		SetPageDirty(page);
1354 		if (split_huge_page(page) < 0)
1355 			goto redirty;
1356 		ClearPageDirty(page);
1357 	}
1358 
1359 	BUG_ON(!PageLocked(page));
1360 	mapping = page->mapping;
1361 	index = page->index;
1362 	inode = mapping->host;
1363 	info = SHMEM_I(inode);
1364 	if (info->flags & VM_LOCKED)
1365 		goto redirty;
1366 	if (!total_swap_pages)
1367 		goto redirty;
1368 
1369 	/*
1370 	 * Our capabilities prevent regular writeback or sync from ever calling
1371 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1372 	 * its underlying filesystem, in which case tmpfs should write out to
1373 	 * swap only in response to memory pressure, and not for the writeback
1374 	 * threads or sync.
1375 	 */
1376 	if (!wbc->for_reclaim) {
1377 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1378 		goto redirty;
1379 	}
1380 
1381 	/*
1382 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383 	 * value into swapfile.c, the only way we can correctly account for a
1384 	 * fallocated page arriving here is now to initialize it and write it.
1385 	 *
1386 	 * That's okay for a page already fallocated earlier, but if we have
1387 	 * not yet completed the fallocation, then (a) we want to keep track
1388 	 * of this page in case we have to undo it, and (b) it may not be a
1389 	 * good idea to continue anyway, once we're pushing into swap.  So
1390 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1391 	 */
1392 	if (!PageUptodate(page)) {
1393 		if (inode->i_private) {
1394 			struct shmem_falloc *shmem_falloc;
1395 			spin_lock(&inode->i_lock);
1396 			shmem_falloc = inode->i_private;
1397 			if (shmem_falloc &&
1398 			    !shmem_falloc->waitq &&
1399 			    index >= shmem_falloc->start &&
1400 			    index < shmem_falloc->next)
1401 				shmem_falloc->nr_unswapped++;
1402 			else
1403 				shmem_falloc = NULL;
1404 			spin_unlock(&inode->i_lock);
1405 			if (shmem_falloc)
1406 				goto redirty;
1407 		}
1408 		clear_highpage(page);
1409 		flush_dcache_page(page);
1410 		SetPageUptodate(page);
1411 	}
1412 
1413 	swap = get_swap_page(page);
1414 	if (!swap.val)
1415 		goto redirty;
1416 
1417 	/*
1418 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1419 	 * if it's not already there.  Do it now before the page is
1420 	 * moved to swap cache, when its pagelock no longer protects
1421 	 * the inode from eviction.  But don't unlock the mutex until
1422 	 * we've incremented swapped, because shmem_unuse_inode() will
1423 	 * prune a !swapped inode from the swaplist under this mutex.
1424 	 */
1425 	mutex_lock(&shmem_swaplist_mutex);
1426 	if (list_empty(&info->swaplist))
1427 		list_add(&info->swaplist, &shmem_swaplist);
1428 
1429 	if (add_to_swap_cache(page, swap,
1430 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431 			NULL) == 0) {
1432 		spin_lock_irq(&info->lock);
1433 		shmem_recalc_inode(inode);
1434 		info->swapped++;
1435 		spin_unlock_irq(&info->lock);
1436 
1437 		swap_shmem_alloc(swap);
1438 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1439 
1440 		mutex_unlock(&shmem_swaplist_mutex);
1441 		BUG_ON(page_mapped(page));
1442 		swap_writepage(page, wbc);
1443 		return 0;
1444 	}
1445 
1446 	mutex_unlock(&shmem_swaplist_mutex);
1447 	put_swap_page(page, swap);
1448 redirty:
1449 	set_page_dirty(page);
1450 	if (wbc->for_reclaim)
1451 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1452 	unlock_page(page);
1453 	return 0;
1454 }
1455 
1456 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1457 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1458 {
1459 	char buffer[64];
1460 
1461 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1462 		return;		/* show nothing */
1463 
1464 	mpol_to_str(buffer, sizeof(buffer), mpol);
1465 
1466 	seq_printf(seq, ",mpol=%s", buffer);
1467 }
1468 
1469 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470 {
1471 	struct mempolicy *mpol = NULL;
1472 	if (sbinfo->mpol) {
1473 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1474 		mpol = sbinfo->mpol;
1475 		mpol_get(mpol);
1476 		raw_spin_unlock(&sbinfo->stat_lock);
1477 	}
1478 	return mpol;
1479 }
1480 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1482 {
1483 }
1484 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1485 {
1486 	return NULL;
1487 }
1488 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489 #ifndef CONFIG_NUMA
1490 #define vm_policy vm_private_data
1491 #endif
1492 
1493 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494 		struct shmem_inode_info *info, pgoff_t index)
1495 {
1496 	/* Create a pseudo vma that just contains the policy */
1497 	vma_init(vma, NULL);
1498 	/* Bias interleave by inode number to distribute better across nodes */
1499 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1500 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1501 }
1502 
1503 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504 {
1505 	/* Drop reference taken by mpol_shared_policy_lookup() */
1506 	mpol_cond_put(vma->vm_policy);
1507 }
1508 
1509 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510 			struct shmem_inode_info *info, pgoff_t index)
1511 {
1512 	struct vm_area_struct pvma;
1513 	struct page *page;
1514 	struct vm_fault vmf = {
1515 		.vma = &pvma,
1516 	};
1517 
1518 	shmem_pseudo_vma_init(&pvma, info, index);
1519 	page = swap_cluster_readahead(swap, gfp, &vmf);
1520 	shmem_pseudo_vma_destroy(&pvma);
1521 
1522 	return page;
1523 }
1524 
1525 /*
1526  * Make sure huge_gfp is always more limited than limit_gfp.
1527  * Some of the flags set permissions, while others set limitations.
1528  */
1529 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1530 {
1531 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1532 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1533 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1534 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1535 
1536 	/* Allow allocations only from the originally specified zones. */
1537 	result |= zoneflags;
1538 
1539 	/*
1540 	 * Minimize the result gfp by taking the union with the deny flags,
1541 	 * and the intersection of the allow flags.
1542 	 */
1543 	result |= (limit_gfp & denyflags);
1544 	result |= (huge_gfp & limit_gfp) & allowflags;
1545 
1546 	return result;
1547 }
1548 
1549 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1550 		struct shmem_inode_info *info, pgoff_t index)
1551 {
1552 	struct vm_area_struct pvma;
1553 	struct address_space *mapping = info->vfs_inode.i_mapping;
1554 	pgoff_t hindex;
1555 	struct page *page;
1556 
1557 	hindex = round_down(index, HPAGE_PMD_NR);
1558 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1559 								XA_PRESENT))
1560 		return NULL;
1561 
1562 	shmem_pseudo_vma_init(&pvma, info, hindex);
1563 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1564 			       true);
1565 	shmem_pseudo_vma_destroy(&pvma);
1566 	if (page)
1567 		prep_transhuge_page(page);
1568 	else
1569 		count_vm_event(THP_FILE_FALLBACK);
1570 	return page;
1571 }
1572 
1573 static struct page *shmem_alloc_page(gfp_t gfp,
1574 			struct shmem_inode_info *info, pgoff_t index)
1575 {
1576 	struct vm_area_struct pvma;
1577 	struct page *page;
1578 
1579 	shmem_pseudo_vma_init(&pvma, info, index);
1580 	page = alloc_page_vma(gfp, &pvma, 0);
1581 	shmem_pseudo_vma_destroy(&pvma);
1582 
1583 	return page;
1584 }
1585 
1586 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1587 		struct inode *inode,
1588 		pgoff_t index, bool huge)
1589 {
1590 	struct shmem_inode_info *info = SHMEM_I(inode);
1591 	struct page *page;
1592 	int nr;
1593 	int err = -ENOSPC;
1594 
1595 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1596 		huge = false;
1597 	nr = huge ? HPAGE_PMD_NR : 1;
1598 
1599 	if (!shmem_inode_acct_block(inode, nr))
1600 		goto failed;
1601 
1602 	if (huge)
1603 		page = shmem_alloc_hugepage(gfp, info, index);
1604 	else
1605 		page = shmem_alloc_page(gfp, info, index);
1606 	if (page) {
1607 		__SetPageLocked(page);
1608 		__SetPageSwapBacked(page);
1609 		return page;
1610 	}
1611 
1612 	err = -ENOMEM;
1613 	shmem_inode_unacct_blocks(inode, nr);
1614 failed:
1615 	return ERR_PTR(err);
1616 }
1617 
1618 /*
1619  * When a page is moved from swapcache to shmem filecache (either by the
1620  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1621  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1622  * ignorance of the mapping it belongs to.  If that mapping has special
1623  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1624  * we may need to copy to a suitable page before moving to filecache.
1625  *
1626  * In a future release, this may well be extended to respect cpuset and
1627  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1628  * but for now it is a simple matter of zone.
1629  */
1630 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1631 {
1632 	return page_zonenum(page) > gfp_zone(gfp);
1633 }
1634 
1635 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1636 				struct shmem_inode_info *info, pgoff_t index)
1637 {
1638 	struct page *oldpage, *newpage;
1639 	struct folio *old, *new;
1640 	struct address_space *swap_mapping;
1641 	swp_entry_t entry;
1642 	pgoff_t swap_index;
1643 	int error;
1644 
1645 	oldpage = *pagep;
1646 	entry.val = page_private(oldpage);
1647 	swap_index = swp_offset(entry);
1648 	swap_mapping = page_mapping(oldpage);
1649 
1650 	/*
1651 	 * We have arrived here because our zones are constrained, so don't
1652 	 * limit chance of success by further cpuset and node constraints.
1653 	 */
1654 	gfp &= ~GFP_CONSTRAINT_MASK;
1655 	newpage = shmem_alloc_page(gfp, info, index);
1656 	if (!newpage)
1657 		return -ENOMEM;
1658 
1659 	get_page(newpage);
1660 	copy_highpage(newpage, oldpage);
1661 	flush_dcache_page(newpage);
1662 
1663 	__SetPageLocked(newpage);
1664 	__SetPageSwapBacked(newpage);
1665 	SetPageUptodate(newpage);
1666 	set_page_private(newpage, entry.val);
1667 	SetPageSwapCache(newpage);
1668 
1669 	/*
1670 	 * Our caller will very soon move newpage out of swapcache, but it's
1671 	 * a nice clean interface for us to replace oldpage by newpage there.
1672 	 */
1673 	xa_lock_irq(&swap_mapping->i_pages);
1674 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1675 	if (!error) {
1676 		old = page_folio(oldpage);
1677 		new = page_folio(newpage);
1678 		mem_cgroup_migrate(old, new);
1679 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1680 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1681 	}
1682 	xa_unlock_irq(&swap_mapping->i_pages);
1683 
1684 	if (unlikely(error)) {
1685 		/*
1686 		 * Is this possible?  I think not, now that our callers check
1687 		 * both PageSwapCache and page_private after getting page lock;
1688 		 * but be defensive.  Reverse old to newpage for clear and free.
1689 		 */
1690 		oldpage = newpage;
1691 	} else {
1692 		lru_cache_add(newpage);
1693 		*pagep = newpage;
1694 	}
1695 
1696 	ClearPageSwapCache(oldpage);
1697 	set_page_private(oldpage, 0);
1698 
1699 	unlock_page(oldpage);
1700 	put_page(oldpage);
1701 	put_page(oldpage);
1702 	return error;
1703 }
1704 
1705 /*
1706  * Swap in the page pointed to by *pagep.
1707  * Caller has to make sure that *pagep contains a valid swapped page.
1708  * Returns 0 and the page in pagep if success. On failure, returns the
1709  * error code and NULL in *pagep.
1710  */
1711 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1712 			     struct page **pagep, enum sgp_type sgp,
1713 			     gfp_t gfp, struct vm_area_struct *vma,
1714 			     vm_fault_t *fault_type)
1715 {
1716 	struct address_space *mapping = inode->i_mapping;
1717 	struct shmem_inode_info *info = SHMEM_I(inode);
1718 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1719 	struct page *page;
1720 	swp_entry_t swap;
1721 	int error;
1722 
1723 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1724 	swap = radix_to_swp_entry(*pagep);
1725 	*pagep = NULL;
1726 
1727 	/* Look it up and read it in.. */
1728 	page = lookup_swap_cache(swap, NULL, 0);
1729 	if (!page) {
1730 		/* Or update major stats only when swapin succeeds?? */
1731 		if (fault_type) {
1732 			*fault_type |= VM_FAULT_MAJOR;
1733 			count_vm_event(PGMAJFAULT);
1734 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1735 		}
1736 		/* Here we actually start the io */
1737 		page = shmem_swapin(swap, gfp, info, index);
1738 		if (!page) {
1739 			error = -ENOMEM;
1740 			goto failed;
1741 		}
1742 	}
1743 
1744 	/* We have to do this with page locked to prevent races */
1745 	lock_page(page);
1746 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1747 	    !shmem_confirm_swap(mapping, index, swap)) {
1748 		error = -EEXIST;
1749 		goto unlock;
1750 	}
1751 	if (!PageUptodate(page)) {
1752 		error = -EIO;
1753 		goto failed;
1754 	}
1755 	wait_on_page_writeback(page);
1756 
1757 	/*
1758 	 * Some architectures may have to restore extra metadata to the
1759 	 * physical page after reading from swap.
1760 	 */
1761 	arch_swap_restore(swap, page);
1762 
1763 	if (shmem_should_replace_page(page, gfp)) {
1764 		error = shmem_replace_page(&page, gfp, info, index);
1765 		if (error)
1766 			goto failed;
1767 	}
1768 
1769 	error = shmem_add_to_page_cache(page, mapping, index,
1770 					swp_to_radix_entry(swap), gfp,
1771 					charge_mm);
1772 	if (error)
1773 		goto failed;
1774 
1775 	spin_lock_irq(&info->lock);
1776 	info->swapped--;
1777 	shmem_recalc_inode(inode);
1778 	spin_unlock_irq(&info->lock);
1779 
1780 	if (sgp == SGP_WRITE)
1781 		mark_page_accessed(page);
1782 
1783 	delete_from_swap_cache(page);
1784 	set_page_dirty(page);
1785 	swap_free(swap);
1786 
1787 	*pagep = page;
1788 	return 0;
1789 failed:
1790 	if (!shmem_confirm_swap(mapping, index, swap))
1791 		error = -EEXIST;
1792 unlock:
1793 	if (page) {
1794 		unlock_page(page);
1795 		put_page(page);
1796 	}
1797 
1798 	return error;
1799 }
1800 
1801 /*
1802  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1803  *
1804  * If we allocate a new one we do not mark it dirty. That's up to the
1805  * vm. If we swap it in we mark it dirty since we also free the swap
1806  * entry since a page cannot live in both the swap and page cache.
1807  *
1808  * vma, vmf, and fault_type are only supplied by shmem_fault:
1809  * otherwise they are NULL.
1810  */
1811 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1812 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1813 	struct vm_area_struct *vma, struct vm_fault *vmf,
1814 			vm_fault_t *fault_type)
1815 {
1816 	struct address_space *mapping = inode->i_mapping;
1817 	struct shmem_inode_info *info = SHMEM_I(inode);
1818 	struct shmem_sb_info *sbinfo;
1819 	struct mm_struct *charge_mm;
1820 	struct page *page;
1821 	pgoff_t hindex = index;
1822 	gfp_t huge_gfp;
1823 	int error;
1824 	int once = 0;
1825 	int alloced = 0;
1826 
1827 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1828 		return -EFBIG;
1829 repeat:
1830 	if (sgp <= SGP_CACHE &&
1831 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1832 		return -EINVAL;
1833 	}
1834 
1835 	sbinfo = SHMEM_SB(inode->i_sb);
1836 	charge_mm = vma ? vma->vm_mm : NULL;
1837 
1838 	page = pagecache_get_page(mapping, index,
1839 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1840 
1841 	if (page && vma && userfaultfd_minor(vma)) {
1842 		if (!xa_is_value(page)) {
1843 			unlock_page(page);
1844 			put_page(page);
1845 		}
1846 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1847 		return 0;
1848 	}
1849 
1850 	if (xa_is_value(page)) {
1851 		error = shmem_swapin_page(inode, index, &page,
1852 					  sgp, gfp, vma, fault_type);
1853 		if (error == -EEXIST)
1854 			goto repeat;
1855 
1856 		*pagep = page;
1857 		return error;
1858 	}
1859 
1860 	if (page) {
1861 		hindex = page->index;
1862 		if (sgp == SGP_WRITE)
1863 			mark_page_accessed(page);
1864 		if (PageUptodate(page))
1865 			goto out;
1866 		/* fallocated page */
1867 		if (sgp != SGP_READ)
1868 			goto clear;
1869 		unlock_page(page);
1870 		put_page(page);
1871 	}
1872 
1873 	/*
1874 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1875 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1876 	 */
1877 	*pagep = NULL;
1878 	if (sgp == SGP_READ)
1879 		return 0;
1880 	if (sgp == SGP_NOALLOC)
1881 		return -ENOENT;
1882 
1883 	/*
1884 	 * Fast cache lookup and swap lookup did not find it: allocate.
1885 	 */
1886 
1887 	if (vma && userfaultfd_missing(vma)) {
1888 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1889 		return 0;
1890 	}
1891 
1892 	/* Never use a huge page for shmem_symlink() */
1893 	if (S_ISLNK(inode->i_mode))
1894 		goto alloc_nohuge;
1895 	if (!shmem_is_huge(vma, inode, index))
1896 		goto alloc_nohuge;
1897 
1898 	huge_gfp = vma_thp_gfp_mask(vma);
1899 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1900 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1901 	if (IS_ERR(page)) {
1902 alloc_nohuge:
1903 		page = shmem_alloc_and_acct_page(gfp, inode,
1904 						 index, false);
1905 	}
1906 	if (IS_ERR(page)) {
1907 		int retry = 5;
1908 
1909 		error = PTR_ERR(page);
1910 		page = NULL;
1911 		if (error != -ENOSPC)
1912 			goto unlock;
1913 		/*
1914 		 * Try to reclaim some space by splitting a huge page
1915 		 * beyond i_size on the filesystem.
1916 		 */
1917 		while (retry--) {
1918 			int ret;
1919 
1920 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1921 			if (ret == SHRINK_STOP)
1922 				break;
1923 			if (ret)
1924 				goto alloc_nohuge;
1925 		}
1926 		goto unlock;
1927 	}
1928 
1929 	if (PageTransHuge(page))
1930 		hindex = round_down(index, HPAGE_PMD_NR);
1931 	else
1932 		hindex = index;
1933 
1934 	if (sgp == SGP_WRITE)
1935 		__SetPageReferenced(page);
1936 
1937 	error = shmem_add_to_page_cache(page, mapping, hindex,
1938 					NULL, gfp & GFP_RECLAIM_MASK,
1939 					charge_mm);
1940 	if (error)
1941 		goto unacct;
1942 	lru_cache_add(page);
1943 
1944 	spin_lock_irq(&info->lock);
1945 	info->alloced += compound_nr(page);
1946 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1947 	shmem_recalc_inode(inode);
1948 	spin_unlock_irq(&info->lock);
1949 	alloced = true;
1950 
1951 	if (PageTransHuge(page) &&
1952 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1953 			hindex + HPAGE_PMD_NR - 1) {
1954 		/*
1955 		 * Part of the huge page is beyond i_size: subject
1956 		 * to shrink under memory pressure.
1957 		 */
1958 		spin_lock(&sbinfo->shrinklist_lock);
1959 		/*
1960 		 * _careful to defend against unlocked access to
1961 		 * ->shrink_list in shmem_unused_huge_shrink()
1962 		 */
1963 		if (list_empty_careful(&info->shrinklist)) {
1964 			list_add_tail(&info->shrinklist,
1965 				      &sbinfo->shrinklist);
1966 			sbinfo->shrinklist_len++;
1967 		}
1968 		spin_unlock(&sbinfo->shrinklist_lock);
1969 	}
1970 
1971 	/*
1972 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1973 	 */
1974 	if (sgp == SGP_FALLOC)
1975 		sgp = SGP_WRITE;
1976 clear:
1977 	/*
1978 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1979 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1980 	 * it now, lest undo on failure cancel our earlier guarantee.
1981 	 */
1982 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1983 		int i;
1984 
1985 		for (i = 0; i < compound_nr(page); i++) {
1986 			clear_highpage(page + i);
1987 			flush_dcache_page(page + i);
1988 		}
1989 		SetPageUptodate(page);
1990 	}
1991 
1992 	/* Perhaps the file has been truncated since we checked */
1993 	if (sgp <= SGP_CACHE &&
1994 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1995 		if (alloced) {
1996 			ClearPageDirty(page);
1997 			delete_from_page_cache(page);
1998 			spin_lock_irq(&info->lock);
1999 			shmem_recalc_inode(inode);
2000 			spin_unlock_irq(&info->lock);
2001 		}
2002 		error = -EINVAL;
2003 		goto unlock;
2004 	}
2005 out:
2006 	*pagep = page + index - hindex;
2007 	return 0;
2008 
2009 	/*
2010 	 * Error recovery.
2011 	 */
2012 unacct:
2013 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2014 
2015 	if (PageTransHuge(page)) {
2016 		unlock_page(page);
2017 		put_page(page);
2018 		goto alloc_nohuge;
2019 	}
2020 unlock:
2021 	if (page) {
2022 		unlock_page(page);
2023 		put_page(page);
2024 	}
2025 	if (error == -ENOSPC && !once++) {
2026 		spin_lock_irq(&info->lock);
2027 		shmem_recalc_inode(inode);
2028 		spin_unlock_irq(&info->lock);
2029 		goto repeat;
2030 	}
2031 	if (error == -EEXIST)
2032 		goto repeat;
2033 	return error;
2034 }
2035 
2036 /*
2037  * This is like autoremove_wake_function, but it removes the wait queue
2038  * entry unconditionally - even if something else had already woken the
2039  * target.
2040  */
2041 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2042 {
2043 	int ret = default_wake_function(wait, mode, sync, key);
2044 	list_del_init(&wait->entry);
2045 	return ret;
2046 }
2047 
2048 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2049 {
2050 	struct vm_area_struct *vma = vmf->vma;
2051 	struct inode *inode = file_inode(vma->vm_file);
2052 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2053 	int err;
2054 	vm_fault_t ret = VM_FAULT_LOCKED;
2055 
2056 	/*
2057 	 * Trinity finds that probing a hole which tmpfs is punching can
2058 	 * prevent the hole-punch from ever completing: which in turn
2059 	 * locks writers out with its hold on i_rwsem.  So refrain from
2060 	 * faulting pages into the hole while it's being punched.  Although
2061 	 * shmem_undo_range() does remove the additions, it may be unable to
2062 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2063 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2064 	 *
2065 	 * It does not matter if we sometimes reach this check just before the
2066 	 * hole-punch begins, so that one fault then races with the punch:
2067 	 * we just need to make racing faults a rare case.
2068 	 *
2069 	 * The implementation below would be much simpler if we just used a
2070 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2071 	 * and bloating every shmem inode for this unlikely case would be sad.
2072 	 */
2073 	if (unlikely(inode->i_private)) {
2074 		struct shmem_falloc *shmem_falloc;
2075 
2076 		spin_lock(&inode->i_lock);
2077 		shmem_falloc = inode->i_private;
2078 		if (shmem_falloc &&
2079 		    shmem_falloc->waitq &&
2080 		    vmf->pgoff >= shmem_falloc->start &&
2081 		    vmf->pgoff < shmem_falloc->next) {
2082 			struct file *fpin;
2083 			wait_queue_head_t *shmem_falloc_waitq;
2084 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2085 
2086 			ret = VM_FAULT_NOPAGE;
2087 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2088 			if (fpin)
2089 				ret = VM_FAULT_RETRY;
2090 
2091 			shmem_falloc_waitq = shmem_falloc->waitq;
2092 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2093 					TASK_UNINTERRUPTIBLE);
2094 			spin_unlock(&inode->i_lock);
2095 			schedule();
2096 
2097 			/*
2098 			 * shmem_falloc_waitq points into the shmem_fallocate()
2099 			 * stack of the hole-punching task: shmem_falloc_waitq
2100 			 * is usually invalid by the time we reach here, but
2101 			 * finish_wait() does not dereference it in that case;
2102 			 * though i_lock needed lest racing with wake_up_all().
2103 			 */
2104 			spin_lock(&inode->i_lock);
2105 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2106 			spin_unlock(&inode->i_lock);
2107 
2108 			if (fpin)
2109 				fput(fpin);
2110 			return ret;
2111 		}
2112 		spin_unlock(&inode->i_lock);
2113 	}
2114 
2115 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2116 				  gfp, vma, vmf, &ret);
2117 	if (err)
2118 		return vmf_error(err);
2119 	return ret;
2120 }
2121 
2122 unsigned long shmem_get_unmapped_area(struct file *file,
2123 				      unsigned long uaddr, unsigned long len,
2124 				      unsigned long pgoff, unsigned long flags)
2125 {
2126 	unsigned long (*get_area)(struct file *,
2127 		unsigned long, unsigned long, unsigned long, unsigned long);
2128 	unsigned long addr;
2129 	unsigned long offset;
2130 	unsigned long inflated_len;
2131 	unsigned long inflated_addr;
2132 	unsigned long inflated_offset;
2133 
2134 	if (len > TASK_SIZE)
2135 		return -ENOMEM;
2136 
2137 	get_area = current->mm->get_unmapped_area;
2138 	addr = get_area(file, uaddr, len, pgoff, flags);
2139 
2140 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2141 		return addr;
2142 	if (IS_ERR_VALUE(addr))
2143 		return addr;
2144 	if (addr & ~PAGE_MASK)
2145 		return addr;
2146 	if (addr > TASK_SIZE - len)
2147 		return addr;
2148 
2149 	if (shmem_huge == SHMEM_HUGE_DENY)
2150 		return addr;
2151 	if (len < HPAGE_PMD_SIZE)
2152 		return addr;
2153 	if (flags & MAP_FIXED)
2154 		return addr;
2155 	/*
2156 	 * Our priority is to support MAP_SHARED mapped hugely;
2157 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2158 	 * But if caller specified an address hint and we allocated area there
2159 	 * successfully, respect that as before.
2160 	 */
2161 	if (uaddr == addr)
2162 		return addr;
2163 
2164 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2165 		struct super_block *sb;
2166 
2167 		if (file) {
2168 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2169 			sb = file_inode(file)->i_sb;
2170 		} else {
2171 			/*
2172 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2173 			 * for "/dev/zero", to create a shared anonymous object.
2174 			 */
2175 			if (IS_ERR(shm_mnt))
2176 				return addr;
2177 			sb = shm_mnt->mnt_sb;
2178 		}
2179 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2180 			return addr;
2181 	}
2182 
2183 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2184 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2185 		return addr;
2186 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2187 		return addr;
2188 
2189 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2190 	if (inflated_len > TASK_SIZE)
2191 		return addr;
2192 	if (inflated_len < len)
2193 		return addr;
2194 
2195 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2196 	if (IS_ERR_VALUE(inflated_addr))
2197 		return addr;
2198 	if (inflated_addr & ~PAGE_MASK)
2199 		return addr;
2200 
2201 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2202 	inflated_addr += offset - inflated_offset;
2203 	if (inflated_offset > offset)
2204 		inflated_addr += HPAGE_PMD_SIZE;
2205 
2206 	if (inflated_addr > TASK_SIZE - len)
2207 		return addr;
2208 	return inflated_addr;
2209 }
2210 
2211 #ifdef CONFIG_NUMA
2212 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2213 {
2214 	struct inode *inode = file_inode(vma->vm_file);
2215 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2216 }
2217 
2218 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2219 					  unsigned long addr)
2220 {
2221 	struct inode *inode = file_inode(vma->vm_file);
2222 	pgoff_t index;
2223 
2224 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2225 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2226 }
2227 #endif
2228 
2229 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2230 {
2231 	struct inode *inode = file_inode(file);
2232 	struct shmem_inode_info *info = SHMEM_I(inode);
2233 	int retval = -ENOMEM;
2234 
2235 	/*
2236 	 * What serializes the accesses to info->flags?
2237 	 * ipc_lock_object() when called from shmctl_do_lock(),
2238 	 * no serialization needed when called from shm_destroy().
2239 	 */
2240 	if (lock && !(info->flags & VM_LOCKED)) {
2241 		if (!user_shm_lock(inode->i_size, ucounts))
2242 			goto out_nomem;
2243 		info->flags |= VM_LOCKED;
2244 		mapping_set_unevictable(file->f_mapping);
2245 	}
2246 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2247 		user_shm_unlock(inode->i_size, ucounts);
2248 		info->flags &= ~VM_LOCKED;
2249 		mapping_clear_unevictable(file->f_mapping);
2250 	}
2251 	retval = 0;
2252 
2253 out_nomem:
2254 	return retval;
2255 }
2256 
2257 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2258 {
2259 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2260 	int ret;
2261 
2262 	ret = seal_check_future_write(info->seals, vma);
2263 	if (ret)
2264 		return ret;
2265 
2266 	/* arm64 - allow memory tagging on RAM-based files */
2267 	vma->vm_flags |= VM_MTE_ALLOWED;
2268 
2269 	file_accessed(file);
2270 	vma->vm_ops = &shmem_vm_ops;
2271 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2272 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2273 			(vma->vm_end & HPAGE_PMD_MASK)) {
2274 		khugepaged_enter(vma, vma->vm_flags);
2275 	}
2276 	return 0;
2277 }
2278 
2279 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2280 				     umode_t mode, dev_t dev, unsigned long flags)
2281 {
2282 	struct inode *inode;
2283 	struct shmem_inode_info *info;
2284 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2285 	ino_t ino;
2286 
2287 	if (shmem_reserve_inode(sb, &ino))
2288 		return NULL;
2289 
2290 	inode = new_inode(sb);
2291 	if (inode) {
2292 		inode->i_ino = ino;
2293 		inode_init_owner(&init_user_ns, inode, dir, mode);
2294 		inode->i_blocks = 0;
2295 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2296 		inode->i_generation = prandom_u32();
2297 		info = SHMEM_I(inode);
2298 		memset(info, 0, (char *)inode - (char *)info);
2299 		spin_lock_init(&info->lock);
2300 		atomic_set(&info->stop_eviction, 0);
2301 		info->seals = F_SEAL_SEAL;
2302 		info->flags = flags & VM_NORESERVE;
2303 		INIT_LIST_HEAD(&info->shrinklist);
2304 		INIT_LIST_HEAD(&info->swaplist);
2305 		simple_xattrs_init(&info->xattrs);
2306 		cache_no_acl(inode);
2307 
2308 		switch (mode & S_IFMT) {
2309 		default:
2310 			inode->i_op = &shmem_special_inode_operations;
2311 			init_special_inode(inode, mode, dev);
2312 			break;
2313 		case S_IFREG:
2314 			inode->i_mapping->a_ops = &shmem_aops;
2315 			inode->i_op = &shmem_inode_operations;
2316 			inode->i_fop = &shmem_file_operations;
2317 			mpol_shared_policy_init(&info->policy,
2318 						 shmem_get_sbmpol(sbinfo));
2319 			break;
2320 		case S_IFDIR:
2321 			inc_nlink(inode);
2322 			/* Some things misbehave if size == 0 on a directory */
2323 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324 			inode->i_op = &shmem_dir_inode_operations;
2325 			inode->i_fop = &simple_dir_operations;
2326 			break;
2327 		case S_IFLNK:
2328 			/*
2329 			 * Must not load anything in the rbtree,
2330 			 * mpol_free_shared_policy will not be called.
2331 			 */
2332 			mpol_shared_policy_init(&info->policy, NULL);
2333 			break;
2334 		}
2335 
2336 		lockdep_annotate_inode_mutex_key(inode);
2337 	} else
2338 		shmem_free_inode(sb);
2339 	return inode;
2340 }
2341 
2342 #ifdef CONFIG_USERFAULTFD
2343 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344 			   pmd_t *dst_pmd,
2345 			   struct vm_area_struct *dst_vma,
2346 			   unsigned long dst_addr,
2347 			   unsigned long src_addr,
2348 			   bool zeropage,
2349 			   struct page **pagep)
2350 {
2351 	struct inode *inode = file_inode(dst_vma->vm_file);
2352 	struct shmem_inode_info *info = SHMEM_I(inode);
2353 	struct address_space *mapping = inode->i_mapping;
2354 	gfp_t gfp = mapping_gfp_mask(mapping);
2355 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2356 	void *page_kaddr;
2357 	struct page *page;
2358 	int ret;
2359 	pgoff_t max_off;
2360 
2361 	if (!shmem_inode_acct_block(inode, 1)) {
2362 		/*
2363 		 * We may have got a page, returned -ENOENT triggering a retry,
2364 		 * and now we find ourselves with -ENOMEM. Release the page, to
2365 		 * avoid a BUG_ON in our caller.
2366 		 */
2367 		if (unlikely(*pagep)) {
2368 			put_page(*pagep);
2369 			*pagep = NULL;
2370 		}
2371 		return -ENOMEM;
2372 	}
2373 
2374 	if (!*pagep) {
2375 		ret = -ENOMEM;
2376 		page = shmem_alloc_page(gfp, info, pgoff);
2377 		if (!page)
2378 			goto out_unacct_blocks;
2379 
2380 		if (!zeropage) {	/* COPY */
2381 			page_kaddr = kmap_atomic(page);
2382 			ret = copy_from_user(page_kaddr,
2383 					     (const void __user *)src_addr,
2384 					     PAGE_SIZE);
2385 			kunmap_atomic(page_kaddr);
2386 
2387 			/* fallback to copy_from_user outside mmap_lock */
2388 			if (unlikely(ret)) {
2389 				*pagep = page;
2390 				ret = -ENOENT;
2391 				/* don't free the page */
2392 				goto out_unacct_blocks;
2393 			}
2394 		} else {		/* ZEROPAGE */
2395 			clear_highpage(page);
2396 		}
2397 	} else {
2398 		page = *pagep;
2399 		*pagep = NULL;
2400 	}
2401 
2402 	VM_BUG_ON(PageLocked(page));
2403 	VM_BUG_ON(PageSwapBacked(page));
2404 	__SetPageLocked(page);
2405 	__SetPageSwapBacked(page);
2406 	__SetPageUptodate(page);
2407 
2408 	ret = -EFAULT;
2409 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2410 	if (unlikely(pgoff >= max_off))
2411 		goto out_release;
2412 
2413 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2414 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2415 	if (ret)
2416 		goto out_release;
2417 
2418 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2419 				       page, true, false);
2420 	if (ret)
2421 		goto out_delete_from_cache;
2422 
2423 	spin_lock_irq(&info->lock);
2424 	info->alloced++;
2425 	inode->i_blocks += BLOCKS_PER_PAGE;
2426 	shmem_recalc_inode(inode);
2427 	spin_unlock_irq(&info->lock);
2428 
2429 	SetPageDirty(page);
2430 	unlock_page(page);
2431 	return 0;
2432 out_delete_from_cache:
2433 	delete_from_page_cache(page);
2434 out_release:
2435 	unlock_page(page);
2436 	put_page(page);
2437 out_unacct_blocks:
2438 	shmem_inode_unacct_blocks(inode, 1);
2439 	return ret;
2440 }
2441 #endif /* CONFIG_USERFAULTFD */
2442 
2443 #ifdef CONFIG_TMPFS
2444 static const struct inode_operations shmem_symlink_inode_operations;
2445 static const struct inode_operations shmem_short_symlink_operations;
2446 
2447 #ifdef CONFIG_TMPFS_XATTR
2448 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2449 #else
2450 #define shmem_initxattrs NULL
2451 #endif
2452 
2453 static int
2454 shmem_write_begin(struct file *file, struct address_space *mapping,
2455 			loff_t pos, unsigned len, unsigned flags,
2456 			struct page **pagep, void **fsdata)
2457 {
2458 	struct inode *inode = mapping->host;
2459 	struct shmem_inode_info *info = SHMEM_I(inode);
2460 	pgoff_t index = pos >> PAGE_SHIFT;
2461 
2462 	/* i_rwsem is held by caller */
2463 	if (unlikely(info->seals & (F_SEAL_GROW |
2464 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2465 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2466 			return -EPERM;
2467 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2468 			return -EPERM;
2469 	}
2470 
2471 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2472 }
2473 
2474 static int
2475 shmem_write_end(struct file *file, struct address_space *mapping,
2476 			loff_t pos, unsigned len, unsigned copied,
2477 			struct page *page, void *fsdata)
2478 {
2479 	struct inode *inode = mapping->host;
2480 
2481 	if (pos + copied > inode->i_size)
2482 		i_size_write(inode, pos + copied);
2483 
2484 	if (!PageUptodate(page)) {
2485 		struct page *head = compound_head(page);
2486 		if (PageTransCompound(page)) {
2487 			int i;
2488 
2489 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2490 				if (head + i == page)
2491 					continue;
2492 				clear_highpage(head + i);
2493 				flush_dcache_page(head + i);
2494 			}
2495 		}
2496 		if (copied < PAGE_SIZE) {
2497 			unsigned from = pos & (PAGE_SIZE - 1);
2498 			zero_user_segments(page, 0, from,
2499 					from + copied, PAGE_SIZE);
2500 		}
2501 		SetPageUptodate(head);
2502 	}
2503 	set_page_dirty(page);
2504 	unlock_page(page);
2505 	put_page(page);
2506 
2507 	return copied;
2508 }
2509 
2510 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2511 {
2512 	struct file *file = iocb->ki_filp;
2513 	struct inode *inode = file_inode(file);
2514 	struct address_space *mapping = inode->i_mapping;
2515 	pgoff_t index;
2516 	unsigned long offset;
2517 	enum sgp_type sgp = SGP_READ;
2518 	int error = 0;
2519 	ssize_t retval = 0;
2520 	loff_t *ppos = &iocb->ki_pos;
2521 
2522 	/*
2523 	 * Might this read be for a stacking filesystem?  Then when reading
2524 	 * holes of a sparse file, we actually need to allocate those pages,
2525 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2526 	 */
2527 	if (!iter_is_iovec(to))
2528 		sgp = SGP_CACHE;
2529 
2530 	index = *ppos >> PAGE_SHIFT;
2531 	offset = *ppos & ~PAGE_MASK;
2532 
2533 	for (;;) {
2534 		struct page *page = NULL;
2535 		pgoff_t end_index;
2536 		unsigned long nr, ret;
2537 		loff_t i_size = i_size_read(inode);
2538 
2539 		end_index = i_size >> PAGE_SHIFT;
2540 		if (index > end_index)
2541 			break;
2542 		if (index == end_index) {
2543 			nr = i_size & ~PAGE_MASK;
2544 			if (nr <= offset)
2545 				break;
2546 		}
2547 
2548 		error = shmem_getpage(inode, index, &page, sgp);
2549 		if (error) {
2550 			if (error == -EINVAL)
2551 				error = 0;
2552 			break;
2553 		}
2554 		if (page) {
2555 			if (sgp == SGP_CACHE)
2556 				set_page_dirty(page);
2557 			unlock_page(page);
2558 		}
2559 
2560 		/*
2561 		 * We must evaluate after, since reads (unlike writes)
2562 		 * are called without i_rwsem protection against truncate
2563 		 */
2564 		nr = PAGE_SIZE;
2565 		i_size = i_size_read(inode);
2566 		end_index = i_size >> PAGE_SHIFT;
2567 		if (index == end_index) {
2568 			nr = i_size & ~PAGE_MASK;
2569 			if (nr <= offset) {
2570 				if (page)
2571 					put_page(page);
2572 				break;
2573 			}
2574 		}
2575 		nr -= offset;
2576 
2577 		if (page) {
2578 			/*
2579 			 * If users can be writing to this page using arbitrary
2580 			 * virtual addresses, take care about potential aliasing
2581 			 * before reading the page on the kernel side.
2582 			 */
2583 			if (mapping_writably_mapped(mapping))
2584 				flush_dcache_page(page);
2585 			/*
2586 			 * Mark the page accessed if we read the beginning.
2587 			 */
2588 			if (!offset)
2589 				mark_page_accessed(page);
2590 		} else {
2591 			page = ZERO_PAGE(0);
2592 			get_page(page);
2593 		}
2594 
2595 		/*
2596 		 * Ok, we have the page, and it's up-to-date, so
2597 		 * now we can copy it to user space...
2598 		 */
2599 		ret = copy_page_to_iter(page, offset, nr, to);
2600 		retval += ret;
2601 		offset += ret;
2602 		index += offset >> PAGE_SHIFT;
2603 		offset &= ~PAGE_MASK;
2604 
2605 		put_page(page);
2606 		if (!iov_iter_count(to))
2607 			break;
2608 		if (ret < nr) {
2609 			error = -EFAULT;
2610 			break;
2611 		}
2612 		cond_resched();
2613 	}
2614 
2615 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2616 	file_accessed(file);
2617 	return retval ? retval : error;
2618 }
2619 
2620 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2621 {
2622 	struct address_space *mapping = file->f_mapping;
2623 	struct inode *inode = mapping->host;
2624 
2625 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2626 		return generic_file_llseek_size(file, offset, whence,
2627 					MAX_LFS_FILESIZE, i_size_read(inode));
2628 	if (offset < 0)
2629 		return -ENXIO;
2630 
2631 	inode_lock(inode);
2632 	/* We're holding i_rwsem so we can access i_size directly */
2633 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2634 	if (offset >= 0)
2635 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2636 	inode_unlock(inode);
2637 	return offset;
2638 }
2639 
2640 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2641 							 loff_t len)
2642 {
2643 	struct inode *inode = file_inode(file);
2644 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2645 	struct shmem_inode_info *info = SHMEM_I(inode);
2646 	struct shmem_falloc shmem_falloc;
2647 	pgoff_t start, index, end, undo_fallocend;
2648 	int error;
2649 
2650 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2651 		return -EOPNOTSUPP;
2652 
2653 	inode_lock(inode);
2654 
2655 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2656 		struct address_space *mapping = file->f_mapping;
2657 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2658 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2659 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2660 
2661 		/* protected by i_rwsem */
2662 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2663 			error = -EPERM;
2664 			goto out;
2665 		}
2666 
2667 		shmem_falloc.waitq = &shmem_falloc_waitq;
2668 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2669 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2670 		spin_lock(&inode->i_lock);
2671 		inode->i_private = &shmem_falloc;
2672 		spin_unlock(&inode->i_lock);
2673 
2674 		if ((u64)unmap_end > (u64)unmap_start)
2675 			unmap_mapping_range(mapping, unmap_start,
2676 					    1 + unmap_end - unmap_start, 0);
2677 		shmem_truncate_range(inode, offset, offset + len - 1);
2678 		/* No need to unmap again: hole-punching leaves COWed pages */
2679 
2680 		spin_lock(&inode->i_lock);
2681 		inode->i_private = NULL;
2682 		wake_up_all(&shmem_falloc_waitq);
2683 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2684 		spin_unlock(&inode->i_lock);
2685 		error = 0;
2686 		goto out;
2687 	}
2688 
2689 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2690 	error = inode_newsize_ok(inode, offset + len);
2691 	if (error)
2692 		goto out;
2693 
2694 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2695 		error = -EPERM;
2696 		goto out;
2697 	}
2698 
2699 	start = offset >> PAGE_SHIFT;
2700 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2701 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2702 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2703 		error = -ENOSPC;
2704 		goto out;
2705 	}
2706 
2707 	shmem_falloc.waitq = NULL;
2708 	shmem_falloc.start = start;
2709 	shmem_falloc.next  = start;
2710 	shmem_falloc.nr_falloced = 0;
2711 	shmem_falloc.nr_unswapped = 0;
2712 	spin_lock(&inode->i_lock);
2713 	inode->i_private = &shmem_falloc;
2714 	spin_unlock(&inode->i_lock);
2715 
2716 	/*
2717 	 * info->fallocend is only relevant when huge pages might be
2718 	 * involved: to prevent split_huge_page() freeing fallocated
2719 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2720 	 */
2721 	undo_fallocend = info->fallocend;
2722 	if (info->fallocend < end)
2723 		info->fallocend = end;
2724 
2725 	for (index = start; index < end; ) {
2726 		struct page *page;
2727 
2728 		/*
2729 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2730 		 * been interrupted because we are using up too much memory.
2731 		 */
2732 		if (signal_pending(current))
2733 			error = -EINTR;
2734 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2735 			error = -ENOMEM;
2736 		else
2737 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2738 		if (error) {
2739 			info->fallocend = undo_fallocend;
2740 			/* Remove the !PageUptodate pages we added */
2741 			if (index > start) {
2742 				shmem_undo_range(inode,
2743 				    (loff_t)start << PAGE_SHIFT,
2744 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2745 			}
2746 			goto undone;
2747 		}
2748 
2749 		index++;
2750 		/*
2751 		 * Here is a more important optimization than it appears:
2752 		 * a second SGP_FALLOC on the same huge page will clear it,
2753 		 * making it PageUptodate and un-undoable if we fail later.
2754 		 */
2755 		if (PageTransCompound(page)) {
2756 			index = round_up(index, HPAGE_PMD_NR);
2757 			/* Beware 32-bit wraparound */
2758 			if (!index)
2759 				index--;
2760 		}
2761 
2762 		/*
2763 		 * Inform shmem_writepage() how far we have reached.
2764 		 * No need for lock or barrier: we have the page lock.
2765 		 */
2766 		if (!PageUptodate(page))
2767 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2768 		shmem_falloc.next = index;
2769 
2770 		/*
2771 		 * If !PageUptodate, leave it that way so that freeable pages
2772 		 * can be recognized if we need to rollback on error later.
2773 		 * But set_page_dirty so that memory pressure will swap rather
2774 		 * than free the pages we are allocating (and SGP_CACHE pages
2775 		 * might still be clean: we now need to mark those dirty too).
2776 		 */
2777 		set_page_dirty(page);
2778 		unlock_page(page);
2779 		put_page(page);
2780 		cond_resched();
2781 	}
2782 
2783 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2784 		i_size_write(inode, offset + len);
2785 	inode->i_ctime = current_time(inode);
2786 undone:
2787 	spin_lock(&inode->i_lock);
2788 	inode->i_private = NULL;
2789 	spin_unlock(&inode->i_lock);
2790 out:
2791 	inode_unlock(inode);
2792 	return error;
2793 }
2794 
2795 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2796 {
2797 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2798 
2799 	buf->f_type = TMPFS_MAGIC;
2800 	buf->f_bsize = PAGE_SIZE;
2801 	buf->f_namelen = NAME_MAX;
2802 	if (sbinfo->max_blocks) {
2803 		buf->f_blocks = sbinfo->max_blocks;
2804 		buf->f_bavail =
2805 		buf->f_bfree  = sbinfo->max_blocks -
2806 				percpu_counter_sum(&sbinfo->used_blocks);
2807 	}
2808 	if (sbinfo->max_inodes) {
2809 		buf->f_files = sbinfo->max_inodes;
2810 		buf->f_ffree = sbinfo->free_inodes;
2811 	}
2812 	/* else leave those fields 0 like simple_statfs */
2813 
2814 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2815 
2816 	return 0;
2817 }
2818 
2819 /*
2820  * File creation. Allocate an inode, and we're done..
2821  */
2822 static int
2823 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2824 	    struct dentry *dentry, umode_t mode, dev_t dev)
2825 {
2826 	struct inode *inode;
2827 	int error = -ENOSPC;
2828 
2829 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2830 	if (inode) {
2831 		error = simple_acl_create(dir, inode);
2832 		if (error)
2833 			goto out_iput;
2834 		error = security_inode_init_security(inode, dir,
2835 						     &dentry->d_name,
2836 						     shmem_initxattrs, NULL);
2837 		if (error && error != -EOPNOTSUPP)
2838 			goto out_iput;
2839 
2840 		error = 0;
2841 		dir->i_size += BOGO_DIRENT_SIZE;
2842 		dir->i_ctime = dir->i_mtime = current_time(dir);
2843 		d_instantiate(dentry, inode);
2844 		dget(dentry); /* Extra count - pin the dentry in core */
2845 	}
2846 	return error;
2847 out_iput:
2848 	iput(inode);
2849 	return error;
2850 }
2851 
2852 static int
2853 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2854 	      struct dentry *dentry, umode_t mode)
2855 {
2856 	struct inode *inode;
2857 	int error = -ENOSPC;
2858 
2859 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2860 	if (inode) {
2861 		error = security_inode_init_security(inode, dir,
2862 						     NULL,
2863 						     shmem_initxattrs, NULL);
2864 		if (error && error != -EOPNOTSUPP)
2865 			goto out_iput;
2866 		error = simple_acl_create(dir, inode);
2867 		if (error)
2868 			goto out_iput;
2869 		d_tmpfile(dentry, inode);
2870 	}
2871 	return error;
2872 out_iput:
2873 	iput(inode);
2874 	return error;
2875 }
2876 
2877 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2878 		       struct dentry *dentry, umode_t mode)
2879 {
2880 	int error;
2881 
2882 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2883 				 mode | S_IFDIR, 0)))
2884 		return error;
2885 	inc_nlink(dir);
2886 	return 0;
2887 }
2888 
2889 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2890 			struct dentry *dentry, umode_t mode, bool excl)
2891 {
2892 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2893 }
2894 
2895 /*
2896  * Link a file..
2897  */
2898 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2899 {
2900 	struct inode *inode = d_inode(old_dentry);
2901 	int ret = 0;
2902 
2903 	/*
2904 	 * No ordinary (disk based) filesystem counts links as inodes;
2905 	 * but each new link needs a new dentry, pinning lowmem, and
2906 	 * tmpfs dentries cannot be pruned until they are unlinked.
2907 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2908 	 * first link must skip that, to get the accounting right.
2909 	 */
2910 	if (inode->i_nlink) {
2911 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2912 		if (ret)
2913 			goto out;
2914 	}
2915 
2916 	dir->i_size += BOGO_DIRENT_SIZE;
2917 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2918 	inc_nlink(inode);
2919 	ihold(inode);	/* New dentry reference */
2920 	dget(dentry);		/* Extra pinning count for the created dentry */
2921 	d_instantiate(dentry, inode);
2922 out:
2923 	return ret;
2924 }
2925 
2926 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2927 {
2928 	struct inode *inode = d_inode(dentry);
2929 
2930 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2931 		shmem_free_inode(inode->i_sb);
2932 
2933 	dir->i_size -= BOGO_DIRENT_SIZE;
2934 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2935 	drop_nlink(inode);
2936 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2937 	return 0;
2938 }
2939 
2940 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2941 {
2942 	if (!simple_empty(dentry))
2943 		return -ENOTEMPTY;
2944 
2945 	drop_nlink(d_inode(dentry));
2946 	drop_nlink(dir);
2947 	return shmem_unlink(dir, dentry);
2948 }
2949 
2950 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2951 {
2952 	bool old_is_dir = d_is_dir(old_dentry);
2953 	bool new_is_dir = d_is_dir(new_dentry);
2954 
2955 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2956 		if (old_is_dir) {
2957 			drop_nlink(old_dir);
2958 			inc_nlink(new_dir);
2959 		} else {
2960 			drop_nlink(new_dir);
2961 			inc_nlink(old_dir);
2962 		}
2963 	}
2964 	old_dir->i_ctime = old_dir->i_mtime =
2965 	new_dir->i_ctime = new_dir->i_mtime =
2966 	d_inode(old_dentry)->i_ctime =
2967 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2968 
2969 	return 0;
2970 }
2971 
2972 static int shmem_whiteout(struct user_namespace *mnt_userns,
2973 			  struct inode *old_dir, struct dentry *old_dentry)
2974 {
2975 	struct dentry *whiteout;
2976 	int error;
2977 
2978 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979 	if (!whiteout)
2980 		return -ENOMEM;
2981 
2982 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2983 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984 	dput(whiteout);
2985 	if (error)
2986 		return error;
2987 
2988 	/*
2989 	 * Cheat and hash the whiteout while the old dentry is still in
2990 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 	 *
2992 	 * d_lookup() will consistently find one of them at this point,
2993 	 * not sure which one, but that isn't even important.
2994 	 */
2995 	d_rehash(whiteout);
2996 	return 0;
2997 }
2998 
2999 /*
3000  * The VFS layer already does all the dentry stuff for rename,
3001  * we just have to decrement the usage count for the target if
3002  * it exists so that the VFS layer correctly free's it when it
3003  * gets overwritten.
3004  */
3005 static int shmem_rename2(struct user_namespace *mnt_userns,
3006 			 struct inode *old_dir, struct dentry *old_dentry,
3007 			 struct inode *new_dir, struct dentry *new_dentry,
3008 			 unsigned int flags)
3009 {
3010 	struct inode *inode = d_inode(old_dentry);
3011 	int they_are_dirs = S_ISDIR(inode->i_mode);
3012 
3013 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3014 		return -EINVAL;
3015 
3016 	if (flags & RENAME_EXCHANGE)
3017 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018 
3019 	if (!simple_empty(new_dentry))
3020 		return -ENOTEMPTY;
3021 
3022 	if (flags & RENAME_WHITEOUT) {
3023 		int error;
3024 
3025 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3026 		if (error)
3027 			return error;
3028 	}
3029 
3030 	if (d_really_is_positive(new_dentry)) {
3031 		(void) shmem_unlink(new_dir, new_dentry);
3032 		if (they_are_dirs) {
3033 			drop_nlink(d_inode(new_dentry));
3034 			drop_nlink(old_dir);
3035 		}
3036 	} else if (they_are_dirs) {
3037 		drop_nlink(old_dir);
3038 		inc_nlink(new_dir);
3039 	}
3040 
3041 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3042 	new_dir->i_size += BOGO_DIRENT_SIZE;
3043 	old_dir->i_ctime = old_dir->i_mtime =
3044 	new_dir->i_ctime = new_dir->i_mtime =
3045 	inode->i_ctime = current_time(old_dir);
3046 	return 0;
3047 }
3048 
3049 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050 			 struct dentry *dentry, const char *symname)
3051 {
3052 	int error;
3053 	int len;
3054 	struct inode *inode;
3055 	struct page *page;
3056 
3057 	len = strlen(symname) + 1;
3058 	if (len > PAGE_SIZE)
3059 		return -ENAMETOOLONG;
3060 
3061 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062 				VM_NORESERVE);
3063 	if (!inode)
3064 		return -ENOSPC;
3065 
3066 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3067 					     shmem_initxattrs, NULL);
3068 	if (error && error != -EOPNOTSUPP) {
3069 		iput(inode);
3070 		return error;
3071 	}
3072 
3073 	inode->i_size = len-1;
3074 	if (len <= SHORT_SYMLINK_LEN) {
3075 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076 		if (!inode->i_link) {
3077 			iput(inode);
3078 			return -ENOMEM;
3079 		}
3080 		inode->i_op = &shmem_short_symlink_operations;
3081 	} else {
3082 		inode_nohighmem(inode);
3083 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3084 		if (error) {
3085 			iput(inode);
3086 			return error;
3087 		}
3088 		inode->i_mapping->a_ops = &shmem_aops;
3089 		inode->i_op = &shmem_symlink_inode_operations;
3090 		memcpy(page_address(page), symname, len);
3091 		SetPageUptodate(page);
3092 		set_page_dirty(page);
3093 		unlock_page(page);
3094 		put_page(page);
3095 	}
3096 	dir->i_size += BOGO_DIRENT_SIZE;
3097 	dir->i_ctime = dir->i_mtime = current_time(dir);
3098 	d_instantiate(dentry, inode);
3099 	dget(dentry);
3100 	return 0;
3101 }
3102 
3103 static void shmem_put_link(void *arg)
3104 {
3105 	mark_page_accessed(arg);
3106 	put_page(arg);
3107 }
3108 
3109 static const char *shmem_get_link(struct dentry *dentry,
3110 				  struct inode *inode,
3111 				  struct delayed_call *done)
3112 {
3113 	struct page *page = NULL;
3114 	int error;
3115 	if (!dentry) {
3116 		page = find_get_page(inode->i_mapping, 0);
3117 		if (!page)
3118 			return ERR_PTR(-ECHILD);
3119 		if (!PageUptodate(page)) {
3120 			put_page(page);
3121 			return ERR_PTR(-ECHILD);
3122 		}
3123 	} else {
3124 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3125 		if (error)
3126 			return ERR_PTR(error);
3127 		unlock_page(page);
3128 	}
3129 	set_delayed_call(done, shmem_put_link, page);
3130 	return page_address(page);
3131 }
3132 
3133 #ifdef CONFIG_TMPFS_XATTR
3134 /*
3135  * Superblocks without xattr inode operations may get some security.* xattr
3136  * support from the LSM "for free". As soon as we have any other xattrs
3137  * like ACLs, we also need to implement the security.* handlers at
3138  * filesystem level, though.
3139  */
3140 
3141 /*
3142  * Callback for security_inode_init_security() for acquiring xattrs.
3143  */
3144 static int shmem_initxattrs(struct inode *inode,
3145 			    const struct xattr *xattr_array,
3146 			    void *fs_info)
3147 {
3148 	struct shmem_inode_info *info = SHMEM_I(inode);
3149 	const struct xattr *xattr;
3150 	struct simple_xattr *new_xattr;
3151 	size_t len;
3152 
3153 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3154 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3155 		if (!new_xattr)
3156 			return -ENOMEM;
3157 
3158 		len = strlen(xattr->name) + 1;
3159 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3160 					  GFP_KERNEL);
3161 		if (!new_xattr->name) {
3162 			kvfree(new_xattr);
3163 			return -ENOMEM;
3164 		}
3165 
3166 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3167 		       XATTR_SECURITY_PREFIX_LEN);
3168 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3169 		       xattr->name, len);
3170 
3171 		simple_xattr_list_add(&info->xattrs, new_xattr);
3172 	}
3173 
3174 	return 0;
3175 }
3176 
3177 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3178 				   struct dentry *unused, struct inode *inode,
3179 				   const char *name, void *buffer, size_t size)
3180 {
3181 	struct shmem_inode_info *info = SHMEM_I(inode);
3182 
3183 	name = xattr_full_name(handler, name);
3184 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3185 }
3186 
3187 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3188 				   struct user_namespace *mnt_userns,
3189 				   struct dentry *unused, struct inode *inode,
3190 				   const char *name, const void *value,
3191 				   size_t size, int flags)
3192 {
3193 	struct shmem_inode_info *info = SHMEM_I(inode);
3194 
3195 	name = xattr_full_name(handler, name);
3196 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3197 }
3198 
3199 static const struct xattr_handler shmem_security_xattr_handler = {
3200 	.prefix = XATTR_SECURITY_PREFIX,
3201 	.get = shmem_xattr_handler_get,
3202 	.set = shmem_xattr_handler_set,
3203 };
3204 
3205 static const struct xattr_handler shmem_trusted_xattr_handler = {
3206 	.prefix = XATTR_TRUSTED_PREFIX,
3207 	.get = shmem_xattr_handler_get,
3208 	.set = shmem_xattr_handler_set,
3209 };
3210 
3211 static const struct xattr_handler *shmem_xattr_handlers[] = {
3212 #ifdef CONFIG_TMPFS_POSIX_ACL
3213 	&posix_acl_access_xattr_handler,
3214 	&posix_acl_default_xattr_handler,
3215 #endif
3216 	&shmem_security_xattr_handler,
3217 	&shmem_trusted_xattr_handler,
3218 	NULL
3219 };
3220 
3221 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3222 {
3223 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3225 }
3226 #endif /* CONFIG_TMPFS_XATTR */
3227 
3228 static const struct inode_operations shmem_short_symlink_operations = {
3229 	.get_link	= simple_get_link,
3230 #ifdef CONFIG_TMPFS_XATTR
3231 	.listxattr	= shmem_listxattr,
3232 #endif
3233 };
3234 
3235 static const struct inode_operations shmem_symlink_inode_operations = {
3236 	.get_link	= shmem_get_link,
3237 #ifdef CONFIG_TMPFS_XATTR
3238 	.listxattr	= shmem_listxattr,
3239 #endif
3240 };
3241 
3242 static struct dentry *shmem_get_parent(struct dentry *child)
3243 {
3244 	return ERR_PTR(-ESTALE);
3245 }
3246 
3247 static int shmem_match(struct inode *ino, void *vfh)
3248 {
3249 	__u32 *fh = vfh;
3250 	__u64 inum = fh[2];
3251 	inum = (inum << 32) | fh[1];
3252 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3253 }
3254 
3255 /* Find any alias of inode, but prefer a hashed alias */
3256 static struct dentry *shmem_find_alias(struct inode *inode)
3257 {
3258 	struct dentry *alias = d_find_alias(inode);
3259 
3260 	return alias ?: d_find_any_alias(inode);
3261 }
3262 
3263 
3264 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3265 		struct fid *fid, int fh_len, int fh_type)
3266 {
3267 	struct inode *inode;
3268 	struct dentry *dentry = NULL;
3269 	u64 inum;
3270 
3271 	if (fh_len < 3)
3272 		return NULL;
3273 
3274 	inum = fid->raw[2];
3275 	inum = (inum << 32) | fid->raw[1];
3276 
3277 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3278 			shmem_match, fid->raw);
3279 	if (inode) {
3280 		dentry = shmem_find_alias(inode);
3281 		iput(inode);
3282 	}
3283 
3284 	return dentry;
3285 }
3286 
3287 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3288 				struct inode *parent)
3289 {
3290 	if (*len < 3) {
3291 		*len = 3;
3292 		return FILEID_INVALID;
3293 	}
3294 
3295 	if (inode_unhashed(inode)) {
3296 		/* Unfortunately insert_inode_hash is not idempotent,
3297 		 * so as we hash inodes here rather than at creation
3298 		 * time, we need a lock to ensure we only try
3299 		 * to do it once
3300 		 */
3301 		static DEFINE_SPINLOCK(lock);
3302 		spin_lock(&lock);
3303 		if (inode_unhashed(inode))
3304 			__insert_inode_hash(inode,
3305 					    inode->i_ino + inode->i_generation);
3306 		spin_unlock(&lock);
3307 	}
3308 
3309 	fh[0] = inode->i_generation;
3310 	fh[1] = inode->i_ino;
3311 	fh[2] = ((__u64)inode->i_ino) >> 32;
3312 
3313 	*len = 3;
3314 	return 1;
3315 }
3316 
3317 static const struct export_operations shmem_export_ops = {
3318 	.get_parent     = shmem_get_parent,
3319 	.encode_fh      = shmem_encode_fh,
3320 	.fh_to_dentry	= shmem_fh_to_dentry,
3321 };
3322 
3323 enum shmem_param {
3324 	Opt_gid,
3325 	Opt_huge,
3326 	Opt_mode,
3327 	Opt_mpol,
3328 	Opt_nr_blocks,
3329 	Opt_nr_inodes,
3330 	Opt_size,
3331 	Opt_uid,
3332 	Opt_inode32,
3333 	Opt_inode64,
3334 };
3335 
3336 static const struct constant_table shmem_param_enums_huge[] = {
3337 	{"never",	SHMEM_HUGE_NEVER },
3338 	{"always",	SHMEM_HUGE_ALWAYS },
3339 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3340 	{"advise",	SHMEM_HUGE_ADVISE },
3341 	{}
3342 };
3343 
3344 const struct fs_parameter_spec shmem_fs_parameters[] = {
3345 	fsparam_u32   ("gid",		Opt_gid),
3346 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3347 	fsparam_u32oct("mode",		Opt_mode),
3348 	fsparam_string("mpol",		Opt_mpol),
3349 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3350 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3351 	fsparam_string("size",		Opt_size),
3352 	fsparam_u32   ("uid",		Opt_uid),
3353 	fsparam_flag  ("inode32",	Opt_inode32),
3354 	fsparam_flag  ("inode64",	Opt_inode64),
3355 	{}
3356 };
3357 
3358 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3359 {
3360 	struct shmem_options *ctx = fc->fs_private;
3361 	struct fs_parse_result result;
3362 	unsigned long long size;
3363 	char *rest;
3364 	int opt;
3365 
3366 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3367 	if (opt < 0)
3368 		return opt;
3369 
3370 	switch (opt) {
3371 	case Opt_size:
3372 		size = memparse(param->string, &rest);
3373 		if (*rest == '%') {
3374 			size <<= PAGE_SHIFT;
3375 			size *= totalram_pages();
3376 			do_div(size, 100);
3377 			rest++;
3378 		}
3379 		if (*rest)
3380 			goto bad_value;
3381 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3382 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3383 		break;
3384 	case Opt_nr_blocks:
3385 		ctx->blocks = memparse(param->string, &rest);
3386 		if (*rest)
3387 			goto bad_value;
3388 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3389 		break;
3390 	case Opt_nr_inodes:
3391 		ctx->inodes = memparse(param->string, &rest);
3392 		if (*rest)
3393 			goto bad_value;
3394 		ctx->seen |= SHMEM_SEEN_INODES;
3395 		break;
3396 	case Opt_mode:
3397 		ctx->mode = result.uint_32 & 07777;
3398 		break;
3399 	case Opt_uid:
3400 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3401 		if (!uid_valid(ctx->uid))
3402 			goto bad_value;
3403 		break;
3404 	case Opt_gid:
3405 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3406 		if (!gid_valid(ctx->gid))
3407 			goto bad_value;
3408 		break;
3409 	case Opt_huge:
3410 		ctx->huge = result.uint_32;
3411 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3412 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3413 		      has_transparent_hugepage()))
3414 			goto unsupported_parameter;
3415 		ctx->seen |= SHMEM_SEEN_HUGE;
3416 		break;
3417 	case Opt_mpol:
3418 		if (IS_ENABLED(CONFIG_NUMA)) {
3419 			mpol_put(ctx->mpol);
3420 			ctx->mpol = NULL;
3421 			if (mpol_parse_str(param->string, &ctx->mpol))
3422 				goto bad_value;
3423 			break;
3424 		}
3425 		goto unsupported_parameter;
3426 	case Opt_inode32:
3427 		ctx->full_inums = false;
3428 		ctx->seen |= SHMEM_SEEN_INUMS;
3429 		break;
3430 	case Opt_inode64:
3431 		if (sizeof(ino_t) < 8) {
3432 			return invalfc(fc,
3433 				       "Cannot use inode64 with <64bit inums in kernel\n");
3434 		}
3435 		ctx->full_inums = true;
3436 		ctx->seen |= SHMEM_SEEN_INUMS;
3437 		break;
3438 	}
3439 	return 0;
3440 
3441 unsupported_parameter:
3442 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3443 bad_value:
3444 	return invalfc(fc, "Bad value for '%s'", param->key);
3445 }
3446 
3447 static int shmem_parse_options(struct fs_context *fc, void *data)
3448 {
3449 	char *options = data;
3450 
3451 	if (options) {
3452 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3453 		if (err)
3454 			return err;
3455 	}
3456 
3457 	while (options != NULL) {
3458 		char *this_char = options;
3459 		for (;;) {
3460 			/*
3461 			 * NUL-terminate this option: unfortunately,
3462 			 * mount options form a comma-separated list,
3463 			 * but mpol's nodelist may also contain commas.
3464 			 */
3465 			options = strchr(options, ',');
3466 			if (options == NULL)
3467 				break;
3468 			options++;
3469 			if (!isdigit(*options)) {
3470 				options[-1] = '\0';
3471 				break;
3472 			}
3473 		}
3474 		if (*this_char) {
3475 			char *value = strchr(this_char, '=');
3476 			size_t len = 0;
3477 			int err;
3478 
3479 			if (value) {
3480 				*value++ = '\0';
3481 				len = strlen(value);
3482 			}
3483 			err = vfs_parse_fs_string(fc, this_char, value, len);
3484 			if (err < 0)
3485 				return err;
3486 		}
3487 	}
3488 	return 0;
3489 }
3490 
3491 /*
3492  * Reconfigure a shmem filesystem.
3493  *
3494  * Note that we disallow change from limited->unlimited blocks/inodes while any
3495  * are in use; but we must separately disallow unlimited->limited, because in
3496  * that case we have no record of how much is already in use.
3497  */
3498 static int shmem_reconfigure(struct fs_context *fc)
3499 {
3500 	struct shmem_options *ctx = fc->fs_private;
3501 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3502 	unsigned long inodes;
3503 	struct mempolicy *mpol = NULL;
3504 	const char *err;
3505 
3506 	raw_spin_lock(&sbinfo->stat_lock);
3507 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3508 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3509 		if (!sbinfo->max_blocks) {
3510 			err = "Cannot retroactively limit size";
3511 			goto out;
3512 		}
3513 		if (percpu_counter_compare(&sbinfo->used_blocks,
3514 					   ctx->blocks) > 0) {
3515 			err = "Too small a size for current use";
3516 			goto out;
3517 		}
3518 	}
3519 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3520 		if (!sbinfo->max_inodes) {
3521 			err = "Cannot retroactively limit inodes";
3522 			goto out;
3523 		}
3524 		if (ctx->inodes < inodes) {
3525 			err = "Too few inodes for current use";
3526 			goto out;
3527 		}
3528 	}
3529 
3530 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3531 	    sbinfo->next_ino > UINT_MAX) {
3532 		err = "Current inum too high to switch to 32-bit inums";
3533 		goto out;
3534 	}
3535 
3536 	if (ctx->seen & SHMEM_SEEN_HUGE)
3537 		sbinfo->huge = ctx->huge;
3538 	if (ctx->seen & SHMEM_SEEN_INUMS)
3539 		sbinfo->full_inums = ctx->full_inums;
3540 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3541 		sbinfo->max_blocks  = ctx->blocks;
3542 	if (ctx->seen & SHMEM_SEEN_INODES) {
3543 		sbinfo->max_inodes  = ctx->inodes;
3544 		sbinfo->free_inodes = ctx->inodes - inodes;
3545 	}
3546 
3547 	/*
3548 	 * Preserve previous mempolicy unless mpol remount option was specified.
3549 	 */
3550 	if (ctx->mpol) {
3551 		mpol = sbinfo->mpol;
3552 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3553 		ctx->mpol = NULL;
3554 	}
3555 	raw_spin_unlock(&sbinfo->stat_lock);
3556 	mpol_put(mpol);
3557 	return 0;
3558 out:
3559 	raw_spin_unlock(&sbinfo->stat_lock);
3560 	return invalfc(fc, "%s", err);
3561 }
3562 
3563 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3564 {
3565 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3566 
3567 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3568 		seq_printf(seq, ",size=%luk",
3569 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3570 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3571 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3572 	if (sbinfo->mode != (0777 | S_ISVTX))
3573 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3574 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3575 		seq_printf(seq, ",uid=%u",
3576 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3577 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3578 		seq_printf(seq, ",gid=%u",
3579 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3580 
3581 	/*
3582 	 * Showing inode{64,32} might be useful even if it's the system default,
3583 	 * since then people don't have to resort to checking both here and
3584 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3585 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3586 	 *
3587 	 * We hide it when inode64 isn't the default and we are using 32-bit
3588 	 * inodes, since that probably just means the feature isn't even under
3589 	 * consideration.
3590 	 *
3591 	 * As such:
3592 	 *
3593 	 *                     +-----------------+-----------------+
3594 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3595 	 *  +------------------+-----------------+-----------------+
3596 	 *  | full_inums=true  | show            | show            |
3597 	 *  | full_inums=false | show            | hide            |
3598 	 *  +------------------+-----------------+-----------------+
3599 	 *
3600 	 */
3601 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3602 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3604 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3605 	if (sbinfo->huge)
3606 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3607 #endif
3608 	shmem_show_mpol(seq, sbinfo->mpol);
3609 	return 0;
3610 }
3611 
3612 #endif /* CONFIG_TMPFS */
3613 
3614 static void shmem_put_super(struct super_block *sb)
3615 {
3616 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3617 
3618 	free_percpu(sbinfo->ino_batch);
3619 	percpu_counter_destroy(&sbinfo->used_blocks);
3620 	mpol_put(sbinfo->mpol);
3621 	kfree(sbinfo);
3622 	sb->s_fs_info = NULL;
3623 }
3624 
3625 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3626 {
3627 	struct shmem_options *ctx = fc->fs_private;
3628 	struct inode *inode;
3629 	struct shmem_sb_info *sbinfo;
3630 
3631 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3632 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3633 				L1_CACHE_BYTES), GFP_KERNEL);
3634 	if (!sbinfo)
3635 		return -ENOMEM;
3636 
3637 	sb->s_fs_info = sbinfo;
3638 
3639 #ifdef CONFIG_TMPFS
3640 	/*
3641 	 * Per default we only allow half of the physical ram per
3642 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3643 	 * but the internal instance is left unlimited.
3644 	 */
3645 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3646 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3647 			ctx->blocks = shmem_default_max_blocks();
3648 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3649 			ctx->inodes = shmem_default_max_inodes();
3650 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3651 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3652 	} else {
3653 		sb->s_flags |= SB_NOUSER;
3654 	}
3655 	sb->s_export_op = &shmem_export_ops;
3656 	sb->s_flags |= SB_NOSEC;
3657 #else
3658 	sb->s_flags |= SB_NOUSER;
3659 #endif
3660 	sbinfo->max_blocks = ctx->blocks;
3661 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3662 	if (sb->s_flags & SB_KERNMOUNT) {
3663 		sbinfo->ino_batch = alloc_percpu(ino_t);
3664 		if (!sbinfo->ino_batch)
3665 			goto failed;
3666 	}
3667 	sbinfo->uid = ctx->uid;
3668 	sbinfo->gid = ctx->gid;
3669 	sbinfo->full_inums = ctx->full_inums;
3670 	sbinfo->mode = ctx->mode;
3671 	sbinfo->huge = ctx->huge;
3672 	sbinfo->mpol = ctx->mpol;
3673 	ctx->mpol = NULL;
3674 
3675 	raw_spin_lock_init(&sbinfo->stat_lock);
3676 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3677 		goto failed;
3678 	spin_lock_init(&sbinfo->shrinklist_lock);
3679 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3680 
3681 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3682 	sb->s_blocksize = PAGE_SIZE;
3683 	sb->s_blocksize_bits = PAGE_SHIFT;
3684 	sb->s_magic = TMPFS_MAGIC;
3685 	sb->s_op = &shmem_ops;
3686 	sb->s_time_gran = 1;
3687 #ifdef CONFIG_TMPFS_XATTR
3688 	sb->s_xattr = shmem_xattr_handlers;
3689 #endif
3690 #ifdef CONFIG_TMPFS_POSIX_ACL
3691 	sb->s_flags |= SB_POSIXACL;
3692 #endif
3693 	uuid_gen(&sb->s_uuid);
3694 
3695 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3696 	if (!inode)
3697 		goto failed;
3698 	inode->i_uid = sbinfo->uid;
3699 	inode->i_gid = sbinfo->gid;
3700 	sb->s_root = d_make_root(inode);
3701 	if (!sb->s_root)
3702 		goto failed;
3703 	return 0;
3704 
3705 failed:
3706 	shmem_put_super(sb);
3707 	return -ENOMEM;
3708 }
3709 
3710 static int shmem_get_tree(struct fs_context *fc)
3711 {
3712 	return get_tree_nodev(fc, shmem_fill_super);
3713 }
3714 
3715 static void shmem_free_fc(struct fs_context *fc)
3716 {
3717 	struct shmem_options *ctx = fc->fs_private;
3718 
3719 	if (ctx) {
3720 		mpol_put(ctx->mpol);
3721 		kfree(ctx);
3722 	}
3723 }
3724 
3725 static const struct fs_context_operations shmem_fs_context_ops = {
3726 	.free			= shmem_free_fc,
3727 	.get_tree		= shmem_get_tree,
3728 #ifdef CONFIG_TMPFS
3729 	.parse_monolithic	= shmem_parse_options,
3730 	.parse_param		= shmem_parse_one,
3731 	.reconfigure		= shmem_reconfigure,
3732 #endif
3733 };
3734 
3735 static struct kmem_cache *shmem_inode_cachep;
3736 
3737 static struct inode *shmem_alloc_inode(struct super_block *sb)
3738 {
3739 	struct shmem_inode_info *info;
3740 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3741 	if (!info)
3742 		return NULL;
3743 	return &info->vfs_inode;
3744 }
3745 
3746 static void shmem_free_in_core_inode(struct inode *inode)
3747 {
3748 	if (S_ISLNK(inode->i_mode))
3749 		kfree(inode->i_link);
3750 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3751 }
3752 
3753 static void shmem_destroy_inode(struct inode *inode)
3754 {
3755 	if (S_ISREG(inode->i_mode))
3756 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3757 }
3758 
3759 static void shmem_init_inode(void *foo)
3760 {
3761 	struct shmem_inode_info *info = foo;
3762 	inode_init_once(&info->vfs_inode);
3763 }
3764 
3765 static void shmem_init_inodecache(void)
3766 {
3767 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3768 				sizeof(struct shmem_inode_info),
3769 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3770 }
3771 
3772 static void shmem_destroy_inodecache(void)
3773 {
3774 	kmem_cache_destroy(shmem_inode_cachep);
3775 }
3776 
3777 const struct address_space_operations shmem_aops = {
3778 	.writepage	= shmem_writepage,
3779 	.set_page_dirty	= __set_page_dirty_no_writeback,
3780 #ifdef CONFIG_TMPFS
3781 	.write_begin	= shmem_write_begin,
3782 	.write_end	= shmem_write_end,
3783 #endif
3784 #ifdef CONFIG_MIGRATION
3785 	.migratepage	= migrate_page,
3786 #endif
3787 	.error_remove_page = generic_error_remove_page,
3788 };
3789 EXPORT_SYMBOL(shmem_aops);
3790 
3791 static const struct file_operations shmem_file_operations = {
3792 	.mmap		= shmem_mmap,
3793 	.get_unmapped_area = shmem_get_unmapped_area,
3794 #ifdef CONFIG_TMPFS
3795 	.llseek		= shmem_file_llseek,
3796 	.read_iter	= shmem_file_read_iter,
3797 	.write_iter	= generic_file_write_iter,
3798 	.fsync		= noop_fsync,
3799 	.splice_read	= generic_file_splice_read,
3800 	.splice_write	= iter_file_splice_write,
3801 	.fallocate	= shmem_fallocate,
3802 #endif
3803 };
3804 
3805 static const struct inode_operations shmem_inode_operations = {
3806 	.getattr	= shmem_getattr,
3807 	.setattr	= shmem_setattr,
3808 #ifdef CONFIG_TMPFS_XATTR
3809 	.listxattr	= shmem_listxattr,
3810 	.set_acl	= simple_set_acl,
3811 #endif
3812 };
3813 
3814 static const struct inode_operations shmem_dir_inode_operations = {
3815 #ifdef CONFIG_TMPFS
3816 	.create		= shmem_create,
3817 	.lookup		= simple_lookup,
3818 	.link		= shmem_link,
3819 	.unlink		= shmem_unlink,
3820 	.symlink	= shmem_symlink,
3821 	.mkdir		= shmem_mkdir,
3822 	.rmdir		= shmem_rmdir,
3823 	.mknod		= shmem_mknod,
3824 	.rename		= shmem_rename2,
3825 	.tmpfile	= shmem_tmpfile,
3826 #endif
3827 #ifdef CONFIG_TMPFS_XATTR
3828 	.listxattr	= shmem_listxattr,
3829 #endif
3830 #ifdef CONFIG_TMPFS_POSIX_ACL
3831 	.setattr	= shmem_setattr,
3832 	.set_acl	= simple_set_acl,
3833 #endif
3834 };
3835 
3836 static const struct inode_operations shmem_special_inode_operations = {
3837 #ifdef CONFIG_TMPFS_XATTR
3838 	.listxattr	= shmem_listxattr,
3839 #endif
3840 #ifdef CONFIG_TMPFS_POSIX_ACL
3841 	.setattr	= shmem_setattr,
3842 	.set_acl	= simple_set_acl,
3843 #endif
3844 };
3845 
3846 static const struct super_operations shmem_ops = {
3847 	.alloc_inode	= shmem_alloc_inode,
3848 	.free_inode	= shmem_free_in_core_inode,
3849 	.destroy_inode	= shmem_destroy_inode,
3850 #ifdef CONFIG_TMPFS
3851 	.statfs		= shmem_statfs,
3852 	.show_options	= shmem_show_options,
3853 #endif
3854 	.evict_inode	= shmem_evict_inode,
3855 	.drop_inode	= generic_delete_inode,
3856 	.put_super	= shmem_put_super,
3857 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3858 	.nr_cached_objects	= shmem_unused_huge_count,
3859 	.free_cached_objects	= shmem_unused_huge_scan,
3860 #endif
3861 };
3862 
3863 static const struct vm_operations_struct shmem_vm_ops = {
3864 	.fault		= shmem_fault,
3865 	.map_pages	= filemap_map_pages,
3866 #ifdef CONFIG_NUMA
3867 	.set_policy     = shmem_set_policy,
3868 	.get_policy     = shmem_get_policy,
3869 #endif
3870 };
3871 
3872 int shmem_init_fs_context(struct fs_context *fc)
3873 {
3874 	struct shmem_options *ctx;
3875 
3876 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3877 	if (!ctx)
3878 		return -ENOMEM;
3879 
3880 	ctx->mode = 0777 | S_ISVTX;
3881 	ctx->uid = current_fsuid();
3882 	ctx->gid = current_fsgid();
3883 
3884 	fc->fs_private = ctx;
3885 	fc->ops = &shmem_fs_context_ops;
3886 	return 0;
3887 }
3888 
3889 static struct file_system_type shmem_fs_type = {
3890 	.owner		= THIS_MODULE,
3891 	.name		= "tmpfs",
3892 	.init_fs_context = shmem_init_fs_context,
3893 #ifdef CONFIG_TMPFS
3894 	.parameters	= shmem_fs_parameters,
3895 #endif
3896 	.kill_sb	= kill_litter_super,
3897 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3898 };
3899 
3900 int __init shmem_init(void)
3901 {
3902 	int error;
3903 
3904 	shmem_init_inodecache();
3905 
3906 	error = register_filesystem(&shmem_fs_type);
3907 	if (error) {
3908 		pr_err("Could not register tmpfs\n");
3909 		goto out2;
3910 	}
3911 
3912 	shm_mnt = kern_mount(&shmem_fs_type);
3913 	if (IS_ERR(shm_mnt)) {
3914 		error = PTR_ERR(shm_mnt);
3915 		pr_err("Could not kern_mount tmpfs\n");
3916 		goto out1;
3917 	}
3918 
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3921 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3922 	else
3923 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3924 #endif
3925 	return 0;
3926 
3927 out1:
3928 	unregister_filesystem(&shmem_fs_type);
3929 out2:
3930 	shmem_destroy_inodecache();
3931 	shm_mnt = ERR_PTR(error);
3932 	return error;
3933 }
3934 
3935 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3936 static ssize_t shmem_enabled_show(struct kobject *kobj,
3937 				  struct kobj_attribute *attr, char *buf)
3938 {
3939 	static const int values[] = {
3940 		SHMEM_HUGE_ALWAYS,
3941 		SHMEM_HUGE_WITHIN_SIZE,
3942 		SHMEM_HUGE_ADVISE,
3943 		SHMEM_HUGE_NEVER,
3944 		SHMEM_HUGE_DENY,
3945 		SHMEM_HUGE_FORCE,
3946 	};
3947 	int len = 0;
3948 	int i;
3949 
3950 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3951 		len += sysfs_emit_at(buf, len,
3952 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3953 				     i ? " " : "",
3954 				     shmem_format_huge(values[i]));
3955 	}
3956 
3957 	len += sysfs_emit_at(buf, len, "\n");
3958 
3959 	return len;
3960 }
3961 
3962 static ssize_t shmem_enabled_store(struct kobject *kobj,
3963 		struct kobj_attribute *attr, const char *buf, size_t count)
3964 {
3965 	char tmp[16];
3966 	int huge;
3967 
3968 	if (count + 1 > sizeof(tmp))
3969 		return -EINVAL;
3970 	memcpy(tmp, buf, count);
3971 	tmp[count] = '\0';
3972 	if (count && tmp[count - 1] == '\n')
3973 		tmp[count - 1] = '\0';
3974 
3975 	huge = shmem_parse_huge(tmp);
3976 	if (huge == -EINVAL)
3977 		return -EINVAL;
3978 	if (!has_transparent_hugepage() &&
3979 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3980 		return -EINVAL;
3981 
3982 	shmem_huge = huge;
3983 	if (shmem_huge > SHMEM_HUGE_DENY)
3984 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3985 	return count;
3986 }
3987 
3988 struct kobj_attribute shmem_enabled_attr =
3989 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3990 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3991 
3992 #else /* !CONFIG_SHMEM */
3993 
3994 /*
3995  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3996  *
3997  * This is intended for small system where the benefits of the full
3998  * shmem code (swap-backed and resource-limited) are outweighed by
3999  * their complexity. On systems without swap this code should be
4000  * effectively equivalent, but much lighter weight.
4001  */
4002 
4003 static struct file_system_type shmem_fs_type = {
4004 	.name		= "tmpfs",
4005 	.init_fs_context = ramfs_init_fs_context,
4006 	.parameters	= ramfs_fs_parameters,
4007 	.kill_sb	= kill_litter_super,
4008 	.fs_flags	= FS_USERNS_MOUNT,
4009 };
4010 
4011 int __init shmem_init(void)
4012 {
4013 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4014 
4015 	shm_mnt = kern_mount(&shmem_fs_type);
4016 	BUG_ON(IS_ERR(shm_mnt));
4017 
4018 	return 0;
4019 }
4020 
4021 int shmem_unuse(unsigned int type, bool frontswap,
4022 		unsigned long *fs_pages_to_unuse)
4023 {
4024 	return 0;
4025 }
4026 
4027 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4028 {
4029 	return 0;
4030 }
4031 
4032 void shmem_unlock_mapping(struct address_space *mapping)
4033 {
4034 }
4035 
4036 #ifdef CONFIG_MMU
4037 unsigned long shmem_get_unmapped_area(struct file *file,
4038 				      unsigned long addr, unsigned long len,
4039 				      unsigned long pgoff, unsigned long flags)
4040 {
4041 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4042 }
4043 #endif
4044 
4045 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4046 {
4047 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4048 }
4049 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4050 
4051 #define shmem_vm_ops				generic_file_vm_ops
4052 #define shmem_file_operations			ramfs_file_operations
4053 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4054 #define shmem_acct_size(flags, size)		0
4055 #define shmem_unacct_size(flags, size)		do {} while (0)
4056 
4057 #endif /* CONFIG_SHMEM */
4058 
4059 /* common code */
4060 
4061 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4062 				       unsigned long flags, unsigned int i_flags)
4063 {
4064 	struct inode *inode;
4065 	struct file *res;
4066 
4067 	if (IS_ERR(mnt))
4068 		return ERR_CAST(mnt);
4069 
4070 	if (size < 0 || size > MAX_LFS_FILESIZE)
4071 		return ERR_PTR(-EINVAL);
4072 
4073 	if (shmem_acct_size(flags, size))
4074 		return ERR_PTR(-ENOMEM);
4075 
4076 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4077 				flags);
4078 	if (unlikely(!inode)) {
4079 		shmem_unacct_size(flags, size);
4080 		return ERR_PTR(-ENOSPC);
4081 	}
4082 	inode->i_flags |= i_flags;
4083 	inode->i_size = size;
4084 	clear_nlink(inode);	/* It is unlinked */
4085 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4086 	if (!IS_ERR(res))
4087 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4088 				&shmem_file_operations);
4089 	if (IS_ERR(res))
4090 		iput(inode);
4091 	return res;
4092 }
4093 
4094 /**
4095  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4096  * 	kernel internal.  There will be NO LSM permission checks against the
4097  * 	underlying inode.  So users of this interface must do LSM checks at a
4098  *	higher layer.  The users are the big_key and shm implementations.  LSM
4099  *	checks are provided at the key or shm level rather than the inode.
4100  * @name: name for dentry (to be seen in /proc/<pid>/maps
4101  * @size: size to be set for the file
4102  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4103  */
4104 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4105 {
4106 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4107 }
4108 
4109 /**
4110  * shmem_file_setup - get an unlinked file living in tmpfs
4111  * @name: name for dentry (to be seen in /proc/<pid>/maps
4112  * @size: size to be set for the file
4113  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4114  */
4115 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4116 {
4117 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4118 }
4119 EXPORT_SYMBOL_GPL(shmem_file_setup);
4120 
4121 /**
4122  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4123  * @mnt: the tmpfs mount where the file will be created
4124  * @name: name for dentry (to be seen in /proc/<pid>/maps
4125  * @size: size to be set for the file
4126  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4127  */
4128 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4129 				       loff_t size, unsigned long flags)
4130 {
4131 	return __shmem_file_setup(mnt, name, size, flags, 0);
4132 }
4133 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4134 
4135 /**
4136  * shmem_zero_setup - setup a shared anonymous mapping
4137  * @vma: the vma to be mmapped is prepared by do_mmap
4138  */
4139 int shmem_zero_setup(struct vm_area_struct *vma)
4140 {
4141 	struct file *file;
4142 	loff_t size = vma->vm_end - vma->vm_start;
4143 
4144 	/*
4145 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4146 	 * between XFS directory reading and selinux: since this file is only
4147 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4148 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4149 	 */
4150 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4151 	if (IS_ERR(file))
4152 		return PTR_ERR(file);
4153 
4154 	if (vma->vm_file)
4155 		fput(vma->vm_file);
4156 	vma->vm_file = file;
4157 	vma->vm_ops = &shmem_vm_ops;
4158 
4159 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4160 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4161 			(vma->vm_end & HPAGE_PMD_MASK)) {
4162 		khugepaged_enter(vma, vma->vm_flags);
4163 	}
4164 
4165 	return 0;
4166 }
4167 
4168 /**
4169  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4170  * @mapping:	the page's address_space
4171  * @index:	the page index
4172  * @gfp:	the page allocator flags to use if allocating
4173  *
4174  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4175  * with any new page allocations done using the specified allocation flags.
4176  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4177  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4178  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4179  *
4180  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4181  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4182  */
4183 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4184 					 pgoff_t index, gfp_t gfp)
4185 {
4186 #ifdef CONFIG_SHMEM
4187 	struct inode *inode = mapping->host;
4188 	struct page *page;
4189 	int error;
4190 
4191 	BUG_ON(!shmem_mapping(mapping));
4192 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4193 				  gfp, NULL, NULL, NULL);
4194 	if (error)
4195 		page = ERR_PTR(error);
4196 	else
4197 		unlock_page(page);
4198 	return page;
4199 #else
4200 	/*
4201 	 * The tiny !SHMEM case uses ramfs without swap
4202 	 */
4203 	return read_cache_page_gfp(mapping, index, gfp);
4204 #endif
4205 }
4206 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4207